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A B S T R A C T   

The benefits of using machine learning approaches in the design, optimisation and understanding of homoge-
neous catalytic processes are being increasingly realised. We focus on the understanding and implementation of 
key concepts, which serve as conduits to more advanced chemical machine learning literature, much of which is 
(presently) outside the area of homogeneous catalysis. Potential pitfalls in the ‘workflow’ procedures needed in 
the machine learning process are identified and all the examples provided are in a chemical sciences context, 
including several from ‘real world’ catalyst systems. Finally, potential areas of expansion and impact for machine 
learning in homogeneous catalysis in the future are considered.   

1. Introduction 

Machine learning methods are becoming increasingly common in the 
chemical sciences to efficiently analyse the vast amount of data gener-
ated by experimentation and guide scientists to their next reaction [1]. 
Machine learning has had notable recent success in retrosynthesis [2] 
and reaction condition prediction [3], advanced by ever increasing 
computational power and data availability. We herein focus on recent 
advances in the relatively underexplored field of machine learning for 
ligand promoted homogeneous catalysis. By focussing on key machine 
learning concepts, illustrated by examples from homogeneous catalysis, 
this review serves as a conduit between synthetic chemists and more 
advanced literature. We build on recent reviews on machine learning in 
synthetic chemistry [4–11], focussing more exclusively on ligand pro-
moted homogeneous catalysis. We assume basic knowledge of homo-
geneous catalysis and refer readers to reviews in that area [12–15]. We 
define here a selective homogeneous catalyst as MLn, where M is the 
activating ‘template’, most typically a metal (but potentially also an 
organocatalytic centre, such as H+), and Ln are the reacting and/or 
controlling ligands through which catalysis is attained. To avoid po-
tential confusion, we abbreviate machine learning (ML) in italics 
throughout this text. 

The opportunities of combining synthetic methods with ML investi-
gation can be illustrated in the application of catalyst screening. 

Classical catalyst development approaches typically change only one 
variable between consecutive reactions (runs) [16]. Such strategies 
converge only slowly towards improved outcomes. The benefit of ML 
methods in extracting the features responsible for excellence in catalysis 
is readily apparent from the following naïve example: a single reaction 
using a single ML2 catalyst with a library of five metals and a 20 
mono-dentate ligands already provides 1050, i.e., 5 × 21!/(2!19!), 
pre-catalytic MLALB combinations. The number of experimental runs 
required will be even greater, once other variables (e.g., catalyst acti-
vation additives, reaction solvent, temperature, time) are allowed for. 
An advantage of ML models is they can identify, often rapidly, compli-
cated patterns in multi-dimensional space that the human brain cannot 
easily envisage. Humans can visualise patterns in two-, three- and even 
four-dimensional data, but reactions rely on the best combination of a 
series of variables, and spotting patterns in a matrix of trial runs is 
challenging. While high throughput experimental (HTE) methods can 
presently (just about) deal with ‘screening’ high numbers of experiments 
(runs), they quickly become expensive in both resources and time as the 
number of parameters increase. ML methods can augment HTE ap-
proaches by reducing the overall number of runs by running fewer initial 
experiments and predicting the remainder [17]. 
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2. Machine learning concepts 

2.1. Introduction to machine learning 

Artificial intelligence (AI) refers to the field of computer programs or 
machines which can mimic human intelligence, such as solving prob-
lems and learning. ML is a subset of AI, wherein algorithms are used to 
learn from a dataset and thus make predictions when provided with 
novel data. A range of ML methods is presented in Section 3. Broadly, ML 
approaches can be divided into three categories: supervised learning, 
unsupervised learning, and reinforcement learning. Supervised learning 
methods are supplied with input (training) data, including the target 
(response) variable of interest. The data are “labelled”, and the output is 
known for each input (in the context of chemistry, this might be the yield 
or selectivity to a specific species). Supervised learning infers a general 
function, mapping the input to output based solely on the training data. 
This function is evaluated to predict the output when presented with an 
unseen (new) input. Conversely, unsupervised learning attempts to 
“automatically” find patterns or associations within unlabelled data 
(here there is no pre-defined output as a part of the input data). Rein-
forcement learning is about “acquiring knowledge” for selecting the 
most appropriate action to take at a given state when interacting with an 
environment, maximising a notion of cumulative reward over time. 
Readers should refer to the existing literature on unsupervised and 
reinforcement learning for examples where these techniques have been 
applied to chemistry [18–20]. Herein we focus on supervised learning 
approaches, as they offer the simplest entry to ML use. 

2.2. Some vocabulary 

Fig. 1 illustrates a generic ML process and Table 1 defines some key 
ML terms in supervised learning. After collecting the crude data, these 
are pre-processed and prepared as input for the ML algorithm. The ML 
algorithm produces a function mapping the input to an output through 
training. The model constructed by the ML algorithm is subsequently 
able to predict the output when supplied with a new unseen instance. 
Section 3 provides a comprehensive explanation of such ML workflows. 
The interface of chemistry and ML has developed its own specialist 
terminology. It is important to understand this to avoid contextual 
misunderstandings. Hence, we cover and clarify similar terminologies 
used in both disciplines in this section. 

The simple word ‘optimisation’ is prevalent in both chemical and ML 
literatures, but is generally used in a much more focused manner in the 
latter. In chemical catalysis ‘optimisation’ indicates a real-world study 
that has improved a specific reaction outcome: such as yield, selectivity 
or rate. However, within ML literature, ‘optimisation’ is used with its 
strict mathematical meaning, i.e., finding the best alternative(s) with the 
maximum or minimum objective value(s), and can be employed within 

almost any stage of the ML process from data pre-processing to model 
training and even for model selection [21]. 

The terms ‘descriptor’ and ‘parameter’ are sometimes presented as 
synonyms in the catalytic ML literature. However, in ML the terms are 
distinct: descriptors represent chemical properties (Fig. 1 and Table 1), 
whereas parameters are values internally related to the ML model that 
are estimated or learned from the data, e.g., the weights of a neural 
network (see later, Section 3.4.6). A more general term for a descriptor is 
a ‘feature’ and this term is also common in both ML and chemistry lit-
eratures. Finally, another critical term in ML is ‘hyper-parameter’ rep-
resenting an adjustable parameter of an ML algorithm, such as the 
learning rate for training a neural network. The performance of many 
ML algorithms, in terms of predictive accuracy or the efficiency of 
training, can depend significantly on the settings of the hyper- 
parameters. Thus, their optimisation (or tuning) is important [22]. 

2.3. An exemplar system for illustrating basic ML concepts 

ML methods use computer algorithms used to detect hidden patterns 
within data that would not be revealed by human inspection. However, 
this trait is not so useful when trying to teach how ML predictions are 
achieved when novel instances are supplied (Fig. 1). To make progress 

Fig. 1. ML processes in a supervised learning example. See Table 1 for the definition of ML terms and the explanation of symbols.  

Table 1 
Definition of ML terms and explanation of symbols shown in Fig. 1.  

Data Pre- 
processing 

Information regarding catalytic reactions is found in a variety of 
formats in chemical literature as shown, so must be translated 
into computer-readable form. Data should also be transformed 
to a uniform scale (see Section 3.2.2). 

These column headers collectively represent descriptors, features, 
or input variables (synonyms all used in ML). These may be real 
world observables (categorical or numerical), or 
computationally modelled properties, and typically comprise 
information about: 
Reaction Conditions such as temperature or solvent. 
Reactant Structures represented in computer-readable format. 
Atomic or Molecular Properties ranging from simple ones like 
molecular weight, catalyst metal identity, to DFT-derived 
properties, e.g., ligand HOMO energy. These features are 
processed by the ML algorithm to predict an outcome (i.e., 
yields, selectivities, etc.) 

A, ~, ~ Rows of values associated with an individual case A, B, etc. 
(where at least one characteristic of the catalyst system is 
different) are known as instances. They correspond to the 
individual catalyst ‘runs’ of classical screening. 

Xa, Xb…Xn Each instance in supervised learning is associated with a figure of 
merit, which are also referred to as targets, labels, or output 
variables. These denote the performance of a catalyst system, such 
as its yield, selectivity, or rate and are typically attained 
experimentally.  
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we will commence our discussion with a ‘toy problem’ for which we 
already know the answer: alkene (C––C) hydrogenation using Crabtree’s 
catalyst (2) [23] and its analogues (Scheme 1). Simple triphenylphos-
phine, PPh3 (LA), and pyridine (LB) and suitable iridium sources provide 
the initial iridium species [Ir(COD)(D1)(D2)]+ (1–3) (where M = Ir and 
D1 and D2 are suitable donors, specifically either LA or LB). In the 
following discussion, P,N refers to a system where one of LA or LB is 
phosphine-type (PR3) and the other is amine-type (NR3), and P,P and N, 
N refer to instances where both ligands are phosphine- or amine-type 
respectively. Literature precedent [23,24] shows that the mixed P,N 
system (2) leads to the most active (most product formed fastest) cata-
lyst, the P,P system (1) less so, and N,N ligands lead to very inactive 
species (3). For the rhodium analogues (4–6) (M = Rh), it is the P,P 
system (4) that is most active (principally due to decomposition of ni-
trogen ligated species 5–6 under the hydrogenation conditions). Scheme 
1 details five descriptors, selected for their potential influence on ac-
tivity, which were collected for the organometallic complex: the pKaH 
for LA and LB, together with their molecular weight (mwt), and elec-
tronegativity (χ). While a wide range of descriptors could be used for LA 
and LB, we use here three simple examples that clearly relate real-world 
properties of the ligands: pKaH (correlating to σ-electron density of the 
donor ligand); molecular weight (mwt, as a very simple measure of 
ligand bulk); and donor-atom electronegativity (χ) as a moderator of 
ligand donation potential. See further discussion on descriptors in Sec-
tion 3.3. The catalytic activity for 1–6, as estimated from published 
turnover numbers, is given as the figure of merit (target to be predicted) 
[23,24]. Given a new ligand, Lc, the activity of [Ir(COD)(LB)(Lc)]+, 7, for 
example, can be predicted based on the regression model, or simply 
classified as active or inactive (Table within Scheme 1). Our subsequent 
ML discussions will exemplify the process of attaining such predictions. 

