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Abstract
We build on the optimization-centric view on Bayesian inference advocated by Knoblauch et al.
(2019). Thinking about Bayesian and generalized Bayesian posteriors as the solutions to a regular-
ized minimization problem allows us to answer an intriguing question: If minimization is the primal
problem, then what is its dual? By deriving the Fenchel dual of the problem, we demonstrate that
this dual corresponds to an adversarial game: In the dual space, the prior becomes the cost function
for an adversary that seeks to perturb the likelihood [loss] function targeted by standard [gener-
alized] Bayesian inference. This implies that Bayes-like procedures are adversarially robust—
providing another firm theoretical foundation for their empirical performance. Our contributions
are foundational, and apply to a wide-ranging set of Machine Learning methods. This includes
standard Bayesian inference, generalized Bayesian and Gibbs posteriors (Bissiri et al., 2016), as
well as a diverse set of other methods including Generalized Variational Inference (Knoblauch
et al., 2019) and the Wasserstein Autoencoder (Tolstikhin et al., 2017).
Keywords: Bayesian Inference, Fenchel Duality, f -divergences, Integral Probability Metric

1. Introduction

Bayesian and generalized Bayesian methods are enjoying ever-growing popularity within Machine
Learning. There are numerous theoretical and conceptual reasons for this, and the one quoted most
often is that the incorporation of prior beliefs aids inference. More specifically, finding a probability
distribution over ’good’ models—rather than a single point in the model space—makes generalized
Bayesian procedures typically more robust than methods based on point estimation. While Infor-
mation and Decision Theory can explain this performance boost whenever the parameter of interest
θ indexes a likelihood pθ and the prior π encodes actual domain expertise (see e.g. Williams, 1980;
Zellner, 1988; Bernardo, 2000; O’Hagan and Oakley, 2004; Goldstein, 2006; Berger, 2013; Buck
and Meson, 2015), the advantages of Bayes-like procedures extend far beyond this idealized and
narrow setting (see e.g. Fong and Holmes, 2019).

For example, Gibbs posteriors (also often called quasi-posteriors) do not even require likelihood
functions and instead produce distributions over any parameter θ indexing arbitrary loss functions
(see e.g. Grünwald, 2011, 2012; Hooker and Vidyashankar, 2014; Ghosh and Basu, 2016; Bissiri
et al., 2016; Holmes and Walker, 2017; Jewson et al., 2018; Nakagawa and Hashimoto, 2019; Lyd-
don et al., 2019; Chérief-Abdellatif and Alquier, 2019; Knoblauch and Vomfell, 2020). Posteriors of
this kind have an intimate relationship with PAC-Bayesian theory (Shawe-Taylor and Williamson,
1997; McAllester, 1999a,b; Catoni, 2007), but this theory can only explain the performance for a
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sub-class of Gibbs posteriors constructed under relatively strict assumptions (see e.g. Germain et al.,
2016; Guedj, 2019). Deviating even more extremely from Gibbs posterior distributions, the belief
distributions in Reid et al. (2015); Knoblauch et al. (2019); Knoblauch (2019a); Alquier (2020) have
dependencies on the prior that are non-multiplicative. For all these distributions—which we shall
subsume under the name of generalized Bayesian procedures from here on out—the arguments
in favour of standard Bayesian inference do not apply: Gibbs posteriors do not even depend on
likelihoods, and the belief distributions of Reid et al. (2015); Knoblauch et al. (2019); Knoblauch
(2019a); Alquier (2020) are directly formulated via optimization problems without even attempting
to mimic the multiplicative nature of Bayes’ rule. In spite of this substantial lack in theoretical
arguments, the empirical performance of these approaches is significantly better than that of point
estimates, with no clear answer in sight.

In this paper, we provide a new and universal explanation for the robustness of generalized
Bayesian procedures. Instead of the update-rule interpretation of Bayesian inference, we draw on
the optimization-centric viewpoint on Bayesian inference advocated for by Knoblauch et al. (2019).
Doing so has a distinct advantage: This view—and by extensions the results we derive from it—
encompass a wide range of Machine Learning methods, many of which are not even motivated as
extensions to traditional Bayesian inference. For instance, in Example 7 we show that our results
apply even to the Wasserstein Autoencoder (Tolstikhin et al., 2017). While the connections between
traditional Bayesian inference and Wasserstein Autoencoders are tenuous at first glance, both turn
out to share a substantial amount of structure once re-phrased as an optimization problem.

The second advantage of adopting an optimization-centric view on Bayesian inference is imme-
diate: We can use ideas and proof techniques from optimization and apply them in the context of
generalized Bayesian procedures. In fact, this general idea has precedence in a successful line of
research using the tools of Γ-convergence (Braides et al., 2002; Dal Maso, 2012) to study the con-
sistency and posterior concentration of Bayesian Inverse Problems and Variational Approximations
to standard Bayesian posteriors (see e.g. Agapiou et al., 2012; Lu, 2017; Lu et al., 2017; Wang and
Blei, 2018; Knoblauch, 2019a).

