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Abstract: The Photovoltaic (PV) system is an eco-friendly renewable energy system that is integrated
with a DC-DC buck-boost converter to generate electrical energy as per the variations in solar
irradiance and outdoor temperature. This article proposes a novel Adaptive Fractional Order PID
(A-FOPID) compensator with self-adjusting fractional orders to extract maximum power from a
stand-alone PV system as ambient conditions change. The reference voltage is generated using a
feed-forward neural network. The conventional FOPID compensator, which operates on the output
voltage error of the interleaved buck-boost converter, is employed as the baseline maximum-power-
point-tracking (MPPT) controller. The baseline controller is retrofitted with an online state-error-
driven adaptation law that dynamically modifies the fractional orders of the controller’s integral
and differential operators. The adaptation law is formulated as a nonlinear hyperbolic scaling
function of the system’s state error and error-derivative variables. This augmentation supplements
the controller’s adaptability, enabling it to manipulate flexibly the tightness of the applied control
effort as the operating conditions change. The efficacy of the proposed control law is analyzed by
carrying out customized simulations in the MATLAB Simulink environment. The simulation results
show that the proposed MPPT control scheme yields a mean improvement of 25.4% in tracking
accuracy and 11.3% in transient response speed under varying environmental conditions.

Keywords: photovoltaic system; buck-boost converter; maximum power extraction; fractional order
PID control; self-adjusting orders; online adaptation law

1. Introduction

With the rapid advancement in science and technology, the global demand for electrical
energy is continuously increasing [1]. Presently, the majority of electrical energy demand is
fulfilled by the consumption of fossil fuels [2]. However, the fossil fuel reserves are limited
and will eventually run out. Apart from their exhaustive nature, the utilization of fossil
fuels adversely affects the environment by increasing pollution and causing greenhouse
effects, which lead to global warming. The aforementioned limitations associated with fossil
fuels necessitate the utilization of renewable energy resources as a safe and clean alternative
to contribute to global energy production and eventually replace non-renewable sources [3].
Solar Photovoltaic (PV) energy systems are widely preferred over other renewable energy
systems owing to their environment-friendly nature, reasonable conversion efficiency,
ease of commissioning, minimal maintenance expenses, zero fuel consumption, and silent
operation [4]. PV systems are generally used in either standalone or grid-connected
configurations. Standalone PV systems supply electricity to customers who are either far
from the power grid or have low energy requirements [5]. Grid-connected systems generate
energy to fulfill their local requirements and feed the excess to the main electrical grid [6].
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The output of PV systems depends on the prevailing atmospheric conditions, such as
ambient temperature and solar irradiance [7,8]. The changes in these parameters due to the
climatic conditions as well as the sun’s movement throughout the day greatly affect the
output energy of PV systems. Extracting the maximum amount of available energy from
the installed PV system is indeed a challenging problem for scientists and researchers [9].
A well-postulated maximum power point tracking (MPPT) control system enhances the
conversion efficiency of the PV system by as much as 98% [10]. Extensive work has been
conducted to devise reliable MPPT control schemes.

1.1. Literature Review

Extensive work has been conducted and correspondingly, several reliable MPPT con-
troller variants have been proposed in the open scientific literature [11,12]. Conventionally,
the perturb-and-observe technique and the incremental conductance technique have been
used to generate reference trajectories in MPPT applications owing to their computational
simplicity [13,14]. However, these techniques lack the ability to effectively compensate
for the abrupt variations in solar irradiance and steady-state oscillations. Hence, the Feed-
forward Neural Network (FNN) and other similar soft computing techniques have gained
a lot of popularity recently owing to their design flexibility [9]. The Proportional-Integral-
Derivative (PID) controllers and their variants are widely preferred due to their reliable
control yield and simple structure [15]. However, their limited degrees of freedom prevent
them from effectively addressing the exogenous disturbances caused by changes in envi-
ronmental conditions. The sliding mode controllers yield a robust control effort to extract
the maximum available power while rejecting the impact of exogenous disturbances [16].
However, the switching phenomenon generates highly discontinuous control activity,
which inevitably introduces chattering and harmonic distortion in the output response.
Fuzzy inference systems and artificial neural networks tend to increase the flexibility of the
controller design by using an elaborate set of heuristically defined qualitative rules and
large training data sets, respectively [10,17]. The inaccuracies in the expert’s knowledge
affect the empirical definition of the fuzzy rule base, which inevitably degrades the control
behavior. Furthermore, these techniques also put an excessive computational burden on
the embedded processor. Adaptive neuro-fuzzy control techniques have been successfully
used to implement reliable MPPT control systems [18]. The nonlinear backstepping control
approaches also exhibit robust MPPT control behavior in PV systems [19]. However, despite
its agility, the scheme exhibits oscillations in the system’s output response. The optimal
state-space and state-feedback controllers lack robustness against the model variations and
parametric uncertainties caused by the rapidly changing atmospheric conditions [20].

