

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/177784

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/177784
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Robust Optimization Over Time: A Critical Review
Danial Yazdani, Member, IEEE, Mohammad Nabi Omidvar, Senior member, IEEE, Donya Yazdani,

Jürgen Branke, Trung Thanh Nguyen, Amir H. Gandomi, Senior member, IEEE,
Yaochu Jin, Fellow, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Robust optimization over time (ROOT) is the com-
bination of robust optimization and dynamic optimization. In
ROOT, frequent changes to deployed solutions are undesirable,
which can be due to the high cost of switching between deployed
solutions, limitations on the resources required to deploy new
solutions, and/or the system’s inability to tolerate frequent
changes in the deployed solutions. ROOT is dedicated to the
study and development of algorithms capable of dealing with the
implications of deploying or maintaining solutions over longer
time horizons involving multiple environmental changes. This
paper presents an in-depth review of the research on ROOT.
The overarching aim of this survey is to help researchers gain
a broad perspective on the current state of the field, what has
been achieved so far, and the existing challenges and pitfalls.
This survey also aims to improve accessibility and clarity by
standardizing terminology and unifying mathematical notions
used across the field, providing explicit mathematical formula-
tions of definitions, and improving many existing mathematical
descriptions. Moreover, we classify ROOT problems based on two
ROOT-specific criteria: the requirements for changing or keeping
deployed solutions and the number of deployed solutions. This
classification helps researchers gain a better understanding of
the characteristics and requirements of ROOT problems, which
is crucial to systematic algorithm design and benchmarking.
Additionally, we classify ROOT methods based on the approach
they use for finding robust solutions and provide a comprehensive
review of them. This survey also reviews ROOT benchmarks
and performance indicators. Finally, we identify several future
research directions.

Index Terms—Robust optimization over time, dynamic opti-
mization problems, robust optimization, optimization, evolution-
ary algorithms.

Danial Yazdani is with the Faculty of Engineering & Information Tech-
nology, University of Technology Sydney, Ultimo 2007, Australia. (e-mail:
danial.yazdani@gmail.com)

Mohammad Nabi Omidvar is with the School of Computing, University
of Leeds, and Leeds University Business School, Leeds LS2 9JT, United
Kingdom. (e-mail: m.n.omidvar@leeds.ac.uk)

Donya Yazdani is with the Department of Computer Science, Uni-
versity of Sheffield, Sheffield S1 4DP, United Kingdom. (e-mail: dyaz-
dani1@sheffield.ac.uk)

Juergen Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom. (e-mail: Juergen.Branke@wbs.ac.uk)

Trung Than Nguyen is with the Department of Maritime and Mechanical
Engineering, Liverpool John Moores University, Liverpool L3 3AF, United
Kingdom. (e-mail: T.T.Nguyen@ljmu.ac.uk)

Amir H. Gandomi is with the Faculty of Engineering & Information
Technology, University of Technology Sydney, Ultimo 2007, Australia. He
is also with the University Research and Innovation Center (EKIK), Obuda
University, Budapest 1034, Hungary. (e-mail: Gandomi@uts.edu.au)

Yaochu Jin is with the Faculty of Technology, Bielefeld University, Biele-
feld 33615, Germany. (e-mail: yaochu.jin@uni-bielefeld.de)

Xin Yao is with the Research Institute of Trustworthy Autonomous Sys-
tems (RITAS), and Guangdong Provincial Key Laboratory of Brain inspired
Intelligent Computation, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
He is also with the CERCIA, School of Computer Science, Birmingham B15
2TT, United Kingdom. (e-mail: xiny@sustech.edu.cn)

I. INTRODUCTION

F INDING robust solutions is an important aspect of
many optimization problems with many practical ramifi-

cations [1]. In many situations, the theoretical global optimum
may not necessarily coincide with the desired solution due
to modeling approximations and environmental uncertainties.
Temporal changes of the environmental parameters can also
change the previous conditions under which a solution is
obtained. Other considerations such as maintenance and sus-
tainability implications and the overall operational cost may
also make a sub-optimal solution preferable over the global
optimum.

The goal of robust optimization is to guard against sen-
sitivity to fluctuations caused by modeling restrictions and
environmental uncertainties which are pervasive in a wide
range of application areas. In linear programming for in-
stance, the notion of sensitivity or post-optimal analysis is
primarily concerned with finding robust solutions to guard
against drastic changes in the solution quality caused by
changes in the coefficients of the objective function or its
constraints [2]. In machine learning, it has been shown that
robustness is tightly linked to generalizability [3]. In mul-
tidisciplinary design optimization [4], the subsystems of a
larger complex system are optimized independently due to
prohibitive complexity of the system as a whole and the
existence of potential time constraints. The inevitable coupling
of the subsystems makes robust optimization the cornerstone
of a seamless integration [5].

In a certain type of optimization known as dynamic opti-
mization, uncertainties result from environmental changes. A
dynamic optimization problem (DOP) can be defined as:{
f
(
x, α(t)

)}tmax

t=1
=

{
f
(
x, α(1)

)
, f

(
x, α(2)

)
, . . . , f

(
x, α(tmax)

)}
,

(1)

where f is the dynamic objective function1, t ∈ [1, tmax] is
the time index, x is a solution in the search space, and α is
a set of time-dependent control parameters2 of the objective
function. The uncertainties caused by environmental changes
in (1) influence the system via the α-variables [6] which cannot
be removed/relaxed and must be considered in the optimization
process [7]. Note that in the DOP literature, it is assumed that
there is a degree of similarity between successive environ-
ments, which is prevalent in real-world applications [8, 9].
If the degree of similarity between successive environments
is too low, nothing can be learned from the past; therefore,

1For the sake of brevity, in the rest of this survey, we use f (t)(x) instead
of f

(
x, α(t)

)
to represent the objective function in the tth environment.

2Also known as “environmental parameters.”

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

using algorithms that work based on historical information is
ineffective. The only way to tackle such problems is to re-
optimize by restarting the optimization algorithm after each
environmental change [10].

Indeed, in DOPs, the magnitude of temporal changes to
the objective function is so large that the conventional robust
optimization methods cannot be used to handle the uncertain-
ties caused by environmental changes. This creates a whole
host of new problems pertaining to the notion of robustness
unique to dynamic optimization. In these problems, finding
and tracking of global optima across environmental changes
is of concern, and the implications and limitations of deploying
new solutions plays a central role in maintaining robustness
across all environmental changes. In these problems, robust
solutions do not remain desirable forever and they need to
be changed after some environmental changes. Robust opti-
mization over time (ROOT) [11, 12] integrates the principles
of both robust optimization and dynamic optimization and is
dedicated to the study and development of algorithms capable
of dealing with the implications of deploying or maintaining
robust solutions over longer time horizons involving multiple
environmental changes.

In this paper, we provide an in-depth and critical review
of the research in ROOT since it was first introduced in
2010 [11]. Our investigation has shown that the inherent
ambiguity in the definition of robustness has caused some
confusion in the field, resulting in biased comparisons due to
the incorrect use of performance indicators and incongruent
comparisons of ROOT algorithms. We attempt to rectify
this by putting forward two taxonomies of ROOT problems
and algorithms, a detailed investigation of benchmarks and
performance indicators, providing mathematical expressions
for many definitions that have not been previously formulated,
improving many existing mathematical descriptions, standard-
izing the terminology, unifying the mathematical notations,
clarifying several misconceptions, and highlighting the pitfalls
and challenges facing the field.

The organization of the remainder of this article is as
follows. Section II reviews the ROOT problems. ROOT
methods are reviewed in Section III. We discuss the benchmark
problems and performance indicators used in the ROOT
literature in Section IV. Section V provides several potential
future research directions. Finally, this survey is concluded in
Section VI.

II. ROOT PROBLEMS

In this survey, we classify ROOT problems based on two
different aspects:

1) Requirements for changing or keeping deployed solu-
tions:
• ROOT problems with a quality threshold for deter-

mining the acceptability of the deployed solution(s)
(ROOTQ),

• ROOT problems with a time-window-based temporal
threshold for deploying a new solution(s) (ROOTT),
and

Multiple deployed solutions

ROOTM

Multiple deployed solutions

ROOTM

ROOT problems

Gained benefit-based
ROOTG

Gained benefit-based
ROOTG

Time window-based

ROOTT

Time window-based

ROOTT

Quality threshold-based

ROOTQ
Quality threshold-based

ROOTQ

Further classification

based on the number of

deployed solution(s)
Classification based on the

requirements for changing or

keeping deployed solution(s)

Single deployed solution

ROOTS

Single deployed solution

ROOTS

ROOTQ
S ROOTQ
S

ROOTQ
M ROOTQ
M

ROOTT
S ROOTT
S

ROOTT
M ROOTT
M

ROOTG
S ROOTG
S

ROOTG
M ROOTG
M

Fig. 1. Taxonomy of the ROOT problems based on the solution deployment
considerations.

• ROOT problems in which the benefit of switching the
deployed solution(s) is jointly considered with its/their
acceptability (ROOTG).

2) Number of deployed solution(s):
• ROOT problems in which there is one and only one

deployed solution at each point in time (ROOTS), and
• ROOT problems in which there are multiple deployed

solutions (ROOTM).
In the proposed taxonomy3, we have combined these two

major aspects, resulting in classifying ROOT problems into
six different classes, which are shown in Fig. 1. Among differ-
ent classes of ROOT problems, ROOTM

T and ROOTM
G have

not been investigated so far, which will be discussed in Sec-
tion V-A as future work. Below, we describe ROOTS

Q [6, 11],
ROOTS

T [13], ROOTS
G [14], and ROOTM

Q [15] problems,
which have been investigated in the literature.

A. ROOTS
Q

ROOTS
Q, which is a class of ROOT problems with a single

deployed solution at each point in time and a quality threshold
for determining the acceptability of the deployed solution, has
been defined by Yu et al. [11] as the first class of ROOT
problems investigated in the literature. In ROOTS

Q problems,
the main goal is to maximize the average number of succes-
sive environments where a deployed solution’s fitness value
remains acceptable [11, 12]. In these problems, a deployed

3The notation, which we are using in the proposed taxonomy for showing
different classes of ROOT problems, uses the superscript to refer to the
number of deployed solutions, where ‘S’ and ‘M’ refer to single and multiple
deployed solutions, respectively. Besides, the subscript in the notation is
reserved for the requirements for changing or keeping the deployed solutions,
which are quality-threshold-based (‘Q’), temporal-threshold-based (‘T’), and
gained-benefit-based (‘G’).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

solution will be reused in successive environments until its
quality drops below an acceptable level in a new environment.
In real-world applications, ROOTS

Q problems are the ones in
which “frequent changes” of the deployed solutions violate
the system requirements and result in instability of the system
or deterioration of some important factors, such as safety,
customer satisfaction, and costs. In such circumstances, it is
preferable to keep the deployed solution as long as it remains
acceptable. Note that the acceptable frequency of changes in
the deployed solutions can vary depending on the problem and
the specific requirements of the application, such as the time
required to adapt to a newly deployed solution, the stability of
the system, the cost of deploying a new solution, denoted as
the switching cost, and the impact of changes in the deployed
solution on other parts of the system.

Given a DOP f (t)(x) with tmax environments, the aim
of ROOTS

Q is to find a set of deployed solutions S =
{s1, s2, · · · , s|S|} where |S| is the total number of the de-
ployed solutions over tmax environments and 1 ≤ |S| ≤ tmax.
Assume si ∈ S is deployed in the bith environment, a(t)(·) is
a function with {0, 1} output that defines the acceptability of a
solution based on the quality threshold in the tth environment4,
where a(t)(si) = 1 indicates that si is acceptable in the tth
environment, and 0 otherwise, and ni is the number of environ-
mental changes beyond which si remains acceptable. There-
fore, a deployed solution si remains operational for ni environ-
ments if a(bi)(si) = 1, a(bi+1)(si) = 1, · · · , a(bi+ni)(si) = 1.
If a(bi+ni+1)(si) = 0, then the next solution si+1 is deployed
in bi+1th environment, where bi+1 = bi +ni +1. A deployed
solution si is called a robust solution if its quality remains
acceptable after at least one environmental change, i.e., ni > 0
or at least a(bi+1)(si) = 1.

B. ROOTS
T

Another class of ROOT problems, ROOTS
T, has been

introduced by Fu et al. [13], representing real-world problems
in which the system cannot handle/tolerate changes in the
deployed solution sooner than a predefined time threshold.
Consequently, a time window is defined in this class of ROOT
problems during which the deployed solution must remain
deployed (i.e., operational). In other words, in ROOTS

T, a
solution must be chosen for deployment only at the beginning
of each time window.

ROOTS
T has a temporal threshold called time window. In

the ROOT literature, each time window starts at the beginning
of an environment and lasts for twin ∈ {2, 3, · · · } environ-
ments. In ROOTS

T problems, a new solution must be chosen
for deployment at the first environment of each time window.
Each deployed solution will be kept until the end of the
time window. Given a DOP f (t)(x) with tmax environments
and a set of time windows T = {twin,1, twin,2, · · · , twin,|T |},
the goal of the problem is to find a set of solutions S =
{s1, s2, · · · , s|T |} that maximizes the average fitness over
all environments. Herein, si is the deployed solution in the
ith time window, which begins at the beginning of the bith

4Both quality threshold and a(t)(·) are components of the problem and
problem-specific.

environment and ends at the end of the (bi + twin,i − 1)th
environment. Thus, in ROOTS

T, the main goal is to choose
solutions for deployment during the first environment of each
time window such that:

Maximize :
1

tmax

|T |∑
i=1

(twin,i−1)∑
j=0

f (yi+j)(si), (2)

where

yi =


1, if i = 1
i−1∑
k=1

twin,k otherwise
. (3)

Note that unlike ROOTS
Q in which there is a quality threshold

to define acceptability of the deployed solutions, there is no
such a threshold in ROOTS

T and the goal is to maximize the
average of the fitness values over each time window. It is worth
mentioning that in the ROOT literature, only a special case of
ROOTS

T problems has been investigated in which the length
of all time windows are equal and fixed over time [13].

C. ROOTS
G

Yazdani et al. [14] identified another class of ROOT prob-
lems, called ROOTS

G, where the gained benefit of switching
the deployed solution is taken into account. In ROOTS

G, a
quality threshold is also considered for determining acceptabil-
ity of the deployed solutions. Therefore, a new solution must
be chosen to replace the current deployed solution when it
becomes unacceptable. Besides, the deployed solution, which
is still acceptable, can be replaced by a new solution whose
fitness is significantly higher than that of the deployed solution,
making the benefit of switching outweighs the cost. If such
a qualified solution is found, regardless of the acceptability
of the current deployed solution, this new solution will be
deployed.

The goal of ROOTS
G is to find a set of deployed solutions

S = {s1, s2, · · · , s|S|} that maximizes the total benefit, which
is defined in [14] as the total fitness minus total switching costs
across all environments. Assuming that the deployed solution
si ∈ S is used from bith to (bi + ni)th environment, the goal
of ROOTS

G can be defined as:

Maximize :

|S|∑
i=1

(bi+ni)∑
j=bi

f (j)(si)−
(|S|−1)∑
i=1

c(si, si+1), (4)

where c(si, si+1)
5 calculates the switching cost between the

deployed solutions si and si+1, and each deployed solu-
tion must be acceptable in all environments in which it
remained operational, i.e., a(bi)(si) = 1, a(bi+1)(si) =
1, · · · , a(bi+ni)(si) = 1. In (4), the fitness of a deployed
solution in each environment can be interpreted as revenue,
while the switching cost can be considered an outlay. Note that
in each environment in which the previous deployed solution
is reused, the switching cost is zero.

5c(·) is part of the problem definition, i.e., it is problem-specific.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

D. ROOTM
Q

As previously mentioned, in ROOTM problems, multiple
solutions are deployed concurrently. This class of ROOT
problems arises in applications where there are multiple
decision-makers with different preferences. For instance, in
many cases, customers act as decision-makers, and the solu-
tions deployed are lists of non-dominated services or products
for the same purpose.

Among the various possible ROOTM problems, only the
multi-objective ROOTM

Q has been studied in the existing
literature [15–18], where the set of deployed solutions consists
of Pareto-optimal solutions (POS). However, it is important to
note that ROOTM is not exclusively limited to multi-objective
problems, and there are other classes of ROOTM problems,
such as multimodal ones [19], where the search space contains
multiple moving global optima [20, 21].

In multi-objective ROOTM problems, the deployed POS is
retained until it becomes unacceptable according to a quality-
based threshold. A multi-objective ROOTM can be described
as:

F (t) (x) =
(
f
(t)
1 (x) , f

(t)
2 (x) , · · · , f (t)

m̂ (x)
)
, (5)

where F is a multi-objective problem, f (t)
i (x) = f

(
α
(t)
i ,x

)
is

the ith dynamic objective function where α
(t)
i is a set of time-

dependent control parameters of the ith objective function in
the tth environment, and m̂ is the number of objective func-
tions. Given a multi-objective ROOTM

Q problem F (x, α(t))
with tmax environments, the aim is to find a sequence of
deployed sets of solutions P̂ = {P1,P2, · · · ,P|P̂|} where Pi

is the ith deployed set of solutions, |P̂| is the total number
of the deployed sets of solutions over tmax environments and
1 ≤ |P̂| ≤ tmax. Similar to ROOTS

Q, the main goal in solving
ROOTM

Q problems is to minimize the number of times a new
set of solutions must be deployed, i.e., minimizing |P̂|.

