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Abstract

We introduce a novel scheme for Bayesian in-
ference on permanental processes which models
the Poisson intensity as the square of a Gaussian
process. Combining generalized kernels and a
Fourier features-based representation of the Gaus-
sian process with a Laplace approximation to the
posterior, we achieve a fast and efficient infer-
ence that does not require numerical integration
over the input space, allows kernel design and
scales linearly with the number of events. Our
method builds and improves upon the state-of-the-
art Laplace Bayesian point process benchmark of
Walder and Bishop (2017), demonstrated on both
synthetic, real-world temporal and large spatial
data sets.

1 INTRODUCTION

The Poisson process is commonly used in a variety of real-
world point pattern applications including seismic activ-
ity (Gardner and Knopoff, 1974), epidemiology (Diggle,
2003; Banerjee et al., 2003), neuroscience (Cunningham,
Yu, Shenoy and Sahani, 2008) and crime incident locations
(Grubesic and Mack, 2008; Flaxman et al., 2019). A flexible
generalization, incorporating a stochastic Poisson intensity
(Cox, 1955) is achieved by placing a non-parametric Gaus-
sian process (GP) prior over the intensity function, resulting
in the popular Gaussian Cox process model.

Inference with the Gaussian Cox process model is challeng-
ing due to the doubly-intractable likelihood, requiring inte-
gration of an infinite-dimensional random function over the
input domain. Furthermore, a positive transformation must
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be applied to the GP prior to ensure the intensity function
remains non-negative. Different choices of transformation
function are found in the literature. A first classical approach
relies on the exponential transformation, resulting in the log
Gaussian Cox process proposed by Møller et al. (1998).
This model usually requires numerical approximation of the
integral by discretization over the input space (Møller et al.,
1998; Diggle et al., 2013), a computationally-intensive pro-
cedure which scales poorly with the dimensionality of the
input domain. A second approach uses a sigmoid trans-
formation and an input space augmentation via thinning,
to construct an exact Markov Chain Monte Carlo sampler
(Adams et al., 2009; Gunter et al., 2014), eliminating the
need for likelihood integration. In practice however, this
approach is computationally intractable for large problems.
Other works include the use of the relu (Ko and Seeger,
2016) and softplus (Seeger and Bouchard, 2012; Park et al.,
2014) as transformation functions. Finally, Lopez-lopera
et al. (2019) introduce a finite approximation where posi-
tiveness conditions is imposed directly on the GP.

Another approach exploits the so-called permanental pro-
cess, defining the Poisson process intensity in terms of the
square of a GP (McCullagh and Møller, 2006; Lloyd et al.,
2015). It enables analytical computation of the intensity inte-
gral when coupled with a variational inference scheme with
inducing points (similar to Titsias 2009) and has received
considerable recent attention (Lian et al., 2015; Flaxman
et al., 2017; John and Hensman, 2018).

Walder and Bishop (2017) propose a Laplace Bayesian point
process (LBPP) method, a fast alternative for the permanen-
tal process that relies on the Mercer decomposition of the
Gaussian process kernel and a Laplace approximation to the
intensity posterior. They show significant speed improve-
ment compared to variational Bayesian inference. Inference
based on the Laplace approximation has already been pro-
posed in the context of a Gaussian Cox process by Cunning-
ham, Shenoy and Sahani (2008), Illian et al. (2012), and
Flaxman et al. (2015).

However, the tractability properties of the permanental pro-
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cess used by Lloyd et al. (2015) and Walder and Bishop
(2017) only holds for certain standard types of kernels such
as the squared exponential kernel, which encodes restric-
tive assumptions about the form of the function we are
modelling. In general, the choice of kernel determines al-
most all the generalization properties of a Gaussian process
model and profoundly affects its performance on a given
task (Rasmussen and Williams, 2005). Approaches have
been proposed in recent years to achieve more expressible
kernels either by a composition of simple analytical forms
(Duvenaud et al., 2011, 2013) or more flexibly through a
spectral representation (Lázaro-Gredilla et al., 2010; Wilson
and Adams, 2013; Samo and Roberts, 2015a).

In this paper, we build on the LBPP approach of Walder and
Bishop (2017), introducing an alternative fast Laplace-based
inference exploiting spectral representation of kernels and
random Fourier features (RFFs). Our approach, the Sparse
Spectral Permanental Process (SSPP), retains the tractability
properties of the permanental process, whilst being able to
adapt to a broader range of stationary kernels. Furthermore,
our method works with generalized stationary spectral ker-
nels (Samo and Roberts, 2015a), to our knowledge, the
most general class of expressible spectral kernels, that can
approximate any stationary kernels to arbitrary precision.

Following John and Hensman (2018), we also include a
mean constant to mitigate the effect of nodal lines observed
for the permanental process, resulting from the non-injective
nature of the squared transformation. Our approach shows
systematic improvement in accuracy in synthetic and real-
world data sets.

2 PRELIMINARIES

2.1 Gaussian Cox Process

A Poisson process (see Daley and Vere-Jones, 2003) mod-
els a random sequence of points occurring on a contin-
uous domain X . Inference involves estimation of an in-
tensity function λ(x) : X 7→ R+, that can be inter-
preted heuristically as the instantaneous probability of oc-
currence of a point around a location x ∈ X , i.e. λ(x) :=
limµ(dx)→0+ E [N(dx)] /µ(dx), where dx is a small neigh-
borhood around x with measure µ(dx) and N(A) is the
random number of points within a sub-region A ⊂ X .

We focus our attention on Gaussian Cox process mod-
els, where λ is defined as λ(·) := l ◦ f(·), for a non-
negative transformation l : R 7→ R+ and a function
f ∼ GP(0, k(x,x′)), with k : X × X → R being
the positive-definite covariance function for f . Assuming
X = {xi}Ni=1 to be a realization of N observations in X ,
the sample likelihood is

p(X|f) = exp

(
−
∫
X
l(f(x)) dx

) N∏
i=1

l(f(xi)) (1)

and a latent posterior p(f |X) is

exp
(
−
∫
X l(f(x)) dx

)[∏N
i=1 l(f(xi))

]
p(f)∫

exp
(
−
∫
X l(f(x)) dx

)[∏N
i=1 l(f(xi))

]
p(f) df

(2)

where f represents the infinite-dimensional object corre-
sponding to f(x). Equations (2) is often described as
“doubly-intractable”. Inference for f requires evaluating
integral terms that cannot be calculated explicitly.

2.2 Permanental Process

The permanental process (McCullagh and Møller, 2006) is
obtained by defining the intensity in Equation (1) as the
square of a Gaussian process i.e. setting λ(·) = f(·)2. This
transformation is advantageous, in that the density of the
resulting permanental process is available analytically. To
express the density we make use of the spectral decomposi-
tion of the Gaussian process covariance function, which we
shortly review in this section.

2.2.1 Integral Expression via Mercer Theorem

The Gaussian process covariance function k has a Mercer
decomposition on (X , µ), if it can be written as

k(x,x′) =

∞∑
i=1

λiΦi(x)Φi(x
′) for x,x′ ∈ X (3)

where {λi}∞i=1 is a sequence of summable, non-negative,
non-increasing eigenvalues, and {Φi(·)}∞i=1 is a set of
mutually-orthogonal, unit-norm eigenfunctions with respect
to the inner product ⟨u, v⟩ =

∫
X u(x)v(x)dµ(x). Then in

a similar manner to McCullagh and Møller (2006), Flax-
man et al. (2017) and Walder and Bishop (2017), f(x) ∼
GP(0, k(x,x′)) can be reformulated as an equivalent linear
form

f(x) =

∞∑
i=0

wiΦi(x) (4)

where w = (w1, w2, . . .)
⊤ ∼ N (0,Λ) and Λ is a diagonal

covariance matrix with entries λi, i = 1, 2, .... Further, it
can be shown that Cov(f(x), f(x′)) = Φ(x)⊤ΛΦ(x′) =
k(x,x′), where Φ(·) is a vector with entries Φi(·), i =
1, 2, .... The integral of the intensity can then be expressed
as ∫

X
f(x)2 dµ(x) =

∞∑
i=0

∞∑
j=0

wiwj⟨Φi(x),Φj(x)⟩

=

∞∑
i=0

w2
i . (5)
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2.2.2 Approximate Bayesian Inference

In our case, to make the reformulation of the integral∫
S
f(x)2dx possible as in Equation (5), the kernel for f

requires an explicit Mercer representation with respect to X
and µ defined as the Lebesgue measure ; this is not avail-
able for most choices of kernel. In such cases, the Nyström
method can be used to approximate the eigenfunctions and
eigenvalues of Equation (3). Both Flaxman et al. (2017)
and Walder and Bishop (2017) adopt the Nyström approach
in the context of the Permanental Cox process with Gaus-
sian kernel. Walder and Bishop (2017) further propose a
Bayesian inference scheme based on a Laplace approxima-
tion for a non-GP likelihood. A more detailed review of the
Laplace approach together with a new result for the integral
in Equation (5) with the Nyström method is presented in
part A of the Appendix.

