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Semantic Segmentation
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Abstract—Video data bring a big challenge to semantic seg-

mentation due to the large volume of data and strong inter-

frame redundancy. In this paper, we propose a dual local and

global correlation network tailored for efficient video semantic

segmentation. It consists of three modules: 1) a local attention

based module, which measures correlation and achieves feature

aggregation in a local region between key frame and non-key

frame; 2) a consistent constraint module, which considers long-

range correlation among pixels from a global view for promoting

intra-frame semantic consistency of non-key frame; and 3) a key

frame decision module, which selects key frames adaptively based

on the ability of feature transferring. Extensive experiments on

the Cityscapes and Camvid video datasets demonstrate that our

proposed method could reduce inference time significantly while

maintaining high accuracy. The implementation is available at

https://github.com/An01168/DCNVSS.

Index Terms—Video semantic segmentation, local attention,

consistent constraint, key frame selection

I. INTRODUCTION

S
EMANTIC segmentation is a fundamental task of com-
puter vision. With the aim of predicting labels for each

pixel in an image, semantic segmentation could facilitate the
perception and understanding of scene. It has been widely used
in a variety of applications, e.g. autonomous driving [1], [2],
urban management [3], robot vision [4].

With the proposal of FCN [5], semantic segmentation can be
achieved by an end-to-end deep convolutional neural network.
Many subsequent approaches [6]–[13] have been proposed to
make further improvements. Although these methods achieve
significant performance on image data, they have limited
performance on video data, without considering the temporal
information among frames.

Video signal is easy to be obtained in daily life, such as from
autonomous driving and road monitoring. Methods designed
for video processing have drawn increasing attention recently.
However, semantic segmentation of video data remains a chal-
lenging problem. Compared with image data, video produces
a much larger volume of data, e.g. 30 frames per second in
Cityscapes [1]. The large volume of data would bring big
computing and storage burden to systems.

To increase efficiency, there have been several methods [14],
[15], [17], [19] specially designed for video semantic seg-
mentation. The common way is to accelerate segmentation
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Fig. 1: Accuracy and inference time of various video semantic
segmentation methods on the Cityscapes val dataset. Methods
include DAVSS [14], LLVS [15], Accel [16], DFF [17],
GRFP [18], Clockwork [19], THA [20], EVS [21], DVS [22],
DVRL [23] and Ours. Red triangles denote our methods
and blue dots denote other methods. In ascending order of
inference time, our methods are performed on three conditions:
adopting fixed time schedule on lightweight basic model,
adopting fixed time schedule and KDM schedule separately
on large basic model; while THA are performed on two
conditions: adopting fixed time schedule on lightweight basic
model and large basic model separately. Our methods achieve
the highest accuracy while maintaining competitive inference
speed on both lightweight and large basic models.

speed via reducing computing redundancy, e.g. DFF [17],
LVSS [15], DAVSS [14]. They utilize the similar characteristic
of consecutive frames in video, getting the feature map of
current frame by propagating features from previous frames.
Although these methods could increase efficiency, they need
to estimate optical flow [24], [25] or add an extra network
module to achieve the propagating process, which is time-
consuming. Clockwork [19] adopts the high-level feature map
of previous frame into current frame straightly, which further
reduces inference time, but this makes the segmentation ac-
curacy unsatisfactory due to the difference between these two
frames. Moreover, the above methods only consider the inter-
frame propagating, but ignore the correlation among pixels
in the same frame, which reduces the accuracy of semantic
segmentation.

Therefore, in this paper, to address big redundancy of video
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data and the lack of considering intra-frame correlation, we
propose a dual local and global correlation network by leverag-
ing two complementary modules: a local attention based mod-

ule, which propagates high-level feature of previous frame in
a local and non-parametric way, for increasing efficiency; and
a consistent constraint module, which considers long-range
correlation among pixels from a global view, for promoting
intra-frame semantic consistency and increasing accuracy.

The local attention based module selectively aggregates
high-level semantic information from previous frame to cur-
rent frame. The aggregating weight is determined by the
similarity between two positions in low-level features of two
frames. It does not rely on any flow network or extra network
module, and thus can produce a highly efficient propagating
process. The consistent constraint module is motivated by
knowledge distillation [26]–[29], and the goal is to promote
semantic consistency of the feature of non-key frame, via
obtaining global context information from the feature that is
produced from same frame but in a key-frame segmentation
framework. It could increase the accuracy of non-key frame
effectively, without increasing any inference loads.

In addition, the scene is changing in the video, where objects
sometimes move violently, sometimes smoothly. Hence it is
reasonable to adaptively change the frequency of key frame
selection based on the situation of scene, e.g., selecting key
frames frequently when scene changes dramatically, and in-
frequently when scene changes regularly. Therefore, different
from the common way to select key frames in a fixed interval
in [14], [16], [17], [20], this paper proposes an adaptive key
frame selection strategy, which takes the propagating ability of
the proposed dual correlation network as criterion. We define
potential prediction error (PPE) to measure this propagating
ability from key frame to current frame. The higher the PPE
is, the worse the propagating performance is, and the more
possibility the current frame is regarded as key frame. With the
proposed key frame selection strategy, we are able to utilize
computational resources more efficiency, or further improve
the segmentation performance given a fixed number of key
frames.

Fig. 1 shows several comparisons of recent efficient video
semantic segmentation methods on accuracy and inference
time. We can see that our method achieves the highest accuracy
while maintaining competitive inference speed.

In summary, our main contributions are as follows:

• We propose a tailored approach to efficient video se-
mantic segmentation by leveraging two complementary
modules for considering both efficiency and accuracy: a
local attention based module and a consistent constraint

module.
• The local attention based module gets the feature of

current frame via propagating the high-level feature from
previous frame in a local and non-parametric way, for
high segmentation efficiency. The consistent constraint
module considers the long-range correlation among pixels
within current frame, for promoting semantic consistency
and increasing accuracy, without increasing any inference
burden.