In the current paper, we use the optimization-centric formulation of Bayesian procedures to tap
into a very different branch of optimization: Duality Theory. Doing so allows us to leverage the
structural and constraint properties of the optimization problem to explain the robustness of gener-
alized Bayesian procedures via Fenchel duality. While Fenchel duality has been extremely useful
for the theoretical study of other machine learning methods such as Generative Adversarial Net-
works (see Farnia and Tse, 2018; Liu and Chaudhuri, 2018; Husain et al., 2019) and regularization
(Husain, 2020), the current paper constitutes the first analysis of this kind for Bayesian methods.
Our main finding is a fundamental connection between risk robustness and the variational optimiza-
tion problem underlying Bayesian inference. This finding advances our understanding of Bayesian
methods: Specifically, it provides a new, concise, and rigorous explanation why a large class of
Bayesian and Bayes-like methods typically outperform point estimation methods. In summary, our
technical contributions are

1. (Theorem 5) A duality theorem that shows the the link between the optimization-centric view
of Bayesian inference and an adversarial robustness game.

2. (Theorem 7) A theorem detailing the robustness of Bayesian posteriors as solutions to the
adversarial loss.
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3. Derivation of adversarial games for a variety of different Bayesian inference schemes, includ-
ing a novel formulation of the Wasserstein Autoencoders (WAE). This allows us to gain novel
insight into the theoretical underpinnings behind WAEs.

2. Motivation

Standard Bayesian inference is typically formulated as an update derived from Bayes’ rule (see
Bayes, 1763; De Laplace, 1774): Given observations {xi ∈ X}ni=1 sampled from a probability
measure P on X n, a likelihood model pθ : X n → R≥0 indexed by a parameter θ ∈ Θ and a prior
belief π(θ) ∈ P(Θ) about good values of θ, the Bayesian posterior is given by

qB(θ) =
π(θ)pθ(x1:n)∫

Θ π(θ)pθ(x1:n)dθ
. (1)

Because the integral
∫

Θ π(θ)pθ(x1:n)dθ is generally intractable, any down-stream computation in-
volving qB will require some form of approximation. One of the most prominent approximation
schemes is Variational Inference (VI), which is built on the optimization-centric view on Bayesian
inference. More specifically, it uses the fact that one may rewrite qB as the unique minimum to
an optimization problem which for KL(q, π) denoting the forward Kullback-Leibler Divergence
(Kullback and Leibler, 1951) between q and π is given as

qB = arg inf
q∈P(Θ)

{
Eq(θ) [− log pθ(x1:n)] + KL(q, π)

}
. (2)

This optimization-centric perspective of Bayesian inference is useful for understanding the role of
priors and likelihoods. On the one hand, the KL term regularizes the problem by forcing the poste-
rior belief to not deviate arbitrarily far from the prior. On the other hand, the negative log likelihood
term acts as a loss function relating the parameter of interest θ to the observations x1:n. In other
words, Bayesian inference is a very specific regularized loss-minimization problem. Adopting this
optimization-centric view on exact Bayesian inference, one can interpret Variational Inference (VI)
as introducing constraints. In particular, rather than minimizing over P(Θ), VI instead minimizes
the same objective over the parameterized subsetQ ⊂ P(Θ). Writing this explicitly, the variational
posterior qVI is

qVI = arg inf
q∈P(Θ)

{
Eq(θ) [− log pθ(x1:n)] + KL(q, π)

}
s.t. q ∈ Q. (3)

Whether one computes the exact Bayesian posteriors qB or its approximation qVI, both are conceptu-
ally limited: In particular, the invocation of Bayes’ rule is only valid if the likelihood model pθ and
the prior belief π are available and correctly specified. Strictly speaking, this means that π has to
encode all our prior knowledge about θ and that we need pθ0 = P for some θ0 ∈ Θ, an assumption
sometimes referred to as the M-closed world (Bernardo, 2000).

In practice of course, likelihoods and priors alike are misspecified—often severly so. In spite
of substantial misspecification, Bayesian posteriors typically perform surprisingly well. The fact
that belief distributions improve performance relative to point estimates even when the standard
decision-theoretic arguments in favour of qB are not applicable has inspired numerous generalized
Bayesian procedures (see e.g. Grünwald, 2011, 2012; Berger et al., 1994; Hooker and Vidyashankar,
2014; Ghosh and Basu, 2016; Bissiri et al., 2016; Jewson et al., 2018; Knoblauch et al., 2018;
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Futami et al., 2018; Miller and Dunson, 2019; Knoblauch, 2019a,b; Chérief-Abdellatif and Alquier,
2019; Nakagawa and Hashimoto, 2019; Knoblauch and Vomfell, 2020; Guedj, 2019; Alemi, 2019).
While the conceptual motivations of these generalized Bayesian procedures vary greatly, their large
majority can be expressed as solutions to a modified version of the optimization problem in eq.
(2) (see Knoblauch et al., 2019). Adopting terminology of the same paper, we call the resulting
distributions Generalized Variational Inference posteriors. To properly define this large class of
posteriors, we first state the definition of statistical divergences used for our results.