3 MODEL

Motivated in part by the shortcomings of the Nyström ap-
proach proposed by Walder and Bishop (2017), we now
present an alternative LBBP approach to inference for the
permanental process. In contrast to the Mercer approach,
it is based on a sparse spectral representation of a GP, ex-
ploiting random Fourier features (RFFs, Rahimi and Recht,
2007) for reduced-rank kernel expression. As a result, it pro-
vides a tractable expression for the integral of the intensity
over the input domain.

Our spectral approach works for any bounded, continuous
and shift-invariant kernel k(x,x′) := k(x− x′) that satis-
fies the condition of Bochner’s theorem (see Theorem 3.1)
and admits a finite dimensional feature space representation
or approximation. In contrast, the variational inference ap-
proach of Lloyd et al. (2015) and the LBPP with Nyström,
yield an analytical integral expression for a limited choice of
kernels, like the Gaussian kernel. Furthermore, we are able
to adapt our method to generalized stationary spectral ker-
nels (Samo and Roberts, 2015a) which generalize two other
classes of expressible spectral kernels, the sparse spectrum
kernels (Lázaro-Gredilla et al., 2010) and the mixture spec-
tral kernels (Wilson and Adams, 2013). These two kernels
have been proven to be able to approximate any bounded
continuous stationary kernels to arbitrary precision.

We also address the issue of nodal lines discussed in John
and Hensman (2018). This problem arises since the in-
verse link function λ(·) := f(·)2 is not injective, with±f(·)
producing the same intensity. Therefore, regions of nega-
tive and positive f must exhibit zero-crossings, where the
intensity is artificially forced to zero, despite the underly-
ing intensity being positive. Following John and Hensman
(2018), we add an offset parameter β to the intensity func-
tion λ(·) := (f(·) + β)2 corresponding to an initial value
for the prior mean of the GP, to alleviate the problem.

3.1 Sparse Spectral Kernels

In this section, we briefly present two families of spectral
kernels, sparse spectrum kernels (Lázaro-Gredilla et al.,
2010) and mixture spectral kernels (Wilson and Adams,
2013) that have been proposed in recent years for kernel
design. They are both known to be dense in the family of
stationary kernels, implying that they can approximate any
stationary kernel to an arbitrary precision given sufficient
spectral components.

Spectral kernels are constructed via the Bochner’s theorem
(Bochner, 1932), which states that any bounded, continuous
and shift-invariant kernel k(x,x′) := k(τ ) with τ = x −
x′, is the inverse Fourier transform of a bounded positive
measure.

Theorem 3.1. (Bochner) An integrable function k : Rd →
C is the covariance function of a weakly stationary mean
square continuous random process on Rd if and only if it
can be represented as

k(τ ) =

∫
Rd

exp(iz⊤τ )dµ(z) (6)

where µ(z) is a positive definite measure.

Sparse spectrum kernels can be obtained by setting µ in
Equation (6) to be a positive discrete symmetric measure
µss =

∑K
k=1

ak

2 (δωk
+ δ−ωk

)1 where ak > 0 and δωk

denotes the Dirac measure centred at the point spectral fre-
quencies wk ∈ Rd for k = 1, · · · ,K. Note that as such,
µss is singular with respect to the Lebesgue measure and
does not admit a density. Through Equation (6), we obtained
the sparse spectrum kernel, spanned by the trigonometric
functions {cos(ω⊤

k x)}Kk=1. A major challenge is that a di-
rect optimization of the linear coefficients {ak}Kk=1 and the
frequencies {ωk}Kk=1 often leads to over-fitting as illustrated
by Lázaro-Gredilla et al. (2010) in the context of GP regres-
sion.

Wilson and Adams (2013) consider the case when µ is
absolutely continuous with respect to the Lebesgue measure
and admits a spectral density S(·). In that case, S(·) and the
kernel function k are Fourier duals of each other. Mixture
spectral kernels model the spectral density S as a mixture of
independent Gaussian densities with non-zero mean. Since
mixtures of Gaussians are dense in the set of all distribution
functions (Plataniotis and Hatzinakos, 2001), the resulting
dual of this set is dense in the family of continuous stationary
kernels.

Random Fourier Features Random Fourier features
(Rahimi and Recht, 2007) are closely related to sparse spec-
trum kernel. From Bochner’s theorem, a kernel function k

1Note that positive finite discrete measures are weakly dense
in the space of all positive finite measure (Hu and Papageorgiou,
2013).
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Figure 1: Illustration of the model, where the arrows direc-
tions suggest directions of influence.
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can be rewritten as

k(x− x′) ≈ σ2

r

r∑
k=1

exp(iz⊤k (x− x′)) (7)

where z1, . . . , zr in Rd are independent samples from the
distribution with density S(·), for some integer r > 0 and
σ > 0. Here, we have assumed that µ in Equation (6) is
absolutely continuous with respect to the Lebesgue mea-
sure and has a spectral density S(·). Equation (6) is then
approximated using Monte Carlo integration. We also treat
the scale parameter σ of the kernel function separately for
convenience.

We thus obtain a kernel approximation

k(x− x′) ≈ φ(r)(x)⊤φ(r)(x′) (8)

where φ(r) is an explicit feature mapping φ(r) : X → Rr

such that

φ(r)(x) =
σ√
r

[
exp(iz⊤1 x), . . . , exp(iz

⊤
r x)

]⊤
. (9)

We may obtain a 2r-sized real-valued mapping that satisfies
Equation (7) using

φ(r)(x) =
σ√
r
[ cos(z⊤1 x), . . . , cos(z

⊤
r x),

sin(z⊤1 x), . . . , sin(z
⊤
r x)]

⊤ (10)

where z ∼ S(z).

The derivation of Equation (10) is provided in part C of the
Appendix. Some common kernels and their corresponding
spectral densities S(·) are presented in part B of the Ap-
pendix. Inspecting Equation (10), we see RFF as a special
case of sparse spectrum kernel where the frequencies {ωk}
are sampled at random from some distribution rather than
optimised. However, RFF methods do not address the need
for flexibly learning the spectral measure µ from the data.

3.2 Generalized Stationary Kernels

One advantage of our method is that it can work with the
generalized stationary kernels (Samo and Roberts, 2015a),
that are dense in the family of stationary kernel and admits
sparse spectrum kernels and mixture spectral kernels as spe-
cial cases. Generalized kernels can also account for different

degree of differentiability of the latent function. Sparse spec-
trum kernels and mixture spectral kernels are more limited
in a sense that, when used as covariance functions, they
yield infinite differentiability of the corresponding stochas-
tic process, which might be unrealistic for certain learning
tasks (Stein, 1999).
Definition 3.2. (Generalized stationary kernel) Let g be
a stationary kernel g : Rd → R such that g(0) = 1. A
generalized kernel kGS with K ∈ N+ components takes the
form

kGS(τ ) =

K∑
k=1

σ2
k g(τ ⊙ γk) cos(ω

⊤
k τ ) (11)

where ωk ∈ Rd, γk ∈ R+d, σk > 0 for k = 1, · · · ,K and
⊙ denotes the element-wise Hadamard product.

The parameters {γk}Kk=1 are used as inverse input scales.
When {γk}Kk=1 are set to zero, we retrieve the sparse spec-
trum kernels. The spectral mixture kernels corresponds to a
special case where g(τ ) = exp(−||τ ||22/2)/

√
2π.

The degree of smoothness of a zero-mean GP with kernel
kGS is determined by the kernel g. Samo (2017) proposes
learning the differentiability of the underlying latent func-
tion, by setting g to be a Matérn kernel with different pa-
rameter values ν from 1

2 + i, i = 0, · · · 2. The case of i = 0
corresponds to continuity and the case of i > 0 to i times
differentiability.

Finite-dimensional Feature Space Approximation For
our methodology, we are interested in having a reduced rank
representation for kGS similar to Equation (10). Any con-
sistent RFF approximation of g in Equation (11) such that
g(x − x′) ≈ φ(r)

g (x)⊤φ
(r)
g (x′) where φ(r)

g is an explicit
feature mapping φg : X → Rr, would results in a finite-
dimensional feature space approximation for kGS (Samo,
2017). In that case,

kGS(x,x
′) ≈

K∑
k=1

hk(x)
⊤hk(x

′)

with

hk(x) = σk φ
(r)
g (x⊙ γk)⊗

[
cos(ω⊤

k x)
sin(ω⊤

k x)

]
(12)

for k = 1, . . . ,K, where ⊗ denotes the Kronecker product.

