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Abstract: In this work we combine sentiment analysis with graph theory to analyze user posts,
likes/dislikes on a variety of social media to provide recommendations for YouTube videos. We
focus on the topic of climate change/global warming which has caused much alarm and controversy
over recent years. Our intention is to recommend informative YouTube videos to those seeking a
balanced viewpoint of this area and the key arguments/issues. To this end we analyze Twitter data;
Reddit comments and posts; user comments, view statistics and likes/dislikes of YouTube videos.
The combination of sentiment analysis with raw statistics and linking users with their posts gives
deeper insights into their needs and quest for quality information. Sentiment analysis provides the
insights into user likes and dislikes, graph theory provides the linkage patterns and relationships
between users, posts and sentiment.

Keywords: recommender systems; graph theory; sentiment analysis; Twitter; Reddit, YouTube

1. Introduction

Recommender systems (RS) are intended to provide the online user with advice,
reviews and opinions from previous purchasers on products and services mainly through
methods such as collaborative filtering (CF)[1]. The main RS objective using CF is to
persuade users to buy items or services they have not previously bought/seen before based
on the buying patterns of others. This can be achieved by ranking either the item-to-item
similarity or the user-to-user similarity and then predicting the top scoring product that
ought to appeal to the potential buyer. Unfortunately, CF has a number of limitations
such as the cold-start problem i.e. generating reliable recommendations for those with few
ratings or items. However, this issue can be alleviated to some extent by reusing pre-trained
deep learning models and/or using contextual information [2]. Since CF is generally an
open process, they can be vulnerable to biased information or fake information [3,4]. Fake
user profiles can easily manipulate recommendation results by giving the highest rates to
targeted items and rate other items similar to regular profiles. This behavior is called a
“shilling attack” [5].

Initially launched in 2005, YouTube has seen an exponential growth of submitted
videos and is the most popular platform for viewing material that informs, educates and
entertains it’s users. YouTube is a free video sharing service allowing users to view online
videos and also for them to develop and upload their own materials to share with others
[6,7]. However, for many YouTube contributors the opportunity to earn money from their
channels popularity is a great incentive. To earn money from YouTube, a contributor must
have 1,000 subscribers and at least 4,000 watch hours in the past year. Contributors can then
apply to YouTube’s Partner Program and monetize their channel. However, YouTube keeps
careful surveillance on any mechanism that artificially inflates the number of comments,
views or likes. Unscrupulous contributers often achieve increased rankings by using bots
or automatic systems or even presenting videos to unsuspecting viewers.

The objective of our work is to demonstrate that a recommendation engine can be
used to provide users with reliable YouTube videos based on initial keyword searches. The
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Figure 1. Overall system operation of data throughput and transformations

topic of interest is global warming/climate change but the system could be applied to any
subject. The objectives are two-fold, once we can identify their sentiment/opinions on
global warming we can provide users with authoritative videos with scientific credence
based on their beliefs. Then, we can present users with authoritative videos representing
the opposite stance. The intent is to balance out the debate with evidence they would
perhaps not necessarily seek out. Out intention is not to change opinions but to help users
become more aware of the issues.

To achieve these objectives, we combine sentiment analysis and graph theory to
provide deeper insights into YouTube recommendations. Rather than use different software
platforms, we combine several R library’s into a unified system, making overall integration
easier. The overall system workflow is shown in Fig 1. An initial search topic is defined and
fed into the API’s of the three platforms (Twitter, Reddit and YouTube). The resulting posts
are preprocessed and parsed, the text data is then analysed by graph theoretic measures
that provide statistical metrics of user posts and how they interact. The sentiments of user
posts are used to create topic maps which reflect common themes and ideas these users
have. Ratings of YouTube videos and provenance of their sources are estimated to provide
some indication of their validity and integrity.

The main contribution of this work is threefold, first we integrate sentiment mining
with graph theory providing statistical information on the posters and contributers, we
also use up-votes and down-votes as a recommendation source, finally we create a logical
structuring of the twitter, youtube and reddit data using topic maps. Topic modelling, is
necessary since most topics of interest will comprise a mixture of words and sentiments
which is a feature of human language. Therefore some overlapping of concepts will occur,
so an unsupervised classification method is required. We use Latent Dirichlet allocation
(LDA) which is commonly used for fitting a topic models [8].

The remainder of this paper is structured as follows: section two describes related
work and recent advances in recommender systems, section three outlines the social media
data used, we then describe in section four the computational methods used. Section five
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presents the experimental results and the discussion and finally section six presents the
conclusions and future work.

2. Related work

Here we discuss related work for recommender systems, sentiment analysis and graph
theoretic methods.

2.1. Recommender systems

We can say that Recommender systems can be categorized into three main groups;
such as content based recommender systems, collaborative recommender systems and
hybrid recommender systems. One of the first and most predominant is the Amazon
recommendation system which has undergone many refinements over the past 20 years
[9]. The RS are generally trained from historical data and provide the customer with
potentially useful feedback with products or services they may like. The details of the RS
algorithm used by YouTube is unknown but it is generally believed to employ deep neural
learning [10]. However, a recent study revealed it to contain biases and is a major source
of misinformation on certain health related videos [11]. Another issue, which we do not
tackle in this paper are the attacks on recommender systems to either down vote or up vote
content [12].

Our system can be classed as a hybrid, similar work to ours include Kim and Shim who
proposed a recommender system based on Latent Dirichlet Allocation (LDA) using proba-
bilistic modelling for Twitter [13]. The top-K tweets for a user to read along with the top-K
users that should be followed are identified based on LDA. The Expectation-Maximization
(EM) algorithm was used to learn model parameters. Abolghasemi investigated the issues
around human personality in decision-making as it is plays a role when individuals discuss
to reach a group decision when deciding which movie to watch [14]. They devised a
three-stage approach to decision making, they used binary matrix factorization methods
in conjunction with an influence graph that includes assertiveness and cooperativeness
as personality traits, they then applied opinion mining to reach a common goal. We use
similar metrics to judge personalities based on tenor/tone of language used and their likes
dislikes.

