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a b s t r a c t

The stability of waves in deep water has classically been approached via linear stability analysis, with
various model equations, such as the nonlinear Schrödinger equation, serving as points of departure.
Some of the most well-studied instabilities involve the interaction of four waves – so called Type
I instabilities – or five waves – Type II instabilities. A unified description of four and five wave
interaction can be provided by the reduced Hamiltonian derived by Krasitskii (1994). Exploiting
additional conservation laws, the discretised Hamiltonian may be used to shed light on these four and
five wave instabilities without restrictions on spectral bandwidth. We derive equivalent autonomous,
planar dynamical systems which allow for straightforward insight into the emergence of instability
and the long time dynamics. They also yield new steady-state solutions, as well as discrete breathers
associated with heteroclinic orbits in the phase space.

© 2023 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For weakly nonlinear waves on the surface of deep water,
nteraction plays a role when the nonlinearity is cubic or higher.
his consequence of the dispersion relation was initially inves-
igated by Phillips [1], Longuet-Higgins [2], and Benney [3], and
ts ramifications on wave propagation are still being explored to
his day, in stochastic wave forecasts [4], interaction of random
aves with structures [5,6], phase-resolved forecasting [7,8], and
umerous other threads of theoretical and applied research. At
econd order in the wave steepness ϵ waves do not interact to
xchange energy. At third order, combinations of wavenumber
ectors satisfying ka + kb = kc + kd can be found to exchange

energy. At fourth order this extends to ka + kb = kc + kd +

ke. Various well-known instabilities of water waves arise as a
consequence of these resonance conditions.

In the usual mathematical sense, instability requires that we
start from a solution to a set of equations, and describes the
evolution of disturbances of that solution. The handful of ex-
plicit solutions – to third and fourth order in nonlinearity –
therefore form the backbone of classical instability results. These
are the monochromatic wave which solves the problem at third
order (associated with Benjamin-Feir and Type Ib instability) and
fourth order (associated with Type II instability), as well as the
bichromatic wave train at third order (associated with Type Ia
instability, see below).

∗ Corresponding author.
E-mail address: raphael.stuhlmeier@plymouth.ac.uk (R. Stuhlmeier).
ttps://doi.org/10.1016/j.euromechflu.2023.06.008
997-7546/© 2023 The Author(s). Published by Elsevier Masson SAS. This is an open
.0/).
The instabilities which we will address have been approached
through a combination of analytical, numerical, and experimental
work (see the engaging historical review by Zakharov & Os-
trovsky [9] and e.g. Mei et al. [10, Ch. 13–14] for references
and an exposition focused on the Zakharov equation and the
nonlinear Schrödinger equation (NLS)). The existence of different
approaches, techniques, and model equations makes a simple
classification of instability results difficult. Mathematically, we
may identify whether the fundamental interaction is of third or
fourth order in nonlinearity. Experimentally, it is often easier
to classify an instability based on whether the unstable pertur-
bations are unidirectional or multidirectional, and what wave
steepness enables their growth.

We shall investigate two principal classes of instability: those
involving four waves (called Type I) and those involving five
waves (called Type II). Type I encompasses initial states which
are plane waves or bichromatic states, and perturbations which
are unidirectional or bidirectional. The Benjamin-Feir instability,
which arises from a single Stokes’ wave and whose most unstable
perturbation is unidirectional, is the best known Type I instability.
However, with four waves satisfying k1 + k2 = k3 + k4 there
is also the possibility that two modes k1, k2 form a bichromatic
ave train which is perturbed by a small bichromatic distur-
ance k3, k4, termed Type Ia after Ioualalen & Kharif [11]. Such
ases have been studied by Dias & Hărăguş-Courcelle [12] using
dynamical systems approach in the framework of Benney–
oskes–Davey–Stewartson equations, generalising similar results
or NLS. They have been investigated numerically by Fructus
t al. [13] and Kimmoun et al. [14], and experimentally by Ham-
ack et al. [15], who compared their results with solutions to
access article under the CC BY license (http://creativecommons.org/licenses/by/
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he NLS. They also include cases of standing waves, such as those
nvestigated by Okamura [16], who derived a set of coupled NLS
quations using the Zakharov equation approach.
McLean [17] was the first to observe, via a numerical treat-

ent, that the dominant instability changes from a two-
imensional perturbation to a three-dimensional one as the wave
teepness increases. This provided a possible theoretical mech-
nism for the experimental work of Su [18] on crescent wave
atterns, and opened up the investigation of so-called Type II
nstabilities, which are associated with quintet interactions. A
lear exposition of this is given by Stiassnie & Shemer [19],
ho considered McLean’s Type II results from the perspective
f the Zakharov equation. Numerous numerical investigations
ollowed, including Ioualalen & Kharif [11], who called this Type
Ib, Fructus et al. [13], Fuhrman et al. [20] (using a high-order
oussinesq model), Kimmoun et al. [14], and others. We follow
oualalen & Kharif [11] in denoting McLean’s quintet instability of
Stokes’ wave as Type IIb. A key theoretical advance on crescent
ave patterns was made by Shrira et al. [21], who used the

dea of reducing Type II instability with damping to a planar
ynamical system to provide an analytical foundation for their
ppearance. Theoretical advances continued to go hand-in-hand
ith experiments, as in the work of Collard & Caulliez [22] who
eported on the selection of particular harmonics in a flume
xperiment. Seeking to prevent wave breaking and thereby to
solate the instability leading to crescent patterns, they covered
he flume surface with a thin plastic film. Fuhrman & Madsen [23]
ubsequently explained this selection in terms of the finite tank
idth used in the experiments. Interest in Type II instabilities
ontinues unabated to the present day [24].
In the present article, we will show that the classical in-

tabilities of deep water waves can be fully described in the
lementary framework of planar dynamical systems. Our classi-
ication is based on the resonance condition on the interacting
avenumbers as follows:

1. (Type Ia) k1+k2 = k3+k4 – the instability of a bichromatic
sea to bichromatic disturbances.

2. (Type Ib) 2k1 = k3 + k4, with k2 noninteracting – the cu-
bically nonlinear instability of a Stokes’ wave to side-band
disturbances (with or without a non-interacting satellite).

3. (Type IIb) 3k1 = k2 + k3 – the quartically nonlinear
instability of a Stokes’ wave to side-band disturbances.

The Type Ib instability contains as a special case the Benjamin-
Feir instability, which is realised when the non-interacting wave
k2 has no energy, and only the degenerate quartet 2k1 = k3 +k4
emains. Our notation follows that of Ioualalen & Kharif [11]
nd Leblanc [25], who investigated Type Ia and Ib instabilities
ia linear stability analysis of the discrete Zakharov equation
see also Badulin et al. [26]), and Stiassnie & Shemer [19] who
id the same for the Type IIb instability. The techniques we
mploy consist of reducing each resonantly interacting set to
planar system, in which a single phase (called the dynamic
hase) and a single amplitude parameter are seen to govern the
ynamics. This extends and provides a more systematic approach
han previous work on the Benjamin-Feir instability [27]. Similar
echniques have been employed on three-mode discretisations of
he NLS [28], on the Type II instability [21], and on a system of
nteracting Benjamin-Feir resonances [29].

In what follows, we will describe each of these instabilities
ased on its corresponding discretised Hamiltonian. The Hamilto-
ian description which forms our starting point has no restriction
n spectral bandwidth, and so contrasts with approaches based
n NLS-type equations. We begin with the four-wave interac-
ions in Section 2, where we initially treat Type Ia instability in
ections 2.1–2.2, and subsequently Type Ib in Sections 2.3–2.4.
321
Section 3 is devoted to the study of Type II instability. Section 4
provides a discussion of our results and prospects for future work.
Finally, three Appendices A, B and C provide formulas for certain
coefficients, details of the asymmetric Type Ia instability, and
further details about a new Type II case, respectively.

2. The discrete Hamiltonian formulation for four-wave inter-
actions

The Hamiltonian formulation of the water wave problem was
first given by Zakharov [30], and has been extensively used since
then in theoretical and applied studies. Of particular practical
importance is the so-called reduced equation, written in terms
of an auxiliary complex variable which is related to the physi-
cal variables ζ and φs – the surface elevation and potential at
the free surface, respectively – via Fourier transforms (see [10,
(14.2.13)]). The definitive formulation of these reduced equations
up to and including terms of fourth order in nonlinearity (quintet
interactions) was given by Krasitskii [31].