2.4. Classification and regression 

Classification and regression are two key types of supervised learning 

tasks [25,26]. A classification model will identify which of two (or more) 
categories the new input belongs to, whereas a regression model will 
predict a numerical output. In the case of the ‘toy problem’ in Scheme 1, 
a classification task will categorise incoming data into a series of classes, 
i.e., “Given M(D1)(D2), would the resultant catalyst be active?” 
Assuming that instead of categories we have numerical values of cata-
lytic activity for each instance in the table in Scheme 1, then, given an 
unseen instance, the regression task could predict its catalytic rate, i.e., 
“Given M(D1)(D2), what would be its predicted relative rate?” Section 
3.4 onwards cover studies using regression approaches. If a larger or 
more ambiguous dataset had been used from the start, ML could be used 
to reveal that (i) Crabtree’s catalyst [Ir(COD)(LA)(LB)]+ (2) hydroge-
nates hindered alkenes faster than any other member of the library, (ii) 
the instances sorted into the ‘high’ activity category are commonly the 
Ir/P,N catalyst type, or (iii) Crabtree’s catalyst [Ir(COD)(LB)(Lc)]+, a 
new instance for which catalytic activity may not have been measured, 
is predicted to have high catalytic activity based on a model trained on 
1–6. 

2.5. Expectations and limitations of ML 

Before discussing ML workflows, it is important to appreciate what 
can be expected from ML analysis and its potential limitations. ML needs 
significant data (typically instances equal to at least five times the 
number of descriptors used) to learn from. It will also predict much more 
accurately on examples close to the training data than on cases that are 
distant from what it has learnt. Diverse data are better; discarding ‘poor’ 
yield/selectivity catalytic run data should be discouraged. Scheme 2 
summarises the tools that ML novices and their collaborators need to 
assemble to make a start, and the outcomes that it could be possible to 
achieve. 

The primary requirement is for high quality data [27]. Firstly, the 
choice of label or experimental data utilised is important. Chemical 
science’s most commonly collected output - the ‘% yield’ of a reaction – 

Scheme 1. A Crabtree catalyst exemplar: a ‘toy problem’ illustrating the application of ML workflows to homogeneous catalysis.  
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is often a poor choice. Yield is subject to the vagaries of the isolation, 
interpretation and reporting processes (e.g., isolated yields versus 
NMR/Gas Chromatography yields). Measures of reaction selectivity, 
such as %ee value or some other stereoselectivity indicator, are better 
choices of output, but these results can also be affected by whether the 
value was measured before or after purification or isolation [17]. 
Additionally, stereoselectivity can also be measured directly on crude 
reaction mixtures. Secondly, bias in datasets is a key problem, for 
example, not reporting low yield or failed reactions leads to data with 
few negative examples. Lastly, availability of data, either absence of 
data, low quality data (without conditions or experimental error), pro-
priety data, or the difficulty in querying databases also can hinder 
producing a dataset [28]. Recent efforts such as Open Reaction Database 
[29] have attempted to alleviate these problems, but much work is still 
required to make data accessible and standardised [30]. The amount of 
data required for a model varies significantly with the ML method used 
and the scope of the model; a model built on more (diverse) data will 
typically be able to cover a larger chemical space as most ML models can 
only extrapolate to a certain extent. There is no specific rule on the 
minimum amount of data, with models < 100 instances still providing 
useful models, if only a modest number of descriptors is used [31]. Thus, 
the number of experiments in a catalyst screen may be reduced by 
running several hundred and predicting the remainder. 

Although ML can provide accurate and useful results, it can be much 
more difficult to determine why the model has made a certain prediction, 
especially with so-called “black-box” ML approaches, where outputs can 
make it difficult to predict what should be the next steps in a catalyst’s 
development. To overcome this, developing explainable and interpretable 
AI is an important and a rapidly developing field [32–34]. To make ML 
models more interpretable, both the machine learning method and the 
choice of descriptors should be considered. In general, the simplest 
model is the easiest to interpret. This may be a model with fewer de-
scriptors or an ML model that is easy to analyse (e.g., a decision tree) [8, 
35]. See later sections on descriptors, ML algorithms and case studies for 
examples of interpretable models. Finally, it is important that the ML 
research itself is reproducible. Recent guidelines [36] have set out the 
need for code and data to be accessible and full details of training and 
validation to be disclosed. To return to Crabtree’s catalyst, to further 
improve the catalyst for C––C hydrogenation, we would subsequently 
need to identify or locate the characteristics of the catalytic metal or 
ligands which are most influential on the activity. This can be achieved 
by evaluating the relative influence of the descriptors on the predicted 
activity [37]. This will allow design of improved ligands LA’ and/or LB’ 
that maximise these descriptor(s) ‘information’ (for example by 
including: M-L bond length or pertinent stereoelectronic properties of 
the ligand, among many potential examples). This might give an indi-
cation of stereoselectivity or mechanistic understanding, but full 
mechanistic understanding is still largely the domain of quantum 
chemical studies [38]. By advancing the design process in silico, the 
number of experimental reactions can be reduced, thus saving time and 
resources. 

3. Machine learning workflow 

3.1. Identifying a chemical problem 

ML can be applied to a wide range of problems in chemistry. How-
ever, obtaining enough high-quality data is often a challenge in chem-
istry, as mentioned in Section 2.5. An ideal chemical problem would 
involve a dataset comprising hundreds to millions of instances, which is 
potentially easily attainable through literature mining, HTE or compu-
tational methods. The instances should include a wide range of values to 
encompass the breadth of the problem. A model must know about fail-
ures, successes and the range in between to deal effectively with unseen 
instances (i.e., new catalyst formulations). It is important that the data 
be drawn from the underlying distribution so that patterns, perhaps 
arising from related structures or the presence of certain functional 
groups, can be learned. Simultaneously attaining all the above criteria is 
often difficult. Data may be limited, due to instances being expensive to 
generate, and literature datasets can frequently be skewed to a (false) 
positive outcome or can be encoded in unhelpful/non extractable way. 
However, there are ways of overcoming these challenges [39]. 

3.2. Data preparation and pre-processing 

Data preparation and pre-processing takes raw “real-world data” and 
converts it into a machine-readable format, suitable for presenting as 
input to an ML computer program. There are many techniques for data 
preparation and pre-processing, including data cleaning, scaling, data 
balancing, dimensionality reduction, instance reduction, and more. See 
subsequent sections for examples of data preparation and pre- 
processing. Often, it is not necessary to apply all those techniques 
while tackling a problem, which would ultimately depend on the data 
being used. In this section, we concisely explain some of the selected 
techniques. Fig. 2 represents a typical approach to data pre-processing 
and use. 

3.2.1. Issues with data 
The first step is to collect the data from experiments or the literature. 

It is imperative to ensure that the data is error free. For example, in a 
stereoselective reaction, it should be checked that the enantiomer of the 
product, and any ligand used, has been correctly assigned. Data should 
be collected into a database or other suitable machine-readable form 
such as comma separated values (.csv) file. Care should be taken to 
ensure units are consistent. In a real-world raw dataset, there are 
frequently issues to be resolved, such as missing descriptors and 
improper data types. Therefore, checking the data initially is important 
[40], for example, in a ligand screen, there may be missing runs. A trivial 
fix for missing descriptors would be dropping the relevant instances 
and/or descriptors containing null/empty values, which can cause loss 
of valuable information. There are also data imputation methods based 
on machine learning and optimisation, which can generate substitutes 
for the missing data values [41,42]. 

It is important that the data types are appropriate and consistent for 
each descriptor within the dataset. For example, if there are categorical 

Scheme 2. Necessary resources and possible benefits in ML catalysis work.  

Fig. 2. Indicative data pre-processing and use.  
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descriptors, e.g., a category of ligand size, that can be ordinal (that can 
be ordered), such as “small”< “medium”< “large” (e.g., they can be 
processed and encoded as 1 <2 <3). Alternatively, the descriptors may 
be nominal, i.e., cannot be ordered, such as catalyst or reagent form 
(“solution”, “solid” or “unknown”). A pre-processing phase would 
involve ensuring that the categorical data for the descriptor are labelled 
appropriately. 

3.2.2. Feature scaling 
Feature (descriptor) scaling or transformation is a process which 

ensures different numerical variables within the dataset are all on the 
same scale, which allows each variable to be considered by the ML 
method equally [43]. For example, %selectivity falls on a scale of 0–100, 
whereas a temperature range within a study could be far wider, or 
narrower. Without adjustment, these two features would not be treated 
comparably, potentially leading to a bias within the analysis [44]. 
Where an ML algorithm is heavily affected by the range of a descriptor (i. 
e., the larger the range of a descriptor the larger its influence on the 
calculation), scaling is essential. Other ML algorithms that construct 
models without using a distance metric may eliminate the importance of 
descriptor scaling. (See later: distance-based algorithms including 
k-nearest neighbours (k-NN), support vector machines (SVM) and neural 
networks; models that do not use distance metrics include decision trees 
and random forests). 

The main descriptor scaling methods are standardisation and nor-
malisation [45]. The standardisation process computes the mean (μ) and 
standard deviation (σ) of the values (X), and then from each data entry 
the mean is subtracted, and the resultant value is divided by standard 
deviation producing a substitute value, X’ (Eq. 1). The normalisation 
method, also known as max-min scaling, finds the minimum (Xmin) and 
maximum (Xmax) values for the descriptor, then subtracts the minimum 
from the data entry dividing the resultant value by the difference be-
tween the maximum and minimum values for scaling (Eq. 2). 

X′ =
X − μ
σ (1)  

X′ =
X − Xmin

Xmax − Xmin
(2) 

Both processes are highly sensitive to outliers, as skewed input data 
will lead to skewed scaled data. Several other scaling techniques, out of 
the scope of this overview, can deal with outliers. Descriptor and 
instance selection (i.e., excluding a ligand or descriptor extremely 
different to the bulk) can also be useful. 

3.2.3. Data balancing 
Handling imbalanced data (in which some crucial aspects are un-

derrepresented and/or skewed) which influences the ML performance is 
a challenging issue in supervised learning. For example, the number of 
instances in one class (e.g., low temperature catalyst runs) might be 
significantly fewer than other classifications (e.g., medium to high 
temperature runs). This could be a problem because ML algorithms often 
attempt to maximise accuracy and minimise error in predictions, and 
they may simply predict that all instances belong to the majority class. 
The performance of an ML algorithm can be improved through data 
balancing, for example via sampling. Oversampling augments the orig-
inal dataset by generating artificial data to add under-represented data. 
One of the commonly used techniques is SMOTE (Synthetic Minority 
Oversampling Technique) for classification and its variant SMOTER that 
adopts SMOTE for regression[44,46]. Undersampling is the opposite 
strategy, where instances are removed from the dataset. Singular metrics 
to evaluate the performance of ML algorithms (i.e., reduced to a single 
value such as accuracy and error) can be sensitive to imbalanced data. 
Performance metrics are discussed in Section 3.4. Hence, the choice of 
the performance metric is important while applying a data balancing 
technique. He et al. and Branco et al. cover various techniques for data 

balancing along with potential issues and relevant informative perfor-
mance metrics [44,46]. 