E. Discussion on ROOT problems

1) Comparing ROOT and other types of optimization prob-
lems: In the discussions provided in this part, we compare
ROOT problems with other related classes of optimiza-
tion problems including tracking moving optimum (TMO) in
DOPs [10, 22–24], robust optimization [1, 25], and multi-
scenario optimization [26, 27]. The aim of this section is
to clarify the key differences between ROOT and other
optimization problems, as well as to highlight situations where
they may exhibit similar behaviors6.

a) Comparing ROOT and TMO: Both ROOT and TMO
problems involve dynamic environments [28] where deployed
solutions change over time to react to environmental changes.
An effective evolutionary dynamic optimization algorithm
(EDOA) for TMO must address specific challenges, including
how to deal with local and global diversity loss to maintain
exploration and exploitation abilities over time, and how

6Note that to avoid distraction and simplify the presentation, the analysis
and descriptions provided in this section are based on single-objective prob-
lems with single deployed solution at each point in time.

to react efficiently to environmental changes and quickly
track desirable solutions in a new environment [10, 29]. To
address these challenges, EDOAs (the state-of-the-art ones
in particular) are complex algorithms that are constructed
by assembling multiple components. ROOT problems typi-
cally share the challenges of TMO since, similar to a TMO
algorithm, a ROOT method needs to handle optimization
in dynamic environments [30]. Therefore, ROOT methods
include components that are adapted from EDOAs [28].

To solve both ROOT and TMO problems, algorithms need
to gather historical information, which is used for various pur-
poses such as improving and accelerating the search process
in the current environment [10]. This historical information is
only useful if there are degrees of similarities and relations
between successive environments [8], which typically depend
on the magnitude of environmental changes [9]. In problems
with low to moderate changes, where adequate degrees of
similarities and relatedness exist, some aspects of the problems
can be learned. For instance, some dynamical and morpho-
logical characteristics of promising regions can be identified
and used in tracking the global optimum in TMO [10] and
finding robust solutions in ROOT [30]. It is worth noting
that as stochastic characteristics in environmental changes are
prevalent in practice [9], what can be learned from historical
information can typically be used for predicting some aspects
of the problem, such as the approximate locations [31] or
likelihood of reliability and robustness [32] of promising re-
gions. However, due to the stochastic nature of environmental
changes, the future fitness of solutions or the location of
the next global optimum cannot be predicted with acceptable
accuracy [9, 10]. In circumstances where there are no or a very
low degree of similarity between successive environments, the
historical information would be almost useless. Consequently,
the mechanisms and components of the TMO and ROOT
algorithms that work based on historical information would
be ineffective, including those used in ROOT algorithms
to predict the future robustness of solutions and promis-
ing regions [6, 32]. In such cases, which mostly happen
in ROOT and TMO problems with abrupt environmental
changes, i.e., those with huge spatial changes, perhaps the
only option is to use restart methods, where the algorithm is
restarted at the beginning of each environment [9]. Therefore,
ROOT and TMO problems with severe changes share similar
characteristics. However, note that such severe environmental
changes are usually the result of cataclysmic events, such as
failures in parts of the system. In many real-world DOPs,
including ROOT and TMO problems, there are similarities
and relatedness between successive environments, which can
be learned and then used to solve these problems [9, 10, 33].

One main difference between ROOT and TMO is the notion
of robustness over time in ROOT, which is not considered in
TMO. In TMO, the focus is on finding a solution suitable
for the current environment, while in ROOT, the focus is
on finding and deploying a robust solution that may not be
the best in the current environment but is acceptable for the
current environment and will also remain acceptable for a
number of future environments. In addition, in comparison to
TMO problems, solving ROOT problems requires additional

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

historical information, which is used to estimate the robustness
of solutions and search space regions. Gathering, processing,
and utilizing the obtained knowledge for robustness prediction
and decision-making processes are challenging and make the
ROOT algorithms more complex than TMO algorithms.

b) Comparing ROOT and multi-scenario optimization
problems: Many real-world optimization problems aim to
find a solution against a predefined set of scenarios [34].
Such problems, called multi-scenario optimization, consider
a solution desirable only if its fitness values across the given
scenarios are satisfactory [35, 36]. To tackle multi-scenario
optimization problems, the objective values across the sce-
narios are usually aggregated [26], or different scenarios are
considered as multiple objectives [37, 38].

At the first glance, ROOT problems may appear similar
to multi-scenario optimization problems, where each of the
current and future environments can be treated as a scenario.
However, considering that the number of scenarios is prede-
termined and known in multi-scenario optimization, ROOTQ

and ROOTG problems differ from multi-scenario optimization
since the number of environments in which the deployed
solution will be reused, i.e., the number of scenarios, is not
known in these sub-classes of ROOT problems. In addition,
the sequence of environments is important for ROOTQ and
ROOTG problems, while the order of scenarios in multi-
scenario optimization is usually not important.

In ROOTT problems, however, the number of environments
in which the deployed solution will be retained is available in
the form of the size of the time window. Therefore, the size of
the time window can be used as an equivalent of the number
of scenarios in multi-scenario optimization. In addition, in
ROOTT problems, the goal is to maximize the average fitness
value over each time window, which is not affected by the
order of the environments/scenarios.

If we consider the current and twin−1 future environments
in ROOTT as a multi-scenario optimization problem with twin

scenarios, we may be able to use multi-scenario optimization
algorithms to find a solution that is desirable over the twin

environments/scenarios. However, having knowledge of the
twin − 1 future environments (i.e., future objective functions)
in ROOTT is essential for this approach to be successful.
One group of problems where future environments are known
is reappearing/cyclic problems in which the landscape visits
a finite set of environmental states repeatedly [33]. Therefore,
under such special conditions, ROOTT problems are similar
to multi-scenario optimization. Note that when computational
resources over twin environments are sufficient (i.e., in prob-
lems with low change frequencies), a multi-scenario optimiza-
tion algorithm can be used during the current time window to
find a solution for deployment in the next time window.

In addition, certain ROOTT problems with some determin-
istic dynamic characteristics [39], where accurately predicting
future fitness values7 of solutions is possible, might be trans-
lated into multi-scenario problems. However, it is important to
note that for accurately predicting the future fitness values in

7By predicting the future fitness values of any solution in the search space,
we predict the future environments.

these ROOTT problems, we need sufficient samples in each
environment to train accurate approximation and prediction
models [6]. While in problems with regular and smooth mor-
phological characteristics, we can train accurate models with
smaller numbers of samples (i.e., solutions and their fitness
values), in problems with rugged and irregular morphological
characteristics, we need larger numbers of well-distributed
samples for training accurate models [40, 41]. This will be
more challenging in problems with high change frequen-
cies, where the optimization algorithm is already struggling
with a limited fitness evaluation budget in each environment
to perform the search process. Consequently, using multi-
scenario methods to solve such ROOTT problems would
be inefficient. Some existing ROOT methods use aggrega-
tion approaches employed in multi-scenario optimization and
optimize multiple environments/scenarios simultaneously (see
Section III-A1). Nevertheless, studies in [28, 32] showed that
these methods are inefficient due to error-prone predictions
and the lack of advanced dynamic handling components in
the optimization algorithm’s structure.

Finally, most real-world ROOT problems involve stochastic
changes [9, 10] for which knowledge of future environments
is unavailable. Predicting future fitness values of solutions
and objective functions becomes highly error-prone in the
presence of stochastic changes in such cases. Therefore, these
problems cannot be solved using multi-scenario optimization,
which requires knowledge of future environments beforehand.
To overcome these challenges, a ROOT method is needed that
can gather and process historical information to predict some
aspects of the environment, such as the likelihood of reliability
and robustness of promising regions, without attempting to
predict the future fitness of solutions (i.e., future objective
functions) [28].

c) Comparing ROOT and robust optimization problems:
Robust optimization refers to a type of optimization that
searches for a solution that is robust to various sources of un-
certainty [25]. The desirable solution is usually deployed once,
after completing the optimization process. In contrast, ROOT
is the combination of robust optimization and optimization in
dynamic environments that considers tracking, deploying, and
switching robust solutions over time instead of just deploying
a single solution in robust optimization [11, 42]. ROOT prob-
lems are typically ongoing optimization problems in dynamic
environments, which means that the algorithm usually runs
in an online manner8. Unlike robust optimization, in ROOT,
the algorithm must respond to environmental changes and find
desirable solutions based on the current and predicted future
status of the problem.

In addition, uncertainties in robust optimization problems
usually differ from those in ROOT problems, which arise
due to environmental changes. In ROOT, the cumulative
effect of these changes over time often results in significant
uncertainties [9, 11], making it impossible to find a solution
that remains robust to all environmental changes. Therefore,
instead of searching for a single solution that can handle all

8I.e., both the problem/system and the algorithm run simultaneously over
time.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

uncertainties, in ROOT, we must switch the deployed solu-
tion(s) over time as needed. Decisions about which solution(s)
to deploy and when to switch the deployed solution(s) are
made sequentially over time, and the uncertainty set is updated
at each environmental state based on the relevant parameters
and any new information that becomes available. This task
becomes more challenging when uncertainties also change
over time, such as in heterogeneous DOPs [10], where factors
like the severity of changes, frequency of changes, and type
of dynamics can all evolve over time.

Although ROOT and robust optimization problems differ
in their characteristics and requirements, they can exhibit
similar behavior in certain cases, such as in ROOT problems
with both small change severity and insignificant cumulative
environmental changes over time. However, it is important to
note that not all ROOT problems with small change severity
are similar to robust optimization problems. To illustrate this
point, we provide an example in Fig. 2. In this example, we
show the movement of the optimum positions in two cases
over 500 environmental changes, with both cases having a
small change severity of 0.1 and an initial optimum position of
(0,0). As shown, while both cases have identical small change
severity, the cumulative changes in case 1 are large, making
robust optimization methods inapplicable to tackle it. By
contrast, in case 2, the optimum position shifts randomly back-
and-forth, resulting in a much smaller cumulative change over
time compared with case 1. Thus, case 2 displays behavior
similar to that of robust optimization problems because it is
likely that there is a solution that remains acceptable across
all environments. In general, any ROOT problem that has at
least one solution whose performance remains desirable across
all environments can be classified as a robust optimization
problem. Nonetheless, many real-world problems do not have
a solution that meets this criterion, i.e., there is no solution
that is robust to all environmental changes. Thus, solutions
deployed in such problems must be changed over time in
response to environmental changes and to cope with the
current status of the problem.

Furthermore, in the context of ROOTT, each time window
can be considered as an individual robust optimization prob-
lem. However, since a solution must be chosen for deployment
at the beginning of each time window, the robust optimization
process for a specific time window needs to be conducted
during the preceding time window. This approach necessitates
prior knowledge of the future environments in the subsequent
time window, which is typically unavailable. Moreover, as
discussed in Section II-E1b, accurately predicting multiple
future environments is usually impractical. Additionally, if
we treat each time window as a distinct robust optimization
problem and restart the optimization process in each time
window, we would forfeit the opportunity to utilize historical
information for enhancing the search process. Consequently,
adopting an approach that treats each time window as an
individual robust optimization problem may not be an effective
strategy for tackling ROOTT problems.

2) Discussions on requirements for changing or keeping
solutions: Based on the definition of ROOTQ, the quality
threshold and a(t)(·) function determine the acceptability of

-15 -10 -5 0 5 10 15x
1

0

5

10

15

20

25

x
2

Case 1

Case 2

-15 -10 -5 0 5 10 15x
1

0

5

10

15

20

25

x
2

Case 1

Case 2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 2. Comparison of optimum position movements in problems with
different cumulative changes over time. The figure shows the movement of
optimum positions in two cases over 500 environmental changes, with both
cases having a small change severity of 0.1 and an initial optimum position of
(0,0). While case 1 exhibits large cumulative changes over time, case 2 shows
random back-and-forth movements resulting in smaller cumulative changes.

the deployed solution(s) in the tth environment. Both the
quality threshold and a(t)(·) function are part of the problem
definition and form a constraint that define the feasibility of
the deployed solution(s). Depending on the requirements and
characteristics of the problem/system, the quality threshold
value can be fixed or varying over time. An example of
ROOTQ is crowd monitoring and management [43] which
can be classified as a dynamic covering location problem [44].
In this problem, the desirable locations of field agent units
change over time based on the current and predicted status
of the dynamic crowd. However, in this problem, frequent
relocation of field agent units is undesirable. To clarify the
terms “undesirable” and “frequent changes” in this problem,
assume that if the base station commands the field agent units
to relocate every few seconds, the monitoring task is hindered
as they are disturbed frequently. Therefore, in solving this
problem, we seek solutions that remain acceptable for longer
periods. A solution (e.g., the locations of the field agent units)
in this problem is considered acceptable based on security and
safety criteria. For instance, if the average distance between
field agent units and people in the crowd exceeds a threshold,
the location of the field agent units must be updated to a new
position determined by the optimization algorithm. Note that
in this specific application, the threshold value can change over
time based on the current level of risk, such as the likelihood
of incidents of crowd crushes or terrorism [45].

According to the definition of ROOTT problems, there is a
temporal constraint that prevents switching a deployed solution
(or a set of solutions in ROOTM

T) before a specified end time.
Various reasons may cause this temporal constraint in real-
world problems, including:

• Insufficient resources to deploy a new solution until the
end of the time window. For example, if changing the
deployed solution requires specialized human resources
who are only available every 24 hours, the current solu-
tion will have to remain in place until the next available
shift.

• Time required to adapt to a new solution. For instance,
in certain applications, users may need time to learn and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

practice before they can fully benefit from a new solution.
• Completion of information gathering. In some scenarios,

after deploying a new solution, some information need
to be gathered before the solution can be switched. For
example, in a commercial system, it may take time
to gather market feedback on a newly produced prod-
uct. Such information is usually necessary for decision-
making about the next deployed solution.

• Impact of changes on other parts of the system. Changing
certain aspects of a system in response to environmental
changes may have negative consequences. For instance,
investment plans provided to customers should remain
fixed for a certain period (e.g., one year), despite changes
in economic conditions, to avoid customer dissatisfaction
and confusion.

Note that, in real-world ROOTT problems, the size of the time
window is usually finite, i.e., the problem-specific restrictions
that define the time window during which we are unable to
deploy a new solution are not permanent. Therefore, when the
restrictions are lifted, i.e., when the current time window is
finished, a new solution needs to be chosen for deployment
to cope with the status of the problem/system during the new
time window. In addition, the length of the time window may
be fixed or may change over time, depending on the system
and problem specifications and requirements.

Furthermore, in ROOTG problems, the switching cost is a
critical aspect of the problem that must be taken into account
by the algorithm. This cost is problem-specific, which is
defined as the practical expenses incurred during the prepa-
ration and implementation of a new solution, and it can vary
depending on the specific requirements of the problem. The
switching cost is a crucial factor that is used for determining
whether to switch to a new solution or retain the existing one.
For instance, if a more efficient product is designed, the costs
associated with updating the production line and the projected
future sales must be evaluated and compared to the revenue
generated by the current product, i.e., the solution currently in
use. This comparison helps determine whether the benefits of
adopting the new solution outweigh the costs associated with
the transition.

The degree of difference between the previously deployed
solution and the new one can also affect the switching cost,
with larger differences resulting in higher costs [8, 46]. For in-
stance, longer relocations involving transportation and logistics
require more fuel/energy and result in higher costs. In previous
work, the parameters used to calculate the switching cost, such
as fuel cost, were considered fixed over time. However, in
practice, these parameters usually change over time, making
it impracticable to treat them as fixed values.

Note that in problems where the switching cost is small,
ROOTS

G problems behave more like a TMO problem where
the best-found solution in each environment is chosen for
deployment [14]. On the other hand, in circumstances where
the switching cost is very high, ROOTS

G problems behave
similarly to ROOTS

Q, i.e., due to the high switching cost,
the current deployed solution is likely to be kept as long
as it remains acceptable [28]. However, it is important to
note that we cannot consider ROOTS

Q as a special case of

ROOTS
G with high switching costs because, unlike ROOTS

G,
many ROOTS

Q problems do not consider switching costs as
a primary factor to avoid frequent changes in the deployed
solutions.

3) Limitations of Existing Research on ROOT Problems:
While ROOTS

Q has received significant attention, ROOTS
T

and ROOTS
G have not been adequately investigated among

ROOTS problems. Additionally, out of the different types of
ROOTM problems, only multi-objective ROOTM

Q problems
have been explored, and no attention has been paid to multi-
modal ROOTM

Q or any other type of ROOTM
T or ROOTM

G .
Due to the prevalence of ROOTT and ROOTG problems
in practice, there is a gap between real-world problems and
academic research in the field.

Moreover, the majority of existing work in the field focus on
problems with continuous search space. In addition, apart from
the quality threshold, which can be considered a quality-based
constraint, no other constraints, dynamic ones in particular,
have been considered. It was also noted that all studies in
the ROOT literature work on problems whose environmental
changes occur only at discrete time steps, while the search
space of many real-world problems continuously changes over
time [47]. Finally, while the variable structure of many real-
world problems is partially separable [48, 49], the majority
of studies, particularly those focusing on ROOTS problems,
have focused on fully non-separable problems.

It should also be noted that not all multi-objective ROOT
problems are ROOTM. In fact, multi-objective ROOT prob-
lems can be classified as either ROOTM or ROOTS based on
the number of deployed solutions. There are usually several
decision-makers with different preferences in multi-objective
ROOTM problems. In such problems, the main aim is to seek
a robust POS. By providing and implementing the POS, each
decision-maker can pick a solution for deployment according
to his/her own preferences. In multi-objective ROOTS prob-
lems, on the other hand, there is one deployed solution at each
point in time, which is chosen by a solo decision-maker whose
preferences may change over time.

III. ROOT METHODS

In this section, we review the methods developed for solving
ROOT problems. To have a better understanding of how these
methods work and their advantages and disadvantages for
solving different classes of ROOT problems, instead of clas-
sifying them according to the type of problems, we propose a
taxonomy for these methods based on the approaches applied
to finding robust solutions. This taxonomy also allows us to
analyze these approaches independent of the type of ROOT
problems since some of them can be used for multiple classes
of ROOT problems. In this taxonomy, these approaches are
classified into:

1) Approaches that use the predicted fitness of the candidate
solutions to predict their robustness.

2) Approaches that work based on the estimated robustness
of the promising regions instead of the robustness of the
candidate solutions.

3) Approaches that take additional objective functions into
account for finding robust solutions.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

Approaches to finding robust solutions for

deployment in ROOT methods

Based on predicted fitness of

candidate solutions

Based on estimated robustness

of promising regions

Multi-objectivization

Based on average/accumulation

of fitness

Based on survival-time

Based on morphological and

dynamical characteristics

Based on robustness history

Fig. 3. Taxonomy of the ROOT methods.