The fractional order controllers have the innate ability to control the physical systems
that exhibit chaotic and nonlinear characteristics [21]. These controllers are synthesized
by integrating the control law with fractional calculus, which enables them to effectively
address the emergent behavior and unmodeled intrinsic nonlinearities associated with the
system being controlled [22]. The Fractional Order PID (FOPID) controllers are formulated
by replacing the PID controller’s integer-order differential and integral operators with
fractional order counterparts [23]. The introduction of the fractional order operators adds
two new parameters to the PID control law, which increase the controller’s degrees of
freedom and design flexibility, thus allowing it to better compensate for bounded distur-
bances [24]. The FOPID controllers have been extensively used to regulate the time-domain
performance of power electronic energy conversion systems [25]. The FOPID control law
has yielded promising results in maximum power point tracking applications [26]. How-
ever, the assignment of fixed fractional orders to the integral and differential operators
tends to limit the adaptability of the MPPT control law against exogenous disturbances
and environmental indeterminacies [27].



Energies 2023, 16, 5039 3 of 20

1.2. Proposed Methodology

The novel contribution of this article is the formulation of an online Adaptive FOPID
(A-FOPID) compensator with self-adjusting fractional orders to extract maximum power
from a stand-alone PV system as environmental conditions change. A pre-calibrated
conventional FOPID compensator, which operates on the output voltage error of the
interleaved buck-boost converter, is employed as the baseline maximum-power-point-
tracking (MPPT) controller. The baseline controller is retrofitted with an online state-error-
driven adaptation law that adaptively modulates the fractional orders of the controller’s
integral and differential operators. The main contributions of this article are outlined
as follows:

(1) Generating the reference voltage (Vre f ) trajectory using a pre-calibrated FNN model.
(2) Formulating a well-postulated online adaptation law using the nonlinear Hyperbolic

Secant Function (HSF) of the system’s state error and the error derivative variables.
The waveform of the HSF is configured using well-established state-error-dependent
meta-rules.

(3) Augmenting the FOPID controller with the adaptation law that dynamically self-
adjusts the fractional orders of the integral and differential operators to realize the
A-FOPID controller that accurately tracks the Vre f trajectory.

(4) Verifying the proposed controller’s efficacy by carrying out customized simulations in
the MATLAB/Simulink (R2022b) environment that analyze the controller’s behavior
under the influence of step changes in the irradiance levels and ambient tempera-
ture conditions.

The proposed scheme supplements the controller’s adaptability, enabling it to ma-
nipulate flexibly the tightness of the applied control effort as the voltage error conditions
change. This feature is especially beneficial in MPPT applications because it equips the
control law to adapt itself in real-time as per the changes in ambient temperature and
solar irradiance levels that lead to fluctuations in the MPP. The simulation results also
validate that the proposed AFOPID-based MPPT control law exhibits relatively stronger
damping against oscillations and a faster transient response speed against rapidly changing
environmental conditions as compared to the conventional FOPID controller. The proposed
control procedure is novel and has not been attempted previously for MPPT applications
in the scientific literature, as per the author’s knowledge.

The remaining paper is organized as follows. The PV energy system and its constituent
blocks are discussed in Section 2. The proposed A-FOPID control law is formulated in
Section 3. The parameter optimization scheme is described in Section 4. The simulation
results and discussions are presented in Section 5. The article concludes in Section 6.

2. System Description

This section presents a description of the constituent blocks used to construct the
MPPT scheme for a stand-alone PV system. The ambient temperature and solar irradi-
ance are continuously measured via dedicated temperature sensors and radiation sensors,
respectively. The measurement data is fed to the FNN block. The FNN block generates
the desired reference voltage for extracting maximum power at the given atmospheric
conditions. A closed-loop feedback control system is tasked with tracking the reference
trajectory delivered by the FNN block. A voltage sensor is commissioned to measure the
variation in the voltage across the load impedance. The control system processes the error
between the measured and reference voltage levels to adjust the duty cycle of the transistor
switches in the buck-boost converter. The hardware schematic diagram of the MPPT system
is illustrated in Figure 1.
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Figure 1. MPPT system’s hardware schematic diagram.

2.1. Photovoltaic System Model

A PV array is fabricated via series and parallel combinations of solar cells. The PV
solar cell is a p-n junction semiconductor. Hence, it can be modeled by considering the
single-diode model, which is the most commonly adopted technique to model a solar cell.
The equivalent circuit model of a PV solar cell is shown in Figure 2 [17]. The solar cell’s
output current Ipv is expressed as shown below [28].

Ipv = Np Iph − ID − Ish (1)

where Np is the number of solar cells connected in parallel, Iph is the photo-current, which
depends upon the ambient conditions (temperature, irradiance), ID is the current flowing
through the diode, and Ish is the current flowing through the shunt resistance Rsh. The
formulation of Iph is expressed below [17].

Iph =
S

Sre f

[
Isc + Ki

(
T − Tre f

)]
(2)

where S is the solar irradiance at current condition, Isc is the cell’s short circuit current at
reference temperature (Tre f ) and reference irradiance (Sre f ), Ki is the short circuit current
temperature coefficient, and T is the cell’s temperature. The diode current ID is expressed
as shown below [17].

