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ABSTRACT

With high-resolution spectroscopy, we can study exoplanet atmospheres and learn about their chemical composition, temperature
profiles, and presence of clouds and winds, mainly in hot, giant planets. State-of-the-art instrumentation is pushing these studies
towards smaller exoplanets. Of special interest are the few planets in the ‘Neptune desert’, a lack of Neptune-sized planets in
close orbits around their hosts. Here, we assess the presence of water in one such planet, the bloated super-Neptune WASP-166
b, which orbits an FO-type star in a short orbit of 5.4 d. Despite its close-in orbit, WASP-166 b preserved its atmosphere,
making it a benchmark target for exoplanet atmosphere studies in the desert. We analyse two transits observed in the visible
with ESPRESSO. We clean the spectra from the Earth’s telluric absorption via principal component analysis, which is crucial
to the search for water in exoplanets. We use a cross-correlation-to-likelihood mapping to simultaneously estimate limits on
the abundance of water and the altitude of a cloud layer, which points towards a low water abundance and/or high clouds. We
tentatively detect a water signal blue-shifted ~5 kms~' from the planetary rest frame. Injection and retrieval of model spectra
show that a solar-composition, cloud-free atmosphere would be detected at high significance. This is only possible in the visible
due to the capabilities of ESPRESSO and the collecting power of the VLT. This work provides further insight on the Neptune
desert planet WASP-166 b, which will be observed with JWST.

Key words: instrumentation: spectrographs — methods: observational — techniques: spectroscopic — planets and satellites: atmo-
spheres —planets and satellites: individual: WASP-166 b —exoplanets.

has been targeted by several ground-based, high-resolution infrared

1 INTRODUCTION spectrographs such as CRIRES (Kaeufl et al. 2004), NIRSPEC

High-resolution spectroscopy is used to detect and characterize the
atmospheres of transiting planets, giving us information about their
chemical composition, temperature profiles, and the presence of
clouds and winds, mainly in hot, giant planets (see e.g. Birkby 2018,
for a review). State-of-the-art instrumentation is pushing the preci-
sion of our measurements towards the detection and characterization
of the atmospheres of cooler and smaller exoplanets (Neptune- and
Earth-sized planets). One of the best-studied chemical species with
high-resolution instruments is water. Water analyses have mainly
been focused in the infrared wavelength range, because its spectrum
presents several strong absorption bands, while in the optical range,
there are only few weaker absorption bands in the red. Water vapour
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(McLean et al. 1998), GIANO (Origlia et al. 2014), CARMENES
NIR (Quirrenbach et al. 2016), and SPIRou (Donati et al. 2020).
Observations with these instruments have led to the detection of water
vapour in the atmospheres of several transiting and non-transiting
exoplanets (e.g. Birkby et al. 2013, 2017; Brogi et al. 2014, 2016,
2018; Alonso-Floriano et al. 2019; Sanchez-Lopez et al. 2019; Webb
et al. 2020, 2022; Boucher et al. 2021). However, detections of water
in the visible range remain challenging.

Esteves et al. (2017) and and Jindal et al. (2020) studied the
presence of water in the super-Earth 55 Cancri e with several
transits obtained with the optical, high-resolution spectrographs HDS
(wavelength range 5240-7890 A, Noguchi et al. 2002) on the 8.2-m
Subaru telescope, ESPaDOnS (5060-7950 A, Donati 2003) on the
3.6-m CFHT, and GRACES (3990-10480 A, Chene et al. 2014)
on the 8.1-m Gemini North telescope. They did not detect water
and ruled out the presence of water-rich atmospheres if cloud-free.
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Deibert et al. (2019) studied HDS and GRACES observations of
HAT-P-12 b and WASP-69 b, two warm sub-Saturns with inflated
radii. They also did not detect water, but injection tests suggest a
cloudy atmosphere with a small amount of absorption, in agreement
with other studies.

Allart et al. (2017) used HARPS (3780-6910 A, Mayor et al.
2003) on ESO’s La Silla 3.6-m telescope to look for water in the
gas giant HD 189733 b, focusing on the 6500 A absorption band.
The data used is too noisy to constrain the presence of water and the
authors estimated that over 10 HARPS transits would be needed to
have a constrain at a significant level. However, they also estimated
that a significant detection would be feasible with only a single
ESPRESSO transit, due to its increased collecting power and the fact
that its wavelength range includes a stronger water band at ~7400 A.

With ESPRESSO (3782-7887 A, Pepe et al. 2021) on ESO’s
8.2-m VLT, Allart et al. (2020) studied WASP-127 b, a super-
Neptune-mass planet with a radius larger than that of Jupiter, which
makes it an extremely bloated planet. No water was found but,
together with low-resolution data, the authors were able to constrain
the pressure of a cloud-deck. Also with ESPRESSO, Sedaghati
et al. (2021) observed the hot Jupiter WASP-19 b, which orbits a
G8 V star in less than 1 d. Water was again not detected, but in
this case, injection tests showed that it would only be detectable
at high abundances and not feasible with ESPRESSO on an 8-m
class telescope. The authors argued that this is the case due to the
relatively faint host star (V = 12.3 mag) and the short transit duration
(1.6 h, Cortés-Zuleta et al. 2020), which result in few in-transit
observations with low signal-to-noise ratio (S/N).

Finally, Sanchez-Lépez et al. (2020) reported a water detection
in one out of three transits of HD 209458 b using the 7000-9600
A absorption bands present in the red part of the visible arm of
CARMENES VIS (5200-9600 A, Quirrenbach et al. 2016). Injection
tests indicated that the lack of detection in the other two nights could
be due to a lower S/N and a higher degree of telluric variability,
which results in a worse telluric removal that hinders the detection
of water.

As seen from the previous results, an important feature observed in
the atmospheres of both hot and cool planets is the presence of clouds
and/or hazes. Clouds and hazes reduce the strength of the features
observed in an exoplanet spectrum, affecting the detectability of
species such as water. Low-resolution observations of planets over
a range of temperatures have shown muted water spectral features
compared to what is expected for cloud-free atmospheres with solar
metallicity (e.g. Sing et al. 2016; Stevenson et al. 2016; Barstow
et al. 2017; Wakeford et al. 2017a,b, 2019; Pinhas et al. 2019;
Benneke et al. 2019a,b; Kreidberg et al. 2020), and some low-mass,
low-temperature planets even show completely featureless spectra
(Kreidberg et al. 2014; Knutson et al. 2014a,b). These muted features
can be attributed to either the presence of thick, high-altitude clouds,
or to inherently low water abundances.

As opposed to low-resolution observations, which are sensitive to
broad-band spectral features, high-resolution spectroscopy is able to
resolve individual lines. The cores of absorption lines are formed
higher up in the atmosphere than their wings. Therefore, high-
resolution data is sensitive to high-altitude regions of the atmosphere
and can probe above clouds.

The abundance of the species present in exoplanet atmospheres
has been typically derived from low-resolution spectroscopy, which
is sensitive to broad-band features over the continuum. Opposite to
that, high-resolution observations do not preserve that continuum
flux needed to measure abundances. However, it has recently been
shown that by using a Bayesian framework, it is possible to recover
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Table 1. WASP-166 system properties used in this work.

Parameter Value Reference
Ry/R, 0.05177+0000%2 Doyle et al. (2022)
Ry (Ry) 0.615570.0308 Doyle et al. (2022)
alR, 11.83702 Doyle et al. (2022)
a (au) 0.066879004 Doyle et al. (2022)
ip () 88.851074 Doyle et al. (2022)
to (BJD) 2458524.40869201 7500050020 Doyle et al. (2022)
Taur (h) 3.60870:029 Doyle et al. (2022)
P (d) 5.44354215F0-00000307 Doyle et al. (2022)
e 0. Hellier et al. (2019)
Viys (kms™") 23.532£0.012 Doyle et al. (2022)
K, (kms™!) 1341+ 8.1 This work

Terr (K) 6050 = 50 Hellier et al. (2019)
Teq (K) 1270 £ 30 Hellier et al. (2019)

Note. Values from Doyle et al. (2022) have been derived using the same
ESPRESSO observations as here, as well as TESS and NGTS photometry. In
particular, Vsys has been measured from the out-of-transit cross-correlation
functions of the ESPRESSO data and here we use the mean Vgys of the two
nights (Doyle et al. 2022, see their table 1). K}, has been computed here based
on the parameters from Doyle et al. (2022) (see Section 3.2 and Appendix B).

abundances from the line-to-line and line-to-continuum contrast ratio
alone (Brogi & Line 2019; Gibson et al. 2020; Line et al. 2021;
Pelletier et al. 2021). Therefore, high-resolution spectroscopy is both
sensitive to clouds and water abundance, and can break degeneracy
between the two (Gandhi, Brogi & Webb 2020b; Hood et al. 2020).

In this work, we use optical, high-resolution spectroscopy to study
the presence of water and clouds on the transiting planet WASP-166
b, a bloated super-Neptune. WASP-166 b orbits a relatively bright
(V = 9.36 mag), F9-type star in a close orbit of 5.4 d, at 0.06 au
(Hellier et al. 2019; Bryant et al. 2020, see Table 1 for the system
parameters adopted here). The planet has a mass of 0.101 = 0.005 M
(1.9 Mnep) and a radius of 0.63 &= 0.03 Ry (1.8 Ryep) (Hellier et al.
2019), and its orbit has been found to be aligned with the stellar
spin (Hellier et al. 2019; Doyle et al. 2022; Kunovac HodZi¢ in
preparation). It is located in the so-called ‘Neptune desert’, a dearth
of Neptune-sized planets in close orbits around their host stars. The
study of such planets can provide insight to their formation and
evolution, and the existence of the desert.

