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Abstract
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all
coupling Hamiltonian and by dissipation featuring collective ‘state-dependent’ rates. The latter
encodes local incoherent transitions that depend on average properties of the system. This type of
open quantum dynamics can be seen as a generalization of classical (mean-field) stochastic Markov
dynamics, in which transitions depend on the instantaneous configuration of the system, to the
quantum domain. We study the time evolution in the limit of infinitely large systems, and we
demonstrate the exactness of the mean-field equations for the dynamics of average operators. We
further derive the effective dynamical generator governing the time evolution of (quasi-) local
operators. Our results allow for a rigorous and systematic investigation of the impact of quantum
effects on paradigmatic classical models, such as quantum generalized Hopfield associative
memories or (mean-field) kinetically-constrained models.

1. Introduction

Open quantum many-body systems constitute a fascinating subject of investigation [1, 2]. The interplay
between coherent and dissipative processes, combined with the large number of microscopic constituents
forming the system, can give rise to interesting nonequilibrium stationary or dynamical phases [3–12] as well
as to nonequilibrium critical dynamics [12–17]. An intriguing aspect of the formalism of open quantum
systems is that it allows one to start from a purely classical stochastic dynamics (see, e.g. the
reaction-diffusion processes considered in [18]), and to gradually introduce quantum effects—such as
quantum superposition—and analyze their impact on paradigmatic classical models [8, 12, 15]. In the
Markovian regime, open quantum dynamics are described by means of quantum master equations [see
equation (1) below] with time-independent (Lindblad) generators [1, 2]. Despite looking fairly simple,
solving these quantum master equations is a daunting task due to the exponential growth, with the number
of particles, of the resources needed to describe the quantum state. This often renders both their numerical
simulation [19] and their analytical solution impractical.

One way to make progress and to achieve a first analytical understanding of the behavior of these
quantum systems is that of exploiting a mean-field approach [20–23], which also proved very useful in
equilibrium settings [24, 25]. Broadly speaking, within this framework one neglects correlations in the
system and this allows one to find a reduced set of differential equations providing the time evolution of key
system observables. Interestingly, in certain cases such an approach can be shown to become exact in the
thermodynamic limit, see, e.g. [20–25]. For what concerns open quantum dynamics, the exactness of the
mean-field approach has been rigorously shown for systems with collective jump operators and with a
Hamiltonian featuring an all-to-all interaction between the different subsystems [26–28] as well as for
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different versions of spin-boson models [21, 29–31]. The validity of a mean-field approach in certain open
quantum systems has also been investigated numerically [32–36].

In this manuscript, we consider quantum systems composed of a large number of finite-dimensional
particles subject to a dissipative Markovian time evolution. In particular, we assume their open quantum
dynamics to be characterized by an all-to-all coupling Hamiltonian and by dissipative (stochastic)
single-body transitions, whose rates depend on the full many-body state. For these open quantum dynamics,
we rigorously demonstrate the validity of the mean-field approach, both for the evolution of system-average
properties and for the dynamics of local observables. To give a concrete example, our results apply—but are
not limited—to quantum generalizations of Hopfield-like associative-memory dynamics [37, 38], which are
recently receiving attention also due to the possibility of realizing these systems in current experiments, the
latter based on multi-modal cavity setups [39–41]. On the one hand, our findings put on rigorous footing
existing results on their nonequilibrium behavior [42–44], justifying the investigation of the impact of the
quantum effects on these platforms within a mean-field approach. On the other hand, they are of relevance
for a number of physical scenarios, ranging from quantum-optical settings to superradiant atomic ensembles
[17, 39–41, 45–48].

Our paper is organized as follows. In section 2, we give a brief overview of our work explaining, in
non-technical terms, the setting as well as our findings. In section 3, we introduce the system of interest and
its Lindblad generator, while in section 4 we derive our main results. In section 5, as an application of our
findings, we discuss the exactness of the mean-field equations for open quantum Hopfield neural networks
(HNNs). Finally, in the appendixes, we prove several Lemmata needed to demonstrate our main theorems.

2. Overview of the paper

We provide here an overview whose aim is to introduce the class of open quantum dynamics we will focus
on, and to motivate their relevance. For concreteness, we limit the discussion of this section to a system made
by an ensemble of two-level particles. Our results are, however, valid for many-body systems made by d-level
particles, with arbitrary d<∞.

2.1. Dissipation with operator-valued rates
We consider a system made by an ensemble of N classical (Ising) spin-1/2 particles. Each particle is thus a
two-level system, which can either be found in an excited state |•〉 or in a ground state |◦〉 (cf figure 1(a)). For
these particles, the simplest stochastic Markovian dynamics one can imagine is that of independent
spin-flips. Namely, each particle can change its state either from the excited state to the ground state,
|•〉 → |◦〉, at a rate γ◦, or from the ground state to the excited state, |◦〉 → |•〉, at a rate γ•, as depicted in
figure 1(a). This is a simple non-interacting ‘thermal’ time evolution for the N-body system and does not
show particularly interesting dynamical nor stationary features. A more intricate dynamics can emerge when
the rate for the single-particle transitions depends on the configuration of the remainder of the system, see,
e.g. example in figure 1(b). For instance, the rate of flipping into the excited state the kth spin could depend
on whether particles k− 1 and k+ 1 are in their excited or in their ground state (cf figure 1(b)). This scenario
typically occurs when considering relaxation dynamics towards thermal states of classical interacting
Hamiltonians, where transition rates depend on the difference in the energy before and after the transition
[49, 50]. Another interesting framework in which one finds state-dependent rates, is that of
kinetically-constrained models [51–53], where certain transitions may be forbidden if a given constraint is
not satisfied. For instance, in the example shown in figure 1(b), we illustrate a model in which a change of
the state for a given particle can only occur if both the neighboring particles are excited. In certain cases,
e.g. with collective all-to-all classical Hamiltonian functions, transition rates depend on collective properties
of the system. A possible generalization of the example in figure 1(b) to collective rates is achieved by
choosing rates to depend on the square of the operator describing the density of excited states in |•〉, i.e.
n• =

1
N

∑N
k=1 n

(k), where n(k) is the operator n= |•〉〈•| for the kth particle (see an illustration in figure 1(c)).
This dynamics, just like any classical stochastic dynamics, can be written within the density-matrix

formalism of open quantum systems [54]. This is done by introducing a dynamical generator—which
preserves diagonal density matrices (see, e.g. [55]) — as follows6

D∗[ρ] =
N∑

k=1

(
Jk•ρJ

k†
• − 1

2

{
Jk†• Jk•,ρ

})
+

N∑
k=1

(
Jk◦ρJ

k†
◦ − 1

2

{
Jk†◦ Jk◦,ρ

})
,

6 We denote dynamical generators acting on density-matrices with a ∗, as done forD∗. We useD to denote instead the generator imple-
menting the time evolution of observables.
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Figure 1. Collective state-dependent rates. (a) A two-level system can either be found in an occupied state • or in an empty one ◦.
The simplest classical stochastic non-interacting dynamics for an ensemble of several two-level systems is that of independent
spin-flips •→ ◦ (rate γ◦) or ◦→ • (rate γ•). In this case rates for the different transitions do not depend on the state of the
neighboring particles. (b) Example of a kinetically-constrained model in which the central particle can change its state only if the
neighboring ones are both in the occupied state. (c) In a collective all-to-all model, the dynamics sketched in panel (b) would
reduce to one with transition rates which depend on the square of the density of occupied particles n•.

with

Jk• =
√
γ•σ

(k)
+ n• , Jk◦ =

√
γ◦σ

(k)
− n• ,

and σ+ = |•〉〈◦|, σ− = σ†
+. This generator evolves an initial density matrix ρ, through the equation

ρ̇t =D∗[ρt]. In the example above, the rates are operator-valued functions of a collective observable, namely
the density of excited particles n•.

While formulated in a quantum language, the above dynamics is fully classical (whenever starting from a
diagonal state). Nonetheless, it is now straightforward to add quantum coherent Hamiltonian contributions
to such a dissipative stochastic time evolution and to investigate their impact on the behavior of the system.
This can be done by considering the more general quantum master equation

ρ̇t = L∗[ρt] :=−i[H,ρt] +D∗[ρt] . (1)

In this paper, we shall consider Lindblad generators with an all-to-all interacting Hamiltonian H, and with
dissipation characterized by collective state-dependent rates.

2.2. Contribution of this work
In this work we derive the time evolution of average operators, such as the average ‘magnetization’ operators

for the spin systemmN
α =

∑N
k=1σ

(k)
α /N (where σα are Pauli matrices constructed from the basis states

|•〉, |◦〉), under the dynamics generated by Lindblad operators of the form discussed in section 2.1 (see also
equations (9)–(11) below), in the thermodynamic limit. In particular, we show the validity of the mean-field
approximation—obtained by factorizing expectation values of average operators (see discussion in
section 4.1) — for these models. The corresponding proof is presented in section 4.2 and follows the
approach developed in [31]. In section 4.3, we further derive the effective Lindblad generator implementing

the time-evolution of any (quasi-) local operator, such as a single-spin operator σ(k)
α , in the thermodynamic

limit.

3. Model systems and their dynamical generators

In this section, we present the class of systems under investigation, and we introduce the algebra of operators
as well as a functional representation of the quantum states [56]. We then move to the definition of the
so-called average operators—which are nothing but sample-mean averages of a same single-particle operator
[28, 57] over the whole system—and discuss their properties when considering clustering states [58–60],
i.e. states with sufficiently short-ranged—in a sense made precise by definition 1 below—correlations. At the
end of the section, we introduce the general form of the considered dynamical generators and prove first
results about their action on local and on average operators.

3.1. Quasi-local algebra and quantum states
We consider a many-body quantum system S, consisting of a (countably) infinite number of identical
(distinguishable) particles, assumed to be d-level systems with d<∞. Each particle can thus be associated
with a natural number k ∈ N. Any single-particle operator x(k), with x ∈Md(C) andMd(C) being the algebra

3



New J. Phys. 25 (2023) 083010 E Fiorelli et al

of d× d complex matrices, which acts non-trivially only on the kth particle can be lifted to be an operator of
the many-body system by exploiting a tensor-product structure as

x(k) = 1d ⊗ 1d ⊗ ·· ·⊗ x⊗ 1d ⊗ 1d ⊗ . . . ,

where 1d is the identity inMd(C) and x appears in the kth entry of the tensor product. All the (almost local)
operators of the many-body system are contained in the so-called quasi-local C∗-algebraA, which is
obtained as the norm closure (here and throughout we consider the operator norm, denoted as ‖ · ‖, given by
the largest eigenvalue, in modulus, of the operator) of the union of all possible local sub-algebras of the
system [56]. In practice, the quasi-local algebraA contains all strictly local operators, i.e. all operators
supported on a finite number of particles, as well as those operators which are quasi-localized, i.e. they are
extended over the whole system but happen to be the limit of a converging sequence of local operators.

The full information about the state of a physical system is equivalent to the knowledge of all possible
expectation values for its operators. Thus, given the algebraA, the state of a quantum system can be
generically represented as a functional, ω, associating to each operator A ∈ A a complex number 〈A〉
embodying the expectation of the operator itself,A 3 A 7→ ω(A) = 〈A〉. In order for such a functional to
describe a physically-consistent state, ω must be a linear, positive and normalized (ω(1) = 1 with 1 being the
identity ofA) functional on the quasi-local algebra [56]. In certain cases, the expectation values of
single-particle operators do not depend on the considered particle, i.e. for any x ∈Md(C) we have
ω(x(k)) = 〈x〉, ∀k ∈ N. In these cases, the state is called translation invariant (see also definition 1 below).

3.2. Average operators
The quasi-local algebraA is the algebra of all operators which are, roughly speaking, almost localized in
certain regions of the system. Often, however, when one considers many-body systems it is important to look
at the behavior of collective operators, which can account for average properties of the whole system. For
instance, this is the case when studying equilibrium as well as nonequilibrium phase transitions, which can
be investigated and characterized via the behavior of so-called order-parameters.

We are interested in the behavior of sequences of operators of the form

XN ≡ 1

N

N∑
k=1

x(k), with x ∈Md(C) . (2)

These operators represent sample-mean averages of a same single-particle operator and are related to the
random variables appearing in the law of large numbers [61]. For each finite N, the number of particles
considered in the above summation is finite and thus the operator is strictly local. However, we are interested
in the behavior of the average operators when N→∞.

