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ABSTRACT: Bismacycles featuring a sulfone-bridged scaffold
have recently been developed as versatile and convenient
electrophilic arylating agents. Here, we report that the exocyclic
aryl group, which is ultimately transferred to a nucleophilic
coupling partner, can be functionalized through cross-coupling,
heteroatom substitutions, oxidations and reductions, and protect-
ing group manipulations. This “postsynthetic modification”
approach provides concise and divergent access to complex aryl
bismacycles. The utility of the functionalized bismacycles in
electrophilic arylation of C—H and O—H bonds is demonstrated.

Bl INTRODUCTION

Couplings of C-, N-, and O-nucleophiles with aryl electrophiles
are among the most valuable transformations in organic
synthesis. Despite being comparatively underutilized, electro-
philic arylation strategies based on hypervalent main group
elements' ™’ represent powerful, and often complementary,
alternatives to ubiquitous approaches such as transition metal
catalysis or SyAr 19 For example, Barton,''™'® Dodonov,'”*°
and many others’’~>° have demonstrated the utility of
triarylbismuth(V) compounds as potent C—H arylating agents
for phenol and enol nucleophiles (Scheme 1A). While the
stability and low toxicity of triarylbismuth reagents in both the
+3 and +5 oxidation states have undoubtedly contributed to
their appeal, the field has traditionally suffered from significant
practical issues that derive primarily from the homoleptic
nature of simple arylbismuth species.

First, the synthesis of triarylbismuth(V) compounds
typically requires multistep sequences in which the aryl
moieties are introduced using Grignard reagents. The reliance
on such a reactive class of organometallic reagents restricts
functional group compatibility and ultimately limits the
diversity of aryl groups that can be installed. In 1926, Adams
reported a solution to this challenge in which triarylbismuth-
(V) reagents were functionalized through (1) electrophilic
aromatic nitration or (2) oxidation of benzylic methyl
substituents to carboxylic acids.”® Postsynthetic functionaliza-
tions of triarylbismuth reagents in the +3 oxidation state are
somewhat better explored,27_29 with a particularly detailed
study published by Gagnon in 2016.*°

However, these strategies do not address the second issue
associated with homoleptic bismuth reagents: atom economy.
Not only is the metal rarely recoverable, but the transfer of
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only one aryl moiety to the nucleophile also results in the
remaining two aryl groups being wasted. In theory, this latter
challenge could be addressed using heteroleptic triarylbismuth
reagents bearing two low-value aryl groups that do not transfer,
analogous to the “dummy aryl” concept that has been used to
great effect in diaryliodonium chemistry.‘a’l"?’2 However,
selective transfer of a specific aryl group from a heteroleptic
triarylbismuth(V) reagent has not been well explored and has
been met with only limited success.'®>*73¢ Furthermore, the
synthesis of heteroleptic triarylbismuthanes is nontrivial, being
both enabled and hindered by aryl scrambling.”’

In 2020, we reported a solution to the dual challenges of
accessibility and atom economy.’®*” Using a general and stable
bismuth(III) precursor based on Suzuki’s sulfone-bridged
bismacycle,™” we developed a telescoped procedure consisting
of B-to-Bi transmetallation, followed by oxidation and ortho-
selective C—H arylation of a phenol (Scheme 1B). Crucially,
the valuable aryl moiety is installed at bismuth in a modular
fashion from 1.1 equiv of an arylboronic acid (1-X — 2). The
use of Grignard reagents is therefore avoided, which benefits
the safety, convenience, and functional group compatibility of
the process. Following oxidation to Bi(V), the subsequent
electrophilic arylation proceeds with complete selectivity for
transfer of the exocyclic aryl moiety (Cf. acyclic heteroleptic
bismuthanes),'®**~® and the resulting bismacycle co-product
can be recovered and reused in excellent yield. We have
subsequently adapted our methodology to the meta-selective
C—H arylation of phenols,*" the a-arylation of cyclic and
polyfluoroalkyl diones,** and the O-selective arylation of 2- and
4-pyridones.”” Contemporaneously with our initial report,
Cornella demonstrated the use of a structurally related
sulfoximine-bridged bismacycle for catalytic C,—F forma-
tion"* and subsequently used substituted sulfone-bridged
bismacycles in catalytic Cn-OTf formation® and sulfonyl
fluoride synthesis.*®

The utility of our bismuth-mediated arylation strategy hinges
on the B-to-Bi transmetallation process (1-X — 2, Scheme
1B), which we have so far demonstrated with over 65 distinct
examples spanning a sterically and electronically diverse range
of arylboronic acids.’®*'~* However, while extremely
enabling, the transmetallation comes with an implicit
limitation: the requisite boronic acid must be accessible, either
commercially or by de novo synthesis.