Despite its close-in orbit, the planet has preserved its atmosphere,
making it a benchmark target for exoplanet atmosphere studies in
the Neptune desert. Seidel et al. (2020, 2022) recently confirmed
the presence of sodium in the atmopshere of WASP-166 b with
high-resolution ground-based transit observations obtained with the
spectrographs HARPS (Mayor et al. 2003) and ESPRESSO (Pepe
et al. 2021), respectively. In the optical, other than sodium, we also
expect the presence of potassium (although its signature usually
overlaps with strong absorption from telluric oxygen, challenging
its detection) and water, which we study here (e.g. Fortney et al.
2008; Madhusudhan 2012; Moses et al. 2013; Woitke et al. 2018;
Drummond et al. 2019). Other species with signatures in the optical
such as CH4 or NH; do not have reliable opacities below 0.5-1.0
micron, and hence have not been considered here. The planet is not
hot enough to have other species with optical signatures such as Fe,
TiO, or VO. WASP-166 is scheduled to be observed from space in
the near-infrared with JWST, which should constrain the presence of
molecules such as H,O, CO, CHy4, CO,, C,H,, HCN, and NH3; in the
planetary atmosphere (Mayo et al. 2021).
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Figure 1. Observing conditions, S/N, and Earth, star, and planet RV for the 2 transits observed, as a function of the planetary phase, where phase 0 corresponds
to the mid-transit. Left, top to bottom panels: Airmass (mean between start and end of each observation), seeing (mean between start and end of each observation),
integrated water vapour (mean between start and end of each observation), and ambient humidity. Right, top to bottom panels: S/N at ~550 nm, barycentric
Earth radial velocity (BERV, note the offset between nights), star RV from the DRS CCF, and planet RV. The Vi of the system has been subtracted from the
star and planet RVs (see Table 1). All parameters obtained from the observations FITS headers, except for the planet RV, which is computed from the orbital
parameters of the system (see text). Grey areas indicate out-of-transit phases.

In Section 2, we describe the ESPRESSO observations used.
Section 3 details the analysis performed, and in Section 4 we show
and discuss the results obtained. We summarize our findings and
conclude in Section 5.

2 OBSERVATIONS

We observed two full transits of WASP-166 b, on 2020 December 31
and 2021 February 18, with the high-resolution, optical (wavelength
range 3782-7887 A) spectrograph ESPRESSO (Pepe et al. 2021)
installed on the VLT at the ESO Paranal Observatory, in Chile (ESO
programme ID: 106.21EM, PI: H. M. Cegla). The observations were
carried outin the 1-UT configuration (using UT1 on the first night and
UT4 on the second) and high-resolution mode with 2 x 1 readout
binning (HR21 mode, median resolving power of R = 138 000).
The target was observed with fibre A while fibre B was used to
monitor the sky (i.e. simultaneous sky mode). The observations
were reduced with the ESPRESSO Data Reduction Software! (DRS)
version 2.3.1, which performs standard reduction steps for echelle
spectra, including bias and dark subtraction, optimal order (2D
spectra) extraction, bad pixel correction, flat-fielding and de-blazing,
wavelength calibration, as well as extraction of sky spectrum from
fibre B (see Pepe et al. 2021, for details). In our analysis, we used

I www.eso.org/sci/software/pipelines/espresso/espresso- pipe-recipes.html

the blaze-corrected and sky-subtracted (i.e. corrected for telluric sky
emission) 2D spectra.

The observations of each night cover the full planetary transit
(transit duration 3.608 h, Doyle et al. 2022) and 2-3 h of out-of-
transit baseline (in total, before and after the transit). The exposure
time was setto 100 s to ensure an S/N sufficiently high to have photon-
noise-dominated spectra (S/N ~ 50 at 550 nm) and to obtain a good
temporal cadence to sample the transit. These observations were
initially obtained to perform a study of the Rossiter—McLaughlin
effect, which requires a fine temporal cadence during the transit
(see Doyle et al. 2022). In the first night, we obtained 80 in-transit
observations and 26/40 observations before/after the transit, and in
the second night, 81 in-transit observations and 30/27 out-of-transit
observations before/after the transit.

For the two nights, most of the observations were taken at low air-
mass (<1.5, see Fig. 1 for an overview of the observing conditions).
We discarded the first 8 observations of the first night (all out-of-
transit observations) because they were taken at an airmass larger than
2.2, which is the maximum value for which the ESPRESSO ADC
(Atmospheric Dispersion Corrector) is calibrated for. Additionally,
in the second night, we discarded 3 observations taken during the
post-transit baseline due to telescope vignetting.

We note that in the stellar RVs there is an offset of about 10
ms~! in the systemic velocities of the two nights. These stellar RVs
are obtained with the ESPRESSO DRS by computing the cross-
correlation function with a suitable stellar mask. The reason for
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Figure 2. Example of an observed spectrum of WASP-166 (top), telluric template used to select telluric-affected regions (middle), and one of the H,O models
used to compute the CC functions (bottom). Grey and blue shaded regions and numbers indicate the different ESPRESSO orders (also colour coded in the
WASP-166 spectrum in the top panel). The numbers correspond to the ESPRESSO slices (each order has two slices), starting at O for the first slice of the bluest
order). We only show the wavelength range covering the spectral region used (where planetary model shows stronger absorption.

this offset is unknown but we attribute it to instrumental effects
or differences in the observing conditions between the two nights.
Regardless of the origin, the offset is too small to have any effect on
our analysis (our precision is of about 1 km s~!, 100 times larger than
the offset). In the following, we consider as the systemic velocity of
the system the average of the systemic velocities of each night.

The same observations have been used in Doyle et al. (2022) to
study the Rossiter-McLaughlin effect, characterize centre-to-limb
convection-induced variations, and refine the star—planet obliquity,
and in Seidel et al. (2022) to detect the presence of sodium in the
planetary atmosphere.

3 METHODS

3.1 Telluric correction: PCA

Spectroscopic observations taken from the ground are affected by
spectral features produced by the Earth’s atmosphere, known as
telluric contamination. The ESPRESSO wavelength range is affected
mainly by water (H,0O) and oxygen (O,), which produce absorption
lines at specific wavelength ranges with varying strength, from
shallow lines called microtellurics to deep and strong lines with
completely saturated cores. The strength of the lines can vary
depending on the observing conditions, such as the airmass or the
atmospheric water vapour content. The effect of tellurics is especially
relevant when trying to study water in exoplanet atmospheres. This
is because the planetary water absorption lines can overlap in
wavelength space with the telluric water (see e.g. Fig. 2). Hence,
we need to correct our observed spectrum from telluric lines.

To correct for telluric effects, we used a principal component
analysis (PCA) on the observed spectral time series inspired by
Giacobbe et al. (2021) (see also de Kok et al. 2013; Piskorz et al.
2016, 2017, Damiano et al. 2019, for other examples of works
implementing PCA to study exoplanet atmospheres). We design our
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own automated algorithm to select the number of PCA components
(described in Section 3.1.1) and to only feed into the PCA the spectral
channels most affected by tellurics (Section 3.1.2).

The use of PCA to remove tellurics is based on the fact that, during
the transit observations, the Earth and the target star remain stationary
or quasi-stationary, while the target planet moves tens of km s~! as
it orbits around the star. Therefore, telluric and stellar spectral lines
are always approximately located in the same pixels in the detector
CCD, as they only experience a small shift in RV, while the planetary
signal will shift noticeably in pixel space (see Fig. 1).

The PCA method consists in finding an orthogonal basis for the
covariance matrix of the data in which the eigenvectors (also called
principal components, PC) represent the direction of decreasing vari-
ance in the data. That is, the first vector or PC of the new basis has
the direction of the maximum variance in the data, the second one
has the direction of the second largest variance, and so on. Since the
first PCs are the ones that describe most of the variance in the data,
we can remove them to clean the data of the strongest telluric, stellar,
and instrumental time-dependent variations.

In our case, the data matrix M is composed of the different
obser- vations or frames as rows (nf) and the pixels or spectral
channels as columns (nx). We work slice-by-slice, therefore, the
steps described below are repeated for each slice, and for each
night, separately. We note here that, conversely to other echelle
spectrographs, ESPRESSO uses an APSU (anamorphic pupil slicer
unit) that divides each or- der into two slices (i.e., the two slices
corresponding to a specific order cover the same wavelength range).
We treat each of the slices separately.

We detail our PCA implementation in Appendix A. To briefly
summarise it here, we first cleaned the spectra from flux anomalies,
standarised the data matrix M, and then performed the PCA. Instead
of directly decomposing the covariance matrix of the data as in
Giacobbe et al. (2021), we applied the PCA via a singular value
decomposition (SVD).
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In this work, we are only studying the presence of water in the
planetary atmosphere of WASP-166 b. Therefore, we are mostly
concerned in the removal of telluric lines from the observed data.
The host star, WASP-166, is too warm to display any water in
the stellar spectrum (spectral type F9 V and T = 6050, Hellier
et al. 2019). The star is not especially active and we do not expect
the presence of cool spots on the photosphere to be significant.
Even if spots were present, their temperature contrast with the quiet
photosphere is expected to be small, and hence, not sufficiently cool
to display water either. Nevertheless, we want to note here that, in
transmission spectroscopy, when studying planetary species that are
also present in the stellar photosphere, one needs to account for
the Rossiter—-McLaughlin effect and centre-to-limb variations (CLV)
across the stellar disc. This is because, during the transit, the planet
occults different areas of the rotating stellar disc, which results in
the in-transit stellar spectra being distorted (mainly depending on
the projected stellar rotational velocity, the stellar obliquity, and the
impact parameter). These distortions need to be accounted for to
derive accurate and precise estimates of the planetary transmission
spectra (see e.g. Brogi et al. 2016; Yan et al. 2017; Chiavassa &
Brogi 2019; Hoeijmakers et al. 2020; Casasayas-Barris et al. 2021;
Maguire et al. 2022; Seidel et al. 2022, for more details on such
effects and strategies to account and correct for them).