Definition 1 (Divergences) A divergence is a function D : P(Θ)×P(Θ)→ R, so that D(µ, ν) ≥
0, D(µ, ν) = 0 ⇐⇒ ν = µ, and which is proper convex lower semi-continuous in its first
argument.

Generalizing the structure underlying eq. (3) in three directions at once, Generalized Variational
Inference posteriors are obtained as the minimizers of any D-regularized Π-constrained L-loss min-
imization problem. Denoting Fb(Θ) as the set of bounded and measurable functions on Θ, we
proceed by formally defining posteriors of this kind.

Definition 2 (Generalized Variational Inference) For any Π ⊆ P(Θ), any loss L ∈ Fb(Θ), di-
vergence D : P(Θ)×P(Θ)→ R, the Generalized Variational Inference (GVI) objective with prior
π ∈ P(Θ) and λ > 0 is

GL,D,Π := inf
q∈Π

(
Eq(θ) [L(θ)] + λD(q, π)

)
(4)

and any minimizer of the above is referred to as a GVI posterior:

qL,D,Π ∈ arg inf
q∈Π

(
Eq(θ) [L(θ)] + λD(q, π)

)
(5)

The special case of this problem when D = KL and Π = P(Θ) is well-studied: As eq. (2) shows,
qB = qL,KL,P(Θ) whenever L(θ) = − log pθ(x1:n). Similarly, if L is an arbitrary loss for which∫

Θ π(θ) exp{−L(θ)}dθ < ∞, one recovers the Gibbs posterior—also called quasi-posterior (e.g.
Ghosh and Basu, 2016) or Generalized posterior (Bissiri et al., 2016):

qL,KL,P(Θ)(θ) =
π(θ) exp{−λ−1L(θ)}∫

Θ π(θ) exp{−λ−1L(θ)}dθ
. (6)

Since qL,KL,P(Θ) requires computationally expensive sampling procedures to be made practically
useful, one could alternatively approximate the posteriors qL,KL,P(Θ) with an element in a tractable
and parameterized set of distributions Q ⊂ P(Θ). This recovers the standard VI posterior qVI

whenever L(θ) = − log pθ(x1:n) and so-called Gibbs VI posteriors (see e.g. Alquier et al., 2016)
for general losses L(θ) 6= − log pθ(x1:n).

As a consequence, Definition 2 recovers the most well-known generalized Bayesian methods,
both in their exact and approximate form. Beyond that however, it also encompasses a host of other
belief distributions that have received only limited attention. These include the posteriors motivated
in Reid et al. (2015); Knoblauch et al. (2019); Knoblauch (2019a); Alquier (2020), minimizers
of non-standard PAC-Bayesian bounds such as those of Bégin et al. (2016); Alquier and Guedj
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(2018); Ohnishi and Honorio (2020), and even the conditional distributions produced by Wasserstein
Autoencoders (Tolstikhin et al., 2017).

Most importantly—and unlike the multiplicative update-rule of eq. (1)—Definition 2 constitutes
an optimization-centric formulation of generalized Bayesian procedures. Crucially for the purposes
of the current paper, this allows us to tap into duality theory. Duality is a corner stone of modern
optimization theory and has previously been used for the derivation of new Bayesian methodology
(e.g. Ganchev et al., 2010; Zhu et al., 2014; Dai et al., 2018). More in line with its use for our con-
tribution, it is also a vital tool for building theoretical understanding of existing Machine Learning
methods. For example, recent work have given insights for a number of areas including generative
modelling (Liu and Chaudhuri, 2018; Husain et al., 2019), distributional robustness (Cranko et al.,
2020; Husain, 2020), reinforcement learning (Husain et al., 2021) and optimal transport (Paty and
Cuturi, 2020).

In the current paper, we add to this literature by deriving the Legendre-Fenchel dual of standard
and generalized Bayesian procedures. This allows us to interpret Bayes-like methods in a new light.
More precisely, they define an adversarial game: In the dual space, the prior belief becomes a cost
function for an adversary seeking to change the loss function that is minimized.

3. Bayesian Inference as Adversarial Robustness

The constrained and regularized structure of the problem in Definition 2 makes it naturally amenable
to an investigation into its Legendre-Fenchel dual. We pursue this endeavour in the remainder. First,
Section 3.1 sets out notation and additional definitions. We then present the general results of our
analysis in Section 3.2. Lastly, we elaborate on the implications of our results for two large classes
of posteriors in Sections 3.3 and 3.4 by giving examples of the resulting dual problems as well as
numerical demonstrations.

3.1. Preliminaries

Throughout, we will assume that the parameter space Θ as well as the data space X admit Polish
topology. We will sometimes use B(Θ) to denote the set of finitely-additive measures over Θ. Its
topological dual space is the set of all bounded and measurable functions mapping from Θ to R,
which we denote by Fb(Θ). Lastly, the set P(Θ) ⊂ B(Θ) denotes the set of Borel probability
measures on Θ.

To investigate the Legendre-Fenchel dual of the optimization problems in Definition 2, we also
need to introduce the Legendre-Fenchel conjugate of the prior regularizers D(·, π).