We anticipated that functional group interconversions
(FGIs) at the exocyclic aryl group after its installation on
bismuth (2 — 2/, Scheme 1C) would provide a convenient
solution to this issue. Furthermore, as a general strategy, “post-
transmetallation modification” would also enable (1) the rapid
structural diversification of a common aryl bismacycle
precursor for library synthesis, and (2) installation of aryl
moieties for which direct B-to-Bi transmetallation is slow, such
as from electron-poor and sterically hindered boronic
acids."”** Given that the B-to-Bi transmetallation is compatible
with numerous synthetically versatile functional groups,
including halides, alkenes, and carbonyls, there is a huge
scope for the transformations that could potentially be
achieved. However, the overall success of the strategy requires
not only that the desired transformation proceeds efficiently,
but also that the weak®” Bi—C bonds remain intact during the
reaction and any subsequent purifications.

Herein, we report the post-transmetallation modification of
aryl bismacycles as a concise route to highly functionalized
electrophilic arylating agents. The concept is illustrated using
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some of the most prevalent reaction types in drug
discovery,®™"" including cross-coupling, heteroatom function-
alization, oxidations and reductions, and protecting group
manipulations. In this way, we demonstrate a highly enabling
extension to the growing toolbox of organobismuth chemistry.

B RESULTS AND DISCUSSION

In preparation for our studies, a library of aryl bismacycle
substrates 2a—h was synthesized via B-to-Bi transmetallation
from the corresponding arylboronic acid (Scheme 2). The
bismacycles were isolated as bench-stable solids in good yield
following a simple aqueous workup.

Scheme 2. Synthesis of Aryl Bismacycles via B-to-Bi
Transmetallation

L 1.1 eq. ArB(OH), o
0=5___Bi—OTs 1.0 eq. NaHCO; 0=8.__Bi—Ar
PhMe/water (95:5)
1-0Ts temperature, time 2
Ar = Br
« +O r O O
= e ; =
2a 97% 2b 95% 2¢ 95% 2d 92%
(60 °C, 3 h) (60 °C, 3 h) (60 °C, 3 h) (60 °C, 3 h)
NHAc OH CO,Me
O O O O
2e 85% 2f 83% 29 96% 2h 96%
(60 °C, 18 h) (60 °C, 3 h) (60 °C, 3 h) (80 °C, 18 h)

Given their fundamental importance in contemporary
synthesis, the first transformations to be considered were Pd-
catalyzed cross-couplings. Suzuki—Miyaura cross-coupling of
4-bromophenyl bismachle 2a proceeded rapidly under
Buchwald’s conditions,* providing biaryl bismacycle 3 in
good isolated yield (Scheme 3A). The same coupling can also
be performed using PPh; as a ligand under more conventional
conditions, whereas the reaction in micellar solution* ™'
proved unacceptably sluggish, presumably due to the poor
solubility of 2a in the aqueous reaction medium. Notably,
products from cross-coupling of the Bi—C bonds were not
observed under any of the conditions employed in this study.
The apparent resistance of the aryl bismacycle to Bi-to-Pd
transmetallation contrasts the extensive precedent for both Pd-
and Cu-catalyzed couplings of homoleptic triarylbismuth
reagents;m’n’ % this stark difference illustrates that one cannot
simply extend the reactivity patterns established for homoleptic
bismuth species to bismacyclic compounds, highlighting the
importance of the present study.

The Sonogashira coupling of 4-iodophenyl bismacycle 2b
proved similarly successful, affording alkyne 4 in 58% isolated
yield (Scheme 3B). As anticipated, the equivalent Sonogashira
coupling with 4-bromophenyl bismacycle 2a did not proceed
(not shown), consistent with the low reactivity of aryl
bromides under these conditions.> Importantly, however,
bismacycle 2a was recovered unreacted, demonstrating its
stability not only to a palladium catalyst but also to copper
salts.