ID = IrsNp

[
exp

(
q
(
Vpv + IpvRser

)
nKNsT

)
− 1

]
(3)

where Irs is the reverse saturation current of the diode, Ns is the number of solar cells
connected in series, q is the electron charge, Vpv is the output voltage of the solar cell, Rser
is the series resistance, n is the diode ideality facto, and K is the Boltzmann’s constant. The
expression of Irs is shown below [17].

Irs = Irn

(
T

Tre f

)3

exp

[
E

nK

(
1
T
− 1

Tre f

)]
(4)

where Irn is the nominal reverse saturation current and E is the band-gap energy of the PV
cell’s semiconductor. The formulation of Ish is expressed below [17].

Ish =
Vpv + IpvRser

Rsh
(5)
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where Rsh is the shunt resistance. The values of model parameters used for conducting the
simulations in MATLAB/SIMULINK are identified in Table 1 [9,17].
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Table 1. Model parameters of the PV module [9,17].

Parameter Value Units

Tre f 298 K
Sre f 1000 w/m2

Isc 17.56 A
Ki 0.00479 A/◦C
q 1.6× 10−9 C
n 1.8 -
K 1.38× 10−23 J/K
E 1.12 eV

Rser 179.94 Ω
Rsh 3.17 Ω
Ns 72 -
Np 1 -

Open circuit voltage 165.8 V
Maximum power 1555 W
Voltage at MPP 102.6 V
Current at MPP 15.16 A

2.2. Buck-Boost Converter Model

The DC-DC buck-boost converter is a power electronic circuit that is used to regulate
the PV system’s output voltage at a desired level [29]. It continually steps up (or steps down)
the output voltage level to extract the maximum power point from the PV system [30]. To
achieve the MPPT operation, the buck-boost converter minimizes the error between the
output voltage (Vo) and reference voltage (Vre f ) by appropriately modifying the duty cycle
(d) applied to the primary switching transistor(s) of the converter circuit. The duty cycle is
expressed as shown below.

d =
ton

ton + to f f
(6)

where ton and to f f represent the on-time and the off-time of the switching cycle. The duty
cycle is adjusted online by employing a closed-loop negative feedback control scheme (as
discussed in Section 2.3). The circuit schematic of the interleaved boost converter is shown
in Figure 3 [9]. The Insulated Gate Bipolar Transistors (IGBT) switches S1 and S2 serve
to chop down the input voltage Vpv into rectangular pulses. The diodes D1 and D2 are
considered ideal. Apart from acting as charge pumps, the capacitors C1 and C2 are used to
remove ripples from the input voltage and output voltage waveforms, respectively. The
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converter is operated in continuous conduction mode and has two switching configurations,
namely, switch-on configuration and switch-off configuration.
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During the switch-on configuration, the IGBT switches S1 and S2 are turned on. This
operation puts the diodes in reverse-biased mode, which disconnects the capacitor C2
and the load RL from the rest of the circuit. The current Ipv supplied by the PV module
continues to charge the inductor L, whereas the capacitor C2 discharges itself to supply
continuous current to the load. The corresponding state-space representation for the
switch-on configuration is represented as follows [9].

.
Vpv.
IL.

VC2

 =

0 − 1
C1

0
1
L 0 0
0 0 − 1

RLC2


Vpv

IL
VC2

+


Ipv
C1
0
0

 (7)

During the switch-off configuration, the IGBT switches S1 and S2 are turned off. This
operation puts the diodes in forward-biased mode while disconnecting the capacitor C1
and the input supply Vpv from the rest of the circuit. Consequently, the charged inductor L
uses the forward-biased diodes to continue supplying current to the load while charging
the capacitor C2 as well. The corresponding state-space representation for the switch-off
configuration is represented as follows [9]:

.
Vpv.
IL.

VC2

 =

0 0 0
0 0 − 1

L
0 1

C1
− 1

RLC2

Vpv
IL

VC2

+


Ipv
C1
0
0

 (8)

The relationship between Vo, Vpv, and d is expressed as shown below [29].

Vo =

(
d

1− d

)
Vpv (9)

The averaged state-space model of the buck-boost converter for both switching modes
is shown below [9].

.
Vpv.
IL.

VC2

 =

0 − d
C1

0
d
L 0 − 1

L (1− d)
0 1

C1
(1− d) − 1

RLC2


Vpv

IL
VC2

+


Ipv
C1
0
0

 (10)

In Section 2.4, the baseline FOPID control law is synthesized for dynamically adjusting
the value of d to track the reference trajectory (See Section 2.3), and thus, extract maximum
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power from the PV system. The model parameters of the buck-boost converter used in the
MATLAB simulations are identified in Table 2.

Table 2. Model parameters of the buck-boost converter circuit [9].