Definition 3 For a given prior π ∈ P(Θ), the Legendre-Fenchel conjugate of a regularizer D(·, π) :
P(Θ)→ R is

D?π(`) = sup
µ∈B(Θ)

(∫
Θ
`dµ− D(µ, π)

)
, (7)

for any ` ∈ Fb(Θ).

For convenience, we also define an auxiliary minimization problem which appears as part of the
Legendre-Fenchel dual.
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Figure 1: The left image illustrates a choice for Π which consists of five probability vectors over
Θ = {a, b, c}. The right illustrates co (Π) over this choice where one can see that the selection of
probabilities increases vastly.

Definition 4 For any set of probability distributions Π ⊆ P(Θ), we define for any L ∈ Fb(Θ)

EΠ(L) = inf
q∈Π

Eq(θ) [L(θ)] (8)

In words, EΠ(L) denotes the smallest possible value achievable by integrating the loss L with an
element from the class of probability distributions Π.

Lastly, we introduce the closed convex hull of a set Π of admissible solutions to the optimization
problem in Definition 2. For a set of potential posteriors Π, co (Π) denotes the smallest closed and
convex set containing Π. In particular, we will have

λ · q + (1− λ) · q′ ∈ co (Π) , (9)

for all q, q′ ∈ Π and λ ∈ [0, 1]. We illustrate this in Figure 1 for a discrete parameter space
Θ = {a, b, c} with only three elements. In this setting, P(Θ) is simply the set of vectors in R3

≥0

whose co-ordinates sum to 1 however can be viewed as elements in R2 enclosed in a triangle with
vertices (0, 0), (0, 1) and (1, 0). Though the definition of the convex hull is best understood in the
geometric sense, it also has a clear probabilistic counterpart in mixture models: For example, if Π
is the set of normal distributions, then co (Π) is the set of all (finite and infinite) mixtures of normal
distributions on Θ.

To clarify the setting studied throughout the remainder of the paper, we explain these definitions
using a simple example that we will later re-use for numerical demonstrations.

Example 1 Given a dataset {(Xi, Yi)}ni=1 with X = Rd, one may consider the parameter space
Θ = [0, 1] and the corresponding least squares loss

L(θ) =
n∑
i=1

(
X>i θ − Yi

)2
. (10)

Considering for somem ∈ N the discretely supported and uniform prior π(θ) = 1
m+1

∑m
j=0 δ(j/m)(θ)

and the set of variational posteriors supported on the same atoms as

Π =

{ m∑
j=0

wjδ(j/m)(θ) : wj ≥ 0,
m∑
j=0

wj = 1

}
,
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it is clear both that π ∈ Π and that co (Π) = Π. Considering as regularizer the χ2-divergence
given for any q ∈ Π by

χ2(q, π) = Eπ(θ)

[(
π(θ)

q(θ)
− 1

)2 ]
,

and taking λ = 1, the corresponding Generalized Variational Inference posteriors are given by

qL,χ2,Π ∈ arg inf
q∈Π

(
Eq(θ) [L(θ)] + χ2(q, π)

)
.

Moreover, we have that

EΠ(L) = inf
nR

Eθ∼N (µ,σ2)

[
1

n

n∑
i=1

(
X>i θ − Yi

)2
]
, (11)

The above corresponds to the square loss. If we employ a set of Gaussians as our model class
Π =

{
N (µ, σ2) : µ ∈ Rd, σ ∈ R

}
then we have

EΠ(L) = inf
µ∈Rd,σ∈R

Eθ∼N (µ,σ2)

[
1

n

n∑
i=1

(
X>i θ − Yi

)2
]
, (12)

which amounts to fitting a normal distribution over the parameters and thus the value of EΠ[L]
is precisely the minimally achievable loss using the family Π. It should be noted this is the GVI
objective when there is no prior regularization: EΠ(L) = GL,0,Π.

3.2. Main results

We present the main Theorem– a strong duality result for posteriors obtained as D-regularized and
Π-constrained L-loss minimizers.

Theorem 5 (Strong Duality) For any Π ⊆ P(Θ), π ∈ P(Θ) and loss L ∈ Fb(Θ), the following
holds for any λ > 0

GL,D,co(Π) = sup
`∈Fb(Θ)

(
EΠ(L+ `)− λD?π

(
`

λ

))
. (13)

As this result shows, GVI procedures have a close correspondence to adversarial games. Specifically,
the adversary in the game of Theorem 5 changes the original loss L via a perturbation ` so that the
minimum achievable loss by Π given by EΠ[L + `], is as large as possible. Luckily, the adversary
pays a price λD?