3.2.4. Dimensionality reduction 
An important characteristic of a dataset is its dimensionality, i.e., the 

number of descriptors it has. Dimensionality reduction is concerned 
with mapping the data from this high-dimensional space to lower- 
dimensional space, whilst maintaining the significant patterns in the 
initial data. Reducing the number of dimensions in the data enables 
simplified models to be used and patterns in the data to be more easily 
spotted. Additionally, overfitting [47], where models are trained too 
tightly to the detriment of new test data, can be avoided. This can also 
allow faster training. Without such processes, as more descriptors are 
added, the number of data instances required by the model grows too 
rapidly for accurate predictions to be made – the so-called ‘curse of 
dimensionality’[48]. Feature selection and feature projection can be 
used to reduce the dimensionality of a descriptor set (Scheme 3). 

Feature selection is a form of dimensionality reduction for choosing a 
subset of relevant descriptors for ML methods [49]. For applications in 
ligand promoted homogeneous catalysis, the influence of some features 
might not be sufficiently obvious for the selection(s) to be done manu-
ally. A more programmatic approach would be to use variance thresholds, 
whereby the variance of each descriptor is computed and if that value 
does not exceed the specified threshold, then the descriptor is removed, 
on the basis that a descriptor with limited variation will have limited 
predictive power [50]. 

Feature selection methods can be categorised as filter, wrapper, or 
embedded. Filter methods [51] are used in the pre-processing stage and 
are independent of any model built. A subset of descriptors is selected, 
based on the relationship of each descriptor with the target variable, 
based on a metric such as correlation. Wrapper methods [52] perform a 
search of descriptors guided by the performance of the subsequent 
model built. Either an initial model is built with a small subset of de-
scriptors, and more descriptors added (forward selection), or descriptors 
are removed from an initial model containing all descriptors (backwards 
elimination). Embedded methods [53] are more advanced and select 
descriptors while constructing the model based on fitting errors, and 
their hybrids. 

Feature projection (also called feature extraction) is another approach 
to dimensionality reduction, where the original descriptors are used to 
generate a smaller set of descriptors that define the instances within the 
data set more usefully (and succinctly) than the original ones. This 
technique moves the data with high dimensionality to a space with 
fewer dimensions. There are various feature projection methods which 
include Linear Discriminant Analysis (LDA), Independent Component 
Analysis [54], Autoencoder, Random Projection [53], Principal 
Component Analysis (PCA), and Partial Least Squares (PLS), and more. 
In this section, we explain the latter two well-known methods. 

PCA [55,56] takes the original data and creates linear combinations 
(called principal components) of the descriptors and projects them on to 
a set of orthogonal axes (Fig. 3). The principal components are ranked in 
order of importance based their variance to summarise the original data 
distribution optimally. Optimally in this case means maximising the 
variance of the principal component. 

The first principal component shows the greatest variance in the 
data. PCA preserves large pairwise separations better than smaller ones. 
In other words, instances that are well separated in the original 
descriptor space will still be well separated after the PCA. PCA is an 
unsupervised method. It does not distinguish any labelling of the data 
and only identifies the variance of the descriptors, which could lead to 
data loss. The cumulative variance retained gives an indication of how 
much data has been preserved. If the dataset is reduced too much, un-
derlying trends in the data towards the target value may be lost. 
Although it is trivial to see the influence of each descriptor on each 
principal component, it does make subsequent analysis of the model 
harder as the original descriptors are not directly used, which makes it 
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harder to explain the predictions based on the descriptor importance or 
other analysis. 

The Partial Least Squares (PLS) method [57] is applied to both the 
descriptors and the target variable. Latent variables, t, are linear com-
binations of descriptors, and the target variable, y, is predicted based on 
a linear combination of the latent variables: 

y = a1t1 + a2t2 + a3t3 +…+ antn (3)  

where the coefficients a are weighting coefficients. Usually only the first 
few latent variables are used, with the number determined through a 
cross-validation approach. PLS serves to reduce the dimensionality of 
the dataset by aggregation of collinear descriptors. This is similar to PCA 
(see Fig. 3 and above), but the target variable is considered. In partic-
ular, PLS defines latent variables which maximise the covariance of the 
descriptors and the target variable. PLS is most effective on datasets with 
high collinearity, as this enables the reduction of the data into a handful 
of descriptors that account for the majority of the variability in the target 
variable. A poor ratio of data to descriptors is a common issue in 
chemistry that has made PLS a popular method in the field [58,59]. It 
has the same drawbacks as PCA in data loss and linear modelling. 

There are many other dimension reduction techniques beyond PCA 
and PLS. One example is Uniform Manifold Approximation and Projec-
tion (UMAP), which has found particular use for quickly mapping 
chemical space. While the details of this algorithm are out of the scope of 
this review, we refer readers to the following references [60,61]. 

3.2.5. Data splitting and validation 
The primary goal of a supervised ML technique is to train a model in 

order to predict a desired characteristic of previously unseen test ex-
amples correctly. Holdout is the simplest approach to data splitting. 
Partitions for training and testing is achieved through random sampling 
of instances. The size of the subset of data for training is usually larger 
than for testing (e.g., 70:30 or 80:20). Achieving high training accuracy 

alone is not fully useful, if the prediction is not accurate enough based on 
the test data. Large differences in predictive accuracy on training and 
test data of unseen instances indicate that the model is overfitted (often 
caused by too many descriptors for the number of instances). A well- 
established protocol to estimate the presence of such errors is to apply 
cross-validation, in which the dataset is partitioned into multiple sub-
sets, a part of which is used for training and the rest for validation and 
testing. 

The most common cross-validation approaches are k-fold cross- 
validation and leave-one-out cross-validation [62]. In the former, the 
dataset is split into k subsets and, sequentially, k - 1 of them are used for 
training and the remaining one for testing. This approach is repeated k 
times, until all subsets are used once for testing. Leave-one-out cross--
validation involves using a single instance in the dataset as test data and 
the remaining instances as training data, until all instances are used for 
testing once. In other words, the procedure is the same as in k-fold 
cross-validation, but in this case, k is the number of instances in the 
dataset. However, this requires large computational power and time 
when the dataset is large. If the hyper-parameters of an ML algorithm 
require optimisation, a nested cross-validation approach is usually 
applied, whereby the hyper-parameters are tuned based on a validation 
subset of data. Then the tuned final model is evaluated on the test set to 
ensure the integrity of the estimate of the predictive accuracy of the 
model [63]. 

3.3. Descriptors 

Descriptors represent characteristics of a chemical entity in a form 
suitable for ML algorithms, so that they can be used to create models. 
Molecular descriptors themselves may be characterised by the dimen-
sion of their representation of the molecule (1D–4D), or by their nature 
(constitutional, topological, geometric, electrostatic, and quantum me-
chanical), although these groupings overlap. One might anticipate that 
the more sophisticated the descriptor, the more predictive the model. 
However, this is not always the case and working upwards from the 
simplest descriptors often provides insights. 

1D descriptors contain global information about the molecular 
structure, for example, atom or fragment counts, molecular weight, etc. 
Their simplicity means they can suffer from degeneracy and the identity 
of isomeric compounds are lost. Models based on 1D descriptors can 
provide a useful baseline approach and such descriptors can contribute 
to predictive models in combination with other descriptors. 2D (bond 
connectivity) descriptors are very common [64], with free and 
commercially available programs able to generate many different types 
with minimum computational time. They are derived from chemical 
structures and describe connectivity and structure within molecules. 
The number of bond types or counts of aromatic rings can be included, 
analogous to topological descriptors. The distance between two coor-
dinating atoms in a ligand would be an example of a 2D descriptor. 3D 
descriptors rely on the generation of 3D structure via molecular me-
chanics or ab initio calculations [65]. Depending on the level of theory, 
they may be time-consuming to calculate. Examples include the 

Scheme 3. To reduce the dimensionality of a descriptor set, typically feature selection and feature projection are employed. In feature selection, a subset of the 
original descriptors is chosen (represented by the shapes selected from the original descriptor set). In feature projection/extraction, the original descriptors are 
combined to form a new set of descriptors (represented by the hybrid shapes). 

Fig. 3. Principal components, t1 and t2, are linear combinations of the original 
descriptors, x1 and x2, and correspond to the definition of a new set of axes in 
which t1 accounts for the greatest variance. 
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principal moment of inertia, representations of the solvent accessible 
areas or van der Waals volume [66]. Molecular interaction fields, pop-
ularised in the Comparative Molecular Field Analysis (CoMFA) tech-
nique [67], also find utility in 3D ML studies of catalysis [68]. Finally, 
4D descriptors take conformational changes over time into account by 
taking the average of conformers generated over the course of a mo-
lecular simulation. 4D descriptors are very computationally expensive to 
calculate, but the information derived is complex and detailed [69,70]. 

Experimental descriptors are also common. However, they can be 
expensive if they can only be obtained by time-consuming experimen-
tation or lengthy literature searches. However, these descriptors them-
selves can be often predicted. The Hammett σ constants measure the 
electron-donating and -withdrawing power of organic substituents. 
They were traditionally calculated from experimental ionisation en-
ergies [71]. However, there has been recent effort to directly calculate 
these parameters for new substituents without the need for additional 
experimentation [72]. Another example are descriptors developed by 
Tolman [73], such as his experimentally measured Tolman Cone Angle 
(TCA) which describes the steric bulk of ligands. More recently, TCA was 
calculated from quantum-mechanically optimised 3D ligand structures 
and used to predict catalytic activity [74]. Other descriptors which may 
be experimentally derived or calculated are pKa [75] and electronega-
tivity [76]. 

The interpretability of models can also be improved through the 
choice of descriptor [77]. A small number of “hand-crafted” descriptors, 
which chemists intuitively understand, can result models which are 
easily to analyse and justify. One study advocated for spectroscopic 
descriptors which were physically meaningful, cheap and extensive 
[78]. 