Parameter Value Units

C1 1.0 mF
C2 48.0 mF
L 1.5 mH

RL 50 Ω

2.3. Reference Voltage Generation

The reference voltage Vre f to be tracked by the closed-loop feedback controller for
extracting maximum power from the PV system described in Sections 2.1 and 2.2 as the
temperature and irradiance levels change is generated by using a two-layer FNN [31]. The
FNN for Vre f generation is trained per PV installation separately due to their different
parameter settings. The temperature and irradiance variables act as inputs to the FNN
block depicted in Figure 4 [17]. The data set of the input variables used to train the FNN
model is acquired by changing the temperature input between 2 ◦C and 75 ◦C intervals
with a step increment of 2.0 ◦C, whereas the irradiance levels are varied between 600 and
1000 W/m2 with a step increment of 1.0 W/m2 [9]. The acquired data set is used to evaluate
the inputs (or activations) aj of the next layer by using the following rule [31].

aj =
k

∑
i=1

(
Vji pi

)
+ bjo (11)

where pi is the input of node i, Vji is the scalar weight, bjo is the reconstruction error (or
bias), k = 2 is the total number of input variables, and j = 1, 2, 3, . . . , lo is the number
of neurons existing in the hidden layer. In this work, 10 neurons are used in the hidden
layer [31]. The activation of each layer is computed by using a Hyperbolic Tangent Function
(HTF) that depends on aj. The HTF is employed because it is odd-symmetric, smooth, and
bounded between −1 and 1. The output of the activation function at each hidden layer is
expressed as shown below.

yi = f
(
aj
)

(12)

Energies 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

layer node, 𝑏  is the bias. By substituting the expression of 𝑦  in (13), the expression of 𝑉  is modified as shown below. 

𝑉 = 𝑤 𝑓 𝑉 𝑝 + 𝑏 + 𝑏  (14)

The expression above can be rewritten in vector form, as shown below [9]. 𝑉 = 𝑊 𝑓(𝑉 �̂� + 𝑏 ) + 𝑏  (15)

where 𝑊   and 𝑉   represent the weights between the layers in their respective vector 
form. The final expression used to compute 𝑉  is simplified as expressed in (16), [9]. 𝑉 = 𝑊  tanh(𝑉  �̂� + 𝑏 ) + 𝑏  (16)

where tanh(. ) represents the HTF. For a given temperature and irradiance level, the char-
acteristic curve of the PV module delivers a maximum voltage level. 

 
Figure 4. FNN block for reference voltage generation [17]. 

This voltage level is targeted as the desired 𝑉  by the FNN model during the train-
ing phase. The network is trained by minimizing the following cost function that com-
putes the Mean Squared Error (MSE) between the target and actual network outputs [17]. 

𝐽 𝑉 , 𝑤 = 12 (𝑡 − 𝑧)  (17)

where 𝑡 is the target output and 𝑧 is the actual output observed at the output node. The 
Levenberg-Marquardt algorithm is used to dynamically modify the weights after every 
iteration in the FNN model during the training phase [9,17]. The three-dimensional 𝑉  
trajectory for various values of irradiance and temperature levels generated by the FNN 
is depicted in Figure 5. The MSE is used to ascertain the training progress of the FNN. The 
global minimum value of the MSE (1.0836 × 10−6) occurs at 1000 epochs (See [9]). The re-
gression graph and the estimation error histograms associated with 𝑉 , as illustrated in 
[9], also validate that the data generated by FNN closely resembles the target data. 

Figure 4. FNN block for reference voltage generation [17].

The variable yi is used in the computation of the activation of the next layer. The
total activation of the output layer delivers the updated value of Vre f . The net activation is
evaluated as expressed in (13).

Vre f =
lo

∑
j=1

(
wjyi

)
+ bko (13)



Energies 2023, 16, 5039 8 of 20

where yi serves as the input from the hidden layer upon which the HTF activation is
applied, wj represents the scalar weight between the jth hidden layer node and the output
layer node, bko is the bias. By substituting the expression of yi in (13), the expression of Vre f
is modified as shown below.

Vre f =
lo

∑
j=1

(
wj f

(
n

∑
i=1

(
Vji pi

)
+ bjo

))
+ bko (14)

The expression above can be rewritten in vector form, as shown below [9].

Vre f = WT f̂
(

VT p̂ + bv

)
+ bw (15)

where WT and VT represent the weights between the layers in their respective vector form.
The final expression used to compute Vre f is simplified as expressed in (16), [9].

Vre f = WTtanh
(

VT p̂ + bv

)
+ bw (16)

where tanh(.) represents the HTF. For a given temperature and irradiance level, the charac-
teristic curve of the PV module delivers a maximum voltage level.

This voltage level is targeted as the desired Vre f by the FNN model during the training
phase. The network is trained by minimizing the following cost function that computes the
Mean Squared Error (MSE) between the target and actual network outputs [17].