We begin with the reduced Hamiltonian of the water wave
problem in the discrete formulation, and up to third order in
nonlinearity, cf. [31, Eq. (2.22)]:

H(b1 . . . bN , b∗

1 . . . b∗

N ) =

N∑
i=1

ωi|bi|2 +
1
2

N∑
i,j,k,l=1

Tijklδklij b
∗

i b
∗

j bkbl. (1)

To avoid an overly bulky expression we use subscripts to denote
the dependence on wavenumber, i.e. b(kj, t) = bj. The ∗ denotes
the complex conjugate. The linear dispersion relation for deep
water waves is ωi =

√
g∥ki∥, with g the gravitational acceler-

tion. Note that g = 1 is used in all calculations. The Kronecker
elta function is written δklij = δ(ki + kj − kk − kl), while the
xpression for the kernel Tijkl = T (ki, kj, kk, kl) can be found
n [10,31].

The discrete Zakharov equation is obtained directly from this
amiltonian as

dbi
dt

=
∂H
∂b∗

i
= ωibi +

N∑
j,k,l=1

Tijklδklij b
∗

j bkbl, for i = 1, . . . ,N . (2)

In fact, a similar discrete system was first obtained by Benney [3]
using perturbation theory rather than the Hamiltonian formula-
tion. It is convenient to rewrite the Hamiltonian in amplitude
and phase variables which are related to the original complex
amplitudes as

bi = |bi|e−iφi , for i = 1, . . . ,N. (3)

In order to preserve the Hamiltonian structure, the functional
dependence must be on |bi|2 instead of the more natural |bi|. The
new Hamiltonian is

H(|b1|2, . . . , |bN |
2, φ1, . . . , φN )

=

N∑
i=1

ωi|bi|2 +
1
2

N∑
i,j=1

eijTij|bi|2|bj|2

+
1
2

N∑
i,j=1

∑
k̸=i,j

∑
l̸=i,j

Tijkl
√

|bi|2|bj|2|bk|2|bl|2δklij

× cos(φi + φj − φk − φl),

(4)

where eij = 1 if i = j and 2 otherwise, and we abbreviate Tijij by
Tij. We also define the Stokes’ frequency correction of the wave
ki, given by

Γi = Tii|bi|2 + 2
∑

Tij|bj|2. (5)

j̸=i
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his simplification of the Hamiltonian (4) from (1) makes use
f a number of symmetries of the kernel Tijkl, which enforce,
mong other things, that the Hamiltonian is always real. The
eformulation already lays bare the dependence on the phases:
or each nontrivial resonant interaction between four modes ki +

j = kk + kl there is a single dynamic phase φi + φj − φk − φl.
his important fact will be exploited in what follows.
Finally, the Zakharov equation written in terms of the ampli-

udes and phases is obtained from Hamilton’s equations

d|bi|2

dt
= −

∂H
∂φi

,

dφi

dt
=

∂H
∂|bi|2

,

for i = 1 . . . ,N . (6)

Once the Zakharov equation is solved one can define the
complex amplitude as

A(x, t) =
1
π

N∑
j=1

√
ωj

2g
bjei(kj·x−ωjt), (7)

of which the real part is the free surface elevation and the
modulus is its envelope.

2.1. Hamiltonian formulation of Type Ia instability

In Type Ia instability the resonant interaction is between four
distinct waves satisfying k1 + k2 = k3 + k4. The discrete
Hamiltonian (4) becomes

H =

4∑
i=1

ωi|bi|2 +
1
2

4∑
i,j=1

eijTij|bi|2|bj|2

+ 4T1234
√

|b1|2|b2|2|b3|2|b4|2 cos(φ1 + φ2 − φ3 − φ4), (8)

and the corresponding equations of motion are

d|b1,2|2

dt
= −

∂H
∂φ1,2

= 4T1234
√

|b1|2|b2|2|b3|2|b4|2 sin(φ1 + φ2 − φ3 − φ4),

(9)

d|b3,4|2

dt
= −

∂H
∂φ3,4

= −4T1234
√

|b1|2|b2|2|b3|2|b4|2 sin(φ1 + φ2 − φ3 − φ4),

(10)
dφi

dt
=

∂H
∂|bi|2

= ωi + Γi + 2T1234

√
|b1|2|b2|2|b3|2|b4|2

|bi|2

× cos(φ1 + φ2 − φ3 − φ4), for i = 1, 2, 3, 4. (11)

he equations of motion form a system of eight coupled ODEs for
he amplitudes and phases. As noted above, the phases appear
nly in the combination θ = φ1 + φ2 − φ3 − φ4, the dynamic

phase of the Type Ia problem. This fact was already pointed out
by Bretherton [32] in the case of an interacting triad, and has been
used extensively in studies of discrete wave–wave interaction
(see Stiassnie & Shemer [33], Craik [34]).1 In fact, exploiting the
other invariants of the cubic Zakharov equation we will reduce

1 Note that the sign convention (3) is opposite to that used in [27,35], which
eads to the appearance of a factor of −1 in the equations.
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the eight ODEs to a planar system involving a single amplitude
and the dynamic phase.

In addition to the Hamiltonian, the momentum M and total
wave action A

M =

4∑
i=1

ki|bi|2, A =

4∑
i=1

|bi|2, (12)

re conserved (see [31, Eq. (3.36)ff]). We can write these conser-
ation laws, denoting M = (Mx,My) and ki = (ki, li) in matrix
orm as

b =

( 1 1 1 1
k1 k2 k3 k4
l1 l2 l3 l4

)⎛⎜⎜⎜⎝
|b1(t)|2

|b2(t)|2

|b3(t)|2

|b4(t)|2

⎞⎟⎟⎟⎠ =

( A
Mx

My

)
. (13)

Thus far no mention of instability has been made: indeed,
he system of Eqs. (9)–(11) contains many possible solutions –
ncluding single mode Stokes’ waves, bichromatic waves, and
esonantly interacting quartets (an exact, general solution can
e written in terms of Jacobian elliptic functions, see [33]) –
onstrained in wave action and momentum by (13).
Type Ia instability arises from one of these solutions: the well-

nown bichromatic solution to the Zakharov equation [10, Ch.
4.6] consisting of modes k1, k2. In fact, this is precisely the case
irst described by Longuet-Higgins and Phillips [36], where each
ave train effects a correction to the frequency of the other, but
o energy exchange takes place.
If we start with a bichromatic wave-train consisting of

avenumbers k1 and k2, the momentum is the vector M =

1|b1(0)|2 + k2|b2(0)|2, while the wave action is simply A =

b1(0)|2+|b2(0)|2. This configuration corresponds to the particular
olution b = (|b1(0)|2, |b2(0)|2, 0, 0) of (13). Now we know
that the right-hand side of system (13) is constant, as is the
coefficient matrix K . This coefficient matrix is of rank 3, and
its null space is spanned by (1, 1, −1, −1), as a consequence of
the Type Ia resonance condition. This leads us to the follow-
ing (time-dependent) general solution to the quartet-interaction
problem when starting from a bichromatic sea: b = (|b1(0)|2 −

(t), |b2(0)|2 − f (t), f (t), f (t)), for some smooth function f (t) with
(0) = 0.
The flow of energy is thus constrained: an initially bichro-

atic wave train may only transfer energy symmetrically to
resonantly interacting bichromatic wave train – the classical

nstability setting. Restricting ourselves to symmetric initial con-
itions |b1(0)|2 = |b2(0)|2 we can then write the amplitudes in
erms of a parameter η (ranging between 0 and 1/2) as

b1|2 = Aη, (14a)

b2|2 = Aη, (14b)

|b3|2 = A(1/2 − η), (14c)

|b4|2 = A(1/2 − η). (14d)

From a geometrical point of view this solution (14) corre-
sponds toM/A = (k1+k2)/2 = (k3+k4)/2 as shown in Fig. 1 (left
panel). Physically the parameter η governs how the total wave
action is partitioned among the modes, under the assumption
that there is initially an equidistribution among modes k1 and k2;
this enforces equidistribution among k3 and k4, as shown above.
Other initial states can be selected, however this is the only choice
which supports total energy transfer between two bichromatic
sea-states (see Appendix B).