The proposed taxonomy for ROOT methods is illustrated
in Fig. 3. In the following, we provide an in-dept technical
review9 of the developed ROOT methods according to the
proposed taxonomy.

A. Finding robust solutions based on predicted fitness of
candidate solutions

These methods use historical data to predict the fitness
values of candidate solutions in the forthcoming environments.
The robustness of a candidate solution is then determined
based on its predicted fitness values. In these ROOT meth-
ods, the main objective function is replaced by a substitute
objective function to find robust solutions. This class is fur-
ther classified into: fitness accumulation/average-based, and
survival-time-based methods.

In the fitness accumulation/average-based methods, the
search space is constructed based on the accumulation/average
of the solutions’ fitness values in the current environment,
a predefined number of the previous environments (which
are constructed by the historical data and approximation
component [50]), and a predefined number of the future
environments [6, 12] (constructed by prediction component).
On the other hand, in the survival-time-based approaches, the
search space is constructed based on the survival time of solu-
tions, which is normally the number of successive upcoming
environments that a solution remains acceptable, determined
based on the predicted fitness values of the candidate solutions
and acceptability criteria. In the following, we describe these
methods.

9Since we aim to make this survey self-contained for readers who may be
new to the field or have limited knowledge of the topic, and because we aim
to do a deep analysis of the main methods in the field, our review includes
comprehensive details and descriptions.

1) Fitness accumulation/average-based approach: Jin et
al. [6] proposed the first fitness-accumulation-based frame-
work that searches for robust solutions by means of fitness
approximation and prediction. The goal of this method, which
essentially tackles ROOTS

Q problems, is to find solutions
that remain acceptable after several environmental changes.
This method uses the predicted fitness values of the candidate
solutions in a predefined number of forthcoming environments
to evaluate their robustness. The main components of this
method include a population-based optimizer, an archive, an
approximator (also known as a surrogate model [51]), and a
predictor. The optimizer has two main responsibilities which
are gathering data for training the predictor and performing
optimization. In each iteration, all candidate solutions of the
optimizer, their fitness values, and the associated environment
number are archived in the archive. The archived information
are then used to train a prediction method to estimate the future
fitness values of the candidate solutions. More specifically,
for a candidate solution, a time-series of its fitness values
over a predefined previous environments plus the current
environment are used to train a predictor for estimating its
future fitness values in the upcoming q environments. Since the
past fitness values of a solution may not be in the archive, an
approximator is used to estimate these past fitness values. The
aforementioned components cooperate through the following
metric:

f̆ (t)(x) =

t−1∑
i=t−p

f ′(i)(x) + f (t)(x) +

t+q∑
j=t+1

f ′′(j)(x), (6)

where f̆ is the substitute objective function, t is the index
of the current environment, f ′ is the approximation function
where f ′(t−j)(x) estimates the fitness value of x in the (t−j)th
environment, f (t) is the actual objective function in the current
environment t, f ′′ is the prediction function where f ′′(t+j)(x)
estimates the fitness value of x in the (t+ j)th environment,
and p and q are the numbers of considered past and future
environments, respectively. In this method, a particle swarm
optimization (PSO) [52] that randomizes a predefined portion
of the population after each environmental change [53] is used
as the optimization component, a radial basis function is used
as the approximator [40], and autoregression is used as the
predictor. In [54], the impact of different predictor methods
on the performance of the framework in [6] is investigated. It
is shown in [54] that the results are not significantly different
when more advanced predictors are used.

As shown in (6), the substitute objective function considers
p past approximated fitness values of a candidate solution.
However, robustness is defined based on both current and
future fitness values. Moreover, the past approximated fitness
values are implicitly taken into account when training the
predictor. Therefore, further studies are needed to investigate
the necessity and effectiveness of including past approximated
fitness values in (6).

As stated before, the method in [6] is used to tackle
ROOTS

Q problems. This method keeps the deployed solution
for as long as it remains acceptable and tries to maximize
the average survival time of the deployed solutions. However,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

according to the substitute objective function in (6), this
method does not consider the acceptability of solutions in
the current and upcoming environments. In other words, only
the accumulation of the fitness values of a candidate solution
from p past environments to q future environments are taken
into account in (6). For example, an unacceptable solution
in the current environment with high predicted future fitness
values can be chosen for deployment if its accumulated fitness
value is the highest. However, such a solution is infeasible
for deployment due to its unacceptable current fitness value.
Since the method in [6] does not consider current and future
acceptability of candidate solutions and focuses on the fitness
values, it is more suitable for solving ROOTS

T problems.

Later, Fu et al. [13] proposed a method for tackling ROOTS
T

problems by modifying the method in [6]. With the exception
of the substitute objective function, all the components of the
method in [6] are also used in the ROOTS

T method in [13].
For tackling ROOTS

T problems, this method tries to find a
solution for deployment at the first environment of each time
window to maximize the average fitness over the time window.
The following substitute objective function has been used in
this method:

f̆ (t)(x) =
1

twin

f (t)(x) +

t+twin−1∑
j=t+1

f ′′(j)(x)

 . (7)

As can be seen, the substitute objective function in (7) is
similar to that of the method in [6] when we set p = 0 and
q = twin − 1 in (6).

In [55, 56], the performance of the ROOTS
T method in [13]

is investigated where different differential evolution (DE)
algorithms [57] are used as the optimization component. In
addition, the impact of different approximation components on
the performance of the ROOTS

T method in [13] is investigated
in [58]. It is shown in this paper that more advanced approxi-
mation methods can improve the performance of the ROOTS

T

method in [13]. However, since the empirical study has been
conducted on a limited set of 2-dimensional problems, the im-
pact of different approximation methods on problem instances
with higher number of dimensions is still unclear.

Fitness accumulation/average-based approaches have also
been used to find multiple solutions for deployment simul-
taneously. In [15], a framework for solving multi-objective
ROOTM

Q problems was introduced where the goal is to find
a robust POS for deployment. A robust POS may not be the
true POS in an environment, but it remains relatively close
to the true POS for at least two successive environments. To
solve multi-objective ROOTM

Q problems, the problem shown
in (5) is transformed into a substitute one based on the multi-
objective robust solution definitions introduced by Deb and
Gupta in [59]:

F̆ (t)(x) =
(
f̆
(t)
1 (x), f̆

(t)
2 (x), · · · , f̆ (t)

m̂ (x)
)
, (8)

where the ith substitute objective function f̆
(t)
i (x) is:

f̆
(t)
i (x) =

1

q

f
(t)
i (x) +

t+q−1∑
j=t+1

f
′′(j)
i (x)

 , (9)

where f
(t)
i is the actual ith objective function in the current

environment t, f ′′ is a prediction function where f
′′(t+j)
i (x)

estimates the ith fitness value of x in (t+j)th environment, and
q− 1 defines the numbers of considered future environments.
According to (9), this method works based on the predicted
fitness of candidate solutions in the upcoming environments.
Similar to the method in [6], an archive and an approximation
component are used for each objective function to provide
data for training the predictors. Besides, an evolutionary multi-
objective optimization method is used in this framework
(MOEA/D [60] is used in [15]). This framework is also
used in [16–18, 61] for solving ROOTM

Q problems. In [16],
ensemble prediction methods are used in this framework to
improve the prediction accuracy. In [17] and [61], a grid-based
multi-objective brain storming algorithm [62] with hybrid
mutation operation and a modified version of non-dominated
sorting genetic algorithm [63] were used as the optimization
component in this framework, respectively. In [18], an alterna-
tive prediction component is used to estimate the future fitness
values of the candidate solutions. In this method, instead of us-
ing time series of previous fitness values of candidate solutions
for predicting their future fitness values, future environmental
parameters (i.e., α-variables) are predicted. Then, using the
predicted environmental parameters and the baseline functions,
the future fitness values of candidate solutions are estimated
and then used in (9).

2) Survival-time-based approach: Fu et al. [12, 13, 42]
proposed a survival-time-based framework to tackle ROOTS

Q

problems. The main components of this framework are the
same as the method in [6], however, the substitute objective
function is different:

f̆ (t)(x) =

{
0, if f (t)(x) < µ

1 + max{n | ∀i ∈ {1, 2, · · · , n} : f ′′(t+i)(x) ≥ µ}, otherwise
,

(10)

where µ is the quality threshold. According to (10), if the
current fitness value (i.e., in tth environment) of a candidate
solution is less than µ, it is considered as a non-robust solution.
On the other hand, for a candidate solution whose fitness value
in the current environment is acceptable, its robustness value is
the number of forthcoming successive environments in which
its fitness values are predicted to remain above µ. Using (10),
the ROOTS

Q method in [13] searches for solutions with higher
estimated robustness since future acceptability of the candidate
solutions are taken into account in the substitute objective
function. In [64], the performance of the ROOTS

Q method
in [13] is investigated where DE is used as the optimization
component.

Since (10) considers the robustness of candidate solutions,
it seems to be a more suitable substitute objective func-
tion to tackle ROOTS

Q in comparison to (6). However, (10)
suffers from a significant issue which is best explained by
several illustrative examples. Figure 4 illustrates search spaces

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

generated by (10) using different quality threshold values
µ = {40, 45, 50}. As can be seen, the search spaces generated
by (10) contain vast plateau regions and a few narrow peaks.
Moreover, Figs. 4(b), 4(c), and 4(d) show that by increasing the
quality threshold value, the regions containing robust solutions
shrink, and the plateau regions expand. Such landscapes are
extremely challenging for the optimizers due to the stagnation
and premature convergence issues [65]. These challenges are
intensified by increasing the problem dimensionality. It is
shown in [30] that PSO fails to find any promising region in
a 10-dimensional problem generated by (10) where µ = 40.

B. Finding robust solutions based on estimated robustness of
promising regions

Yazdani et al. [28] proposed a class of ROOT methods
that focused on the robustness of promising regions instead
of candidate solutions. In addition, this class operates on the
landscape generated by the actual objective function instead
of searching for robust solutions in the search space con-
structed by a substitute objective function. These methods
rely on advanced components of multi-population evolutionary
dynamic optimization algorithms to handle the challenges
caused by environmental changes, locate and track multiple
moving promising regions over time, monitor these promising
regions, and gather some information about them, which is
used to estimate the likelihood of reliability and robustness
of each covered promising region. We further classify these
ROOT methods into those that consider the morphological
and dynamical characteristics of promising regions and those
that rely on the robustness history of promising regions.

1) Considering the morphological and dynamical charac-
teristics of promising regions: Yazdani et al. [68] proposed
a ROOTS

Q framework which estimates the robustness of
the promising regions based on some reliability factors. In
this framework, the robustness of the promising regions is
estimated based on some information gathered by the opti-
mization component. Unlike the ROOT methods described in
Section III-A that operate on the search space of a substitute
objective function to find robust solutions, this framework
works on the search space of the actual objective function.
The components of this framework include a multi-population
EDOA capable of locating and tracking multiple moving
promising regions, an archive for each sub-population that
is used for storing some historical information about each
covered promising region, and a decision-maker that chooses
solutions for deployment. Thus, this framework does not
rely on any approximated and/or predicted fitness values of
candidate solutions.

Fitness fluctuation degrees after each environmental change
is one of the main pieces of information gathered in [68]
about the moving promising regions. To estimate the fitness
fluctuation of each promising region that is covered by the ith
sub-population, the following calculation is done after each
environmental change:

τ
(t)
i =

∣∣∣f (t−1)
(
g
∗(t−1)
i

)
− f (t)

(
g
∗(t−1)
i

)∣∣∣ , (11)

where τ
(t)
i is the fitness fluctuation at the tth environmental

change and g
∗(t−1)
i is the best-found position by the ith sub-

population in the t− 1th environment. τi values are stored in
the ith sub-population’s archive. Thereafter, the average values
of τi in the past environments (τ̄i) is used for estimating the
robustness of the covered promising region by the ith sub-
population using:

r
(
g
∗(t)
i , τ̄i

)
=

{
1, if f (t)

(
g
∗(t)
i

)
− τ̄i ≥ µ

0, otherwise
. (12)

If r
(
g
∗(t)
i , τ̄i

)
= 1, it means that g∗(t)

i is likely robust to at
least one upcoming environmental change, i.e., it is expected
that its next fitness value will remain above the threshold µ.
In the tth environment, if a new solution must be chosen for
deployment, the algorithm first forms a set C that contains the
robust promising regions (i.e.,

{
i ∈ C|r

(
g
∗(t)
i , τ̄i

)
= 1

}
). In

the next step, a decision-making process is used to choose
a promising region from C based on a predefined strategy.
In [68], the following strategy is used:

c∗(t) = argmax
i∈C

(
f (t)

(
g
∗(t)
i

)
− τ̄i

)
, (13)

where c∗(t) is the chosen promising region in the tth envi-
ronment which is the one from C whose best-found position
has the highest worst-estimated future fitness value. Next, the
best-found position in the promising region c∗(t), which is
likely near the summit position, is chosen for deployment.
The reason behind choosing the best-found position is that
robust solutions usually exist around the summits of the robust
promising regions [69, 70].

Some other strategies that work based on the estimated shift
and height severity values are proposed in [30]. In this ap-
proach, some additional information is gathered and archived
by sub-populations to estimate shift and height severity values.
In each pair of successive environments t and t + 1, the
following values are calculated and archived for the promising
region covered by the ith sub-population:

s′(t)i =
∥∥∥g∗(t)

i − g
∗(t+1)
i

∥∥∥ (14)

and

h′(t)
i =

∣∣∣f (t)
(
g
∗(t)
i

)
− f (t+1)

(
g
∗(t+1)
i

)∣∣∣ , (15)

where s′(t)i and h′(t)
i are estimated relocation length and

height difference of the best-found position by the ith sub-
population in the tth and t+1th environments. For each sub-
population i, the average values of archived s′(t)i and h′(t)

i

show the estimated shift (s̄′i) and height (h̄′
i) severity values

of its covered promising region, respectively.

The idea behind using estimated shift and height severity
values in these strategies is that choosing the summit positions
of the promising regions with smaller shift and/or height
severity values for deployment can be more robust to envi-
ronmental changes. More specifically, smaller shift severity
values in a promising region during environmental changes
result in smaller fitness drops when the summit position is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

(a) Contour plot of a landscape generated
by GMPB.

-50 -40 -30 -20 -10 0 10 20 30 40 50x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) Landscape generated by (10) and
µ=40.

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) Landscape generated by (10) and
µ=45.

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(d) Landscape generated by (10) and
µ=50.

Fig. 4. (a) shows the contour plot of the actual current landscape made using the Generalized Moving Peaks Benchmark (GMPB) [66, 67] with randomly
generated 10 promising regions. (b)-(d) show the generated search space by (10) using the current environment in (a) and its future environments, where µ is
set to 40, 45, and 50, respectively. Note that actual future fitness values are used to generate (b)-(d) instead of the predicted values. This is done to remove
the prediction error impact on the constructed search spaces shown in these figures.

chosen for deployment. On the other hand, larger shift severity
values lead to more severe fitness drops, which result in lower
robustness. Moreover, promising regions with smaller height
severity values are unlikely to suffer from significant fitness
drops caused by decreased height values. On the other hand,
the promising regions with larger height severity degrees may
suffer from large fitness drops after environmental changes
that result in lower robustness. Therefore, if the best-found
position in a promising region with smaller shift and/or height
severity values is chosen for deployment, its likelihood of
remaining acceptable after upcoming environmental changes
will be higher.

The following three strategies were presented in [30] based
on the estimated shift and height severity values of the
promising regions in C:

c∗(t) = argmin
i∈C

(s̄′i) , (16)

c∗(t) = argmin
i∈C

(
h̄′
i

)
, (17)

and

c∗(t) = argmin
i∈C

(
s̄′i

s̄′max

+
h̄′
i

h̄′
max

)
, (18)

where s̄′max and h̄′
max are the largest s̄′ and h̄′ values among

promising regions in C, respectively. The experimental results
in [28, 30] demonstrate that solutions chosen by (18), which
considers both shift and height severity values, have longer
survival times in comparison to the ones chosen by (16) and
(17). Finally, in [14], a strategy is used that works based on
the switching cost between the previous deployed solution s
and the best-found positions in the promising regions in C:

c∗(t) = argmin
i∈C

(
c
(
s,g

∗(t)
i

))
, (19)

where c(s,x) calculates the switching cost between the de-
ployed solution s and x. In [14], Euclidean distance between
the deployed solution and x is used as the switching cost.

2) Considering the history of the robustness of promising
regions: One useful piece of information about each promising
region is its robustness history, which can be used in the
decision-making process for choosing a promising region from

which a solution is chosen for deployment. A ROOT frame-
work is proposed in [32], which, like the proposed framework
in [30], includes a decision-maker, a multi-population EDOA
for finding and tracking moving promising regions, and an
archive for each sub-population. The main differences between
these two frameworks are the archived information and the
decision-making process. In [32], the historical knowledge
stored in each archive includes the best-found solutions in
the covered promising region in previous environments, as
well as the environment number associated with each solution.
The degree of robustness of each covered promising region is
estimated in this framework after each environmental change.
To this end, the archived solutions are re-evaluated after each
environmental change, and their acceptability is determined
using (S-12) in the current environment. The estimated ro-
bustness degree shows the number of successive environments
for which, if any of the previous best-found solutions in the
promising region were deployed, they would have continued
to remain acceptable up until the current environment. It
is worth mentioning that efficiently managing the archives
and controlling the computational burden of the robustness
estimation process in this framework are challenging and
complex tasks that involve several additional mechanisms.

After determining the estimated robustness degree for all
covered promising regions, a decision-maker is responsible for
selecting one promising region from which the next solution
for deployment is chosen. In [32], the decision-maker simply
selects the promising region with the highest estimated robust-
ness degree. It is shown in [32] that the promising regions with
larger values of the estimated robustness have some suitable
morphological and dynamical characteristics that increase the
likelihood of their robustness to the upcoming environmental
changes.