J
(

Vji, wj

)
=

1
2

lo

∑
i=1

(t− z)2 (17)

where t is the target output and z is the actual output observed at the output node. The
Levenberg-Marquardt algorithm is used to dynamically modify the weights after every
iteration in the FNN model during the training phase [9,17]. The three-dimensional Vre f
trajectory for various values of irradiance and temperature levels generated by the FNN is
depicted in Figure 5. The MSE is used to ascertain the training progress of the FNN. The
global minimum value of the MSE (1.0836 × 10−6) occurs at 1000 epochs (See [9]). The
regression graph and the estimation error histograms associated with Vre f , as illustrated
in [9], also validate that the data generated by FNN closely resembles the target data.
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2.4. Fractional Order PID Control Law

The Vre f generated by the FNN block is tracked by a closed-loop FOPID controller
to extract the maximum from the PV system under every atmospheric condition. The
FOPID control procedure is devised by augmenting an integer-order PID controller with
fractional order operators. The integer-order PID control law is formulated as the linear
combination of the system’s classical error, integral of error, and derivative of error [15].
The proportional control factor minimizes the instantaneous error, the integral control
factor minimizes the steady-state oscillations while tracking the reference trajectory, and
the derivative control factor increases the system’s transient recovery response speed. The
integer-order PID voltage regulator is formulated as shown below [15].

d(t) = kpe(t) + ki

t∫
0

e(τ)dτ + kd
.
e(t) (18)

where e(t) = Vre f −Vo(t). e(t) represents the error between the reference and the actual
voltage levels at the converter’s output, kp is the proportional gain, ki is the integral gain,
and kd is the differential gain. The value of d(t) is normalized between 0 and 1 to ensure
that the duty cycle applied to the IGBT switches is bounded between 0 and 100% under
every operating condition.

To enhance the controller’s design flexibility and disturbance rejection ability, the
integer-order PID control law is transformed into the FOPID control law simply by as-
signing pre-configured fractional orders (powers) to the integral and differential operators
of the original control law [23]. The proposed augmentation introduces two additional
parameters in the control law, which increase its degrees of freedom to effectively reject
the exogenous perturbations caused by environmental uncertainties [25,26]. The frac-
tional order operators are symbolically represented as Qλ; where, λ represents the value
of the fractional order. The fractional operators are mathematically represented by the
following well-known definitions offered by Riemann-Liouville, Gruunwald-Letnikov, and
Caputo [32].

Qλ f (t) =
1

Γ(n− λ)

dm

dtm

∫ t

a

f (τ)

(t− τ)λ−m+1 dτ (19)

where Γ(x) is the Euler gamma function, m is an integer such that m− 1 < λ < m.

Qλ f (t) = lim
h→0

1
hi

(t−a)/h

∑
i=0

(−1)i
(
λ

i

)
f (t− ih) (20)

where
(
λ

i

)
= Γ(λ+ 1)/Γ(i + 1)Γ(λ− i + 1), and h is the step size.

Qλ f (t) =
1

Γ(λ−m)

∫ t

a

f m(τ)

(t− τ)λ−m+1 dτ (21)

The FOPID controller is thus formulated by replacing the integer-order integral and
differential operators with their fractional order counterparts, as shown below [23,24].

d(t) = kpe(t) + ki
(
Q−αe(t)

)
+ kd(Qγe(t)) (22)

where α and γ are the fractional orders assigned to the integral and differential operators,
respectively. The values of these two fractional orders are bounded between 0 and 1.
The integer order differential operator is replaced with Qγe(t) and integer order integral
operator is replaced with Q−αe(t). Together with the existing PID gains, the fractional
control law is now equipped with five distinct parameters (kp, ki, kd, α, and γ) that increase
the controller’s degrees of freedom to effectively manipulate the applied control effort and
minimize the state deviations. The block diagram of the FOPID control system is depicted
in Figure 6. The transfer function of the FOPID control law is expressed as shown below.
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C(s) =
D(s)
E(s)

= kp +
ki
sα

+ kdsγ (23)

where, s represents the Laplace operator. Owing to their fractional nature, the computa-
tional implementation of the terms sγ and sα is quite difficult. However, in this research
work, the aforementioned fractional order terms are approximated via the Oustaloup re-
cursive filters [21]. The Oustaloup approximation technique used to realize the fractional
terms is shown below [22].

sλ =
P

∏
i=1

1 +
(

s
vz,i

)
1 +

(
s

vp,i

) (24)

such that, vz,i = vL

(
vH
vL

) 2i−1−λ
2M , vp,i = vL

(
vH
vL

) 2i−1+λ
2M . P is the filter’s order, and vL and

vH represent the filter’s lower and upper translational frequencies, respectively. In this
research, a 5th-order Oustaloup’s filter is utilized with vL = 10−3 rad/s and vH = 102

rad/s to approximate the said fractional terms. The stability and robustness of the designed
FOPID controller are analyzed as per the basic definitions of the gain margin and phase
margin in the frequency domain. The feedback control system is required to satisfy the
following conditions to ensure its stability [33].
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• The open loop system’s phase at the gain cross-over frequency ωo must satisfy:
arg(C(jωo)G(jωo)) = ϕm − π, where ϕm is the phase margin and G(.) is the sys-
tem’s overall transfer function that is derived using (10).