It turns out that the commutator between any two average operators, [XN,YN], goes to zero in the large N
limit, since its norm is bounded by 2‖x‖‖y‖/N [28, 56, 58]. As such, these operators give rise to an emergent
classical algebra in the thermodynamic limit. Still, the limiting point X∞ of the sequence XN in equation (2)
does not belong to the quasi-local algebraA, since the sequence XN does not converge in the norm topology
[56]. To understand the structure of these operators in the thermodynamic limit N→∞, we need to resort
to weaker forms of convergence. Here, we consider the so-called weak operator topology [59]. We will say that
a sequence of operators Cn converges weakly to the operator C, formally denoted as C= (w–)limn→∞Cn, (to
be read as weak-limit of the sequence Cn), if 7

lim
n→∞

ω(A†CnB) = ω(A†CB) ∀A,B ∈ A . (3)

This apparently abstract definition has a very relevant physical meaning: in the weak operator topology, we
obtain information on the nature of the limiting operator C, by controlling all of its possible correlation
functions with any quasi-local operator under the expectation associated with the quantum state ω.

For clustering quantum states, i.e. for states with sufficiently short-ranged correlations, the limiting
operators X∞ of the sequences XN are nothing but multiples of the identity [56–59]. This means that,
X∞ = (w–)limN→∞XN = 〈x〉, where 〈x〉= ω(x) is the expectation of the single-particle operator x, where
we have further assumed translation invariance of the state. (Note that on the right-hand side of the above
limit the complex number 〈x〉 should be multiplied by an identity operator 1. However, in order to simplify

7 We note that this form of convergence coincides with the weak operator convergence within the so-called GNS representation of the
algebraA induced by the state ω [56, 59].
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the notation we omit writing this here and in the following.) This occurs for instance for so-called ergodic
states, i.e. for states that obey

ω(x(k)y(h))≈ ω(x(k))ω(y(h))

whenever |k− h| is sufficiently large (see more general definition in, e.g. [57]). Since in our work we will
mainly look at average operators, we define clustering states through the property highlighted in equation (5)
of the following Definition.

Definition 1. We refer to quantum states ω of the quasi-local algebra A as translation-invariant clustering
states if the following properties are satisfied:

i) ω(x(k)) = ω(x(h)) = 〈x〉, ∀x ∈Md(C),∀k,h ∈ N ; (4)

ii) lim
N→∞

ω([XN −〈x〉]2) = 0, ∀x= x† ∈Md(C) . (5)

The second property above shows that for such clustering states the variance of the operators XN vanishes
in the large N limit and, thus, the limiting operators X∞ must converge to multiples of the identity. It is
indeed possible to show that equation (5) implies the weak convergence of XN to X∞ = 〈x〉, as defined by
equation (3).

3.3. Lindblad generators with collective operator-valued rates
We assume that the many-body system introduced above is subject to a Markovian open quantum dynamics
[1, 2], implemented through a quantum master equation by means of a time-independent dynamical
generator. The latter must assume a Lindblad form for the dynamics to be physically consistent [2].

The time-evolution of any operator O ∈ Amust thus obey the equation

Ȯ(t) = LN[O(t)] , (6)

with LN being the Lindblad operator evolving observables, i.e. the generator dual to the one introduced in
equation (1) (see also footnote 6). The formal solution of the above equation is given by O(t) = etLN [O]. As
usually done in order to study the emergent dynamics in the infinite system, we have first defined the
dynamical generator LN for an ensemble of N particles, and we will then derive the asymptotic dynamics
taking the limit N→∞.

Before discussing the form of the considered dynamical generator (briefly mentioned in section 2.1), it is
convenient to introduce an orthonormal, hermitian basis {vα}d

2

α=1 for the single-particle algebraMd(C). We
thus have a set of operators such that vα = v†α as well as tr(vαvβ) = δαβ (implying ‖vα‖⩽ 1) which we can
employ to decompose any other operator x ∈Md(C) through the relation

x=
d2∑

α=1

tr(xvα)vα . (7)

For later convenience, we also define the structure coefficients aγαβ for the chosen basis, obtained as

[vα,vβ ] =
d2∑

γ=1

aγαβvγ , aγαβ ≡ tr([vα,vβ ]vγ). (8)

Exploiting this single-particle basis, the Lindblad generator can be decomposed into two different
contributions

LN[O] = i[H,O] +

q∑
ℓ=1

Dℓ[O] , (9)

where H is the Hamiltonian of the system assuming the form

H=
N∑

k=1

d2∑
α=1

ϵαv
(k)
α +

1

N

N∑
k,j=1

d2∑
α,β=1

hαβv
(k)
α v( j)β . (10)

The first term on the right-hand side of the above equation (with εα real) represents a single-particle
contribution to the Hamiltonian, while the second one, with hαβ = h∗βα considers two-body interactions in

5
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an all-to-all fashion. We note that since we have an unconstrained sum—which double counts the
interactions between particles—the terms hαβ are equal to half of the actual interaction strength. Moreover,
the double sum also contains terms with k= j which describe single-particle terms rather than interactions.
Due to the presence of the factor 1/N in front of the second part of the Hamiltonian, these terms become
irrelevant in the thermodynamic limit. We can thus safely keep them as this will be convenient later on. In
summary, the second contribution to the Hamiltonian in equation (10) describes interactions between all
pairs of particles with a same strength proportional to 1/N.

The terms collected in the maps, or dissipators,Dℓ describe instead dissipative contributions to the
time-evolution. As already discussed in section 2.1, we take them to be of the form

Dℓ[O] =
1

2

N∑
k=1

([
Jk†ℓ ,O

]
Jkℓ + Jk†ℓ [O, Jkℓ]

)
, (11)

with

Jkℓ = j(k)ℓ Γℓ(∆
ℓ
N) (12)

being the jump operators. Here, j(k)ℓ acts solely on site k while Γℓ(∆
ℓ
N) = [Γℓ(∆

ℓ
N)]

† is an operator-valued
function computed for the operator∆ℓ

N = [∆ℓ
N]

†. We assume the latter operator to be a linear combination
with real coefficients of average operators of the type defined in equation (2), i.e.

∆ℓ
N =

d2∑
α=1

rℓα

[
1

N

N∑
k=1

v(k)α

]
, with rℓα ∈ R. (13)

From their definition, we see that these operators are bounded in norm, i.e. ‖∆ℓ
N‖⩽ δℓ, where

δℓ =
d2∑

α=1

|rℓα|<∞ . (14)

As discussed in section 2.1, the structure of the jump operators Jkℓ suggests that the function Γℓ(∆
ℓ
N),

when squared, gives rise to an operator-valued rate for the transition implemented by j(k)ℓ on the kth particle.
Since the operator∆ℓ

N, which is the argument of the function, is an average operator, the rate has the
structure of a mean-field rate which accounts for an average (collective) property of the system. We consider
functions Γℓ(∆

ℓ
N) satisfying the following assumption.

The operator-valued functions Γℓ(∆
ℓ
N) can be written as power series

Γℓ(∆
ℓ
N) =

∞∑
n=0

cnℓ(∆
ℓ
N)

n ,

with coefficient cnℓ such that for any z ∈ R

γ(z) =
∞∑
n=0

|cnℓ||z|n <∞ . (15)

For later convenience, we note that the assumption on the series γ(z) also implies that

γ′(z) :=
∞∑
n=0

n|cnℓ||z|n−1 <∞ .

The above assumption specifies that we are considering functions Γℓ which admit a Taylor expansion,
around zero, with infinite radius of convergence. This is a strong assumption, which we make here for the
sake of simplicity. It is not strictly necessary to prove our main theorems. In section 5, we show indeed that
our approach can be applied also for certain operator-valued rates which do not obey assumption 1. Working
within this assumption allows us to find results for a broad class of dynamical generators.

Considering assumption 1, we can now readily prove the following result.

6
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Lemma 1. For any given operator-valued function Γℓ(∆
ℓ
N) satisfying assumption 1, the following relations hold

i)
∥∥[Γℓ(∆

ℓ
N),O

]∥∥⩽ 2NO

N
‖O‖δℓγ′(δℓ) ,

ii)
∥∥[Γℓ(∆

ℓ
N),XN

]∥∥⩽ 2

N
‖x‖δℓγ′(δℓ) ,

iii)
∥∥[Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),O

]]∥∥⩽ 4N2
O

N2
‖O‖δ2ℓ [γ′(δℓ)]

2 ,

iv)
∥∥[Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),XN

]]∥∥⩽ 4

N2
‖x‖δ2ℓ [γ′(δℓ)]

2 ,

with O being any operator with strictly local support, NO the length of such support, and XN any average operator
as defined in equation (2).

The proof of the above lemma is shown in appendix ‘Proof of lemma 1’ and simply requires the
evaluation of the commutators between the operator-valued rates and local operators, by exploiting the
power series expansion of the former.

We conclude this section stating a first result concerning the action of the considered dynamical
generators on strictly local observables and on average operators. In particular, we show that, in the
thermodynamic limit N→∞, the mapsDℓ act on these operators as if they were local maps weighted by a
pre-factor equal to Γ2

ℓ(∆
ℓ
N). This corroborates the intuition that the considered jump operators implement

local transitions associated with operator-valued rates. Formally, this is expressed by the following lemma:

Lemma 2. The mapsDℓ defined by equations (11) and (12) with functions Γℓ(∆
ℓ
N) obeying assumption 1 are

such that ∥∥Dℓ[O]−Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [O]
∥∥⩽ CO

N
,

∥∥Dℓ[XN]−Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [XN]
∥∥⩽ Cx

N
,

with

DLoc
ℓ [A] =

1

2

N∑
k=1

([
j†(k)ℓ ,A

]
j(k)ℓ + j†(k)ℓ [A, j(k)ℓ ]

)
, (16)

and CO, Cx appropriate N-independent constants. In the above expression, O is any local operator with support
on a finite number of sites, NO is the extension of its support, and XN the average operator constructed from the
single-particle operator x, as shown in equation (2).

The proof of the lemma, which is reported in appendix ‘Proof of lemma 2’, together with the expression of
the constant CO,Cx, requires the direct evaluation of the action of the dissipatorDℓ on the operators O, XN.

4. Main results

In this section, we present the main results of our paper. In the first subsection, we derive the Heisenberg
equations of motion for average operators of single-particle observables and present the mean-field
equations. The latter, as we explain, are obtained by factorizing expectation values of average operators. In
the second subsection, we show that these mean-field equations are in fact exactly reproducing the time
evolution of the considered average operators, in the thermodynamic limit. In the last section, we exploit the
result obtained for the average operators to derive an effective dynamical map for any quasi-local operator of
the many-body system.

4.1. Heisenberg equations andmean-field dynamics
As already anticipated in the previous section, in the study of many-body systems one is often interested in
understanding the dynamical or the stationary behavior of collective operators. Here, in particular, we are
interested in the average operators of equation (2). Given that we defined a basis for the single-particle
algebra we can construct a basis for all possible average operators. We define the following set of average
operators

mN
α =

1

N

N∑
k=1

v(k)α , α= 1,2, . . .d2 , (17)

7



New J. Phys. 25 (2023) 083010 E Fiorelli et al

and note that any XN can be obtained as a linear combination of the above operators. The goal is thus to
describe the time evolution ofmN

α, e
tLN [mN

α], in the thermodynamic limit, starting from a translation
invariant clustering state as in definition 1. The first step in this direction is to compute the Heisenberg
equation of motion, namely

d

dt
etLN [mN

α] = LN

[
etLN [mN

α]
]
= etLN

[
LN[m

N
α]
]
. (18)

To this end, one needs to control the action of the Lindblad operator on average operators, as shown by the
second equality in the above equations. This is done with the following Lemma.

Lemma 3. Given the generator LN specified by equations (9)–(12), with functions Γℓ(∆
ℓ
N) obeying assumption

1, we have that

‖LN[m
N
α]− fα(m⃗

N)‖⩽ CL

N

where

fα(m⃗
N) = i

d2∑
β=1

Aαβm
N
β + i

d2∑
β,γ=1

Bαβγm
N
βm

N
γ +

∑
ℓ,β

Mβ
ℓαΓ

2
ℓ(∆

ℓ
N)m

N
β

Aαβ =
d2∑

β′=1

ϵβ′aββ′α Bαβγ =
d2∑

β′=1

aγβ′α(hββ′ + hβ′β) .

Here, M is a real matrix, such that the action ofDLoc
ℓ [·] on an element of the single-site operator basis v(k)α reads

DLoc
ℓ [v(k)α ] =

d2∑
β=1

Mβ
ℓαv

(k)
β ,

and CL is an N-independent bounded quantity.

To prove this lemma and deriving the constant CL, as shown in appendix ‘Proof of lemma 3’, one needs to
evaluate the generator LN onmN

α and exploit lemma 2.
It is worth stressing that lemma 3 shows that, in the thermodynamic limit, the action of the Lindblad

generator on the average operatorsmN
α can be written as a nonlinear function f α of the average operators

themselves, for any α. However, one cannot yet solve the emergent system of equations. The point is indeed
that open quantum dynamics are not represented by an automorphism and thus, in principle,
etLN [mN

αm
N
β ] 6= etLN [mN

α]e
tLN [mN

β ]. As such, due to the nonlinear function f α of the average operators, the

Heisenberg equations of equation (18) are not closed on the operators etLN [mN
α]. To proceed one needs to

compute the action of the generator on the function f α. This gives rise to an infinite, in the thermodynamic
limit, hierarchy of equations which can rarely be solved.