The amplitude parameter η now takes the role of a new
variable for the problem

dη
=

1 d|b1|2
= −

∂H
= 2AT1234η(1 − 2η) sin(θ ), (15)
dt A dt ∂φ1
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here θ = φ1+φ2−φ3−φ4 is the dynamic phase. In fact, the pair
and θ can be seen as conjugate variables for a new Hamiltonian

˜

˜ (η, θ ) = −2AT1234η(1−2η) cos(θ )−(∆34
12+AΩ0)η−

AΩ1

2
η2, (16)

here the coefficients are found by writing the Stokes’ correc-
ions as a degree one polynomial in η as

Γ1 + Γ2 − Γ3 − Γ4 = AΩ0 + AΩ1η. (17)

ere ∆34
12 denotes the frequency detuning ω1 +ω2 −ω3 −ω4, and

he full expressions for Ω0 and Ω1 can be found in Appendix A.

.2. Dynamics of Type Ia

In terms of the new variables, the system of ODEs governing
ype Ia instability is given by

dη
dt

=
∂H̃
∂θ

= 2AT1234η(1 − 2η) sin(θ ), (18)

dθ
dt

= −
∂H̃
∂η

= ∆34
12 + AΩ0 + AΩ1η + 2AT1234(1 − 4η) cos(θ ),

(19)

derived from the new Hamiltonian (16).
Recall that η ∈ [0, 1/2], and the dynamic phase θ ∈ [−π, π ) –

this means the phase plane is the surface of a truncated cylinder
of height 1/2. The top and bottom of the cylinder correspond to
bichromatic wave trains: at the base of the cylinder η = 0 the
wave action is equally distributed in the modes k3 and k4, with
o energy in the modes k1 and k2. At η = 1/2 the situation
everses. Any point in the interior of the phase-plane represents
quartet of water waves, describing the interactions of the two
ichromatic wave trains.
For a physically meaningful treatment, we relate the magni-

ude of the complex amplitudes to the physical amplitudes ai of
Stokes’ waves (see [10, Sec. 14.6]) via

|b1| = 2π
√

g
2ω1

a1, |b2| = 2π
√

g
2ω2

a2. (20)

e also relate the total wave action A to the steepness ϵi = ai|ki|
of the initial bichromatic sea-state, consisting of two constant
amplitudes Stokes’ waves, as

A = 2π2
(

ω1

k31
ϵ2
1 +

ω2

k32
ϵ2
2

)
. (21)

.2.1. Fixed points and heteroclinic connections
As is customary when dealing with dynamical systems, we

egin by looking for stationary solutions, or fixed points, of
qs. (18)–(19). The Hamiltonian structure of the planar system
eans that the Jacobi matrix J has the form

=

(
Hηθ Hθθ

)
, (22)
−Hηη −Hηθ
v

323
vanishing trace, and determinant det(J) = HθθHηη −H2
ηθ . This im-

plies that the eigenvalues of the Jacobi matrix, which determine
the linear stability of fixed points, satisfy λ1,2 = ±

√
− det(J), and

ensures that all fixed points which appear are either centres or
saddle points. Our next task will be to find these fixed points.

In terms of their location in the phase space there are four
kinds of possible fixed points, which we can classify as shown
in Table 1, where we also give their corresponding values of the
Hamiltonian. The four classes of fixed points can occur in essen-
tially four generic configurations, which are depicted in Fig. 2 (a
special configuration shown in panel (e) is discussed further in
Section 2.2.2). In the absence of fixed points the orbits in phase
space are nearly horizontal, as little energy exchange takes place
(no substantial changes in η). The appearance of distinct fixed
points, and the separatrices which connect them, change this be-
haviour, and highlight configurations in which energy exchange
takes place as the orbits wind between the separatrices.

At the top (η = 1/2) and bottom (η = 0) of the phase space,
where the right-hand side of Eq. (18) vanishes, the Jacobi matrix
is

J± =

(
∓2AT1234 sin(θ ) 0

−8AT1234 cos(θ ) + AΩ1 ±2AT1234 sin(θ )

)
, (23)

where J+ corresponds to η = 1/2 and J− to η = 0. The Jacobi
determinant in either case det(J) = −4A2T 2

1234 sin(θ )
2

≤ 0. This
expression vanishes when θ = 0, ±π , but in all other cases fixed
oints occurring there must be saddle points. Those fixed points
ust solve (19) with dθ/dt = 0, which condition yields the values

ound in Table 1.
We consider the fixed points at η = 1/2: these have Jacobi

determinant

det(J) =
(
∆34

12 + Γ1 + Γ2 − Γ3 − Γ4
)
− 16|b1|2|b2|2T 2

1234, (24)

where we have used the fact that |b3| = |b4| = 0 on η = 1/2
and |b1|2 = |b2|2 = A/2 to simplify the expression. In fact,
the condition of real eigenvalues, det(J) ≤ 0, is precisely the
condition for existence of these fixed points, as can be seen by
squaring the value of cos(θ ) given in Table 1. We recognise that
the condition det(J) < 0 for the existence of distinct saddle points
at η = 1/2 is identical to the linear stability condition found
by [25, Eq. 15] (note that the use of ∆ and Γ therein differs
from the present manuscript). These fixed points appear from a
zero-eigenvalue bifurcation which occurs at either θ = 0 (cf. the
setting in panel (b) of Fig. 2) or at θ = ±π (cf. the setting in
panel (a) of Fig. 2). Symmetry of our system means these fixed
points appear symmetric about θ = 0. It is worth noting that our
analysis has assumed initially equal magnitudes |b1(0)| = |b2(0)|,
n contrast to the linear stability analysis of Leblanc [25]; the
bove results on the instability of a bichromatic wave train can
asily be carried out for α := (|b1(0)|2 − |b2(0)|2)/A ̸= 0, (see
ppendix B) but the reader should note that this changes the
hase portraits away from the initial configuration.
It is possible to show directly the existence of heteroclinic or-

its connecting the saddle points. When distinct, nonzero eigen-
alues exist, i.e. in those settings with two fixed points and
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Table 1
Fixed points for the Type Ia instability (18)–(19). Each row depicts a fixed point, with corresponding value of
amplitude parameter η, dynamic phase θ , and value of the Hamiltonian H̃ .

η θ H̃

0 ± arccos
(

−
AΩ0 + ∆34

12

2AT1234

)
0

1/2 ± arccos
(
2AΩ0 + AΩ1 + 2∆34

12

4AT1234

)
−

4(∆34
12 + AΩ0) + AΩ1

8

−
AΩ0 − 2AT1234 + ∆34

12

A(Ω1 + 8T1234)
±π

(
2AT1234 − AΩ0 − ∆34

12

)2
(16T1234 + 2Ω1) A

−
AΩ0 + 2AT1234 + ∆34

12

A(Ω1 − 8T1234)
0 −

(
2AT1234 + AΩ0 + ∆34

12

)2
(16T1234 − 2Ω1) A
Fig. 2. Phase portraits depicting the four different configurations of fixed points which occur in the Class Ia dynamics of two bichromatic wave trains. Labels (a)–(d)
correspond to labels in Fig. 3. Label (e) corresponds to the special multi-breather discussed in Section 2.2.2. In cases (a), (b) and (e) the nullcline η = 1/2 is orbitally
nstable. The total wave action A corresponds to ϵ = 0.1 in (21).
et(J) ̸= 0, these are λ1,2 = ±2AT1234 sin(θ ). Let (η∗, θ∗) be a
ixed point on either boundary. It is easy to see from (23) that the
igendirections are (η, θ ) = (0, 1) and (1, α). Depending on the

sign of 2AT1234 sin(θ ) one of these will be the stable and one the
unstable eigendirection. This stability is reversed in the case of
the fixed point (η∗, −θ∗). An orbit along the eigendirection (1, α)
into the interior of the phase space must therefore connect pairs
of saddle points, forming a separatrix.

Indeed, the existence of such a separatrix, heralded by the
condition det(J) < 0 in (24), shows that the nullcline η = 1/2 is
not orbitally stable. A trajectory starting arbitrarily near η = 1/2
necessarily deflects by a fixed amount in η as it moves around
the separatrix. The same holds for the nullcline η = 0.

While a classification of the dynamics is relatively straight-
forward, the cumbersome algebraic expressions for the kernels
T and the coefficients Ω0, Ω1 mean that further quantitative in-
sight relies on the choice of configuration. Specifying the
wavenumbers of the bichromatic sea-state corresponding to the
top of the phase-space at η = 1/2 by

k = (1, 0), k = (cos(φ), sin(φ)), (25)
1 2
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allows us to investigate the appearance of fixed points paramet-
rically, in terms of an auxiliary wavenumber k = (kx, ky) which
is used to construct

k3 = k1 + k, k4 = k2 − k. (26)

The existence of fixed points with varying kx and ky is depicted
in Figs. 3 and 4, where different colours denote the four different
classes of fixed points (fixed points for η = 0, 1/2 and θ = 0, ±π
are plotted separately for legibility). The fixed points at η = 1/2
are associated with the Class Ia instability of a bichromatic wave
train investigated by [25, Fig. 5]. The fixed points at η = 0 are
the complementary instability of the secondary bichromatic wave
train. Meanwhile, fixed points at θ = 0 and θ = ±π correspond
to resonant or nearly resonant steady-state quartets, akin to those
found by [37] (see their Appendix B).