To be consistent with previous notations, we define
kGS(x,x

′) ≈ φ(r)(x)⊤φ(r)(x′) where φ(r)(x) is a fea-
ture mapping φ(r)(x) : X → R4rK satisfying

φ(r)(x) = [h1(x)
⊤, · · · , hK(x)⊤]⊤. (13)

3.3 Sparse Spectral Permanental Process (SSPP)

Using RFFs for the GP approximation leads to a so-called
sparse spectrum GP, first proposed by Lázaro-Gredilla et al.
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(2010) in the context of GP regression. Sparse spectrum GPs
are GPs defined with the kernel induced by the feature map
in Equations (10) or (13), k(r)(x,x′) = φ(r)(x)⊤φ(r)(x′).

The resulting approximate Gaussian process can be written
in terms of a new r-size latent vector

f (r)(x) ≈ w(r)⊤φ(r)(x) where w(r) ∼ N (0, Ir). (14)

We define a permanental process with the spectral approx-
imation of Equation (14), in which the intensity vector f
follows a similar linear form with feature vector given by
Equations (10) or (13). We refer to it as the Sparse Spectral
Permanental Process (SSPP) when using the feature map
(10) or Generalized Sparse Spectral Permanental Process
(GSSPP) when using the feature map (13).

In both cases, a tractable expression can be obtained
for the integral term in the likelihood, now defined as∫
X λ(x) dx :=

∫
X (f(x) + β)2 dx, as follows:

Proposition 3.3. (with proof in parts C and D of the Ap-
pendix) Under the GP approximation of Equation (14), the
integral expression

∫
X λ(x) dx can be expressed as∫

X
λ(x) dx = w(r)⊤M(r)w(r)

+ 2β w(r)⊤m(r) + β2|X | (15)

where M(r) is an r × r matrix with i, j entries defined as

M
(r)
i,j :=

∫
X 2

φ
(r)
i (x)φ

(r)
j (x) dx (16)

for i, j = 1, · · · , r and m(r) is a r-vector with entries

m
(r)
i :=

∫
X
φ

(r)
i (x) dx. (17)

for i = 1, · · · , r. Final expressions for M(r) and m(r) are
provided in the Appendix

The solution of Proposition 3.3 shares similarities with War-
ren et al. (2022) approach, who utilized Random Fourier
Features (RFF) in Bayesian Quadrature (BQ). However, our
result also covers the calculation of

∫
f2(x)dx and applies

to the feature map of a generalized kernel, with the feature
map of standard RFF being a specific instance.

4 INFERENCE

Adopting the sparse spectral GP, f (r) assumes the lin-
ear form of Equation (14) for weight vector w(r) with
independently-distributed standard Gaussian elements.
Moreover, the integral in Equation (15) reduces to a
quadratic form. We also define the model hyperparame-
ters Θ to be the parameters of the kernel function together

with the offset term β. More precisely, for SSPP, the hy-
perparameters consist of Θ := (σ, ℓ, β), while for GSSPP,
Θ := ({σk}Kk=1, {ωk}Kk=1, {γk}Kk=1, β).

The (non-log) likelihood function in Equation (1) therefore
becomes

log p(X|w(r),Θ) =

−w(r)⊤M(r)w(r) − 2β w(r)⊤m(r) − β2|X |

+

N∑
i=1

log(|w(r)⊤φ(r)(xi) + β|2). (18)

where M(r) and m(r) are the matrix and vector terms from
proposition 3.3. We can compute the log-likelihood func-
tion in O(r2N), i.e. linearly in N . The log of the joint-
distribution over w(r) and X is then

log p(w(r),X|Θ) = log p(X|w(r),Θ) + log p(w(r))

= log p(X|w(r),Θ)− 1

2
w(r)⊤w(r)

+ C (19)

for some constant C, where p(w(r)) = N (0, Ir) denotes
the prior distribution over w(r).

4.1 Laplace Approximation

The latent posterior p(w(r)|X,Θ) induced from Equation
(19) is approximated using Laplace’s method. A second or-
der Taylor expansion of log p(w(r)|X,Θ) around the maxi-
mum of the posterior, yields a Gaussian approximation

p(w(r)|X,Θ) ≈ N (w(r)|ŵ(r),Q)

:= q(w(r)|X,Θ) (20)

where ŵ(r) := argmaxw(r) p(w(r)|X,Θ) is the mode of
the latent posterior and Q is chosen to be the negative in-
verse Hessian of the true posterior at that point.

The gradient and the Hessian of the true posterior with
respect to w(r) are

∇w(r) log p(w(r)|X,Θ) = − (2M(r) + Ir)w
(r)

− 2β m(r) + 2

N∑
i=1

φ(r)(xi)

w(r)⊤φ(r)(xi) + β

∇2
w(r) log p(w

(r)|X,Θ) = − (2M(r) + Ir)

− 2

N∑
i=1

φ(r)(xi)φ
(r)(xi)

⊤

(w(r)⊤φ(r)(xi) + β)2
.

The mode ŵ(r) must satisfy the stationary constraint

∇w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) = 0,
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(a) λ1(x) (b) λ2(x) (c) λ3(x)

Figure 2: Mean predictive intensity of the three toy intensity functions λ1, λ2 and λ3 defined as in Adams et al. (2009).
Solid colored lines represent the predictive mean. The solid black lines shows the ground truth. The shaded areas are the
80% credible region of the SSPP model.

that implies

ŵ(r) =(
M(r) +

1

2
Ir

)−1
(

N∑
i=1

φ(r)(xi)

w(r)⊤φ(r)(xi) + β
− β m(r)

)
.

(21)

Equation (21) cannot be solved analytically. Instead, we
estimate ŵ(r) iteratively using Newton-Raphson method,
with step

w(r)new
= w(r)−(∇2

w(r) log p(w
(r)))−1∇w(r) log p(w(r)).

(22)
The precision matrix is Q−1 is then given by
−∇2

w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) .

4.2 Model Selection

We first derive a marginal likelihood approximation similar
to Walder and Bishop (2017, Section 4.1.6).

log p(X|Θ)

= log p(ŵ(r),X|Θ)− log p(ŵ(r)|X,Θ)

≈ log p(ŵ(r),X|Θ)− log q(ŵ(r)|X,Θ)

=− ŵ(r)⊤M(r)ŵ(r) − 2β ŵ(r)⊤m(r) − β2|X |

+

N∑
i=1

log(|ŵ(r)⊤φ(r)(xi) + β|2)

− 1

2
ŵ(r)⊤ŵ(r) +

1

2
log |Q|+ N

2
log(2π) (23)

since the quadratic term of log q(ŵ(r)|X,Θ) cancels out.

We tune the hyperparameters Θ by maximizing Equation
(23). The model selection is facilitated by the fact that the
gradient of the marginal likelihood in Equation (23) with
respect to Θ can be easily expressed. The terms M(r), m(r)

and φ(r)(·) are functions of the hyperparameters Θ. The
mode ŵ(r) is also a function of Θ.

The partial derivatives of the marginal likelihood with re-
spect to Θ is obtained using the chain rule,

∇Θi
log p(x|Θ) =

∂ log p(x|Θ)

∂Θi

∣∣∣
explicit

+

r∑
j=1

∂ log p(X|Θ)

∂ŵj

∂ŵj

∂Θi
. (24)

Expressions for the terms ∂ log p(X|Θ)
∂Θj

, ∂ log p(X|Θ)
∂ŵj

and
∂ŵ(r)

∂Θi
above are given in part F of the Appendix, requir-

ing a full mode search within each iterative hyperparam-
eters update. In the current work, we note that assuming
∂ŵ(r)

∂Θi
= 0 and alternating independent updates for the mode

in Equation (22) and the hyperparameters in Equation (24)
provides faster and yet acceptable results. The algorithms
are presented in part G of the Appendix.

5 PREDICTIVE DISTRIBUTION

To form predictive distributions, we assume that the latent
posterior is approximated by q(w(r)|X,Θ) as in Equation
(20).

5.1 Predictive Intensity Distribution

For some x∗ ∈ X , the predictive distribution of f(x∗) can
be deduced from Equations (14) and (20) to be

f(x∗)|X,Θ ∼ N (µ∗(x∗), σ∗(x∗)) (25)

where
µ∗(x∗) := ŵ(r)⊤φ(r)(x∗) (26)

and
σ∗(x) := φ(r)(x∗)⊤Qφ(r)(x∗). (27)

Given λ(·) = (f(·) + β)2 and Equation (25), we can also
derive the predictive distribution of the intensity function
i.e.

λ(x∗)|X,Θ ∼ Gamma(a∗, b∗) (28)
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with parameters a∗ and b∗ expressed in part E of the Ap-
pendix.