The evolution equations for the expectation values of the average operators, which are ultimately what
one is interested in, can be derived from equation (18) by taking the expectation value on both sides of the
equations. By defining ωt (A) := ω

(
etLN [A]

)
and recalling lemma 3, we have

d

dt
ωt

(
mN

α

)
≈ ωt

(
fα(m⃗

N)
)
. (19)

Clearly, by taking the expectation one cannot make much progress in solving the system. However, at this
level, it is straightforward to introduce the so-called mean-field equations of motion. These are obtained by
assuming that one can factorize the expectation of products of average operators into the product of the
expectations, e.g. assuming that

ωt(m
N
αm

N
β)≈ ωt(m

N
α)ωt(m

N
β) . (20)

Applied to equation (19), this leads to the mean-field equations of motion for the considered Lindblad
generator given by

d

dt
mα = fα(m⃗) . (21)

8
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Heremα is a function of time which should capture the dynamics of ωt

(
mN

α

)
in the thermodynamic limit.

The above system of nonlinear ordinary differential equations can in principle be solved analytically or in
any case simulated efficiently, taking as initial conditions the ones associated with the initial state ω

mα(0) = lim
N→∞

ω(mN
α) . (22)

However, it still remains to be shown that these equations provide the exact dynamics of average operators.
Intuitively, for this to be the case, one would expect that the time-evolved state ωt is, in the thermodynamic
limit, a clustering state (in the sense of definition 1), so that average operators converge to multiples of the
identity justifying the approximation in equation (20).

In the next section we prove that this is indeed the case. Before going to that, we state here a technical
result on the system of equations in equation (21), which is proved in appendix ‘Proof of lemma 4’.

Lemma 4. The system of equation (21) with initial conditions mα(0), defined by a quantum state ω as in
equation (22), has a unique solution for t ∈ [0,∞). Morever, one has

|mα(t)|⩽ ‖vα‖⩽ 1 , ∀t ∈ [0,∞) .

4.2. Exactness of mean-field equations for average operators
In order to show the exactness of the mean-field equations of motion, one has to show that

lim
N→∞

ωt(m
N
α)−mα(t) = 0, ∀t. (23)

As briefly mentioned at the end of the previous section, in order to prove the validity of the above limit, we
want to show that the state ωt is clustering, as in definition 1, when considering all relevant average
operators. We do this by exploiting the approach discussed in [31]. We define the quantity

EN(t) =
d2∑

α=1

ωt([m
N
α −mα]

2) , (24)

which is a sum of positive contributions and is thus zero only when all terms vanish. Moreover, each term
consists of the expectation value of the square of the distance of the operators from their mean-field
counterpart. Each of the summands thus considers how close to a multiple of the identity (given by the
mean-field operators) the average operators are. Namely, if limN→∞ EN(t) = 0, then the state ωt is clustering
in the thermodynamic limit, and this can be used to show that the mean-field equations are exact. Indeed,
via the Cauchy-Schwarz inequality, we have |ωt(mN

α −mα)|⩽
√
ωt([mN

α −mα]2)⩽
√
EN(t), which can thus

be used to control the limit in equation (23). Before going ahead we state here a Lemma, which will be useful
for the proof of the exactness of the mean-field equations.

Lemma 5. The convergence of the square of the operator-valued function Γ2
ℓ(∆

ℓ
N) to the same function

computed through the mean-field operators Γ2
ℓ(∆ℓ(t)), with

∆ℓ(t) =
∑
α

rℓαmα(t) , (25)

is dominated by the convergence of the average operators mN
α to the mean-field variables mα(t) as∣∣ω (A†etLN

[(
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
)
X
]
B
)∣∣

⩽ 2γ(δℓ)γ
′(δℓ)‖X‖

d2∑
α=1

|rℓα|
√
ω(A†etLN [(mN

α −mα(t))2]A)
√
ω(B†B) .

Here, A,B,X can be either quasi-local operators or functions of average operators.

A proof of the above bound to the convergence of the square of the function Γℓ(∆
ℓ
N) can be found in

appendix ‘Proof of lemma 5’, and exploits a generalized Cauchy-Schwarz inequality proved in lemma 6 (see
appendix ‘lemma 6’).

With this result, we are now ready to state the first main theorem of our paper, establishing the exactness
of the mean-field equations for the time-evolution of average operators.

9
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Theorem 1. Given a generator as the one in equations (9)–(13), with functions Γℓ(∆
ℓ
N) satisfying assumption

1, we have that

if lim
N→∞

EN(0) = 0, then lim
N→∞

EN(t) = 0,∀t<∞. (26)

implying that the mean-field equations (23) are exact.

Proof. The proof of the theorem exploits Gronwall’s lemma. This lemma states that, if two positive, bounded,
N-independent constants C1 and C2, such that ĖN(t)⩽ C1EN(t)+C2/N exist, then

EN(t)⩽ eC1tEN(0)+C2(e
C1t − 1)/(C1N)

which would be enough to prove the theorem using the assumption on the initial value of EN(0) and taking
the limit N→∞. The goal is thus to find such constants C1,C2.

Let us then inspect the time derivative of EN(t),

ĖN(t) =
d2∑

α=1

d

dt
ωt

(
[mN

α −mα(t)]
2
)
. (27)

It is convenient to focus on each αth contribution of the latter expression separately,

Dα
t =

d

dt
ωt

(
[mN

α −mα(t)]
2
)

(28)

= ωt(LN[(m
N
α −mα(t))

2])− 2ṁα(t)ωt(m
N
α −mα(t)), (29)

where we have exploited that ω̇t(X) = ωt(LN[X]), and that mα(t), ṁα(t) are scalar functions. We now focus
on the term LN[(mN

α −mα(t))2]. To this end, it is worth noticing that, given any two operators, A, B, one has

LN[AB] = LN[A]B+ALN[B] +
∑
ℓ,k

[Jk†ℓ ,A][B, Jkℓ], (30)

where Jkℓ are the jump operators defined by equation (12). Let us focus on the last term,

P≡
∑

ℓ,k[J
k†
ℓ ,mN

α][m
N
α, J

k
ℓ], where we set A= B=mN

α −mα(t). It is

P=

q∑
ℓ=1

N∑
k=1

(
j(k)†ℓ [mN

α,Γℓ(∆
ℓ
N)]+ [mN

α, j
(k)†
ℓ ]Γℓ(∆

ℓ
N)
)

×
(
[Γℓ(∆

ℓ
N),m

N
α]j

(k)
ℓ +Γℓ(∆

ℓ
N)[j

(k)
ℓ ,mN

α]
)
. (31)

By exploiting lemma 1, we have that ‖P‖⩽ CP/N, with CP being the N-independent constant

CP =

q∑
ℓ=1

‖jℓ‖2[2δℓγ ′(δℓ)+ d2amaxγ(δℓ)]
2 . (32)

Here, amax =maxα,β,γ |aγαβ |. Inserting

LN[(m
N
α −mα(t))

2] = LN[m
N
α][m

N
α −mα(t)]+ [mN

α −mα(t)]LN[m
N
α] + P , (33)

in the time derivative (28), this reads

Dα
t = ωt([LN[m

N
α]− ṁα(t)][m

N
α −mα(t)])

+ωt([m
N
α −mα(t)][LN[m

N
α]− ṁα(t)])+ωt(P) . (34)

As the second term on the right-hand side of the above expression is the complex conjugate of the first one,
we can focus on the latter,

Dα,I
t = ωt([LN[m

N
α]− ṁα(t)][m

N
α −mα(t)]) . (35)

Making use of lemma 3 and of the mean-field equation (21) for the quantitiesLN[mN
α] and ṁα(t), respect-

ively, we get

10
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LN[m
N
α]− ṁα(t) = L+ fα(m⃗

N)− fα(m⃗(t))

= L+ i
d2∑

γ=1

Aαβ(m
N
β −mβ(t))+ i

d2∑
β,γ=1

Bαβγ(m
N
βm

N
γ −mβ(t)mγ(t)) (36)

+

q∑
ℓ=1

d2∑
β=1

Mβ
ℓα[Γ

2
ℓ(∆

ℓ
N)m

N
β −Γ2

ℓ(∆ℓ(t))mβ(t)].

In the above equation L is the operator difference L= LN[mN
α]− fα(m⃗N), which, as a consequence of lemma

3, obeys ‖L‖⩽ CL/N, with CL the N-independent bounded constant obtained in the proof of lemma 3.
In the second line of the above equation, the last term can be reshaped as follows

mN
βm

N
γ −mβ(t)mγ(t) = [mN

β −mβ(t)]m
N
γ +mβ(t)[m

N
γ −mγ(t)], (37)

and, similarly, the last line of equation (36) can be re-written, adding and subtracting the term Γ2
ℓ(∆ℓ(t))mN

β ,
as follows

Γ2
ℓ(∆

ℓ
N)m

N
β −Γ2

ℓ(∆ℓ(t))mβ(t)

= Γ2
ℓ(∆ℓ(t))

(
mN

β −mβ(t)
)
+
[
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
]
mN

β . (38)

Thus, the expression for LN[mN
α]− ṁα(t) reads

LN[m
N
α]− ṁα(t) = L+ i

d2∑
β=1

Aαβ(m
N
β −mβ(t))

+ i
d2∑

β,γ=1

Bαβγ [(m
N
β −mβ(t))m

N
γ +mβ(t)(m

N
γ −mγ(t))] (39)

+

q∑
ℓ=1

d2∑
β=1

Mβ
ℓα

{
Γ2
ℓ(∆ℓ(t))

[
mN

β −mβ(t)
]

+
[
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
]
mN

β

}
.

Inserting this expression in the time derivative in equation (35), we get

Dα,I
t = ωt

(
L[mN

α −mα(t)]
)
+ i

d2∑
β=1

Aαβ ωt

(
[mN

β −mβ(t)][m
N
α −mα(t)]

)
+ i

d2∑
γ,β=1

Bαβγ

{
ωt

(
[mN

β −mβ(t)]m
N
γ [m

N
α −mα(t)]

)
(40)

+ωt

(
mβ(t)[m

N
γ −mγ(t)][m

N
α −mα(t)]

)}
+

q∑
ℓ=1

d2∑
β=1

Mβ
ℓα

{
ωt

(
Γ2
ℓ(∆ℓ(t))[m

N
β −mβ(t)][m

N
α −mα(t)]

)
+ ωt

([
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
]
mN

β [m
N
α −mα(t)]

)}
.

We want to find upper bounds to the modulus of all terms forming Dα,I
t . The contribution due to L can be

bounded as ∣∣ωt

(
L[mN

α −mα(t)]
)∣∣⩽ 2CL

N
.

The remaining ones are of the type (I)ωt([mN
β −mβ(t)]X[mN

α −mα(t)]), and (II)ωt(
[
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
]

X[mN
α −mα(t)]), with X some operators. Terms such as (I) can be bounded as [31]

|ωt([m
N
β −mβ(t)]X[m

N
α −mα(t)])|⩽ ‖X‖EN(t) , (41)

and thus we have

|ωt([m
N
β −mβ(t)][m

N
α −mα(t)])|⩽ EN(t), (42)

11
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|ωt([m
N
β −mβ(t)]m

N
γ [m

N
α −mα(t)])|⩽ EN(t), (43)

|ωt(mγ(t)[m
N
β −mβ(t)][m

N
α −mα(t)])|⩽ EN(t), (44)

|ωt

(
Γ2
ℓ(∆ℓ(t))[m

N
β −mβ(t)][m

N
α −mα(t)]

)
|⩽ γ2(δℓ)EN(t) (45)

with X= I, X=mN
γ , X=mγ(t), and X= Γ2

ℓ(∆ℓ(t)), respectively. Note that we have further exploited that
‖mN

α‖⩽ 1, and, by lemma 4, that |mα(t)|⩽ 1 and |∆ℓ(t)|⩽ δℓ. For terms such as (II), we exploit lemma 5 and
a Cauchy-Schwarz inequality to obtain

|ωt(
[
Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t))
]
X[mN

α −mα(t)])|

⩽ 2γ(δℓ)γ
′(δℓ)‖X‖

∑
β

|rℓβ |
√
ωt([mN

β −mβ(t)]2)
√

ωt([mN
α −mα(t)]2) (46)

⩽ 2δℓγ(δℓ)γ
′(δℓ)‖X‖EN(t) ,

with ‖X‖= ‖mN
γ‖⩽ 1. As a consequence, we can derive

|Dα,I
t |⩽ C0

2
EN(t)+

2CL

N
, (47)

with

C0 = 2
(
d2A+ d42B+ qd2M[γ2(δ)+ 2δγ(δ)γ′(δ)]