The overlap of the regions depicted in Figs. 3 and 4 demon-
strates that these occur together in large portions of parameter
space. The phase portraits shown in Fig. 2 depict four character-
istic cases (a)–(d), and the special case (e) which is discussed in
Section 2.2.2. Cases (a)–(d) correspond to the labels in Fig. 3. It can
also be observed that the generic configuration is one of periodic
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Fig. 3. Existence of fixed points in the dynamics of two bichromatic wave-trains described by (18)–(19), for various values of inclination φ of the primary bichromatic
ase: φ = 0 (row 1), φ = π/8 (row 2). The left column shows fixed points at η = 1/2 (green domain) and η = 0 (magenta domain). The right column shows fixed
oints at θ = 0 (blue domain) and θ = ±π (red domain), see Table 1. Labels (a)–(d) correspond to phase portraits plotted in Fig. 2. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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nergy exchange; however, certain trajectories are confined to a
ubset of the possible phase-space by the presence of a separatrix.
As the angle between the primary bichromatic waves in-

reases the instability domain shrinks, reaching a minimum at
= π/2 (orthogonal primary waves), which are stable to

lmost all perturbations (see top panel, Fig. 4). Standing waves
see bottom panel, Fig. 4) have a characteristic symmetric in-
tability domain – fixed points appearing when the perturbation
avenumbers lie in an annulus.

.2.2. Type Ia multibreathers
The heteroclinic orbits shown in panels (a)–(c) of Fig. 2 con-

ect pairs of fixed points at η = 0 and η = 1/2. These are special
solutions, where a small perturbation – with the correct phase –
to a bichromatic wave train gives rise to a four-wave interaction,
which subsequently recedes to yield the original bichromatic
wave train, albeit with a phase shift. This type of spatially periodic
modulation, which arises from a bichromatic background as time
t → ±∞ corresponds to a discrete multibreather solution of
the Zakharov equation. Such multibreathers are a manifestation
325
of the underlying instability of the bichromatic wave train, and
exist for many combinations of parameters (see Figs. 3–4). They
can be found by integrating the equation for the orbits dη/dθ ,
sing the fact that the Hamiltonian along the trajectory takes the
alue along the boundary from which the separatrix emanates.
A special multibreather solution occurs when

˜ (1/2, θ ) = H̃(0, θ ). (27)

his solution connects fixed points on the top and bottom of the
hase plane, i.e. at (η, θ ) = (0, θ0) and (η, θ ) = (1/2, θ1/2), as
hown in panel (e) of Fig. 2. It corresponds to the complete trans-
er of energy from one bichromatic wave train to another, and it
an be shown by direct substitution that the eigendirections of
23) are precisely (1, 0) and (0, 1).

Eq. (27) can be written as

Ω1 + 4(AΩ0 + ∆34
12) = 0, (28)

nd this implies that the dynamic phase satisfies

os(θ0) = cos(θ1/2) =
Ω1

. (29)

8T1234
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Fig. 4. Existence of fixed points in the dynamics of two bichromatic wave-trains described by (18)–(19), for various values of inclination φ = π/2 (row 1) and φ = π

row 2). For description of colours see Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
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hus we look for solutions with θ (t) = θ0 which upon integration
f Eq. (19) yields

(t̃) =
esin(θ0)t̃

C + 2esin(θ0)t̃
, (30)

here C > 0 is an integration constant and t̃ = 2AT1234t denotes
a dimensionless time scale. The choice of integration constant is
arbitrary but in the following examples we shall use C = 1.

A second heteroclinic orbit between the fixed points (1/2,
−θ1/2) and (0, −θ0) can be found by replacing t with −t and
θ (t) = −θ0 = −θ1.

While the existence of fixed points at η = 0 or η = 1/2
is enough to guarantee the existence of general multibreathers
– these are simply the heteroclinic orbits connecting the fixed
points – this particular case requires a careful specification of
parameters. We take wave vectors k1 = (1, 0), k2 = (1, −1), k3 =

1.19, −0.11) and k4 = (0.80, −0.88) together with steepness
1 = 0.0843, ϵ2 = 0.13 which yields a total wave action A = 0.28.
he corresponding steepness of the remaining two waves are
326
ϵ3 = 0.1064 and ϵ4 = 0.1049. This ensures the existence of fixed
points at both η = 1/2 and η = 0 together with Eq. (27), and
hence the existence of a heteroclinic solution linking the fixed
points on the top and bottom of the phase space.

In Fig. 5 we plot the envelope of the free surface correspond-
ing to this solution, at three instances of normalised time. This
computation of (7) requires one to recover the individual phases
from the amplitudes and the dynamic phase by direct numeri-
cal integration of Eq. (11). Finally the modulus of the resulting
expression yields the real envelope.

Note that the envelope of the initial bichromatic sea (t̃ =

10, bottom panel Fig. 5) is monochromatic (with wave vector
k = k1 − k2 = (0, 1)). As energy is transferred the free
urface corresponds to a quartet of interacting waves, and the
nvelope shows a complex two-dimensional pattern (t̃ = 0,
iddle panel). Finally, the energy transfer process completes and
nly modes k3 and k4 remain (t̃ = −10, top panel); the envelope
s again monochromatic, now with wavenumber k3 − k4 =

0.39, 0.77).



D. Andrade and R. Stuhlmeier European Journal of Mechanics / B Fluids 101 (2023) 320–336

k
r

2

k
a
r
k
w
m
t
i

H

N
m
e

Fig. 5. Snapshots of the envelope of the free surface of a special multibreather solution. The wave components are k1 = (1, 0), k2 = (1, −1), k3 = (1.19, −0.11) and
4 = (0.80, −0.88). Total wave action is A = 0.28 obtained from slopes ϵ1 = 0.084, ϵ2 = 0.13. The plots are organised from top to bottom according to t̃ = −10, 0, 10
espectively. The limiting bichromatic wave train has slopes ϵ3 = 0.106 and ϵ4 = 0.104.
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.3. Hamiltonian formulation of Type Ib instability

Type Ib instability consists of a fundamental resonance 2k1 =

3+k4 accompanied by a non-resonant wave k2. In this sense it is
generalisation of the usual Benjamin-Feir instability discussed
ecently by [27], which is recovered when the amplitude of mode
2 is set to zero. It is also prototypical for how a non-interacting
ave can influence a resonant set: this influence occurs through a
utual frequency correction captured in the ‘‘Stokes’ correction’’

erms Γi. The details of the analysis are similar to the Type Ia
nstability discussed in Sections 2.1–2.2.

With these resonance conditions, the Hamiltonian (4) becomes

=

4∑
i=1

ωi|bi|2 +
1
2

4∑
i,j=1

eijTij|bi|2|bj|2

+ 2T1134|b1|2
√

|b3|2|b4|2 cos(2φ1 − φ3 − φ4). (31)

ote that H does not depend on φ2 so |b2|2 must be constant, i.e.
ode k2 remains a Stokes’ wave with constant amplitude. The
quations of motion for the other amplitudes and phases are

d|b1|2

dt
= −

∂H
∂φ1

= 4T1134|b1|2
√

|b3|2|b4|2 sin(2φ1 − φ3 − φ4),

(32)

d|b3,4|2

dt
= −

∂H
∂φ3,4

= −2T1134|b1|2
√

|b3|2|b4|2

× sin(2φ1 − φ3 − φ4), (33)
dφ1

dt
=

∂H
∂|b1|2

= ω1 + Γ1 + 2T1134
√

|b3|2|b4|2

× cos(2φ − φ − φ ), (34)
1 3 4 h
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dφ2

dt
=

∂H
∂|b2|2

= ω2 + Γ2, (35)

dφ3,4

dt
=

∂H
∂|b3,4|2

= ωi + Γi + T1134|b1|2
√

|b4,3|2

|b3,4|2

× cos(2φ1 − φ3 − φ4), i = 3, 4. (36)

Note that the equations for the amplitudes and phases do not
epend on φ2. Hence the system decouples and the evolution of
b1,3,4|2 and their phases can be treated independently. Once they
are solved the remaining variable, e.g. the phase φ2 can be found
by simple integration.