• The open loop system’s gain at ωo must satisfy: |C(jωo)G(jωo)| = 0 dB.
• To uphold robustness against loop-gain changes, the phase must satisfy:

d
dω [arg(C(jω)G(jω))]|ω=ωo = 0.

• To reject high-frequency noise ω ≥ vh, the closed-loop transfer function Q must satisfy:∣∣∣Q(jvh) =
C(jvh)G(jvh)

1+C(jvh)G(jvh)

∣∣∣ < H dB.

• To reject low-frequency noise ω ≤ vl , the sensitivity function S must satisfy:∣∣∣S(jvl) =
1

1+C(jvl)G(jvl)

∣∣∣ ≤ M dB.

In this research, the following specifications are considered; ϕm = 0.785 rad., ωc = 0.5,
H = −10, and M = −20. These settings are decided as per the expert’s experience. The
aforementioned specifications are satisfied while computing the five parameters of the
FOPID controller to preserve its asymptotic stability. The FOPID controller parameters are
tuned via the optimization technique discussed in Section 4.

3. Proposed Adaptive FOPID Control Scheme

The fixed values of FOPID controller parameters incapacitate the control law to ro-
bustly compensate for parametric uncertainties and environmental perturbations. Selecting
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an optimal set of kp, ki, kd, α, and γ that yields robust control effort under every operat-
ing condition is quite difficult. Due to its inherent design limitations, the fixed values of
fractional orders render the FOPID control procedure wasteful by contributing insufficient
control resources under transient disturbances and superfluous control resources under
steady-state conditions, especially for the PV system that encounters abrupt state variations.

For a given error condition, an appropriate setting of α and γ can transform the
proposed FOPID control law into an integer order P, PI, PD, or PID controller, as shown in
Table 3 [26]. Each of the aforementioned integer-order controller subclasses is beneficial
for effectively addressing a specific phase of the system’s state response. For example, the
applied integral control effort should be mild, while the derivative control effort should be
enhanced during the transient disturbances and initial start-up to dampen the overshoots
and ensure faster transient recovery. Conversely, the applied integral control effort should
be stiffer while the derivative control effort should be softer as the response converges to
steady state to ensure smooth settlement with minimal fluctuations. The aforementioned
arrangement can be realized by adaptively modulating the values of α and γ via an online
state-error-driven adaptation scheme that allows for a smooth commutation of the fractional
orders between 0 and 1 [26].

Table 3. Generalization of the FOPID controller.

α γ Controller

0 0 P
0 1 PD
1 0 PI
1 1 PID

This scheme obviates the necessity of individually pre-calibrating the values of α
and γ offline. The proposed adaptation strategy used is formulated as per the following
state-error-dependent meta-rules.

During the transient phase, the response becomes farther from the reference voltage.
In this situation, the value of α is reduced while γ is enlarged to strengthen the derivative
control action and increase the transient response speed.

As the response converges to the reference, the value of α is progressively increased
while γ is reduced to strengthen the integral control action, effectively damping the over-
shoots (and oscillations) while gently settling the response at the reference.

The aforementioned rationale aids in significantly minimizing the trajectory tracking
errors by adaptively manipulating the controller’s response speed during transient condi-
tions as well as its damping control effort as the response settles. The proposed adaptation
scheme is practically realized by using a pre-calibrated HSF that depends on the weighted
sum of the error e(t) and its derivative

.
e(t).

The HSF is chosen because its waveform is smooth, which ensures a smooth transition
of the parameters, it can be bounded between 0 and 1, and it is even symmetric [34]. All
of these characteristics comply with the aforementioned meta-rules. The time-varying
functions used to online self-adapt the fractional orders α and γ are formulated in (25).

α(t) = sech(z(t)), γ(t) = 1− α(t) (25)

Such that z(t) = β e(t) + δ
.
e(t). sech(.) represents the HSF, and β and δ are precon-

figured positive constants that determine the variation rate of the HSF. The values of β
and δ are optimized by using the tuning procedure suggested in Section 4. Together, these
two parameters configure the shape and form of the HSFs. The weighted sum of e(t)
and

.
e(t) delivers the compounded error variable z(t) that accurately informs the systems

regarding the phase of the state response. Thus, when the response is farther from the
desired reference, the aforesaid compounded-error variable automatically enlarges, as
shown in Figure 7, to inflate γ and reduce α by using the adaptation functions given in
(25). Similarly, when the response converges to the desired reference, the magnitude of
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the compounded error reduces, as shown in Figure 7, to reduce γ and increase α. This
arrangement fully complies with the aforementioned rules. With the augmentation of the
self-adjusting fractional orders, the resulting Adaptive-FOPID (A-FOPID) control law is
expressed in (26).

d(t) = kpe(t) + ki

(
Q−α(t)e(t)

)
+ kd

(
Qγ(t)e(t)