3.1.1 Optimization of the number of PCA components per slice

Since different orders are differently affected by tellurics, we per-
formed a per-slice optimization of the number of components NC
to be removed when applying the PCA, which we describe in this
section. To perform this optimization, we made use of the cross-
correlation function (CC) of the observed spectra with a water model.
We refer the reader to the following Section 3.2 for all the details on
the CC computation.

For each slice affected by tellurics, we started by removing the
first 2 components in the PCA. We then computed the CC of the
resulting spectra with a water model and coadded the CCs of the
in-transit observations in the barycentric rest frame. Coadding in the
barycentric frame maximizes the presence of telluric residuals in the
CC, which is what we are focusing on at this stage.

We then assessed the significance of the telluric signal by taking
the value of minimum or maximum CC flux in the region £10km s~!
(to cover the full telluric feature) around the mean BERYV of the obser-
vations, and comparing it with the scatter (standard deviation) of the
CC flux outside of this region. The atmospheric water vapour changes
during the observations, increasing and decreasing from the overall
trend dictated by the change in airmass. This causes negative and
positive residuals in the processed spectra, which result in correlation
and anticorrelation with the CC water template used. Therefore, when
looking at the telluric signal in the CC, we considered both minima
and maxima features (i.e. anticorrelation and correlation with the
template). We considered a signal at the telluric position of the CC to
be significant if the minimum (or maximum) flux is below (or above)
3.5 times the standard deviation of the flux of the rest of the CC. If
the telluric signal is significant, we repeat the process but removing
an additional PCA component. This goes on until the signal is not
significant, or until the algorithm reaches the maximum number of
components allowed. We set the maximum number of components
to be removed to 15 (after removing over ~15 components, injected
planetary signals start to decrease in significance).

Although the aforementioned CC functions of our individual
observations can show a minimum or a maximum at the expected

Water and clouds on WASP-166 b 1237

telluric position, if we coadd the CC functions of the individual
observations, the dominant feature at the telluric position in our case
is a minimum, i.e. anticorrelation. This means that the observations
with telluric residuals that anticorrelate with the models are more
prominent than those observations with a positive correlation. The
coadding of anticorrelated and correlated CCFs can result in a
smearing of the overall signal. To check for that, we also computed
the significance of the telluric peak in each individual observation.
We observe that for all the cases where we have a significant signal
in the ‘observation-coadded’ CC function, more than half of the
individual observations also show a significant signal. Additionally,
if more than half of the observations contain a significant telluric
signal, so does the coadded CC function.

We note again that here, instead of coadding all the available
observations, we coadded only the in-transit ones. This is because
these observations are the only ones we use in the planet analysis,
and therefore we are mostly concerned about the telluric effects
in them. Aside from this, we noticed that the observations at high
airmass (airmass higher than 2 at the beginning of the first night, and
airmass close to 1.7 at the end of the second night) are the ones that
show the strongest telluric signals in the CC function, being very
distinct than those immediately after or before. If we included these
high airmass observations in the coadded CC function, they heavily
biased the significance of the telluric signal, so that the algorithm
keeps removing components even though the in-transit telluric signal
is not significant.

3.1.2 Selectively feeding telluric lines into the PCA

To try to further improve the telluric removal, instead of using the
whole spectral range of each slice, we tested feeding into the PCA
only the pixels affected by tellurics, i.e. pixels containing telluric
lines. By doing this, the PCA should better trace the variability
due to telluric changes. To determine the telluric-affected pixels, we
used the ESO Sky Model Calculator? based on the Cerro Paranal
Advanced Sky Model (Noll et al. 2012) to generate a telluric
absorption model in the ESPRESSO wavelength range (see Fig. 2,
middle panel). We interpolated the model to the observed wavelength
grid of each slice and continuum-normalized it by fitting a cubic
spline (we do this slice by slice). To fit the spline, we selected the
pixel with maximum flux in windows of 25 pixels and avoided strong
telluric bands that would bias the determination of the continuum.
This results in a flat telluric spectrum normalized to one.

After this normalization, we flagged as telluric-affected all the
pixels that overlap with a telluric line. We set the threshold to pixels
where the telluric flux is below 0.998, which allows us to select most
of the lines present in the ESPRESSO spectral range. The slices
affected are 80-83, 96-103, 108-123, 128-141, and 146169 (slice
numbering starts at O for the first slice of the bluest order). When ap-
plying the PCA, only these pixels are used in the SVD. In orders with
no telluric lines, we still used all the pixels to remove any systematics.

3.2 High-resolution cross-correlation spectroscopy

After correcting for tellurics with the PCA, we used the high-
resolution cross-correlation spectroscopy (HRCCS) method to search
for the presence of water in the atmosphere of WASP-166 b.
Planetary water produces thousands of molecular absorption lines
in the planetary transmission spectrum. This water signal, however,

Zhttps://www.eso.org/observing/etc/skycalc
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is below the noise level of the data. The HRCCS method coadds all
the lines present in the transmission spectrum by cross-correlating
the processed observations with an adequate spectral template of the
planetary atmosphere. To compute the CC, the template is Doppler-
shifted by a range of RV values, and, for each shift, we take the dot
product with the observed data. This operation results in a cross-
correlation function with much higher S/N than a single spectral
absorption line, which enhances the planetary signal. This is because
the S/N of the CC function scales with the square root of the number
of lines coadded when computing the CC. In Section 3.2.1, we
describe the different sets of CC models used, and in Sections 3.2.2
and 3.2.3, we explain the formalism used to compute the CC and
assess the significance of the results within the cross-correlation-to-
log likelihood (CC-to-log L) framework.

3.2.1 Planetary atmosphere water models

We generated primary eclipse spectra of WASP-166 b using GENE-
SIS adapted for transmission spectroscopy (Gandhi & Madhusudhan
2017; Pinhas et al. 2018). GENESIS is a line-by-line numerical
radiative transfer code that computes the transmission spectrum of
the atmosphere given the atmospheric temperature and chemical
abundance profile. The opacity of each species is computed on
a grid of pressure—temperature (P-T) values for each wavelength
to determine the overall optical depth of rays passing through the
atmosphere and therefore the transit depth at each wavelength. We
use a grid of fixed pressure values, between 100 and 1077 bar
and evenly spaced in log P. We assumed an isothermal temperature
profile consistent with the equilibrium temperature of WASP-166 b,
~1270 K. The chemical abundances are set as volume mixing ratios
(VMR) assumed to be vertically constant throughout the atmosphere.
We also included a wavelength-independent cloud deck at different
pressures by setting all wavelengths to a very high opacity.

The models spanned a grid in H,O abundance and cloud pressure,
encompassing log;o(H,O) = —1 (highest abundance, in VMR) to —5
(lowest abundance), and cloud deck pressures of log;o(Pcjoua/bar) =
0 (lowest altitude) to —5 (highest altitude), both in steps of 0.5 dex
(see Fig. 3 for examples). In total, we computed two grids of model
spectra, one using an ExoMol POKAZATEL (Polyansky et al. 2018)
line list and the other with a HITEMP (Rothman et al. 2010) line
list (see Gandhi et al. 2020a, for further details on opacities). In
addition, all models across both grids include collisionally induced
absorption from H,—H; and H,—He interactions (Richard et al. 2012)
and Rayleigh scattering due to H,. Each model was generated at a
spectral resolution of R = 500 000 between 0.38 and 0.8 pm.

The models already include intrinsic pressure and temperature
broadening. To better match the line shape of the expected observed
planetary signal, we further broadened these model spectra by the
instrument profile of the observations; for this, we used a Gaussian
kernel with FWHM corresponding to the R = 140 000 resolution of
ESPRESSO (of ~ 2.14 kms™"). We also computed the broadening
due to planetary rotation (assuming it is tidally locked), which is of
only 0.58 kms~!. This is negligible compared to the instrument
profile broadening, and hence, we do not consider it here (i.e.
including it would only change the broadening from ~ 2.14 to
~2.22kms™h).

We used two different line lists because published water lines in
the optical have not been extensively empirically verified. In the
optical, water absorption bands are weaker than in the near-infrared.
Due to this reduced strength, the accuracy and completeness of the
model lines in the optical is expected to be worse than in the near-
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infrared, because their experimental verification is more challenging.
Therefore, there could be differences between different line lists. To
check for systematics due to these potential differences we decided
to repeat our analysis using the two sets of line lists.

3.2.2 CC-to-log L framework

To assess the significance of any planetary signals, we followed the
cross-correlation to log -likelihood framework (CC-to-log L, Zucker
2003; Brogi & Line 2019; Gibson et al. 2020). This is a Bayesian
framework based on mapping the cross-correlation function to a
log likelihood function. This allows us to accurately assess the
significance of any detections by deriving confidence intervals, as
well as to compare the performance of different models.

We used the CC-to-log L mapping proposed by Brogi & Line
(2019)

1 __E 2 _ 2
0g(L) = — 7 logls} — 2R + 521, 0

where s?- is the variance of the observed spectrum, sg is the variance
of the model used, R is the cross-covariance between the observed
spectrum and model, and N is the number of points in the spectrum.
The cross-correlation is contained in the above equation, since the
correlation coefficient C is proportional to the cross-covariance R as

R

[2
S1Sg

In our case, all these refer to each individual spectral slice, because
we are working slice-by-slice. The broadened models are sliced so
that they are within the wavelength range of each order. We also
spline-interpolated the models to the wavelength grid of each order,
so that the number of data points N of the observed spectrum and
model are the same. This interpolation is performed for every RV
shift for which we compute the CC and log L functions.

We followed two different approaches to compute the CC and
log L functions. Both methods lead to the same final result but have
different advantages and drawbacks, as we describe in the following
paragraphs. For more details on the implementation of each approach,
we refer the reader to Appendix B.