A similar approach was taken by Leng et al who were researching social influence and
interest evolution for group recommendations [15]. The system they developed (DASIIE),
is designed to dynamically aggregate social influence diffusion and interest evolution
learning, they used Graph Neural Networks as the basis of their recommendation system.
Th neural network approach allowed them to integrate the group members role weights
and expertise weights enabling the decision-making process to be modeled simultaneously.
Wu et al. have examined the technique of data fusion for increasing the efficiency of
item recommender systems. It employed a hybrid linear combination model and used a
collaborative tagging system [16].

2.2. Sentiment analysis

Over the past 10 years or so sentiment analysis has seen massive expansion both
in practical applications and research theory [17-19]. The process of sentiment mining
involves the preprocessing of text using either simple text analytics or the more complex
NLP such as the Stanford system [20]. The text data can be organised by individual words
or at the sentence and paragraph level by the positive or negative words it is comprised of
[21]. Words are deemed to be either neutral, negative or positive based on the assessment
of a lexicon [22,23]. Sentiment analysis is employed in many different areas from finance
[24,25] to mining student feedback in educational domains [26,27]. It has also been used to
automatically create ontologys from text [28]. Sentiment analysis has been used to examine
the satisfaction within the computer gaming community, observing features in games they
liked/disliked [29]. We have seen commercial applications for the automated mining of
customer emails/feedback/reviews for improving satisfaction with products or services
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that has seen the tremendous growth [30,31]. Twitter is often used as a source of data for
sentiment mining on many topics [32], however it is with tweets collected over long time
periods that tend to reveal interesting trends and patterns [33]. For example sentiment
analysis has been applied to monitoring mental health issues based on Tweets [34].

Work by Kavitha is similar to ours as it considers YouTube user comments based on
their relevance to the video content given by the description [35]. They build a classifier
that analyses heavily liked and disliked videos, similarly we use counts to help rate the
videos. They also consider spam and malicious content, we also filter out posts that contain
sarcastic and profane content as they are unlikely to contain much cogent information. [11].
A more serious issue was considered by Abul-fottouh in the search for bias in YouTube
vaccination videos. They discovered that pro-vaccine videos (64.75%) outnumbered anti-
vaccine (19.98%) videos with perhaps 15.27% of videos being neutral in sentiment. It is
unsurprising that YouTube tended to recommend neutral and pro-vaccine videos than anti-
vaccine videos. This implies YouTube’s recommender algorithm will recommend similar
content to users with similar viewing habits and similar comments. This is related to the
sentiment work of Alhabash who investigated cyber-bullying on YouTube, this involved
examining comments, virality and arousal levels on civic behavioral patterns [36]. The
findings concluded that people are more committed /interested in topics or comments that
have negative sentiments, hence cyber-bulling videos appear to have disproportionate
effect on users. Further work by Shiryaeva et al investigated the negative sentiment (anti-
values) in YouTube videos, here the viewpoint was taken from the lens of linguistics to
reveal grammar and style indicative of certain behaviors and intentions [37]. Although,
the work was not automated the authors were able to identify 12 anti-values that were
characteristic of bad behavior.

2.3. Graph Theory

This area of computer science uses statistical measures to gather information about the
connectivity patterns between the nodes (which can be people, objects or communications)
which can reveal useful insights into the dynamics, structure and relationships that may
exist [38,39]. Numerous areas have benefited from graph theory such as computational
biology and especially social media which has received a great deal of attention from
researchers [40]. The most notorious incident was the FaceBook/Cambridge Analytica
scandal which involved the misuse of personal data [41]. However, this particular case
served to highlight the power of machine learning and interconnected data to influence
individuals. In social media analysis, individuals are connected to friends, colleagues,
political, financial and personal web interests all of which can analyzed by organizations to
improve services, products or detect trends and opinions [42].

Graph theory was used by Cai to examine the in-degree of posters, the intention was
to identify if Schilling attacks were occurring in user posts [43]. Each user was assigned
a “suspicion” rating based on their in-degree and their behavior characteristics such as
diversity of interests, long-term memory of interest, and memory of rating preference).
The graph information was fed to a density clustering method and malicious users were
generally identified. A similar approach was taken by Cruickshank to use a combination
of graph theory and clustering on Twitter hash-tags [44]. The method investigated the
application of multiple different data types that can be used to describe how users interact
with hashtags on the COVID-19 Twitter debate. They discovered that certain topical clusters
of hashtags shifted over the course of the pandemic, while others were more persistent.
The same effect (homophilly) likely to be true of climate change debate, for example the
HarVis system of Ahmed uses graph theory to untangle frequent from infrequent posters
to assist a better understanding of the authors/posters ranking [45]. This is an important
point as it is best to weigh authoritative heads instead of just counting them.

The use of graph-like structures such as Graph Convolutional Networks (GCN) is
becoming more popular, this approach has the flexibility and power to model many social
media problems. These are more powerful than standard graph theoretic methods but
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come with a computational burden and requirement for more data. The use of GCN is also
receiving attention for identifying Schilling attacks in recommender systems [46]. Another
issue is the informal language used in posts and other characteristics of this type of data, for
example, Keramatfor et al understood that short posts such as Tweets have dependencies
upon previous posts [47,48]. To model Tweet dependencies requires the combination of
data such as textual similarity, hashtag usage, sentiment similarity and friends in common.

In table 1 we provide a short qualitative comparison with the most similar recommen-
dation systems to ours. The difference is that our system uses a greater variety of social
media data and uses profiling and a wider variety of computational methods

Author System Name  Date  Methods Social Media

McGarry Graph theory, sentiment analysis, bigrams, profiling ~ Twitter, YouTube, reddit
Keramatfar [47] MHLSTM 2021  LSTM, profiling, sentiment analysis Twitter
Cruickshank[44] MVMC 2020  Hash-tags, sentiment analysis Twitter

Ahmad[45] HarVis 2017  Graph theory YouTube

Kavitha[35] 2020 Bag of Words, NLP YouTube

Kim[13] TWLITE 2014  LDA, probability Twitter

Nilashi [49] 2023 LDA, EM, clustering TripAdvisor

Table 1. Qualitative comparison with other systems

3. Data

Here we describe our data sources, how they are pre-processed and integrated prior
to building machine learning models and implementing the recommendation system.
Twitter, Reddit and Youtube posts are searched based on climate change keywords, then
downloaded using the appropriate APIs, the posts are cleaned of stopwords, stemming,
punctuation and emojis. A separate corpus, consisting of term-document-matrix is created
for each data source. We then build topic maps for each corpus, the optimum number is
generated from a range of 10-100 potential topics. The most optimum number is selected by
calculating the harmonic mean for each number. We did not analyze the social media data
to determine if any content was generated by bots. The social media companies are well
aware of the issues and have developed bot detection software [50,51], for a comprehensive
recent survey see Hayawi et al [52].