C. Multi-objectivization

In these methods, while the problem is single-objective
by nature, some additional objectives are also considered to
find a desirable solution for deployment. Since these multi-
objective methods are developed for solving single-objective
ROOT problems, they usually need to choose one solution
for deployment from the POS.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

A double layered bi-objective ROOTS method is proposed
in [71]. In the first layer, the algorithm tries to find POS
based on the substitute objective functions in (7) and (10)
for each environment. Therefore, this algorithm tries to tackle
ROOTS

Q and ROOTS
T simultaneously. Afterwards, in the

second layer, the algorithm tries to find the best sequence
of robust solutions based on the found POSs over different
environments in the first layer. Such an approach for finding
POSs in the first step and then selecting a sequence of solutions
from them is more suitable for problems in which the sequence
of environments recurs [9, 72]. Therefore, the set of solutions
chosen in the second layer of this method can be reused in
the future reappearing environments. The concept of multi-
objectivization by simultaneously considering ROOTS

Q and
ROOTS

T is also used in [61].
In [73], a multi-objective approach called ROOT/SC is

proposed for optimizing two objectives, including survival
time maximization in (10) and switching cost minimization.
The switching cost was defined as the Euclidean distance
between the deployed solution and a candidate solution. The
algorithm keeps the deployed solution until it becomes un-
acceptable. When a previously deployed solution becomes
unacceptable, a new solution must be chosen from the POS for
deployment. From the aspect of requirements for changing or
keeping the deployed solution, this method can be considered a
ROOTS

Q method. However, from the aspect of choosing a new
solution for deployment, depending on the defined preferences,
this method can also be considered as ROOTS

G since it tries
to minimize the switching cost.

Note that since ROOT/SC uses (10) as its ROOTS
Q

objective, it also suffers from the difficulty of the search space
generated by this objective function in higher dimensions
(see Fig. 4). An improved version of ROOT/SC, called
ROOT/SCII, is proposed in [74]. In this algorithm, a helper
objective, which is the actual objective function, is also
considered, which helps in ameliorating the difficulty caused
by (10) in higher dimensions.

D. Discussion on ROOT methods
1) Optimization techniques used in ROOT methods: ROOT

methods are complex algorithms composed of multiple com-
ponents, including those related to change reactions, informa-
tion gathering, prediction, and decision-making. One important
component of ROOT methods is the optimization component.

The majority of the work in the field utilizes evolutionary
algorithms (EAs) as the optimization engine in ROOT meth-
ods. Using EAs in ROOT methods has several advantages,
including:

• No prior knowledge required: EAs do not require any
prior knowledge about the problem being solved. This
is particularly advantageous in solving ROOT problems,
where the underlying dynamics of the problem may be
unknown or changing over time.

• Flexibility: EAs are highly flexible and can be easily
adapted to different types of optimization problems, in-
cluding constrained, multi-objective, discrete, and contin-
uous. They are also able to handle non-linear and non-
convex optimization problems, which can be challenging

for other optimization methods. In addition, EAs can be
used in conjunction with controller components, which
can control EAs to adapt to various situations over time,
such as change reaction components that prepare EAs for
new environments.

• Effective information gathering: EAs are mostly
population-based algorithms, allowing them to explore
vast areas of the search space, which is beneficial for
gathering information needed for predicting robustness.

• Multi-population: EAs can be easily parallelized into
multiple populations using population division and man-
agement components [10], allowing them to cover various
regions of the landscape in order to improve information
gathering and quicker reactions to environmental changes.

PSO and DE are the most commonly used EA approaches
in ROOT methods. Several studies have shown that EAs are
effective in addressing ROOT problems, including those with
complex morphological and dynamical characteristics [32, 66].
However, it is important to note that there may be limitations
or drawbacks to using EAs in ROOT algorithms, such as
high computational costs or difficulty in handling large-scale
problems [48, 49]. To the best of our knowledge, random
sampling [69] is the only non-EA optimization technique used
in ROOT methods. However, its effectiveness is limited to
low-dimensional problems.

2) EDOAs’ components used in ROOT algorithms: The
majority of challenges associated with TMO in DOPs can also
be observed in ROOT problems. Similar to TMO approaches,
all ROOT methods also need to overcome challenges such as
global and local diversity loss and limited computational re-
sources in each environment [10]. Almost all ROOT methods
use the components of EDOAs that are designed to address
these challenges. In fact, a ROOT method is constructed by
combining components of EDOAs with explicit archives and
some specific components for finding robust solutions, such
as the approximation and prediction components in [6, 13]
and the decision-maker component in [30]. The performance
of ROOT methods is highly affected by the effectiveness of
the EDOA used in these methods. Consequently, using a less
effective EDOA deteriorates the performance of the ROOT
methods.

For example, in [6, 13], a very simple single-population
restart-based PSO (RPSO) from [53, 75] is used. It is shown
in [76–78] that this EDOA is ineffective in optimizing many
DOPs. This inefficiency of RPSO is not surprising, as this
EDOA is constructed by only integrating a simple change-
reaction-based global diversity control component, which
randomizes a predefined portion of the inferior individuals
after environmental changes, to a single population PSO10.
By only using a simple global diversity control component,
RPSO is not capable of performing adequate exploration
and exploitation in the new environments and addressing the
specific challenges of DOPs. As RPSO suffers from several
shortcomings, it negatively impacts the performance of ROOT

10RPSO also has a change detection component, which is usually redundant
as in most real-world DOPs, the algorithms are informed about environmental
changes by other parts of the system, such as sensors [28].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

methods in [6, 13]. Therefore, in designing ROOT methods,
we must consider that the role of the used EDOA is crucial and
that using more efficient EDOAs results in better performance.
It is worth mentioning that to further improve the efficiency
of ROOT methods, instead of using generic EDOAs that
are particularly developed for TMO, researchers should pay
more attention to developing EDOAs specifically designed
for ROOT. For example, in most computational resource
allocation methods used in EDOAs, the objective function
values of solutions, in particular that of the best individ-
ual, are considered, which is suitable for TMO. However,
in solving ROOT problems, instead of objective function
values, robustness of solutions and promising regions should
be taken into account in the computational resource allocation
components [32].

3) Approximation component: In this part, we provide a
discussion of the approximation component used for providing
previous approximated fitness values in the ROOT methods
that work based on the estimated future fitness of candidate
solutions. In [6, 12, 13, 15], in the tth environment, a surrogate
models generated by the approximation component are used
for approximating (t − a)th to (t − 1)th environments. The
(t − j)th surrogate model (j ∈ {1, · · · , a}) is responsible
for approximating the fitness values of candidate solutions in
the (t − j)th environment. Using these surrogate models, the
previous fitness values of a candidate solution are estimated
to form a time series for training the prediction component.

To have more accurate surrogate models, it is crucial to
have sufficient samples with adequate distribution stored in
the archive for each environment. EDOAs’ candidate solu-
tions over the optimization process are the main source of
the archived samples. However, since the EDOAs quickly
converge to the promising regions in each environment, the
provided samples are not always well-distributed to build
an accurate surrogate model. As a result, there are usually
areas without adequate samples. To address this issue, a
specific hypercube design [79] is used in [6] for initializing a
predefined portion of the population after each environmental
change. However, systematically initializing the population in
each environment will also become challenging for problems
with larger numbers of dimensions or search ranges. The
reason is that the search space can become overly large in
comparison to the population size that even systematically
distributing individuals cannot properly provide the necessary
samples to build an accurate surrogate model. One way to
ameliorate this problem is that, besides the EDOA’s candidate
solutions, the algorithm also systematically evaluates some
additional solutions to improve the surrogate modeling in
each environment. This way, however, may be prohibitive
or ineffective when the available computational resources are
limited in each environment (e.g., problems with high change
frequency). This ineffectiveness would be a consequence of
the additional usage of the computational resources (i.e.,
fitness evaluation burden) by the sampling process, while the
optimization component is usually struggling with the shortage
of the available computational resources to perform sufficient
exploration/exploitation [78].

The effectiveness of an approximation component is vital

as it can negatively impact the effectiveness of the prediction
component. Considering the aforementioned issues and chal-
lenges in using the approximation component, careful consid-
erations should be made to decide if and how this component,
at least in its current form, should be used. The approximation
component for ROOT methods is first used in [6] since it
is assumed that the algorithm in the tth environment has
no access to f (t−j) for evaluating the fitness of a candidate
solution in the (t−j)th environment. However, this assumption
is not true for many real-world problems, because in many
of these problems, access to the previous objective functions
is available. For example, while the baseline function in the
problem shown in (1) does not usually change over time, the
environmental changes are actually the result of changes in the
environmental parameters α. In many real-world DOPs and
ROOT problems, access to the previous environmental pa-
rameters α(t−j), such as previous costs, temperature, pressure,
speed, available resources, positions, the number of customers,
and lists of tasks, is possible. As a result, by using the
baseline function and the previous environmental parameters,
we can evaluate the previous fitness values of a candidate
solution. Consequently, in cases like the above, it may not be
necessary to use the approximation component if the available
computational resources in each environment suffice to also
evaluate previous fitness values. Furthermore, in cases where
we need to use the approximation component due to limited
computational resources, using the previous environmental
parameters, we can improve the accuracy of the surrogate
models in the current environment by providing additional
samples from important areas (e.g., in areas containing high
quality robust solutions).

To address the challenges of using the approximation
component in providing the time series data for predicting
the future fitness values of candidate solutions, α-variables
(i.e., environmental parameters) are predicted in [18]. In this
approach, using the baseline function f(·) and predicted α-
variables, the fitness values of candidate solutions in future en-
vironments are calculated. Therefore, by using this approach,
we no longer need an approximation component. However,
the computational burden of this approach is huge because it
performs fitness evaluations in order to calculate the predicted
fitness values. In fact, this prediction approach consumes at
least 50% of the fitness evaluations.

4) Error of future fitness prediction: In this part, we discuss
the error of prediction component, which is used in the ROOT
methods that work based on the predicted fitness values
of candidate solutions. To train a predictor for estimating
the future fitness of a candidate solution, the current and
approximated previous fitness values of the candidate solution
are used as the training data. As stated in Section III-D3, using
approximation methods for estimating the previous fitness
values of a candidate solution in its current form is error-prone
and sometimes impractical. In addition, as shown in [28],
even if the true previous fitness values of solutions are used
for training the predictor, using prediction to estimate the
future fitness values of candidate solutions is still error-prone.
Figure 5 depicts the error of predicting the future fitness values
of solutions in three consecutive environments with random

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

dynamics. Although the predictors are trained using the true
previous fitness values, the error of prediction is significant
and grows even larger when we extrapolate further into future
environments, as shown in Figs. 5(d), 5(e), and 5(f). Note that
the prediction error will be even larger when the approximated
previous fitness values are used instead of the true previous
fitness values for training.

The scale of the prediction error in methods that work based
on the predicted fitness values of solutions depends heavily
on the type of dynamics. In problems whose environmental
changes pose some regular and deterministic characteristics,
such as circular or linear dynamics [80, 81], these meth-
ods can be effective. However, in problems with stochastic
environmental changes, the error in the prediction models
can be significant, hindering the methods from finding robust
solutions.

5) Challenges in predicting robustness of promising re-
gions: As described in Section III-B, for predicting the robust-
ness of the promising regions, the methods/strategies use some
historical knowledge, such as the average fitness fluctuation,
shift severity, height change severity, and robustness. Using the
aforementioned historical knowledge, the heuristic approaches
used in these methods try to determine the promising regions
that are likely (i.e., not guaranteed) robust to the upcoming
environmental changes. In fact, the heuristic approaches used
do not guarantee the future robustness of solutions chosen for
deployment from the promising regions in C. As a matter of
fact, the future robustness of solutions cannot be generally
guaranteed by any other approach. It is worth mentioning
that these heuristics run the risk of losing some actual robust
promising regions whose r(·) = 0 [30] or have smaller
estimated robustness degrees [32]. However, when r(·) = 0 for
a promising region or its estimated robustness degree is small,
both of which are considered negative observations, the likeli-
hood of its robustness decreases significantly. From a Bayesian
perspective, such negative observations make the robustness
of the promising region less plausible. Despite the fact that
these methods may miss some robust promising regions, the
reported results of solving several ROOTS

Q problems using
these methods in [28, 30, 68] indicate their superiority to
methods that work based on the predicted fitness values of
candidate solutions. However, there are still further concerns
about these methods:

• The performance of these methods highly depends on
how well the multiple moving promising regions can
be tracked. Therefore, in cases where the tracking per-
formance drops, the performance of these methods will
deteriorate as well. For example, in problems with a
large number of promising regions, performing efficient
tracking is very challenging or even impossible.

• In some real-world problems, a considerable amount of
data is available that can be used for predicting some
other aspects of the future environments (e.g., data that
can be used for predicting the next positions of optima).
However, these ROOT methods only work on the basis
of some specific gathered knowledge about the covered
promising regions, they cannot benefit from the available
data in such DOPs in their current form.

6) Multi-objective methods developed for ROOTS

problems: Multi-objective methods, ROOT/SC [73] and
ROOT/SCII [74] in particular, can be used for tackling both
ROOTS problems that are multi-objective problems with
one decision-maker and the ones that are single-objective by
nature but are coupled with additional objectives in order
to customize the search process based on some preferences.
These methods search for POS in each environment and
choose a solution from POS for deployment when the previous
deployed solution is no longer acceptable. This strategy is
more suitable for solving multi-objective ROOTS problems in
which the preferences also change over time. Therefore, after
knowing new preferences, a solution can be chosen from the
POS. In [73, 74], the preferences are considered predefined
and fixed. In such a circumstance, searching for POS may not
be necessary. That is because the problem can be transformed
into a single-objective problem by aggregating objectives
based on the given preferences [83, 84]. Based on this
alternative strategy, the ROOT method can focus on finding
a solution for deployment in the resulting single-objective
search space. Currently, there is no study that has investigated
the strengths and weaknesses of these two strategies.

IV. BENCHMARKING ROOT METHODS

To evaluate the efficiency of ROOT methods, a variety of
configurable benchmark generators and performance indicators
have been used in the field. Configurable benchmark test
suites are particularly useful in generating problem instances
with controllable dynamical and morphological characteris-
tics, making them essential for evaluating the performance
of ROOT methods and investigating their strengths and
weaknesses under various conditions. Besides, measuring the
performance of ROOT methods is crucial to their devel-
opment [85]. Performance indicators are used to evaluate
the efficiency of ROOT methods, analyze their behavior in
solving problems with varying characteristics, and compare
their performance with existing methods. We provide a com-
prehensive review of the ROOT benchmarks and performance
indicators used in the field in Sections S-I and S-II of the
supplementary document, respectively.

V. FUTURE RESEARCH DIRECTIONS

By critically reviewing the current state of ROOT literature,
we identify the following potential future research directions,
which can broaden the field and dwindle some gaps between
academic research and practice.

A. ROOT problems to investigate

1) ROOTS
Q /ROOTS

G with changing quality threshold: In
real-world ROOTS

Q/ROOTS
G problems, the quality thresh-

old may change over time due to factors such as cost or
demand fluctuations. Changing the quality threshold affects
the algorithms’ search process as they work based on this
value (e.g., see (10) and (12)). Consequently, to tackle such
problems, an algorithm needs to find several solutions that
are suitable for various ranges of estimated future quality
threshold values, which is computationally expensive. Tackling

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50
x

2

(a) 16th true environment.
-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) 17th true environment.
-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) 18th true environment.

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(d) 16th predicted environment (MSE(a,d) = 714.90).
-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(e) 17th predicted environment (MSE(b,e) = 1.10e+3).
-50 -40 -30 -20 -10 0 10 20 30 40 50x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(f) 18th predicted environment (MSE(c,f) = 1.54e+3).

Fig. 5. (a)–(c) show three successive 2-dimensional environments generated by generalized moving peaks benchmark (GMPB) [66, 67] after 15th, 16th,
and 17th environmental changes, respectively. Note that the changes are generated by random-based dynamics [47]. To generate each figure, we used 40,000
points. True environments 1–15 are used to train predictors to estimate the future fitness values of the 40,000 points in environments 16–18, which are shown
in (d)–(f), respectively. More specifically, for training the predictors that generate (d)–(f), we used the true fitness values in the 1–15th environments, the true
fitness values in the 2–15th environments as well as the predicted fitness values in the 16th environment, and the true fitness values in the 3–15th environments
plus the predicted fitness values in the 16–17th environments, respectively. We use the autoregressive integrated moving average (ARIMA) model [82] as the
predictor. For each predicted plot, we also report the mean squared error (MSE) to the related true environment.

ROOTS
Q/ROOTS

G problems with changing quality thresholds
is a challenging future research direction.

2) ROOTS
T with changing time window: In ROOTS

T, a
deployed solution must be kept until the end of the time
window. This temporal constraint is a result of some limi-
tations, such as the lack of necessary resources (e.g., financial
and/or human resources) for deploying a new solution until the
end of the time window. Since the available and/or required
resources for deploying a new solution may change over time,
the length of the time window can also change and be revealed
at the beginning of each time window. This will be challenging
since the best solutions for deployment can be different for
various sizes of time window. Thus, different solutions must
be located where each of them is best for a specific estimated
future time window size. Tackling ROOTS

T problems with a
changing time window size over time is a potential area for
future research.

3) Multimodal ROOTM : A multimodal ROOT problem
with multiple decision-makers with various preferences can
be categorized as a ROOTM problem. In these problems,
there are multiple regions in the search space that contain
global or near-global optima. These regions can be considered
promising because they likely contain robust solutions that
are candidates for deployment. However, since the regions
containing each global optimum position can have different
morphological and dynamical characteristics, it is important

to evaluate the robustness and reliability of these regions
to be used in determining the set of deployed solutions.
Evaluating the robustness of these regions can help ensure that
the deployed solutions are stable and reliable. Solving these
problems is an interesting future direction.

4) ROOT in constrained DOPs: Despite the importance of
constrained ROOT problems, little attention has been paid
to them in the ROOT literature. In fact, most real-world
applications are subject to some constraints. These problems
are challenging as their objective functions and constraints
usually change over time [31]. They can become further
challenging when there are several disjointed moving feasible
regions [86].