In our initial or ‘fast’ approach, we compute the CC and log L
functions of each slice for a fixed RV grid. Then, for each observation,
the log L function of all the slices considered are coadded. Finally,
the log L functions of the in-transit observations are coadded in time
along the planet RV, as a function of Kj,, from which we can then
build the usual K~V (or K,—Viey if Vi has been subtract) maps.
In the second or ‘slow’ approach, instead of computing the full CC
and log L functions for a fixed grid of RV values, we only shift the
model once to the expected planet RV (which is given by a pair of K,
and Viy values), and compute a single CC and log L value. We repeat
this for a range of K, and Vjy, pairs, which also results in the usual
K~V maps. With the slow approach, we are building the K,—Vys
map pixel-by-pixel, while in the fast one, we directly get a full row
of the map for each K|, considered.

The main advantage of the slow approach is that it allows us to
process the model used in the cross-correlation through the same
PCA as the data, which is not possible in the fast approach (see
Appendix B for details about the model processing). This is important
because the PCA might alter the planetary signal contained in the
data by changing the line strength and shape. The models used in the
fast approach do not contain any change due to the PCA, therefore,
the match with a possible planetary signal will not be as good as if

C=
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Figure 3. Left: POKAZATEL H,O templates for WASP-166 b covering the ESPRESSO wavelength range for a range of water abundances (log;o(H,0) =
—1 top, logjo(H20) = —4 middle, and log;o(H20O) = —5 bottom), and a range of cloud deck pressures (depicted by various colours in all panels). Right: Zoom
in on a region with strong absorption lines. This figure shows that the strength of the water absorption lines decreases as we decrease the abundance and/or

decrease the cloud deck pressure.

the model has also been altered in the same way as the data. Due
to this mismatch, a potential planetary detection might be weaker
and biased in K, and V. Moreover, when performing the model
comparison (see below Section 3.3), we could also misinterpret the
water abundance and cloud deck pressure because the line depths
do not match between model and data. Therefore, we expect more
accurate results with the slow approach than with the fast one,
because (1) we are computing the log L value at the exact K,—Viys,
and not shifting and interpolating the whole function computed for a
different K, and Vi, pair, and (2) we are processing the model in the
same way as the PCA modifies the data, which should resultin a better
match between model and data. However, the implementation of the
fast approach is significantly faster than the slow one. Moreover, the
fast approach allows us to study the behaviour of the telluric signal
directly in the CC and log L functions, which is not possible with the
slow approach. In the following, we refer to the two approaches as
‘fast/unprocessed-model’ and ‘slow/processed-model’.

3.2.3 Confidence intervals

The CC-to-log L framework allows us to estimate confidence inter-
vals for the K,—Vys maps (Brogi & Line 2019; Pino et al. 2020), to
know which K,V pair is more likely compared to all the pairs
tested. According to Wilks’ theorem (Wilks 1938), minus twice
the difference between the log L values of two models (AlogL =
—2(logL; — logL,)) follows a x? distribution with number of
degrees of freedom equal to the number of explored parameters.
In our case, we are comparing the log L value of each K,—Vy pair (2
parameters) with the maximum log L of the map. L.e., we subtracted
each log L value from the maximum log L of the map, which, if
detected, should correspond to the planetary signal. We can then
compute the p-value of this x 2 distribution, from which we can finally
derive the confidence interval value in units of standard deviation (o)

for a Normal distribution. Then, the model with the highest log L will
have a o of 0, with less likely models having increasing o values.

We computed the confidence intervals for the data of each night
separately and also on both nights combined. To combine the nights,
we summed the log L values of each K,—Viy pair of both nights, and
then computed the confidence intervals on this coadded log L.

3.3 Model comparison

We also performed a likelihood ratio test for each of the 2
(POKAZATEL and HITEMP line lists) grids of 99 models (9 water
abundances x 11 cloud top pressures) computed (see Section 3.2.1).
This allows us to derive confidence intervals in both cloud top
pressure and water abundance. We computed the K,—V,. map (we
have subtracted the expected Vi) for each of the 99 models. To
compute the log L functions we followed the CC approach 2 as
explained in Appendix B2, in which we modify the template in the
same way as the PCA processes the data. We used a grid ranging
from 90 to 150 kms™" in K, in steps of 3 kms™', and from —20
to 5 kms™' in Vi, in steps of 1 kms~'. This grid results in a
reasonable computational time, is sufficiently fine to resolve any
signals, and covers the expected planetary position as well as any
tentative detections seen in our initial tests.

To identify the model with the highest significance, we compared
their log L values, following the same idea as when computing
confidence intervals for the different K,—V;y, pairs explained above.
Now, we have again two parameters: the water abundance log,o(H,O)
and the cloud deck pressure logio(Pcioua/bar). In the K,—Vies map
obtained for each model, we computed the maximum log L of an
area around where the planet is expected. We used an area spanning
+10 kms™' from the expected K, and —10 and +5 kms™' from
the expected Vs (see Table 1). We used +5 km s71in Vi instead
of +10 kms™! (i.e. which would be symmetric around the expected
Viest) because we are limited by the V. range covered. We tested
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smaller and larger areas (from £5 kms~! up to 20 kms~! in both
K, and Vi) and the results obtained do not change significantly. This
gives us alog L,,x for each model. We can then apply Wilks’ theorem
to obtain confidence intervals for the grid of models. As before, we
computed twice the difference of the log Ly« of each model from
the absolute maximum of all models, derived the p-value from this
distribution of Alog L, and finally computed the confidence intervals
in o. This likelihood ratio test informs us about how likely the 99
models tested are compared to each other. The best model will then
have a o of 0, and the rest of the models will have larger values of
o. We performed this analysis on each night individually, as well as
on both nights coadded (for which we used the Kj—V,cy log L map
obtained by summing the log L values of each night).

3.4 Injection tests

We also tested the detectability of the water signal in our data by
performing several injection tests using the H,O models described
in Section 3.2.1. We note that we do not use these injection tests to
optimize our data analysis, but rather to assess the sensitivity of our
data to a water signal. We tested different strengths of the model by
scaling it to different values. To scale the model, we subtracted the
mean of the model flux, which removes the average transit depth and
leaves only the effect of the planet atmosphere. We then multiplied the
residual spectrum (which is now only due to the planet atmosphere)
by a scaling factor. We then brought back the original flux level by
adding the original mean. We note that this scaling factor does not
correspond to an increase or decrease in the H,O abundance of the
model. Increasing the abundance could lead strong lines to saturate,
while this will not happen with a scaling factor. By using the scaling
factor we only want to study its detectability.

Right before applying the PCA, we injected the scaled model to
the in-transit observations. We performed this process slice-by-slice.
To do this, we first Doppler-shifted the wavelength of the model by
the corresponding RV of the planet at the time of each observation, so
that the model shift reflect that of the actual planet, and interpolated
the shifted model to the wavelength grid of each observation. We
then multiplied the flux of each observation by the flux of the
corresponding model. This way, each in-transit observation includes
now a model of the planetary spectrum. We performed this step after
the observed flux had been cleaned of bad pixels. After the injection,
the standardization and the PCA are performed as explained above
(see Section 3.1). We then computed the CC as explained above with
the same model as injected.

4 RESULTS AND DISCUSSION

In this section, we first present the results from the tests performed
to optimize the PCA algorithm. We then apply the optimum PCA
algorithm to constrain the presence of water and clouds in the data
via model comparison with a likelihood ratio test.

4.1 PCA optimization

As explained in the methodology section (3.1), we performed
several tests with the goal of optimizing the performance of the
PCA to minimize the presence of tellurics in the CC and logL
functions. Here, we detail the results obtained. Unless explicitly
stated, all figures in this section display CC functions and K,—
Viest maps obtained using the fast/unprocessed-model CC approach
(Appendix B1). This is because we wanted to directly study the
shape of the CC functions, and in particular, the presence of
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telluric residuals, which is not possible with the slow/processed-
model CC approach (Appendix B2). Moreover, to cover the same
K,V parameter space, the slow/processed-model method takes
significantly longer computational time than the fast/unprocessed-
model one, which in practice limits the K,—Vi.q values that we can
sample, as well as the number of tests we can do. Therefore, to
perform our initial tests, we decided to follow the first approach.
This allowed us to test the optimal parameters for the PCA and
identify any tentative planetary signals.

4.1.1 Fixed number of PCA components

Applying the PCA algorithm removing a fixed number of compo-
nents for all the slices results in a strong telluric feature in the CC
functions. We show this in the top panels of Figs 4 and 5 (black and
orange lines), where we indicate the position of the telluric residuals
inred. Fig. 4 shows the CC functions obtained for all the observations
as a function of the orbital phase for the two nights (columns),
for different tests performed (rows). Fig. 5 shows the in-transit CC
functions coadded in planet rest frame for the two nights (columns)
and different tests (different lines in both rows). We know that the
observed feature is due to telluric contamination because it appears
at the expected BERV and spans the entire sequence of observations
(i.e. it is not phase dependent and is present in both in-transit and
out-of-transit observations). In the CC functions, we see that the
signal evolves in time from correlated (maxima) to anticorrelated
(minima), as a result of the positive and negative residuals in the
processed spectra. These residuals, in turn, come from the change in
airmass and the changes in the atmospheric integrated water vapour
column that changes during the observations, which increase and
decrease the amount of water vapour above or below the overall
trend. The telluric residuals do not perfectly correlate with changes
in airmass and water vapour because we have applied the PCA and
removed the first components prior to computing the CC functions.
That is, the first PCA components removed contain part or most of
the airmass and water vapour variations, and hence, the correlation is
broken. We do not show them here, but if we calculate the same maps
using the log L function (equation 1) rather than CC (equation 2), we
see the same residuals. The telluric feature is also clearly seen in
the form of maxima and minima in the K,—V/.y maps produced after
coadding the in-transit log L functions in planet-rest frame, see e.g.
top panels in Fig. 6, where we plot the confidence intervals obtained
for each night and for both nights coadded (columns).