In table 2 the sources of the data are presented, showing the number of the records,
the approximate date of collection and where collected from.

Data Source  Date No Records
Twitter API Jan 2020 to Mar 2020 2K

Twitter Kaggle  Apr2015toFeb2018 44K

Reddit API Dec 2022 to Feb 2023 100K
YouTube  API Dec2022toFeb2023 26K

Table 2. Data sources, number of records and approximate date of collection

3.1. Reddit Data

Reddit is a social news aggregation platform and discussion forum, users can post
comments, web links, images, and videos. Other users can up/down vote these posts and
engage in dialog, the site is well known for it’s open and diverse nature. User posts are
organized by subject into specific boards called communities or subreddits. The communities
are moderated by volunteers who set and enforce rules specific to a given community, they
can remove posts and comments that are offensive or that break the rules, they also keep
discussions on subject topic [53-55]. Reddit is becoming very popular as statistics show
from the SemRush web traffic system which estimates Reddit to be the 6th most visited
site in the USA [56]. We text mine Reddit for posts and sentiment pertaining to the issues
surrounding the climate change debate [57-61]. The reddit data was collected between
December 2022 and February 2023, the reddit API limited extraction with rate limits, we
used the R interface (RedditExtractoR) [62].

The reddit data consists of two structures, the comments and the threads. The com-
ments data consists of the following variables: url, author, date, timestamp, score, upvotes,
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downvotes, golds, comment and the comment-id. The threads data has further informa- 210
tion pertaining to other users actions on the posts such as total-awards-received, golds,
cross-posts, and other user comments. Fig 2 shows a list of the types of data residing in the

posts.

211

212

author date
Stinger267 2015-07-14
Justin-Robert 2015-07-10
tadziowv 2015-06-27
1shomofo 2015-06-15
or_slenderman 2015-05-04
konradturin 2013-01-16

url
1 https://www.reddit. com/r/change/comments/3d9zzr /texas_state commission_on_judicial_conduct_remove/
2 https://waw. reddit. com/r/change/comments/3csqdm/petition_for_the_city_council_of_killeen_tx/
3 https://www.reddit. com/r/change/comments/3b9h3d/4_language_tips_to_positively_change_your_psyche/
4 https://www. reddit. com/r/change/comments/39yuvx/petition_remove_ellen_pao_from_her_position_as/
5 htrps://www. reddit. com/r /change/comments/34v0yh/gra_5_modding_dont_worry_we_can_change_it/
6 https://www.reddit. com/r/change/comments/15pgy7 /we_need_a_change_anyone_agree/

timestamp score upvotes downvotes golds

1 14368958395 1
2 1436551458
3 1435370209
4 1434406721
5 1430770254
6 1358310115

cooooo

MO
MEO R
[N e NNl eie]

Figure 2. Preprocessed Reddit data structure

3.2. YouTube Data

Youtube provides data pertaining to users opinions on the various videos they find of
interest. Fig 3 displays a data structure showing the first ten records of Youtube data. The
Comment column is the user post, other columns identify the user ID, authors image profile
URL, author channel ID, author channel URL, Reply count, Like count, post published
date, when post updated, post parent ID, post ID and Video ID. The Youtube data was
collected December 2022 and February 2023 using the R vosonSML package [63].

Conment Autho~L Autha~2 Autho~3 Autho~d Regly~3 LikeC~6 publi~7 Updat~8 Comme~§ Paren-* VideoID
0J4bAT~
0JADAT~
0JADAT~
0JADAT~
0JADAT~

Danage done, I'm affraid fabbraz hetps:~ hrtp:/~ UCZid-= 0 1362 2003-D~ 2013-0~ Ugyeas~ WA
The way T was predicting so far, sbout the~ Levon ~ hetps:~ hrep:/~ URaam- 0 162 2003-D~ 2013-0~ Ugup-de WA
'T dare 10 any body who call then self sci~ Levon ~ ttps:~ http:/~ UCRaam- 7 2013-0w 2013-0~ UgnTzs~ KA
ihatever it s, I'm not fucking paying for~ justfi~ https:~ hrtp:/~ UCZhpY~ 0 2012-0- 20020~ Ugxxdk~ HA
T just can't endorse it True b https:~ hrtp:/~ UCEelB- 0 60 012-0- 20120~ Ugylva~ A

"Please have 2 Took at the voutube Video of~ Tokyor~ Attps:~ hitp:/~ UCPgu- 0
anyone who thinks 15 a hoax its to be sTa~ kevin ~ httpsi~ htop: /v UC-C2Y~ 0
1 cant believe theres still mim rods out t~ kevin ~ Attps:~ htp:/~ UC-C2Y- 0
Ine'\iaybe a requirenent for equal spendin bflak~ fttps:~ hitp:/~ UCPCH- O

(11-0~ 20110~ Ugwaxr~ NA
020-0~ 2010-0~ ligwmrd~ NA

010-0- 2010-0~ Ugydez~ HA

DJADAT~
DIABAT~
0JABAT~
DIADAT~

!
!
B2
2 20L0-0~ 2020-0~ Ugw79m- KA
.
.