π(`/λ) for this, which stops it from making EΠ[L + `] infinitely large. Clearly,
the exact choices for λ, π and D determine the precise cost of the adversarial perturbations `. Note
that Π ⊆ co (Π), which implies GL,D,Π ≥ GL,D,co(Π). Combining this with Theorem 5 allows us to
relate GVI (using only Π):

GL,D,Π ≥ sup
`∈Fb(Θ)

(
EΠ(L+ `)− λD?π

(
`

λ

))
, (14)

with equality if Π is closed and convex. The standard choice Π = P(Θ) is closed and convex,
immediately implying the following strong duality result that holds for full Bayesian inference as
well as the the objects studied in (Reid et al., 2015; Knoblauch et al., 2019; Knoblauch, 2019a;
Alquier, 2020).
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Corollary 6 If Π = P(Θ) then for any π,∈ P(Θ), L ∈ Fb(Θ) and λ > 0 it holds

GL,D,Π = sup
`∈Fb(Θ)

(
EΠ(L+ `)− λD?π

(
`

λ

))
. (15)

While Corollary 6 connects the two values of the objectives at the optimum, we can make this dual
connection much firmer. In fact, the GVI primal and its adversarial dual share another—arguably
even more important—connection: The GVI posterior minimizes the loss that results from the ad-
versary’s perturbation.

Theorem 7 (Adversarial Robustness of GVI) Let `∗ denote a maximizer of the dual in (13). If Π
is convex and closed, it holds that

qL,D,Π ∈ arg inf
q∈Π

Eq(θ) [L(θ) + `∗(θ)] . (16)

This result is striking: It tells us that posteriors learned via the GVI objective of Definition 2 are
adversarially robust. More specifically, they produce optimal beliefs in the presence of an adversary
whose cost for perturbing the original loss L by ` is given by λD?π(`/λ).

3.3. Examples With f -Divergences

In this section we will explore our results in the popular setting when D is chosen as an f -divergence.
We remark that Theorem 5 will be insightful and generalize results regarding log evidence however
Theorem 7 will not give us much insight.

Example 2 (f -divergences) The requirements of Definition 1 are satisfied by f -divergences. For
a convex lower semicontinuous function f : R → (−∞,∞], the corresponding f -divergence is
Df (µ, ν) =

∫
Θ f(dµ/dν)dν if ν � µ and Df (µ, ν) = ∞ otherwise. This includes the popular

Kullback-Leibler (KL) divergence when f(t) = t log t and the χ2-divergence if f(t) = (t− 1)2.

At this point, the curious reader may wonder what the adversary’s cost functions look like. To
gain some intuition about this, we will study some examples with different choices of D. We begin
with the standard choice corresponding to both Variational Inference and fully Bayesian Inference:
The KL-divergence.

Example 3 (KL-divergence) If D = KL then the dual problem is

GL,KL,P(Θ) = sup
`∈Fb(Θ)

(
EΠ(L+ `)− λ log

∫
Θ

exp

(
`(θ)

λ

)
dπ(θ)

)
. (17)

As this example reveals, the KL-divergence penalizes the adversary for deviations ` from L
proportionally to the prior belief π. This ultimately means that the prior becomes the adversary’s
cost function in the dual form. Jensen’s inequality also gives a lower bound on the entire penalty.
While coarse, this bound is perhaps more interpretable:

λ log

∫
Θ

exp

(
`(θ)

λ

)
dπ(θ) ≥

∫
Θ
`(θ)dπ(θ).

8
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Specifically, it reveals that KL-regularization implies a perturbation penalty that is stricter and more
costly than a linear one. The linear penalty (in `) is a useful benchmark to compare against: Linear
penalties punish the adversary by weighting its perturbation ` with the prior. Moreover, this holds
for the case when D is chosen to be any f -divergence.

Example 4 (f -divergence) For any lower semicontinuous convex function f : R → (−∞,∞]
with f(1) = 0, we have

GL,Df ,P(Θ) = sup
`∈Fb(Θ)

(
EΠ(L+ `)− inf

b∈R

[∫
Θ
f?(`(θ)− b)dπ(θ) + b

])
, (18)

where f?(t) = supt′∈dom(f) (t · t′ − f(t′))

Note for any f defined above, it holds that f?(t) ≥ t and so immediately we get

inf
b∈R

[∫
Θ
f?(`(θ)− b)dπ(θ) + b

]
≥
∫

Θ
`(θ)dπ(θ) (19)

As it turns out, the linear penalty term also re-surfaces quite naturally when other divergences are
used in the GVI form. As the next two examples show, this includes the case of the χ2-divergence.

Example 5 (χ2-divergence) If D = λ · χ2 for some λ ≥ 0 then the dual problem is

GL,χ2,P(Θ) = sup
`∈Fb(Θ)

(
EΠ(L+ `)−

∫
Θ
`(θ)dπ(θ)− 1

4λ
Varπ(`)

)
. (20)

We remark that this gives a recontextualization to the parameter λ, which is often added to enforce
proximity to the prior however, here it is interpreted as allowing the loss perturbation ` to be as
flexible for larger values.

3.4. Examples with Integral Probability Metrics

The choice of f -divergences can be regarded as a strong way of penalizing the posterior to deviate
from the prior. This is due to the fact that the f -divergences requires absolute continuity, meaning
that the posterior is forced to be supported wherever the prior is. To that end, we now consider a
choice of divergence that is considered rather weaker, the Integral Probability Metrics (IPM).