• In addition, we also propose a novel adaptive key frame
selection strategy based on the ability of feature transfer-
ring, which is capable of saving computational resources
and further improving the segmentation performance.

In the rest of this paper, Section II provides a preview of
recent research in image and video semantic segmentation.
Section III details the proposed method, which includes local
attention based module, consistent constraint module, and key
frame selection strategy. Section IV presents experiments and
analysis. Section V makes a summary of this paper.

II. RELATED WORK

A. Image Semantic Segmentation

Most existing works on semantic segmentation are at the
image level, and they can be regarded as the basis of video-
based tasks. FCN [5] proposes an end-to-end framework
utilizing deep neural network for image semantic segmenta-
tion, and achieves remarkable performance. Many subsequent
approaches have been proposed based on FCN, for improving
accuracy or efficiency. In [6], [7], [11], [30], [31], muti-scale
features are obtained to enlarge receptive field via dilated con-
volutions or skip connection. In [32], the structural information
of objects is extracted based on self-attention mechanism
to increase the segmentation accuracy. Strong backbones,
e.g. Resnet [33], GoogleNet [34] and DenseNet [35], are
exploited to get high segmentation accuracy. To gain context
information, ReSeg [36] and DAG-RNN [37] make use of
recurrent neural network; [9], [10], [38], [39] utilize attention
mechanism; SETR [40] and SegFormer [41] adopt transformer.
They are able to model relationship among pixels and get
good segmentation performance. By means of lightweight
models, e.g. SFANet [42], LEDNet [43] and BiseNet [44],
high efficiency could be achieved. However, these methods do
not consider the temporal information among frames, which is
crucial for video-based tasks, and have a limited performance
on video semantic segmentation. Therefore, it is meaningful
to develop methods tailored for video semantic segmentation.

B. Video Semantic Segmentation

Video semantic segmentation can be regarded as an ex-
tension of image semantic segmentation. Unlike image data,
video data have the characteristics of large amount, strong
inter-frame redundancy and sparse annotations. Based on how
to exploit temporal information, existing video segmentation
methods could be mainly divided into two groups. One group
is to improve accuracy via obtaining extra information from
adjacent frames. For example, [18], [45]–[47] adopt optical
flow to warp the features of neighboring unlabelled frames
to current frame, and fuse multi-frame features via RNN or
temporal constraint. [48]–[50] utilize LSTM or 3D convolu-
tion to model temporal information and gain spatio-temporal
feature. [51], [52] build video prediction models to predict the
labels of future frame, and those labels can be regarded as
new samples or supplementary information to help training.
TMANet [53] and LMANet [54] use attention mechanism
to read relevant semantic information from previous frames,
for making features more representative. SSVOS [55] uses a
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Fig. 2: The diagram of proposed framework. The time index of the first key frame is k, its low-level feature F k
l and high-level

feature F k
h are extracted from lower part of the encoder El and higher part of the encoder Eh. For the later time index k+n,

(n > 0), the low-level feature F k+n
l is firstly extracted. Based on both F k+n

l and F k
l , the local weight coefficient W k,k+n is

calculated via local attention based module (LAM). Then based on F k+n
l , F k

l and W k,k+n, the key frame decision module
(KDM) will decide if the k + n frame should be regarded as a new key frame. If the decision is yes, the high-level feature
F k+n
h is obtained from higher part of the CNN Eh; otherwise, F k+n

h is calculated by propagating from F k
h with W k,k+n, and

the overall feature F k+n is derived by combining F k+n
h with the adaption of low-level feature F k+n

l and the supervision of
consistent constraint module (CC). Finally, a decoder D is applied on the high-level feature, which is obtained in either way,
to get segmentation results.

scribble attention module and a CRF based regularized loss
to make features get more accurate context information and
improve segmentation accuracy under scribble-level supervi-
sion condition. SPR [56] proposes a bidirectional propagation
process, and builds forward and backward dictionaries to
model inter-frame relationship. However, these methods need
to build extra modules on the top of high-level features to
combine temporal information, which is low in efficiency
and hard to satisfy the real-time requirements of practical
application.

The other group is to improve efficiency via reducing com-
puting redundancy. Clockwork [19] adopts high-level feature
of previous frame into current frame straightly, which reduces
inference time significantly, but the misalignment of these
two frames makes the segmentation accuracy unsatisfactory.
ETC [57] considers temporal consistency in the training stage,
and segments each frame independently in the inference stage.
It is able to increase the accuracy, but cannot accelerate the
inference speed. DFF [17], DVSNet [22] and DAVSS [14]
warp the feature of previous frame to current frame with
the aid of optical flow. However, it is time consuming to

estimate the optical flow, and the evaluated error would
cause bad effect on the warping process. Instead of using
optical flow, LLVS [15] builds a weight prediction network
for propagating feature, which achieves good performance
on large basic model, but has less advantage on lightweight
basic model since the time used for weight prediction is non-
negligible. THA [20] performs feature propagation via holistic
attention, and achieves very fast inference speed, e.g. 131 fps
on the Cityscapes dataset. However, it only considers feature
transforming on one-to-one same position between key frame
and non-key frame, which is unreasonable as the objects keep
on moving. Hence, the accuracy of THA is unsatisfactory.

Different from the one-to-one pattern, this paper considers
the correlation between one position in non-key frame and the
local area with the center at the corresponding position in key-
frame, by means of local attention mechanism. Our proposal
is able to achieve high efficiency while keeping good accuracy
on both large and lightweight basic networks.

III. PROPOSED METHOD

In this section, we first give an overview of the whole
framework, and then elaborate three modules respectively.

Page 7 of 18 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



MANUSCRIPT TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

Fig. 3: The local correlation map of low-level and high-level
features on two adjacent frames.