I'n not 50 sure the fossilsaurs need to w- bfTath- https:~ hrtp:/~ UCPHCw- 0 010-0~ 20100~ UgxiRu~ ¥4 0JABAT

Figure 3. Preprocessed Youtube data structure

3.3. Twitter Data

The data downloaded and preprocessed from Twitter consisted of two sources. Twitter
was more problematic as difficulties encountered recently with the API access. The first
set of data was collected by API by the authors in 2020 and then from a datasource in the
public domain from Kaggle, this consisted of 44,000 tweets collected by the University
of Waterloo in 2015-2018 [64]. Twitter contains variables similar to Reddit and Youtube
they describe the UserScreenName, the UserName, the Timestamp, Text, Embedded-text,
Emojis, Comments, Like counts, number of Retweets, Image.links and the Tweet.URL. This
is displayed in fig 4.

4. Methods

In fig 5 the basic flow of social media searching, storage of data and flow information
is presented. This example is for global warming/climate change but the process would
be similar for any topic of interest e.g. war in Ukraine or Covid pandemic. Keywords
are selected and used to search the social media, YouTube videos are downloaded and
observed for validity. The data is saved in RDATA format (R programming language
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UserScreenName UserName Timestamp  Embedded_text Emojis  CommentLikes  Retweets Image.link Tweet.URL

user screent  userl  2022-01-17T2 The only solution [3€™ve ever heard the Left |'1,683 '2,259 1K https://twitter.com/laurenbosbert/status/1483220748487569409
user screen  user2 2022-01-1772,Climate change doesna€™t cause volcanic edlss 6 62 I hitps://twitter.com/catherine__ ¢/status/1483211036463603713
user screen3  user3  2022-01-17T2 Vaccinated tennis ball hoy collapses in the ten2d i s ['https:// plhttps://twitter,com/KaConfessor/status/1483225542824505347
user screend  userd 2022-01-1712:North America has experienced an average Wi % 58 I https://twitter.com/climate_parent/status/1483192925152587777
user screenS  userS  2022-01-17T2:They re gonna do the same with Clig¥.. % { h 27 [https://plhttps://twitter.com/Thomas Sp8/status/1483185023066902528
user screen6  user6 2022011772 HELLO AMERICA, Who would have ever thoug'l g 2 i ttps://twitter.com/ruggiere_|/status/1483192848086233089

R
Fy, fren e

Figure 4. Preprocessed Twitter data structure

format), data structures are formed from sentiment, graph analysis of bi-grams and user
profiles consisting of likes/dislikes and overall estimated stance on global warming. Data
are split for training 90% and 10% for test. The recommendation engine is constructed and
tested and compared with other methods.

Select keywords/phrases:
Climate change, global
warming, CO2, net zero,
climate hoax

Search: Twitter, YouTube,
reddit

Store YouTube videos and
collect posts from social
media

(—

Preprocess: social media
data as per Algorithm1.
Sentiment mining

Graph analysis on bi-grams

(—

Profile users: from
Sentiment mining
Likes/dislikes

Beliefs on global warming

User profiles

(—

Build recommender: from
profiling

Split data train/test,
Compare with random, user
based, item based etc

Selected YouTube videos

Figure 5. Data collection, storage and processing

The three data sets from Twitter, YouTube and reddit now must be preprocessed prior
to sentiment analysis. In algorithm 1 we show the stages of processing the three data
sources (Twitter Ty, Reddit Rsy; and Yiy; YouTube ). In lines 1 to 4 each text is converted
into Corpus and in line 5 they under go removal of stop words, stemming, and removal of
punctuation and non-ascii text. Lines 6 to 11 creates the topic maps for each Corpus using
a for..loop to build a series of topic maps from 10 to 100 maps. Lines 12 and 13 uses the
harmonic mean metric to judge the optimum number of maps for each Corpus. Finally line
14 returns the optimum topic maps and related data structures.

4.1. Sentiment mining

We use the sentimentR package written by Rinker [65], it incorporates the lexicon
developed by Ding et al [23]. The lexicon consists of words which have been rated as neutral,
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Algorithm 1 Data transformation for text mining

Input: Raw text for twitter Ty, reddit Rext, youtube: Yiy;
Output: Corpus for twitter C; , reddit C, , youtube Cy;
Topic Maps for each CorpusTM; TM,; TMy;
optimum number of topic maps OT; OT,; OTy
: Initialize MinWordFreq < 5
: Create corpus C; — Tixt
: Create corpus C; <— Ryxe
: Create corpus Cy ¢ Yixt
: Preprocess Cy, C;, Cy < removal[stopwords, stemming, punctuation, non-ascii]
. repeat
if (words >= MinWordFreq) then
Build TMin C=VC.
™VC
end if
: until TMy; TM;; TMy; populated from [10...100]
. Calculate harmonic mean in C =VC. for all Corpora
: OT,; OT,; OT, ¢ P(w|z)
14: Return[C;,C,, Cy, TM;, TM,, TMy, OT;, OT,, OTy]

HREoYENRTELN T

positive or negative sentiment and have a strength value allocated. The implementation
takes into account valence shifters whereby word polarity can be negated, amplified or
de-amplified, if ignored sentiment analysis can be less effective and miss the true intent of
the author of the posts. The package can easily update a dictionary by adding new words
or changing the value of existing words. However, pre-processing of the text is achieved
by the tm (text mining) package developed by Feinerer [66,67], this package enables the
removal of stop words, stemming and non-ascii character removal.

A paragraph is composed of sentences p; = {s1,5s5..., 5, }), and each sentence can be
decomposed into words ;= {w1,wy, ...,wn}). The words in each sentence (wj, j, k) are
searched and compared against the dictionary or lexicon [45,68,69]. Sentiment is assessed
by various calculations, where N and P are counts of the negative and positive words, O is
the count of all words including neutral words [70,71].

P = (wj,j, k+) and N = (w;, j, k—), the words are tagged with either +1 or -1, neural
words are zero.

Sentiment = (P — N)/(P+ N + O) (1)

4.2. Graph modelling

The igraph package developed by Csardi and Nepusz provides a comprehensive
package for conducting analysis into graph theory, it is available across several languages
and is regularly updated and maintained [72]. It allows statistics to be computed from
the graph network based on the nodes and connectivity patterns. Useful statistics include
closeness, betweenness, and hubness amongst others. Furthermore, it is possible to detect
community structure where certain nodes strongly interact and form cohesive clusters
which may relate to some real-world characteristics about the network. Graph theoretic
methods can be applied to any discipline where the entities of interest are linked together
through various associations or relationships. Other graph approaches, different to ours
involve graph neural networks (GNNS) which are a powerful way of expressing graph
data [73].