)
where A≡maxα,γ |Aα,γ |, B≡maxα,β,γ |Bαβγ |, M≡maxℓ,α,γ |Mγ

ℓα|, δ ≡maxℓδℓ, and, recalling the
definitions

γ(z) :=
∞∑
k=0

|ckℓ||z|k <∞ , γ′(z) :=
∞∑
k=1

k|ckℓ||z|k−1 <∞ ,

we have γ(δ)⩾ γ(δℓ), γ ′(δ)⩾ γ ′(δℓ) for all ℓ. Therefore, for the time derivative Dt, it is

|Dt|⩽ 2
d2∑

α=1

|Dα,I
t |+ |ωt (P) |⩽ C1 EN(t)+

C2

N
, (48)

where C1 = d2C0 and C2 = d2(CP + 4CL).
As a result, the time derivative of the cost function can be bounded by

ĖN(t)⩽
∣∣∣ĖN(t)∣∣∣⩽ C1EN(t)+

C2

N
. (49)

Before moving forward, it is worth noticing that the strategy adopted to show the validity of the
mean-field equation (21) employs the quantity EN(t), which is a cost function measuring the difference
between the actual evolution of average operators and the prediction from equation (21). As shown in
theorem 1, the bound of such a cost function allows us to conclude the correctness of the mean-field
treatment in the thermodynamic limit, provided that limN→∞ EN(0) = 0. In addition, one can enforce the
latter condition for large but finite system size, by setting EN(0)∼ 1/N, which is the case for typical initial
states such as product states or states with short-range correlations. As a result, we obtain a general error
bound for employing the mean-field treatment at finite system size. This reads

EN(t)∼
eC1t

N
,

implying that the error bound grows exponentially in time, at a rate given by the constant C1, which depends
on the details of the model (see theorem 1 and appendix ‘Proof of lemma 2’). Moreover, for a system of size
N, the error bound allows one to derive a time t∗ up to which the mean-field theory is exact, within a given
accuracy. Such a time diverges in the thermodynamic limit.

12
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4.3. Open quantum dynamics of quasi-local operators
In this section, we show how the exactness of the mean-field equations can be exploited to derive the effective
dynamical generator which implements the time evolution of any quasi-local operator in the thermodynamic
limit.

Let us consider the following time-dependent Lindblad generator

L̃t [·] = i
[
H̃, ·
]
+
∑
ℓ

Γ2
ℓ(∆ℓ(t))DLoc

ℓ [·] , (50)

whereDLoc
α is the dissipator introduced in equation (16),∆ℓ(t) is the linear combination of mean-field

variables

∆ℓ(t) =
∑
α

rℓαmα(t) ,

and the Hamiltonian is given by

H̃=
N∑

k=1

d2∑
α=1

ϵαv
(k)
α +

N∑
k=1

d2∑
α,β=1

hαβ
(
mα(t)v

(k)
β +mβ(t)v

(k)
α

)
.

Such a Lindblad operator is well-defined for any time t since the variablesmα(t) are well-defined due to
lemma 4.

Through this generator, we can define the (time-ordered) dynamical map ΛN
t,s [·] such that

d

dt
ΛN
t,s [·] = ΛN

t,s ◦ L̃t [·] , and
d

ds
ΛN
t,s [·] =−L̃s ◦ΛN

t,s [·] .

Moreover, since this generator acts independently on the different particles, we also have that if an operator
O has support only on certain sites, then also ΛN

t,s [O] will have support on the same sites.

As we shall prove in the following Theorem, the generator L̃t is in fact the generator of the dynamics of
any quasi-local observable, or operator, of the system, in the thermodynamic limit. This generator is thus
valid for any operator inA and any sufficiently clustering state ω (see definition 1). Moreover, we note that
the restriction of the state ω to a single particle or to a finite number of particles can be represented by a
density matrix ρ. If the latter is in product form over the considered particles at the initial time, the structure
of the generator L̃t, which acts separately on the different particles, guarantees that the time-evolved state ρt
for the finite set of particles considered will remain in product form for all times, in the thermodynamic
limit. This is another way in which the validity of the mean-field approach can be understood, see e.g. the
discussion in [23] where a closed many-body system is considered. Our observation here thus confirms that
such an approach based on the study of the single-particle, or few-particle, reduced density matrix is in fact
equivalent to the approach adopted in this work, which focuses on average operators as well as on quasi-local
ones.

Theorem 2. The time evolution implemented by LN converges, in the weak operator topology for the quasi-local
algebra, to the time evolution implemented by the time-dependent generator L̃t through the map ΛN

t,0. That is,

lim
N→∞

ω
(
A†etLN [O]B

)
= lim

N→∞
ω
(
A†ΛN

t,0 [O]B
)
,

for all A,B,O ∈ A and any t<∞.

Proof. In order to keep a compact notation, we define

ωA†B(O) := ω(A†OB) ,

and consider the difference

IO = ωA†B
(
etLN [O]

)
−ωA†B

(
ΛN
t,0 [O]

)
.

Let us first consider the case in which O is strictly local and thus supported only on a finite number of sites.
This means that there exists kmin ⩽ kmax such that (kmax <∞)[

v(k)α ,O
]
= 0 ,∀vα ,
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whenever k< kmin or k> kmax. The support of the operator then has length NO = kmax − kmin + 1. Since we
focus here on the limit N→∞ we consider always N> kmax.

We now start with the actual proof. The quantity IO can be written as

IO = ωA†B

(ˆ t

0
ds

d

ds

[
esLN ◦ΛN

t,s [O]
])

.

Calculating explicitly the derivative we find

IO =

ˆ t

0
dsωA†B

(
esLN ◦

[
LN −L̃s

]
◦ΛN

t,s[O]
)
. (51)

Now, let us define Ot,s = ΛN
t,s[O]. This is an operator which has the same support of O, that is thus finite.

Calculating the action of LN on Ot,s we find that

LN[Ot,s] = i
∑
α

ϵα

kmax∑
k=kmin

[
v(k)α ,Ot,s

]

+ i
∑
αβ

hα,β

mN
α

kmax∑
k=kmin

[
v(k)β ,Ot,s

]
+

kmax∑
k=kmin

[
v(k)α ,Ot,s

]
mN

β

 (52)

+
∑
ℓ

Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [Ot,s] +O(N) ,

where the O(N) takes into account the difference between the dissipative part of the original Lindblad and its
local action modulated by the operator-valued rate which converges to zero in norm in the thermodynamic
limit (cf lemma 2). With this, we can also calculate the difference between the action of the two generators
appearing in equation (51). This is equivalent to

LN[Ot,s]−L̃s[Ot,s] =i
∑
αβ

hαβ(m
N
α −mα(s))

kmax∑
k=kmin

[
v(k)β ,Ot,s

]

+ i
∑
αβ

hαβ

kmax∑
k=kmin

[
v(k)α ,Ot,s

]
(mN

β −mβ(s)) (53)

+
∑
ℓ

(Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(s)))DLoc
ℓ [Ot,s] +O(N) .

Now, we plug this back into the expression for IO. We find

IO =

ˆ t

0
dsωA†B

esLN

i∑
αβ

hαβ(m
N
α −mα(s))

kmax∑
k=kmin

[
v(k)β ,Ot,s

]
+

ˆ t

0
dsωA†B

esLN

i∑
αβ

hαβ

kmax∑
k=kmin

[
v(k)α ,Ot,s

]
(mN

β −mβ(s))

 (54)

+

ˆ t

0
dsωA†B

(
esLN

[∑
ℓ

(Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(s)))DLoc
ℓ [Ot,s]

])

+

ˆ t

0
dsωA†B

(
esLN [O(N)]

)
.

The last term of the above sum, which we call I4O is easy to treat since O(N) tends to zero in norm, and thus
have |I4O|⩽ ‖A‖‖B‖‖O(N)‖. The other terms need more care. Let us start with the first one, which we call I1O.
Denoting

Oα
t,s =

kmax∑
k=kmin

[
v(k)α ,Ot,s

]
,

we can write

I1O = i
∑
α,β

hαβ

ˆ t

0
dsωA†B

(
esLN

[
(mN

α −mα(s))O
β
t,s

])
.
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Using lemma 6 proved in the appendix (see also [28]) we can write

|I1O|⩽ d4hmax

ˆ t

0
ds
∣∣∣ωA†B

(
esLN

[
(mN

α −mα(s))O
β
t,s

])∣∣∣ (55)

⩽ d4hmax2NO‖B‖‖vβ‖‖O‖
ˆ t

0
ds
√
ωA†A (esLN [(mN

α −mα(s))2])

where we defined hmax =maxα,βhαβ , and we further used that

‖Oβ
t,s‖⩽ 2NO‖vβ‖‖O‖ .

Let us consider the term inside the square root. We can define a state obtained from ω through A as

ω̃A†A(X) :=
ω
(
A†XA

)
ω (A†A)

.

The state ω̃A†A is also clustering in the sense of definition 1, as long as ω is clustering and A is quasi-local. We
thus have

ωA†A
(
esLN

[
(mN

α −mα(s))
2
])

= ω(A†A)ω̃A†A
(
esLN

[
(mN

α −mα(s))
2
])

.

As done in theorem 1, we can define for the state ω̃A†A the cost function

EA
N(t) =

∑
α

ω̃A†A
(
etLN

[
(mN

α −mα(t))
2
])

.

Repeating all the steps in the proof of the theorem for this new cost function we find that

EA
N(t)⩽ etC1EA

N(0)+
1

N

C2

C1

(
eC1t − 1

)
.

The second term on the right-hand side goes to zero in the large N limit. The first one also goes to zero since
the state ω̃A is clustering, in the sense that

ω̃A†A
([
mN

α −mα(0)
]2)→ 0

for N→∞. This can be seen by considering that average operators commute with quasi-local operators so
that

lim
N→∞

ω̃A†A
([
mN

α −mα(0)
]2)

=
1

ω(A†A)
lim

N→∞
ω
(
A†A

[
mN

α −mα(0)
]2)

.

Using appropriately the Cauchy-Schwarz inequality, we then find

lim
N→∞

ω̃A†A
([
mN

α −mα(0)
]2)⩽ 2‖A‖2 lim

N→∞

√
ω
(
[mN

α −mα(0)]
2
)

where we used ‖mN
α −mα(0)‖⩽ 2. By assumption on the state ω, the right-hand side of the above inequality

goes to zero. All together this shows that

lim
N→∞

|I1O|= 2d4hmaxNO‖B‖‖vβ‖‖O‖ω(A†A) lim
N→∞

ˆ t

0
ds
√

EA
N(s) = 0 .

The second term in equation (54), which we call I2O, can be treated exactly in the same way as above, so
that we are left with the third term I3O. For the sake of clarity, we have

I3O =
∑
ℓ

ˆ t

0
dsωA†B

(
esLN

[
(Γ2

ℓ(∆
ℓ
N)−Γ2

ℓ(∆ℓ(s)))DLoc
ℓ [Ot,s]

])
,

and exploiting lemma 5 we immediately find
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|I3O|⩽ 2
∑
ℓ,β

|rℓβ |γℓ(δℓ)γ′
ℓ(δℓ)

√
ω(B†B)‖DLoc

ℓ [Ot,s]‖

×
ˆ t

0
ds

√
ωA†A

(
esLN

[
(mN

β −mβ(s))2
])

.

Note that ‖DLoc
ℓ [Ot,s]‖ remains finite since the operatorOt,s has local support. Now, looking at the square root

inside the integral and recalling the discussion used to show that the term I1O converges to zero, we can show
that also I3O is vanishing in the N→∞ limit.

Collecting all these results together, we have shown that

lim
N→∞

|IO|= lim
N→∞

(
|I1O|+ |I2O|+ |I3O|+ |I4O|

)
= 0 , (56)

which concludes the proof of the theorem for any operator O with strictly local support.
To extend this result to the case of any operatorO of the quasi-local algebraA, we proceed as follows. First,

we observe that any quasi-local operator O can be approximated with arbitrary accuracy by an operator with
local support. This means that for any ε> 0, we can always find an operator Oε, such that

‖O−Oε‖⩽ ε.

Then, we consider again the quantity IO and rewrite it as

IO = ωA†B
(
etLN [O]

)
−ωA†B

(
ΛN
t,0[O]

)
= ωA†B

(
etLN [O−Oε]

)
−ωA†B

(
ΛN
t,0[O−Oε]

)
+ IOε

. (57)

Since etLN and ΛN
t,0 are both contractions, the first two terms are bounded by ‖A‖‖B‖‖O−Oε‖. As such we

have

|IO|⩽ 2‖A‖‖B‖ε+ |IOε
| .

Now, we chose ε such that ε= χ/(4‖A‖‖B‖). Moreover, due to the result for operators with strictly local
support summarized by equation (56), given any χ> 0 there exists a Ñ such that for any N> Ñ we have

|IOε
|< χ

2
.