As with the Type Ia instability in Section 2.1, we reduce the
degrees of freedom in the Hamiltonian to a single amplitude and
a dynamic phase. Using conservation of momentum and wave
action recovers a system of linear equations very similar to (13).

We rewrite the magnitudes |bi|2 of the interacting modes in
terms of a new amplitude parameter η

|b1|2 = Aη, (37)

|b3|2 =
A
2
(D − η), (38)

|b4|2 =
A
2
(D − η), (39)

|b2|2 = AB, (40)

where D = (|b1|2+|b3|2+|b4|2)/A is the fraction of the total wave
action in the resonant triad and B = |b2|2/A is the fraction in the
satellite wave k2. Conservation of wave action means B + D = 1.
he scalar amplitude parameter η is between 0 and D, and the
ave momentum is chosen so that M/A = Dk1 + Bk2, i.e. the
ave action is equipartitioned among the side-bands k3 and k4.
he momentum can be depicted graphically as lying in the convex
ull of k and k , as shown in Fig. 1.
1 2
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The evolution of η is governed by

dη
dt

=
1
A
d|b1|2

dt
= −

1
A

∂H
∂φ1

= 2AT1134η(D − η) sin(θ ), (41)

where θ = 2φ1 − φ3 − φ4. The equation governing the dynamic
phase θ is
dθ
dt

=2
dφ1

dt
−

dφ3

dt
−

dφ4

dt
= 2

∂H
∂|b1|2

−
∂H

∂|b3|2
−

∂H
∂|b4|2

= ∆34
11 + 2Γ1 − Γ3 − Γ4 + 2AT1134(D − 2η) cos(θ )

(42)

here the frequency detuning is ∆34
11 = 2ω1 − ω3 − ω4.

In this way we find that a Hamiltonian for Type Ib resonances
s

˜ (η, θ ) = −η

(
2AT1134(D − η) cos(θ ) + ∆34

11 + AΩ0 +
AΩ1η

2

)
.

(43)

ere the coefficients are found by writing the Stokes corrections
s a degree one polynomial in the variable η as

2Γ1 − Γ3 − Γ4 = AΩ0 + AΩ1η. (44)

ull expressions for these coefficients can be found in Appendix A.

.4. Dynamics of Type Ib

The dynamical system corresponding to Type Ib (a degenerate
uartet and a single noninteracting satellite) is

dη
dt

=
∂H̃
∂θ

= 2ηT1134A (D − η) sin(θ) , (45)

dθ
dt

= −
∂H̃
∂η

= 2AT1134 cos(θ) (D − 2η) + (Ω1η + Ω0) A + ∆34
11,

(46)

where the Hamiltonian is given by Eq. (43). This configuration
may be interpreted as the Benjamin-Feir instability in the pres-
ence of an additional non-resonant wave; although there is no
energy exchange between the degenerate quartet and mode k2,
the frequency corrections arising from the presence of an ad-
ditional mode are sufficient to substantially alter the overall
dynamics. The phase plane {(η, θ ) | η ∈ [0,D], θ ∈ [−π, π )}
is a truncated cylinder with parametric dependence on B. If B =

the total wave action is in the non-resonant mode k2, while
= 0 corresponds to the absence of the non-resonant satellite,

.e. the classical Benjamin-Feir configuration explored by Andrade
Stuhlmeier [27].
The lower boundary η = 0 of the phase space corresponds

o a non-resonant three-mode configuration, consisting of modes
3, k4 and the satellite k2. The upper boundary η = D corre-

sponds to a bichromatic sea consisting of modes k1 and the satel-
lite k2. The latter is the classical setting for the Type Ib instability,
which arises from a linear stability analysis (see Leblanc [25]). To
relate the configuration to physical wave parameters, the total
wave action is obtained from the steepness of the waves k1 and
2 by means of Eq. (21).
Akin to Type Ia, we find four classes of fixed points as shown

n Table 2. The set of Type Ib equations describes an interacting
egenerate quartet and a fourth, non-interacting wave k2. The
egenerate quartet itself exhibits instabilities (discussed in detail
n [27]), while the addition of a fourth wave engenders a shift
n the frequencies (dispersion correction) through the symmetric
nteraction kernels Tijij and the Stokes’ corrections Γi.

Fig. 6 shows the regions where the four types of fixed points
xist, for a principal wave k1 = (1, 0), which, in the absence of

ther waves, corresponds to a steepness ϵ = 0.2. The parameter
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pace (kx, ky) maps out the possible degenerate quartets k3 =

1 + kx, ky) and k4 = (1 − kx, −ky), which are usually considered
n the context of the Benjamin-Feir instability. The non-resonant
ave k2 = (cos(φ), sin(φ)) subtends an angle φ with the primary
or carrier) wave k1, and may be allocated some of the total
nergy by modifying the parameter D (in this case D = 0.5).
The planar Hamiltonian structure of the dynamical system

again makes it simple to classify the fixed points, exactly as in
Section 2.2. Here the Jacobi determinant at the top (η = D)
and bottom (η = 0) boundaries is det(J) = −4A2D2T 2

1134 sin
2(θ ),

indicating that fixed points with det(J) ̸= 0 on these boundaries
are saddle points. Investigating the fixed points at η = D (see
Table 2), we find that the Jacobi determinant there evaluates to

det(J) = (∆34
11 + 2Γ1 − Γ3 − Γ4)2 − 4T 2

1134|b1|
4, (47)

and the condition for the existence of saddle points det(J) <
0 coincides exactly with the instability condition derived from
linearisation by Leblanc [25, Eq. (10)].

Thus, as discussed for Type Ia instability in Section 2.2, the
appearance of distinct fixed points at η = D through a zero-
eigenvalue bifurcation destroys the stability of the bichromatic
waves on the nullcline. The appearance of these saddle points
implies existence of a heteroclinic connection, which is identified
with a discrete breather solutions of the four-wave Zakharov
equation. They represent modifications of the Type Ib discrete
breathers explored recently by Andrade & Stuhlmeier [27]. The
phase portraits are similar in appearance to those found for the
Benjamin-Feir instability therein (see Fig. 1, [27]), albeit restricted
to a phase-space ranging from η = [0,D], and are not plotted
here.

The interior fixed points at θ = 0, ±π are steady state quartets
of waves subject to the Type Ib resonance condition. The domains
in parameter space where such fixed points occur are given in
Fig. 4 for a particular choice of carrier steepness ϵ = 0.25,
satellite energy fraction D = 0.5, and three values of satellite
wave inclination φ = 0, π/2 and π (i.e. the satellite is collinear,
orthogonal, or propagating counter to the carrier k1).

3. The discrete Hamiltonian for five-wave interactions

If we extend the weakly nonlinear theory to include quarti-
cally nonlinear terms, these naturally give rise to the possibility
of resonant interactions of quintets of waves. Such interactions,
which arise on a slower time-scale and have a smaller contribu-
tion – by a factor of ϵ – than the dominant (cubically nonlinear)
quartet interactions nevertheless play an important role in some
physical phenomena. For some regions of parameter space the
lower-order instabilities may not be active (see e.g. the regions
plotted in Figs. 3, 4, and 6), meaning that the weaker quintet in-
stabilities dominate. In particular, quintet instabilities have been
implicated in the formation of horseshoe shaped patterns ob-
served in wind-driven seas [13,18]. The Hamiltonian formulation
for the weakly nonlinear problem including quartic terms was
given by Krasitskii [31, Eq. (2.24)], and forms the cornerstone of
our analysis.

Perhaps the simplest case where quintet interaction takes
place is in a wave field with three modes k1, k2 and k3 satisfying
the degenerate quintet resonance condition 3k1 = k2 + k3. For
this case the Hamiltonian, in amplitude-phase variables is

H(|bi|2, φi) =

3∑
i=1

ωi|bi|2 +
1
2

3∑
i,j=1

eijTij|bi|2|bj|2

+ 2W̃ (2)
23111

√
|b2|2|b3|2|b1|6 cos(3φ1 − φ2 − φ3),

(48)
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Table 2
Fixed points for the Type Ib instability (41)–(42). Each row depicts a fixed point, with corresponding value of
amplitude parameter η (column 1), dynamic phase θ (column 2), and value of the Hamiltonian H̃ (column 3).