3.3.1. SMILES and InChI 
Simplified Molecular Input Line Entry System (SMILES) is a line entry 

format for chemical structure notation [79]. SMILES is a workhorse in 
cheminformatics, providing a compact string representation of mole-
cules which is machine readable. There are various utilities for con-
verting SMILES into two- or three-dimensional representations of the 
molecule [80]. The simple rules for constructing a SMILES string are 
given in Table 2. 

For example, the SMILES representation of the molecule benzoic acid 
is ‘c1ccccc1C(=O)O’, combining the rules from Table 2 for the aromatic 
benzene ring and carboxylic acid; the number of hydrogen atoms 
required to satisfy valency are usually implicit. Stereochemistry can be 
shown in SMILES, and each SMILES uniquely represents a molecule. 
However, depending on which atom the SMILES begins with, a molecule 
may have many valid SMILES. For full SMILES rules refer to the estab-
lished guidelines [79]. 

International Chemical Identifier (InChI) is another string representa-
tion of molecules [81]. Benzoic acid is denoted 1 S/C7H6O2/c8–7(9) 
6–4–2–1–3–5–6/h1–5 H,(H,8,9)’. ‘1 S’ defines the version number, ‘1’, 
and ‘S’ refers to the fully standardised version of the InChI (StdInChI). 
‘C7H6O2’ is the empirical formula, the next section defines which atoms 
are connected, and the final section denotes which atoms have hydrogen 
atoms. Most of an InChI string is human-readable and they can include 
information about tautomeric state and stereochemistry. Unlike SMILES, 

every chemical structure has a unique StdInChI string, which is useful if 
isomeric compounds appear in the data set. InChI forms are long and of 
non-fixed length for large molecules, which can handicap comparing the 
similarity of two structures. StdInChIKey, an algorithm generated 
(non-human readable) fixed-length string facilitates storage, but cannot 
be directly converted back to the chemical structure [82]. 

3.3.2. Fingerprints 
Molecules are often represented by chemical ‘fingerprints’ to aid 

substructure and similarity searches [83,84]. These fingerprints are of a 
pre-defined length (though the actual length depends on the fingerprint 
used) and broadly fall into two categories: structural key based and 
hashed based fingerprints. Structural key fingerprints (such as MACCS 
[85] and PubChem [86]) encode predefined structural features, such as 
a substructure or fragment, as a ‘1’ or ‘0’ depending on its presence or 
absence. Alternatively, a more flexible approach is to enumerate 
through fragments up to a certain size. This enumeration can be 
path-based as in Fig. 4, where a connectivity of up to three has been 
included (e.g. Daylight fingerprint) [87], or circular by considering the 
environment of an atom by its ‘radius’ or ‘diameter’ (e.g. 
extended-connectivity fingerprints) [88]. To standardise between 
different sized molecules, these fragments are converted into a bit vector 
using a hashing function. The hashing function converts the fingerprint 
from an arbitrary length to a fixed length. There are numerous other 
types of fingerprint, such as 3D pharmacophore fingerprints [89], not 
covered in this overview. 

Fingerprints are easy to use for molecular similarity and substructure 
searching using a variety of similarity coefficients and distances. As the 
fingerprints do not encode the full structure of a molecule, they cannot 
be easily converted back to the full structure. Fig. 4 visualises the overall 

Table 2 
Basic rules for constructing a SMILES string.  

Molecular feature Representation 

Non-aromatic 
atoms 

Element symbols, first letter in upper case letters 

Single bonds - (but may be omitted) 
Double bonds =

Branching Denoted using () 
Ring closure Label (with the same number) atoms that were connected to 

each other 
Aromatic atoms Lower case letters  

Table 3 
Important definitions to assess a classification model. *Real refers to the 
experimental or calculated target value in chemistry (e.g., catalyst is active/ 
inactive) which is assumed to be correct.  

Term Prediction Value Real* Value 

True positive (TP) Positive Positive 
False positive (FP) Positive Negative 
True negative (TN) Negative Negative 
False negative (FN) Negative Positive  

Fig. 4. The process of generating a fingerprint based on path length [83,88].  
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procedure using a phosphine, PHMeBut, which has been used (in its BH3 
protected form) for chiral ligand synthesis [90]. 

3.4. Machine learning methods 

ML models have a trade-off between bias and variance [1]. Bias is the 
systematic error within the ML model itself and can be defined as how 
well the model matches the training data. A highly biased model may be 
too general, not fitting the data particularly well, and low bias refers to a 
near perfect fit. The variance assesses the difference in fit between 
different portions within the training data: if the fits for all portions are 
similar then the model is said to have low variance. However, if they are 
wildly different the model is considered to be overfitted, especially if the 
performance on unseen test data is poor. This normally occurs when 
there are too few instances for the number of descriptors used (although 
there is no consensus on the number of instances per descriptor) [91,92]. 
A good model is one with low bias (sensitive to training data), and low 
variance (performs well with new data). However, there is often a 
trade-off between bias and variance to get the most suitable model. 

There is often no clear way of determining which ML method to 
apply to a dataset up front. Almost every ML method has been applied to 
homogeneous ligand catalysis (see subsequent examples) and the choice 
of method depends on the structure and type of input data and the 
amount of training data. Usually, neural networks are preferred for large 
datasets with SMILES or graph inputs [93,94]. In practice, many ma-
chine learning methods will be trialled for a given dataset, and the best 
method retained. 

3.4.1. Model performance analysis 
Various metrics to evaluate the performance of ML algorithms 

allowing analyses of their predictive capability, tuning and optimisation 
of their parameter/hyper-parameter settings, and comparison of 
different ML models. It is useful here to use the toy problem of Scheme 1 
where a classification problem requires identification of which ligands 
give active or inactive catalysts. For the following discussion several 
definitions are required. In this example, positive, denotes that the 
catalyst is active and negative that the catalyst is inactive. 

A commonly used metric for evaluating a classification model is 
accuracy, indicating the fraction of correct predictions out of the total 
made. It is an indication of the overall accuracy of the model but may be 
affected by the number of each class in the dataset. Suppose a dataset 
with 90 active catalysts and 10 inactive catalysts. A (very poor) model 
which assigns all as active would give an accuracy of 90%, which is 
misleading. 

Accuracy =
Number of correct predictions

Total predictions made
(4) 

Precision is the ratio of true positives and total positive predictions. 
This indicates how good the model is at positive predictions (active 
catalyst predictions). In the above example the model would also have 
90% precision. 

Precision =
TPs

TPs+ FPs
(5) 

Recall or sensitivity is the ratio of true positives and total positives in 
the dataset [95]. This indicates how good the model is at identifying 
positive examples (active catalysts). In the above example the model 
would have 100% recall since all active catalysts were assigned as 
positive. 

Recall =
TPs

TPs+ FNs
(6) 

Specificity is the ratio of true negative predictions and total negatives 
in the dataset [95]. In the above example, the model would have a 
specificity of 0% since no inactive catalyst was correctly identified. 
Thus, it is crucial to calculate multiple metrics to get the true assessment 

of a model. 

Specificity =
TNs

TNs+ FPs
(7) 

Fall-out rate and miss rate are other statistics describing the false 
positive and false negative rates respectively. These, and more advanced 
statistics such as F1 score and the “Area Under the Curve” (AUC), are not 
covered here. 

For a regression problem, the root mean square error (RMSE) of the 
prediction is a well-established measure of success. It is defined as the 
square-root of the sum of the difference between the real and (y) pre-
dicted (ŷ) values, squared and divided by n, the total number of in-
stances. The mean absolute error (MAE) provides information on the 
likely error in each prediction. It is defined as the sum of the difference 
between the absolute values divided by the number of instances. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(yi − ŷi)

2

n

√
√
√
√
√

(8)  

MAE =

∑n

i
|yi − ŷi|

n
(9) 

Outliers adversely affect these metrics, since they are based on the 
mean. Therefore, careful analysis of the errors is required. The standard 
deviation of the target variable can be compared to the average error to 
give an assessment of the predictive power of the model. If the error is 
less than the standard deviation the model is performing better than a 
naïve assignment of the mean target variable to the test set [96]. 

ML methods should be compared based on an appropriate metric 
using an appropriate statistical test, which can establish whether one 
prediction is significantly better than another. The statistical tests usu-
ally define a null hypothesis that the results of two predictions for 
different ML models are not significantly different and, based on the 
outcome of the test, the hypothesis is either accepted or rejected. For 
details of parametric and non-parametric statistical tests, we direct 
readers to the following references [97–99]. 

Some selected common ML methods used for regression and classi-
fication are covered in the following sections. 

3.4.2. Linear regression 
This simple method assesses the correlation between a descriptor and 

the target variable using a line of best fit. The line is fitted using the least 
squares method, where the sum of the squares of the residuals (SSR) is 
minimised. The equation of the line is given as: 

y = mx+ c (10)  

where y is the target variable, x is the descriptor, and m and c (the 
gradient and intercept) are optimised by the model. This line minimises 
the vertical distance between each of the points from the real data and 
the fitted line. For multidimensional problems, multilinear regression 
(MLR) [100] using the same technique is applied, but with as many 
coefficients as descriptors to describe the associated hyperplane. For a 
dataset with two descriptors, x1 and x2, and the target variable, y, the 
equation of the hyperplane would be: 

y = ax1 + bx2 + c (11) 

The coefficients a and b describe how positively or negatively that 
the associated descriptors contribute to the prediction and to what 
extent. 

The fitted coefficients allow easy analysis of the contributions of each 
descriptor, giving highly interpretable models. MLR cannot deal with 
many collinear (correlated) descriptors. However, dimension reduction 
can be used to reduce the dimensionality of the dataset (see previous 
section on PCA and PLS). Additionally, non-linear relationships cannot 
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be modelled, so MLR may not be suitable for more complicated re-
lationships. Due to its transparency, MLR is still popular for machine 
learning for homogeneous catalysis, especially for smaller datasets 
[101]. However, one of the more advanced methods described in the 
subsequent sections typically outperforms MLR for larger datasets, as 
seen in the majority of case studies presented in Section 4. For a case 
study using this model see Section 4.1. 