With these considerations, we can thus say that ∀χ > 0 there exists a Ñ such that ∀N> Ñ we have

|IO|< χ,

which is nothing but the definition of the limit appearing in the theorem.

5. Application to quantumHopfield-type neural networks (NNs)

5.1. QuantumHopfield-type NNs
In this section, we apply our results to open quantum generalizations of Hopfield-type models. These
systems origin within the field of classical NNs. They are fundamental models realizing associative memory
behavior [62], i.e. they are capable of retrieving complete information from corrupted data, following a
learning rule. A paradigmatic instance of associative memory is the so-called HNN [37], that we will
consider in the following. The HNN is a classical spin network featuring all-to-all interactions [62, 63],

described by the energy function E=− 1
2

∑N
i̸=j=1wi jσ

(i)
z σ

( j)
z , where N is the number of spins and σ

(i)
z are

classical Ising spins. The interaction couplings, wij, are chosen in such a way that a set of p spin
configurations, {ξµi }i=1,...,N for µ= 1,2, . . .p, can be stored and retrieved by the system which corresponds
to the patterns being the minima of the energy function. The different spin configurations {ξµi }i can
represent patterns, such as images or letters of an alphabet. Among the different learning rules, widely known
is the Hebb’s prescription, that sets wi j =

1
N

∑p
µ=1 ξ

µ
i ξ

µ
j .

In practice, for what concerns theoretical investigations on these models, the patterns can be chosen to be
generated by independent identically distributed (i.i.d.) random variables that can assume the values
ξµi =±1. For p/N� 1, the spin configurations which have minimal energy are those in which all spins are
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aligned with the patterns. The retrieval mechanism emerges when endowing the HNN with a Glauber
thermal single spin-flip dynamics with inverse bath-temperature β−1 [49].

Quantum generalizations of HNNs have been introduced in [42, 44] to embed these systems into the
more general framework of open quantumMarkovian evolution defined by equations (10)–(12) and to
investigate the impact on quantum effects on their retrieval dynamics. Here, the system is described in terms
of N spin-1/2 particles, undergoing a Markovian evolution with jump operators

J(k)± = σ
(k)
± ΓHN

± (∆Ek), ΓHN
± (∆Ek) =

e±
β
2 ∆Ek√

2cosh(β∆Ek)
, (58)

where

∆Ek =
1

N

p∑
µ=1

ξµk

∑
j ̸=k

ξµj σ
(j)
z

represents the energy difference associated with the configuration before and after the transition. We note
that this operator quantifies the energy change associated with a spin-flip at site j. It is thus not a simple
multiple of the identity but rather a many-body operator depending on the state of all spins. It is worth
noticing that the operator-valued rates ΓHN

ℓ (∆Ek) for this model do not act on the kth spin and thus

commute with the operator σ(k)
α , α=±. The Hamiltonian term is chosen to be a homogeneous transverse

field, H=Ω
∑N

i=1σ
(i)
x , and competes with the dissipative HNN dynamics. In the thermodynamic limit and

for p/N� 1, the quantum model has been analyzed via the dynamical evolution of some macroscopic
quantities. In fact, under a mean-field approximation, i.e. neglecting correlations among average operators,
the retrieval properties of quantum HNNs in the parameter regimes (Ω,β) have been characterized [42]. It
was shown that for large temperatures quantum HNNs display a so-called paramagnetic (disordered) phase,
for which pattern retrieval is not possible. For small temperatures and for sufficiently small values of the
transverse-field strength, the system shows instead a ferromagnetic phase and can operate as an associative
memory. Interestingly, for large values of Ω a quantum retrieval phase can be observed, characterized by a
limit-cycle regime in which the state of the system features a nonzero overlap with one of the patterns.
However, while a mean-field theory holds true for the classical HNN, no exact proof is known for quantum
generalizations of the model. We will now show that theorems 1 and 2 apply to these cases.

Before proceeding, we introduce the quantity

∆E=
1

N

∑
µ

ξµk

∑
j

ξµj σ
(j)
z ,

together with the operator-valued rates

ΓHN
± (∆E)≡ e±

β
2 ∆E√

2cosh(β∆E)
. (59)

The difference between these rates and the ones defined in equation (58) is that the former also account for
the self-energy contribution, i.e. the sum involves all sites. In the following, we will show that replacing the
operator-valued rates (58) with the ones defined by (59), i.e. replacing∆Ek with∆E, yields the same
equation of motions in the thermodynamic limit. Nonetheless, the representation of the system dynamics
via (59) is more closely related to the results we presented above.

5.2. Exactness of the mean-field approach
It is worth noticing that the operator valued rates equations (58) and (59) do not satisfy assumption 1.
Indeed, while given a real number x, (cosh(βx))−1/2 is a real analytic function, the function (cosh(βz))−1/2,
with z complex is not an entire function. This means that there is no power series for (cosh(βx))−1/2,
centered in x= 0 which has an infinite radius of convergence. Clearly, as we also mentioned just after
assumption 1, requiring that the operator-value rate functions admit a power series with infinite radius of
convergence is a strong requirement which is not strictly necessary for our treatment. In fact, looking back at
our proof of the theorems, we see that in order to exploit our theorems, the operator-valued functions Γℓ

must possess two fundamental requirements: i) they must obey an equivalent of lemma 1, i.e. they must
commute with local or average operators up to terms which must converge, in norm, to zero sufficiently fast
with N and ii) they must obey an equivalent of lemma 5, i.e. their convergence to their mean-field
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counterpart must be dominated by the (quadratic) convergence of average operators to their mean-field
counterpart. As we show below, these requirements are satisfied by the rates in equations (58) and (59).

As we deal with a system of spin-1/2 particles, we consider as a basis of the single-particle algebraM2(C)
the Pauli operators σ(k)

x,y,z and the identity. Since the rates are proportional to σz at the different sites, we have

[ΓHN
ℓ (∆E),σ(k)

z ] = 0 ∀i = 1, . . .,N and ℓ=±. To show that these rates obey lemma 1, we thus need to

evaluate the norm of the commutator [ΓHN
ℓ (∆E),σ(k)

+ ]. For doing this, we notice that σ(k)
+ ΓHN

ℓ (∆E) =

ΓHN
ℓ (∆E− cσ(k)

z )σ
(k)
+ , where |c|⩽ 2p/N, since we have |wij|⩽ p/N. Therefore, we can write

‖[ΓHN
ℓ (∆E),σ(k)

+ ]‖⩽ ‖ΓHN
ℓ (∆E)−ΓHN

ℓ (∆E− cσ(k)
z )‖ . (60)

It is straightforward to check that given two real values x,y, one has

ΓHN
± (x)−ΓHN

± (y) =
e±

βx
2 [cosh(y)− cosh(x)]√

cosh(x)cosh(y)
[√

2cosh(y)+
√
2cosh(x)

] (61)

+
e±

βx
2 − e±

βy
2√

2cosh(y)
,

which shows that the difference between the functions can be bounded by the sum of the difference between
two entire functions multiplied by bounded terms (since∆E only has finite eigenvalues). As such, in the
right hand side of equation (60) we can expand the entire functions in their Taylor series (with infinite radius
of convergence), and noticing that the difference between the arguments of the two functions is of order
1/N, one can find a suitable constant Cσ such that

‖[ΓHN
ℓ (∆E),σ(k)

+ ]‖⩽ Cσ

N
.

The same result holds for [ΓHN
ℓ (∆E),σ(k)

− ]. Therefore, for any single-site operator we have that
‖[ΓHN

ℓ (∆E),x(k)]‖ ∼ 1/N and thus also for average operators for which we have

‖[ΓHN
ℓ (∆E),XN]‖⩽ 2xmax

Cσ

N
, (62)

where xmax is the modulus of the matrix element of x with largest absolute value. We further note that, since
the Pauli matrices σ±,σz form a basis for the single-site algebra, any local operator O can be written as a
finite linear combination of products of Pauli matrices solely acting non-trivially on the support of O. Using
our results on single-site operators and the linearity of the commutator we can thus find a bound for any
strictly local operator O ∈ A.

We now consider the double commutator [ΓHN
ℓ (∆E), [ΓHN

ℓ (∆E),σ(k)
α ]]. Clearly this vanishes when

considering σα = σz or equal to the identity. When focusing on σ
(k)
+ , we have by direct computation,

‖[ΓHN
ℓ (∆E), [ΓHN

ℓ (∆E),σ(k)
+ ]]‖⩽ ‖ΓHN

ℓ (∆E)−ΓHN
ℓ (∆E− cσ(k)

z )]‖2 , (63)

which, because of the argument above, is of order 1/N2. We thus find

‖[ΓHN
ℓ (∆E), [ΓHN

ℓ (∆E),XN]]‖⩽ 2xmax
C2
σ

N2
. (64)

An analogous result can be obtained again for strictly local operators. The results in equation (62) and in
equation (64) can then be directly employed to show the validity of an equivalent of lemma 2 for the
operator-valued rates describing the quantum Hopfield NN. Indeed, by proceeding according to the proof of
the above mentioned Lemma, and exploiting the specific form of the jump operators as defined by
equation (59), we find

‖Dℓ[xk]−ΓHN2
ℓ (∆E)DLoc

ℓ [xk]‖⩽
xmax

N
Γ(3Cσ +C2

σ), (65)

where Γ is the norm of the operator-valued rate ΓHN
ℓ (∆E).

One can check that the operator-valued rate defined by equation (58) obeys the same bounds shown
above. Hence, when considering ΓHN

ℓ (∆Ei), and identifying with D̃ℓ[·] the corresponding dissipator, we get

‖D̃ℓ[xk]−ΓHN2
ℓ (∆Ei)DLoc

ℓ [xk]‖⩽
xmax

N
Γ(3Cσ +C2

σ) . (66)
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At this point, we can show that in the thermodynamic limit the operator-valued rates (58) and (59) give rise
to the same equations of motions. To this end, let us consider the difference

D= ‖Dℓ[xh]−D̃ℓ[xh]‖ (67)

= ‖
(
(ΓHN

ℓ (∆E))2 − (ΓHN
ℓ (∆Ek))

2
)
DLoc

ℓ [xh] + L1 + L2‖ ,

where L1 and L2 follow the bounds as given by equations (65) and (66), respectively. Let us then focus on the

norm of the remaining term. Noticing that∆Ek =∆E− c
2σ

(k)
z , we consider the difference(

(ΓHN
ℓ (∆E))2 − (ΓHN

ℓ (∆E− c

2
σ(k)
z ))2

)
DLoc

ℓ [xh] (68)

=
(
eℓβ∆E cosh(ℓβ∆E− c

2
σ(k)
z )− eℓβ(∆E− c

2σ
(k)
z ) cosh(ℓβ∆E)

)
W ,

whereW=DLoc
ℓ [xk]/(2cosh(β∆E)cosh(β∆Ek)) is a norm-bounded operator. We can thus focus on the

norm

‖eℓβ∆E cosh(ℓβ∆E− c

2
σ(k)
z )− eℓβ(∆E− c

2σ
(k)
z ) cosh(ℓβ∆E)‖

⩽ ‖ sinh(βcσ(k)
z /2)‖⩽

∞∑
n=0

1

(2n+ 1)!
(βp)(2n+1) 1

N(2n+1)
(69)

⩽ 1

N

∞∑
n=0

1

(2n+ 1)!
(βp)(2n+1) ⩽ 1

N
sinh(βp) ,

having exploited the convergence of the series
∑

n
1

(2n+1)! |b|
n <∞, ∀b ∈ R. As a result, we derive

‖Dℓ[xh]−D̃ℓ[xh]‖⩽
1

N
[sinh(βp)‖W‖+ 2xmaxΓ(3Cσ +C2

σ)] (70)

We now explicitly show that the operator-valued rates in equation (59) can be written as a linear
combination of suitable average operators. To this end, we perform a mapping [31] (see figure 2) on the
all-to-all classical energy function

E=−1

2

∑
i,j

wijσ
(i)
z σ( j)

z =− 1

2N

p∑
µ=1

(
N∑

i=1

ξµi σ
(i)
z

)2

, (71)

where the expression of wij in terms of the patterns ξµi has been written. We will now reorder the p rows of

the patterns (ξµ1 , . . ., ξ
µ
N), each one corresponding to a {σ

(i)
z }i=1,...,N spin configuration. The first pattern, ξ1i

takes the values±1 at random positions. We relabel the spins as follows: the ones for which ξ1j =+1 are

taken to the left, and the remaining ones, for which ξ1j =−1, to the right, as shown in figure 2. Thus, there

exists h̃ such that ξ1h = 1 for h⩽ h̃, and ξ1h =−1 otherwise. Next, we consider the second pattern, ξ2i . In the
subset corresponding to ξ1h = 1 we relabel the spins such that ξ2i = 1 are moved to the left, and ξ2i =−1 are
moved to the right. The same is done for the subset corresponding to ξ1h =−1. This procedure can be
repeated up to the last pattern. For large N, such a mapping yields 2p subset of spins, pictorially illustrated in
figure 2, each one described by macroscopic spin operators, that interact among each other. In the following,
we will denote these subsets as Λk, k= 1, . . .,2p. Furthermore, being ξµi i.i.d. random variables, and so long
as N� 1, each pattern (ξµ1 , . . ., ξ