Moving beyond C—C bond formation, we were pleased to
find that Buchwald—Hartwig amination of 3-bromophenyl

https://doi.org/10.1021/acs.joc.3c00361
J. Org. Chem. 2023, 88, 9730—9736


https://pubs.acs.org/doi/10.1021/acs.joc.3c00361?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.joc.3c00361?fig=sch2&ref=pdf
pubs.acs.org/joc?ref=pdf
https://doi.org/10.1021/acs.joc.3c00361?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Organic Chemistry

pubs.acs.org/joc

Scheme 3. Pd-Catalyzed Cross-Couplings”
A.
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0,
6.7 eq. K3POy, THF/water, Ny, rt, 1 h v
5 mol% Pd(OAc),, 15 mol% PPhs, 1.1 eq. ArB(OH), 50%
2 eq. Na,CO3, PhMe/EtOH/water, No, 90 °C, 18 h ’
1 mol% Pd(OAc),, 2 mol% SPhos, 1.2 eq. ArB(OH), <5%

2 eq. K3POy, 2 wt% TPGS-750M, THF/water, No, 45 °C, 24 h

B.
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0,
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0,
1.2 eq. NaOt-Bu, THF, N5, 80 °C, 2 h s
10 mol% Cul, 20 mol% pyrrole-2-carboxylic acid, 2 eq. ArNH, 28%
2 eq. K3POy4, DMSO, Ny, 100 °C, 24 h °
D. Br B(OR),

(o] (o]

i "
0=S.__Bi 0=S___Bi
%

2c 6

5 mol% Pd(OAc)z, 5 mol% XPhos, 1.2 eq. Boping nd
2.2 eq. 2-KEH, IPAc, Ny, 35°C, 5 h hn
3 mol% (dppf)PdCly, 1.1 eq. Boping, 3 eq. KOAc, DMSO, N2, 80 °C, 24 h  n.d.

0.5 mol% XPhos-Pd-G3, 3 eq. By(OH)4, 3 eq. KOAc, EtOH, N5, 80 °C,5h n.d.

1.1 eq. i-PrMgCI-LiCl, THF, N2, -10 °C, 30 min

then 1.5 eq. i-PrO-Bpin, 0°C — rt, 3h n.d.

“n.d., not detected; 2-KEH, potassium 2-ethylhexanoate.

bismacycle 2¢ afforded the corresponding diarylamine § in a
good isolated yield (Scheme 3C). Alternatively, the same
product can be accessed under Cu catalysis (Scheme 3C),>*
albeit in lower isolated yield. While application of the Pd-
catalyzed protocol to regioisomeric 4-bromophenyl bismacycle
2a also resulted in C—N cross-coupling, the (electron-rich)
product proved unstable toward protodebismuthation during
purification by chromatography on (basified) silica gel. This
latter result highlights the potentially dichotomous stability of
aryl bismacyclic species toward the functionalization con-
ditions, here a strong base and a Pd catalyst, and subsequent
manipulations, including purification.

Extending the scope of cross-couplings to Miyaura
borylation proved unsuccessful under a range of conditions
(Scheme 3D),>>™” in each case furnishing a complex mixture.
Attempts to prepare pinacol boronate 6 (Scheme 3D; (OR), =
pin) by sequential magnesium—halogen exchange/borylation
also resulted in the complete consumption of bismacycle 2¢
and formation of a complex mixture. Given that triarylbismuth
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species and arylboronates have been demonstrated to be
compatible,”®*" this observation is attributed to the conditions
required to install the boryl moiety. Indeed, all attempts to use
reactive organometallic reagents in conjunction with the
sulfone-bridged bismacycle proved unsuccessful (see the SI),
consistent with the known ability of organometallic reagents to
form bismuth(III) “ate” complexes prior to substituent
exchange/ decomposition.59_6l

To further explore the compatibility of our bismacycles with
transition metal catalysis, we turned to functionalizations of
styrenyl bismacycle 2d (Scheme 4). Both cross-metathesis and