A. Framework Overview

In this paper, we adopt the common paradigm in video
processing, propagating feature from key frame to non-key
frame by considering inter-frame similarity. For key frame,
the segmentation result is obtained from main model, which
is the same as that in image segmentation, with high accuracy
but slow inference speed. For non-key frame, the high-level
feature is propagated from key frame, which costs much less
computing time than producing it from scratch.

There are two crucial problems in this framework: how to
set key frames and how to propagate high-level features from
key frames to non-key frames. Since low-level features in the
network are relatively less costing to extract, and they also
contain rich semantic information to reflect the characteristics
of frames, the proposed method takes advantage of them to
solve the two problems. Specifically, the key frame decision
module (KDM) estimates potential prediction errors based
on low-level features, and then uses them as a measure to
select key frames. The local attention based module (LAM)
calculates local corresponding relations on low-level features,
and then uses them as weight coefficients to propagate high-
level features from key frames to non-key frames. Moreover,
the consistent constraint module (CC) is applied to further
promote the semantic consistency.

Our proposed framework is diagramed in Fig. 2, in which
a convolutional neural network is applied to extract features.
The encoder is split into two parts: lower part El and higher
part Eh. In the inference stage, given a video, to initialize
the whole segmentation process, the first frame is set as a
key frame, the index of which is k, and the segmentation
result is obtained from the main model, in which both low-
level feature F k

l and high-level feature F k
h are calculated. For

the subsequent frame as current frame, the index of which
is k + n, (n > 0), the segmentation process is conducted
adaptively. The low-level feature F k+n

l is firstly extracted from
El. Then the local weight coefficient W k,k+n is calculated via
LAM with the input of both F k+n

l and F k
l . The next step is

to determine whether to set the k + n frame as a new key
frame. Two low-level features F k

l , F k+n
l and corresponding

local weight coefficient W k,k+n are input into KDM, to reach
the judgement, depending on the feature propagating ability.
If the output of KDM is 0, the k+n frame is not selected as a

Fig. 4: The diagram of propagating features from key frame to
non-key frame. Let Ik denote key frame, Ik+n denote non-key
frame. The low-level features F k

l , F k+n
l are extracted firstly,

then based on these two features, local similarity calculation
is applied to obtain weight W k,k+n. Using W k,k+n, the high-
level feature of non-key frame F k+n

h is calculated via linear
combinations of corresponding local neighbors on the high-
level feature of key frame F k

h . Finally, F k+n
h is used to predict

segmentation results.

key frame, the high-level feature F k+n
h is propagated from the

previous key frame, and also supervised by CC for promoting
semantic consistency. In addition, to make model more robust
against scene changes, same as in LLVS [15], both F k+n

l and
F k+n
h are used to predict final results, where F k+n

l is adapted
by means of three convolution layers and then concatenated
with F k+n

h together. A simple decoder is applied to get the
final segmentation result. If the output of KDM is 1, the k+n
frame is selected as a new key frame, and gets result from
lower part encoder, higher part encoder and decoder section.
The subsequent frames are compared and propagated with this
new key frame.

As the cost of producing low-level feature and propagating
high-level feature is much lower than producing high-level fea-
ture from scratch, our proposed method can decrease compu-
tation and inference time largely. Furthermore, the appropriate
key frame selection is able to increase overall accuracy.

B. Local Attention Based Module

1) Motivation: Since the difference is minor between con-
secutive frames in a video, we can find the corresponding
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relations in a local neighbouring area between key frame
and non-key frame, where the similarity of features can be
utilized as weight for propagation. To obtain weights, one
intuitive method is to calculate local similarity based on
high-level features directly, e.g. DMVOS [58]. However, this
way defeats the purpose of reducing computation by omitting
the generation of high-level features. In Fig. 3, we choose
two adjacent frames and present their local correlation map
between red dot position of image1 and corresponding local
neighbouring area in yellow rectangle of image2 on low-level
(Fig. 3(c)) and high-level (Fig. 3(d)) features separately. It
could be seen that they have similar feature correlation in a
local scope on different levels, for the reason that pixels belong
to same category tend to have similar feature on both low-
level and high-level aspect in the same network. Motivated by
this observation, also considering low-level features are much
less costly to obtain, this paper adopts low-level features to
calculate the weights for propagating high-level features from
key frames to non-key frames.

2) Feature Propagation: This paper utilizes local attention
mechanism [59] to conduct feature propagation. The detailed
process is illustrated in Fig. 4.

Assume the key frame is Ik and non-key frame is Ik+n.
Their low-level features F k

l , F k+n
l are obtained from lower

part of encoder El, the size is N2⇥H2⇥W2, where H2, W2,
N2 represent height, width, number of channels respectively.
Then the weight W k,k+n is obtained via local similarity
calculation with the input of both F k

l and F k+n
l . The high-

level feature of key frame F k
h with size N ⇥ H ⇥ W is

calculated from higher part of encoder Eh. With F k
h and

W k,k+n, the high-level feature of non-key frame can be
obtained as

F k+n
h (i, j) =

rX

x=�r

rX

y=�r

W k,k+n
i,j (x, y)F k

h (i� x, j � y) (1)

where i,j denote the coordinates of a pixel in the feature map,
i 2 {1, . . . ,W}, j 2 {1, . . . , H}, and R is length and width
of the local area, r = (R � 1)/2. Same weights are used in
different channels. After getting F k+n

h , a simple decoder is
applied to obtain the segmentation result of non-key frame.
The cross entropy loss with ground-truth label is utilized to
supervise the training of model.

3) Local Similarity Calculation: In this section, we elabo-
rate the way to calculate weight W k,k+n corresponding to the
part in the orange dotted box in Fig. 4.

As illustrated in Fig. 5, two low-level features F k
l , F k+n

l
get bilinear interpolation firstly to make their width and height
the same as those of the high-level features, then reduce the
number of channels to 1/4 of the original number via 1 ⇥ 1
convolution. The size of new features F k

2 , F k+n
2 is C⇥H⇥W .

