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Abstract 

When looking for novel, simple, and energy-efficient solutions to engineering problems, nature 
has proved to be an incredibly valuable source of inspiration. The development of acoustic 
sensors has been a prolific field for bioinspired solutions. With a diverse array of evolutionary 
approaches to the problem of hearing at small scales (some widely different to the traditional 
concept of “ear”), insects in particular have served as a starting point for several designs. From 
locusts to moths, through crickets and mosquitoes among many others, the mechanisms found 
in nature to deal with small-scale acoustic detection and the engineering solutions they have 
inspired are reviewed. The present article is comprised of three main sections corresponding to 
the principal problems faced by insects, namely frequency discrimination, which is addressed 
by tonotopy, whether performed by a specific organ or directly on the tympana; directionality, 
with solutions including diverse adaptations to tympanal structure; and detection of weak 
signals, through what is known as active hearing. The three aforementioned problems concern 
tiny animals as much as human-manufactured microphones and have therefore been widely 
investigated. Even though bioinspired systems may not always provide perfect performance, 
they are sure to give us solutions with clever use of resources and minimal post-processing, 
being serious contenders for the best alternative depending on the requisites of the problem.  

Keywords: bioacoustics, bioinspiration, insect hearing, acoustic sensors 

Introduction 

Bioinspired hearing requires a fundamentally different 
design paradigm. In nature, the peripheral sensory organs, the 
eyes, ears, or skin, are rarely passive recorders of their 
environment. They possess complex filtering, processing, and 
encoding functions that are built in to the material and 
structure at every level: from the atomic, through the cellular, 
to tissue structure, and organ structure. Such signal processing 
can be mechanical, such as the decomposition of sound into 
frequency bands that is famously performed by the 
mammalian cochlea [1], or the result of inter-cellular chemical 
or electrical communication [2], but a distinct characteristic is 
that the signal transduction and signal processing functions are 
integrated and inseparable. This necessity is enforced by the 
sparse, event-driven nature of signals transmitted to higher 
brain centres [3]. The signal complexity is limited to what may 
be encoded in the temporal pattern of a spike train [4]. 

In contrast, engineered sensors view transduction as a 
separate function. The transducer’s output is a continuous in 
the time-domain, rather than event driven. This ‘raw’ signal 
must be appropriately filtered, encoded and efficiently 
transmitted in order to extract useful information. If we could 
borrow nature’s trick of integrating this signal processing into 
the structure of the transducer we could unlock significant 
improvements in energy-efficiency, signal latency, bandwidth 
reduction, and device footprint. All of these areas are critical 
constraints on sensor networks [5], internet of things [6] and 
human wearable and implantable sensors [7].  
Three of the most basic problems faced by animals and 

shared across species are the following [8–11]: 
• Distinguishing conspecific communication from 

predator sounds. 
• Localising the position of a potential prey, 

predator, or mate. 
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• Detecting weak sound signals that deteriorate as 
they propagate in their natural environment. 

Body size compounds the complexity of these issues: sound 
emission and detection efficiency tend to decrease with the 
size of the acoustic sensor, the ability to locate sounds (and 
predators) when listening diminishes with diminishing space 
between the sensors, and that the frequency band available for 
communication is limited by predation and by the acoustic 
transmission properties of its environment [12]. The 
evolutionary adaptations to the physics of acoustic waves 
provide unique solutions to reducing the energy (and 
metabolic) cost of detection, to frequency decomposition, and 
to locating sound sources with miniscule available directional 
cues from the sound field. Acoustic systems at the micro-scale 
may draw particular inspiration from insect hearing and 
communication due to the constraint of insects’ small body 
size. 
Using sound to locate potential mates and to avoid 