As expected, the telluric signal decreases as we increase the
number of components removed during the PCA, see top panels in
Fig. 5 for examples removing 2 and 6 components (black and orange
lines), but it is never completely removed. We notice that the removal
seems to work better in the first night than in the second one, i.e. when
the integrated water vapour is higher. We tested removing between
2 and 15 components on all the slices, but found no significant
improvement, i.e. the telluric signal did not decrease further, after
removing more than ~6 components. We qualitatively explain the
inability of PCA to de-trend telluric lines as follows. In optical
observations where telluric lines are not prominent, their contribution
to the total variance within one slice is also negligible. Since the
SVD algorithm ‘ranks’ components based on their contribution to
the variance, telluric residuals might potentially be absent in the first
15 components, which would instead be dominated by throughput
and continuum variations. The residual level of correlation is similar
to that expected from standard telluric removal algorithms e.g. direct
modelling of the telluric spectrum, unless these residuals are heavily
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Figure 4. Comparison of telluric removal algorithms (Section 3.1 and subsections). Top row: CC of each observation as a function of the observation phase.
Left-hand and right-hand panels correspond to the two transits observed. The white, yellow, and red dashed lines correspond to the planetary, stellar, and
barycentric Earth RVs, respectively. The short-dash white lines indicate the transit ingress and egress. The CCs shown correspond to the coadding of the CCs of
all the slices considered. The CCs have been computed with the logjo(H20) = —3 and logo(Pclouda/bar) = 0 model using the fast/unprocessed-model approach,
and in the PCA processing we removed 6 components for all slices. Second row: Same as top, but in this case only the CCs of slices 84-95, 104-107, 124-127,
and 142-145 (slices with no or small telluric contamination) have been coadded. Third row: Same as top, but in this case the number of components removed
per slice has been optimized. Bottom row: Same as top, but in this case only the pixels affected by tellurics have been used in the PCA.
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masked prior to correlation. To improve the correction, we revised
the SVD algorithm as explained in Section 4.1.3.

Injection tests: We also tested the behaviour of the PCA algorithm
when injecting a planetary model (water abundance log,o(H,O) =
—3, in VMR, and cloud deck pressure logio(Pcouna/bar) = 0 based
on the POKAZATEL line list) in the data. The K~V maps (Fig.
7, top) show that an injected planetary signal with a scaling of x1
(i.e. original strength) is recovered with high significance, despite
the presence of tellurics in the data. The injected signal is clear in
each night individually, with a higher confidence in the first night
that increases when combining both nights. From the CC maps (Fig.
4), we see that in both nights, the expected planetary RV and the
BERV do not overlap, which might help in obtaining a significant
detection. Even when only removing 2 PCA components, the injected
planetary signal is clearly detected in each night in the form of
a peak in the CC and log L functions, see top panels in Fig. 5,
where we compare removing 2 and 6 components (blue and green
dashed lines, respectively). From these same tests we also see that
the injected planetary signal is not affected by increasing the number
of components removed. This indicates that the PCA components are
not selecting the injected planetary signal, which is the behaviour we
expect. We also note from Fig. 5 that the telluric residuals in the CC
are slightly different if the model has been injected in the data (black,
orange lines) or not (blue, green dashed lines), which indicates that
part of the injected planetary signal could impact the PCA, despite
the fact that its significance does not decrease.

Neglecting orders affected by tellurics: The orders where the
telluric effect is stronger are those for which we see strong telluric
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absorption lines. These orders are also those where the planetary
water shows the strongest absorption lines (see e.g. Fig. 2). Coadding
the CC (or log L) functions discarding these telluric-affected order
slices (i.e. using only slices 84-95, 104—107, 124—127, and 142-145)
results in a decrease in the telluric signal, see the CC functions in the
second row of Fig. 4 and the top panels in Fig. 5, red line, which show
no significant feature at the telluric position in RV space. The telluric
residuals also disappear in the K~V maps, see middle panels in
Fig. 6. We note here that in these maps, all data points are within
~40o (or less) of one another. This means that none of the data points,
i.e. none of the K,—Vyey pairs, is more significant than any other. In
other words, the points with the highest likelihood in maps without
the telluric orders maps (i.e. confidence interval close to 0) are not
significant.

If we now look at the cases where we have injected a water model,
we note that the planetary signal that is clearly detected using all
the orders also disappears. We see this in the top panels of Fig. 5,
purple dashed line, where the clear signal at the injected RVs is
no longer there, and the CC looks as flat as in the case where we
have not injected a planet, as well as in the K~V in the second
row of Fig. 7. As happens in the case without any signal injected,
now all data points in the K~V maps are also within ~4o of
one another, meaning that no data point is significant with respect
to the others. The fact that the injected planetary signal is not seen
here is not surprising. Despite the fact that the exoplanet temperature
is significantly higher than the Earth’s temperature, the main H,O
features are similar, and thus removing orders containing telluric
H, O also removes exoplanetary H,O.
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4.1.2 Optimization of the number of PCA components per slice

We also optimized the number of components to be removed per
slice using the method described in Section 3.1.1. The slices that are
optimized, i.e. those that resultin an increased number of components
removed with respect to the initial, are in general those that contain
strong telluric absorption lines: slices 80-83, 98, 99, 108-111,

116-121, 134-139, 147-155, 158-161, 168, and 169, see Fig. 2
above.

There is a relatively strong telluric band covering slices 128-131,
and the strongest band of saturated O, lines in slices 162—165, for
which the number of components are not optimized. In the case of the
saturated band in slices 162—-165, it is possible that the telluric lines
are simply too strong for the PCA to be able to remove its effect; how-

MNRAS 521, 1233-1252 (2023)

€202 1snBNYy $0 U0 158n6 Aq |629€0./EEZL/1/1ZSG/BI0NIE/SBIUW/WOD"ANO"OILISPEDE//:SAY WO.) PAPEOUMOQ


art/stad480_f6.eps

1244 M. Lafarga et al.

NC 6, all orders, injected

Night 2020-12-31 Night 2021-02-18 Nights coadded
250 ¢o
5 —
200 S
205
w 3
€ £
= 15 o
2 g
X [}
102
C
S
—O.I.OO -50 0 50 —-100 -50 0 50 —-100 -50 0 50
Vrest [km/S] Vrest [km/s] Vrest [km/S]
NC 6, no telluric orders, injected
Night 2020-12-31 Night 2021-02-18 Nights coadded
T3 S A T T U U L T T T T W N I U
250f | 1t | 1t ! 1
- | ] | | ]
3 | ] | | 125 <
200f 1 F 1 F : =
: | : | | 1
[ ] 20 2
7. f ' ] | ' g
€ 150r T T ] k=
2 amts awi —EEl TRTEET T —7 M1 E B — {150
Q L ] p g
& L i ]
100f 1 F 1 F . g
C I ] I I 14102
: | ] | | ] S
sof I ‘. I ‘. I 10 3s
; | ] [ |
[T NS | o I : | [ v e A I G [ 5 v e A 4 l .
—0100 -50 0 50 -100 -50 0 50 —-100 -50 0

Vrest [km/s]

NC 6, all orders, PCA telluric pixels, injected
Night 2020-12-31

250

200

150

Kp [km/s]

900

-50 0 50 -100 -50
Vrest [km/s]

Vrest [km/s]

Night 2021-02-18

Vrest [km/s]

Vrest [km/s]

Nights coadded

. 0

50 -100 -50 0 50
Viest [km/s]

s N W
% =) & o
Confidence interval [o]

iy
o

0

Figure 7. Same as Fig. 4, but in this case, the planetary model used in the CC has been initially injected in the observations with no scaling.

ever, this argument does not explain why the weaker band in slices
128-131 is not being properly removed. Further analysis is needed
to understand these results and the behaviour of the PCA algorithm.

In most of the order slices that contain tellurics, both slices have
an increased number of tellurics removed, but the final number of
components is not always the same for both slices of the same
order. This is not necessarily expected, and suggests that the PCA is
selecting additional correlated noise different in both slices, rather
than purely telluric signals, which should be the same in both slices.
Again, further analysis of the PCA behaviour is needed to understand
this difference.

MNRAS 521, 1233-1252 (2023)

For the two nights, most of the slices mentioned above are
optimized. However, the final number of components also differs
between nights for the same slices, which is expected since the
tellurics behave differently in the two nights.

Fig. 4, third row, shows the CC functions obtained when applying
this optimization. We notice that, despite removing a significantly
higher number of components for the telluric-affected orders, this
results is a CC map very similar to the one we obtain by removing a
lower, fixed number of components. The K,—V/.y map is also similar
to this case, hence we have not included it here. This indicates that,
despite still having strong telluric residuals in the CC, removing a
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higher number of components does not result in a significant telluric
removal.

4.1.3 Selectively feeding telluric lines into the PCA

As explained in Section 3.1.2, we modified the PCA algorithm to
focus on the pixels affected by telluric lines, rather than using the
full spectral order. We show the CC function and K~V maps that
we obtain in the bottom panels of Figs 4 and 6. In the CC function
maps, we see some telluric residuals at the beginning of the first
night, including part of the transit, as well as some faint residuals
during the transit of the second night. This translates into a very
faint signal in the K~V map at the position where we expect the
telluric residuals to be for the first night, and in a stronger residual
for the second one. Compared to the results obtained using the full
spectral order (top panels in Figs 4 and 6), in this case, the telluric
contamination is significantly removed in both the CC functions and
Kp—Viese maps. This means that the PCA components removed are
more effective in tracing the telluric variability if we only use the
regions of the spectrum affected by tellurics rather than the whole
wavelength range. This is again expected, because in the (sub-)matrix
containing only telluric lines the latter will have a more noticeable
contribution to the variance, and therefore will be ranked higher by
the SVD algorithm.

In addition to using the telluric-affected pixels in PCA, we also
performed the optimization of the number of components to be
removed per slice, as done above. In this case, since the initial
PCA components are already removing most of the telluric signal,
the optimization algorithm did not detect a signal strong enough to
continue removing components. Hence, for almost all the slices, the
algorithm stops after the initial number of components considered
has been removed. This means that the CC and Kj—V,cs; maps look
very similar if we apply the optimization and if we do not, and are
not shown here.