Hub nodes have many connections to other nodes and therefore of some importance
or influence, the deletion of a hub node is more likely to be catastrophic than deletion of
a non-hub node. This is a characteristic confirmed in many real-world networks which
are typically small world networks with power law degree (number of edges per vertices)
distributions [38].

The concept of the shortest path is important to centrality measures and can be defined
as when two vertices i and j are connected if there exists a sequence of edges that connect i
and j. The length of a path is its number of edges. The distance (i, q) between i and j is the
length of the shortest path connecting i and j [39]. The closeness centrality of a given node
i in a network is given by the following expression:
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N-1
Z] d (Z)i ’ U])
Betweenness centrality is a measure of the degree of influence a given node has in
facilitating communication between other node pairs and is defined as the fraction of
shortest paths going through a given node. If p(v;, v;) is the number of shortest paths from
node i to node j, and p(v;, vk, v;) is the number of these shortest paths that pass through
node k in the network, then the BC of node k is given by:

ZZ

CC(UZ') = (2)

vlr v]r Uk

itk ©)

Ul/

4.3. Generating the topic models

Latent Dirichlet Allocation (LDA) is commonly used to generate topic models [74]. We
use the R Topic model package developed by Grun and Hornik [8,75]. Equation 4 defines
the stages, there are three product sums K, M, N that describe the documents, topics and
terms.

M N

P(6j;) [ [ P(Z;46;P(Wj,l9Z;s) 4)
=1

K
P(W,Z,0,9,a,8) =] P(gi; )
i=1 t=1

]

Where: P(W, Z,6, ¢, &, B) is the overall probability of the LDA model; [T, P(¢;; B)
generates the Dirichlet distribution of the topics over the terms; while I—[j/\i 1 P(0;;a) cal-
culates the Dirichlet distribution of the documents over the topics; the probability of a
topic appearing in a given document is given by [T, P(Z;6;); while the probability of a
word appearing in a given topic is calculated by P(W;;|¢Z;;). The parameters W, Z, 0, ¢
where 6 and ¢ hold the document-term matrices; while «, § are the Dirichlet distribution
parameters; the indices i, j, t keep track of the number of topics, terms and documents. The
term W is the probability that a given word appears in a topic and Z is the probability that
a given topic appears in the document [74].

We generate individual topic models for Twitter data, Reddit data and Youtube data.
The optimum number of topics k is determined using a harmonic mean method determined
by Griffiths and Steyvers [76,77]. This is shown in equation 5.

_r(vp) X K I T
P(w|z) = T(B)° ,gf(n,(c‘) VB 5)

Where: w represents the words in the corpus w, and the model is specified by the
number of topics K. Gibbs sampling provides the value of p(w|z,K) . p(w|K) by taking
the harmonic mean of a set of values of p(w|z, K) when z is sampled from the posterior
p(z|w, K). Where 1} is the frequency of word w has been assigned to topic k in the vector z
and I' is the standard Gamma function.

4.4. Recommendation System

The last component in our system is the RS engine, this contains the information
from the sentiment analysis, the statistics from user ratings and user connectivity patterns
from graph analysis. We use nonnegative matrix factorization (NMF) to generate the
process of collaborative filtering (CF) [78,79]. Strictly speaking NMF is related to Principal
Components Analysis (PCA) which is typically used for dimensionality reduction but
still keeps a meaningful representation of the solution [80]. Both methods use similar
matrix transforms that are linear combinations of the other variables but NMF has a
stricter constraint that the values should not be negative. This is an advantage because it
enables a clearer interpretation of the factors involved since in many applications negative
values would be counterintuitive such as negative website visits or negative human height.
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There are also improvements in sparsity for feature detection and imputation of missing
information. We integrate our recommender system without the framework of the R
package by Hahsler, this allows easier testing and comparison [81].

The objective is to determine a matrix of ratings of V, where the columns represent
the users and the rows represent the video ratings. The use of NMF will approximate
this matrix by taking the matrix of users W and the matrix of videos H. The majority of
V entries are unknown, these can be predicted by NMF using W x H =~ V. See fig 6, the
matrix dimensions of n and m are determined by V.

W V

Figure 6. NMF matrix transformations where the dimensions: n and m are determined by the shape
of V and k is determined by the number of components set by the user.

We use nonnegative matrices W and H, of rank k from which V is approximated by
the dot product operator. Where k is a parameter set usually smaller than the number
of rows and columns of V. The trade-off with k is a fine balance able to capture the key
features of the data but to avoid overfitting. In previous work we modified NMF as a
data integration method [82] other variations are typically used for data integration with
heterogeneous data, especially in chemistry and community detection [83,84].

5. Results

The flow of data and processing the posts begins with the conversion of raw text from
Twitter, Reddit and Youtube into Corpora, basically term-document-matrices (as described
in algorithm 1). Once they are processed we can extract topic models from the Corpora to
aid our understanding of the posts by this logical grouping of keywords.

As an example of sentiment analysis using the R package sentimentr on twitter posts
is shown in fig 7. The posts are identified by number (1-10), they are ranked as either
positive(green), neutral (grey) or negative(red), each with a number denoting the strength
of the sentiment. There are three word sentiment lookups available for the Bing, NRC, and
Afinn dictionary’s, each with differing number of words rated and with differing sentiment
values attached to each word. This can be at the word level, sentence level or the entire post
(paragraph). As can be seen, the twitter data shown here represents a number of opinions
on the climate change debate.

We can see that comment 1 is rated at zero sentiment since the sentence is fairly neutral
in its wording. In comment 2 we find the first sentence is neutral but the second sentence
has a positive sentiment word (optimistic) and is rated +.082. Comment 3 is more negative
because of the words scam, scammer and hoax, rated at —147.