η θ H̃

0 ± arccos
(

AΩ0+∆34
11

2ADT1134

)
0

D ± arccos
(

AΩ1D+AΩ0+∆34
11

2ADT1134

)
−

(
(Ω1D + 2Ω0) A + 2∆34

11

)
D

2
2ADT1134 − AΩ0 − ∆34

11

A (Ω1 + 4T1134)
±π

(
2ADT1134 − AΩ0 − ∆34

11

)2
(2Ω1 + 8T1134) A

−
2ADT1134 + AΩ0 + ∆34

11

A (Ω1 − 4T1134)
0 −

(
2ADT1134 + AΩ0 + ∆34

11

)2
(−2Ω1 + 8T1134) A
Fig. 6. Appearance of fixed points for Class Ib instabilities for ϵ = 0.25, D = 0.5, and φ = 0 (top panels), φ = π/2 (middle panels) and φ = π (bottom panels). Left
anels show fixed points at η = D (green domain) and η = 0 (magenta domain). Right panels show fixed points at θ = 0 (blue domain) and θ = ±π (red domain).
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
here the five-wave interaction kernels are computed from the
ormulas obtained by [31], and Tij are the symmetric four-wave
ernels used extensively in Section 2. Since no other non-trivial
esonant interactions occur, we write W = W̃ (2)

23111 for brevity.
The corresponding discrete Zakharov equation is

d|b1|2

dt
= −

∂H
∂φ1

= 6W
√

|b2|2|b3|2|b1|6 sin(3φ1 − φ2 − φ3),
(49)
329
d|b2,3|2

dt
= −

∂H
∂φ1

= −2W
√

|b2|2|b3|2|b1|6 sin(3φ1 − φ2 − φ3),

(50)
dφ1

dt
=

∂H
∂|b1|2

= ω1 + Γ1 + 3W
√

|b2|2|b3|2|b1|2

× cos(3φ1 − φ2 − φ3), (51)
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dφ2

dt
=

∂H
∂|b2|2

= ω2 + Γ2 + W

√
|b3|2

|b2|2
|b1|6

× cos(3φ1 − φ2 − φ3), (52)

dφ3

dt
=

∂H
∂|b3|2

= ω3 + Γ3 + W

√
|b2|2

|b2|3
|b1|6

× cos(3φ1 − φ2 − φ3). (53)

3.1. Hamiltonian formulation of Type IIb instability

In contrast to the cubically nonlinear case which exhibits
three conserved quantities, the quartically nonlinear system con-
serves total energy (in the form of the Hamiltonian) and momen-
tum only, but not wave action. However, for three modes the
conservation of the two components (x, y) of the momentum

M = k1|b1|2 + k2|b2|2 + k3|b3|2, (54)

is sufficient to determine the possible energy transfers, and find
an auxiliary amplitude parameter in a fashion analogous to that
pursued in (12)–(13). In this case the system of two equations has
rank 2, and we ultimately write the magnitudes as

|b1|2 = Aη, (55)

|b2|2 = A(1 − η)/3, (56)

|b3|2 = A(1 − η)/3. (57)

Here η is between 0 and 1 and this particular solution is chosen
so that the wave momentum vector M = Ak1. Note that A is not
the total wave action, but simply a positive scalar. Without loss
of generality we take k1 = (1, 0), so that M = (A, 0).

3.2. Dynamics of Type IIb instability

We can exploit the discrete Hamiltonian structure to recast
our system in the phase plane. As before, we introduce a dynamic
phase

θ = 3φ1 − φ2 − φ3, (58)

that allows us to reduce the Hamiltonian structure to a simpler
Hamiltonian system in the new variables η and θ , as pursued
for Type Ia in Section 2.1 and Ib in Section 2.3. The reduced
Hamiltonian and the corresponding equations of motion are:

H̃(η, θ ) = −2WA3/2η3/2(1 − η) cos(θ )

− (∆23
111 + AΩ0)η −

AΩ1

2
η2, (59)

dη
dt

= 2WA3/2η3/2(1 − η) sin(θ ), (60)

dθ
dt

= ∆23
111 + AΩ0 + AΩ1η + WA3/2η1/2(3 − 5η) cos(θ ). (61)

he coefficients Ω0 and Ω1 come from the linear polynomial

Γ1 − Γ2 − Γ3 = AΩ0 + AΩ1η, (62)

hich can be found in Appendix A and the frequency detuning is
23
111 = 3ω1 − ω2 − ω3.
Once again the parameter A is related to the steepness of the

wave k1 as

A = 2π2 ω1

k31
ϵ2
1 . (63)

n analogous planar system was found by [21, Eq. (2.19)] in their
tudy of water wave horseshoe patterns, with the additional mi-
or restriction of equal side-band phases φ2 = φ3. These authors
ubsequently added forcing and dissipation terms to the system
330
in order to recover the forward-oriented wave fronts observed
experimentally for crescent wave patterns (see the discussion
by [13,38]).

3.2.1. Fixed points and heteroclinic connections
The dynamics of the type IIb instability are similar to those of

the type Ia instability described before. The Hamiltonian structure
of the planar system implies that the Jacobi matrix has vanishing
trace and that its eigenvalues are λ1,2 = ±

√
− det(J), which

ensures that all fixed points are either centres or saddles.
The system (60)–(61) admits the following fixed points:

η = 1, θ1 = ± arccos
(

∆23
111 + AΩ0 + AΩ1

2A3/2W

)
, (64)

provided that the expression in the argument of the arccos is
between −1 and 1. These are fixed points along the contour of
plane Stokes’ waves, corresponding to the ‘trivial’ stationary state
(3.2b) in [21]. A second type of fixed point of the form (η, θ ) =

(η0, 0) is found whenever η0 is a solution of the equation

∆23
111 + AΩ0 + AΩ1η + WA3/2η1/2(3 − 5η) = 0. (65)

hese correspond to the ‘‘in-phase’’ nontrivial stationary states
ound by [39] and [21, Eq. (3.3a)]. A third type of fixed point
ppears at (η, θ ) = (ηπ , ±π ) where ηπ solves the equation
23
111 + AΩ0 + AΩ1η − WA3/2η1/2(3 − 5η) = 0. (66)

ote the change of sign before the kernel; these fixed points are
he ‘‘out-of-phase’’ stationary states in [21, Eq. (3.3b)]. In general,
nd unlike the configuration of the type I instabilities, the type
Ib does not admit fixed points at η = 0.

The reduced Hamiltonian H̃ is constant along the line η = 1
here any solution represents a single Stokes’ wave with all the
nergy concentrated in the mode k1. The appearance of fixed
oints at η = 1 changes the stability of this nullcline. Indeed there
re two distinct fixed points on η = 1, symmetric with respect to
= 0, when(
∆23

111

2
+

A
2

(3Taaaa − 2Tabab − 2Tacac)
)

− A3W 2 < 0. (67)

At each of those points the Jacobi matrix is

J =

(
−2A3/2W sin(θ1) 0

−6A3/2W cos(θ1) + AΩ1 2A3/2W sin(θ1)

)
, (68)

which immediately shows that both fixed points are saddles. Note
that Eq. (67) is equivalent to det(J) < 0. This equation is exactly
the classical linear stability criterion, obtained in equation (3.8)
of [19]. Distinct fixed points at η = 1 are always connected by
a heteroclinic solution when Eq. (67) is satisfied and this implies
the orbital instability of the solutions at η = 1.

For a given value of total wave action the dynamics of the
quintet can be classified according to the types of fixed points that
it may have, and we identify the regions where different fixed
points occur in parameter space. In Fig. 7, we take ϵ1 = 0.41 and
a (degenerate) quintet of the form k1 = (1, 0), k2 = k1 + (kx, ky)
and k3 = 2k1−(kx, ky). We plot regions in the (kx, ky) plane where
different fixed points occur. The blue region (panels a and d) is
the region where fixed points at η = 1 exist, and coincides with
the instability region of [19]. The yellow region (panels b and d)
corresponds to fixed points at θ = 0, i.e. centres, and the red
region (panels c and d) to fixed points at θ = ±π , i.e. saddle
points.