In constrained ROOTS
Q/ROOTS

G, in addition to the quality
threshold that can be considered a constraint, there are also
other constraints, which usually change over time. Conse-
quently, the ROOT method not only needs to find feasible
solutions in the current environment, but it also needs to take
the feasibility of solutions in forthcoming environments into
account. Solving constrained ROOTS

T problems can be more
challenging since the deployed solution must remain feasible
for the entire duration of the time window because it cannot
be changed during the time slot. Furthermore, constrained
ROOTM can be very challenging, as we also need to consider
the future feasibilities of the deployed set of solutions. In fact,
the quality of the deployed set of solutions can drop quickly

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

if it loses many of its solutions due to becoming infeasible in
the new environments. Hence, an important and challenging
future direction is to investigate different types of constrained
ROOT problems.

5) ROOTS problems with a large number of promising
regions (peaks): The performance of all existing ROOTS

methods has only been tested on problems with a relatively
small number of promising regions. Note that although the
number of promising regions in benchmarks, such as mMPB,
has been set to values up to 200, the number of visible
promising regions in the landscape is considerably lower than
this number. The reason is that the shape of promising regions
is conical, and many smaller promising regions are covered by
the larger ones.

In problem instances with a large number of promising
regions, the performance of the methods that work based on
estimating the robustness of promising regions will deterio-
rate because they cannot cover all promising regions [87].
Furthermore, as the problem becomes highly multimodal, the
efficiency of methods that work based on estimating the future
fitness/robustness of candidate solutions also drops due to the
increased prediction error. In addition, performing exploration
will be challenging in such problems due to the existence of
a large number of promising regions. Working on ROOTS

problems with a large number of the promising regions will
be an interesting future work.

6) Time-linkage ROOT: In problems with time-linkage
property, the deployed solution in one environment influences
the upcoming environments [88]. Among ROOT problems,
ROOTG problems, whose switching cost is defined based on
the deployed and candidate solutions, possess the time-linkage
feature [28]. However, in all existing works in the ROOT
literature that consider the switching cost, the time-linkage
property is not taken into account, which deteriorates the total
gain over time [46]. Besides the time-linkage property caused
by the switching cost, many real-world applications also have
the time-linkage property, such as dynamic covering location
problems [89, 90] in which the current positions of facili-
ties affect the current and future search spaces and optimal
solutions. Taking the time-linkage property into account in
ROOT problems that possess this feature in order to improve
the overall performance is a potential future direction.

7) ROOT in partially separable problems: Most existing
works are focused on fully non-separable problems. How-
ever, the variable structure in many real-world applications
is partially separable [91, 92]. It is shown in [77, 93] that the
number of promising regions grows exponentially in partially
separable objective functions. This results in an increase in
the future fitness prediction error of the methods that work
based on the estimated robustness of candidate solutions due
to the roughness of the search space. These problems are also
challenging for methods that work based on the estimated
robustness of promising regions because tracking multiple
moving promising regions will be less effective. To tackle
partially separable ROOT problems, in the first step, the
variable structure of the problem should be uncovered using
a variable grouping method such as DG2 [94]. Thereafter, an
EDOA must be assigned to each sub-function. To choose a

solution for deployment, the ROOT algorithm must consider
several factors for each sub-function, such as spatial severity,
temporal severity, the contribution to the overall fitness value,
and the optimization progress. Investigating partially separable
ROOT problems is a potential future work.

8) ROOT in heterogeneous DOPs: Existing research in
the literature has focused primarily on addressing problems
with regular characteristics, such as fixed change frequencies
and severities, and identical dynamics during environmental
changes. However, in the real world, many DOPs exhibit
irregular dynamics over time, with changes in severity, timing,
and patterns over time. These DOPs are referred to as hetero-
geneous [10], and they present a significant challenge for find-
ing robust solutions. In heterogeneous DOPs, the dynamical
behavior of the problem changes over time, and the landscape
can be subject to multiple types of dynamics. This means
that deployed solutions need to be robust against various
types of environmental changes. Furthermore, predicting the
robustness of solutions in these problems is challenging due to
the irregularity of their dynamics. The development of methods
for solving heterogeneous DOPs represents an important area
for future work.

9) ROOT problems with predictable characteristics: The
majority of the existing works focus on problems with random-
based dynamics for generating environmental changes. How-
ever, there are real-world problems with predictable charac-
teristics, such as the reappearing ones [9, 72, 95], or the ones
whose promising regions’ movements are fully correlated, e.g.,
linear movements [80]. Indeed, if a ROOT method can benefit
from the predictability properties of such problems, it may
have some advantages over methods that do not take such
properties into account. Investigating ROOT problems with
predictable characteristics is a potential future direction.

10) Multi-objective ROOTS
Q problems with changing pref-

erences: In any online multi-objective ROOTS
Q problem with

one decision-maker, regardless of the number of objective
functions, only one solution is chosen for deployment when a
new solution needs to be deployed. In solving multi-objective
ROOTS

Q with stationary preferences, finding the POS may not
be necessary since the multi-objective problem can be trans-
formed into a single-objective one based on the preferences.
However, in multi-objective problems whose preferences also
change over time, searching for the POS is necessary. In such
problems, the deployed solution can also become unacceptable
due to changes in preferences. When a solution is deployed,
the algorithm continues exploitation and exploration for the
next solution. Since the preferences are also changing over
time, the algorithm needs to find the POS or a part of it
according to the predicted range of the next preferences. Once
the new preferences are known, the algorithm can focus on
exploitation around the best solution in POS according to the
current preferences. A future work will be to study multi-
objective ROOTS

Q problems with changing preferences.
11) ROOTM

T and ROOTM
G : As stated in Section II,

only ROOTM
Q problems have been studied so far among

ROOTM problems, while ROOTM
T and ROOTM

G problems
are also important because they can be found in the real world.
ROOTM

T represents real-world problems in which multiple

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

solutions are deployed simultaneously at the beginning of each
time window and must remain operational until the end of the
time window because changing the deployed set of solutions
before that time is not possible. ROOTM

G , on the other hand,
represents problems in which the costs and gains of switching
the deployed set of solutions are considered. In such problems,
the deployed set of solutions is replaced with a new set if either
the quality of the previously deployed set is unacceptable or
the benefit of switching outweighs the cost. Two important
future research directions are designing ROOT methods for
solving ROOTM

T and ROOTM
G problems.

B. Gaps in ROOT methods
1) Designing specified EDOAs for ROOT: Almost all ex-

isting ROOT methods use generic EDOAs, which were orig-
inally designed for tracking the moving optimum. Although
the role of EDOAs in the ROOT methods is crucial, little
attention has been given to designing components of EDOAs
that take ROOT’s considerations into account. For example,
new EDOAs should be developed that can prioritize the areas
containing robust solutions. Designing specialized EDOAs to
be embedded in ROOT frameworks is an important future
direction.

2) Quick recovery: Most existing ROOT methods choose
a solution(s) for deployment at the end of the environment
when a new solution(s) needs to be deployed, which is
impractical [8, 32]. After an environmental change, if the
deployed solution(s) is no longer acceptable in ROOTQ and
ROOTG, or a new time window has been started in ROOTT,
a new solution(s) must be chosen for deployment before a
deadline (i.e., a temporal threshold). This requirement, known
as quick recovery, can be found in many real-world prob-
lems [8, 96, 97]. To consider the quick recovery feature, an
algorithm should focus on the areas containing robust solutions
to improve the chosen solution for deployment before the
deadline. Designing components for ROOT algorithms that
consider quick recovery is a future direction.

3) Using both predicted fitness values of candidate solu-
tions and estimated robustness of the promising regions:
Hybridizing the ROOT methods that work based on the
predicted future fitness of candidate solutions and estimated
robustness of the promising regions in order to benefit from
the strengths of both methods is another interesting future
research direction. To this end, each sub-population that covers
a promising region can have its own archive and local ap-
proximation component. The algorithm can use the predicted
fitness values to increase the accuracy of determining the
robustness of promising regions. Besides, the algorithm can
also exploit the identified robust promising regions considering
both current and predicted fitness values.

4) Multi-tasking: Multi-task optimization [98, 99] studies
how to solve multiple optimization problems concurrently.
These optimization problems, denoted as “tasks,” are assumed
to be related in some way, allowing for cross-task knowledge
transfer that can improve the performance of solving each task
independently [100]. In the context of ROOT problems, if
there are multiple ROOT problems with a degree of related-
ness, there are various information to gather and knowledge

to acquire in each problem that can be used for improving the
performance of finding robust solutions in other problems. By
designing multi-task ROOT methods, it may be possible to
leverage this knowledge to improve the performance of finding
robust solutions in multiple ROOT problems simultaneously.
It is important to note that while a multi-task ROOT solver
may find multiple solutions for deployment simultaneously,
each solution belongs to a separate ROOT problem. There-
fore, the multi-task ROOT method does not change the class
of those independent problems. Designing multi-task ROOT
methods to solve multiple related ROOT problems is an
interesting direction for future work.

C. Works to be done in benchmarking and assessment of
ROOT methods

1) New performance indicator(s) for ROOTQ: As stated
in Section S-II-E of the supplementary document, the average
survival time, which is the most well-known and commonly
used performance indicator for ROOTS

Q and ROOTM
Q , suffers

from several flaws. Consequently, an important future work
will be to design new performance indicators for ROOTS

Q and
ROOTM

Q . In designing new performance indicators, different
factors should be taken into account, such as:

• The ratio between the number of deployed solu-
tions/POSs and the total number of environments, and/or

• A penalty value for changing the deployed solu-
tions/POSs in successive environments.

2) Designing new ROOT benchmark problems: Benchmark
test suites play an important role in the development of
dynamic optimization algorithms, including ROOT methods.
As stated before, all continuous-space benchmarks used in the
field are artificial. The field also lacks ROOT-specific bench-
marks with discrete search space [101]. Designing ROOT-
specific benchmark test suites that simulate or model real-
world problems will provide a paradigm shift away from
the current focus on artificial problems to solve real-world
applications.

D. Challenges and progress in solving real-world ROOT prob-
lems

The field of ROOT aims to solve real-world problems, but it
is still in its early stages. While progress has been made in de-
veloping algorithms, much work remains to be done before the
field can fully address the challenges of real-world problems.
Currently, the performance of algorithms is typically evaluated
using artificial benchmark problems and some existing ROOT
methods have been applied to real-world-based benchmark
problems, including nonlinear dynamic stochastic optimization
problems for stochastic energy management [102, 103] and
dynamic customer location-allocation [104, 105]. One of the
main challenges in solving real-world problems is that dy-
namic handling components are not yet capable of handling the
complexities of these problems, such as irregular changes over
time, multiple types of environmental changes, local and hard-
to-detect environmental changes, and continuously changing
environments. Addressing these challenges will require the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

development of more complex algorithms. While the field
works toward developing more complex algorithms, simpler
scenarios of important real-world optimization problems, such
as dynamic covering location problems [44], can be tackled
as future work. Solving these problems will provide valuable
insight into how ROOT can be used to tackle more complex
real-world problems in the future.

VI. CONCLUSION

In this survey, we provided an in-depth review of robust
optimization over time (ROOT) [11]. We aimed to help
researchers and practitioners gain a broad perspective on the
current state of the field, what has been achieved since ROOT
was first introduced in 2010 [11], and the shortcomings and
issues of the field. In this survey, we proposed two taxonomies
for ROOT problems and methods, respectively. We then com-
prehensively reviewed these problems and methods according
to the proposed taxonomies. We also reviewed commonly
used benchmark problems and performance indicators. By
gaining insights from reviewing the current state of ROOT
literature, we finally highlighted some important potential
research directions that can broaden the field.

REFERENCES

[1] H.-G. Beyer and B. Sendhoff, “Robust optimization–a com-
prehensive survey,” Computer methods in applied mechanics
and engineering, vol. 196, no. 33-34, pp. 3190–3218, 2007.

[2] J. E. Ward and R. E. Wendell, “Approaches to sensitivity anal-
ysis in linear programming,” Annals of Operations Research,
vol. 27, no. 1, pp. 3–38, 1990.

[3] H. Xu and S. Mannor, “Robustness and generalization,” Ma-
chine learning, vol. 86, no. 3, pp. 391–423, 2012.

[4] M. Kalsi, K. Hacker, and K. Lewis, “A comprehensive ro-
bust design approach for decision trade-offs in complex sys-
tems design,” in International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, vol. 19715. American Society of Mechanical
Engineers, 1999, pp. 1343–1354.

[5] J. K. Allen, C. Seepersad, H. Choi, and F. Mistree, “Robust
Design for Multiscale and Multidisciplinary Applications,”
Journal of Mechanical Design, vol. 128, no. 4, pp. 832–843,
01 2006.

[6] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A frame-
work for finding robust optimal solutions over time,” Memetic
Computing, vol. 5, no. 1, pp. 3–18, 2013.

[7] J. C. Helton, “Uncertainty and sensitivity analysis in the
presence of stochastic and subjective uncertainty,” Journal of
Statistical Computation and Simulation, vol. 57, no. 1-4, pp.
3–76, 1997.

[8] T. T. Nguyen, “Continuous dynamic optimisation using evo-
lutionary algorithms,” Ph.D. dissertation, University of Birm-
ingham, 2011.

[9] J. Branke, Evolutionary optimization in dynamic environments.
Springer Science & Business Media, 2012, vol. 3.

[10] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and
X. Yao, “A survey of evolutionary continuous dynamic op-
timization over two decades – part A,” IEEE Transactions on
Evolutionary Computation, vol. 25, no. 4, pp. 609–629, 2021.

[11] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over
time—a new perspective on dynamic optimization problems,”
in IEEE Congress on Evolutionary Computation. IEEE, 2010,
pp. 1–6.

[12] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Robust optimization
over time: Problem difficulties and benchmark problems,”

IEEE Transactions on Evolutionary Computation, vol. 19,
no. 5, pp. 731–745, 2015.

[13] ——, “Finding robust solutions to dynamic optimization prob-
lems,” in European Conference on the Applications of Evolu-
tionary Computation. Springer, 2013, pp. 616–625.

[14] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and
X. Yao, “Changing or keeping solutions in dynamic optimiza-
tion problems with switching costs,” in Proceedings of the
Genetic and Evolutionary Computation Conference. ACM,
2018, pp. 1095–1102.

[15] M. Chen, Y. Guo, H. Liu, and C. Wang, “The evolutionary
algorithm to find robust pareto-optimal solutions over time,”
Mathematical Problems in Engineering, vol. 2015, 2015.

[16] Y. Guo, H. Yang, M. Chen, J. Cheng, and D. Gong, “Ensemble
prediction-based dynamic robust multi-objective optimization
methods,” Swarm and Evolutionary Computation, vol. 48, pp.
156–171, 2019.

[17] Y. Guo, H. Yang, M. Chen, D. Gong, and S. Cheng, “Grid-
based dynamic robust multi-objective brain storm optimization
algorithm,” Soft Computing, vol. 24, no. 10, pp. 7395–7415,
2020.

[18] M. Chen, Y. Guo, Y. Jin, S. Yang, D. Gong, and Z. Yu, “An
environment-driven hybrid evolutionary algorithm for dynamic
multi-objective optimization problems,” Complex & Intelligent
Systems, pp. 1–17, 2022.

[19] X. Li, M. G. Epitropakis, K. Deb, and A. Engelbrecht, “Seek-
ing multiple solutions: An updated survey on niching methods
and their applications,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 4, pp. 518–538, 2016.

[20] X. Lin, W. Luo, P. Xu, Y. Qiao, and S. Yang, “Popdmmo:
A general framework of population-based stochastic search
algorithms for dynamic multimodal optimization,” Swarm and
Evolutionary Computation, vol. 68, p. 101011, 2022.

[21] A. Ahrari, S. Elsayed, R. Sarker, D. Essam, and C. A. C.
Coello, “Static and dynamic multimodal optimization by im-
proved covariance matrix self-adaptation evolution strategy
with repelling subpopulations,” IEEE Transactions on Evolu-
tionary Computation, vol. 26, no. 3, pp. 527–541, 2021.

[22] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in
dynamic environments: a survey on problems, methods and
measures,” Soft Computing, vol. 15, no. 7, pp. 1427–1448,
2011.

[23] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm
intelligence for dynamic optimization: Algorithms and appli-
cations,” Swarm and Evolutionary Computation, vol. 33, pp.
1 – 17, 2017.

[24] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm and
Evolutionary Computation, vol. 6, pp. 1 – 24, 2012.

[25] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, pp. 303–317, 2005.

[26] L. Zhu, K. Deb, and S. Kulkarni, “Multi-scenario optimization
using multi-criterion methods: A case study on byzantine
agreement problem,” in IEEE Congress on Evolutionary Com-
putation. IEEE, 2014, pp. 2601–2608.

[27] B. Shavazipour, J. H. Kwakkel, and K. Miettinen, “Multi-
scenario multi-objective robust optimization under deep un-
certainty: A posteriori approach,” Environmental Modelling &
Software, vol. 144, p. 105134, 2021.

[28] D. Yazdani, “Particle swarm optimization for dynamically
changing environments with particular focus on scalability and
switching cost,” Ph.D. dissertation, Liverpool John Moores
University, Liverpool, UK, 2018.

[29] Z.-H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evo-
lutionary computation for complex continuous optimization,”
Artificial Intelligence Review, pp. 1–52, 2022.

[30] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization
over time by learning problem space characteristics,” IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19

Transactions on Evolutionary Computation, vol. 23, no. 1, pp.
143–155, 2019.

[31] T. T. Nguyen and X. Yao, “Continuous dynamic constrained
optimization—the challenges,” IEEE Transactions on Evolu-
tionary Computation, vol. 16, no. 6, pp. 769–786, 2012.

[32] D. Yazdani, D. Yazdani, J. Branke, M. N. Omidvar, Amir H.
Gandomi, and X. Yao, “Robust optimization over time by es-
timating robustness of promising regions,” IEEE Transactions
on Evolutionary Computation, vol. 27, no. 3, pp. 657–670,
2022.