The next stage is to develop topic models holding keywords that are coherently related
to key concepts and will be data mined for bigrams. The optimum number of topic models
for each Corpora is determined using the Harmonic mean described in equation 5. In fig 8
the optimum numbers are presented with 24 for Twitter, 44 for Reddit and 31 for YouTube
concepts and issues. We used LDA to generate the topicmaps with a value starting at 10
up to 100 possible topic maps, so at the first iteration 10 topic maps would be selected to
describe the Corpora, then 11, 12, 13 until 100 topic maps are generated. Beyond a certain
point adding more topic maps simply degrades performance, and when the harmonic
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so, why are we at 424 ppm of co2 not to mention the other greenhouse gases

2: +.082

Life, uh, finds a way. First optimistic news about climate I've heard in quite a while

3z - 147

Ahh Climate Change the biggest money making scam on the planet where Al Gore and the other Climate Scammers make billions a
wyear with their Climate hoax The Earth is a lot cooler than it has for a long time and it€¢s going to keep getting cooler.

4- + 357

We may have a tough time in most industrialized countries - with our economies & tech over the 20th century well-established "bad
habits" - but, developing nations & growing economies the world over don't have to do it the way we did then in order to become
"wreatthy™ & modern in the 2 1st century. They have the opportonity to grow & advance in a new way with sustainable resounrces,
economies, etc. while the rest of the industrialized world gets their sh*%4 together They could be building permaculture food & water
management resources. solar power grids, ete. from the start.

5= + 035

Anyone there know what Scenano 1 of Limits To Growth looks? It had many names,_ 1e, business as usual, the Do Nothing Scenanio,
among octhers_ At the time it was published Scenario I's Tipping Point would be cansed by the creators of NOVEL and Forever
chemical compounds fathire to invent and have under development by 1975 an effective detoxification response to those chemical
compounds already loosed imto our planet's atmosphere. Until recently nothing had been invented and developed with that capability -
remove all God-made (CO+, Methane, + the other GHG) and MMan-made chemical compounds, ie. PFAS_ fertilizers, leaking Shale Oil
and Coal cess pools, most river deltas, and tide pools. COOKED {by exceeding 350 ppm of atmospheric CO2 or CONTAMINATED
{by PFAS and the other 300,000 man-made NOWVEL and probably Forever chemical compounds accumulating in our spaceship's
biosphere Life Support Systems_ and us apex consumers. ""Work the problem; Failure Is not an option,” or is it? DNG Sooner than later;
no escape pods capable of getting us to the nearest probable planet to invade. So, the Tipping Point for Global Population Overshoot
and Collapse about 2025 was confirmed ten or fifteen years ago.

6:
who is we?
T i
what about micro plastic that we swallow from fish
B:-188
If we don’t stop breeding like rabbits and decrease the worlds population we are screwed, no matter what the data tells ns.
9:
We have made tremendons progresszes on making the climate change.
10:

RCP 1.91

Figure 7. Basic sentiment mining using twitter data on 10 raw text posts.

mean decreases that is the number of maps to use. However, the Harmonic mean method

has known instabilities but is generally robust enough.

In fig 9 five out of 24 twitter topicmaps are shown, generally the terms climate and
change are present throughout some of the 24 topicmaps. Topicmap 2 is generally related
to energy consumption of fossil fuels such as oil and gas. Topicmap 3 is concerned with
public health and net zero. Topicmap 4 has gathered words on environmental impact and
statements issued by the Intergovernmental Panel on Climate Change (IPCC). Topicmap 5
seems to have grouped human rights and social justice as key themes.

To augment the statistics and text mining, we also generated Wordclouds which
perhaps give a better visualization and understanding of the main themes that dominate
user posts. Individual word frequencies are used to highlight the important themes. The
more frequent a word then its size increases. In fig 10 wordclouds for twitter, reddit and
youtube are presented. Clearly climate and change totally dominate user posts for twitter,
while reddit and youtube have a wider range of concepts with more or less equal frequency
of occurrence. Only words that appear with at least five occurrences are displayed.

The next stage is to build graph theoretic models of bi-grams of co-occurring words
building of up a picture of sentiment relating to each Youtube video. Graph models of
Twitter and Reddit are also constructed to support the ratings/rankings of the videos in
terms of the esteem/trust in which the videos producers are held. In table 3 the graph
statistics for YouTube are shown for five users, the key variables are Betweenness and
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Figure 9. The first five topicmaps for twitter.

Hubness which indicates for each word the relative connectivity importance. The other
columns have identical values - mod (modularity) column refers to the structure of the
graph and can take a range of 0.0 to 1.0 indicating there is structure and not a random
collection of connections between the nodes. Nedges indicates the number of connections
in this small network, nverts is the number of nodes in the network. The transit column
refers to the transitivity or community strength, it is a probability for the network to have
adjacent nodes interconnected.

As the graph is highly disconnected (bigrams linking to other bigrams) it has zero for
all entries. Degree refers to the average number of connection per node and of course is
around 2.0, diam the length of the shortest path between the most distanced nodes. Connect
refers to fully connectedness of the graph and in this case it is not. Closeness of a node
measures its average distance to all other nodes, high closeness scores suggest a short
distances to all other nodes. Betweenness detects the influence a given node has over the
flow of information in a graph. The Density represents the ratio between the edges present
in a graph and the maximum number of edges that the graph can contain. The Hubness is a
value to indicate those nodes with larger number of connections than an average node.