3.4.3. Decision trees 
This method [102] encodes a series of binary choices to make de-

cisions and classify the inputs into ever similar groupings. They are able 
to handle a wide range of data types such as binary, numeric, ranked and 
even multiple-choice data in a single tree. Trees begin with a root node. 
The root is defined as the descriptor that contributes greatest variability 
to the target variable and is determined by calculating an impurity score: 
a measurement of the probability that a classification will be incorrect. 
This same process is followed to define the internal nodes and finally the 
leaf nodes where the prediction is made. A decision tree is shown in  
Fig. 5 for the Crabtree catalyst exemplar problem described in Scheme 1. 
Data are partitioned according to the presence of Ir and descriptor 
values. Given new complex 7 (Scheme 1), the relevant descriptor values 
could be used to make a prediction. Fig. 5 would therefore predict a high 
relative rate of 5000 for complex 7. An important consideration is the 
maximum depth of the tree. In Fig. 5, due to the small descriptor space, 
the maximum possible depth has been reached where each instance has 
been separated into its own leaf node. A single decision tree is rarely 
used in machine learning since the error is typically too high. Instead, an 
ensemble of decision trees, known as a forest, can be used. 

3.4.4. Random forest 
This powerful ensemble method [103,104] combines many individual 

decision trees to make a prediction based on the aggregated results. The 
random forest algorithm provides a number of benefits, including: (i) 
mitigation of overfitting through the use of multiple decision trees for 
prediction, (ii) higher accuracy, (iii) ability to handle large and/or high 
dimensional data, and (iv) estimate missing data maintaining accuracy 
[105]. 

The ‘random’ factor in this approach is a consequence of how the 
decision forest is grown. Firstly, only a randomly chosen subset of in-
stances are used to grow each tree. Secondly, rather than using all de-
scriptors at each decision point (node), only a random subset of 
descriptors is used. These steps are repeated hundreds of times until a 
forest of decision trees (of differing predictive ability) has been grown. 

Predictions are made using every tree in the forest and these pre-
dictions are aggregated. A new instance to be predicted is applied to 
every tree and the prediction is a combination of the entire forest. The 
aggregation of many results often gives the best prediction with low 

variance (c.f. the ‘wisdom of crowds’). Depending on the type of data, 
the aggregation can be done using a voting system for categorical data or 
by taking the average for continuous data. 

Random forests have several hyper-parameters including the mini-
mum sample size and maximum depth. The minimum sample size is the 
minimum number of samples required to make a split. Typically, the tree 
is grown to until all terminal nodes contain less than the minimum 
sample size. This is the tree depth. Additionally, the number of trees in 
the forest can be varied. Although default hyperparameters generally 
give good predictive models, they can be optimised to make them even 
better [106,107]. An additional benefit is that the relative importance of 
each descriptor can be estimated. This makes the models more inter-
pretable since highly weighted descriptors could give insight into the 
catalysis system under study. Due to their ease of use and relative 
insensitivity to hyper-parameters, random forest is a popular method for 
machine learning in homogeneous catalysis [37,108]. For a case study 
using this model see Section 4.2. 

3.4.5. k-nearest neighbours algorithm (k-NN) 
In this method [109] all inputs, including the descriptor values and 

labels, of the instances for training are stored. For classification, when an 
unseen instance is fed into k-NN as a new input, the algorithm returns 
the class label which is the most frequent among the k nearest training 
instances to that input based on a distance metric as illustrated in Fig. 6. 
A commonly used metric is the Euclidean distance for measuring the 
pair-wise proximity of the instances in the descriptor space. Similarly, 
for regression, k-NN returns the average value of k nearest neighbours. 

Since k-NN makes predictions based on a distance metric, normal-
ising/standardising the data is crucial. The simplistic nature of the al-
gorithm may make k-NN unsuitable for datasets with a large number of 
descriptors. Each descriptor is necessarily treated with equal weight in 
the distance measurement. Therefore, unbalanced descriptor sets may 
give predictions based on the dominant features represented (e.g., too 
many ligand descriptors rather than metal descriptors). In addition, k- 
NN is poor at extrapolation, since predictions are based directly on 
distance to known training examples. For these reasons, there are 
limited cases of k-NN used for homogeneous catalysis datasets but they 
have been used in combination with other methods [109]. Much like 
MLR, k-NN excels in its simplicity and transparency. It can also be used 
as a benchmark to compare more complicated ML methods to assess the 
utility of these models [110]. Lastly, there are several modifications to 
k-NN, which can increase its accuracy. We refer readers to the following 
reference [111]. 

3.4.6. Support vector machines (SVMs) 
An SVM works by dissecting data using a hyperplane which lies in 

the centre of two margins defined by the support vector classifiers [112, 
113]. Kernel functions are used to transform non-linear data so a linear 
separation may be found, as shown in Fig. 7. 

Kernels, functions that compare instances to each other, are used to 
find patterns at a higher dimension than the data naturally allows. A 
kernel function, K(a,b), works by calculating the dot product of two 

Fig. 5. Decision tree for the Crabtree catalyst exemplar described in Scheme 1. 
Branch points correspond to the presence or absence of iridium and thresholds 
on the descriptor values; values at the leaves are relative rate. Due to the size of 
the exemplar data the tree is grown to its maximum depth. Otherwise, the mean 
values of every instance in the leaves would be taken as the prediction for this 
regression problem. 

Fig. 6. 2D scatter plot of the input (training) instances based on two de-
scriptors, belonging either class P or Q. Applying 3-nearest-neighbour algorithm 
would classify the unseen instance as P, since two (majority) of the three 
nearest neighbours belong to that class. 

J.D. Hirst et al.                                                                                                                                                                                                                                  



Artificial Intelligence Chemistry 1 (2023) 100006

10

instances, a and b, essentially the magnitude and direction between the 
vectors derived from the instances. Taking the polynomial kernel as an 
example where d is the degree of the polynomial and r as the coefficient, 
if r = ½ and d = 2: 

K(a, b) =
(

ab+
1
2

)2

=

(

ab+
1
2

)(

ab+
1
2

)

= ab+ a2b2 +
1
4

=

(

a, a2,
1
2

)

.

(

b, b2,
1
2

)

(12) 

The dot product indicates the relationship between two instances by 
providing the coordinates of them in 2D space so defining the position of 
each instance relative to all others. The kernel trick (Fig. 7) is this 
principle: analysing the data as if it were in higher dimensional space 
rather than performing the actual transformation in order to define a 
hyperplane. 

The margin can vary in ‘hardness’ depending on the separability of 
the data: a soft margin accommodates some misclassifications, but a 
hard margin has no tolerance. To increase the bias and reduce the 
variance, a soft margin is preferable to the instances that lie in this re-
gion; these instances are categorised as the support vectors. This can be 
applied to a 1D linear dataset where the threshold and support vector 
classifiers are simply points on a line, and can be extended to n- 
dimensional data, where hyperplanes are defined by n-1 dimensions. For 
non-linear data where no single threshold can be defined, an SVM can 
use a kernel to effectively transform the instances onto higher di-
mensions until a single hyperplane can be fitted. Kernels are functions 
that output a similarity matrix containing values for every instance 
compared to every other instance in the dataset. 

Computational costs are kept low by avoiding the transformation and 
instead providing the similarity matrix. As with all these methods, it 
must be refined to suit the dataset. Various kernels are available, such as 
the radial basis function, which behaves like a weighted nearest 
neighbours model, clustering based on the proximity of other instances. 
The computational power of individual kernels is nominally dependent 
on the dataset. However, to systematically find the best kernel and 
optimise the hyper-parameters for each takes time, as models are highly 
dependent on the hyper-parameters used. In fact, it is challenging to 
optimise the hyper-parameters even when the kernel is fixed to be the 
radial basis function [114]. SVMs are suitable for the small and medium 
size datasets typically seen in chemistry [115,116]. However, a disad-
vantage to SVM is that the computational time to select the support 
vectors and construct the hyperplane increases exponentially as the 
training data size increases [117]. For a case study example of use of this 
model see Section 4.2. 

3.4.7. Neural networks: from perceptron to deep learning 
Inspired by early attempts mimic the activity of neurons of human 

brains, these use multiple decision layers connected by binary switching 
functions [118]. Neural networks are computationally expensive and 
time consuming to train and result in predictive logic that is often 
opaque to human comprehension and tricky to rationalise. However, 

with enough time and data they can provide highly accurate results. 
The artificial neuron (node) is a simple computational unit which 

processes input values, taking the weighted sum of input values, trans-
forming/scaling that sum through a non-linear function mapping to an 
output value. The perceptron is the simplest neural network architecture 
that employs supervised learning for binary classification. Fig. 8 illus-
trates a single layer perceptron that is composed of multiple input 
neurons passing on the input signal/values directly and a single neuron 
in the output layer. Each connection between neurons carries a weight 
(corresponding to synapses in the biological analogy, e.g., w1, w2, …, 
wn). 

The weighted sum of the input values received from the preceding 
input layer, including any bias function, b, is fed into the activation 
function. The activation function decides whether a neuron fires or not. 
Usually a step function (Eq. 13) is used as an activation function which 
ensures that the output is either 1 (indicating firing of a neuron) or 0. 
The bias, b, in the activation function adjusts the threshold away from 
origin. 

f (x) =

⎧
⎨

⎩

1, if
∑n

i=1
wixi + b > 0

0, otherwise (13) 

During the training, optimal weight coefficients are computed 
automatically using the learning algorithm which iteratively compares 
the output to the predicted output propagating the error back and 
updating the weights until that error reduces to a satisfactory level. 

One of the simpler types of neural networks is the multi-layer per-
ceptron (see Fig. 9). There are several layers of nodes: input, output, and 
hidden; there may be many hidden layers. In the fully connected version, 
each neuron (node) in one layer is connected to every other neuron in 
the next layer. The weights and biases of the connections in the neural 
network are updated by the back-propagation of errors algorithm [119], 
where a network is iteratively updated by running training data forward 
through the model, then updating the weights to minimise the overall 
error. 

The hyper-parameters of a neural network include the number of 
hidden layers and the number of neurons (nodes) in each hidden layer. 
There is not an obvious way to decide the optimal number of hidden 
layers and nodes, which can lead to under- or over-fitting. However, 
there are several guides on network architecture [120]. Large neural 
networks may also require long training times or specialist hardware (e. 
g., GPUs) for large datasets. Although the advent of tools such as Ten-
sorFlow and PyTorch have made neural networks more accessible, there 
is still a significant barrier, not least due to the sheer number of options 
available, for new users. Neural networks have gained popularity due to 
their ability to model complex and non-linear relationships. There is a 
vast range of neural networks with diverse architectures. Readers are 
directed to literature on Recurrent Neural Networks (RNNs) [121], 
Convolutional Neural Networks (CNNs), and Graph Neural Networks 
(GNNs) for chemistry problems as they have had notable success, 
especially with language-based models (e.g., SMILES input) and mo-
lecular graph inputs [93,94]. Molecular graph inputs have the potential 
to highlight atoms or bonds in the molecule which were important for 

Fig. 7. The kernel function, K, transforms the data from the input space (left) to 
a higher dimensional feature space (right) where linear boundaries can 
be found. 