5.2 Predictive Expected Log-likelihood

For a training set X = {xi}Ni=1 and an held-out test set
X∗ = {x∗

i }N
∗

i=1, we can derive from Equation (1), an ap-
proximation for the expected predictive log-likelihood

E [log p(X∗|X)] ≈ Ew(r)

[
−
∫
X
(w(r)⊤φ(r)(x) + β)2dx

]
+

N∗∑
i=1

Ew(r)

[
log(w(r)⊤φ(r)(x∗

i ) + β)2)
]

where w(r) ∼ q(w(r)|X,Θ). The expectation over the inte-
gral term can be solved analytically. The sum-of-expectation
can be expressed using Pochhammer series, that we ap-
proximate in practise by interpolation of a look-up table
of precomputed values. This is very similar to Lloyd et al.
(2015, section 4.3). We provide more details in part E of the
Appendix.

6 EXPERIMENTS

We benchmark the SSPP scheme introduced in Sections
4 and 5 against a Nyström-based implementation of the
LBPP scheme of Walder and Bishop (2017), a frequen-
tist kernel smoothing approach with edge correction (KS)
(Diggle, 1985) and a variational inference scheme for point
processes proposed by Lloyd et al. (2015), referred to as
the Variational Bayesian Point Process (VBPP). We test the
algorithms on three 1D synthetic data sets and three real
data sets (one in 1D and two in 2D).

6.1 Benchmarks Settings

Our KS implementation uses standard kernel density esti-
mation with truncated normal kernels to account for domain
knowledge. The kernel bandwidth parameter is estimated
via grid search using the leave-one-out log average likeli-
hood objective of Lloyd et al. (2015). We used a publicly-
available implementation of VBPP (https://github.com/st–
/vbpp). We adopt fixed inducing points on a grid over |X |.
For consistency, we also used a constant offset β for both
LBPP and VBPP implementations.

6.2 Performance Metrics

The average test expected log-likelihood Ltest :=
E[log p(X∗|X)] is used as an evaluation metric. This is
generally difficult to compute for point process models,
but is available for SSPP and LBPP (see Section 5). For
the synthetic experiment we also consider the normalized
L2 norm to the known ground truth intensity function i.e.

Table 1: Performance of GSSPP, SSPP, KS, VBPP and
LBPP schemes on three samples of synthetic data. Values
in bold-face refer to best performance, which corresponds
to lower values of L2, but higher values of Ltest.

λ1(x) λ2(x) λ3(x)

L2 Ltest time(s) L2 Ltest time(s) L2 Ltest time(s)

GSSPP-SE 0.74 105.92 1.32 0.83 52.62 1.59 1.62 842.05 2.94
GSSPP-m12 0.71 104.23 1.88 0.86 48.58 1.42 1.98 838.17 2.54
GSSPP-m32 0.68 106.05 1.79 0.78 51.65 1.56 1.75 840.80 2.53
GSSPP-m52 0.69 106.12 1.71 0.84 52.77 1.59 1.68 841.77 2.32
SSPP 0.78 105.19 0.63 0.74 56.01 0.69 1.60 835.35 1.05

KS 1.10 102.49 0.09 0.89 58.07 0.08 3.22 834.68 0.19
VBPP 0.72 104.65 1.98 0.85 51.11 1.15 1.63 838.65 1.52
LBPP 0.81 103.29 0.06 0.96 51.76 0.07 1.87 833.31 0.13

L2 := 1
|X |
(∫

X E[(λ∗(x)− λtruth(x))
2] dx

) 1
2 where λ∗(x)

denotes the predictive intensity.

6.3 Synthetic Dataset

Three 1D simulated examples from Adams et al. (2009)
are considered. The corresponding intensities are defined
as λ1(x) = 2 exp(−x/15) + exp(−((x − 25)/10)2) on
the interval [0, 50] for approximately 47 events per sample,
λ2(x) = 5 sin(x2) + 6 on the interval [0, 5] for approxi-
mately 36 events per sample and λ3(x) is a piecewise linear
function shown in Figure 2 on the interval [0, 100] for ap-
proximately 225 events per sample.

These intensity functions have been considered previously in
the context of Gaussian Cox process by Samo and Roberts
(2015b), Donner and Opper (2018), John and Hensman
(2018) and Aglietti et al. (2019). We train the models on 10
independent samples generated from the ground truth, and
evaluate the performance of each using 50 test sets sampled
independently from the ground truth. We use the acronyms
GSSPP-SE and GSSPP-m(ν) to refer to the generalized
kernel variants of SSPP as in Equation (11) with g set to
be the Gaussian kernel and Matérn kernel with parameter ν
respectively.

We report optimal performance across models for sets of
spectral points or inducing points of size (denoted by p)
ranging from 15 to 100. Results are given in Table 1 and the
mean predictive intensities displayed in Figure 2. GSSPP
and SSPP outperform the other methods in terms of both
Ltest and L2 for λ1 and λ2. Compared to LBPP, GSSPP
and SSPP perform better consistently, but with slightly in-
crease execution times. In a similar manner to findings for
VBPP, GSSPP and SSPP fitting remains up to three orders
of magnitude faster than alternative MCMC-based methods
(Adams et al., 2009), see Lloyd et al. (2015) for comparison.
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(a) GSSPP-m12 (b) SSPP (c) VBPP (d) LBPP

Figure 3: Heat map of the predictive mean intensity for the Taxi data set scaled to a unit square. The black dots are the input
data points.

Figure 4: Predictive mean intensity for the coal mine acci-
dent, with highest 80% credible intervals.

6.4 Real Datasets

The classic coal mine accidents data set consists of the
dates of 191 coal-mining accidents with fatalities in Britain
between 15 March 1875 and 22 March 1962 (Jarrett, 1979).
For this data set, we evaluate predictive performance for the
competing inference schemes using 100 random partitions
of the sample into train and test subsets (X and X∗) of
approximately equal size. Figure 4 shows the predicted
mean intensity with credible intervals. Results are presented
in Table 2.

The bei data set is comprised of the locations of 3605 trees
in the tropical rainforest on Barro Colorado Island (Hubbell
and Foster, 1983). For these data, we evaluate predictive per-
formance using 100 random partitions of the original sample
into train and test subsamples of approximately equal size,
with p now ranging from 15 to 150. Table 2 presents the
results. Figure 6 in Appendix H, provides an illustration of
a single fit. Additionally, Figure 5 in Appendix H shows

the performances per number of spectral points or inducing
points.

As a third dataset, we consider the Porto taxi dataset
(Moreira-Matias et al., 2013) which contains 1.7 × 106

trajectories of taxi journeys in the years 2013-2014 in the
Portuguese city of Porto. We consider the pick-up loca-
tions as observations of a point process. As in Aglietti et al.
(2019), we restrict the analysis to 7000 events selected with
(latitude, longitude) pairs bounded by (41.147,−8.58) and
(41.18,−8.65). We select 1400 events at random as training
set and use the rest as testing set. We set p ranging from
15 to 200 Table 2 presents the results. Figure 3 illustrates
a single fit to the full data set for four models. Figure 5 in
Appendix H shows the performances per number of spectral
points or inducing points.

Table 2: Results on real-world data experiments with stan-
dard errors in brackets.

Coal data (1D) Bei data (2D) Taxi data (2D)

Ltest time(s) Ltest[×101] time(s) Ltest[×102] time(s)

GSSPP-SE 224.44 (±0.57) 1.56 763.49 (±3.81) 20.48 278.54 (±1.64) 23.91

GSSPP-m12 220.80 (±0.85) 1.84 760.82 (±4.31) 20.31 283.23 (±1.11) 23.86

GSSPP-m32 224.25 (±0.55) 1.58 764.73 (±2.60) 20.85 280.48 (±0.72) 19.60

GSSPP-m52 223.84 (±0.54) 1.25 763.82 (±1.00) 20.55 281.18 (±1.43) 23.94

SSPP 221.23 (±0.86) 0.64 751.50 (±2.55) 17.54 268.32 (±0.65) 12.13

KS 219.50 (±0.33) 0.11 735.78 (±1.49) 4.22 262.13 (±0.26) 2.55

VBPP 221.19 (±1.34) 1.75 757.95 (±3.14) 28.41 281.02 (±0.63) 20.45

LBPP 218.68 (±0.87) 0.16 711.72 (±1.35) 1.35 254.45 (±0.17) 1.04

For each of the real-data applications, GSSPP performs best.
The average fitting time using GSSPP is comparable to
that of VBPP. Figure 4 shows the effect of different choice
of GSSPP kernel function g. When choosing g to be a
Matérn kernel, with parameter ν, spectral points z are drawn
from a Student-t distribution with 2ν degree of freedom as
discussed in part C of the Appendix. Compared to GSSPP-
SE, these models tend to produce feature mappings with
larger coefficients for trigonometric components; hence the
resulting intensity appears less smooth.
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7 CONCLUSION

We introduce a novel Bayesian framework to infer the in-
tensity function of a permanental process. Our approach
uses a Laplace-based inference exploiting generalized ker-
nels and random Fourier features (RFFs). The approach
requires no discretization of the domain, allows kernel de-
signs, and provides better predictive accuracy than the al-
ternative Laplace-based approach of Walder and Bishop
(2017). The performance of our scheme also compares fa-
vorably with other standard methods on both real temporal
and large spatial data sets.
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A LBPP WITH NYSTRÖM METHOD

We provide a quick review of the LBPP model using Nyström method proposed by Walder and Bishop (2017). We also
provide in Proposition A.1, an expression for the integral term

∫
X f(x)2dx under Nyström approximation that is not directly

available in Walder and Bishop (2017).