Injection tests: With the new SVD algorithm, injected planetary
signals are still recovered at high significance, see bottom panels
of Fig. 7. As happened when using the full spectral range (Sec-
tion 4.1.1), the telluric residuals look different if the planetary signal
has been injected in the data or not; see bottom panels of Fig. 5, orange
and green lines, and bottom panels in Figs 6 (non-injected) and 7
(injected case). The telluric residuals are stronger if the planetary
signal has been injected. Similarly, if we now compare the case
where only the telluric-affected regions are used in the PCA with the
initial case where the full spectral range of the order is used (both
with an injected planetary signal), the telluric residuals are different,
see again Fig. 5, bottom, and top and bottom panels in Fig. 7. In
general, for both nights, the tellurics are more significant if only the
telluric-affected pixels are used in the PCA (bottom panels of Fig. 7)
compared to the whole spectral order (top panels of Fig. 7), which is
the opposite as what happens when no planetary signal is injected.
As mentioned before, this indicates that the injection of a planetary
model affects the telluric identification in the PCA algorithm, but
this does not seem to affect the planetary signal itself, as it is clearly
detectable in both cases.

4.1.4 A tentative H,O signal from WASP-166 b?

The K-V« map of the first night obtained with the analysis in
Section 4.1.3 above (i.e. with the modified PCA algorithm) shows
a correlated signal close to the expected planetary position, about
5 kms~! blue-shifted from the expected Vi and extending about

Water and clouds on WASP-166 b 1245

—30 kms™" from the expected K, (bottom left panel in Fig. 6). The
signal is slightly significant with respect to its neighbouring points.
While this is outside of the uncertainties of Viey (or Viys) and K, (see
Table 1), unaccounted atmospheric circulation at the kms™' level
has been shown to potentially alter Vi and K, measurements. The
second night shows a similar structure but less prominent and not
significant. This could be affected by the fact that the tellurics are less
removed in the second night than in the first one, and hence, a possible
planetary signal might be hidden in the telluric residuals. In addition,
in RV space, the tellurics are closer to the expected Viy in the second
night compared to the first one. Despite this difference, the signal is
still present when coadding both nights. It is also more significant
with respect to its neighbouring points than in the first night alone.
We will further discuss this candidate signal in Section 4.2.

4.2 Model comparison

In the previous section, we see that the modified PCA algorithm
in which we use only the spectral regions affected by tellurics in
the SVD results in less significant telluric residuals than any of the
other tests performed. Therefore, to perform the model comparison
between different theoretical models (as explained in Section 3.3),
we used the data processed using the modified SVD algorithm, since
it minimizes the telluric residuals. Moreover, to be able to compare
the different models, it is important to correctly reproduce the line
strength of the data. We can only guarantee this if the model used in
the CC has been processed by the same PCA as the data, which we
do here by using the slow/processed-model CC approach.

4.2.1 Grid search

Fig. 8 shows the confidence intervals obtained for the grid of 99
models tested. These results correspond to the models created with
the POKAZATEL line list, but we obtain equivalent results for the
HITEMP line lists. In each night separately, and also when coadding
both nights, models with a high content of water and a cloud deck at
high pressure (log;o(H,0) < —3 and log;o(Pcjoua/bar) 2 —2, bottom-
right quadrant of Fig. 8) are rejected with high confidence compared
to the other models tested (=60, up to 150 for some models). Models
with the lowest cloud deck pressures and lowest water abundances
(upper-left quadrant of the plot), are also excluded but only with ~4¢
confidence.

Overall, the preferred model is that with log;o(H,O) = —4 and
logo(Peioug/bar) = 0 (i.e. no cloud deck). There is a preference for
intermediate models with low water content and high cloud deck
pressure, or higher water content and lower cloud deck pressure
(models coloured in light green in Fig. 8). These models are within a
confidence interval of ~2¢ of the preferred model. This happens in
all cases, i.e. for the two nights individually and both nights coadded.

The fact that the intermediate models are preferred over those with
the lowest cloud deck pressure and lowest water content (upper-left
quadrant of the plot) points towards a tentative detection of a water
signal. If there was no planetary signal present, the preferred models
will be those that have the shallowest absorption lines, i.e. those
that are compatible with an almost flat spectrum (see models in
Fig. 3). These are the models with the lowest water abundance and
low-pressure clouds, i.e, models in the upper-left quadrant of Fig.
8), which are not preferred here. In other words, a non-detection
would only exclude the bottom-right quadrant of the grid, but not the
upper-left, as happens here. This is in qualitative agreement with the
predictions of Gandhi et al. (2020b).
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Figure 8. Top: Confidence intervals (colour) for the POKAZATEL model grids of different water abundances (logjo(H2O) = —1 to —5, in VMR, x-axis) and
cloud deck pressures (log1o(Pcloua/bar) = 0 to —5, y-axis) obtained with the slow/processed-model approach to compute the CCs. Left and middle panels are
the results for each of the transits, and right, for both transits coadded. Bottom: Same as top, but here contour levels have been added to help visualize the

confidence intervals.

We note that at low cloud pressures, models with water abundance
logio(H,0) >~ —2 are more strongly rejected than those with higher
water abundances (log;o(H,0O) = —1). This is due to the higher mean
molecular weight of the atmosphere with log;o(H,O) = —1 compared
to the one with log;o(H,O) = —2. As we increase the abundance of
water, for log;o(H,0) = —2, the mean molecular weight of water-
rich atmospheres becomes higher than at lower water abundances.
This higher mean molecular weight reduces the scale height, which
results in a decrease in the strength of the water absorption features
(see Fig. C1 in Appendix C). Hence, due to the fact that for water
abundances logo(H,O) >~ —2 the absorption features are stronger
than for log;o(H,O) = —1, models with log,o(H,O) >~ —2 are more
strongly rejected (also see e.g. Gandhi et al. 2020b).

Our confidence interval analysis is relative to the ‘best’ model
(the one with a highest likelihood). That is, the best model has by
default a o of 0 and the other models have then o values relative
to the best one. In general, it is not clear how to assess the absolute
significance of the best model. Even commonly used signal-to-noise
ratio approaches do not assess how good a model fits to the data
in an absolute sense. To try to obtain a ‘baseline’ likelihood and
assess the absolute significance of our models, we have performed
an extra test with a ‘flat” model, i.e. a model with flux equal to
1 at all wavelengths. We have used this flat model to compute
the CC and log L functions with the data processed with the best
PCA algorithm using the slow/processed-model method (including
model processing), as done with the model grid above. We have
then compared the log L obtained with this model with that of the
‘best’ model according to our grid analysis (log;o(H,O) = —4 and
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logo(Peoua/bar) = 0) in the same way as we compared the different
models in the grid above. That is, we performed a likelihood ratio
and computed how many os away the models are from each other.
For the first night, the flat model is rejected with 3.90 compared with
the best one, for the second night, 4.2¢, and for both nights coadded,
4.90. This tells us that in the data, there is a signal (regardless of its
origin, planetary or telluric) that is ~50 above a flat model. This test
is similar to comparing the best model with models close to a flat line
(i.e. those in the top left corner of our grid). Indeed, the difference
in sigma obtained between the best model and those in the top left
corner is similar to that obtained with respect to the flat model.

4.2.2 K,—Vy maps of the preferred model

In Fig. 9, we show a comparison of the K~V . maps obtained with
the model favoured by our grid search in the previous section (model
with log;o(H,0) = —4 and log (P jeua/bar) = 0), obtained with each
of the two line lists considered, POKAZATEL (top) and HITEMP
(bottom). As mentioned above, here we used the slow/processed-
model CC approach, including model processing, as opposed to the
results we show in the bottom panels of Fig. 6, in which we use the
fast/unprocessed-model CC approach. Note also the smaller K}, and
Viest ranges explored here with the slow/processed-model approach,
which are around a blue-shifted signal close to the expected planet
position.

This blue-shifted signal close to the expected planet position, but
with lower K, value than expected, was already seen in the initial
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Figure 9. K,V confidence interval maps obtained with the PCA algorithm that uses only telluric-affected regions, removing six PCA components, CCs
computed with the slow/processed-model approach, and using the log;o(H,O) = —4 and log;o(Pcjoud/bar) = 0 model based on the POKAZATEL (top) and
HITEMP (bottom) line list to compute the CC, and coadding all the order slices. Red dashed lines indicate the expected K, and Viys. Left to right are the maps

for the first, second, and coadded nights.

tests with the fast/unprocessed-model CC approach (Fig. 6, bottom
panels) and is still present in the first night. For the second night,
this signal was less significant than in the first night in the initial
tests. Now, with the slow/processed-model CC approach including
the model processing, a signal also blue-shifted ~ 5 kms~! appears,
but it is shifted towards higher K, values. This difference between
the fast/unprocessed-model and slow/processed-model approach is
something expected. With the fast/unprocessed-model method, we
process the data through the PCA and then directly cross-correlate
it with a model. However, in the slow/processed-model approach,
we additionally process the model through the same PCA as the
data before computing the cross-correlation. By doing this extra
processing of the model, we modify the model in the same way as
the data has been modified by the PCA. The fact that this signal is
clearer in the second night using the slow/processed-model approach
highlights the importance of model processing. By altering the model
in the same way the PCA has altered the data, the CC should result in
a better match between data and model, which is what we see here.

Coadding both nights results in an ~ 5 km s~! blue-shifted signal
at the expected K, which may be the result of the original signals in
both nights being displaced in Kj, in opposite directions. This blue-
shifted signal is favoured with respect to the neighbouring points
with ~7¢ . For both line lists, the results obtained are equivalent, i.e.
both nights show a blue-shifted signal displaced from the expected

K, with very similar K~V maps, and the signal is still present
at high significance when both nights are coadded. Despite being at
different K,, the individual night signals are within 1 and 2o (for the
second and first night, respectively), of the coadded nights signal.
Therefore, the signal observed when coadding both nights is not
rejected by the results obtained for each night individually. We note
that K, is not strongly constrained in the transit observations that we
are considering here, because they only span a small part of the total
Keplerian orbit. Hence, it is hard to obtain good constraints in K,
which could be the cause of the discrepant K, values observed in
these maps.