Fig. 8. Illustration of a single layer perceptron.  
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the prediction. This can be used to verify the model is learning form the 
correct part of the molecule and to give insight into important structural 
features in the molecule [122]. We also refer readers to the following 
studies using neural networks in homogeneous catalysis prediction 
[123,124]. 

3.5. Toolkits and useful resources 

Table 4 summarises some useful resources for ML, including some 
that are designed for the researcher with limited ML experience. We do 
not comment further here as extensive documentation and resources for 
these software sources are already widely available. 

4. Case studies 

4.1. Prediction of enantioselectivity in asymmetric catalysis using multiple 
linear regression 

Binaphthylphosphoric acids, such as LC-H, are strong activators of 
imines (8). Once protonated by acid, the resultant electrophilic imi-
niums (9) are readily attacked by a variety of nucleophiles (Nu-H =
alcohols, thiols, phosphites, diazomethylphosphonates, diazo-
acetamides, hyperperoxides, Hantzsch esters, benzothizaolines and 
enecarbamates) the stereochemical outcome of which (Re or Si face 
addition of Nu-H) is controlled by LC. Reid and Sigman [101] postulated 
that known literature results for families of these additions could be 
parameterised allowing the performance of future unknown systems to 
be predicted. A dataset of 367 literature reactions was compiled. Cate-
gorising this by imine (E) or (Z) geometry allows insight into transition 
states associated with 9 as they give opposite absolute stereochemistry 
in the product amines. The authors arbitrarily assigned positive %ee 
values to reactions starting from (E)-geometry, and negative for 
(Z)-imines across all examples used to ensure consistent behaviour. 

Molecular descriptors derived from DFT calculations were collected 
to describe the nucleophiles and catalysts that contained shared struc-
tural features. These DFT derived descriptors included: frontier orbital 

energies (HOMO and LUMO) and important bond angles and bond 
lengths amongst others. Whilst the nucleophiles and catalysts in the 
training set have many common structural elements, the solvents used 
vary significantly in the data set. This needed additional parameter-
isation as the solvent used significantly affects the enantioselectivity of 
these reactions. In order to overcome this problem, a variety of 2D 
solvent descriptors were used including: molecular shape representa-
tion, size and number of heteroatoms present. Finally, categorical de-
scriptors were added including reagent concentrations. 

First, the key descriptors critical for highly enantioselective reactions 
were found. Linear regression was used to detect correlations between 
the experimentally observed enantioselectivity and combinations of the 
descriptors identified above. Cross-validation techniques (leave-one-out 
and k-fold) and external validation led to an acceptable linear regression 
model (R2 = 0.88). The resultant regression equation indicated that the 
main descriptor contributors are associated with the imine and the 
nucleophile, while the solvent and catalyst have a much less significant 
impact (Eq. 14). The equation coefficients are normalised to demon-
strate the relative importance of each descriptor. This exemplifies an 
advantage of multiple linear regression and adds interpretability to the 
model as the magnitude and sign of each descriptor in the equation can 
be used to give insight into the importance and effect of the descriptors. 
While it would have been interesting to see if more complex ML methods 

Fig. 9. An exemplar neural network using the values for the Crabtree catalyst 
‘toy problem’ (Scheme 1), where the presence of Ir and Rh could be encoded as 
“1” for present and “0” for absent, with a single hidden layer of eight nodes. The 
network is fully connected with a weight for each connection, but only one 
weight, w, is shown on the scheme for clarity. Note there is also an activation 
function between each layer and a bias between the hidden and output layer. 
The prediction is normalised to get the final activity of 0 or 1. After training, 
values for w, each node, and bias are established. For a new catalyst, e.g., [Ir(LB) 
(LC)(cod)]+ as an input, with the respective descriptor values, the neural 
network could predict whether or not this catalysis is active. 

Table 4 
Selected commercial and open source resources for ML.  

Tool Name Description Link 

ChemDraw Molecule drawing and 
labelling software (can be 
used for conversion into the 
SMILES format) 

https://perkinelmerinformatics. 
com/products/research/ 
chemdraw 

Dragon A commonly used application 
for the calculation of over 
5000 molecular descriptors 

https://chm.kode-solutions.net/ 
pf/dragon-7–0/ 

Google Colab A free Jupyter notebook that 
runs entirely in the Google 
cloud, providing 
computational power for the 
development of deep learning 
and ML applications 

https://colab.research.google. 
com/ 

Microsoft 
Azure 

Cloud computing service that 
includes Azure Cognitive 
Services for building 
intelligent applications based 
on AI/ML techniques 

https://azure.microsoft.com/ 

Jupyter 
Notebook 

Open source web-based 
environment for interactive 
computing providing services 
from data visualisation to ML 
and statistical modelling 

https://jupyter.org/ 

Orange Open source ML and data 
visualisation software that is 
user-friendly and assumes 
little programming knowledge 

https://orangedatamining.com/ 

Scikit-learn Open source Python library 
for machine learning 

https://scikit-learn.org/stable/ 

PyTorch Open source Python-based 
ML/deep learning library 

https://pytorch.org/ 

TensorFlow Open source software for 
building ML pipelines and 
deep learning solutions 

https://www.tensorflow.org/ 

WEKA Open source ML toolbox 
accessible via a graphical user 
interface, standard terminal 
applications, or a Java API 

https://www.weka.io/ 

DeepChem Open source Python library 
for machine learning and deep 
learning on molecular and 
quantum datasets 

https://deepchem.io/ 

MoleculeNet A benchmark for testing and 
comparing molecular ML 
currently containing over 
700,000 compounds 

https://moleculenet.org/  
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could build a better model; the small size of dataset may have precluded 
their use. 

ΔΔG∕==0.42+0.29sol − 0.90NBON − 0.75NBOC+0.33Ls+0.63H− X− CNU+0.20Lcat
(14) 

In Eq. 14: sol =solvent term (i.e. describing the positive impact of 
using aromatic solvent), NBON and NBOC = imine natural bond orbital 
descriptors [which capture features of the imine that determine its 
transition state type pathway, different of (E) and (Z) imines], Ls =a 
steric descriptor of smallest imine, H-X-CNU =a discovered critical bond 
angle, Lcat = length of catalyst substituent on Ar group (i.e., a measure of 
its size). 

In order to develop the simple model shown in Eq. 14 further, the 
dataset was split into (E)- and (Z)-imine derived transition states. A 
similar linear regression workflow was used (correlation between the 
experimentally observed %ee values and the now geometrically specific 
molecular structure descriptors). This analysis implied that for (E)-im-
ines an energy minimising conformation that avoids repulsive in-
teractions with large catalyst substituents is attained. Higher 
enantioselectivity is associated with large imine and catalyst sub-
stituents. However, for (Z)-imines enantiofacial selectivity the model 
was dominated by the nucleophile steric descriptor (larger nucleophiles 
correlate to higher product %ee). 

The validity of the transition state models was tested using motifs not 
included in the original training set. Three approaches were used. 
Firstly, the initial [fit to both (E) and (Z) data] model was tested using a 
nucleophile not included in the initial training. Of the 15 new reactions 
sampled, 13 were predicted within 5% of the observed %ee. Using an 
(E)-imine model alone, all reactions were predicted to the same ± 5%ee 
error bar. Secondly, the (Z)-imine model was tested on both a nucleo-
phile and catalyst not contained in the original dataset. While 13 re-
actions were predicted a correct %ee value ( ± 2%ee), the model 
performed poorly in predicting the absolute stereochemistry. 

In a final test of their approach, they focussed on the addition of 
thiols to benzoyl imines (following the work of Zahrt et al.[125]) All 
reactions of this type were removed, and the model was retrained 
accordingly. The initial [(E) and (Z) data] model still predicted the 
enantioselectivity (%ee) of 26 out of 34 reactions within 5%. In the case 
of (E)-imines the correct absolute stereochemistry was predicted in 25 
cases. The advantage of the Reid and Sigman approach is that using 
multiple linear regression associated to a range of ‘simple’ models, al-
lows the data to be more easily interpreted. 

4.2. Predictions of higher-selectivity catalysts for chiral phosphoric 
acid–catalyzed thiol additions 

Zarht et al. [125] also adopted a data-driven process for the devel-
opment of novel catalysts for chiral phosphoric acid–catalyzed thiol 
additions to N-acylimines in a similar manner to Scheme 4. Their 
workflow comprised: development of an in silico library, calculation of 
descriptors, selection of a representative subset of the catalysts, training 
data, and use of SVM, random forest and neural network methods to 
predict reaction enantioselectivity (%ee). Most significantly a new 
average steric occupancy (ASO) descriptor was developed. ASO sim-
plifies the number of conformers into a numerical form based on loca-
tion by conflating conformers if they are within a defined van der Waals 
radius allowing improved computational efficiency. Electronic de-
scriptors were generated through calculated interactions with a qua-
ternary ammonium ion. This study demonstrated the importance of 
descriptor selection as they had a very large number of descriptors (16, 
384). This was reduced by removing any descriptors with a variance of 
zero since they do not add any information to the model. Then PCA was 
used to reduce the dimensionality of the descriptor space. 

ML training was initiated on a previously optimised reaction 
(enantioselective formation of N,S-acetals), with a training set of 600 

and a test set of 475 reactions. Overall, an SVM approach was found to 
be the most effective method for catalyst selectivity prediction for 
randomly selected train and test sets. It is possible SVM was the best 
machine learning method at finding trends in the large input space used 
in this study, though it should be noted that often multiple machine 
learning approaches should be compared to get the most accurate 
model. Catalyst performance was measured by comparing predicted vs. 
observed ΔΔG‡ (kcal mol-1) values. The model predicted enantiose-
lectivity within 0.3–0.4 kcal mol-1. The most accurately modelled cata-
lyst had predicted %ee within 1–2% of the experimental %ee. 