A.1 Method Review

The Nyström method (see Rasmussen and Williams, 2005, Chap. 4.3, 8) provides a reduced-rank approximation for k from
n ≤ N data points X(n) = {x(n)

i }ni=1 sampled uniformly from the original data. The eigenvalues and eigenfunctions in
Equation (3) of the main text are approximated using the eigenvectors u(n)

i and eigenvalues λ(n)
i of Kn,n, the Gram matrix

with i, j entry k(x
(n)
i ,x

(n)
j ). Thus, f can be approximated by

f(x) ≈
n∑

i=1

λ̂
1
2
i w

(n)
i Φ̂i(x) (29)

where w(n) = (w
(n)
1 , . . . , w

(n)
n )⊤ ∼ N (0, In) and

λ̂i :=
N

n
λ
(n)
i (30)

Φ̂i(·) :=
√
n√
N

1

λ
(n)
i

k(·,X(n))u
(n)
i . (31)

Substituting Equations (30) and (31) into Equation (29) yields a linear Gaussian latent formulation of f as follows

f(x) ≈ k(x,X(n))

n∑
i=1

w
(n)
i√
λ
(n)
i

u
(n)
i

= k(x,X(n))U(n)Λ(n)−
1
2w(n)

:= w(n)⊤φ(n)(x)

(32)

and φ(n)(·) :=
[
k(·,X(n))U(n)Λ(n)−

1
2

]⊤
denotes the new features vector.

A.2 Integral Calculation

In Proposition A.1 we express the integral term
∫
X f(x)2dx under the Nyström approximation both because it is not

available in Walder and Bishop (2017) and to demonstrate the similarities with the corresponding derivation of our proposed
method in Proposition 3.3.

Proposition A.1. Under the GP approximation (32), the integral expression
∫
X f(x)2 dx can be written as∫

X
f(x)2 dx = w(n)⊤M(n)w(n)

where M(n) is a n× n matrix defined as

M(n) := Λ(n)−
1
2

[
U(n)⊤Ψ(n) U(n)

]
Λ(n)−

1
2

and Ψ(n) is a n× n matrix given in the proof below.

Proof. Let f be approximated by the Nyström-based approach defined in Equation (32) i.e. f(x) ≈ w(n)⊤φ(n)(x). The



Sparse Spectral Bayesian Permanental Process with Generalized Kernel

integral expression
∫
X λ(x)2 dx can be written as∫
X
f(x)2dx ≈

n∑
i=1

n∑
j=1

w
(n)
i w

(n)
j

∫
X
φ
(n)
i (x)φ

(n)
j (x) dx

=

n∑
i=1

n∑
j=1

w
(n)
i w

(n)
j√

λ
(n)
i λ

(n)
j

∫
X

(
k(x,X(n))u

(n)
i

)(
k(x,X(n))u

(n)
j

)
dx

=

n∑
i=1

n∑
j=1

w
(n)
i w

(n)
j√

λ
(n)
i λ

(n)
j

u
(n)
i

⊤
(∫

X
k(X(n),x)k(x,X(n)) dx

)
u
(n)
j

= w(n)⊤ Λ− 1
2

[
U(n)⊤Ψ(n) U(n)

]
Λ− 1

2︸ ︷︷ ︸
:=M(n)

w(n)

where Ψ(n) =
∫
X k(X(n),x)k(x,X(n)) dx is the integral statistic already defined in Lloyd et al. (2015) and John and

Hensman (2018). In particular, for the separable Gaussian kernel defined in Equation (35),

Ψi,j = σ4

∫
X

d∏
k=1

exp

(
−
(x

(n)
k,i − x

(n)
k,j )

2

4ℓk
2

)
exp

(
−
(xk − x̄

(n)
k,i,j)

2

ℓk
2

)
dx

= σ4
2∏

k=1

ℓk
√
π

d
exp

(
−
(x

(n)
k,i − x

(n)
k,j )

2

4ℓk
2

)
×

[
erf

(
x̄
(n)
k,i,j −Xmin

k

ℓk

)
− erf

(
x̄
(n)
k,i,j −Xmax

k

ℓk

)]

where σ and ℓ := (ℓ1, ℓ2) are respectively the scaling and length-scale parameters of the covariance function, x(n)
k,i is the kth

coordinate of the ith Nyström-sampled point x(n)
i and x̄

(n)
k,i,j := (x

(n)
k,i + x

(n)
k,j )/2.

Offset Term Adding an offset term β to the intensity i.e λ(·) = (f(·) + β)
2 yields∫

X
(f(x) + β)

2
dx =

∫
X
f(x)2dx+ 2β

∫
X
f(x)dx+ β2|X |

with ∫
X
f(x)dx ≈

(∫
X
k(x,X(n))dx

)
U(n)Λ− 1

2w(n) = ψ(n)⊤U(n)Λ(n)−
1
2w(n)

where ψ(n) :=
∫
X k(X(n),x)dx is a n-vector such that in the separable Gaussian kernel case above, we have

ψ
(n)
i = σ2

2∏
d=1

ℓd
√
π√
2
×

[
erf

(
x
(n)
d,i −Xmax

d

ℓd
√
2

)
− erf

(
x
(n)
d,i −Xmin

d

ℓd
√
2

)]
.

A.3 Inference with Laplace Approximation

For a fixed set of GP hyperparameters Θ (i.e. parameters of the covariance function), the intensity function is determined by
the latent n-vector w(n). Walder and Bishop (2017) use a Laplace approximation for a non-Gaussian posterior p(w(n)|X,Θ).
The latent posterior is approximated by p(w(n)|X,Θ) ≈ N (w(n)|ŵ(n),Q) where ŵ(n) is the mode of the posterior and Q
is chosen to be the inverse Hessian of the true posterior at ŵ(n).
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B COMMON KERNELS SPECTRAL DENSITIES

We present in Table (3) below some common stationary distance-dependent kernels mentionned in the main text and their
corresponding spectral densities S(·).

Table 3: Stationary distance-dependent kernels and their duals, where Γ(·) is the Gamma function and Kν(·) is a modified
Bessel function.

NAME KERNEL FUNCTION k(τ ) SPECTRAL DENSITY S(z)

Gaussian exp
(
− ||τ⊘ℓ||2

2

) ∏d
i=1 ℓi

(2π)d/2
exp

(
− ||z⊙ℓ||2

2

)
Matérn(ν) 21−ν

Γ(ν)

(√
2ντ
ℓ

)ν
Kν(

√
2ντ
ℓ ) Γ(ν+d/2)ℓd

Γ(ν)(2νπ)d/2

(
1 + ℓ

2ν ||z||
2
)−(ν+d/2)

C PROOF OF PROPOSITION (3.3) : Integral Expression via RFF

Let f be approximated by a RFF-based approach as defined in Equation (14) i.e. f (r)(x) ≈ w(r)⊤φ(r)(x) where the feature
map φ(r) follows Equation (9).

C.1 Real Valued Feature Mapping

We first detail the derivation of the real valued Fourier features described in Equation (10) of the main text. The imaginary
part of Equation (9) of the main text can be discarded as follows

k(x− x′) = σ2Ez

[
exp(−iz⊤(x− x′))

]
= σ2Ez

[
cos(z⊤(x− x′)) + i sin(z⊤(x− x′))

]
(33)

= σ2Ez

[
cos(z⊤(x− x′))

]
= σ2Ez

[
cos(z⊤x) cos(z⊤x′) + sin(z⊤x) sin(z⊤x′)

]
(34)

≈ σ2

r

r∑
i=1

cos(z⊤i x) cos(z
⊤
i x

′) + sin(z⊤i x) sin(z
⊤
i x

′)

=
σ2

r
φ(r)(x)⊤φ(r)(x′)

where z1, . . . , zr are independent samples with density S(z) and the explicit feature mapping φ(r)(·) is defined as

φ(r)(x) :=
σ√
r


cos(z⊤1 x)

. . .
cos(z⊤r x)
sin(z⊤1 x)

. . .
sin(z⊤r x)

 .