Scheme 4. Alkene Functionalizations”
éi( @7’
. B'@x 5 B'@i
FpOem

5 mol% Grubbs-Il, 2 eq. Me-acrylate 1.3 g/mmol AD-mix-a.
CHCly, N2, 40 °C, 18 h 85% t-BuOH / water, rt, 3 d

C.
0
d
I
9

(1) 3 eq. 9-BBN, THF, Ny, rt, 18 h
(2) Hy0,, NaOH, 0°C —>rt, 6 h  77%

B| B|

95%

3 mol% (R,R)-Jacobsen's catalyst
0.2 eq. Pyr-O, NaOClI

CH,CI, / water, rt, 18 h >95%
E.
yol H
d
=S Bi—< >—<
IS "
1
10 mol% Pd/C, 1 atm Hp, EtOH or THF, rt, 3 d n.d.
4 mol% (Ph3P)3RhCI, 1 atm Hy, THF / -BuOH, rt, 3 d n.d.
5 mol% Pd(OAc),, 1.1 eq. HBpin, 1.1 eq. water, CH,Cly, rt, 12 h n.d.
8 mol% NiCl,, 3 mol% NaOH, 2.5 eq. H,NNH,, -PrOH, 60 °C, 12 h n.d.

“n.d,, not detected; Pyr-O, pyridine N-oxide. “Yield determined by 'H
NMR spectroscopic analysis prior to purification.

Sharpless dihydroxylation proceeded smoothly (Scheme
4A,4B). The value of the “post-transmetallation modification”
concept is illustrated by the fact that the boronic acid needed
to prepare diol 8 directly via B-to-Bi transmetallation is only
accessible in low yield (8%, from 4-styrenyl boronic acid),*”
whereas performing dihydroxylation after transmetallation
affords the same product in >90% over the two steps.
Similarly, primary alcohol 9 was accessed via a hydroboration—
oxidation sequence (Scheme 4C), the latter step of which is
incompatible with the parent boronic ac1d

While Jacobsen—Katsuki epoxidation® did proceed quanti-
tatively, as determined by '"H NMR spectroscopy (Scheme
4D), epoxide 10 proved extremely sensitive to isolation and
therefore could not be obtained pure. Notably, the opposite
chemoselectivity is observed with mCPBA, which we have
previously demonstrated oxidizes the bismuth center to Bi(V)
in preference to epoxidizing a pendant styrene”® or mediating

https://doi.org/10.1021/acs.joc.3c00361
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Baeyer—Villiger rearrangement on a pendant formyl sub-
stituent.”'

Although styrenyl bismacycle 2d tolerates both oxidants
(Scheme 4B) and reductants (Scheme 4C), not all redox
processes were compatible. For example, only the unreacted
starting material was recovered following attempted hydro-
genation of 2d with H, and either Pd/C or Wilkinson's
catalyst (Scheme 4E), while complete decomposition was
observed when using HBPin/Pd(OAc),** or hydrazine/
NiCL,.*® Furthermore, all attempted functionalizations based
on photoredox catalysis proved unsuccessful (see the SI),
despite the stability of the bismacycle to irradiation with visible
light.

Attention was next turned to electrophilic substitutions at
heteroatoms, which are among the most widely used
transformations in pharmaceutical discovery chemistry.® In
this regard, 3-acetamidophenyl bismacycle 2e underwent both
N-methylation and N-allylation in excellent isolated yield
(Scheme SA), demonstrating the stability of the bismacyclic
scaffold to a strong base.

Scheme 5. Electrophilic Substitutions

559, — %<9

—_—
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R=Me 12 A°
allyl 13
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e
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(iv) 83%

s VA
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98%
83%
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ii) 3 eq. allyl bromide, 2.2 eq. NaH, THF, 0 — 40 °C, 16 h
iv) 5 mol% Pd(PPh3)s, 3 eq. K;CO3, MeOH, Ny, rt, 5 h

OH O-TBS

0
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1.2 eq. TBSCI, 2.5 eq. imidazole, DMF, rt, 2 h
1.2 eq. TBAF, THF, rt, 45 min
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Carbamoylation, tosylation, and allylation of 4-hydroxy-
phenyl bismacycle 2f also proceeded in quantitative yields
(Scheme SB). In the latter case, initial attempts at O-allylation
using K,COj in acetone led to cleavage of the exocyclic Bi—C,,
bond via protodebismuthation, presumably due to the
sensitivity of the very electron-rich phenoxy bismuth
intermediate to the protic reaction environment (6 (O ) =

—0.81).°° However, the use of NaH as a base under aprotic
conditions allowed for high-yielding allylation. Subsequent
deprotection of allyl ether 16 proceeded smoothly under
palladium catalysis to regenerate hydroxyphenyl bismacycle 2f.
Reproducibly high yields were achieved only when the
deallylation was quenched as soon as full conversion had
been reached (ca. S h); a prolonged reaction time (overnight)
led to significant decomposition, again underscoring the
sensitivity of electron-rich bismacycles to protodebismutha-
tion.