For each position (i, j) of F k+n
2 , where i 2 {1, . . . ,W}, j 2

{1, . . . , H}, with size 1 ⇥ 1 ⇥ C, there is a local area in F k
2

that could be referred to, where the center is (i, j) and the
length and width is R. The weight could be calculated as

W k,k+n
i,j (x, y) = F k+n

2 (i, j)F k
2 (i� x, j � y) (2)

where x, y represent the displacement relative to the central
position (i, j), and x, y 2 {�(R� 1)/2, . . . , (R� 1)/2}. The

Fig. 5: The diagram of local similarity calculation.

computational complexity of local similarity is O(CHW ⇥
R2), where R << H,W .

C. Consistent Constraint Module

1) Motivation: Previous video semantic segmentation
methods only attend to building dependency between key
frame and non-key frame, but ignore the correlation of pixels
within non-key frame, which is crucial for promoting semantic
consistency and increasing accuracy. For results obtained from
only key frame feature propagation, as shown in the first
and third row in Fig. 6, we visualize the map of correlation
between one randomly selected position, marked by red dot
in input image, and all other positions in the same image
on high-level feature. Without the consideration of context
information within non-key frame, the intra-class similarity
and inter-class difference of features are indistinct, e.g. the
distinction between the upper part of the car and the building
is weak (shown in the first row of Fig. 6(b)); and the line
between road and sidewalk is blurred (shown in the third
row of Fig. 6(b)). Therefore, the phenomenon of inconsistent
segmentation results inside the object is easy to occur.

Fig. 6: The effectiveness of consistent constraint (CC): (a) two
input images and their ground-truth segmentation: for each
input image, a point is selected randomly and marked by red
dot; (b) the visualization of correlation map of the given point;
(c) segmentation results; (d) zoomed segmentation results.
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Motivated by knowledge distillation methods [26]–[28],
[60], [61], which are able to increase the accuracy of multi
tasks via transferring the specific knowledge from each single
task or increase the accuracy of small student network via
transferring context information from large teacher model,
a consistent constraint module is proposed to enrich the
long-range dependency among pixels within non-key frame
by distilling it from the feature obtained from key frame
segmentation. It could promote semantic consistency of non-
key frame, and do not add any computing burden at the
same time. Moreover, with the aim of transferring context
knowledge, instead of aligning feature maps directly [61], we
use the pair-wise similarity among pixels as knowledge.

2) Consistent Constraint (CC): Assume the current frame
Ik+n is judged as non-key frame, and the high-level feature
via propagating from previous key frame is A. If Ik+n is
processed as key frame segmentation, the corresponding high-
level feature is B. Compared with feature A, feature B con-
tains more context information due to the better segmentation
performance it achieves. Therefore, feature B can be regarded
as teacher, to transfer context knowledge to feature A.

Following [26]–[28], we use pair-wise correlation map to
represent global context information. By assuming feature A
is with size N ⇥ H ⇥ W , the correlation map GA could be
calculated as

gAij =
1

H ⇥W
· aiaj
kaik2kajk2

(3)

where gAij is the element of GA, and i, j 2 {1, . . . , H ⇥W}.
ai, aj are the feature vectors in A, which are located in
positions i, j respectively, with size N ⇥ 1. Cosine similarity
is used to measure the similarity of two positions in feature.
Let GB represent the correlation map of feature B. The L2

loss is adopted to formulate the consistent constraint loss as

LCC = kGA �GBk22 (4)

It is noteworthy that the consistent constraint loss is only
applied in the training stage, and it does not increase any
computation in the inference stage.

3) Total Loss: The total loss comprises the cross entropy
loss Lce with ground-truth labels and the consistent constraint
loss:

L = Lce + ↵LCC (5)

where ↵ is a hyper-parameter to balance the effect of these
two losses. We set ↵ as 20 in this paper, to make the ranges
of two loss values comparable.

4) Visualization of Results with and without CC: To verify
the effectiveness of CC module, we present the segmentation
results and correlation map of high-level features with and
without the CC. As shown in Fig. 6, after CC is applied,
the intra-class similarity and inter-class difference of features
are enhanced, e.g. features in the upper part of the car are
more similar to the features in the center part, and distinguish
significantly from the building behind (shown in Fig. 6(b) of
the first image); the semantic consistency inside the sidewalk
is enhanced, and the boundary between road and sidewalk
gets clearer (shown in Fig. 6(b) of the second image). The

long-range dependencies enriched by CC help model make
more robust decisions, as shown in the segmentation results
in Fig. 6(c-d), where the number of misclassified pixels inside
objects has been reduced.

D. Key Frame Selection Strategy

1) Motivation: Different from the common way to select
key frames in a fixed time interval, LLVS [15] proposes a
key frame selection strategy according to the situation of
scene changing, which utilizes the ratio of different labels
between previous key frame and current frame as a criterion to
judge whether current frame should be regarded as key frame.
Nevertheless, there exists such a situation: Although the ratio
of different labels between key frame and current frame is
large, the objects are moving regularly, and no new objects
appear. It is more reasonable to regard the current frame as
non-key frame in this situation, other than key frame as defined
by LLVS [15].

Motivated by this observation, this paper proposes a novel
adaptive key frame selection strategy, which takes the propa-
gating ability of proposed dual correlation network as criterion.
If the scene changes a lot, beyond the propagating ability of
proposed method, the current frame is set as new key frame.
Otherwise, if the scene changing only has a mild adverse effect
on the performance of propagating process, the current frame
is set as non-key frame.

2) Key Frame Decision Module (KDM): The common way
of key frame selection is to select key frames in a fixed time
interval, as shown in Fig. 7(a), it selects one key frame in
every three frames. Different from the fixed time interval
selecting strategy, this paper selects key frames adaptively,
which defines potential prediction error (PPE), and uses it
to select key frames. As shown in Fig. 7(b), to initialize the
entire segmentation process, the first frame of a video is set
as key frame, then the PPE between this key frame and the
current frame is calculated. If PPE is smaller than a threshold,
the current frame is set as non-key frame. Otherwise, the
current frame is set as a new key frame, and subsequent frames
calculate PPE with this new key frame.