Gaussian Kernel Specifically, without approximation, for a Gaussian kernel kg with X = Rd and where

kg(x− x′) = σ2
d∏

i=1

exp

(
− (xi − x′

i)
2

2 ℓ2i

)
(35)

with scaling parameter σ and length-scale vector ℓ = [ℓ1, . . . , ℓd]
⊤, the corresponding spectral density S(z) is a multivariate

normal N (0, diag(γ)) with γ := [1/ℓ21, . . . , 1/ℓ
2
d]

⊤.
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Matérn Kernel For a Matérn class of kernel function km such that

km(x− x′) = σ2 2
1−ν

Γ(ν)

(√
2ν(x− x′)

ℓ

)ν

Kν

(√
2ν(x− x′)

ℓ

)
(36)

where σ ∈ R+, ℓ ∈ R+, ν ∈ R+ and Kν is a modified Bessel function, the corresponding spectral density S(z) is a d
dimension multivariate Student-t distribution X t(0,Σ, 2ν) with covariance function Σ = (1/ℓ) Id and degree of freedom
2ν. The spectral locations Z are sampled as

Z =
√
u/2νℓ G where u ∼ χ2(2ν) (37)

and G is a d× r matrix of of i.i.d. standard normal random variables.

C.2 Integral Calculation

We now detail the integral expression of proposition (3.3) for the real valued Fourier features in Equation (10) of the main
text. We consider without loss of generality the spatial case where X = [−a, a]2. xd,i refers to the dth coordinate of the ith
training input xi for i = 1, . . . , N and zd,i to the dth coordinate of the ith spectral point zi for i = 1, . . . , r. The integral of
f over X becomes ∫

[−a,a]2
f(x)2dx =

∑
i,j

w
(r)
i w

(r)
j

∫
[−a,a]2

φ
(r)
i (x)φ

(r)
j (x) dx (38)

where

φ
(r)
i (x)φ

(r)
j (x) =

σ2

r


cos(z⊤i x) cos(z

⊤
j x) if (i, j) ∈ [1, r]2

sin(z⊤i x) sin(z
⊤
j x) if (i, j) ∈ [r + 2, 2r]2

cos(z⊤i x) sin(z
⊤
j x) if (i, j) ∈ [1, r]× [r + 2, 2r]

sin(z⊤i x) cos(z
⊤
j x) if (i, j) ∈ [r + 2, 2r]× [r, r].

(39)

Thus,
∫
X f(x)2dx = w⊤M(r)w, where M(r) is the matrix with i, j entry obtained by integrating Equation (39). The ‘cos’,

‘sin’ and ‘cos-sin’ expressions can be written as∫
[−a,a]2

cos(z⊤i x) cos(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
cos((zi − zj)

⊤x) + cos((zi + zj)
⊤x)

]
dx

∫
[−a,a]2

sin(z⊤i x) sin(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
cos((zi − zj)

⊤x)− cos((zi + zj)
⊤x)

]
dx

and ∫
[−a,a]2

cos(z⊤i x) sin(z
⊤
j x) dx =

1

2

∫
[−a,a]2

[
sin((zi − zj)

⊤x) + sin((zi + zj)
⊤x)

]
dx = 0.

Thus, since the off-diagonal blocks of M(r) are null, we can rewrite Equation (38) as∫
X
f(x)2dx =

σ2

r

[
w(r)

:r

⊤
(A+B)w(r)

:r +w(r)
r:

⊤
(A−B)w(r)

r:

]
=

σ2

r
w(r)⊤ [D⊤

l (A+B)Dl +D⊤
r (A−B)Dr

]
w(r) (40)

where w(r)
:r := [w

(r)
1 , . . . , w

(r)
r ]⊤, w(r)

r: := [w
(r)
r+1, . . . , w

(r)
2r ]

⊤, Dl :=
[
Ir 0

]
, Dr :=

[
0 Ir

]
and A and B are two r× r

matrices defined as

Ai,j =
1

2

∫
[−a,a]2

cos((zi − zj)
⊤x) dx and Bi,j =

1

2

∫
[−a,a]2

cos((zi + zj)
⊤x) dx.

A and B can be evaluated as follows
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Case 1: zi ̸= zj We define again z̄d,i,j := zd,i + zd,j . Then,

Ai,j =
cos[a(z̃1,i,j − z̃2,i,j)]− cos[a(z̃1,i,j + z̃2,i,j)]

z̃1,i,j z̄2,i,j
=

2

z̃1,i,j z̄2,i,j
(sin[az̃1,i,j ] sin[az̃2,i,j ]) .

Bi,j =
cos[a(z̄1,i,j − z̄2,i,j)]− cos[a(z̄1,i,j + z̄2,i,j)]

z̄1,i,j z̄2,i,j
=

2

z̄1,i,j z̄2,i,j
(sin[az̄1,i,j ] sin[az̄2,i,j ]) .

Case 2: zi = zj

Ai,i = 2a2.

Bi,i =
cos[2a(z1,i − z2,i)]− cos[2a(z1,i + z2,i)]

4z1,iz2,i
=

1

2z1,iz2,i
(sin[2az1,i] sin[2az2,i]) .

Offset Term For the offset term β, we need to compute the integral of f , that is obtained from∫
[−a,a]2

f(x)dx =
σ√
r

r∑
i=1

w
(r)
i

∫
[−a,a]2

cos(z⊤i x) dx+
σ√
r

2r∑
i=r+1

w
(r)
i

∫
[−a,a]2

sin(z⊤i x) dx︸ ︷︷ ︸
=0

=
σ√
r
w

(r)⊤
m(r)

where m is a r-vector such that

m
(r)
i =

2 cos[a(z1,i − z2,i)]− 2 cos[a(z1,i + z2,i)]

z1,iz2,i
=

4

z1,iz2,i
(sin[az1,i] sin[az2,i]) .

D PROOF OF PROPOSITION (3.3) : Integral Expression for Generalized Kernel

We assume kGS to be a Generalized kernel given in Equation (11) in the main text, with a kernel g that admits a consistent
RFF representation such that g(x− x′) ≈ φ(r)

g (x)⊤φ
(r)
g (x′) where φ(r)

g is an explicit feature mapping φg : X → Rr.

D.1 Real Valued Feature Mapping

The Generalized kernel kGS becomes

kGS(τ ) ≈
K∑

k=1

σ2
k φ

(r)
g (x⊙ γk)

⊤φ(r)
g (x′ ⊙ γk)Ψk(x

⊤ωk)
⊤Ψk(x

′⊤ωk)

where Ψk(x) is a map Ψk : X → R2 such that Ψk(x) =

[
cos(x⊤ωk)
sin(x⊤ωk)

]
for k = 1, . . . ,K and ∀x ∈ X so that

Ψk(x
⊤ωk)Ψk(x

′⊤ωk) = cos((x− x′)⊤ωk) for all ωk ∈ Rd and ∀x,x′ ∈ X . Thus,

kGS(x,x
′) ≈

K∑
k=1

hk(x)
⊤hk(x

′)

with

hk(x) = σk φ
(r)
g (x⊙ γk)⊗

[
cos(ω⊤

k x)
sin(ω⊤

k x)

]
for k = 1, . . . ,K, where ⊗ denotes the Kronecker product.

In particular, when φ(r)
g follows Equation (10) in the main text,

hk(x) =
2σk√
r


cos(z⊤1 (x⊙ γk))

[
cos(ω⊤

k x)
sin(ω⊤

k x)

]
· · ·

sin(z⊤r (x⊙ γk))

[
cos(ω⊤

k x)
sin(ω⊤

k x)

]
 (41)
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where z1, . . . , zr are independent samples from Sg(z) the spectral density of g.

The resulting approximate Gaussian process with generalized kernel can be written, in terms of a new 4rK-size latent vector
as follow

f(x) ≈ w(r)⊤φ(r)(x) with w(r) ∼ N (0, I4Kr).

where
φ(r)(x) = [h1(x)

⊤, · · · , hK(x)⊤]⊤

with hk(x) defined as in Equation (41) for k = 1, · · · ,K.

D.2 Integral Calculation

The integral of f over X becomes∫
[−a,a]2

f(x)2dx =
∑
i,j

w
(r)
i w

(r)
j

∫
[−a,a]2

φ
(r)
i (x)φ

(r)
j (x) dx (42)

Thus,
∫
[−a,a]

f(x)2dx = w(r)⊤M(r)w(r), where M(r) is the matrix with i, j entry obtained by integrating Equation (42).

The computation of M (r) can be split into different cases expressed below as ‘cos’, ‘sin’ and ‘cos-sin’ terms.