The —5 kms™' shift in rest-frame velocity is outside of the
uncertainties on the measured Ve (or Vi), which has been obtained
from the same observations as we use here (see Table 1). The
observed blue-shift could potentially be due to the presence of winds
in the planetary atmosphere. The planetary Na lines detected by
Seidel et al. (2022) in the same observations show a significant
broadening with respect to the instrument profile, of 9.37 &+ 0.95
kms~!, which suggest that the Na is moving at high velocities,
similarly to what we might be seeing here with H,O.

The telluric residuals for the first and second nights are at ~—50
and ~—25 kms~! of this signal, respectively. Therefore, we do
not expect the pixels neighbouring the blue-shifted signal to be
significantly affected by tellurics.
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5 SUMMARY AND CONCLUDING REMARKS

In this work, we have analysed two transits of the inflated
super-Neptune WASP-166 b observed with the optical, high-
resolution spectrograph ESPRESSO. Using the high-resolution
cross-correlation technique, we study the presence of water vapour
and clouds in the atmosphere of the planet.

To correct for the presence of telluric signals which may interfere
with a potential planetary signal, we start by applying a PCA
algorithm on the observed spectra. We noticed that a standard PCA
algorithm results in very strong telluric residuals in the CC and
log L functions, as well as in the K,—V;. maps. Consequently, we
performed several tests changing different parameters controlling
the PCA to optimize the algorithm and obtain the best possible
telluric removal. In particular, we explore the number of components
removed, the spectral slices coadded, and the specific wavelengths
(or pixels) used to compute the PCA components. We note here
that our PCA optimization, differently from other studies in the
infrared, is model independent, i.e. it is not performed by optimizing
an injected signal but rather by minimizing the residual telluric noise.
While this is arguably not the best choice to maximize S/N, it is a
conservative choice to avoid any optimization biases as highlighted
by e.g. Cabotet al. (2019) and Spring et al. (2022). A full comparison
with alternative telluric removal methods such as telluric fitting with
Molecfit (Kausch et al. 2015; Smette et al. 2015) or polynomial
detrending (e.g. Snellen et al. 2010) is out of the scope of this work
and will be the subject of future studies.

Increasing the number of components removed, whether if fixed or
variable for each slice, slightly reduces the significance of the telluric
residuals, but no improvement is found after removing more than ~6
components. In all cases, relatively strong telluric residuals remain in
the processed data. As expected, removing the spectral orders that are
strongly affected by tellurics from the final coadded log L results in
a reduction of these telluric residuals. However, injection tests show
that the injected planetary signal, which is clearly detected using
all the orders, even when strong telluric residuals are present, also
disappears. This occurs because both telluric and planetary water
show the strongest absorption lines (and hence, the strongest signal)
in similar spectral ranges. Finally, we find that modifying the PCA
algorithm so that it uses only the specific parts of the spectrum
affected by telluric absorption (i.e. pixels that capture telluric lines),
rather than using the whole spectral range, results in a significant
decrease of the telluric residuals. This happens because, by feeding
the algorithm only with telluric-affected regions, telluric-related
variations are more noticeable, and hence, are ranked higher than
other effects in the PCA components. Therefore, in our case, avoiding
the ranges where tellurics are the strongest in order to mitigate telluric
residuals and enhance a potential planetary detection is not a good
solution because the planetary signal is also suppressed. Instead,
a PCA algorithm fed with pre-defined wavelength ranges where
tellurics are known to be present results in a significantly stronger
telluric mitigation, whilst preserving any potential H,O signals.

We then cross-correlated the spectra resulting from the optimized
PCA algorithm with a grid of models covering a range of water
abundances and cloud deck levels. We use the CC-to-log L Bayesian
framework which allows us to robustly assess the significance of
our results. We see that models with high water abundances and high
cloud deck pressures, and models with low water abundances and low
cloud deck pressures are significantly rejected. The preferred models
are those with intermediate abundances and cloud deck pressures.
These results are compatible with a potential detection of water in the
atmosphere of WASP-166 b. If no water was detected, the preferred
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models would be those compatible with an almost flat spectrum, i.e.
models with low water abundances and low cloud deck pressures, and
only models with high water abundance and high cloud deck pressure
would be excluded. We further tried to assess the significance of
our best model by computing the CC function with a flat model.
Compared to the best model, the flat one is rejected with 40 to 5o,
meaning that, regardless of the origin, the data contain a signal ~5¢
above a flat line.

In the K,—V,.; maps, we observe a correlated signal blue-shifted by
about 5 kms~! from the expected planetary RV. The signal observed
in the two individual nights is shifted from the expected K, by a
few tens of kms~! in opposite directions for each night. However,
when both nights are coadded, the signal sits at the expected K, and
its significance is increased. The signals in the individual nights are
within 1o and 20 from the coadded nights signal, meaning that the
coadded nights signal is not strongly rejected by the individual night
ones. Moreover, the transit observations analysed do not strongly
constrain K, because they only cover a small part of the total
Keplerian orbit. The shift observed in the planetary V. could be
due to winds in the planetary atmosphere. Global blue-shifts of the
transmission spectrum of hot giant exoplanets have been predicted
by several works (e.g. Miller-Ricci Kempton & Rauscher 2012;
Showman et al. 2013; Rauscher & Kempton 2014). Such shifts have
been observed in the optical through the Na doublet (e.g. Louden &
Wheatley 2015; Wyttenbach et al. 2015) and tentatively reported
in the infrared through CO (Snellen et al. 2010) and CO and H,O
(Brogi et al. 2016; Flowers et al. 2019). The study of the Na doublet at
~589 nm with the same observations as those analysed here (Seidel
et al. 2022) shows that the Na lines are significantly broadened. This
suggests the presence of winds, which seems compatible with what
we might be observing here with H,O.

An important step in the likelihood-ratio analysis is that the models
are processed through the same PCA algorithm as the data. This is
necessary to avoid biases introduced by the PCA modifying any
potential planetary signal during the telluric correction performed
initially, since a PCA can alter both the strength and the shape
of the planetary lines, resulting in spurious shifts in K, and Viy,.
By processing the models through the same PCA as the data, both
data and models should have been modified in the same way, which
should resultin a better match when performing the cross-correlation.
In our case, we see that if we use a model without processing it
through the same PCA as the data, then the tentative blue-shifted
signal is very weak in the second night compared to what we obtain
if the model has been adequately processed. The slow/processed-
model method is the only method attempting to reproduce the effects
of the telluric removal on the model, and therefore it should be
taken as the most reliable reference when quoting a detection. The
fast/unprocessed-model method, despite being still common in the
literature, is subject to biases with a large variety of telluric-removal
algorithms, especially important when retrieving abundances, but
also potentially affecting the measured value of K;,. Therefore, it
is not surprising that the two methods give potentially different
results, and such discrepancy does not imply that the tentative signal
obtained with the slow method cannot be trusted. The biases of
the fast/unprocessed-model method have been known for a few
years now (e.g. the simulated tests in Brogi & Line 2019), and the
slow/processed-model approach is standard among many research
groups applying Bayesian analysis on high-resolution spectroscopy
infrared data (e.g. recently Giacobbe et al. 2021; Line et al. 2021;
Gibson et al. 2022; van Sluijs et al. 2022).

To create the grid of models covering several H,O abundances and
cloud deck pressures we used two different line lists, POKAZATEL
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and HITEMP, resulting in two sets of 99 models each. Since we
are working with ESPRESSO observations, our water models cover
optical wavelengths, a range for which published line lists have not
been extensively empirically verified, as mentioned above. Hence,
we can expect worse accuracy in general and differences between the
two different line lists. Water lines are known but the line positions are
not necessarily accurate. This is key in high-resolution studies such
as the one performed here. A lack of accuracy in the line positions
could result in Doppler shifts of any expected signal. Incomplete
line lists could make any existing planetary water signal weaker,
but we do not expect any possible incompleteness to create shifts
in the planetary signal. In the data analysed here, we see that both
the individual K,—V . maps obtained for each model and the final
grid of models are very similar for both POKAZATEL and HITEMP
models, which points towards a good agreement between both sets
of lines. Despite that, lines could still be inaccurate or incomplete in
similar ways, and this agreement does not add evidence to support a
planetary origin for the tentative signal observed.

We note that when creating the models, we fixed their temperature
and scaling factor, and only explored a range of water abundances and
cloud deck pressures. We did not consider other sources of opacity.
In other words, we did not perform a full atmospheric retrieval and
have assumed that the parameters used to create our models are true,
because our main goal was only to perform an initial assessment
of the presence of water and clouds in the planetary atmosphere.
Based on the tentative detection that we obtain, a full atmospheric
retrieval is warranted to confirm the results reported here. Further
observations of upcoming transits of WASP-166 b could also shed
light on the differences obtained between the two nights studied here.

To summarize, we have analysed the presence of water and clouds
in WASP-166 b using two transits observed with ESPRESSO. We
use the cross-correlation technique with a grid of models covering
a range of water abundances and cloud deck pressures. We find
a tentative planetary signal blue-shifted 5 kms~! from the expected
planet velocity in the K,V maps, which could be caused by winds
in the atmosphere. A comparison of the different models used favours
those with intermediate water abundances and cloud deck pressures.
Models with a high water abundance and low cloud deck pressure
are strongly rejected, and models with low water abundance and high
cloud deck pressure are also not preferred. If no planetary signal was
present, we would expect models compatible with a flat spectrum (i.e.
low water abundance and high cloud deck pressure) to be favoured,
which is not what we observe, hence reinforcing the tentative signal
observed in the K—Vs maps.
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APPENDIX A: PCA IMPLEMENTATION
DETAILS

Before applying the PCA, the observations of each slice are cleaned
from bad pixels. We corrected for flux anomalies caused by cosmic
rays. To do this, we first identified outliers by performing a sigma-
clip on values deviating more than +3 and —6 times the standard
deviation of the slice flux (values tailored for these data), and then
corrected the identified spikes and the adjacent pixels on each side by
linear interpolation of the neighbouring points. After this, we fitted
the continuum of the slice with a linear polynomial and divided by
the best fit to remove instrumental slopes. We also flag channels with
low S/N (channels with median flux lower than 2 percent of the
overall median flux of all channels), which will not be used when
computing the PCA eigenvectors.