Fig. 7: The processes of two key frame selection strategies.

The key to the propagating ability of proposed model is the
local weights learned from low-level features. Since the upper
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Fig. 8: The diagram of predicting PPE and the network
training: (a) The process to calculate PPE as defined. Key
frame Ik and current frame Ik+n are input into lower part
of encoder El, higher part of encoder Eh, decoder D to get
the probability outputs pk and pk+n. Based on pk and the
local weight W k,k+n (obtained from LAM), the propagated
probability output p

0k is calculated. Then the label outputs
O(p

0k), O(pk+n) are obtained to calculate the ratio of different
labels, which is the ground truth PPE. (b) The network of
predicting PPE. Low-level features F k

l , F k+n
l are extracted

from El, and corresponding local weight W k,k+n is obtained
from LAM. Based on F k

l and W k,k+n, the propagated low-
level feature F

0k
l is calculated. With the input of F

0k
l �F k+n

l ,
the decision network will predict the value of PPE.

bound of propagating ability is when the result produced from
local weight propagating is the same as the result produced
from key frame segmentation, we define the difference of these
two segmentation results as a criterion to measure the ability.
The local weight represents the degree of local similarity
between key frame and current frame, and we use it with the
probability output to calculate difference.

Assume the probability outputs of key frame Ik and current
frame Ik+n are pk and pk+n respectively via key frame
segmentation, as shown in Fig. 8(a). The size of pk and pk+n is
M ⇥H ⇥W , where M is the number of categories in labels.
The local weight between two frames is W k,k+n with size
R2 ⇥H ⇥W . It is worth noting that the probability output is
selected before interpolation and softmax operation in decoder.
The probability output which is propagated from key frame via
local weight can be written as

p
0k(i, j) =

rX

x=�r

rX

y=�r

W k,k+n
i,j (x, y)pk(i� x, j � y) (6)

where i 2 {1, . . . ,W}, j 2 {1, . . . , H}, r = (R� 1)/2.
The potential prediction error (PPE) is calculated as

PPE =
D(O(p

0k), O(pk+n))

Q
(7)

where O(·) represents the final label output of each probability
output, D(·) is a function that counts the number of pixels
which have different predicting labels, Q represents the total
number of pixels in final label output. The larger the PPE, the
bigger the difference between two segmentation results, and
the weaker the propagating ability.

However, the probability output of current frame cannot be
obtained in inference stage, a regression model is needed to
be built for predicting PPE. To obtain PPE without calculating
probability output, similar to our LAM, we utilize low-level
features to predict it. In detail, as shown in Fig. 8(b), given key
frame Ik and current frame Ik+n, their low-level features F k

l ,
F k+n
l and corresponding local weight W k,k+n are calculated.

The low-level feature of current frame via propagating from
key frame is

F
0k
l (i, j) =

rX

x=�r

rX

y=�r

W k,k+n
i,j (x, y)F k

l (i� x, j � y) (8)

where i 2 {1, . . . ,W}, j 2 {1, . . . , H}, r = (R� 1)/2.
Considering the positive correlation between F

0k
l � F k+n

l
and PPE, we build a simple decision network to predict PPE
with the input of F

0k
l �F k+n

l . It consists of one convolutional
layer, one average pooling layer and two full-connected layers.
MSE loss is adopted to supervise the training of decision
network with the ground truth PPE, which is defined in Eq.(7).
Note that the ground truth PPE is only used for training, and it
is not accessible in inference stage. The low-level features F k

l ,
F k+n
l need to get bilinear interpolation at first to make their

width and height the same as those of the high-level feature,
then go on propagating by using Eq.(8).

IV. EXPERIMENTS

In this section, we start by an introduction to video datasets
and implementation details, and then perform ablation studies
to validate each module of the proposed method. Finally, we
present segmentation performance on two public datasets, and
compare our method with recent approaches.

A. Datasets

1) Cityscapes: The Cityscapes dataset is an urban street
scene dataset, which contains 2975, 500, and 1525 snippets
for training, validation and testing, respectively. The dataset
is sparsely annotated. Each snippet has 30 frames of images,
and only the 20th frame has dense pixel annotations, with 19
classes for evaluation.

2) Camvid: The Camvid dataset is a driving scene dataset.
It contains three videos, with scenes at daytime and dusk. It
annotates 701 images in detail, and they are divided into 367
images for training, 100 images for validation, and 233 images
for testing. The number of semantic classes is 11.

B. Implementation Details

To validate that our proposed method can perform well in
both cumbersome model and lightweight model, this paper
chooses two public models as basic models: PSPNet101 [7]
and Bisenet18 [44].
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1) Network Structure: For PSPNet101, conv4 3 is choosed
to be a split point between low-level feature and high-level
feature. For Bisenet18, conv3 1 is choosed as the split point.
In general, the higher layer the split point chooses, the better
accuracy the segmentation results achieve, but then the more
time is needed to generate low-level feature and perform
propagating. To balance the accuracy and efficiency, we choose
suitable split points for each model after several experiments.

For LAM, if the width or height of low-level feature is
different from that of the high-level feature, the low-level
feature gets bilinear interpolation at first to make its width and
height the same as those of the high-level feature. In the local
similarity calculation, to reduce computation, two low-level
features of key frame and non-key frame reduce the number of
channels to 1/4 of the original number via a convolution layer
with 1⇥1 kernels. Then the local weight is calculated by using
Eq.(2). In the feature propagation, the high-level feature of key
frame reduces the number of channels to 1/8 of the original
number firstly via a convolutional layer with 3 ⇥ 3 kernels.
Then the feature is propagated by using Eq.(1). In addition, to
make the model more robust against scene changes, the low-
level feature of non-key frame is also used for final prediction.
It adjusts the number of channels to the number of propagated
high-level feature via a convolutional layer with 3⇥3 kernels,
and then is fed to two other convolution layers with the same
number of channels and 3⇥3 kernels. Finally, the adapted low-
level feature is concatenated with the propagated high-level
feature to predict segmentation results. The Cross Entropy
Loss and the proposed Consistent Constraint Loss are adopted
to train this module.