Cos Terms The ‘cos’ i, j terms can be written as∫
[−a,a]2

cos(z⊤i (x⊙ γi)) cos(x
⊤ωi)) cos(z

⊤
j (x⊙ γj)) cos(x

⊤ωj)) dx

=
1

8

8∑
k=1

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (43)

where

η
(1)
i,j = (zi ⊙ γi) + ωi + (zj ⊙ γj) + ωj , η

(5)
i,j = (zi ⊙ γi)− ωi + (zj ⊙ γj)− ωj ,

η
(2)
i,j = (zi ⊙ γi) + ωi + (zj ⊙ γj)− ωj , η

(6)
i,j = (zi ⊙ γi)− ωi + (zj ⊙ γj) + ωj ,

η
(3)
i,j = (zi ⊙ γi) + ωi − (zj ⊙ γj)− ωj , η

(7)
i,j = (zi ⊙ γi)− ωi − (zj ⊙ γj) + ωj ,

η
(4)
i,j = (zi ⊙ γi) + ωi − (zj ⊙ γj) + ωj , η

(8)
i,j = (zi ⊙ γi)− ωi − (zj ⊙ γj)− ωj .

Integrating the left hand integrants in Equation (43) yields

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx =

2a2, if i = j and k ∈{3,7}
1

2η
(k)
1,i,jη

(k)
2,i,j

(
sin[a η

(k)
1,i,j ] sin[a η

(k)
2,i,j ]

)
, otherwise

. (44)

Sin Terms The ‘sin’ i, j terms are∫
[−a,a]2

sin(x⊤(zi ⊙ γi)) sin(x
⊤ωi)) sin(x

⊤(zj ⊙ γj)) sin(x
⊤ωj)) dx

=
1

8

8∑
k=1

(−1)k
∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (45)

The left hand integrants in Equation (45) integrate alike to Equation (44) up to a (−1)k factor.
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Cos-sin Terms The ‘cos-sin’ i, j terms can be evaluated as follows∫
[−a,a]2

sin(x⊤(zi ⊙ γi)) sin(x
⊤ωi)) cos(x

⊤(zj ⊙ γj)) cos(x
⊤ωj)) dx

=
1

8

8∑
k=1

(−1)m(k)

∫
[−a,a]2

cos(x⊤η
(k)
i,j ) dx (46)

where m(k) = 1 if k = 1, · · · , 4 and 0 else. The left hand integrants in Equation (46) integrate alike to Equation (44) up to
a m(k) factor.

The remaining terms, yields sums of integrals of the type
∫
[−a,a]

sin(x⊤η)dx with η ∈ Rd, that equal zero.

Offset Term For the offset term β, we need to compute the integral of f , that is
∫
f(x)dx = w(r)⊤m(r) where m(r) is a

4Kr-vector such that
m

(r)
i =

∫
[−a,a]2

φ
(r)
i (x) dx

The computation of m(r) can be split into two cases : the ‘cos’ terms

∫
[−a,a]2

cos(z⊤i (x⊙ γi)) cos(x
⊤ωi)) dx =

1

η
(1)
1,i η

(1)
2,i

(
sin[a (η

(1)
1,i )] sin[a (η

(1)
1,i )]

)
+

1

η
(2)
1,i η

(2)
2,i

(
sin[a (η

(2)
1,i )] sin[a (η

(2)
1,i )]

)
and the ‘sin’ terms∫

[−a,a]2
sin(z⊤i (x⊙ γi)) sin(x

⊤ωi)) dx =

1

η
(1)
1,i η

(1)
2,i

(
sin[a (η

(1)
1,i )] sin[a (η

(1)
1,i )]

)
− 1

η
(2)
1,i η

(2)
2,i

(
sin[a (η

(2)
1,i )] sin[a (η

(2)
1,i )]

)
where

η
(1)
i = (zi ⊙ γi) + ωi, η

(2)
i,j = (zi ⊙ γi)− ωi.

The remaining ‘cos-sin’ terms equal zero.
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E PREDICTIVE DISTRIBUTION

To form predictive distributions, we assume that the latent posterior is approximated by q(w(r)|X,Θ) as in Equation (20).

E.1 Predictive Intensity Distribution

For some x∗ ∈ X , the predictive distribution of f(x∗) can be deduced from Equations (14) and (20) in the main text to be

f(x∗)|X,Θ ∼ N (µ∗(x∗), σ∗(x∗)) (47)

where
µ∗(x∗) := ŵ(r)⊤φ(r)(x∗) (48)

and
σ∗(x) := φ(r)(x∗)⊤Qφ(r)(x∗). (49)

Given λ(·) = (f(·) + β)2 and Equation (47) above, we can also derive the predictive distribution of the intensity function

λ(x∗)|X,Θ ∼ Gamma(a∗(x∗), b∗(x∗)) (50)

with parameters

a∗(x∗) =

(
µ∗(x∗)2 + σ∗(x∗)2

)2
2σ∗(x∗)2 (2µ∗(x∗)2 + σ∗(x∗)2)

and (51)

b∗(x∗) =
µ∗(x∗)2 + σ∗(x∗)2

2σ∗(x∗)2 (2µ∗(x∗)2 + σ∗(x∗)2)
. (52)

E.2 Predictive Expected Log-likelihood

For a training set X = {xi}Ni=1 and an held-out test set X∗ = {x∗
i }N

∗

i=1, we can derive an approximation for the expected
predictive log-likelihood

E [log p(X∗|X)] ≈ −Ew(r)

[∫
X
(w(r)⊤φ(r)(x) + β)2dx

]
+

N∗∑
i=1

Ew(r)

[
log(w(r)⊤φ(r)(x∗

i ) + β)2)
]

where w(r) ∼ q(w(r)|X,Θ).

The integral term can be solved as

Ew(r)

[∫
X
(w(r)⊤φ(r)(x) + β)2dx

]
=

∫
X
Ew(r) [w(r)⊤φ(r)(x) + β]2dx+

∫
X

Var[w(r)⊤φ(r)(x)]dx

=

∫
X

(
φ(r)(x)⊤ŵ(r)ŵ(r)⊤φ(r)(x)

)
dx+ 2β

∫
X

(
ŵ(r)⊤φ(r)(x)

)
dx+ β2|X |+

∫
X

(
φ(r)(x)⊤Qφ(r)(x)

)
dx

= tr
(
(ŵ(r)ŵ(r)⊤ +Q)

∫
X
φ(r)(x)φ(r)(x)⊤dx︸ ︷︷ ︸

:=M(r)

)
+ 2βŵ(r)⊤

(∫
X
φ(r)(x)dx

)
︸ ︷︷ ︸

:=m(r)

+β2|X |

= ŵ(r)⊤M(r)ŵ(r) + tr
(
QM(r)

)
+ 2βŵ(r)⊤m(r) + β2|X |

where M(r) and m(r) are defined in Proposition 3.3. Note that we used the cyclical property of the trace in the last two
lines. We also used the Tonelli’s theorem in the first line to reverse the ordering of the integration over the positive integrand
(w(r)⊤φ(r)(x) + β)2q(w(r)).

The sum-of-expectations can also be expressed analytically. It takes of form∑
i

E[log z2i ] where zi ∼ N (µi, σi) (53)
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with
µi := ŵ(r)⊤φ(r)(x∗

i ) + β and σi := φ
(r)(x∗

i )
⊤Qφ(r)(x∗

i ). (54)

Following Lloyd et al. (2015, section 4.3), each summand can be expressed as

E[log z2i ] = −G(− µi

2σ2
i

) + log

(
σ2
i

2

)
− C

where G(·) is defined as

G(z) = 2z

∞∑
j=0

j!zj

(2)j(1/2)j
(55)

with (·)j being the rising Pochhammer series. The constant C ≈ 0.57721566 is the Euler Mascheroni constant. G(·) can
in practice be evaluated using a large multi-resolution look-up table of pre-computed values. Accurate evaluation can be
obtained by linear interpolation of the values from the table.

F MARGINAL LIKELIHOOD DERIVATIVES

In Equation (23) the marginal likelihood is expressed as

log p(X|Θ) = log p(ŵ(r),X|Θ)− log p(ŵ(r)|X,Θ)

≈ log p(ŵ(r),X|Θ)− log q(ŵ(r)|X,Θ)

= −ŵ(r)⊤M(r)ŵ(r) +

N∑
i=1

log(|ŵ(r)⊤φ(r)(xi)|2)−
1

2
ŵ(r)⊤ŵ(r) +

1

2
log |Q|+ C

for some constant C, where we assume β = 0 without loss of generality.