Note that the blue region is a subset of the yellow region. This
means that fixed points at η = 1 are accompanied by fixed point
at θ = 0. The red region on the other hand is not fully contained
in the yellow region as can be seen in panel d near the point
k = 1.7 and k = 1.
x y



D. Andrade and R. Stuhlmeier European Journal of Mechanics / B Fluids 101 (2023) 320–336

w
v
w

b

C

E

a
s

Fig. 7. Classification of the dynamics for ϵ1 = 0.41. Panel a: Region with fixed points of the form (θ1, 1). Linearly unstable region. Panel b: Region with fixed points
of the form (0, η0). Panel c: Region with fixed point of the form (π, ηπ ). Panel d: Union of the regions plotted in panels a (in blue), b (in yellow) and c (in red).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2.2. Type IIb discrete breathers
Saddle points of the Type IIb system appear with separatrices

connecting them. When these saddle points lie on η = 1 (corre-
sponding to plane Stokes waves), the heteroclinic connection cor-
responds to a novel fourth-order Akhmediev-type breather. Start-
ing from a quintet with fixed points at (1, −θ1) and (1, θ1), we
obtain in this section analytical expressions for such a breather.

We start with the following equation

2WA3/2η3/2 cos(θ ) = ∆23
111 + AΩ0 +

AΩ1

2
(1 + η), (69)

hich follows from equating the planar Hamiltonian (59) to its
alue at η = 1. Then, by means of implicit differentiation,
hereby η is regarded as a function of θ instead of t , we obtain

the following equation:

dη
dθ

=
η3/2 sin(θ )

3
2η

1/2 cos(θ ) −
Ω1

4A1/2W

. (70)

Direct integration of Eq. (70) yields the following relation
etween η and θ :

− η3/2 cos(θ ) +
Ω1

4A1/2W
η = 0, (71)

where the integration constant C is determined from the condi-
tion that limθ→θ1 η = 1. Its value is

C =
∆23

111 + AΩ0 + AΩ1/2
2A3/2W

. (72)

q. (71) can be used to plot the trajectory in phase space.
In order to find the solution of the Hamiltonian system (60)

nd (61) the following equation for the dynamic phase has to be
olved
dθ

= WA3/2η1/2(3 − η) cos(θ ) − 2A3/2W cos(θ1). (73)

dt

331
Once its solution is obtained it is used in combination with
Eq. (71) to obtain the time evolution of the amplitudes.

In Fig. 8 we plot the dynamics for a case with ϵ1 = 0.41,
kx = 0.5 and ky = 1.28. The fixed points appearing in this
case can be read off from Fig. 7, which is plotted for the same
value of wave slope: this case corresponds to two saddle points
at η = 1 (blue region, panel (a) in Fig. 7), and a centre at θ = 0
(yellow region, panel (b) in Fig. 7). These fixed points are shown
in the upper panel of Fig. 8, which depicts the phase portrait with
heteroclinic orbit.

The middle panel of Fig. 8 shows the (dimensionless) time
evolution of the amplitudes along the heteroclinic orbit obtained
from Eqs. (70) and (73). The blue line corresponds to the carrier
wave k1 and the red line to side bands k2 and k3. Recall that
there is equipartition in the initial side-band magnitudes, but no
conservation of wave action. The time scale used in the figure is
t̃ = t/(2WA3/2).

The lower panel in Fig. 8 shows a snapshot of the free surface
levation at t = 0, the moment of maximum modulation. In order
o compute the complex envelope (from which the free surface
ollows by taking its real part) values of the individual phases
ust be assigned in such a way that the dynamic phase vanishes.
he values used are φ1 = 0, φ2 = π and φ3 = −π . The vertical

scale in the figure is z̃ = z/ϵ1, while the horizontal variables have
been nondimensionalised as x̃ = x|k1| and ỹ = y|k1| with k1 =

(1, 0). As t̃ tends to ±∞, this three-dimensional, modulated wave
train returns to the monochromatic (Stokes’ wave) background.

3.3. Type IIc instability

For three waves k1, k2 and k3 the quintet resonance condition
can be fulfilled when 3k1 = k2 + k3, or when k1 + 2k2 = 2k3.
In the latter case – which we term Type IIc, – conservation of

momentum can also be used to reduce the governing equations to
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Fig. 8. Class II instabilities. Upper panel: Level lines of the Hamiltonian. The red line is the discrete (1-1) breather solution. Black circles are the fixed point of the
dynamical system. Middle panel: Time evolution of |b1|2 in blue. Evolution of |b2|2 = |b3|2 in red. Wave action was normalised by A. The time scale is t̃ = t/(2WA3/2).
Lower panel: Free surface elevation at t̃ = 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
a planar dynamical system. The classes of fixed points are similar,
and full details are provided in Appendix C.

From a physical perspective there are two important cases:
if only mode k3 is present the wave field is monochromatic. In
this case there are no fixed points in the system, and the solution
is always stable to perturbations of the form k1 + 2k2 = 2k3.
The complementary case is for an initial bichromatic wave train
consisting of k1 and k2. In this case it is possible to find fixed
points and heteroclinic orbits, i.e. the bichromatic wave train is
unstable to particular monochromatic perturbations.

As we have seen in previous sections, the stability properties
are completely determined by the existence of fixed points. Anal-
ogous methods enable us to classify the fixed points for a triad of
waves of the form k1 = (kx, ky), k2 = (1− kx/2, −ky/2) and k3 =

1, 0) with total momentum M = (A, 0) with A = 3.31 exactly as
for the type IIb case – these are depicted in Fig. C.9 in Appendix C.
While this configuration corresponds to ϵ3 = 0.41, the structure
f the resonance condition implies that the fixed points exist only
hen ϵ1 and ϵ2 are in excess of 1. This is physically unrealistic,
nd the Type IIc instability of a bichromatic wave train is thus

nly of mathematical interest.

332
4. Discussion and conclusions

We have undertaken to investigate the three classical instabili-
ties of waves on the surface of deep water from the perspective of
dynamical systems. In the classical treatment, these instabilities
are treated via linearisation [19,25]: in Type Ib and Type IIb the
discrete equations are linearised about a monochromatic solu-
tion, while in Type Ia the discrete equations are linearised about
a bichromatic solution. Because the underlying set of discrete
equations comes from a reduced Hamiltonian formulation, it is
possible to exploit this, together with other conservation laws, to
classify the full dynamics.

A key ingredient in our approach is the fact that a single
resonant set is governed by one dynamic phase: this condenses
the evolution of the phases into a single equation, rather than
following each modal phase separately. The second important
idea is to use momentum (and, for quartet resonances, wave
action) conservation, together with the wavenumber resonance
condition, to inform the choice of amplitude parameter. If we
wish to describe a scenario where a monochromatic basic state
is perturbed, say, the total momentum must always coincide
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ith that of the basic state. The second variable in the planar
escription, namely the amplitude parameter, follows naturally
rom this choice.

In the three cases considered the phase plane is the surface
f a truncated cylinder, with the dynamic phase taking values
etween −π and π , and different values of height depending on
he configuration. In all cases, the basic state – either a monochro-
atic wave or a bichromatic wave – is found on the top of the
ylinder. The converse of this – when all the momentum has been
ransferred away from the basic state – are the solutions at the
ottom of the cylinder. Trajectories, which are the level lines of
he Hamiltonian, wind around the phase space in periodic orbits,
hich can be confined by separatrices connecting fixed points of
he system.

As mentioned above, when such fixed points occur on the top
f the phase plane, they signal orbital instability of the basic state.
e have shown that the existence criteria for distinct fixed points

re algebraically identical with the instability thresholds obtained
lassically from linearisation. Moreover, each pair of such fixed
oints is connected by a separatrix, which we identify with a
reather or multibreather solution to the system in question.
e have provided explicit solutions and plots of these new, dis-

rete breather solutions for both quartet and quintet instabilities.
hese include special cases where one bichromatic wave train
ndergoes modulation and ultimately transforms into a different
ichromatic wave train, a special case of a Type Ia multibreather.
The nature of our phase-plane approach also makes clear

he relationship between energy exchange and phase-coherence.
oughly speaking, energy is the vertical coordinate and phase the
orizontal (or angular) coordinate in our phase portraits. When
ignificant energy exchange is taking place, trajectories are nearly
ertical, implying that the phase is nearly coherent, and vice
ersa. Interior fixed points are a special case: these configurations
re steady-state resonances or near-resonances, where phase and
nergy do not change with time. Such steady solutions, obtained
sing the so-called homotopy analysis method, have been the
ubject of considerable recent interest [37,40].
The approach presented is quite general, and could poten-

ially be extended to other isolated resonances of six or more
aves. Additionally, it is always possible to add non-resonant
ontributions to any isolated resonance; the template for such
case is the Type Ib instability, which involves a single non-

esonant satellite added to the Benjamin-Feir instability. Such
on-resonant modes do not exchange energy, and therefore do
ot require a higher dimensional system. Their sole effect is via
requency corrections, which can be incorporated easily into the
oefficients of the system.
Exploring how multiple resonances might be treated within

he Hamiltonian framework is likely to be a challenge. Work
y [11] has also identified a Type IIa instability consisting of
our modes k1 + k2 = 2k3 + k4. Due to the lack of wave
ction conservation for quintet interaction, this case may require
omewhat different techniques. Recent work has also been un-
ertaken in the vein of Shrira et al. [21], incorporating forcing
nd dissipation into discrete systems based on the higher order
onlinear Schrödinger equation [41]. Numerous possibilities exist
o extend these approaches to the instabilities discussed in the
resent paper. Future work may also treat the observability of the
ew breather solutions in wave-flume experiments, in line with
ecent work observing breather solutions of the NLS [42–44].
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Appendix A. Coefficients Ω0 and Ω1

Throughout this paper we have denoted by Ω0 and Ω1 certain
ombinations of the kernels depending on the instability under
nvestigation. The full expression of the coefficients for each case
s given below.