In table 4 we have shown the basic statistics of several YouTube videos. We collect data
such as the ID of the video e.g. in the first row, 0)fJAbAT]Cugs would normally be used to se-
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Figure 10. Word clouds for the posts
user mod path nedges nverts transit degree diam connect close between density  hubness
UC9Di-3Y41sreUEtKDIMuZEQ 0.69 1.06 128.00 109 0.00 2.35 2.00 FALSE 0.30 19.00 0.01 0.00
UGjjVihAEZLNAvpr-7pDpd8g 069  1.06  128.00 109 0.00 235 200 FALSE 020 15.00 0.01 0.00
UCrsD70q3yjZu0GYLhquHpVQ 0.69 1.06 128.00 109 0.00 2.35 2.00 FALSE 0.20 14.00 0.01 0.00
UCUB6baFW4kvLsLzlZ-kp5Ug 0.69 1.06 128.00 109 0.00 2.35 2.00 FALSE 0.50 5.00 0.01 0.00
UGCjrCf7x7Dgo4VKplUgWKIdg 0.69 1.06 128.00 109 0.00 2.35 2.00 FALSE 0.50 5.00 0.01 0.00

Table 3. Graph theoretic statistics on YouTube bi-graph/bigrams on five users

lect the video in a web browser using the string “https://www.youtube.com/watch?v=0] AbAT]Cugsioz

The number of comments received for each video is collected, along with the average num-
ber of likes, we also collect the number comments that had zero likes and we should note
that this does not imply the video was disliked only that the person sending the comment
neglected to select like irrespective of their feelings for the video. The number of unique
posters making comments is also recorded. Next we perform sentiment analysis, examining
overall sentiment for the video and then breaking down comments into neutral, negative
and positive sentiments. The total number of sentiments (positive, negative and neutral)
are based on the sentence level and therefore we have more than the overall number of

comments i.e. number of posts.

403

404

405

406

407

408

409

vid_id title num_comments  likes  zero_likes num_posters  overall_sentiment neg sent_count pos_sent_count neut_sent_count
1 oJAbAT]Cugs VIDT 500 3311 412 57 7.81 501 581 437
2 n-Z0eGlpKhA VID2 602 1947 364 525 -5.64 528 514 427
3 vFDnknUOhOs VID3 628 219 536 477 16.88 912 999 669
4  2CQvBGSiDvw VID4 1114 3399 789 587 0.7 1038 1103 1004
5  ga-RBuhcJ7w VID5 689 158 627 468 -15.71 911 873 756
6  eDWq7-eP5sE VID6 680 1185 428 481 30.13 943 1085 714
7 DticpNH3a2Q VID7 587 72 536 458 -90.32 642 457 371
8  rwdxffEzQOI VID8 708 877 561 502 63.59 549 701 565
9  uynhvHZUOOo  VID9 769 300 616 520 -17.37 636 674 651
10 deBXmjInMTQ VID10 625 155 529 488 45.01 594 732 502
11 tMwENMfjFuU  VID11 = 98 1289 3 95 14 40 76 43
12 48zAWYkrBIw VID12 305 1238 162 201 -9.6 288 259 252
13 eDWq7-eP5sE VID13 679 1185 427 481 29.54 942 1082 713
14  DYWrehjaMFQ VID14 737 303 585 424 33.96 860 964 565
15 T20HAuvoUkQ VID15 374 575 269 196 10.42 367 411 314
16  rweblFwt-BM VID16 731 1103 512 522 35.25 750 881 659
17 pllRnz4zNkg VID17 628 772 446 534 -35.53 515 454 362
18  qXLqoFHGmvO0 VID18 763 1283 503 335 -17.99 811 740 708
19  m3hHi4sylxE VID19 653 155 536 481 -48.9 773 710 760

In fig 11, the YouTube bigrams are displayed, we only show those words that have
at least 100 co-occurrences based on key topic map groupings. The bigrams for YouTube
are more strongly linked to coherent topics and follow a logical pattern of subjects with

Table 4. Main statistics on selected YouTube videos
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414
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more linkages between bigrams. Generally, the comments on YouTube are more calm and
balanced with some thought given to the subject of global warming.
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Figure 11. Bi-gram chart of YouTube linked pairs of words.

In fig 12, the situation for Twitter bigrams is a more complicated, furthermore because
of the large number of posts we filter the number of word co-occurrences to 200 before
they can appear on the plot. However, it provides a richer source of data illuminating the
issues and concerns once the most frequently occurring words are revealed based on key
topic map groupings. The general trend for twitter posts seems to contain a lot of off-topic
issues such as legal aspects and gun violence. Another issue is the text limits on tweets (280
characters) which may cause posters some constraints in their dialog. The text limit has
been raised for fee paying subscribers to 4,000 characters.
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Figure 12. Bi-gram chart of Twitter linked pairs of words.

In fig 13 the Reddit bigrams are displayed, again for clarity we only show those words
that have at least 100 co-occurrences based on key topic map groupings. Similar in tone
and style to YouTube posts the majority of Reddit posts are more objective and less inclined
to be sensationalist. Reddit has very strict rules on posting and any user breaching these
may be banned. Other inducements for good behavior are karma awards and coins given to
a poster by other users.
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Figure 13. Bi-gram chart of Reddit linked pairs of words.

Having gathered statistics from sentiment analysis of the topic maps, comments and
bigrams of paired common words we now structure the data to build the recommendation
engine. The difficulty we face is that the matrix of items (videos) and users is very sparse,
this is alleviated to a certain extent by generic profiling of users from Twitter and Reddit
data.

The rating matrix is formed from the YouTube user rankings of videos, these are
normalized by centering to remove possible rating bias by subtracting the row mean from
all ratings in the row. In table 5 we present normalized ratings data for a small fraction of
the overall ratings matrix. Empty spaces represent missing values where no rating data
exists. The missing values are usually identified in our software as Not Available (NA), we
did not attempt to impute missing values.

vidl vid2 vid3 vid4 vid5 vid6 vid7 vid8 vid9  vid10  wvidll vid12  vid13  vidl4 vidl5 vidl6  vidl7 = vid18

usrl
usr2
usr3
usr4
usr5

-0.24 1.18 088 -1.17 0.88 0.06  -0.89 025 -0.88 -1.34 -0.52 1.67 0.55 1.36 -1.75 -0.21 0.79 0.72
049 -1.38 -022 -063 -1.34 112 0.55 0.00 -1.34 -0.52 0.06 0.18 0.49 117 -0.84 -1.06

030 -0.56 059 -117 -025 -1.18 -0.34 0.44 0.94 -1.15 0.06 -1.65 -0.97 -0.08 -1.16
-0.50 0.49 059 -022 -1.01 147 0.83 -211 -0.88 0.62 1.67 -0.90 0.55 -0.10 0.33 0.42 -0.79 -0.92
163 -1.25 0.88 -0.54 0.34 -0.03 -1.77 -0.04 1.35 1.35 -1.28 -0.92 1.37 1.06 -0.92

Table 5. Normalized ratings of YouTube videos for five users with up to 18 videos - with missing
values

In table 6 we present the models error for the test data. We evaluate predictions is
to compute the deviation of the prediction from the true value. This is the Mean Average
Error (MAE). We also use the Root Mean Square Error (RMSE) since it penalizes larger
errors than MAE and thus is suitable for situations where smaller errors are likely to be
encountered. Where UBCEF is user based collaborative filtering and IBCF refers to item
based collaborative filtering. We also use mean squared error (MSE) as a measure.