)
(26)
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The values of kp, ki, and kd for the A-FOPID control law are re-calibrated by using
the tuning procedure discussed in Section 4. The functions α(t) and γ(t) can be easily
programmed in the simulation software. These algebraic equations can be solved in a
single step after every sampling instant, and thus, do not put any recursive computational
burden on the digital computer. The stability criteria prescribed in Section 2.4 are sufficient
to uphold the stability of the A-FOPID control law as well. The A-FOPID control block
diagram is depicted in Figure 8.
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4. Parameter Tuning Procedure

As mentioned earlier, selecting an optimal set of kp, ki, kd, α, and γ that yields optimal
control effort under every operating condition is quite difficult. The manual selection
of the controller parameters is limited by the expert’s knowledge and, thus, may yield
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inaccurate settings. Hence, in this work, the following objective function is used to tune the
controller parameters.

J =
∫ T

0

(
|e(τ)|2 + |d(τ)|2

)
dτ (27)

The flow chart of the parameter tuning algorithm is illustrated in Figure 9. The param-
eters are tuned after repeating the simulations. The offline selection process is initiated by
picking a random set of controller parameters (PID gains and fractional/complex orders)
from the pre-defined search space (See Table 3). In every simulation trial, the controller
parameters are heuristically updated, and the closed-loop system is allowed to regulate the
output voltage at 400 V DC from an initial state of 0 V for 1 min. The corresponding cost
Jn for that trial is evaluated; where, n is the trial number. The range space is searched in
the direction of the steepest gradient descent of J [35]. If the cost of the present trial (Jn) is
found to be less than the cost of the previous trial (Jn−1), the local minimum-cost variable
Jmin is modified. This arrangement ensures that the exploration continues to progress in the
direction of the objective function’s negative gradient, thus ensuring its minimization. The
exploration for the optimum parameter values is concluded if either Jmin acquires a prede-
fined threshold cost or the algorithm has completed the maximum number of trials (nmax)
allowed. Based on the designer’s experience, the threshold value for Jmin is predetermined
at 1 × 105 and nmax is preset at 30 in this work. Finally, the obtained parameter values are
refined by manually fine-tuning them to satisfy the stability specifications prescribed in
Section 2.4. The tuned parameter values are shown in Table 4.
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Table 4. Optimized controller parameters.

Parameters Selection Range Initial Value
Optimized Values

FOPID A-FOPID

kp [0, 0.1] 1 × 10−2 0.432 0.427
ki [0, 0.1] 1 × 10−2 0.106 0.112
kd [0, 0.1] 1 × 10−2 0.028 0.034
α [0, 1] 0.1 0.84 -
γ [0, 1] 0.1 0.66 -
β [0, 1] 0.01 - 0.095
δ [0, 1] 0.01 - 0.028

5. Simulation Results and Discussions

This section presents the details of the customized simulations and the comprehensive
analysis of the obtained results.

5.1. Simulation Setup

The MPPT performance of the FOPID and A-FOPID control laws under the influence
of step changes in solar irradiance levels and temperature conditions are assessed via cus-
tomized simulations that are performed using MATLAB/Simulink (R2022b) software [36].
The software is operated on a personal computer that is equipped with a Core i7, 64-bit,
2.1 GHz CPU, and 8.0 GB of RAM.

The fractional integral and differential operators are realized via the built-in functions
provided by MATLAB’s FOMCON toolbox. The sampling frequency of the simulation
is set at 1.0 kHz. The model parameters of the PV module and the buck-boost converter,
identified in Tables 1 and 2, respectively, are used to carry out the simulations. The control
input signal d(t) is restricted between 0 and 1 via a saturation function to safely operate
the IGBT switches of the buck-boost converter.

5.2. Simulations and Results

The effectiveness of the FOPID and A-FOPID controllers to accurately track the refer-
ence trajectory for extracting maximum power under every operating condition is analyzed
by introducing step changes in the irradiance levels and ambient temperature at regular
intervals. The impact of these environmental disturbances is analyzed via the two test cases
described below. A simulated white Gaussian noise signal is also injected in d(t) to emulate
the effects of measurement noise contributed by the output voltage sensor, radiation sensor,
and temperature sensor in the MPPT response.

A. Reference tracking under varying irradiance: This simulation examines the capability
of the FOPID and A-FOPID control laws to extract maximum power under varying
irradiance levels. In this test case, step changes are introduced in the irradiance levels
at regular intervals, as shown in Figure 10, while the temperature is kept constant at
25 ◦C (298 K). The designed controllers are tasked with tracking the Vre f trajectory
generated by the FNN scheme for the varying irradiance profiles. The resulting
reference voltage trajectory tracking behavior and MPPT profile of the PV array are
shown in Figures 11 and 12, respectively. The results show that the A-FOPID achieves
the MPP without any significant overshoots and with a faster response speed. It
also minimizes the steady-state fluctuations in the response. Whereas the FOPID
controller exhibits a relatively slower response speed with persistent oscillations
(and chattering) in the response. The results validate the superior robustness and
reference tracking accuracy of the A-FOPID controller.