[33] K. De Jong, “Evolving in a changing world,” in Foundations of
Intelligent Systems: 11th International Symposium, ISMIS’99
Warsaw, Poland, June 8–11, 1999 Proceedings 11. Springer,
1999, pp. 512–519.

[34] C. D. Laird and L. T. Biegler, “Large-scale nonlinear program-
ming for multi-scenario optimization,” in Modeling, Simulation
and Optimization of Complex Processes: Proceedings of the
Third International Conference on High Performance Scientific
Computing, March 6–10, 2006, Hanoi, Vietnam. Springer,
2008, pp. 323–336.

[35] H. Wang, J. Doherty, and Y. Jin, “Hierarchical surrogate-
assisted evolutionary multi-scenario airfoil shape optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE,
2018, pp. 1–8.

[36] K. Deb, L. Zhu, and S. Kulkarni, “Multi-scenario, multi-
objective optimization using evolutionary algorithms: Initial
results,” in IEEE Congress on Evolutionary Computation.
IEEE, 2015, pp. 1877–1884.

[37] W. Li, R. Wang, T. Zhang, M. Ming, and H. Lei, “Multi-
scenario microgrid optimization using an evolutionary multi-
objective algorithm,” Swarm and Evolutionary Computation,
vol. 50, p. 100570, 2019.

[38] X. Zhou, H. Wang, W. Peng, B. Ding, and R. Wang, “Solving
multi-scenario cardinality constrained optimization problems
via multi-objective evolutionary algorithms,” Science China
Information Sciences, vol. 62, pp. 1–18, 2019.

[39] J. Branke and H. Schmeck, “Designing evolutionary algo-
rithms for dynamic optimization problems,” in Advances in
Evolutionary Computing, A. Ghosh and S. Tsutsui, Eds.
Springer Natural Computing Series, 2003, pp. 239–262.

[40] Y. Jin, H. Wang, and C. Sun, Data-Driven Evolutionary
Optimization. Springer, 2021.

[41] S. Chatterjee and A. S. Hadi, Regression analysis by example.
John Wiley & Sons, 2006.

[42] H. Fu, “Finding robust solutions against environmental
changes,” Ph.D. dissertation, University of Birmingham, 2014.

[43] C. Martella, J. Li, C. Conrado, and A. Vermeeren, “On current
crowd management practices and the need for increased situ-
ation awareness, prediction, and intervention,” Safety Science,
vol. 91, pp. 381 – 393, 2017.

[44] F. Plastria, Covering Location Problems. Springer-Verlag New
York, 2002, pp. 37–79.

[45] M. Haghani, E. Kuligowski, A. Rajabifard, and P. Lentini,
“Fifty years of scholarly research on terrorism: Intellectual pro-
gression, structural composition, trends and knowledge gaps of
the field,” International Journal of Disaster Risk Reduction,
vol. 68, p. 102714, 2022.

[46] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A
multi-objective time-linkage approach for dynamic optimiza-
tion problems with previous-solution displacement restriction,”
in Applications of Evolutionary Computation, K. Sim and
P. Kaufmann, Eds. Springer International Publishing, 2018,
pp. 864–878.

[47] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and
X. Yao, “A survey of evolutionary continuous dynamic op-
timization over two decades – part B,” IEEE Transactions on
Evolutionary Computation, vol. 25, no. 4, pp. 630–650, 2021.

[48] M. N. Omidvar, X. Li, and X. Yao, “A review of population-
based metaheuristics for large-scale black-box global optimiza-

tion—Part I,” IEEE Transactions on Evolutionary Computa-
tion, vol. 26, no. 5, pp. 802–822, 2021.

[49] ——, “A review of population-based metaheuristics for large-
scale black-box global optimization—Part II,” IEEE Transac-
tions on Evolutionary Computation, vol. 26, no. 5, pp. 823–
843, 2021.

[50] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen,
“Data-driven evolutionary optimization: An overview and case
studies,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 3, pp. 442–458, 2018.

[51] Y. Jin, “A comprehensive survey of fitness approximation in
evolutionary computation,” Soft computing, vol. 9, no. 1, pp.
3–12, 2005.

[52] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of ICNN’95-International Conference on Neu-
ral Networks, vol. 4. IEEE, 1995, pp. 1942–1948.

[53] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic
systems with particle swarms,” in IEEE Congress on Evolu-
tionary Computation, vol. 1. IEEE, 2001, pp. 94–100.

[54] M. Fox, S. Yang, and F. Caraffini, “An experimental study of
prediction methods in robust optimization over time,” in IEEE
Congress on Evolutionary Computation. IEEE Press, 2020.

[55] J.-Y. Guzmán-Gaspar and E. Mezura-Montes, “Robust opti-
mization over time with differential evolution using an average
time approach,” in IEEE Congress on Evolutionary Computa-
tion. IEEE, 2019, pp. 1548–1555.

[56] ——, “Differential evolution variants in robust optimization
over time,” in 2019 International Conference on Electronics,
Communications and Computers (CONIELECOMP). IEEE,
2019, pp. 164–169.

[57] S. Das and P. N. Suganthan, “Differential evolution: A survey
of the state-of-the-art,” IEEE transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2010.

[58] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, “Approxi-
mation models in robust optimization over time-an experimen-
tal study,” in IEEE Congress on Evolutionary Computation.
IEEE, 2018, pp. 1–6.

[59] K. Deb and H. Gupta, “Introducing robustness in multi-
objective optimization,” Evolutionary Computation, vol. 14,
no. 4, pp. 463–494, 2006.

[60] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[61] I. O. Essiet and Y. Sun, “Tracking variable fitness landscape in
dynamic multi-objective optimization using adaptive mutation
and crossover operators,” IEEE Access, vol. 8, pp. 188 927–
188 937, 2020.

[62] Y. Shi, “Brain storm optimization algorithm,” in Advances
in Swarm Intelligence, Y. Tan et al., Ed. Springer Berlin
Heidelberg, 2011, pp. 303–309.

[63] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu,
S. Bechikh, K. Deb, and A. Ouni, “Many-objective software
remodularization using nsga-iii,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 24, no. 3,
pp. 1–45, 2015.

[64] J.-Y. Guzmán-Gaspar, E. Mezura-Montes, and S. Domı́nguez-
Isidro, “Differential evolution in robust optimization over time
using a survival time approach,” Mathematical and Computa-
tional Applications, vol. 25, no. 4, p. 72, 2020.

[65] R. Poli, “Mean and variance of the sampling distribution of
particle swarm optimizers during stagnation,” IEEE Transac-
tions on Evolutionary Computation, vol. 13, no. 4, pp. 712–
721, 2009.

[66] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T.
Nguyen, and X. Yao, “Benchmarking continuous dynamic
optimization: Survey and generalized test suite,” IEEE Trans-
actions on Cybernetics, vol. 52, no. 5, pp. 3380–3393, 2022.

[67] D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li,
M. Mavrovouniotis, T. T. Nguyen, S. Yang, and X. Yao, “IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 20

CEC 2022 competition on dynamic optimization problems
generated by generalized moving peaks benchmark,” arXiv
preprint arXiv:2106.06174, 2021.

[68] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new
multi-swarm particle swarm optimization for robust optimiza-
tion over time,” in Applications of Evolutionary Computation,
G. Squillero and K. Sim, Eds. Springer International Pub-
lishing, 2017, pp. 99–109.

[69] L. Adam and X. Yao, “A simple yet effective approach to
robust optimization over time,” in 2019 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2019,
pp. 680–688.

[70] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Characterizing
environmental changes in robust optimization over time,” in
IEEE Congress on Evolutionary Computation. IEEE, 2012,
pp. 1–8.

[71] Y.-n. Guo, M. Chen, H. Fu, and Y. Liu, “Find robust solutions
over time by two-layer multi-objective optimization method,”
in IEEE Congress on Evolutionary Computation. IEEE, 2014,
pp. 1528–1535.

[72] B. Nasiri, M. Meybodi, and M. Ebadzadeh, “History-driven
particle swarm optimization in dynamic and uncertain envi-
ronments,” Neurocomputing, vol. 172, pp. 356 – 370, 2016.

[73] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective ap-
proach to robust optimization over time considering switching
cost,” Information Sciences, vol. 394, pp. 183–197, 2017.

[74] Y. Huang, Y. Jin, and K. Hao, “Decision-making and multi-
objectivization for cost sensitive robust optimization over
time,” Knowledge-Based Systems, p. 105857, 2020.

[75] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimiza-
tion: detection and response to dynamic systems,” in IEEE
Congress on Evolutionary Computation, vol. 2. IEEE, 2002,
pp. 1666–1670.

[76] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: a novel approach for
optimization in dynamic environments with global changes,”
Swarm and Evolutionary Computation, vol. 18, pp. 38 – 53,
2014.

[77] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and
X. Yao, “Scaling up dynamic optimization problems: A divide-
and-conquer approach,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 1, pp. 1–15, 2020.

[78] D. Yazdani, R. Cheng, C. He, and J. Branke, “Adaptive con-
trol of subpopulations in evolutionary dynamic optimization,”
IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6476–
6489, 2022.

[79] Q. Y. Kenny, W. Li, and A. Sudjianto, “Algorithmic construc-
tion of optimal symmetric latin hypercube designs,” Journal of
Statistical Planning and Inference, vol. 90, no. 1, pp. 145–159,
2000.

[80] P. Angeline, “Tracking extrema in dynamic environments,” in
Evolutionary Programming VI, P. Angeline et al., Ed. Springer
Lecture Notes in Computer Science, 1997, vol. 1213, pp. 335–
345.

[81] C. Li and S. Yang, “A generalized approach to construct
benchmark problems for dynamic optimization,” in Simulated
Evolution and Learning, X. L. et al., Ed. Springer Lecture
Notes in Computer Science, 2013, vol. 5361, pp. 391–400.

[82] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung,
Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

[83] R. T. Marler and J. S. Arora, “The weighted sum method
for multi-objective optimization: new insights,” Structural and
multidisciplinary optimization, vol. 41, no. 6, pp. 853–862,
2010.

[84] S. Kaddani, D. Vanderpooten, J.-M. Vanpeperstraete, and
H. Aissi, “Weighted sum model with partial preference infor-
mation: application to multi-objective optimization,” European
Journal of Operational Research, vol. 260, no. 2, pp. 665–679,

2017.
[85] Y. Huang, Y. Jin, and Y. Ding, “New performance indicators

for robust optimization over time,” in IEEE Congress on
Evolutionary Computation. IEEE, 2015, pp. 1380–1387.

[86] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained
optimization with ensemble of locating and tracking feasible
regions strategies,” IEEE Transactions on Evolutionary Com-
putation, vol. 21, no. 1, pp. 14–33, 2016.

[87] T. Blackwell, J. Branke, and X. Li, “Particle swarms for
dynamic optimization problems,” in Swarm Intelligence: In-
troduction and Applications, C. Blum and D. Merkle, Eds.
Springer Lecture Notes in Computer Science, 2008, pp. 193–
217.

[88] W. Zheng, H. Chen, and X. Yao, “Analysis of evolutionary
algorithms on fitness function with time-linkage property,”
IEEE Transactions on Evolutionary Computation, vol. 25,
no. 4, pp. 696–709, 2021.

[89] J. Brimberg, P. Hansen, N. Mladenovic, and S. Salhi, “A
survey of solution methods for the continuous location-
allocation problem,” International Journal of Operations Re-
search, vol. 5, no. 1, pp. 1 – 12, 2008.

[90] T. T. Nguyen and X. Yao, “Dynamic time-linkage evolutionary
optimization: Definitions and potential solutions,” in Meta-
heuristics for Dynamic Optimization. Springer, 2013, pp.
371–395.

[91] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative
co-evolution with differential grouping for large scale opti-
mization,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 3, pp. 378–393, 2014.

[92] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark
problems for large-scale continuous optimization,” Information
Sciences, vol. 316, pp. 419–436, 2015.

[93] M. N. Omidvar, D. Yazdani, J. Branke, X. Li, S. Yang, and
X. Yao, “Generating large-scale dynamic optimization problem
instances using the generalized moving peaks benchmark,”
arXiv preprint arXiv:2107.11019, 2021.

[94] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale
black-box optimization,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 6, pp. 929–942, 2017.

[95] T. Zhu, W. Luo, and L. Yue, “Combining multipopulation evo-
lutionary algorithms with memory for dynamic optimization
problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 2014, pp. 2047–2054.

[96] L. Liu, S. R. Ranjithan, and G. Mahinthakumar, “Contamina-
tion source identification in water distribution systems using
an adaptive dynamic optimization procedure,” Journal of Water
Resources Planning and Management, vol. 137, no. 2, pp. 183–
192, 2011.

[97] L. Liu, E. M. Zechman, E. D. Brill, Jr, G. Mahinthakumar,
S. Ranjithan, and J. Uber, “Adaptive contamination source
identification in water distribution systems using an evolu-
tionary algorithm-based dynamic optimization procedure,” in
Water Distribution Systems Analysis Symposium, 2008, pp. 1–
9.

[98] B. Da, Y.-S. Ong, L. Feng, A. K. Qin, A. Gupta, Z. Zhu,
C.-K. Ting, K. Tang, and X. Yao, “Evolutionary multitasking
for single-objective continuous optimization: Benchmark prob-
lems, performance metric, and baseline results,” arXiv preprint
arXiv:1706.03470, 2017.

[99] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution:
toward evolutionary multitasking,” IEEE Transactions on Evo-
lutionary Computation, vol. 20, no. 3, pp. 343–357, 2015.

[100] X. Zheng, A. K. Qin, M. Gong, and D. Zhou, “Self-regulated
evolutionary multitask optimization,” IEEE Transactions on
Evolutionary Computation, vol. 24, no. 1, pp. 16–28, 2019.

[101] M. Mavrovouniotis, “Ant colony optimization in stationary
and dynamic environments,” Ph.D. dissertation, University of
Leicester, 2013.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 21

[102] Y. Liu and H. Liang, “A ROOT approach for stochastic energy
management in electric bus transit center with PV and ESS,”
in IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[103] ——, “A three-layer stochastic energy management approach
for electric bus transit centers with PV and energy storage
systems,” IEEE Transactions on Smart Grid, vol. 12, no. 2,
pp. 1346–1357, 2020.

[104] R. Ankrah, B. Lacroix, J. McCall, A. Hardwick, and A. Con-
way, “Introducing the dynamic customer location-allocation
problem,” in IEEE Congress on Evolutionary Computation.
IEEE, 2019, pp. 3157–3164.

[105] R. Ankrah, B. Lacroix, J. McCall, A. Hardwick, A. Conway,
and G. Owusu, “Racing strategy for the dynamic-customer
location-allocation problem,” in IEEE Congress on Evolution-
ary Computation. IEEE, 2020, pp. 1–8.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Supplementary Document of ‘Robust Optimization
Over Time: A Critical Review’

Danial Yazdani, Member, IEEE, Mohammad Nabi Omidvar, Senior member, IEEE, Donya Yazdani,
Jürgen Branke, Trung Thanh Nguyen, Amir H. Gandomi, Senior member, IEEE,

Yaochu Jin, Fellow, IEEE, and Xin Yao, Fellow, IEEE

CONTENTS

S-I ROOT benchmark problems 1
S-I-A Baseline functions used in ROOT

benchmarks 1
S-I-B Definition of quality threshold and

switching cost in ROOT benchmarks . . 3
S-I-B1 Quality threshold definition

in ROOT benchmarks 3
S-I-B2 Switching cost in ROOT

benchmarks 3
S-I-C Discussion on ROOT benchmarks . . . 4

S-II ROOT performance indicators 4
S-II-A ROOTS

Q performance indicators 4
S-II-B ROOTS

T performance indicators 5
S-II-C ROOTS

G performance indicators 5
S-II-D ROOTM

Q performance indicators 5
S-II-E Discussion on ROOT performance indi-

cators 5

S-I. ROOT BENCHMARK PROBLEMS

A typical benchmark problem for robust optimization over
time (ROOT) consists of three main components: baseline
functions, dynamics, and ROOT-specific elements, including

Danial Yazdani is with the Faculty of Engineering & Information Tech-
nology, University of Technology Sydney, Ultimo 2007, Australia. (e-mail:
danial.yazdani@gmail.com)

Mohammad Nabi Omidvar is with the School of Computing, University
of Leeds, and Leeds University Business School, Leeds LS2 9JT, United
Kingdom. (e-mail: m.n.omidvar@leeds.ac.uk)

Donya Yazdani is with the Department of Computer Science, Uni-
versity of Sheffield, Sheffield S1 4DP, United Kingdom. (e-mail: dyaz-
dani1@sheffield.ac.uk)

Juergen Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom. (e-mail: Juergen.Branke@wbs.ac.uk)

Trung Than Nguyen is with the Department of Maritime and Mechanical
Engineering, Liverpool John Moores University, Liverpool L3 3AF, United
Kingdom. (e-mail: T.T.Nguyen@ljmu.ac.uk)

Amir H. Gandomi is with the Faculty of Engineering & Information
Technology, University of Technology Sydney, Ultimo 2007, Australia. He
is also with the University Research and Innovation Center (EKIK), Obuda
University, Budapest 1034, Hungary. (e-mail: Gandomi@uts.edu.au)

Yaochu Jin is with the Faculty of Technology, Bielefeld University, Biele-
feld 33615, Germany. (e-mail: yaochu.jin@uni-bielefeld.de)

Xin Yao is with the Research Institute of Trustworthy Autonomous Sys-
tems (RITAS), and Guangdong Provincial Key Laboratory of Brain inspired
Intelligent Computation, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
He is also with the CERCIA, School of Computer Science, Birmingham B15
2TT, United Kingdom. (e-mail: xiny@sustech.edu.cn)

the quality threshold and switching cost. The dynamics used
in these benchmark problems are those that are commonly
used in the field of tracking the moving optimum (TMO),
and as such, they are not discussed in this survey. For a
comprehensive list of the dynamics used in the field and
their characteristics, the reader is referred to [1]. Below, we
provide a review of the baseline functions used in ROOT
benchmarks, as well as the methodologies used to model the
quality threshold and switching cost.