µ
N) contains, at leading order, an equal number of+1 and−1. Thus each one

of the 2p subsets has at leading order the same number of spins, Ns = N/2p (assuming that N/2p is an integer
number). Under this mapping, the energy function reads

E=−1

2

2pNs∑
h,k=1

w̃hkS
(h)
z S(k)z =− 1

2p+1Ns

p∑
µ=1

(
2p∑
h=1

fµh S
(h)
z

)2

, (72)

which describes the interaction between large-spin operators S(h)z , where S(h)α =
∑

i∈Λh
σ
(i)
α is defined by the

sum of spin-1/2 operators belonging to the hth subset Λh. The coefficients f
µ
h (cf figure 2), which can assume

the values±1, represent the pattern values for spins in the subset Λh. Most notably, they enter the definition

19



New J. Phys. 25 (2023) 083010 E Fiorelli et al

Figure 2. Sketch of the mapping to large spins. Example of the mapping discussed in the main text for N= 8 spins and p= 2
patterns. Each of the variables ξµi composing the patterns can assume either the value+1 or the value−1. The first step of the
mapping consists in permuting the spins in a way that, after the transformation, the first pattern has all ξ1i =+1 appearing before
the ξ1i =−1. This reshuffles also the structure of the second pattern. In the second step, we permute the spins inside the two
sub-blocks identified by the transformed first pattern ξ1i . Spins are reordered in such a way that the second pattern ξ2i has the
values+1 appearing before the values−1 in each of the sub-block identified by the first pattern. This procedure generates 2p

subsets of spins Λk (which for large N form large-spin subsystems), such that ifm,n ∈ Λk, then ξµm = ξµn = fµk , ∀µ. Here, the
function fµk is a representation of the pattern ξµi in terms of the subsets Λk.

of w̃hk =
1
2p
∑p

µ=1 f
µ
h f

µ
k , which specifies the interaction coupling between the kth and hth large spins.

Furthermore, when considering the set of spin 1/2 belonging to the set Λk, the operator∆E becomes

∆ENs
Λk

=
1

Ns

2p∑
h=1

w̃hkS
(h)
z =

2p∑
h=1

w̃hkm
Ns
z,h (73)

where we introduced the average magnetization operator

mNs
α,k ≡

S(k)α

Ns
, (74)

for α= x,y,z, and k= 1, . . .,2p. The mapping clarifies how to derive the average operator description that we
have employed for deriving a mean field description.

We will now conclude and show that theorem 1 can be applied in this case. To this end, we recall that we
have recovered the result of lemmas 1 and 2 (with lemmas 3 and 4 being actually independent of
assumption 1). Hence, we need only to verify that an equivalent of lemma 5 holds true. It is sufficient
to write

ΓHN2
ℓ (∆ENs

Λk
)−ΓHN2

ℓ (∆EΛk(t))

=
e
ℓβ∆ENsΛk cosh(β∆EΛk(t))− eℓβ∆EΛk

(t) cosh(β∆ENs
Λk
)

2cosh(β∆ENs
Λk
)cosh(β∆EΛk(t))

(75)

= sinh(ℓβ(∆ENs
Λk

−∆EΛk(t)))
1

2cosh(β∆ENs
Λk
)cosh(β∆EΛk(t))

=
∑
h

w̃hk(m
Ns
z,h −mz,h(t))Qk ,

i.e. the difference of the operator-valued rates evaluated on averaged operator∆ENs and on the linear
combination of mean-field variables∆E(t), is dominated by an entire function, sinh(·) times a
norm-bounded one. The power series expansion of the former is employed, and all the norm-bounded,
remaining part is kept in Qk, that reads

Qk = R
∞∑
n=0

1

(2n+ 1)!
(ℓβ)2n+1

(∑
h

w̃hk(m
Ns
z,h −mz,h(t))

)2n

, (76)

where R= 1/(2cosh(β∆ENs
Λk
)cosh(β∆EΛk(t))). Thus the norm of Qk can be bounded as
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‖Qk‖= ‖R‖

∥∥∥∥∥∥
∞∑
n=0

1

(2n+ 1)!
(ℓβ)2n+1

(∑
h

w̃hk(m
Ns
z,h −mz,h(t))

)2n
∥∥∥∥∥∥

⩽ ‖R‖
∞∑
n=0

1

(2n+ 1)!
β(2n+1)

(∑
h

2|w̃hk|

)2n

(77)

⩽ ‖R‖
2δEΛk

∞∑
n=0

1

(2n+ 1)!
(2βδEΛk

)2n+1 =
‖R‖
2δEΛk

sinh(2βδEΛk
) ,

having exploited ‖∆EΛk‖⩽
∑

h |w̃hk| ≡ δEΛk
. In this way, the proof of the lemma can be retraced, yielding

|ω(A†etLN [(Γ2
ℓ(∆EΛNs

k
)−Γ2

ℓ(∆EΛk(t)))X]B)|

⩽ C‖X‖
∑
h

|w̃hk|
√
ω(A†etLN [(mNs

z,h −mz,h(t))2]A)
√
ω(B†B) , (78)

with C= ‖R‖ sinh(2βδEΛk
)/(2δEΛk

). As such, theorem 1 can be applied. Using also the results on the
commutator of the rates with local operators, theorem 2 can be proved as well for the quantum
generalization of the HNN dynamics.

6. Conclusions

In this manuscript we considered many-body open quantum systems that evolve under a dynamical
generator written in Lindblad form. We introduced the dissipative part of the latter as a generalization of
classical stochastic dynamical generators where single-site transitions occur at a rate that depends on
collective properties of the system itself. In the quantum setting, these are represented by operator-valued
functions, Γ, assumed to be (real) analytic functions of average operators. We then added the coherent part
of the dynamics by means of a single-particle Hamiltonian and an all-to-all two-body interacting
Hamiltonian. Firstly we showed that, for large system size, the dissipative map on strictly local and average
operators acts as a local dissipative map, weighted by the square of the operator-valued rates (lemma 2). We
then moved forward to analyze the dynamics of average operators in terms of their Heisenberg equations. In
fact, theorem 1 shows that the latter are exactly given by the mean-field equations of motions (given by
factorizing expectation values of operators) in the thermodynamic limit. This is our second main result.
Thirdly, we focused on the dynamics of quasi-local operators. Here, starting from the exactness of the
mean-field equations, we derived the effective dynamical generator which provides their dynamics, in the
thermodynamic limit (theorem 2). Finally, we showed the relevance of this results for the class of open
quantum-Hopfield models in the limit of large system size and vanishing storage-capacity.

It would be interesting to modify our approach in order to investigate a more general form of Lindblad
operators, e.g. including non-Markovian effects in the form of time-dependent rates. It is worth noticing that
our derivation and our proofs remain, in principle, valid in these cases. Secondly, it would be interesting to
understand whether our approach can be modified to deal with models going beyond a collective all-to-all
coupling Hamiltonian or permutation-invariant models, i.e. to deal with models with spatially-dependent
interaction. For instance, one could consider a translation-invariant Hamiltonian with two-body
interactions and a generic translation-invariant dissipator, such as those emerging in the presence of
light-mediated interactions (see, e.g. [64]), and develop an approach to these models by analyzing the
dynamical behavior of a suitable (possibly infinite) set of average operators defined in Fourier space. In
contrast to all-to-all coupling models, where only the zero Fourier modes are relevant, translation-invariant
systems require the consideration of all modes.
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Appendix. Lemmata

Proof of lemma 1
Lemma 1. If the function Γℓ(∆

ℓ
N) obeys assumption 1, then

i)
∥∥[Γℓ(∆

ℓ
N),O

]∥∥⩽ 2NO

N
‖O‖δℓγ′(δℓ) ,

ii)
∥∥[Γℓ(∆

ℓ
N),XN

]∥∥⩽ 2

N
‖x‖δℓγ′(δℓ) ,

iii)
∥∥[Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),O

]]∥∥⩽ 4N2
O

N2
‖O‖δ2ℓ [γ′(δℓ)]

2 ,

iv)
∥∥[Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),XN

]]∥∥⩽ 4

N2
‖x‖δ2ℓ [γ′(δℓ)]

2 ,

with O being any operator with strictly local support, NO the length of such support, and XN any average operator
as defined in equation (2).

Proof. Given an operatorOwhich is supported only on a finite number of sites, we can always find two integer
numbers kmin ⩽ kmax <∞ defining its support. In particular, kmin is the largest number for which[

v(k)α ,O
]
= 0 , ∀vα,

whenever k< kmin. The integer number kmax is instead the smallest one for which[
v(k)α ,O

]
= 0 , ∀vα,

for all k> kmax. We then say that the operatorO has support which extends from site kmin to site kmax and that
NO = kmax − kmin + 1 is the length, or extension, of its support.

With this observation we can proceed with the proof of i). This is done by directly evaluating the commut-
ator. We have that

[
Γℓ

(
∆ℓ

N

)
,O
]
=

∞∑
n=0

cnℓ

[(
∆ℓ

N

)n
,O
]
=

∞∑
n=0

cnℓ

n−1∑
j=0

(
∆ℓ

N

)j [
∆ℓ

N,O
](
∆ℓ

N

)n−1−j
.

Next we evaluate the commutator of∆ℓ
N and the local operator O. This gives

[
∆ℓ

N,O
]
=

1

N

N∑
k=1

 d2∑
α=1

rℓαv
(k)
α ,O

 .

Because of the locality of the operator O, we further find

[
∆ℓ

N,O
]
=

1

N

kmax∑
k=kmin

 d2∑
α=1

rℓαv
(k)
α ,O

 .

We then define the operator Oℓ :=
[
∆ℓ

N,O
]
which, because of the above observation, is a local operator sup-

ported on the same sites of O and with norm

‖Oℓ‖⩽ 2NO

N
‖O‖δℓ ,

where δℓ is defined by equation (14). Plugging back this information in the commutator i) and taking appro-
priate norm bounds (recall that ‖∆ℓ

N‖⩽ δℓ) we have

‖
[
Γℓ

(
∆ℓ

N

)
,O
]
‖⩽ 2NO

N
‖O‖δℓγ ′(δℓ) (A.1)
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where the quantity γ ′(δℓ) is defined as the series

γ′(δℓ) =
∞∑
n=0

|cnℓ|nδn−1
ℓ <∞ .

The relation in equation (A.1) is exactly relation i) reported in the Lemma.
We now prove iii) using some of the previous results. Considering the commutator in i) we have already

shown that

[
Γℓ(∆

ℓ
N),O

]
=

∞∑
n=0

cnℓ

n−1∑
j=0

(∆ℓ
N)

jOℓ(∆ℓ
N)

n−1−j .

Now, to prove iii) we need to consider a further commutator with Γℓ(∆
ℓ
N). Using the power series definition

of Γℓ(∆
ℓ
N), the double commutator can be written as

[
Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),O

]]
=

∞∑
n,n′=1

cnℓc
n′

ℓ

n−1∑
j=0

(∆ℓ
N)

j

n′−1∑
i=0

(∆ℓ
N)

i
[
∆ℓ

N,O
ℓ
]
(∆ℓ

N)
n′−1−i

(∆ℓ
N)

n−1−j .

Now we focus on the operator Oℓℓ := [∆ℓ
N,O

ℓ]. Expanding∆ℓ
N, we can write

Oℓℓ =
1

N

N∑
k=1

 d2∑
α=1

rℓαv
(k)
α ,Oℓ

=
1

N

kmax∑
k=kmin

 d2∑
α=1

rℓαv
(k)
α ,Oℓ

 ,

where in the second equality we used the fact that Oℓ is a strictly local operator with same support as O. This
shows that

‖Oℓℓ‖⩽ 2NO

N
‖Oℓ‖δℓ ⩽

4N2
O

N2
‖O‖δ2ℓ ,

which we can use to find the bound in iii)

∥∥[Γℓ(∆
ℓ
N),
[
Γℓ(∆

ℓ
N),O

]]∥∥⩽ 4N2
O

N2
‖O‖δ2ℓ [γ′(δℓ)]

2
.

Now, we can straightforwardly prove relation ii) and iv) using i) and iii). For ii) we consider that

∥∥[Γℓ(∆
ℓ
N),XN

]∥∥⩽ 1

N

N∑
k=0

∥∥∥[Γℓ(∆
ℓ
N),x

(k)
]∥∥∥ .