For Type Ia the coefficients are:

0 = T13 + T23 − T33/2 − 2T43 + T14 + T24 − T44/2,
Ω1 = (T11 + 4T12 + T22) + (T33 + 4T34 + T44)

− 4(T13 + T14 + T23 + T24).

For Type Ib the coefficients are:

Ω0 = B (4T12 − 2T23 − 2T24)

+ D
(
2T14 −

T44
2

+ 2T13 −
T33
2

− 2T34

)
,

Ω1 = 2T11 +
1
2
T33 +

1
2
T44 + 2T34 − 4T13 − 4T14.

Here B and D are parameters which determine what fraction of
the total wave action A is contained in the resonant degener-
ate quartet, and what fraction is contained in the non-resonant
satellite wave. When B = 0 the non-resonant satellite is ab-
sent entirely, and this recovers the expressions derived for the
Benjamin-Feir instability by [27, cf. Eq. (2.12-2.13)].

Lastly, for type IIb the coefficients are:

Ω0 = 2T12 + 2T13 − (T22 + 4T23 + T33)/3,
Ω1 = 3T11 − 4(T12 + T13) + (T22 + T33 + 4T23)/3.

Appendix B. Type Ia instability with side-band imbalance

This section shows how the calculations given in Section 2.1
can be extended to account for unequal initial magnitudes, i.e. a
lack of equidistribution of wave action among modes k1 and k2.
Setting

α =
|b1(0)|2 − |b2(0)|2

A
we find from conservation of wave action (12) for the initial
configuration (|b1(0)|2 + |b2(0)|2 = A) that

|b1(0)|2

A
=

1 + α

2
,

|b2(0)|2

A
=

1 − α

2
. (B.1)

Therefore, in the vein of our previous argument we have a single
amplitude parameter, which we here call g(t), as follows

|b1(t)|2 = A
(
1 + α

2
− g(t)

)
, |b2(t)|2 = A

(
1 − α

2
− g(t)

)
,

|b3(t)|2 = |b4(t)|2 = Ag(t).

Of course, other choices are possible, provided we remain in the
kernel of the matrix K given by the resonance condition (13). The
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anel c: Region with fixed point of the form (π, ηπ ). Panel d: Union of the regions plotted in panels a (in blue), b (in yellow) and c (in red). (For interpretation of
he references to colour in this figure legend, the reader is referred to the web version of this article.)
∆

p

|

lanar system associated with the auxiliary variables g(t) and θ (t)
s then

g ′(t) = −2TA2
√
(−1 − α + 2 g)(−1 + α + 2 g)g2 sin(θ ), (B.2)

′(t) = ∆ + Γ1 + Γ2 − Γ3 − Γ4

−
2TA

(
α2

− 8g2
+ 6 g − 1

)
cos(θ )

√
(−1 − α + 2 g) (−1 + α + 2 g)

, (B.3)

here the initial modes k1, k2 are found at g = 0 and the other
imit of the phase space is reached when g = min{

1+α
2 , 1−α

2 }.
hus, while the bottom boundary of the phase space consists of
he initial, bichromatic sea the maximum energy exchange which
an be obtained occurs when the energetically smaller of modes
b1| and |b2| has completely depleted – this means that the upper
boundary of the phase space consists of three modes rather than
two.

To return to the linear stability threshold obtained by Leblanc
25], we find that the Jacobi determinant of the system (B.2)–(B.3)
t the initial configuration g = 0 is

et(J) = −4T 2A2(1 − α2) + (∆ + Γ1 + Γ2 − Γ3 − Γ4),

hich recovers Leblanc’s result (15) when α is substituted from
q. (B.1) above.

ppendix C. Specifics of Type IIc instability

As noted in Section 3, in addition to the case with 3k1 =

2+k3 an additional form of quintet resonance with three modes
atisfying k +2k = 2k is possible. In this case the Hamiltonian
1 2 3

334
is

H(|bi|2, φi) =

3∑
i=1

ωi|bi|2 +
1
2

3∑
i,j=1

eijTij|bi|2|bj|2

+ 3W̃ (2)
33122|b2|

2
|b3|2

√
|b1|2 cos(φ1 + 2φ2 − 2φ3).

(C.1)

Once again without risk of confusion we denote W = W̃ (2)
33122 and

= ∆33
122 = ω1 + 2ω2 − 2ω3.

Owing to conservation of momentum we can introduce a
arameter η so that

b1|2 = Aη, (C.2)

|b2|2 = 2Aη, (C.3)

|b3|2 = 2A(1/2 − η). (C.4)

Here η is between 0 and 1/2. Without loss of generality the
momentum is chosen to be M = Ak3 = (A, 0).

We introduce the dynamic phase

θ = φ1 + 2φ2 − 2φ3, (C.5)

allowing us to find a planar Hamiltonian for η and θ . The planar
Hamiltonian is

H̃(θ, η) = −6WA3/2η3/2(1−2η) cos(θ )− (∆33
122 +AΩ0)η−

AΩ1

2
η2,

(C.6)
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ith the coefficients Ω0 and Ω1 coming from the polynomial

Γ1 + 2Γ2 − 2Γ3 = AΩ0 + AΩ1η, (C.7)

and equations of motion given by

dη
dt

=
∂H̃
∂θ

= 6WA3/2η3/2(1 − 2η) sin(θ ). (C.8)

dθ
dt

= −
∂H̃
∂η

= ∆33
122 + AΩ0 + AΩ1η

+ 3WA3/2η1/2(3 − 10η) cos(θ ). (C.9)

Analogous to the treatment of the Type IIb instability, fixed
points exist when

η =
1
2

and θ = arccos

((
2AΩ0 + AΩ1 + 2∆33

122

)√
2

12 WA
3
2

)
(C.10)

or else when θ = 0, ±π and η is a root of

∆33
122 + AΩ0 + AΩ1η + 3WA3/2η1/2(3 − 10η) = 0.

In Fig. C.9 each of the regions indicate the existence different
ypes of fixed points for a triad of the form k3 = (1, 0), k1 =

kx, ky) and k2 = (1 − kx/2, −ky/2) in the (kx, ky) plane. The
hin blue region (panel a) shows the existence of fixed points at
= 1/2. The existence of such fixed points should be interpreted
s an instability of an underlying bichromatic sea with modes k1
nd k2 (recall that when η = 1/2 in (C.2)–(C.4) only waves k1 and
2 are present) to monochromatic perturbations k3. The yellow
egion (panel b) corresponds to fixed points at θ = 0 and the
ed region (panel c) to fixed points at θ = ±π . In the last panel
panel d) all the regions are plotted together, showing that the
lue region corresponds to the difference between the yellow and
ed regions. Note that the regions in panels b and c are bounded
or larger values of mode separation, i.e. large ∥(kx, ky)∥.

With fixed points at η = 1/2 there is a heteroclinic orbit which
escribes a multibreather solution of the equations. Following
tep by step the procedure used for the type IIb instability the
quations for the breather are

dη
dθ

=
η3/2 sin(θ )

3
2η

1/2 cos(θ ) −
Ω1

24A1/2W

, (C.11)

and for the dynamic phase
dθ
dt

= 3WA3/2η1/2(3 − 2η) cos(θ ) − 3
√
2WA3/2 cos(θ1/2). (C.12)

This solution tends, for t → ±∞ to the bichromatic state
k1, k2, while the modulation transfers some energy to the wave
k3. As noted in Section 3.3 above, the steepness required to
obtain fixed points at η = 1/2 – and a corresponding discrete
multibreather – is physically unrealistic, so this should be treated
as a mathematical solution only.
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