The KDM takes two low-level features of key frame and
non-key frame and the corresponding local weight as input,
and the output is potential prediction error. Same as in LAM,
the two low-level features need to get bilinear interpolation
firstly to align their width and height with those of the
high-level feature, which subsequently reduce the number of
channels to 1/4 of the original number via a convolution layer
with 1 ⇥ 1 kernels. To further reduce computation, we adopt
the encoder-decoder mode for low-level feature propagation.
In detail, following the above operation, another convolutional
layer with 1 ⇥ 1 kernels is applied on the low-level feature
of key frame to reduce the number of channels from 1/4 to
1/16 of the original number. Then this feature is propagated
by using Eq.(8) with the corresponding local weight, and
then recovered the number of channels to 1/4 of the original
number via a convolutional layer with 1 ⇥ 1 kernels. The
propagated low-level feature of key frame is subtracted from
the low-level feature of non-key frame, and then put into a
decision network to get the value of potential prediction error,
which contains one convolutional layer with 3 ⇥ 3 kernels,
one average pooling layer and two full-connected layers. The
MSE Loss is adopted to train this module.

2) Training: The basic networks PSPNet101 and Bisenet18
are firstly trained with image data and ground truth labels. As
the dataset is sparsely annotated, we choose a pair of images
each time to train LAM and KDM modules. The second image
of each pair is with ground truth labels, while the first image
is a preceding frame that is randomly selected from [1,10]

interval. The first image of each pair is regarded as key frame,
and the second image is regarded as current frame. The next
step is to train the LAM module, in which the segmentation
results of current frame and the corresponding ground truth
labels are utilized to supervise the training of model. In the
training stage, the parameters of feature extraction are kept
unchanged, and we fine-tune the parameters of LAM. The last
step is to train KDM with the ground truth PPE, and in the
training stage, the parameters of feature extraction and LAM
are kept unchanged, and we only fine-tune the parameters
of KDM. The training data are augmented via randomly
scaling, rotating, flipping, and cropped into size 713⇥713 for
Cityscapes and 360⇥480 for Camvid. The stochastic gradient
descent (SGD) is adopted in the training, with initial learning
rate 0.1, 0.01 for LAM, KDM respectively, and poly learning
rate strategy with power 0.9.

3) Evaluation Metrics: For evaluating accuracy, this paper
adopts mean Intersection Over Union (mIOU) as criterion.
IOU is the ratio of intersection to union between segmentation
results and ground truth labels for each category, while mIOU
is the average of IOU over all object categories. To evaluate
efficiency, this paper measures the inference time of processing
a frame in GTX 1080Ti. The inference time is calculated in
a single scale with input size 713 ⇥ 713 for Cityscapes, and
360 ⇥ 480 for Camvid. In this paper, Time(ms) and FPS(f/s)
both represent the inference time. Time(ms) is the average
time needed to process one frame, and FPS(f/s) is the number
of frames processed per second.

The mIOU and inference time of video semantic segmenta-
tion are calculated as the average over one period of frames.
Let It denote the frame with ground truth labels in the video,
(It�m, It) represent all possible groups in which It�m is a
key frame and It is a non-key frame. For a fixed interval key
frame selection strategy with period T1, m 2 [0, T1 � 1]. For
our proposed KDM selection strategy, m 2 [0, T2 � 1], where
the PPE between It�m and It is lower than the specified
threshold, and the PPE between It�T2 and It is higher than
the threshold. The mIOU and inference time are calculated as
the average over (It�m, It).

C. Ablation Studies

1) Search Region R: Assume R is the length and width
of searching region. This section evaluates the impact of
searching region on segmentation performance, and selects
suitable one for subsequent experiments, as shown in Table I.

TABLE I: Performance of different searching regions with
PSPNet101 as the basic network on the Cityscapes val dataset.
The best is in bold.

R 5 7 9 11 13
mIOU(%) 73.29 73.35 73.45 73.64 73.54
Time(ms) 131 137 139 154 187

In this section, the interval of key frame is fixed and set as
5. From Table I, we can make the following observations.
First, the inference time is increased when enlarging the
searching region, for the reason that the computing complexity
of processing non-key frame is O(CHW ⇥ R2). Second,
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we observe the accuracy is also increased as R is increased,
since more useful information in key frame is aggregated and
transferred to non-key frame. Third, the accuracy achieves a
peak for R = 11. We conjecture that too large searching
region may introduce noise and cause feature mismatching,
which have an adverse effect on the results. Therefore, a
reasonable size is needed to be selected. Although the accuracy
for R = 11 is the highest, the inference speed is slow. To get
a trade-off between accuracy and efficiency, we choose R = 9
in the following experiments.

2) The Construction of KDM: This section shows several
factors that affect the performance of key frame selection, as
shown in Table II. With different criteria and inputs, the same
decision network structure is used to predict the value, which
contains one convolutional layer, one pooling layer and two
full-connected layers. Two criteria are adopted to select key
frame, one is label difference [15], which takes the ratio of
different labels between key frame and current frame as a
criterion, and the other one is our PPE. First, we compare the
results with these two criteria. The mIOU of the ground truth
PPE criterion is higher than the mIOU of ground truth label
difference criterion. It verifies the superiority of our proposed
key frame selection strategy, since our strategy considers the
processing ability of modules against scene changes, which is
ignored in label difference criterion. The mIOU of predicted
PPE criterion is also higher than the mIOU of predicted label
difference criterion.