A. Baseline functions used in ROOT benchmarks

Various benchmarks have been used in the field for eval-
uating the effectiveness of ROOTM and ROOTS methods.
Prior studies that concentrate on solving ROOTM prob-
lems, including [2–5], have utilized several commonly used
benchmark problems in the field of dynamic multi-objective
optimization [6–8]. These multi-objective benchmarks were
originally employed in the field of evolutionary dynamic multi-
objective optimization for tracking Pareto-optimal solutions
(POS) over time and have been employed in ROOT literature
without modification. Consequently, in this survey, we do
not delve into their details. Surveys, which cover dynamic
multi-objective benchmarks, can be referred to [9, 10]. On
the other hand, studies focusing on solving ROOTS problems
used benchmark problems specifically designed or modified
to generate ROOTS problem instances. In the following, we
describe the ROOTS benchmarks’ baseline functions used in
the field.

The first dedicated benchmark for ROOTS in the literature
is the modified Moving Peaks Benchmark (mMPB) [11–15].
The landscapes produced by mMPB are created by combining
multiple promising regions (peaks). A max(·) function is nor-
mally used to define the basin of attraction of each promising
region. The promising regions in mMPB are regular, smooth,
symmetric, unimodal, and conical, with dynamically changing
properties such as height, width, and location. The baseline
function of mMPB is defined as:

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥x− c
(t)
i

∥∥∥} , (S-1)

where m is the number of promising regions, x is a solution
in the d-dimensional problem space, h(t)

i , w(t)
i , and c

(t)
i are

the height, width, and the center/summit location of the ith
promising region in the tth environment, respectively. Note
that the baseline functions in mMPB and MPB are identical,
but their dynamics are different. In mMPB, the height, width,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

and center of the ith promising region change from one
environment to the next using the following equations:

h
(t+1)
i = h

(t)
i + h̃i N(0, 1), (S-2)

w
(t+1)
i = w

(t)
i + w̃i N(0, 1), (S-3)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (S-4)

v
(t+1)
i = s̃i ·

(1− λ) · u+ λ · v(t)
i∥∥∥(1− λ) · u+ λ · v(t)
i

∥∥∥ , (S-5)

where h̃i, w̃i, and s̃i are change severity parameters of height,
width, and shift of the ith promising region, u is a vector
of uniformly distributed numbers in [−0.5, 0.5], N(0, 1) is a
random number drawn from a Gaussian distribution with mean
0 and variance 1, and λ ∈ (0, 1) is a correlation coefficient. As
can be seen in (S-2)-(S-5), unlike the traditional MPB in which
all promising regions share the same change severity, each
promising region i in mMPB has its own dedicated severity
values. These differences result in different levels of robustness
among promising regions [12].

Currently, mMPB is the most commonly used benchmark
problem in the ROOTS literature, and has been used for eval-
uating the performance of ROOTS

Q [16, 17], ROOTS
T [18],

and ROOTS
G [19] methods. However, it has the following

shortcomings:

1) Its landscape is composed of promising regions that are
easy to optimize due to their regularity, unimodality,
symmetry, lack of ill-conditioning, and full separabil-
ity [20, 21], which is not the case in most real-world
problems.

2) Equation (S-5) shows that after each environmental
change, the promising region center ci is shifted with
a fixed Euclidean length s̃i, and only the direction of
movement can be random (if λ is set to smaller values).
According to our investigations, this property, which
cannot be found in most real-world problems, causes a
bias in favor of some methods that work based on the
estimated robustness of promising regions.

3) Although the optimal fitness value in the landscapes
generated by mMPB is known in each environment1, the
optimal value of robustness in mMPB is not known.

To address the first shortcoming of mMPB, the base-
line function of the generalized moving peaks benchmark
(GMPB) [21, 22] is used in [23]. Unlike MPB, the promising
regions generated by GMPB can be highly complex (see
Figs. 4(a)). GMPB’s baseline function is defined as:

f (t)(x) = maxk∈{1,...,m}

{
h
(t)
k −

√
T
((

x− c
(t)
k

)⊤
R

(t)
k

⊤
, k

)
W

(t)
k T

(
R

(t)
k

(
x− c

(t)
k

)
, k
)}

,

(S-6)

1The global optimum position is the center of the promising region with
the maximum height.

where T(y, k) : Rd 7→ Rd is calculated as:

T (yj , k) =


exp

(
log(yj) + τ

(t)
k

(
sin (η

(t)
k,1 log(yj)) + sin (η

(t)
k,2 log(yj))

))
if yj > 0

0 if yj = 0

− exp
(
log(|yj |) + τ

(t)
k

(
sin (η

(t)
k,3 log(|yj |)) + sin (η

(t)
k,4 log(|yj |))

))
if yj < 0

(S-7)

where η
(t)
k,l∈{1,2,3,4} and τ

(t)
k are irregularity parameters of

the kth promising region, R(t)
k is the rotation matrix of kth

promising region, and W
(t)
k is a d× d diagonal matrix whose

diagonal elements show the width of kth promising region in
different dimensions. Similar to mMPB, (S-2) and (S-3) are
used to change the height and width of the promising regions,
respectively. However, instead of (S-4) and (S-5), the following
formula is used for relocating the centers of promising regions:

c
(t+1)

i,j = c
(t)

i,j +N

(
0,

s̃i√
d

)
, (S-8)

where c
(t)

i,j is the jth dimension of the center position of
the ith promising region. Using (S-8) instead of (S-4) and
(S-5), results in shifting the center of promising regions with
various lengths, which addresses the second shortcoming of
mMPB mentioned above. Note that the third shortcoming of
the mMPB has not been addressed in the modified GMPB used
in [23] since the optimal robustness values are still unknown
in this benchmark.

As knowing the optimal robustness values is desirable
to measure the difference between the performance of an
algorithm and the optimal performance, Fu et al. [24] proposed
two benchmark problems in which the optimal robustness
values are known. The baseline functions of these benchmarks,
which are designed by modifying the baseline function of
MPB, are as follows:

f (t)(x) =
1

d

d∑
j=1

{
max

i∈{1,...,m}

{
h
(t)
i,j − w

(t)
i,j

∣∣∣xj − c
(t)
i,j

∣∣∣}} ,

(S-9)

f (t)(x) = min
j∈{1,...,d}

{
max

i∈{1,...,m}

{
h
(t)
i,j − w

(t)
i,j

∣∣∣xj − c
(t)
i,j

∣∣∣}} ,

(S-10)

where m is the number of promising regions along each
dimension, d is the number of dimensions, and h

(t)
i,j , w(t)

i,j , and
c
(t)
i,j are the height, width, and center of the ith promising re-

gion of the jth dimension in the tth environment, respectively.
The baseline function in (S-9) is designed specifically for
generating ROOTS

T problem instances in which the optimal
average fitness value by (7) can be mathematically calculated.
Equation (S-10), on the other hand, is specifically designed
for ROOTS

Q whose optimal average survival time in (10)
can be mathematically calculated. To generate environmental
changes, the dynamics in [25], including random, small step,
large step, chaotic, circular, and noisy circular, are used in
these two benchmarks. Although the possibility of calculating
the optimal average fitness and survival time in (S-9) and
(S-10) is desirable, these benchmark problems still suffer from
the following shortcomings:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) A landscape generated by (S-9).

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) A landscape generated by (S-10).

Fig. S-1. 2-dimensional landscapes generated by (S-9) and (S-10) with the
same parameter settings (for all promising regions’ center positions, heights,
and widths). m has been set to 5 which results in generating 52 = 25
promising regions in a 2-dimensional space.

• The L2-norm distance in the standard MPB, which is the
core of many real-world problems [26] such as continu-
ous covering location problems [27], has been replaced
by dimension-wise absolute values in (S-9) and (S-10),
resulting in the generation of more artificial problems.

• The number of promising regions in the landscapes gen-
erated by these baseline functions is not controllable and
can be up to md (some might be hidden beneath larger
nearby promising regions [21]). Consequently, these base-
line functions may not be suitable to generate problem
instances with higher dimensions. This has resulted in
using these benchmarks only to generate 2-dimensional
problems in the literature [24, 28]. Figure S-1 depicts
two examples of the landscapes generated by (S-9) and
(S-10).

B. Definition of quality threshold and switching cost in ROOT
benchmarks

1) Quality threshold definition in ROOT benchmarks: As
stated in Section II, the quality threshold is a part of ROOTQ

and ROOTG problems, which determines the acceptability
of solutions, particularly the deployed solution. Various ap-
proaches have been used in designing ROOT benchmark
problems to define the quality thresholds. In the existing
ROOTS

Q benchmark problems, two different quality threshold
definitions have been used in [13] and [18]. In [13], the
acceptability of the deployed solution s in the tth environment
is determined using:

a(t)(s) =

0, if

∣∣∣∣∣f (t)
(
x⋆(t)

)
− f (t)(s)

f (t)
(
x⋆(t)

) ∣∣∣∣∣ > δ

1, otherwise

, (S-11)

where a(t)(s) = 1 indicates that the deployed solution s is
acceptable in the tth environment, and a(t)(s) = 0 otherwise,
x⋆(t) is the optimum position in the tth environment, and
δ denotes the threshold of the maximum tolerated fitness
difference between s and x⋆(t). However, this definition for
determining the acceptability of the deployed solution is not
practical as it needs information about the global optimum,
which violates the black-box assumption of problems. To
address this issue, it is suggested in [16] to replace the global

optimum position x⋆(t) in (S-11) with the best-found position2

g⋆(t).
Fu et al. [18] presented another definition that is indepen-

dent of the knowledge of the global optimum or the best-found
position:

a(t)(s) =

{
0, if f (t)(s) < µ

1, otherwise
, (S-12)

where µ is a predefined fitness threshold used to evaluate the
acceptability of s. Therefore, a new solution must be chosen
for deployment if the fitness value of the deployed solution in
the new environment is worse than µ. In other words, (S-12)
indicates that s can be kept as the deployed solution as long
as its fitness value remains above µ after each environmental
change. Equation (S-12) is used to evaluate the acceptability
of solutions in other works such as [17, 29–31]. In [19],
(S-12) was used to determine the acceptability of the deployed
solution in ROOTS

G.
The definition of quality threshold in ROOTM

Q benchmark
problems determines the acceptability of the deployed set of
solutions, which is different from the aforementioned defi-
nitions that focus on the acceptability of a single deployed
solution. In [2], a quality definition for changing or keeping
the deployed set of solutions P for solving ROOTM

Q problems
is used that is formulated as:

a(t) (P) =

0, if ∃xj ∈ P :

∥∥F (t−k)(xj)− F (t)(xj)
∥∥∥∥F (t−k)(xj)

∥∥ > µ

1, otherwise
,

(S-13)

where the (t − k)th environment is when the current set
of deployed solutions has been deployed, t is the index of
the current environment, F (t)(xj) and F (t−k)(xj) are the
objective function values of solution xj ∈ P in the objective
space in the tth and (t − k)th environments, respectively,
∥ · ∥ calculates the L2-norm distance, and µ is a user defined
acceptability threshold. Herein, a new set of solutions P must
be deployed if a(t) (P) = 0.

2) Switching cost in ROOT benchmarks: In [30], switching
cost is defined as the Euclidean distance between a candidate
solution x and the deployed solution s:

c(s,x) = ∥s− x∥. (S-14)

Note that the use of Euclidean distance as the switching cost is
not configurable, making this definition unsuitable for generat-
ing problem instances with various degrees of switching costs.
In addition, considering the dimensions and search ranges, the
ratio between Euclidean distances and fitness values is not
controllable. To address these issues, in [19], a configurable
and more flexible definition of switching cost based on the
Euclidean distance is used, which is formulated as:

c(s,x) = ω
∥s− x∥√

d
, (S-15)

where ω ≥ 0 is a weight parameter used for controlling the
value of switching cost, and the Euclidean distance is divided

2In terms of the actual objective function value.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

by
√
d to make the switching cost value independent from the

dimension number.

C. Discussion on ROOT benchmarks

In this section, we have reviewed the baseline functions
of ROOT benchmark problems that have been modified or
designed specifically for evaluating ROOT methods. We have
also reviewed the components used in ROOT benchmark
problems that define the requirements for changing or keeping
deployed solutions. By adjusting the parameters of these
components, researchers can change the quality threshold and
switching cost, which affect the problem characteristics. For
example, in (S-12), larger values of µ increase the problem’s
difficulty as the areas containing robust solutions shrink. How-
ever, setting these parameters (e.g., µ) to values that are too
large or too small can change the problem’s nature and make
it behave similarly to other classes of optimization problems.
For instance, a too-large µ value can result in lack of existing
robust solutions in the search space. In such circumstances,
the best approach would be to find and deploy the best
solution in each environment, resulting in a TMO problem.
Conversely, too small values of µ result in existing solutions
that are acceptable over all tmax environments, causing the
problem to behave like a robust optimization problem. A
similar situation occurs for switching cost, where too small or
large values can result in turning a ROOTG problem into a
TMO or a ROOTQ, respectively. Therefore, it is important for
researchers using the ROOT benchmarks to carefully set these
parameters in order to generate problem instances with the
desired features. Another point to note is that the parameters
controlling the quality threshold and switching cost in ROOT
benchmarks remain constant over time, whereas in real-world
problems, these parameters may change over time.

Another observation is that the majority of work in the field
focuses on solving problems with continuous search spaces,
and to the best of our knowledge, all of these benchmarks are
artificial, i.e., they are not inspired by real-world problems.
A few researchers in the field have worked on problems with
discrete search spaces, including nonlinear dynamic stochastic
optimization problems for stochastic energy management [32,
33] and dynamic customer location-allocation [34, 35]. These
discrete problems were used in these studies as real-world-
inspired benchmarks to evaluate ROOTS

Q methods. Note that
these discrete benchmarks have not been specifically modified
or designed for the field of ROOT.

S-II. ROOT PERFORMANCE INDICATORS

Performance indicators are specifically designed based on
the class of ROOT problems. As stated in Section II, to date,
no investigation has been conducted in the field on ROOTM

T

and ROOTM
G , and thus there is no performance indicator ded-

icated for them. Below, we review the performance indicators
used for measuring the performance of the ROOT methods
used for solving ROOTS

Q, ROOTS
T, ROOTS

G, and ROOTM
Q

problems.

A. ROOTS
Q performance indicators

Let S = {s1, s2, · · · , s|S|} be a sequence of deployed
solutions found by a ROOT algorithm for a ROOTS

Q prob-
lem, where |S| is the total number of deployed solutions
and 1 ≤ |S| ≤ tmax. Assume that bi is the environment
number in which si ∈ S is deployed and ni is the number
of environmental changes where si remains acceptable after
them. In [12], the average error of each solution si ∈ S during
the environments that it has been (re)used is calculated by:

ei =
1

ni + 1

bi+ni∑
t=bi

∣∣∣f (t)(x⋆(t))− f (t)(si)
∣∣∣ , (S-16)

where x⋆(t) is the global optimum position in the tth envi-
ronment. For each solution si that is robust, its sensitivity is
calculated by:

ŝi =

√√√√ 1

ni

bi+ni∑
t=bi

(∣∣f (t)(x⋆(t))− f (t)(si)
∣∣− ei

)2
, (S-17)

where si ∈ R and R = {si ∈ S|ni > 0} is the set of
robust solutions (R ⊆ S). Equations (S-16) and (S-17) focus
on a deployed solution si. The average error of all deployed
solutions S is calculated by:

eavg =
1

|S|

|S|∑
i=1

ei. (S-18)

In addition, the average sensitivity of all robust solutions R is
calculated by:

ŝavg =
1

|R|
∑
i∈R

ŝi. (S-19)

Although (S-18) and (S-19) were introduced for measuring the
performance of ROOTS

Q methods, they focus on error and
sensitivity, and do not take the robustness of the deployed
solutions into account. Consequently, they may not really
match for the definition of ROOTS

Q problems.

Later, Fu et al. [18] introduced a performance indicator
that measures the performance of the algorithms based on the
definition of survival time in (10):

S =
1

tmax

tmax∑
t=1

s
(
s (t)

)
, (S-20)

where S is the average survival time, s
(
s (t)

)
is the number of

successive environmental changes that the deployed solution
s in the tth environment has been reused and remained
acceptable after them. For example, for a solution si which
is chosen in the fifth environment and remained acceptable at
least until the eighth environment (i.e., ni = 3), the values
of s

(
s (5)

)
to s

(
s (8)

)
in (S-20) are {0, 1, 2, 3}, respectively.

Therefore, we can also reformulate (S-20) as follows:

S =
1

tmax

|S|∑
i=1

ni∑
j=0

j. (S-21)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

B. ROOTS
T performance indicators

To measure the performance of ROOTS
T algorithms in max-

imizing the average fitness values of the deployed solutions
over all environments, the following performance indicator
was proposed in [18]:

A =
1

tmax

tmax∑
t=1

f (t)
(
s(t)

)
, (S-22)

where A is the average fitness of the deployed solutions over
all environments, and s(t) is the deployed solution in tth
environment. Although A is designed to measure ROOTS

T

algorithms, it has been also used to measure the average fitness
of the deployed solutions in ROOTS

Q algorithms [17, 30].

C. ROOTS
G performance indicators

In [19], to measure the performance of ROOTS
G, the

following performance indicator is proposed:

G =
1

tmax

tmax∑
t=1

f (t)
(
s(t)

)
− c

(
s(t−1), s(t)

)
, (S-23)

where c
(
s(t−1), s(t)

)
calculates the switching cost between the

deployed solution in the (t − 1)th and tth environments, and
G is the average gain over all environments. In (S-23), the
switching cost shown by c(·) can be considered as a penalty
value. Note that in environments where a new solution is not
deployed (i.e., s(t−1) = s(t)), the switching cost is zero.

D. ROOTM
Q performance indicators

Let P̂ = {P1,P2, · · · ,P|P̂|} be a sequence of deployed
POSs in a ROOTM

Q problem. Assume that bi is the environ-
ment number in which Pi is deployed and ni is the number
of environmental changes where Pi remains acceptable after
them.