4.3. A unified ML protocol for asymmetric catalysis as a proof of concept 
demonstration using asymmetric hydrogenation 

Singh et al. [126] applied random forest to predict the outcome of 
asymmetric hydrogenation. An in silico library of 386 asymmetric hy-
drogenation reactions was built, with five catalyst families based on an 
(S) axially chiral binaphthyl ligands. The five families chosen were: 1. 
mono-BINOL-phosphites (LD), 2. BINOL-phosphoramidites (LE), 3. 
BINAP derivatives (LF), 4. bis-BINOL-phosphites (LG) and 5. 
BINOL-phosphoric acids (LH-H) (Scheme 5). 

They selected a broad number of descriptors for each substrate and 
catalyst. The catalysts were typically ruthenium(II) or rhodium(I) 
complexes of the ligands of Scheme 5. As the catalysis is ligand 
controlled, 22 global descriptors represented overall molecular proper-
ties of the general ligand, e.g., HOMO, LUMO, polar surface area and 
dipole moment. Eight site-specific descriptors represented differences 
arising from substituents. These descriptors included: bond length and 
angles, vibrational frequencies and intensities, NMR chemical shifts, 
atomic charges, and distance between nonbonded atoms. 

The ML model was developed to predict the hydrogenation product 
%ee value as a function of ligand. A random forest model was built using 
20% of the instances for the test set and 80% of instances for the training 
set. To ensure that the model was sufficiently rigorous, 100 test-train 
sets were used, each produced by random selection and five-fold cross 
validation. These test-train sets were performed to identify the best 
“hyper-parameter selection”. Using these hyper-parameters the average 

Scheme 4. Asymmetric 1,2-additions to geometrical isomers of imines 8.  
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performance of the 100 test-train sets was measured and then compared 
with experimental data of the test set. For each of the five catalyst 
families an independent random forest model was constructed. For 
example, in the mono-BINOL-phosphite catalyst family (LD) only rele-
vant reactions were incorporated into the test train sets. The outcome of 
this was five models with an RMSE of 5.4% for the %ee and a demon-
stration of the model’s ability to decipher the relationships between the 
descriptors, the enantioselectivity and the substrate-catalyst 
combinations. 

A unified random forest model was created by first combining the 
data sets from families 1 (LD) and 2 (LE) and training a random forest 
model on this set. The predicted %ee had an RMSE of 8.5% with respect 
to the experimental %ee. This was further developed by adding the data 
set for the fifth catalyst family (LH-H); which had an RMSE of 6.8%. In 
the final model all 368 reactions were used and showed an RMSE of 
8.4%. This model was also tested on varying sizes of data set with RMSEs 
less than 10 for data sets from 39 reactions to 386 reactions. The random 
forest model was compared with other commonly used ML techniques 
such as convolutional neural networks and extreme gradient boosting 
which showed RMSEs of 9.6% and 11.6% compared to the random forest 
RMSE of 9.2%. It is likely that the relatively small size of the dataset 
made random forest a better choice than a neural network. Additionally, 
random forest made the subsequent analysis of descriptor important 
easier, adding interpretability to the model. The final part of this work 
was to identify chemical patterns using decision trees with the rationale 
of discovering how variations in the molecular descriptors can be used to 
fine tune %ee. This was achieved by having 20% of the data set as 
holdout (data excluded from the model on which to test the model) in 
each run. In total 100 runs were performed where in each one a critical 

descriptor was varied and at the end the best decision tree was selected. 
In this particular case vibrational intensities, dihedral angles, bond an-
gles, dipole moments and volume were identified as key descriptors. 
This information is potentially useful in designing later ML-improved 
ligand candidates, a concept explored in the next example. 

4.4. Retooling asymmetric conjugate additions for sterically demanding 
substrates with an iterative data-driven approach 

The asymmetric conjugate addition (ACA) of zirconium organome-
tallics (specifically Cp2ZrCl(CH2)4Ph) to enones 10 generates the useful 
chiral ketones 11 [127]. This procedure had a limitation that branched 
substituents ‘R’ provided only low levels of enantioselectivity (Scheme 
6, typically %ee values over 90% are required for onward synthetic use 
of 11). Preliminary studies had already shown that the binaphthol and 
indane units of LI were already close to optimal, but the effect of the 
isopropyl region of ligand space on the reaction %ee was not clear. 

Nine ligands (LJ-LR), differing only at the isopropyl substituent po-
sition, were synthesised and simultaneously descriptors for their sub-
stituents alone, the ligands themselves and their Cu(I) complexes were 
generated using DFT obtained geometries (Scheme 7). 

Sub-sets of six ligands at a time were used to discover correlations of 
the difference in ΔG‡ (directly related to the %ee of 12) to these de-
scriptors (or combinations thereof). Three instructive facts are uncov-
ered in this process. Firstly, regression fits of a single input are preferred, 
as with only six instances (ligands), overfitting of the data becomes a 
common problem. Secondly, due to limited instances regression fit of 
ensembles of conformational geometry and steric descriptors (ex. DFT/ 
Sterimol) did not proceed well. However, acceptable (R2

test >0.6, RMSE 
(ΔΔG‡)test < 2 kJmol-1) forward correlation to the substituent lip-
ophilicity (logP) descriptor was found. This allowed guided prediction 
that LS and LT (higher logP) would provide higher %ee in ACA reactions 
yielding 12. Both LS and LT were human (as opposed to ML) designed 
and synthesised. A third important fact is that simply predicting the 
‘best’ ligand in the absence of understanding the confidence/error in the 
regression analysis is a poor strategy. The regression of Scheme 7 sug-
gests LT to be the best ligand but is of significant uncertainty compared 
to the predicted LS %ee value. In fact, their true experimental perfor-
mance is actually reversed by a ΔΔG‡

obs of ~1 kJmol-1 (94 vs. 92% ee for 
12 using LS compared to LT). Keeping track of the confidence bounds in 
ML predictions is, thus, very important. 

The model of Scheme 7 was unable to provide insight into the exact 
ligand structural features required to maximise the %ee of 12. For 
example, additional ligand candidates with high logP delivered slightly 
poorer experimental ee, while a simple CHEt2 substituent provided the 
same enantioselectivity as LT in the lab, despite having a much lower 
calculated logP value. In order to address these deviations a significant 
number of additional ligand instances (22 synthesised and 20 ‘computed 

Scheme 5. Ligand families used in the study of Singh et al.; R represent points 
of ligand variation within the families LD-LH. 

Scheme 6. Problem substrates 10 for ACA reactions promoted by ligand LI.  
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only’ structures) were added to the data pool in a stepwise manner. This 
allowed improved regression analyses and an improved (higher confi-
dence level) model using a combination of the ligand EHOMO and mini-
mum energy conformation dipole moment descriptors to be developed. 
However, this came at the cost of a significant increase in DFT confor-
mational analysis power/time required. While no further gains in ACA % 
ee performance were attained, importantly this second model allowed 
the identification of a gauche conformation in CH(n-alkyl)2 substituents 
as being critical to attaining high stereoselectivity. Finally, it also indi-
cated that further ligand development of this ligand feature would not 
be profitable, as the system had ‘topped out’ at 94%ee. 

4.5. Machine learnt patterns in rhodium-catalysed asymmetric Michael 
addition using chiral diene ligands 

Rhodium-catalysed asymmetric 1,4-addition of organoboron re-
agents to Michael acceptors is a frequently used methodology where 
high levels of enantioselectivity is often obtained [128]. The reaction 
compromises of an enone substrate (i.e., an alkene with an 
electron-withdrawing group), a chiral diene ligand to direct the ste-
reochemistry, and an organoboron reagent. Hayashi proposed a 
steric-dominated selectivity model [128]. However, this does not take 
into account electronic considerations, known to be important in the 
rate-determining step of this reaction. DFT models have also been built 
for this reaction, but this can be time-consuming if several transition 
states must be found. Thus, a simple supervised ML regression model 
was built to predict the ‘%top’ product formed [129]. This metric was 
chosen instead of the typical R/S stereochemistry classification since 
R/S is based on R-group atoms and molecular weights. The metric ‘% 
top’ was defined relative to the electron withdrawing group in the 
enone, making it suitable for ML. Scheme 8 shows the reaction and ML 
workflow. 

This study highlighted the “black-box” problem in synthetic chem-
istry, where ML models are perceived as opaque and overly complicated. 
Therefore, an interpretable ML model was built which could enhance the 
chemist’s understanding of the reaction. The enone, chiral diene ligand, 
and organoboron reagent were featurised into a small number of de-
scriptors which were known to be important, according to the current 
understanding of the reaction. These features were volumes and Ham-
mett constants of the R1-R7 groups on the chiral diene ligand, volume of 
the organoboron residue, and stoutness (volume/longest chain length) 
of the substrate R1-R4 groups. 

From a collection of 4303 examples, 610 reactions were curated. 

These data were split into training and test data (in a 9:1 ratio) and 5- 
fold cross validation was run on the training data. A total of 30 
random test-train splits were performed to get mean predictions with 
their standard deviations (as a measure of error). 

ML models were built with Random Forest, Multiple Linear Regres-
sion, and Gradient Boosted Regression [130] (an ensemble method like 
Random Forest). All the ensemble methods gave comparable results and 
outperformed Multiple Linear Regression, showing the power of 
ensemble methods, even for a modestly sized dataset. The models gave a 
lowest RMSE of 9% and R2 of 0.7–0.8, comparable to models built using 
11514 DRAGON descriptors or molecular signatures (fragment-based). 
The performance of the DRAGON model, in contrast to the main model 
in the paper, was significantly worse on the test data than training data. 
This indicated overfitting, most likely due to the large number of de-
scriptors. Another advantage of the main model was high levels of 
interpretability. The importance of the descriptors was ranked and both 
steric and electronic descriptors were weighted highly. Additionally, 
this model was better than the DRAGON model at identifying outliers by 
analysing which examples were poorly predicted; these outliers were 
indicated by high standard deviation (variation between models built 
with different samples of the training data). Therefore, due to the 
interpretability of this model, this methodology could allow identifica-
tion of promising de novo ligands for asymmetric organic synthesis. 

4.6. Machine learning directs design of Cr olefin oligomerisation catalysts 

Short chain linear olefins, such as 1-hexene and 1-octene, are 
important in the manufacture of several important products such as 
plasticisers and lubricants. A study was devised to combine quantum 
mechanical transition states with machine learning to design new cat-
alysts which could selectively produce 1-octene from ethylene [108]. 
Most interestingly, the primary aim of the study was not to predict 
selectivity but to determine which descriptors were most important and 
use those descriptors to design new catalysts. 