Second, different inputs fed to decision network affect
the error of predicting value, then affect the segmentation
results. Same as the input of predicted label difference criterion
[15], F k

l � F k+n
l is fed to decision network to predict PPE.

However, the error between predicted PPE and ground truth
PPE is higher than the error in label difference predicting.
To increase the positive correlation between input and PPE,
we use W k,k+nF k

l � F k+n
l as input since PPE is calculated

from the difference between W k,k+npk and pk+n. Compared
with the result using F k

l � F k+n
l to predict PPE, the error

is lower when using W k,k+nF k
l � F k+n

l as input, and the
mIOU is increased. In addition, extra 3 ms is needed for
calculating W k,k+nF k

l and producing W k,k+n for key frames
since W k,k+n is not accessible in key frame segmentation
process.

Third, we compare the results from two different ground
truth PPE calculations. One is our proposed way, which is
defined in Eq.(6) and Eq.(7). The other is that the ground
truth PPE is calculated as the difference between current frame
segmentation results and the results generated by the proposed
model, denoted as ME (Model Error). The mIOU of the ground
truth ME criterion is higher than the mIOU of ground truth
PPE criterion, since ME can better reflect the modeling gap
between the proposed model and the key frame segmentation
model. However, with the input of W k,k+nF k

l � F k+n
l , the

error between predicted ME and ground truth ME is higher
than the error between predicted PPE and ground truth PPE,
leading to much lower mIOU of predicted ME criterion. We
conjecture that, since the results generated by the proposed
model are not only influenced by the weighting propagation
in LAM, but also influenced by other designs, e.g. the adaption

of low-level feature and CC, the input of W k,k+nF k
l �F k+n

l
cannot well predict ME. Our PPE is calculated using the
difference between W k,k+npk and pk+n, and it has strong
positive correlation with the input, so the prediction error is
lower than that of ME, and the corresponding mIOU is higher.

TABLE II: Performance of key frame selection strategies
with different criteria and inputs on the basis of proposed
feature propagation model and on the Cityscapes val dataset.
’Criterion’ means the criterion to select key frame; ’Input’
means the input fed to decision network; ’Error’ means the
mean absolute error between predicted value and ground
truth value; ’mIOU’ means the segmentation accuracy; ’Time’
means the inference time.

Criterion Input Error(%)# mIOU(%)" Time(ms)#
Ground truth

label difference [15] - - 75.92 -
Predicted label
difference [15] Fk

l � Fk+n
l 2.04 75.12 155

Ground truth
PPE (ours) - - 76.3 -
Predicted

PPE (ours) Fk
l � Fk+n

l 2.55 75.26 155
Predicted

PPE (ours) Wk,k+nFk
l � Fk+n

l 2.12 75.57 158
Ground truth

ME - - 76.75 -
Predicted

ME Wk,k+nFk
l � Fk+n

l 3.19 74.63 158

3) The Effectiveness of LAM and CC: To demonstrate the
effectiveness of proposed method, this section enables and
disables different modules. The results are summarized in
Table III.

TABLE III: Ablation studies with different modules in our
method on the Cityscapes val dataset. PSPNet101 is selected
as the basic model. ’fixed schedule’ means that key frame is
selected every 5 frames.

Method mIOU(%) Time(ms)
Basic Model 79.49 321

LAM + fixed schedule 73.45 139
LAM + CC + fixed schedule 74.06 139

LAM + KDM 75.06 158
LAM + CC + KDM 75.57 158

The basic model achieves high accuracy, but with long in-
ference time. LAM speeds up the pipeline, reducing inference
time from 321 ms to 139 ms per frame, while having a 6%
drop in accuracy. Using CC, the accuracy is increased by
0.6% while keeping inference speed unchanged. In addition to
the quantitative analysis, we also visualize some segmentation
results in Fig. 9. LAM is able to successfully achieve feature
propagating for non-key frame segmentation. CC could pro-
mote the consistency of segmentation results within objects,
e.g. traffic sign, and provide details for small objects, e.g.
people in the distance. Fig. 10 shows the segmentation results
of one video. The segmentation performance is good even
if only using LAM when the interval between key frame
and non-key frame is no more than 5. For the k + 6 and
k + 7 frames, which are far from key frame, there are some
misclassified pixels inside the pedestrian (marked by the white
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Fig. 9: Visualized results of LAM and CC. The results in the red dotted box are enlarged in the lower right corner of the
picture.

dotted box) when only using LAM, due to the local correlation
in LAM. However, CC can correct these misclassified pixels
since it considers long-range dependency among pixels. The
segmentation results of LAM+CC are as good as those of basic
model on k + 6 and k + 7 frames.

4) The Effectiveness of KDM: As shown in Table III, the
accuracy is increased by 1.5% after applying KDM, while an
extra 19 ms inference time is needed to check whether the
frame is regarded as key frame.

We also compare several key frame selection strategies on
the basis of proposed feature propagating model. In detail, it
consists of three strategies: fixed interval selection, key frame
selection strategy in LLVS [15], and our proposed KDM.
The results are shown in Fig. 11. On the one hand, under
the same key frame interval, the proposed strategy achieves
higher accuracy than the other two strategies. On the other
hand, under the same accuracy, less frequency of key frames
is needed in our proposed strategy. The superiority of our key
frame selection strategy over LLVS [15] can be ascribed to
the fact that our strategy not only considers the influence of
scene changing on key frame selection, but also considers the
processing capability of the model for scene changing.

D. Segmentation Results on Cityscapes and Camvid

In this section, we present segmentation performance of the
proposed method on two public video datasets, and compare
it with recent video segmentation approaches.