Definition 8 (Integral Probability Metric) For a set of functions H ⊆ Fb(Θ), the IPM between
µ, ν ∈ P(Θ) is

dH(µ, ν) = sup
h∈H

(Eµ[h]− Eν [h]) .

IPMs have often been studied for theoretical interest in machine learning as they define metrics
over probability spaces (Müller, 1997). One famous example is the 1-Wasserstein distance (Villani,
2008), which is typically sought as a remedy to strong penalizing effect of f -divergences. Another
example of an IPM in machine learning is the kernel-based Maximum Mean Discrepancy, which can
be easily computed. In particular, it is the choice of H that allows us to comment on the strength
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of the IPM and has been shown that convergence rates of an IPM induced by H depends on the
Rademacher complexity ofH (Bartlett and Mendelson, 2002).

The downside of IPMs is that for a general class H cannot be easily computed, even if the
densities of the distributions are known. Recently however, IPMs have become popularized due to
Generative Adversarial Networks as deep neural networks have played the role of H with various
kinds of parametrizations (Arbel et al., 2018; Li et al., 2017; Arjovsky et al., 2017; Mroueh et al.,
2017; Mroueh and Sercu, 2017). They have also been used in the generalized variational inference
framework, which as we exemplify with the Wasserstein Autoencoder. We first, apply our general
result to the case when D is chosen to be an IPM.

Example 6 (Integral Probability Metric) For a set of functions H ⊆ Fb(Θ), the Integral Proba-
bility Metric (IPM) generated by H is defined as dH(q, π) = suph∈H (Eq[h]− Eπ[h]). If D = dH
then the dual problem is

GL,IPM,P(Θ) = sup
`∈λ·H

(
EΠ(L+ `)−

∫
Θ
`(θ)dπ(θ)

)
. (21)

Whether the primal form of GVI regularizes against the prior with a χ2-divergence or an IPM,
the adversary’s cost function in the dual space additively decomposes into a linear penalty and an
additional term. In the case of the χ2-divergence, this additional term measures the variance of
the perturbation (relative to the prior measure). In essence, this behaviour discourages perturbations
whose fluctuations are large in regions of high prior mass. Furthermore, note that the dual of the IPM

scheme also resembles that of the χ2-divergence except that the IPM imposes a particularly strong
penalty on the adversary: Any perturbation ` that is not in the set λ · H = {λ · h : h ∈ H} incurs
an infinitely large penalty. Conversely, this also means that it will be a relatively weak regularizer.
In both cases, λ → ∞ reduces the constraints on the penalty, however in the primal problem
(GVI), a larger choice of λ suggests the regularization against the prior to be stronger and thus more
constraint.

Example 7 (Wasserstein Autoencoder) Consider the following instantiation: Θ = Z × X where
Z is referred to as a latent space. Let G : Z → X be a fixed mapping and suppose we have a cost
c : X × X → R, then define the following (with θ = (z, x))

L(θ) = c(G(z), x) (22)

Π = {q ∈ P(Θ) : q(Z ×A) = PX(A), A measurable} (23)

The Wasserstein Autoencoder objective (Tolstikhin et al., 2017) is given by

inf
G,q∈Π

(∫
Θ
c(G(z), x)dq(z, x) + λD(F#q, π)

)
, (24)

where D is a divergence, F : Θ→ Z is a projection mapping defined as F (z, x) = z and π ∈ P(Z)
is a prior distribution over the latent space. We remark that it involves two infinums, one over the
function G, which is referred to as the decoder and q, which is the encoder. In the above example,
we show that for a fixed G, we can apply our duality result to the infinum problem over q.

10
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The first term of the minimization over q is referred to as the reconstruction cost and the di-
vergence term serves the role of smoothing the latent space. The choice of D is adhoc and chosen
without well-posed motivation and left by (Tolstikhin et al., 2017) as the subject of theoretical in-
vestigation. For computational convenience, the MMD was chosen in (Tolstikhin et al., 2017) and
furthermore in (Zhang et al., 2019) and (Patrini et al., 2018), the Wasserstein distance is chosen as
the underlying D. Noticing that these prominent choices are both IPMs, we focus on this case where
D = dH with H ⊆ Fb(Z). To relate this to GVI, we require the divergence to be over Θ and not
just Z . This is easily fixed by simply embedding H into Fb(Θ): H̃ = {f(x, z) = h(z) : h ∈ H}.
Moreover, we then define D̃ = dH̃ and π̃ = π × ν where ν ∈ P(X ) is an arbitrary probability
measure. It then follows that the WAE objective is precisely GL,D̃,Π with prior π̃. We now invoke
our main result, noting that Π is closed and convex to derive the dual:

GLG,D̃,Π
= sup

`∈H

(
EΠ [LG + `]−

∫
Z
`(z)dπ(z)

)
. (25)

We use L as LG to remind the dependence on G which makes the contribution to WAE in two-fold.
First, it explicitly comments on the robustness of the encoder q as a solution to this adversarial
problem given that IPMs are natural choices in this setting and therefore complimenting this choice
of D as discussed above, despite theory only existing for when D is an f -divergence (Husain et al.,
2019). Secondly, the minimization problem over G can now be interpreted as a min-max problem:

inf
G

GLG,D̃,Π
= inf

G
sup
`∈H

(
EΠ [LG + `]−

∫
Z
`(z)dπ(z)

)
.