Continuing the theme of protection/deprotection, O-
silylation of 3-hydroxyphenyl bismacycle 2g proceeded in
excellent yield using tert-butyldimethylsilyl chloride (Scheme
SC). Subsequent desilylation of 17 with TBAF regenerated
free phenol 2g. Unlike the manipulations of regioisomeric 2f
(vide supra), protodebismuthation side-reactions were not
observed for 2g, consistent with the electron-withdrawing
character of the meta hydroxy substituent (c,,(OH) = 0.12, vs
0,(OH) = —0.37).%

Flnally, we explored manipulations of ester 2h (Scheme 6),
which represent work-horse transformations in all aspects of
synthesis. Following hydrolysis with NaOH, carboxylic acid 18
was isolated by precipitation upon careful acidification. Ester
2h could be reformed by treatment of acid 18 with TMS-
diazomethane; alternatively, amide coupling mediated by
HATU afforded amides 19 and 20 in good yields. Reduction
of ester 2h with DIBAL-H gave access to primary benzylic
alcohol 21, which could then be converted selectively to
aldehyde 22 by TEMPO-catalyzed oxidation with iodobenzene
diacetate. The observed inertness of the bismacycle toward
oxidation by I(III) is consistent with our earlier ﬁndings38 and
stands in contrast to the react1v1ty reported previously for
homoleptic triarylbismuth reagents.””*® To demonstrate the
compatibility of the bismacyclic scaffold with nucleophilic
reductants, aldehyde 22 was subsequently reduced back to the
primary alcohol 21 using sodium borohydride in nearly
quantitative yield.

To showcase the broader utility of post-transmetallation
functionalization in synthesis, we applied TBS-protected
hydroxyphenyl bismacycle 17 to the electrophilic arylations
developed previously in our laboratory (Scheme 7). %*'~*
Thus, the products from O-selective arylation of pyridones
(23), ortho-selective arylation of naphthols (25), meta-selective
arylation of phenols (28), and a-selective arylation of cyclic
1,3-diketones (29) were obtained in good yields. Due to the
silyl protecting group in 17, the arylations, and selected
subsequent manipulations (25 — 26, 29 — 30), all proceeded
without the chemoselectivity issues that would accompany the
direct use of parent hydroxyphenyl bismacycle 2g.

B CONCLUSIONS

In this publication, we have explored the compatibility of aryl
bismacycles with some of the most widely used functional
group interconversions in discovery chemistry. The ability to
modify and add functionality to the bismacycles provides
access to complex electrophilic arylating agents and overcomes

https://doi.org/10.1021/acs.joc.3c00361
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Scheme 6. Functional Group Interconversions of Aryl Esters
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Me O 20 mol% NEt, Me O Me
— —_—
O oTBS PhMe O OH
1.0 eq. Selectfluor 27 85% 60°C, 18h 28 82%
1.0 eq. BzZOH
2.0 eq. NaOBz
MeCN, rt, 30 min
0 o) OTBS OTBS
9 10 (J ®
5; 1.0eq. 1.2 eq. MeOCOCI
©° WOB: > —_—
@Bi"\“ z , 30 min < OH 2.2 eq. NEts, o o\n/OMe
| TAr then 80 °C, 2 h CH,Cly, tt, 18 h 5
OBz
29 65% 30 89%

potential issues with previously established synthetic routes,
namely, (1) the availability of boronic acids or (2) low
transmetallation rates. We anticipate that the present study will
prove a valuable addition to the growing number of tools
available to organobismuth chemistry and that it will expedite
the adoption of bismuth-mediated arylation in both industrial
and academic target-oriented synthesis.
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