Now, the norm of the commutator on the right-hand side does not really depend on k due to the permutation
invariance of the operator Γℓ(∆

ℓ
N) so that we have∥∥[Γℓ(∆

ℓ
N),XN

]∥∥⩽ ∥∥∥[Γℓ(∆
ℓ
N),x

(k)
]∥∥∥ .

We can exploit the result of i), noticing that x(k) is a local operator with support equal to Nx(k) = 1, to find∥∥[Γℓ(∆
ℓ
N),XN

]∥∥⩽ 2

N
‖x‖δℓγ′(δℓ) .

We can proceed in a similar way for iv). Indeed, we have

∥∥[Γℓ(∆
ℓ
N),
[
Γℓ(∆

ℓ
N),XN

]]∥∥⩽ 1

N

N∑
k=1

∥∥∥[Γℓ(∆
ℓ
N),
[
Γℓ(∆

ℓ
N),x

(k)
]]∥∥∥

⩽
∥∥∥[Γℓ(∆

ℓ
N),
[
Γℓ(∆

ℓ
N),x

(k)
]]∥∥∥ ,

and since x(k) is local, exploiting iii) we can conclude that∥∥[Γℓ(∆
ℓ
N),
[
Γℓ(∆

ℓ
N),XN

]]∥∥⩽ 4

N2
‖x‖δ2ℓ [γ′(δℓ)]

2 .
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Proof of lemma 2
Lemma 2. The mapsDℓ defined by equations (11) and (12) with functions Γℓ(∆

ℓ
N) obeying assumption 1 are

such that ∥∥Dℓ[O]−Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [O]
∥∥⩽ CO

N
,∥∥Dℓ[XN]−Γ2

ℓ(∆
ℓ
N)DLoc

ℓ [XN]
∥∥⩽ Cx

N
,

with

DLoc
ℓ [A] =

1

2

N∑
k=1

([
j†(k)ℓ ,A

]
j(k)ℓ + j†(k)ℓ [A, j(k)ℓ ]

)
. (A.2)

and CO, Cx appropriate N independent constants. In the above expression, O is any local operator with support
on a finite number of sites, NO is the extension of its support, and XN an average operator of the single-particle
operator x as defined in equation (2)

Proof. To prove the Lemma, we start considering an operator O with local support, extended over NO sites,
and compute the action ofDℓ on it. We have

Dℓ[O] =
1

2

N∑
k=1

([
Γℓ(∆

ℓ
N)j

†(k)
ℓ ,O

]
j(k)ℓ Γℓ(∆

ℓ
N)+Γℓ(∆

ℓ
N)j

†(k)
ℓ

[
O, j(k)ℓ Γℓ(∆

ℓ
N)
])

.

Using that [AB,C] = A[B,C] + [A,C]B, we rewrite this as

Dℓ[O] =
1

2

N∑
k=1

(
Γℓ(∆

ℓ
N)
[
j†(k)ℓ ,O

]
j(k)ℓ Γℓ(∆

ℓ
N)+Γℓ(∆

ℓ
N)j

†(k)
ℓ

[
O, j(k)ℓ

]
Γℓ(∆

ℓ
N)
)

(A.3)

+
1

2

N∑
k=1

([
Γℓ(∆

ℓ
N),O

]
j†(k)ℓ j(k)ℓ Γℓ(∆

ℓ
N)+Γℓ(∆

ℓ
N)j

†(k)
ℓ j(k)ℓ

[
O,Γℓ(∆

ℓ
N)
])

.

Let us start considering the first term on the right-hand side, which we call D1. Due to the locality of O, we
can truncate the sum to kmin and kmax which define the support of O. That is,

D1 =
1

2

kmax∑
k=kmin

(
Γℓ(∆

ℓ
N)
[
j†(k)ℓ ,O

]
j(k)ℓ Γℓ(∆

ℓ
N)+Γℓ(∆

ℓ
N)j

†(k)
ℓ

[
O, j(k)ℓ

]
Γℓ(∆

ℓ
N)
)
.

Now, we define the following operators

Õ1 =
1

2

kmax∑
k=kmin

[
j†(k)ℓ ,O

]
j(k)ℓ , Õ2 =

1

2

kmax∑
k=kmin

j†(k)ℓ

[
O, j(k)ℓ

]
which are local, have the same support ofO, and are such that ‖Õ1/2‖⩽ NO‖O‖‖jℓ‖2. Through such operators
we write

D1 = Γℓ(∆
ℓ
N)Õ1Γℓ(∆

ℓ
N)+Γℓ(∆

ℓ
N)Õ2Γℓ(∆

ℓ
N)

= Γ2
ℓ(∆

ℓ
N)
(
Õ1 + Õ2

)
+Γℓ(∆

ℓ
N)
([
Õ1,Γℓ(∆

ℓ
N)
]
+
[
Õ2,Γℓ(∆

ℓ
N)
])

. (A.4)

Now, it is important to note that Õ1 + Õ2 =DLoc
ℓ [O] and thus that

D1 = Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [O] +Γℓ(∆
ℓ
N)
([
Õ1,Γℓ(∆

ℓ
N)
]
+
[
Õ2,Γℓ(∆

ℓ
N)
])

.

The first term on the right-hand side, which we callD11 is already the termwhich we expect the quantityDℓ[O]
to converge to. We thus have to show that the rest, i.e. the second term in D1 and the second term on the right
hand side of the equation (A.3), is vanishingly small in the large N limit. For what concerns the second term
in equation (A.4), which we call D12, using relation i) in lemma 1, we find

‖D12‖=
∥∥Γℓ(∆

ℓ
N)
([
Õ1,Γℓ(∆

ℓ
N)
]
+
[
Õ2,Γℓ(∆

ℓ
N)
])∥∥⩽ 4γ(δℓ)

N2
O

N
δℓγ

′(δℓ)‖O‖‖jℓ‖2 .
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We are thus left with the second term in equation (A.3). This is given by

D2 =
1

2

N∑
k=1

([
Γℓ(∆

ℓ
N),O

]
j†(k)ℓ j(k)ℓ Γℓ(∆

ℓ
N)−Γℓ(∆

ℓ
N)j

†(k)
ℓ j(k)ℓ

[
Γℓ(∆

ℓ
N),O

])
=

1

2

N∑
k=1

[
Γℓ(∆

ℓ
N),O

][
j†(k)ℓ j(k)ℓ ,Γℓ(∆

ℓ
N)
]

(A.5)

+
1

2

N∑
k=1

([
Γℓ(∆

ℓ
N),O

]
Γℓ(∆

ℓ
N)j

†(k)
ℓ j(k)ℓ −Γℓ(∆

ℓ
N)j

†(k)
ℓ j(k)ℓ

[
Γℓ(∆

ℓ
N),O

])
.

Looking at the above equation, we split D2 into two parts. We have

D21 =
1

2

N∑
k=1

[
Γℓ(∆

ℓ
N),O

][
j†(k)ℓ j(k)ℓ ,Γℓ(∆

ℓ
N)
]
,

D22 =
1

2

N∑
k=1

[[
Γℓ(∆

ℓ
N),O

]
,Γℓ(∆

ℓ
N)j

†(k)
ℓ j(k)ℓ

]
. (A.6)

Using lemma 1, we have that

‖D21‖⩽
N∑

k=1

2NO

N2
‖O‖δ2ℓ [γ′(δℓ)]

2‖jℓ‖2 ⩽
2NO

N
‖O‖δ2ℓ [γ′(δℓ)]

2‖jℓ‖2 .

Next we focus on D22. We can write it as

D22 =
1

2

N∑
k=1

[[
Γℓ(∆

ℓ
N),O

]
,Γℓ(∆

ℓ
N)
]
j†(k)ℓ j(k)ℓ +

1

2

N∑
k=1

Γℓ(∆
ℓ
N)
[[
Γℓ(∆

ℓ
N),O

]
, j†(k)ℓ j(k)ℓ

]
.

Due to lemma 1, the first term above, which we call D221, is bounded by

‖D221‖=

∥∥∥∥∥12
N∑

k=1

[[
Γℓ(∆

ℓ
N),O

]
,Γℓ(∆

ℓ
N)
]
j†(k)ℓ j(k)ℓ

∥∥∥∥∥⩽ 2N2
O

N
‖O‖δ2ℓ [γ′(δℓ)]

2‖jℓ‖2 .

For the second term of D22, which we call D222, we use that (see proof of lemma 1)

[
Γℓ(∆

ℓ
N),O

]
=

∞∑
n=0

cnℓ

n−1∑
i=0

(∆ℓ
N)

iOℓ(∆ℓ
N)

n−1−i ,

with

Oℓ =
[
∆ℓ

N,O
]
=

1

N

kmax∑
k=kmin

 d2∑
α=1

rℓαv
(k)
α

 .

Because of this, we have that

[[
Γℓ(∆

ℓ
N),O

]
, j†(k)ℓ j(k)ℓ

]
=

∞∑
n=0

cnℓ

n−1∑
i=0

[
(∆ℓ

N)
iOℓ(∆ℓ

N)
n−1−i, j†(k)ℓ j(k)ℓ

]
,

and thus

D222 =
1

2

N∑
k=1

Γℓ(∆
ℓ
N)

∞∑
n=0

n−1∑
i=0

cnℓ

([
(∆ℓ

N)
i, j†(k)ℓ j(k)ℓ

]
Oℓ(∆ℓ

N)
n−1−i

)
+

1

2

N∑
k=1

Γℓ(∆
ℓ
N)

∞∑
n=0

n−1∑
i=0

cnℓ

(
(∆ℓ

N)
i
[
Oℓ, j†(k)ℓ j(k)ℓ

]
(∆ℓ

N)
n−1−i

)
(A.7)

+
1

2

N∑
k=1

Γℓ(∆
ℓ
N)

∞∑
n=0

n−1∑
i=0

cnℓ

(
(∆ℓ

N)
iOℓ
[
(∆ℓ

N)
n−1−i, j†(k)ℓ j(k)ℓ

])
.
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We note that

‖[(∆ℓ
N)

n, j†(k)ℓ j(k)ℓ ]‖⩽ 2

N
nδnℓ‖jℓ‖2 ,

and that

‖[Oℓ, j†(k)ℓ j(k)ℓ ]‖⩽ 4NO

N
δℓ‖O‖‖jℓ‖2 , if k ∈ [kmin,kmax] ,

or ‖[Oℓ, j†(k)ℓ j(k)ℓ ]‖= 0 otherwise.
Diving into three terms, D ′

222,D
′ ′
222,D

′ ′
222

′, the three terms appearing in equation (A.7), through the above
bounds we find

‖D ′
222‖⩽

Nγ(δℓ)

2

∞∑
n=0

n−1∑
i=0

|cnℓ|
2

N
iδn−1

ℓ ‖jℓ‖2
2NO

N
‖O‖δℓ

⩽ 2NOγ(δℓ)

N
‖jℓ‖2‖O‖δ2ℓ

∞∑
n=0

|cnℓ|n2δn−2
ℓ

=
2NOγ(δℓ)

N
‖jℓ‖2‖O‖δ2ℓγ ′ ′(δℓ) , (A.8)

as well as

‖D ′ ′
222‖⩽

NOγ(δℓ)

2

∞∑
n=0

|cnℓ|δn−1
ℓ (n− 1)

4NO

N
δℓ‖O‖‖jℓ‖2

⩽ 2N2
Oγ(δℓ)

N
‖jℓ‖2δℓ‖O‖γ ′(δℓ) , (A.9)

and

‖D ′ ′ ′
222‖⩽

2NOγ(δℓ)

N
‖jℓ‖2δ2ℓ‖O‖γ ′ ′(δℓ) , (A.10)

just like for D ′
222.

With all of these bounds, we can now prove the first part of the Lemma. We have

Dℓ[O] = D11 +D12 +D21 +D221 +D′
222 +D′′

222 +D′′′
222 ,

from which we find

‖Dℓ[O]−D11‖⩽
CO

N
,

where CO is an N-independent constant obtained by combining all of the above bounds, and reads

CO = 2NO‖O‖‖jℓ‖2
{
δℓγ

′(δℓ)[δℓγ
′(δℓ)(1+NO)+ 3NOγ(δℓ)]+ 2γ(δℓ)δ

2
ℓγ

′′(δℓ)
}
.

Now, considering that

Dℓ[XN] =
1

N

N∑
k=1

Dℓ[x
(k)] ,

we find ∥∥∥∥∥ 1N
N∑

k=1

(
Dℓ[x

(k)]−DLoc
ℓ [x(k)]

)∥∥∥∥∥⩽ ∥∥∥Dℓ[x
(k)]−DLoc

ℓ [x(k)]
∥∥∥⩽ Cx(k)

N
,

where Cx(k) is an N-independent constant reading

Cx(k) = 2‖x‖‖jℓ‖2
{
[2δℓγ

′(δℓ)+ 3γ(δℓ)]δℓγ
′(δℓ)+ 2γ(δℓ)δ

2
ℓγ

′′(δℓ)
}
.