B. Reference tracking under varying ambient temperatures: This simulation examines the
controller’s ability to extract maximum power under varying outdoor temperature
levels. The temperature levels are varied as shown in Figure 13, while the irradiance
is kept constant at 1000 W/m2. The controllers track the reference trajectory for the
varying temperature profiles. The reference voltage and the MPP tracking profiles
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are shown in Figures 14 and 15, respectively. The results show that the A-FOPID
controller achieves the MPP with better accuracy, a faster response speed, and
minimal oscillations. The FOPID controller exhibits a relatively slower response
speed with oscillations. The results validate the enhanced reference tracking behavior
of the A-FOPID controller.
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5.3. Analytical Discussions

The simulation results are quantitatively analyzed by utilizing the following critical
performance indicators.

• VRMSE: Root-mean-squared value of error, e(t).
• OS: Overshoot in Vo after the initial start-up.
• Tset: Time taken by the signal to settle at the desired voltage after initial start-up.
• PRMSE: Root-mean-squared value of the error in the output power levels of the PV array.

These performance indicators ascertain the time optimality and reference tracking
accuracy of each control procedure designed here. The simulation results are summa-
rized in Table 5. The simulation results verify the superior time optimality and reference
tracking accuracy of the A-FOPID controller as compared to the FOPID controllers. The
enhancement in the transient recovery behavior and minimization of the reference tracking
errors demonstrated by the A-FOPID controllers is attributed to the assignment of the
self-adjusting fractional orders to the integral and differential operators of the control law.
The error-phase-driven expert system significantly improves the self-reasoning capability
of the adaptation law and enables it to execute flexible online dynamic adjustment of
the fractional orders. This arrangement improves the adaptability of the control law and
strengthens its disturbance compensation capability.

Table 5. Optimized controller parameters.

Simulation
Performance Indicator Controller Performance

ImprovementMetric Unit FOPID A-FOPID

A

VRMSE V 35.05 27.28 22.2%
OS V 25.35 3.38 86.7%
Tset sec 0.014 0.012 14.3%

PRMSE kW 5.15 3.21 37.7%

B

VRMSE V 27.50 19.63 28.6%
OS V 30.61 4.88 84.0%
Tset sec 0.012 0.011 8.3%

PRMSE kW 1.77 0.92 48.0%

It is to be noted that this study does not investigate the impact of moss, sand, or
dust covering the PV array [37]. The proposed closed-loop scheme is also not particularly
designed to address the effects of partial shading conditions [38]. Instead of considering
different irradiance levels on the PV array caused by non-uniform shading, the FNN model
used in this work is limited to generating the Vre f based on a singular irradiance level that is
uniformly distributed across the entire PV array. This research work focuses on enhancing
the controller’s robustness against uniformly varying temperature and irradiance levels
while extracting maximum power from a given PV capacity.

6. Conclusions

The PV system is an efficient and pollution-free renewable energy system that can
fulfill the ever-increasing global energy demands. However, its output power vernation
is affected by the real-time variations in the solar irradiance and the outdoor temperature
conditions. Hence, MPPT controllers are adopted to extract maximum power from the
PV system under varying atmospheric conditions. The reference voltage trajectory is
generated by using the FNN scheme. This article systematically develops and validates
the effectiveness of a robust A-FOPID controller that tracks the reference trajectory. The
proposed control law is synthesized by augmenting the baseline FOPID controller with
self-adjusting fraction orders of the integral and differential operators by using an online
adaptation law. The adaptation law is formulated as nonlinear HSFs that depend on the
magnitudes of the voltage error and its derivative. The waveforms of the adaptation
functions are calibrated as per the state-error-driven meta-rules. The A-FOPID control
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law significantly improves the reference tracking accuracy and time optimality of the
MPPT scheme to continue extracting maximum power under rapidly varying atmospheric
conditions. These propositions are justified by conducting credible simulations in the
MATLAB Simulink environment. The simulation results show that the A-FOPID controller
yields a mean improvement of 25.4% in tracking accuracy and 11.3% in transient response
speed under varying environmental conditions. The proposed scheme is computationally
economical and can be easily realized using modern digital computers. Moreover, it is
highly scalable and can be extended to other alternative energy conversion systems as well.
In the future, the efficacy of the proposed A-FOPID control law can be investigated by
conducting hardware-in-loop experiments on a solar PV system. Intelligent expert systems
and soft computing techniques can be employed to further increase the robustness of the
online adaptation mechanism. The proposed A-FOPID control law can be modified and
applied to wind energy conversion systems as well to assess its scalability. The complex-
order PID control laws can also be investigated to improve the MPPT scheme for PV
systems. Finally, the FNN model can be appropriately modified and trained to generate the
global-best reference voltage when the PV system is subjected to different irradiance levels
(at different locations on the module) to address the effects of partial shading conditions as
well as the accumulation of moss, dust, or sand on the PV arrays.
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