The system under study was Cr and 105 unique phosphine imine P,N 
ligands. Transition state energies for the two different transition states to 
form 1-hexene and 1-octene were determined using DFT. The resultant 
structures were used to calculate 14 atomic and molecular descriptors. 
These included geometric features such as bond lengths and angles, 
percent volume buried, and distance out of pocket.Percent volume 
buried described the extent to which the first coordination sphere of the 
Cr metal centre is occupied by a P,N ligand. The distance out of pocket 
describes the how far the Cr metal is situated from the P,N ligand. Using 
these descriptors, several machine learning methods, including random 
forest and SVM, were used to predict the energy difference between the 
two competing transition states. They found that random forest gave the 
best models. Although the authors do not explain why random forest 
gave the best model, they note, as we do, the success and versatility of 
the method for small dataset homogeneous catalysis systems. Random 

Scheme 7. Simple selection of an optimal ligand training descriptor for for-
mation of 12. 

Scheme 8. Interpretable models were built from a small number of carefully 
chosen descriptors. These models gave insight into the enantioselectivity of 1,4- 
addition reactions. 
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forest gave the lowest RMSE and correctly predicted the overall selec-
tivity for 83 out of 105 ligands. They note the skew in their dataset as 
more of the ligands were 1-octene selectivity, and posit a more balanced 
dataset could have enhanced the predictions. The random forest model 
was interpreted by determining the descriptor importance. Three 
important descriptors were identified: Cr-N distance; Cr-α distance; and 
distance out of pocket. This led to the generation of seven new ligands by 
modifying ligands to change these important descriptor values. When 
experimentally verified, the newly designed catalysts gave > 95% 1- 
octene selectivity. 

5. Conclusion 

This overview aimed to demonstrate that ML algorithms are a 
valuable ally to the synthetic researcher, and more accessible than at 
first appearance. We hope the contents of this article will prompt further 
collaboration between the chemical and computational sciences in 
furthering the field of ML in chemistry. Under the umbrella of “Machine 
Learning in Ligand Promoted Catalysis” work that has been achieved by 
researchers includes: rapid virtual catalyst screening; significant im-
provements molecular descriptors; development of successful novel li-
gands (and enzymes); enhanced mechanistic understanding or 
elucidation; improved enantioinduction; generally focussed on a modest 
‘area’ of catalytic reaction space; prediction of reaction or reactant types 
not supplied to the algorithm in the training set; and acceleration of 
traditional empirical catalyst discovery methods. 

Areas where we expect further development in the near or more 
distant future include: greater need for consistent format in published 
ML literature and consistent use of nomenclature across the catalysis- 
informatics divide; text- and image-mining for reaction and catalyst 
data stored in text, tables and schemes; faster quantum chemistry cal-
culations to guide predictive models; need for the practicing chemist to 
have basic knowledge of ML methods; increased publication of ‘failed’ 
experiments to decrease database bias; alternative ways to model the 
surface of the catalytic pocket; identification of species in microscopic 
and spectroscopic analysis by ML; and increasing use of explainable and 
interpretable AI, to provide models which chemists trust and add to the 
knowledge of catalytic systems. 

As the popularity of ML increases, coupled with the improvements in 
computational power, the potential in chemistry could result in a whole 
new way of experimentation and add another tool to the chemists’ 
toolkit. However, one thing is clear: chemists should be encouraged to 
engage with the process of developing AI and ML in chemistry, and in 
educating the next generation of scientists as the field evolves. 
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C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology, 
2019, pp. 542–545. 

[63] G.C. Cawley, N.L.C. Talbot, On over-fitting in model selection and subsequent 
selection bias in performance evaluation, J. Mach. Learn. Res. 11 (2010) 
2079–2107. 

[64] H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, W. Tong, 
Mold2, molecular descriptors from 2D structures for chemoinformatics and 
toxicoinformatics, J. Chem. Inf. Model. 48 (2008) 1337–1344. 

[65] L. Wang, J. Ding, L. Pan, D. Cao, H. Jiang, X. Ding, Quantum chemical descriptors 
in quantitative structure–activity relationship models and their applications, 
Chemom. Intell. Lab. Syst. 217 (2021), 104384. 

[66] S. Mapari, S.K.V. Camarda, Use of three-dimensional descriptors in molecular 
design for biologically active compounds, Curr. Opin. Chem. Eng. 27 (2020) 
60–64. 

[67] R.D. Cramer, D.E. Patterson, J.D. Bunce, Comparative molecular field analysis 
(CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. 
Chem. Soc. 110 (1988) 5959–5967. 

[68] J.L. Melville, K.R.J. Lovelock, C. Wilson, B. Allbutt, E.K. Burke, B. Lygo, J. 
D. Hirst, Exploring phase-transfer catalysis with molecular dynamics and 3D/4D 
quantitative structure− selectivity relationships, J. Chem. Inf. Model 45 (2005) 
971–981. 

[69] C.L. Senese, J. Duca, D. Pan, A.J. Hopfinger, Y.J. Tseng, 4D-fingerprints, universal 
QSAR and QSPR descriptors, J. Chem. Inf. Comput. Sci. 44 (2004) 1526–1539. 

[70] D. Fourches, J. Ash, 4D-quantitative structure–activity relationship modeling: 
making a comeback, Expert Opin. Drug Discov. 14 (2019) 1227–1235. 

[71] C. Hansch, A. Leo, R.W. Taft, A survey of Hammett substituent constants and 
resonance and field parameters, Chem. Rev. 91 (1991) 165–195. 

[72] P. Ertl, A. Web, Tool for calculating substituent descriptors compatible with 
hammett sigma constants, Chem. Methods 2 (2022), e202200041. 

[73] C.A. Tolman, Phosphorus ligand exchange equilibriums on zerovalent nickel. 
Dominant role for steric effects, J. Am. Chem. Soc. 92 (1970) 956–2965. 

[74] J. Jover, J. Cirera, Computational assessment on the Tolman cone angles for P- 
ligands, Dalton Trans. 48 (2019) 15036–15048. 

[75] N. Govindarajan, H. Beks, E.J. Meijer, Variability of ligand pka during 
homogeneously catalyzed aqueous methanol dehydrogenation, ACS Catal. 10 
(2020) 14775–14781. 

[76] M.D. Wodrich, B. Sawatlon, E. Solel, S. Kozuch, C. Corminboeuf, Activity-based 
screening of homogeneous catalysts through the rapid assessment of theoretically 
derived turnover frequencies, ACS Catal. 9 (2019) 5716–5725. 

[77] M. Haghighatlari, J. Li, F. Heidar-Zadeh, Y. Liu, X. Guan, T. Head-Gordon, 
Learning to make chemical predictions: the interplay of feature representation, 
data, and machine learning methods, Chem 6 (2020) 1527–1542. 

[78] S. Wang, J. Jiang, Interpretable catalysis models using machine learning with 
spectroscopic descriptors, ACS Catal. 13 (2023) 7428–7436. 

[79] D. Weininger, SMILES, a chemical language and information system. 1. 
Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci. 28 
(1988) 31–36. 

[80] N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G. 
R. Hutchison, Open babel: an open chemical toolbox, J. Chemin. 3 (2011) 1–14. 

[81] S. Heller, A. McNaught, S. Stein, D. Tchekhovskoi, I. Pletnev, InChI-the 
worldwide chemical structure identifier standard, J. Chemin.-. 5 (2013) 1–9. 

[82] I. Pletnev, A. Erin, A. McNaught, K. Blinov, D. Tchekhovskoi, S. Heller, InChIKey 
collision resistance: an experimental testing, J. Chemin.-. 4 (2012) 1–9. 

[83] M. Sastry, J.F. Lowrie, S.L. Dixon, W. Sherman, Large-scale systematic analysis of 
2D fingerprint methods and parameters to improve virtual screening 
enrichments, J. Chem. Inf. Model. 50 (2010) 771–784. 

[84] I. Muegge, P. Mukherjee, An overview of molecular fingerprint similarity search 
in virtual screening, Expert Opin. Drug Discov. 11 (2016) 137–148. 

[85] J.L. Durant, B.A. Leland, D.R. Henry, J.G. Nourse, Reoptimization of MDL keys for 
use in drug discovery, J. Chem. Inf. Comput. Sci. 42 (2002) 1273–1280. 

[86] PubChem Database, http://pubchem.ncbi.nlm.nih.gov (accessed May 2023). 
[87] Daylight chemical information systems, Daylight, http://www.daylight.com/, 

(accessed May 2023). 
[88] D. Rogers, M. Hahn, Extended-connectivity fingerprints, J. Chem. Inf. Model 50 

(2010) 742–754. 
[89] M.J. McGregor, S.M. Muskal, Pharmacophore fingerprinting. 1. Application to 

QSAR and focused library design, J. Chem. Inf. Comput. Sci. 39 (1999) 569–574. 
[90] T. Imamoto, Searching for practically useful P-chirogenic phosphine ligands, 

Chem. Rec. 16 (2016) 2659–2673. 
[91] J. Hua, Z. Xiong, J. Lowey, E. Suh, E.R. Dougherty, Optimal number of features as 

a function of sample size for various classification rules, Bioinformatics 21 (2005) 
1509–1515. 

[92] C. Beleites, U. Neugebauer, T. Bocklitz, C. Krafft, J. Popp, Sample size planning 
for classification models, Anal. Chim. Acta 760 (2013) 25–33. 

[93] C.W. Coley, W. Jin, L. Rogers, T.F. Jamison, T.S. Jaakkola, W.H. Green, 
R. Barzilay, K.F. Jensen, A graph-convolutional neural network model for the 
prediction of chemical reactivity, Chem. Sci. 10 (2019) 370–377. 

[94] Z. Tu, C.W. Coley, Permutation invariant graph-to-sequence model for template- 
free retrosynthesis and reaction prediction, J. Chem. Inf. Model. 62 (2022) 
3503–3513. 

[95] R. Parikh, A. Mathai, S. Parikh, G.C. Sekhar, R. Thomas, Understanding and using 
sensitivity, specificity and predictive values, Indian J. Ophthalmol. 56 (2008) 45. 

[96] D.S. Palmer, N.M. O’Boyle, R.C. Glen, J.B.O. Mitchell, Random forest models to 
predict aqueous solubility, J. Chem. Inf. Model. 47 (2007) 150–158. 

[97] A. Kaur, R. Kumar, Comparative analysis of parametric and non-parametric tests, 
J. Comput. Math. Sci. 6 (2015) 336–342. 
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