Therefore, the function G is minimizing the worst case reconstruction loss altered by an adversary
budgeted inH with penalty based on the prior π. Thus the result provides a reinterpretation to both
the generator and encoder training of WAE under this choice.

4. Conclusion

In this work, we exploit Fenchel duality to study the optimization-centric view of Bayesian inference
and provide a foundational reinterpretation. Our findings provide commentary for existing methods
such as f -divergence regularization but apply to Wasserstein Autoencoders (WAE) - a setting that
is conceptually seperate from Bayesian inference yet belongs to the same family, attesting to the
generality of our result.

Our work provides a number of avenues that are of particular practical interest. For example,
our results suggest that IPM-regularization could provide more robust posterior inferences. While
exploring applications of this insight goes beyond the scope of the current paper, we will study the
methodological possibilities raised by our results in future work. our results theoretically show the
advantages of using IPMs for robustifying posteriors in many settings whose choice would be studied
for specialized domains. In a similar vein our dual form for the WAE hints at a new algorithm,
our results suggest that IPM-regularization could provide more robust posterior inferences. While
exploring applications of this insight goes beyond the scope of the current paper, we will study the
methodological possibilities raised by our results in future work.

11
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Appendix A. Proofs of Main Results

Before we begin, we introduce some notation that will be used to prove the main results that is
exclusive to the Appendix. We will be invoking general convex analysis on the space Fb(Θ), noting
that Fb(Θ) is a Hausdorff locally convex space (through the uniform norm). We use B(Θ) to
denote the denote the set of all bounded and finitely additive signed measures over Θ (with a given
σ-algebra). For any set D ⊆ B(Θ) and h ∈ Fb(Θ), we use σD(h) = supν∈D 〈h, ν〉 and ιD(ν) =
∞ · Jν /∈ DK to denote the support and indicator functions such as in Rockafellar (1970). We
introduce the conjugate specific to these spaces

Definition 9 (Rockafellar (1968)) For any proper convex function F : B(Θ) → (−∞,∞), we
have for any h ∈ Fb(Θ) we define

F ?(h) = sup
µ∈B(Θ)

(∫
Θ
hdµ− F (µ)

)
and for any µ ∈ B(Θ) we define

F ??(µ) = sup
h∈Fb(Θ)

(∫
Θ
hdµ− F ?(h)

)
.

Theorem 10 (Zalinescu (2002) Theorem 2.3.3) If X is a Hausdorff locally convex space, and
F : X → (−∞,∞] is a proper convex lower semi-continuous function then F ?? = F .

A.1. Proof of Theorem 5

Lemma 11 For any Π ⊆ P(Θ) and L ∈ Fb(Θ), we have

Eco(Π)[L] = EΠ[L]. (26)

Proof For any n ∈ N, we denote ∆n = {α ∈ [0, 1]n :
∑n

i=1 αi = 1}. We then have

Eco(Π)[L] = inf
q∈co(Π)

Eq[L] (27)

= inf
n∈N:α∈∆n,qi∈Π,∀i=1,...,n

E∑n
i=1 αiqi [L] (28)

(1)
= inf

n∈N:α∈∆n,qi∈Π,∀i=1,...,n

n∑
i=1

αiEqi [L] (29)

= inf
n∈N:α∈∆n

n∑
i=1

αi inf
qi∈Π

Eqi [L] (30)

= inf
n∈N:α∈∆n

n∑
i=1

αiEΠ[L] (31)

= EΠ[L], (32)

where (1) holds due to linearity of expectation. Moreover, since EΠ is the infinum of linear function,
it follows that taking the closure will be attained and thus justifies co (Π).

We will employ Theorem 10 to derive the duality result and present in the form of an early Lemma
for consistency in notation.
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Lemma 12 For any prior π ∈ P(Θ), we have

D(q, π) = sup
`∈Fb(Θ)

(
Eq(θ)[`(θ)]− D?π(`)

)
(33)

Proof Using Theorem 10, we have D = D?? since D is proper convex and lower semicontinuous
by assumption and by applying Definition 9, we get the desired result.

We then need a Lemma that takes care of technical conditions

Lemma 13 For any prior π ∈ P(Θ), regularizer D and set Π ⊆ P(Θ), define a function F :
P(Θ)×Fb(Θ)→ R as

F (q, `) = Eq(θ) [L(θ)] + Eq(θ) [`(θ)]− D?π (`) + ιco(Π)(q). (34)

It holds that

inf
q∈P(Θ)

sup
`∈Fb(Θ)

F (q, `) = sup
`∈Fb(Θ)

inf
q∈P(Θ)

F (q, `) (35)

Proof First note that since L, ` ∈ Fb(Θ) and co (Π) is closed and convex (by construction), it holds
that the mapping q 7→ F (q, `) is convex and lower semicontinuous (Penot, 2012). Furthermore note
that D?π(`) is convex and lower semicontinuous for any choice of D and since q ∈ P(Θ) ⊂ B(Θ), it
follows that the mapping ` 7→ F (q, `) is also convex and lower semicontinuous. Next, by endowing
B(Θ) with the topology via Banach-Alaoglu using strong duality between Fb(Θ) and P(Θ), it
follows that P(Θ) is compact (Liu and Chaudhuri, 2018, Lemma 27(b)). Finally, noting that all
conditions for Ky Fan’s minimax Theorem are satisfied (Fan, 1953, Theorem 2), the result follows.