RMSE MSE MAE
UBCF 5860  34.344 5279
IBCF 6.216  38.637 5.573

Table 6. Recommender model error on test data

In table 7 we display the confusion matrix where 7 is the number of recommendations
per list, TP, FP, FN and TN are the entries for true positives, false positives, false negatives
and true negatives. The remaining columns contain precomputed performance measures.
We calculate the average for all runs from four-fold crossvalidation.
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P FP FN TN N precision recall TPR  FPR n
1 1.00 000 1080 520 17.00 1.00 009 0.09 0.00 1.00
2 220 0.80 9.60 440 17.00 0.73 018 018 0.15 3.00
3 340  1.60 840 360 17.00 0.68 028 028 029 5.00
4 720 280 460 240 17.00 0.72 061 061 052 10.00
5 10.80 4.20 100  1.00 17.00 0.72 091 091 080 15.00
6 1180 520 0.00 0.00 17.00 0.69 1.00 100 100 20.00

Table 7. Confusion matrix for Recommender model indicating averaged error rates - (four fold

crossvalidation)

Examining the evaluation of popular items and the user-based CF methods appear to

have a better accuracy and performance than the other methods. In figl4a and fig 14b we
see that they provide better recommendations than the other method since for each length
of top predictions list they have superior values of TPR and FPR. Thus we have validated
our model and are reasonably certain of its robustness.

ID  User YoutubelD Video Title Views  Score
1 1 cl4Uv97KJE Fleeing climate change — the real environmental disaster 2M 1.0
2 1 K9MaGf — Su9I Climate change: Europe’s melting glaciers | DW Documentary 57M 1.0
3 1 3CMykDuzGQ Friendly Guide to Climate Change - and what you can do to help 319K 1.0
4 1 2bXn2F580sM This tool will help us get to zero emissions (Bill Gates) 4.5M 1.0
5 2 uynhvHZUOOo See what three degrees of global warming looks like 3M 1.0
6 2 zrM1mcKmX, Why NITIN GADKARI is pushing GREEN HYDROGEN 2.4M 1.0
7 2 06mbd3mczvE Bill Gates Talks About How To Avoid A Climate Disaster 1.4M 1.0
8 2 SI9GxjJwGqo How long before all the ice melts? - BBC World Service 89K 1.0
9 3 rwdx ffEzQ91 ElNifio 2023 could be a monster! 1.2M 1.0
10 3 GystZIxWQ30 The melting ice of the Arctic (1/2) | DW Documentary 2.5M 1.0
1 4 Zklo4Z1SqkE Hydrogen Will Not Save Us. Here’s Why. 1.6M 1.0
12 4 N —yALPEpV4w  Why renewables can’t save the planet | Michael Shellenberger | TED 52M 1.0
13 4 dPfIU27RGow SCIENTISTSJUST MADE HYDROGEN OUT OF NOTHING BUT AIR!!! 104K 1.0
14 4 yqgMECKkW3 Ak Donald Trump Believes Climate Change Is A Hoax | MSNBC 307K 1.0
15 5 pwoVephTIHU Global warming: why you should not worry 773K 1.0
16 5 m3hHi4sylxE The Truth About Climate Change 2.1M 1.0
17 5 Qdg4uQWS8DIg There is no climate crisis: Tom Harris M 1.0
18 5 YBdmppcfixM “There’s no emergency” — dissident climatologist Dr Judith Curry 657K 0.9
19 5 9Q2YHGIIUDk The Models Are OK, the Predictions Are Wrong 876K 0.9
20 5 1zrejG — WI3U Global Warming: Fact or Fiction? Featuring Physicists Soon and Bloom 1M 0.9

Table 8. Recommendations for 5 users selected at random

In operation the recommender system makes suggestions for selected users of YouTube
based on their ratings of previous videos, their comments (if applicable) and related
statistics. In table 8 we highlight 20 suggestions based on 5 users selected at random. Each
user may obtain a differing number of recommendations Column one, identifies the video,
column two gives the user ID (selected at random), column three gives the YouTube video
ID (which can be pasted into a browser), column four gives the title of the video, column
five gives the number of views and finally column six gives the recommender score. Where
the videos stand in relation to climate change is obvious from the titles, with the exception
of video 20 which appears to take a neutral stance. The score or ranking of a video is
based on a value between 0.0 and 1.0, formed by the statistics generated and YouTube
recommendations. Experimentally we have determined that values below 0.5 are unlikely
to be of interest as we detected videos that are off-topic and little related to global warming.

6. Conclusions and Future Work

In this paper, we constructed a recommendation system based on sentiment analysis
on topic maps, bigrams and graph analysis. The main source of data and was from the posts,
comments and rating statistics attached to each YouTube video. From this data we were
able to profile those agreeing with the global warming situation and those who were more
skeptical. Although our model is successful in certain conditions it has major limitations,
mainly we cannot usually identify posters from one forum to another. Posters typically
have different user-names and so we would unlikely to be able extract further information,
hence we went for a generic person profiling. We tried to alleviate that drawback by
attempting to judge the character, sentiment and beliefs of the users. Future work must
deal with improving user profiling based on their sentiment, type of language they use
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Figure 14. Evaluation of Recommender methods
and thus gather their opinions and beliefs. Furthermore, it would be interesting to see if
some users (tracked overtime) change their beliefs. Another interesting possibility would
be to suggest videos that conflict with the users initial beliefs, assuming the user is open to
persuasion and debate.
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