Marginal Likelihood Derivatives We now compute the gradient with respect to the hyperparameters Θ. Using the chain
rule,

∇Θi
log p(X|Θ) =

∂ log p(X|Θ)

∂Θi

∣∣∣
explicit

+

r∑
j=1

∂ log p(X|Θ)

∂ŵj

∂ŵj

∂Θi
. (56)

The first term of Equation (56) can be solved as

∂ log p(X|Θ)

∂Θj

∣∣∣
explicit

= −ŵ(r)⊤ ∂M(r)

∂Θj
ŵ(r) + 2

N∑
i=1

ŵ(r)⊤ ∂φ(r)(xi)
∂Θj

ŵ(r)⊤φ(r)(xi)
+

1

2
tr(Q−1 ∂Q

∂Θj
) (57)

where Q−1 = −∇2
w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) is the precision matrix expressed in Section 4.1. The last term of

Equation (57) can be expressed as

1

2
tr(Q−1 ∂Q

∂Θj
) = −1

2
tr(

∂Q−1

∂Θj
Q)

= −tr

(
∂M(r)

∂Θj
Q+

∂

∂Θj

[
N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

]
Q

)

= −tr
(
∂M(r)

∂Θj
Q

)
−

N∑
i=1

2

(ŵ(r)⊤φ(xi))2

[
φ(xi)

⊤Q
∂ φ(xi)

∂Θj

]

+ 2

N∑
i=1

ŵ(r)⊤ ∂φ(xi)
∂θj

(ŵ(r)⊤φ(xi))3
[
φ(xi)

⊤Q φ(xi)
]

(58)
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Algorithm 1 Compute the log marginal likelihood derivatives a.

1: input: X (inputs), spectral locations and hyper-parameters Θ, posterior mode ŵ(r), precision matrix Q−1, r × r
“integral” matrix M(r), N × r features matrix φ(r)(X)

2: compute ∇M(r), the dim(Θ̃)× r × r tensor of partial derivatives of M(r) with respect to Θ̃
3: compute ∇φ(r)(X), the dim(Θ̃)×N × r tensor of partial derivatives of φ(r)(X) with respect to Θ̃

4: f̂ := φ(r)(X)ŵ(r)

5: L = cholesky(Q−1) ▷ Solve LL⊤ = Q−1

6: Cφ := L \φ(r)(X)
7: C∇φ := L \ ∇φ(r)(X)
8: rφ := (Cφ ∗Cφ)1r

9: R∇φ = (Cφ ∗C∇φ)1r

10: S := ∇φ(r)(X)ŵ(r)

11: E := (S diag(f̂−2)) ∗φ(r)(X)

12: sintegral = ŵ(r)⊤∇M(r)ŵ(r)

13: sdata = 2 (S diag(f̂−1))1N

14: s1 = tr(L⊤ \ (L \ ∇M(r)))

15: s2 = 2 (R∇φ diag(f̂−2))1N

16: s3 = 2(S diag(f̂−3))rφ
17: v := diag(f̂−1)∇φ(r)(X)− 1⊤

NE ▷ Equation (60)

18: dp
dΘ := sdata − sintegral − s1 − s2 + s3 ▷ Equation (57)

19: dp
dw := 2φ(r)(X)⊤diag(f̂−3)rφ ▷ Equation (59)

20: dW
dΘ := 2( L \ (L⊤ \ (∇M(r)ŵ(r) − v))) ▷ Equation (61)

21: g = dp
dΘ + dW

dΘ
dp
dw ▷ Equation (56) return g (dim(Θ̃)-vector of partial derivatives)

aWe assume basic operations on 3d tensors are performed over its last two dimensions and repeated over its first one. ∗ denotes the
element-wise multiplication. A \B where A is a triangular r × r matrix and B is a · · · × r matrix or tensor is performed over the last
dimension of B (i.e. r) and repeated over its firsts dimensions.

The ∂ log p(X|Θ)
∂ŵj

terms of Equation (56) is

∂ log p(X|Θ)

∂ŵj
= − ∂ log p(ŵ(r),X|Θ)

∂ŵj︸ ︷︷ ︸
=0

+
1

2
tr(Q−1 ∂Q

∂ŵ j
)

= −1

2
tr(

∂ Q−1

∂ŵj
Q)

= −tr

(
∂

∂ŵj

[
N∑
i=1

φ(xi)φ(xi)
⊤

(ŵ(r)⊤φ(xi))2

]
Q

)

= 2

N∑
i=1

φj(xi)

(ŵ(r)⊤φ(xi))3
[
φ(xi)

⊤Q φ(xi)
]

(59)

where, in the first line, we have imposed stationarity using∇w(r) log p(w(r)|X,Θ)|w(r)=ŵ(r) = 0.

We finally express the last terms ∂ŵ(r)

∂Θi
of Equation (56). From the expression of ŵ(r) in Equation (21) in the main text. We
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obtain

∂ŵ(r)

∂Θj
=

∂

∂Θj

[(
M(r) +

1

2
Ir

)−1
(

N∑
i=1

φ(r)(xi)

ŵ(r)⊤φ(r)(xi)

)]

=
∂

∂Θj

[(
M(r) +

1

2
Ir

)−1
](

N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)

+

(
M(r) +

1

2
Ir

)−1
[

∂

∂Θj

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
+

∂

∂ŵ(r)

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
∂ŵ(r)

∂Θj

]

= −
(
M(r) +

1

2
Ir

)−1
[
∂M(r)

∂Θi
ŵ(r) − v̂ −

(
N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

)
∂ŵ(r)

∂Θi

]

where

v̂ :=
∂

∂Θj

(
N∑
i=1

φ(xi)

ŵ(r)⊤φ(xi)

)
=

N∑
i=1

∂φ(xi)
∂Θj

ŵ(r)⊤φ(xi)
−

N∑
i=1

ŵ(r)⊤ ∂φ(xi)
∂Θj

(ŵ(r)⊤φ(xi))2
φ(xi) (60)

Thus

∂ŵ(r)

∂Θi
= −

[
M(r) +

1

2
Ir +

N∑
i=1

φ(xi)φ(xi)
⊤

(w⊤φ(xi))2

]−1 [
∂M(r)

∂Θi
ŵ(r) − v̂

]
= −2Q

[
∂M(r)

∂Θi
ŵ(r) − v̂

]
(61)

Implementation Details The implementation of the marginal log likelihood partial derivatives with respect to the
hyperparameters Θ̃ is shown in Algorithm 1.

G ALGORITHMS

We present in Algorithm 2 the standard process to compute the mode ŵ(r) and the hyperparameters Θ.

Algorithm 2 Compute the mode ŵ(r) and the hyperparameters Θ

1: input: data X

2: initialize Θ0 and ŵ
(r)
0

3: for t = 1, . . . , T do
4: compute M(r) and φ(r)(X)

5: ŵ
(r)
t := mode(p(w(r)|X,Θ), ŵ

(r)
t−1) ▷ locate posterior mode using Equation (22) with initial value ŵ

(r)
t−1

6: f̂ := φ(r)(X)ŵ
(r)
t + β

7: V := diag(f̂−1)φ(r)(X)
8: Q−1 := 2M(r) + Ir + 2V⊤V ▷ precision matrix Q−1 = −∇2

w(r) log p(w
(r)|X,Θ)|w(r)=ŵ(r)

9: compute the gradient g from Algorithm 1
10: Θt ← update(Θt−1, g)
11: end for
12: return ŵ

(r)
T (mode) and ΘT (hyperparameters)

As an alternative (Section 4.2), we assume ∂ŵ(r)

∂Θi
= 0 and alternate independent update for the mode in Equation (22) and

the hyperparameters in Equation (24), which yields Algorithm 3.
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Algorithm 3 Compute the mode ŵ(r) and the hyperparameters Θ with independent updates

1: input: data X

2: initialize Θ0 and ŵ
(r)
0

3: for t = 1, . . . , T do
4: compute M(r) and φ(r)(X)

5: ŵ
(r)
t ← ŵ

(r)
t ▷ update the posterior mode using one iteration of Equation (22)

6: f̂ := φ(r)(X)ŵ
(r)
t + β

7: V := diag(f̂−1)φ(r)(X)
8: Q−1 := 2M(r) + Ir + 2V⊤V ▷ precision matrix
9: compute the gradient dp

dΘ from Algorithm 1 (line 18)
10: Θt ← update(Θt−1,

dp
dΘ )

11: end for
12: return ŵ

(r)
T (mode) and ΘT (hyperparameters)

H SUPPLEMENTARY FIGURES

Figure 5 (below) shows the average test expected log-likelihood as a function of the number of basis functions or inducing
points for bei data set and Taxi data set across models.

(a) Taxi data (b) Bei data

Figure 5: Average normalized test expected log-likelihood (Ltest) of the different methods on 2D real data, as a function of
the number of spectral points or inducing points.
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Figure 6 (below) shows a single fitting to the full bei data set across models.

(a) GSSPP-SE (b) GSSPP-m32 (c) GSSPP-m12

(d) SSPP (e) VBPP (f) LBPP

Figure 6: Heat map of the predictive mean intensity with p = 150 for the Bei data set. The black dots are the 3605 input
data points.
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