We now proceed to prove the main result.

inf
q∈co(Π)

(
Eq(θ) [L(θ)] + D(q, π)

)
(1)
= inf

q∈co(Π)

(
Eq(θ) [L(θ)] + sup

`∈Fb(Θ)

(
Eq(θ) [`(θ)]− D?π (`)

))
= inf

q∈P(Θ)
sup

`∈Fb(Θ)

(
Eq(θ) [L(θ)] + Eq(θ) [`(θ)]− D?π (`) + ιco(Π)(q)

)
(2)
= sup

`∈Fb(Θ)
inf

q∈P(Θ)

(
Eq(θ) [L(θ)] + Eq(θ) [`(θ)]− D?π (`) + ιco(Π)(q)

)
= sup

`∈Fb(Θ)

(
inf

q∈P(Θ)

(
Eq(θ) [L(θ) + `(θ)] + ιco(Π)(q)

)
− D?π (`)

)
(3)
= sup

`∈Fb(Θ)

(
Eco(Π)(L+ `)− D?π (`)

)
(4)
= sup

`∈Fb(Θ)
(EΠ(L+ `)− D?π (`)) ,

where (1) is due to Lemma 12, (2) is due to Lemma 13, (3) is by definition of EΠ and (4) holds due
to Lemma 11. The proof concludes by noting that the dual of λD(·, π) is λD?π(·/λ).
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A.2. Proof of Theorem 7

First note that EqD,L,Π(θ) [L(θ) + `∗(θ)] ≥ infq∈Π Eq(θ) [L(θ) + `∗(θ)] by definition. For the other
direction, we have

inf
q∈Π

Eq(θ) [L(θ) + `∗(θ)]− EqD,L,Π(θ) [L(θ) + `∗(θ)]

=

(
EΠ[L+ `∗]− λD?π

(
`∗

λ

))
+ λD?π

(
`∗

λ

)
− EqD,L,Π(θ) [L(θ) + `∗(θ)]

(1)
= sup

`∈Fb(Θ)

(
EΠ[L+ `]− λD?π

(
`

λ

))
+ λD?π

(
`∗

λ

)
− EqD,L,Π(θ) [L(θ) + `∗(θ)]

(2)
= inf

q∈Π
(Eq[L] + λD(q, π)) + λD?π

(
`∗

λ

)
− EqD,L,Π(θ) [L(θ) + `∗(θ)]

(3)
= EqD,L,Π[L] + λD (qD,L,Π, π) + λD?π

(
`∗

λ

)
− EqD,L,Π(θ) [L(θ) + `∗(θ)]

= λD (qD,L,Π, π) + λD?π

(
`∗

λ

)
− EqD,L,Π(θ) [`∗(θ)]

(4)

≥ 0,

where (1) is due to the optimality of `∗, (2) is via Theorem 5 noting that Π is closed and convex
by assumption, (3) is due to optimality of qD,L,Π and (4) holds by applying the Fenchel-Young
inequality on D.

A.3. Proof of Example 4

Note that when we pick D as an f -divergence, there is a standard result we can recall in the following
lemma.

Lemma 14 For any lower semicontinuous convex function f : R → (−∞,∞] with f(1) = 0 so
that Dπ = Df (·, π), µ ∈ P(Θ) and h ∈ Fb(Θ), it holds that

D?π(h) = inf
b∈R

(Eπ[f?(h− b)] + b) , (36)

where f?(t) = supt′ (tt′ − f(t′)) is the convex conjugate.

A proof of this result can be found in Equation (22) of (Liu and Chaudhuri, 2018). Using this, we
can now prove the example for the Kullback-Leibler and χ2 divergences.

A.4. Proof of Example 3

Noting that f?(t) = exp(t− 1), the inner b problem can easily be solved:

inf
b∈R

(Eπ[exp(h− b)] + b) = inf
b∈R

(exp(−b) · Eπ[exph] + b) (37)

= logEπ[exph] (38)
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A.5. Proof of Example 5

In this case we have f?(t) = t + t2

4 and in particular (λf)?(t) = t + t2

4λ . The infinum problem,
similar to the KL case becomes easily tractable:

inf
b∈R

(
Eπ[h] +

1

4λ
Eπ
[
(h− b)2

])
= Eπ[h] +

1

4λ
inf
b∈R

Eπ
[
(h− b)2

]
(39)

= Eπ[h] +
1

4λ
Varπ[h] (40)

A.6. Proof of Example 6

For this case, we invoke (Husain, 2020, Lemma 5) which in combination with our main result yields
the desired result.
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