We then normalized (divided) each observation (each row) by its
median flux value. This is done to account for variations in the light
throughput in the different observations, so that all of them now have
the same baseline flux. Each pixel or channel (each column) has
its mean subtracted, so that the data matrix is centred. Then each
channel is divided by its standard deviation, so that the matrix is now
standardized. Hence, each channel has mean equal 0 and a standard
deviation of 1.

We note that the previous step of fitting and dividing by a
linear polynomial to remove instrumental offsets is not strictly
necessary, because any instrumental offset is removed afterwards
when standardizing each channel. However, removing these instru-
mental slopes is needed to correctly flag channels with low S/N (if
not normalized, the flagged channels would be biased due to the
instrumental slope).

We then performed a PCA, but instead of directly decomposing
the covariance matrix of the data as in Giacobbe et al. (2021), we
performed it via an SVD of the standardized data matrix (e.g. de
Kok et al. 2013). If M is the matrix with our standardized data, with
dimensions nf X nx (i.e. rows x columns), the covariance matrix of
the data is then given by MMT/(nf — 1). This can be diagonalized into
MM /(nf — 1) = WDW'/(nf — 1), where W contains the eigenvectors
or principal components, and D is a diagonal matrix containing the
eigenvalues of a new basis. We can decompose the data matrix M
via an SVD into M = UZVT, where ¥ is an nf x nx diagonal
matrix containing the singular values of M, U is an nf x nf matrix
whose columns contain the left singular vectors of M, and V is an
nx X nx matrix whose columns contain the right singular vectors of
M. The singular vectors are a set of orthogonal unit vectors, hence
making a new orthonormal basis. If we now consider M in terms
of its SVD, it can be shown that its covariance matrix is MMT/(nf
— 1) = UVHWUEVHY(f — 1) = (USVHVEUNDf — 1) =
UX2UT/(nf — 1). That is, the singular vectors of U are equivalent to
the principal components of the covariance matrix.

We then created a new matrix containing the first NC columns
of U (i.e. the first NC eigenvectors of the SVD of M or, what is
the same, the first NC eigenvectors or principal components of the
covariance matrix), where NC stands for number of components.
We used this new matrix to perform a multilinear regression with the
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initial matrix of data in order to determine the best-fitting coefficients
(i.e. the eigenvalues) for the linear combination of the chosen NC
components. This resulted in a fit to the data that should contain
most of the telluric, stellar, and instrumental variations, as captured
by the first NC components of the PCA. We then divided the initial
matrix of data by this fit and subtract 1. By doing this, we obtained
the residuals of the observed data where the telluric, stellar, and
instrumental variations captured by the NC components considered
have been removed.

Additionally, we applied a high-pass filter in the spectral direction
to remove residual instrumental effects from the final processed
data. Specifically, we first filter out pixels whose scatter (standard
deviation) is larger than 2 times the median scatter of that specific
pixel in all observations. We then fit 2-degree polynomials to each
filtered observation to capture any residual instrumental effects, and
subtract them out of each observation.

APPENDIX B: CROSS-CORRELATION
IMPLEMENTATION DETAILS

B1 Fast/unprocessed-model CC approach

In this approach, we compute the full CC and log L functions over a
grid of —100to 100 km s~, in steps of 0.5 km s~! (which corresponds
to the ESPRESSO pixel width). That is, we shifted the model to each
RV step, interpolated it to the wavelength grid of the observed spectra,
and computed the CC and log L functions following equations (1)
and (2). This is performed slice-by-slice for all the observations of
each night, using the different models described in Section 3.2.1. For
a specific model, this results in a CC and log L function per slice, per
observation, and per night. For each observation, we then combined
the log L functions of each slice by simply coadding them. There is no
need to weight the different slices because the log L already contains
information about the different S/N of each slice. This results in a
single log L function per observation, per night.

To enhance the planet signal, the log L functions of the in-transit
observations (where we expect the planetary signal to be) need to
be coadded in the planet rest frame. To do this, we shift them by
the corresponding planetary orbital velocity V),, which we computed
with the following equation (for which we assume that the planet has
no eccentricity, Hellier et al. 2019)

Vp(t) = Viys + Ky sin 2 ()], (B1)

where Vi is the systemic velocity of the system, K, is the planet
orbital radial velocity semi-amplitude, and ¢(7) is the planet orbital
phase. The phase is defined as

=1
P

where f, is the mid-transit time, and P the orbital period of the
planet, so that ¢ = O corresponds to mid-transit. After shifting all
the log L functions by the corresponding V,, we only need to coadd
them. When performing the shift to planet rest frame, we spline-
interpolated the log L functions of each observation to a common RV
grid. This way, each point of the log L functions of each observation
can be directly summed. This results in a single log L function per
night.

We perform this coadding for different V},, computed using the
expected Vi and a range of K, from 0 kms™" to twice the expected
value in steps of 1 kms™' (following equation B1). We obtain the
expected K, using the following equation with the most up-to-date

p(1) = : (B2)
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literature values (see Table 1)
K, = ZasinG B3
= ?a sin(i,), (B3)

where a is the planet semimajor axis, and iy, the orbital inclination.
By doing this, we can then produce the usual K,—Vy, maps (or K,—
Viest if we subtract V), since the RV grid of the log L function is
equivalent to sampling different Vi, (see equation B1). In our case,
since we included Vjy, in the computation of V,,, the maps are in the
planet rest frame, rather than in the systemic frame.

B2 Slow/processed-model CC approach: precise
implementation and model processing

In the second approach, we compute a single CC and log L value
for each pair of K, and Vjy, considered. So rather than performing
the cross-correlation with the same model shifted by a range of
RV steps, we only shift the model once for each pair of K, and
Vs values, and use this shifted model to compute a single point
of the CC and log L functions. As mentioned before in Section
3.2.2, this approach allows us to process the model through the
same PCA as the data prior to performing the cross-correlation. This
is key to avoid biases and should result in a better match between
model and data. In the following, we explain this model processing
and the computation of the log L with this slow/processed-mode
1 approach.

To process the planetary water model through the same PCA as
the data, we first created a data matrix with the same dimensions
as the original spectra (nf x nx) containing the model that will be
used to compute the CC (instead of the observed data). For the rows
corresponding to in-transit observations, the model matrix contains
the model shifted to the expected planet RV, interpolated to the same
wavelength grid as each observation. For the rows corresponding to
out-of-transit observations, the data matrix contains only ones.

As explained in Section 3.1, the linear regression of the data with
the selected PCA components results in a fit matrix that should only
contain (if the PCA works as expected) the fitted tellurics and stellar
lines, and changes in flux due to varying airmass and throughput. It
also contains the overall drop in flux due to the planet transit, i.e.
the broad-band transmission planet spectrum. We want to inject the
planetary water model to this fit matrix so that the model contains
the same variability as the data. However, our model matrix already
contains the drop in flux due to the planet transit, because the models
are expressed in units of 1 — (Ry/R,)?. Therefore, before injecting
the models, we need to normalize them to remove this effect. We do
this by dividing the in-transit observations in the model matrix by
their mean (we do not need to apply any change to the out-of-transit
observations, which are simple a flat spectrum at flux one). After
this, we injected the normalized model to the fit from the data by
multiplying the two matrices.

We then apply the full PCA processing to this last matrix (including
the out-of-transit observations), as done originally with the data.
That is, we use the same number of components and bad-pixel
masks, and perform the centering and standardization, singular value
decomposition, and linear regression. This results in a matrix with
the processed model per observation, which should have been altered
by the PCA in the same way as the real data.

We then computed the CC and log L of the in-transit observations
using the same method as in the first approach (i.e. equations 1
and 2). In this case, however, we have already shifted the template
to the expected planet RV (for a specific pair of K, and Vi
values). Therefore, we only compute the CC and logL once for
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each observation. To get a single log L value per observation, we
then directly sum the logL values that we obtain for each slice.
Since the log L has been computed with the model already shifted
to the expected planet RV, we can directly sum the logL of all
the observations, as we are already in planet rest frame, and there
is no need for interpolation as in the first approach. This directly
gives us a data point on the K,—V,,, maps. The processing of the
model depends on the chosen K, and Vi values, therefore, we

POKAZATEL models
—————— T

repeated this whole process (model processing and computation of
a single CC and log L value) for each pair of K, and Vi values
considered, resulting in the full K, — Vi, map (or again, K, — Vi if we
subtract V).

APPENDIX C: POKAZATEL MODELS FOR
HIGH WATER ABUNDANCES
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Figure C1. Leftt POKAZATEL H,O templates for WASP-166 b covering the ESPRESSO wavelength range for a range of cloud deck pressures
(logio(Peioua/bar) = 0 top, logio(Pelouda/bar) = —1 middle, logio(Pcioud/bar) = —2 bottom), and a range of water abundances (depicted by the various
colours in all panels). Right: Zoom in on a region with strong absorption lines. This figure shows the decrease in absorption strength for water rich atmospheres
(logi0(H2,0) = —1, purple) compared to lower abundances (logo(H20) = —2, blue) due to the increase in mean molecular weight for water-rich atmospheres
(see Section 4.2.1). For lower water abundances (logjo(H,0O) = —3, green), the strength of the absorption features decreases as expected due to the decrease in

water content.
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