1) Cityscapes: For achieving high accuracy, we choose
PSPNet101 [7] as the basic model, which is image-based
method. The comparisons with other high accuracy video
semantic segmentation methods are listed in Table IV. The
proposed method outperforms DAVSS, LLVS, DVRL, Accel-
18, DFF, GRFP and Clockwork, with both higher segmentation
accuracy and less inference time. Compared with DVS and
THA, although our method has a little lower inference speed,
it improves 5% and 3.7% mIOU of accuracy respectively. Note
that although LMA and TMANet achieve the higher accuracy,
their inference speeds are far slower than the basic model

and other video-based methods. Benefiting from local atten-
tion mechanism, our method can obtain temporal correlation
information among frames in an efficient way, and realize a
good trade-off between accuracy and efficiency.

For realizing high efficiency, we choose Bisenet18 [44]
as the basic model. As shown in Table V, the proposed
method with fixed interval strategy gets the higher mIOU, and
also has faster inference speed than EVS and DVS methods.
Although THA has the fastest speed, its accuracy is the
lowest, since it only considers feature propagation on one-
to-one same position among frames, and this is unreasonable
since the objects keep on moving. Our method considers
feature propagation in a local scope, which overcomes the
shortcoming of THA and improves accuracy greatly. Note that
the computational complexity of THA is O(CHW ), and the
computational complexity of our method is O(CHW ⇥R2).
As R2 << HW , the inference speed of proposed method is
also fast but with much higher accuracy than THA shown in
Table V.

TABLE IV: Segmentation performance of video-based meth-
ods with high accuracy on the validation sets of Cityscapes.

Method Backbone mIOU(%)" Time(ms)#
PSPNet101 [7] (Basic Model) ResNet101 [33] 79.49 321

TMANet [53] ResNet50 80.3 500
LMA [54] PSP-SS-SC 78.48 758

DAVSS [14] DeepLabv3+ 75.42 170
LLVS [15] ResNet101 75.1 162
DVRL [23] ResNet101 72.9 182

Accel-18 [16] ResNet18 72.1 440
DVS [22] ResNet101 70.2 87
DFF [17] Resnet101 69.2 156

GRFP [18] Resnet101 69.4 312
Clockwork [19] FCN 67.7 141

THA [20] ResNet101 71.87 128
Our method

(fixed interval schedule) ResNet101 74.06 139
Our method (KDM) ResNet101 75.57 158

Fig. 12 visualizes some segmentation results obtained from
our proposed method and two recent video semantic segmen-
tation methods [14], [20]. The distance is set as 4 between
key frame and the frame to be visualized for all methods.
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Fig. 10: The segmentation results of a video produced by Basic
Model, LAM and CC, where k denotes key frame, and k+ n
denotes non-key frame. In addition, we also give the ground
truth label of k + 7 frame for comparison.

TABLE V: Segmentation performance of video-based methods
with high inference speed on the validation sets of Cityscapes.

Method Backbone mIOU(%)" FPS (f/s)"
Bisenet18 [44] (Basic Model) Bisenet18 73.8 50

EVS [21] ICNet [62] 66.2 77
DVS [22] ResNet18 62.6 30
THA [20] LERNet 60.6 125

Our method
(fixed interval schedule) Bisenet18 66.8 83

Our method (KDM) Bisenet18 67.5 75

Fig. 11: The performance of different key frame selection
strategies on the Cityscapes val dataset.

DAVSS [14] fails to segment small size objects or present
the details of objects, e.g. thin telegraph pole, objects in
the distance, and the arms of people. THA [20] fails to
keep the semantic consistency within objects, e.g. incomplete
segmentation of fence and traffic sign. The results from our
proposed method are much closer to the ground truth, as
shown in the white dotted box, better on both segmenting small
objects and maintaining semantic consistency within objects.

2) Camvid: PSPNet50 [7] achieves a good trade-off of
accuracy and efficiency on Camvid, so we choose it as the
basic model on this dataset. The performances are presented
in Table VI. Compared with the basic model, the proposed
method with fixed interval strategy reduces nearly half of
inference time while only decreasing 1.26% mIOU. Compared
with other video-based methods except THA, our proposed
method achieves the highest accuracy with the minimum infer-
ence time. The proposed method with fixed interval schedule
outperforms THA in accuracy while only increasing 2 ms
inference time.

TABLE VI: Segmentation performance on the test sets of
Camvid.

Method Backbone mIOU(%) Time(ms)
PSPNet50 [7] (Basic Model) ResNet50 [33] 73.79 77

DFF [17] ResNet101 66.0 62
GRFP [18] ResNet101 66.1 230

Accel-18 [16] ResNet18 66.7 132
DAVSS [14] DeepLabv3+ 70.2 46
Netwarp [45] Dilation 67.1 363

THA [20] ResNet50 71.76 39
Our method

(fixed interval schedule) ResNet50 72.53 41
Our method (KDM) ResNet50 73.03 50

The segmentation results of our method and two other recent
methods [14], [20] on Camvid are shown in Fig. 13. The
distance is set as 4 between key frame and the frame to be
visualized for all methods. The proposed method performs
better on reducing the number of misclassified pixels inside

Page 15 of 18 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



MANUSCRIPT TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 12

Fig. 12: Visualized results on the Cityscapes dataset.

Fig. 13: Visualized results on the Camvid dataset.

the object and keeping semantic consistency. In addition, it
also has better performance on small objects segmentation,
e.g. people in the distance and traffic sign.

V. CONCLUSION

This paper proposes a novel approach to efficient video
semantic segmentation, by leveraging two complementary
modules for feature transformation, and an adaptive key frame
selection strategy. Through a local attention based module,
the high-level feature of key frame can be propagated to
non-key frame in a local and high efficient way; through a
consistent constraint module that considers long-range context
information within non-key frame, semantic consistency of
segmentation results can be promoted without increasing any
inference burden; through a reasonable scheduling of key
frames, the overall segmentation efficiency and performance
can be both improved. Extensive experiments on two public
video datasets have demonstrated that the proposed method
achieves high efficiency in segmentation while maintaining
satisfactory accuracy.
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