26



New J. Phys. 25 (2023) 083010 E Fiorelli et al

Proof of lemma 3
Lemma 3. Given the generator LN specified by equations (9)–(12), with functions Γℓ(∆

ℓ
N) obeying assumption

1, we have that

‖LN[m
N
α]− fα(m⃗

N)‖⩽ CL

N
,

where

fα(m⃗
N) = i

d2∑
β=1

Aαβm
N
β + i

d2∑
β,γ=1

Bαβγm
N
βm

N
γ +

q∑
ℓ=1

d2∑
β=1

Mβ
ℓαΓ

2
ℓ(∆

ℓ
N)m

N
β

Aαβ =
∑
β′

ϵβ′aββ′α Bαβγ =
∑
β′

aγβ′α(hββ′ + hβ′β);

M is a real matrix, such that the action ofDLoc
ℓ [·] on an element of the single-site operator basis v(k)α reads

DLoc
ℓ [v(k)α ] =

d2∑
β=1

Mβ
ℓαv

(k)
β ,

and CL is an N independent constant.

Proof. The proof of this lemma simply requires the calculation of the action of the Lindblad generator onmN
α,

LN[m
N
α] = i[H,mN

α] +

q∑
ℓ=1

Dℓ[m
N
α] .

The single-particle Hamiltonian contribution reads

L1 = i
∑
β ′

ϵβ ′

∑
k

[v(k)β ′ ,mN
α] = i

∑
β ′

ϵβ ′

∑
k

[v(k)β ′ ,
1

N

∑
k ′

v(k
′)

α ]

= i
∑
β ′,β

ϵβ ′aββ ′α

1

N

∑
k

v(k)β (A.11)

= i
∑
β ′,β

ϵβ ′aββ ′αm
N
β = i

d2∑
β=1

Aαβm
N
β .

The contribution of the all-to-all, two-particle interaction gives instead

L2 =
1

N

∑
k,l

∑
β,β′

hββ′ [v(k)β v(l)β′ ,
1

N

∑
i

v(i)α ]

=
∑
γ

∑
β,β′

hββ′(aγβ′αm
N
βm

N
γ + aγβαm

N
γm

N
β′)

=
∑
γ,β

Bαβγm
N
βm

N
γ +

∑
γ

∑
β,β′

hβ′βa
γ
β′α[m

N
γ ,m

N
β ].

We can see that the last term in the second line, that we will denote as L22, has a vanishing norm in the ther-

modynamic limit. Indeed, it is [mN
γ ,m

N
β ] =

1
N 2

∑
k[v

(k)
γ ,v(k)β ] = 1

N

∑
η a

η
γβm

N
η , so that

‖L22‖⩽
1

N
d8hmaxa

2
max , (A.12)

where hmax =maxβ,β ′hβ,β ′ , and amax =maxα,β,γa
γ
αβ . As for the dissipative term, that we denote as

L3 =
∑q

ℓ=1Dℓ[mN
α], from lemma 2 it is

‖L3 −
q∑

ℓ=1

Γ2
ℓ(∆

ℓ
N)DLoc

ℓ [mN
α]‖⩽ q

Cv

N
,
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where Cv =max∀ℓ
{
2‖jℓ‖2[2δℓγ ′(δℓ)+ 3γ(δℓ)]δℓγ ′(δℓ)+ 2γ(δℓ)δ2ℓγ

′ ′(δℓ)
}
. By considering the three contri-

bution L1,2,3, it is

‖L1 + L2 + L3 − fα(m⃗
N)‖⩽ 1

N
(d8hmaxa

2
max + qCv) , (A.13)

from which we find CL = d8hmaxa2max + qCv.

Proof of lemma 4
Lemma 4. The system of equation (21) with initial conditions mα(0), defined by a quantum state ω as in
equation (22), has a unique solution for t ∈ [0,∞). Moreover, one has

|mα(t)|⩽ ‖vα‖⩽ 1 , ∀t .

Proof. We write the system of differential equations appearing in equation (21) in a vector form as

d

dt
m⃗= f⃗(m⃗) ,

where m⃗= (m1,m2, . . .md2) and f⃗(m⃗) = ( f1(m⃗), f2(m⃗), . . . fd2(m⃗)). The initial condition for the above differ-
ential equations is given by m⃗(0) which is obtained as the limit

mα(0) = lim
N→∞

ω(mN
α) .

The fact that the initial condition is obtained from a well-defined quantum state ω means that we have
|mα(0)|⩽ 1 for all α= 1,2, . . .d2.

The functions fα(m⃗) are made by polynomial terms and by the functions Γα which are continuous and
differentiable by assumption. As such, we have that f⃗ is continuous and differentiable in the whole Rd2 , i.e.
f⃗ ∈ C1(Rd2). By the fundamental existence and uniqueness theorem, we can thus conclude that the system of
differential equations has a unique solution m⃗(t) in the (right) maximal interval of existence t ∈ [0,T), for
T> 0.

In order to show that for the above system of equations, T=∞, we need to demonstrate that m⃗(t) is
contained in a compact set K⊂ Rd2 . Indeed, whenever m⃗(t) belongs to a compact set (i.e. whenever this is
bounded), one can conclude that T=+∞. This is the contraposition of the statement that, whenever T<∞,
there must exist a time t ∈ (0,T) such that the solution of the differential equation m⃗ /∈ K with K any compact
set in Rd2 (see, e.g. theorem 3 in chapter 2 of [65]). In few words, we need to show that all the mα(t) remain
bounded.

To this end, we will compare the time evolution of the variablemα with the time evolution of the average
of the operators vα that can be obtained through an effective dynamics. Let us thus consider the auxiliary
dynamical generator (see also theorem 2 in the main text)

L̃t [·] = i
[
H̃, ·
]
+
∑
ℓ

Γ2
ℓ(∆

ℓ(t))DLoc
ℓ [·] , (A.14)

where DLoc
ℓ is the dissipator introduced in equation (16),∆ℓ(t) is the linear combination of mean-field vari-

ables

∆ℓ(t) =
∑
β

rℓβmβ(t) ,

and

H̃=
N∑

k=1

d2∑
α=1

ϵαv
(k)
α +

N∑
k=1

d2∑
α,β=1

hαβ
(
mα(t)v

(k)
β +mβ(t)v

(k)
α

)
.

Since the functionsmα(t) are well-defined in the interval [0,T), the above generator is also well-defined in such
interval. The above generator acts on the different single-particles separately and implements a permutation
invariant dynamics. We now calculate the Heisenberg equations of motion for the single-particle observables

v(k)α at a given site k. We find that

d

dt
v(k)µ =

d2∑
ν=1

Gµνv
(k)
ν ,
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where we have

Gµν = i
d2∑

α=1

ϵαa
ν
αµ + i

d2∑
α,β=1

(hαβmαa
ν
βµ + hαβmβa

ν
αµ)+

q∑
ℓ=1

Γ2
ℓ(∆ℓ)M

ν
ℓµ .

In the above equations, we have dropped the time dependence from all operators and mean-field variables for
compactness. Taking the expectation value of the operators vµ with a translation-invariant quantum state ω,
we find the following system of differential equations

d

dt
ω(vµ) =

d2∑
ν=1

Gµνω(vν) ,

and we pick the initial state to be such that ω(vµ)(0) =mµ(0). Inspecting the structure of the functions f µ, it
is possible to see that the mean-field equations can actually be recast as

d

dt
mµ =

d2∑
µ,ν=1

Gµνmν .

We thus introduce the functions yµ = ω(vµ)−mµ, for which we find the following system of differential
equations

d

dt
yµ =

d2∑
µ,ν=1

Gµνyν .

This is a system of first-order linear differential equations with time-dependent coefficients and thus, since
yµ(0) = 0 ∀µ by construction, we have that y(t)≡ 0. This allows us to conclude thatmµ(t) = ω(vµ)(t). Then,
we note that ω(vµ)(t) = ω(vµ(t)) and since the operator dynamics vµ(t) is implemented by a time-dependent
contractive map we have that ‖vµ(t)‖⩽ ‖vµ‖= 1, which in turns implies

|mµ(t)|= |ω(vµ)(t)|⩽ 1 .

Proof of lemma 5
Lemma 5. The convergence of the squared operator-valued rates to the same rates computed in their mean-field
scalar function is dominated by the convergence of the mean-field operator to the mean-field scalar functions,
namely we have that

|ω
(
A†etLN

[
(Γ2

ℓ(∆
ℓ
N)−Γ2

ℓ(∆ℓ(t)))X
]
B
)
|

⩽ C‖X‖
d2∑

α=1

|rℓα|
√
ω(A†etLN [(mN

α −mα(t))2]A)
√
ω(B†B) ,

where C= 2γ(δℓ)γ ′(δℓ).

Proof. Let us start considering the difference inside the action of the generator. We have that

Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t)) = [Γℓ(∆
ℓ
N)−Γℓ(∆ℓ(t))][Γℓ(∆

ℓ
N)+Γℓ(∆ℓ(t))] .

Exploiting the power series decomposition of the function Γℓ, we can rewrite

Γℓ(∆
ℓ
N)−Γℓ(∆ℓ(t)) =

∞∑
n=0

cnℓ
[
(∆ℓ

N)
n −∆n

ℓ(t)
]

= (∆ℓ
N −∆ℓ(t))

∞∑
n=0

cnℓ

n−1∑
j=0

(∆ℓ
N)

n−j−1∆
j
ℓ(t) .

Expanding for the definition of∆ℓ
N, and∆ℓ(t), we finally have

Γℓ(∆
ℓ
N)−Γℓ(∆ℓ(t)) =

∑
α

rℓα(m
N
α −mα(t))

∞∑
n=0

cnℓ

n−1∑
j=0

(∆ℓ
N)

n−j−1∆
j
ℓ(t) .
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Combining everything, we find

Γ2
ℓ(∆

ℓ
N)−Γ2

ℓ(∆ℓ(t)) =
∑
α

rℓα(m
N
α −mα(t))Qℓ ,

where

Qℓ = [Γℓ(∆
ℓ
N)+Γℓ(∆ℓ(t))]

∞∑
n=0

cnℓ

n−1∑
j=0

(∆ℓ
N)

n−j−1∆
j
ℓ(t) .

We can thus write

I=ω
(
A†etLN

[
(Γ2

ℓ(∆
ℓ
N)−Γ2

ℓ(∆ℓ(t)))X
]
B
)

=
∑
α

rℓαω
(
A†etLN

[
(mN

α −mα(t))QℓX
]
B
)
,

and using the generalized Cauchy-Schwarz inequality in lemma 6, and taking the norm bound for ‖X‖ and
‖Qℓ‖ we find

|I|⩽ ‖X‖‖Qℓ‖
∑
α

|rℓα|
√
ω (A†etLN [(mN

α −mα(t))2]A)
√

ω(B†B) .

Finally, we note that

‖Qℓ‖⩽ 2γ(δℓ)γ
′(δℓ) ,

where

γ′(δℓ) =
∞∑
n=0

n|cnℓ|δn−1
ℓ .

Note that we use δℓ here since both ‖∆ℓ
N‖ and, because of lemma 4, also |∆ℓ(t)| are smaller than or equal to

δℓ. Clearly, both γ(δℓ) and γ ′(δℓ) are finite.

Lemma 6
Lemma 6. Given any completely positive and unital map Λ[·] on the quasi-local algebraA and a state ω, we
have that

|ω
(
A†Λ[C†D]B

)
|⩽
√

ω(A†Λ[C†C]A)
√
ω (B†Λ[D†D]B)

Proof. The proof of the above lemma (see also the proof in [28]) exploits the Stinespring dilation theorem.
This states that, given any completely positive map, there exists a unitary operator U acting on an enlarged
algebraA⊗B and a state τ acting only on the algebra B such that

Λ[C] = τ
(
U†C⊗ 1U

)
. (A.15)

Considering this, we can write

ω
(
A†Λ[C†D]B

)
= ω⊗ τ

(
A† ⊗ 1[U†(C† ⊗ 1)(D⊗ 1)U]B⊗ 1

)
,

and, using the Cauchy-Schwarz inequality, we have

|ω
(
A†Λ[C†D]B

)
|⩽
√
ω⊗ τ (A† ⊗ 1[U†(C†C⊗ 1)U]A⊗ 1)

×
√
ω⊗ τ (B† ⊗ 1[U†(D†D⊗ 1)U]B⊗ 1). (A.16)

Finally, recalling the relation in equation (A.15) we can go back to the map Λ to obtain

|ω
(
A†Λ[C†D]B

)
|⩽
√

ω (A†Λ[C†C]A)
√
ω (B†Λ[D†D]B) ,

which concludes the proof.
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