The average survival time is the main performance indicator
used for measuring the performance of algorithms in tackling
ROOTM

Q problems [2–4] that is formulated as:

S =
1

tmax

tmax∑
t=1

s
(
P(t)

)
, (S-24)

where S is the average survival time, s
(
P(t)

)
is the number

of successive environmental changes that the set of deployed
solutions P in the tth environment has been reused and
remained acceptable after them. Note that the definition of
average survival time in ROOTM

Q is similar to that used for
ROOTS

Q in (S-20).
In addition, to measure the quality of the deployed POS over

time, two commonly used performance indicators in the field
of multi-objective dynamic optimization –the generational
distance (GD) and inverted generational distance (IGD) [36]–
are modified for ROOTM

Q in [2], which are called robust
GD (RGD) and robust IGD (RIGD), respectively. RGD is
calculates by:

RGD =
1

|P̂|

|P̂|∑
i=1

max
k∈{bi,··· ,bi+ni}

GD
(
P(k)
i

)
, (S-25)

where GD
(
P(k)
i

)
calculates the generational distance [36] of

Pi in the kth environment. Similarly, RIGD is calculated by:

RIGD =
1

|P̂|

|P̂|∑
i=1

max
k∈{bi,··· ,bi+ni}

IGD
(
P(k)
i

)
, (S-26)

where IGD
(
P(k)
i

)
calculates the inverted generational dis-

tance [36] of Pi in the kth environment.

E. Discussion on ROOT performance indicators

Among the performance indicators used for measuring the
performance of ROOT methods, the outputs of those that
work based on the survival time metric –(S-20) and (S-24)–
may be misleading. The average survival time is the most com-
monly used performance indicator to measure the performance
of algorithms in solving ROOTQ problems [17, 24, 30].
However, using S values, we cannot determine which set of
deployed solutions (S in ROOTS

Q and P̂ in ROOTM
Q) by the

algorithms is better in comparisons. To reveal the flaw of this
performance indicator, we provide several examples in Fig. S-
2, which compares four sets of deployed solutions S1,2,3,4

deployed in a ROOTS
Q problem. In Fig. 2(a) and 2(b), the

average survival time is calculated for two sets of deployed
solutions. Although |S1| < |S2|, the average survival time
for S2 is better. However, with respect to the main goal
of ROOTS

Q problems, which is to minimize the number of
times the deployed solution is changed, S1 is better than
S2. Consequently, the derivation from comparing the obtained
average survival time values for S1 and S2 is contrary to the
main objective of ROOTS

Q, which is minimizing |S|. This
situation can also be observed when we compare the examples
shown in Figs. 2(a) and 2(d). In these two figures, while the
average survival time values obtained are identical, |S4| is 50%
worse than |S1|.

Another shortcoming of S can be revealed by comparing the
examples illustrated in Figure 2(c) and 2(d). As can be seen,
according to the calculated average survival time in these ex-
amples, S4 is better than S3. However, |S3| < |S4|. Moreover,
all solutions in S3 are robust (n1,2,3,4,5 > 0), i.e., all of them
had remained acceptable after an environmental change, while
the majority of the deployed solutions in Fig. 2(d): solutions
{s2, s3, s4, s5} ∈ S4 are not robust (n2,3,4,5 = 0). Finally,
unlike the example depicted in Fig. 2(c), Fig. 2(d) suffers from
successive changes in the deployed solutions in environments
six to 10, which is undesirable in ROOTS

Q problems.
Another important flaw of the average survival time is

revealed by comparing the ratio between the obtained results in
Figs. 2(a) to 2(d). It can be seen in these figures that the ratio
between the results is unreliable for comparing algorithms.
For example, the obtained result in Fig. 2(b) is three times
larger than that of shown in Figure 2(c) while in both cases,
the deployed solution is changed four times. Thus, the ratio
between the obtained average survival time values by the
algorithms is not reliable to show how much an algorithm
is better than another.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

0 1 0 1 2 3 0 0 1 2

First Solution

1 2 3 4 5 6 7 8 9 10

Environment number

Switching solutionSwitching solution

s1 s2 s4s1 s2 s2 s2 s3 s4s4

(a) S1 = {s1, s2, s3, s4}, S = 0+1+0+1+2+3+0+0+1+2
10 = 1

0 0 1 2 3 4 5 0 0 0

First Solution

1 2 3 4 5 6 7 8 9 10

Environment number

Switching solution

s1 s2 s3s2 s2 s2 s2 s2 s5s4

(b) S2 = {s1, s2, s3, s4, s5}, S = 0+0+1+2+3+4+5+0+0+0
10 = 1.5

0 1 0 1 0 1 0 1 0 1

First Solution

1 2 3 4 5 6 7 8 9 10

Environment number

Switching solution

s1 s2 s4s1 s2 s3 s3 s4 s5s5

(c) S3 = {s1, s2, s3, s4, s5}, S = 0+1+0+1+0+1+0+1+0+1
10 = 0.5

0 1 2 3 4 0 0 0 0 0

First Solution

1 2 3 4 5 6 7 8 9 10

Environment number

Switching solution

s1 s1 s4s1 s1 s1 s2 s3 s6s5

(d) S4 = {s1, s2, s3, s4, s5, s6}, S = 0+1+2+3+4+0+0+0+0+0
10 = 1

Fig. S-2. Four examples of calculating average survival time by (S-20). Each square shows an environment. For each environment, the value of s(s) in (S-20)
is shown inside each square. In these examples, the problem has 10 environments, and S1,2,3,4 are the sets of deployed solutions over all environments in
examples (a), (b), (c), and (d), respectively.

Note that (S-24), which is used for ROOTM
Q , suffers from

similar flaws of (S-20), which can be seen in circumstances
similar to those provided in Fig. S-2 for ROOTS

Q.

REFERENCES

[1] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization
over two decades – part B,” IEEE Transactions on Evolutionary
Computation, vol. 25, no. 4, pp. 630–650, 2021.

[2] M. Chen, Y. Guo, H. Liu, and C. Wang, “The evolutionary
algorithm to find robust pareto-optimal solutions over time,”
Mathematical Problems in Engineering, vol. 2015, 2015.

[3] Y. Guo, H. Yang, M. Chen, J. Cheng, and D. Gong, “Ensemble
prediction-based dynamic robust multi-objective optimization
methods,” Swarm and Evolutionary Computation, vol. 48, pp.
156–171, 2019.

[4] Y. Guo, H. Yang, M. Chen, D. Gong, and S. Cheng, “Grid-
based dynamic robust multi-objective brain storm optimization
algorithm,” Soft Computing, vol. 24, no. 10, pp. 7395–7415,
2020.

[5] M. Chen, Y. Guo, Y. Jin, S. Yang, D. Gong, and Z. Yu, “An
environment-driven hybrid evolutionary algorithm for dynamic
multi-objective optimization problems,” Complex & Intelligent
Systems, pp. 1–17, 2022.

[6] S. Biswas, S. Das, P. N. Suganthan, and C. A. C. Coello, “Evo-
lutionary multiobjective optimization in dynamic environments:
A set of novel benchmark functions,” in IEEE Congress on
Evolutionary Computation. IEEE, 2014, pp. 3192–3199.

[7] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective
optimization problems: test cases, approximations, and applica-
tions,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 5, pp. 425–442, 2004.

[8] C.-K. Goh and K. C. Tan, “Evolutionary multi-objective op-
timization in uncertain environments,” Issues and Algorithms,
Studies in Computational Intelligence, vol. 186, pp. 5–18, 2009.

[9] M. Helbig and A. P. Engelbrecht, “Benchmarks for dynamic
multi-objective optimisation algorithms,” ACM Computing Sur-
veys (CSUR), vol. 46, no. 3, pp. 1–39, 2014.

[10] S. Jiang, J. Zou, S. Yang, and X. Yao, “Evolutionary dynamic
multi-objective optimisation: A survey,” ACM Computing Sur-
veys, vol. 55, no. 4, pp. 1–47, 2022.

[11] J. Branke, “Memory enhanced evolutionary algorithms for
changing optimization problems,” in IEEE Congress on Evo-
lutionary Computation, vol. 3. IEEE, 1999, pp. 1875–1882.

[12] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over
time—a new perspective on dynamic optimization problems,”

in IEEE Congress on Evolutionary Computation. IEEE, 2010,
pp. 1–6.

[13] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Characterizing
environmental changes in robust optimization over time,” in
IEEE Congress on Evolutionary Computation. IEEE, 2012,
pp. 1–8.

[14] J. Branke, Evolutionary optimization in dynamic environments.
Springer Science & Business Media, 2012, vol. 3.

[15] R. W. Morrison and K. A. D. Jong, “A test problem generator
for non-stationary environments,” in IEEE Congress on Evolu-
tionary Computation, vol. 3. IEEE, 1999, pp. 2047–2053.

[16] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A frame-
work for finding robust optimal solutions over time,” Memetic
Computing, vol. 5, no. 1, pp. 3–18, 2013.

[17] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization
over time by learning problem space characteristics,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 1, pp.
143–155, 2019.

[18] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust
solutions to dynamic optimization problems,” in European
Conference on the Applications of Evolutionary Computation.
Springer, 2013, pp. 616–625.

[19] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and
X. Yao, “Changing or keeping solutions in dynamic optimiza-
tion problems with switching costs,” in Proceedings of the
Genetic and Evolutionary Computation Conference. ACM,
2018, pp. 1095–1102.

[20] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and
X. Yao, “Scaling up dynamic optimization problems: A divide-
and-conquer approach,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 1, pp. 1–15, 2020.

[21] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen,
and X. Yao, “Benchmarking continuous dynamic optimization:
Survey and generalized test suite,” IEEE Transactions on Cy-
bernetics, vol. 52, no. 5, pp. 3380–3393, 2022.

[22] D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li,
M. Mavrovouniotis, T. T. Nguyen, S. Yang, and X. Yao, “IEEE
CEC 2022 competition on dynamic optimization problems
generated by generalized moving peaks benchmark,” arXiv:
2106.06174, 2021.

[23] D. Yazdani, D. Yazdani, J. Branke, M. N. Omidvar, Amir
H. Gandomi, and X. Yao, “Robust optimization over time by
estimating robustness of promising regions,” IEEE Transactions
on Evolutionary Computation, vol. 27, no. 3, pp. 657–670, 2022.

[24] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Robust optimization
over time: Problem difficulties and benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5, pp.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

731–745, 2015.
[25] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-

G. Beyer, and P. N. Suganthan, “Benchmark generator for
cec’2009 competition on dynamic optimization,” Center for
Computational Intelligence, Tech. Rep., 2008.

[26] J. Branke, Evolutionary Optimization in Dynamic Environments.
Springer-Verlag Berlin Heidelberg, 2002.

[27] J. Brimberg, P. Hansen, N. Mladenovic, and S. Salhi, “A sur-
vey of solution methods for the continuous location-allocation
problem,” International Journal of Operations Research, vol. 5,
no. 1, pp. 1 – 12, 2008.

[28] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, “Approxi-
mation models in robust optimization over time-an experimental
study,” in IEEE Congress on Evolutionary Computation. IEEE,
2018, pp. 1–6.

[29] Y. Huang, Y. Jin, and K. Hao, “Decision-making and multi-
objectivization for cost sensitive robust optimization over time,”
Knowledge-Based Systems, p. 105857, 2020.

[30] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective
approach to robust optimization over time considering switching
cost,” Information Sciences, vol. 394, pp. 183–197, 2017.

[31] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new
multi-swarm particle swarm optimization for robust optimiza-
tion over time,” in Applications of Evolutionary Computation,
G. Squillero and K. Sim, Eds. Springer International Publish-
ing, 2017, pp. 99–109.

[32] Y. Liu and H. Liang, “A ROOT approach for stochastic energy
management in electric bus transit center with PV and ESS,”
in IEEE Global Communications Conference (GLOBECOM).
IEEE, 2019, pp. 1–6.

[33] ——, “A three-layer stochastic energy management approach
for electric bus transit centers with PV and energy storage
systems,” IEEE Transactions on Smart Grid, vol. 12, no. 2,
pp. 1346–1357, 2020.

[34] R. Ankrah, B. Lacroix, J. McCall, A. Hardwick, and A. Conway,
“Introducing the dynamic customer location-allocation prob-
lem,” in IEEE Congress on Evolutionary Computation. IEEE,
2019, pp. 3157–3164.

[35] R. Ankrah, B. Lacroix, J. McCall, A. Hardwick, A. Conway,
and G. Owusu, “Racing strategy for the dynamic-customer
location-allocation problem,” in IEEE Congress on Evolutionary
Computation. IEEE, 2020, pp. 1–8.

[36] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

Nomenclature

Notation Description

ROOT Robust optimization over time
DOP Dynamic optimization problem
TMO Tracking the moving optimum

ROOTS ROOT problems in which there is one and only one deployed solution at each point in time.
ROOTM ROOT problems in which there are multiple deployed solutions.
ROOTQ ROOT problems with a quality threshold for determining the acceptability of the deployed solution(s).
ROOTT ROOT problems with a time-window-based temporal threshold for deploying a new solution(s).
ROOTG ROOT problems in which the gain of switching the deployed solution(s) alongside its/their acceptability are

considered
ROOTS

Q Combination of ROOTQ and ROOTS.
ROOTM

Q Combination of ROOTQ and ROOTM.
ROOTS

T Combination of ROOTT and ROOTS.
ROOTM

T Combination of ROOTT and ROOTM.
ROOTS

G Combination of ROOTG and ROOTS.
ROOTM

G Combination of ROOTG and ROOTM.
EA Evolutionary algorithm

EDOA Evolutionary dynamic optimization algorithm
PSO Particle swarm optimization

DE Differential evolution
MPB Moving peaks benchmark

GMPB Generalized moving peaks benchmark
mMPB Modified moving peaks benchmark

POS Pareto-optimal solutions
f Objective function
t Time index in dynamic optimization problems. t shows the environment number.
x A solution in the search space. x is a d-dimensional vector where d is the problem dimensionality.

tmax Maximum time index, which shows the number of environments.
α A set of time-dependent control parameters of the objective function.
si ith deployed solution
bi Index of the environment in which si is deployed.
ni The number of environmental changes beyond which si remained acceptable.
l Total number of deployments
S Set of deployed solutions, where S = {s1, s2, · · · , sl}

a(t)(·) It is a binary function that checks the acceptability of a solution in the tth environment. a(t)(si) returns one if
si is acceptable in the tth environment, and otherwise, it returns zero.

twin Length of time window in ROOTT

T Set of time windows
F Multi-objective problem
m̂ Number of objectives in a multi-objective problem
P A deployed set of solutions in ROOTM

P̂ Set of deployed sets of solutions in ROOTM, where P̂ = {P1,P2, · · · ,Pl}
f̆ Substitute objective function
f ′ Approximation function
f ′′ Prediction function
p Number of considered previous environments in estimating robustness of a solution/POS
q Number of considered future environments in estimating robustness of a solution/POS
µ Quality threshold for evaluating the acceptability of the deployed solution or POS in ROOTQ and ROOTG.

τ
(t)
i Fitness fluctuation observed by the ith sub-population at the tth environmental change.
τ̄i Average of previous τi values

g
∗(t)
i The best-found position by the ith sub-population in the tth environment.
r(·) A binary function that estimates the robustness of the promising region covered by a sub-population in the

upcoming environment.
C Set of robust promising regions, i.e., the ones whose r

(
g
∗(t)
i , τ̄i

)
= 1.

c∗(t) Chosen promising region in the tth environment from which a solution is chosen for deployment.
d Dimension number

s
′(t)
i Estimated relocation length of the promising region covered by the ith sub-population at the tth environmental

change
h
(t)
i Estimated height difference of the promising region covered by the ith sub-population at the tth environmental

change

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

s̄′i Estimated relocation length of the promising region covered by the ith sub-population
h̄′
i Estimated height difference of the promising region covered by the ith sub-population

s̄′max Largest s̄′i∈C
h̄′
max Largest h̄′

i∈C
c(s,x) A function that calculates the switching cost between the deployed solution s and a candidate solution x.
x⋆(t) The global optimum position in the tth environment.
g⋆(t) The best-found position by the optimization algorithm in the tth environment.

δ Threshold of maximum tolerated quality difference between s and x⋆(t) in ROOTQ

m Defines the number of promising regions in the benchmark generators.
h
(t)
i Height of the ith promising region in the tth environment in MPB-based benchmarks

w
(t)
i Width of the ith promising region in the tth environment in MPB-based benchmarks
c
(t)
i Center/summit position of the ith promising region in the tth environment in MPB-based benchmarks

N(0, 1) A random number drawn from a Gaussian distribution with mean 0 and variance 1
λ Correlation coefficient in in MPB-based benchmarks
h̃i Change severity parameter of height of the ith promising region in MPB-based benchmarks
w̃i Change severity parameter of width of the ith promising region in MPB-based benchmarks
s̃i Shift severity parameter of the ith promising region in MPB-based benchmarks
τ Irregularity parameter in GMPB
η Irregularity parameter in GMPB
ω Weight parameter used in calculating switching cost
R Reals
T Transformation function in GMPB
R Rotation matrix in GMPB
W A d× d diagonal matrix whose diagonal elements show the width of a promising region in different dimensions

(used in GMPB).
e Average error of each deployed solution si ∈ S during the environments that it has been (re)used.
R Set of robust solutions, i.e., R = {si ∈ S|ni > 0} and R ⊆ S.
ei Average error of the deployed solution si ∈ S

eavg Average error of all deployed solutions ∈ S
ŝi Sensitivity of the robust deployed solution si ∈ R

ŝavg Average sensitivity of all robust deployed solution ∈ R
s
(
s (t)

)
s(·) is a function that shows the number of successive environmental changes that the deployed solution s in the
tth environment has been reused.

S Average survival time
A Average fitness
G Average gain

GD Generational distance
IGD Inverted generational distance

RGD Robust generational distance
RIGD Robust inverted generational distance

	main
	supplement