predators is a common evolutionary tactic, with hearing in 
insects known to have evolved independently between 15 and 
20 times [13]. The methods of detection can be grouped into 
pressure detection systems and particle velocity detection 
systems. In general, particle velocity detection systems are 
hair-like near-field, low-frequency mechano-receptors, reliant 
on light weight and high specific surface area in order to 
translate the velocity dependent viscous drag force into a 
detectible vibration [14]. They are often used to detect low 
frequency sound (less than 500 Hz) or reactive flow in the near 
field of an emitter, such as the mosquito antenna which is used 
to detect the flight disturbance from a nearby mate [15]. This 
paradigm has, however, been challenged recently by evidence 
that mosquitoes can in fact behaviourally react to sounds up to 
10 metres away [16]. Pressure receivers are exclusively 
tympanal systems, operating in the far field [17] and capable 
of detecting sound into the far ultrasound range [18]. 
Gathering inspiration from the way these problems are 

solved in nature has proved to be a succesful path towards 
innovative engineering solutions. Thus, the motivation of this 
review is to provide a comprehensive compilation of the 
mechanical solutions implemented in technology that are 
inspired by insects and further encourage bio-inspiration as a 
source for innovative engineering solutions. 
The body of this paper is structured in three distinct 

sections, each one referring to one of the three fundamental 
aforementioned problems. In addition, each section is divided 
in two subsections. The first one concerns some paradigmatic 
insect solutions for its corresponding problem and the second 
one covers engineering solutions arising from bio-inspiration 
of said insects.  
The first section refers to spatial frequency decomposition 

and comprises some example cases of how insects deal with 
this problem and the technological solutions inspired by it. 
The second section verses on the direction of arrival 

estimation and it covers some of the most notable nature 
example solutions and the sensors inspired by them. Lastly, 
the final section, active hearing, follows the same structure of 
natural examples and technology inspired by them. A 
conclusion finishes the manuscript. 

Tonotopy 

Frequency discrimination can be a matter of life and death for 
an organism. Sound communicates information. The purpose 
of all acoustic systems in biology is to get that information to 
the animal to elicit the appropriate behavioural response. One 
information component of sound is its frequency, and as much 
as the animal’s survival and reproduction can depend on the 
organism’s ability to distinguish key frequencies from its 
environment. Not doing so could mean a moth failing to evade 
the approaches of a predatory bat [19–21] or a female cricket 
failing to localise the position of a potential mate [22,23]. 

Spatial frequency decomposition: cochlea and tympana 

All ears must translate acoustic energy travelling through a 
medium, usually air, into mechanical motion, and then to 
electrical impulses. Electrical impulses are generated by 
neurons and, in acoustics specifically, by auditory 
mechanoreceptor cells, neurons with mechanically gated ion 
channels that require an acoustic-mechanical stimulus to fire 
an action potential [24]. Frequency selectivity is a difficult 
aspect of insect communication, since the spike train from a 
sensory neuron cannot encode frequency information in their 
signal. To have a means of discriminating frequencies, 
multiple such neurons must be individually tuned. A very 
simple ear, such as those of moths cannot passively distinguish 
between the frequencies of a predatory bat and the call of a 
potential mate, relying instead of differentiating the temporal 
structure of the mating call and the pulses of a bat’s 
echolocation [25]. Individual tuning of multiple cells can be 
achieved by the arrangement of the neurons according to a 
morphological gradient. Morphological variation of a 
substrate – for example, some areas being thicker, thinner, 
wider, or narrower – in the cells’ proximity can cause different 
points on the substrate to move differently according to the 
input frequency. This frequency-specific maximal 
displacement of the point, if coupled somehow to a sensory 
neuron, can in turn stimulate that neuron independently, thus 
tuning the cell to a single frequency. This place-based 
frequency decomposition is called tonotopy. 
A second problem is that of the acoustic environment, since 

mating calls must compete with the potentially masking calls 
of other species without unnecessarily attracting the attention 
of predators [26]. These mating calls are frequently pure tone 
signals, reflecting their reliance on resonant structures to 
transmit the necessary power to attract a mate as well as the 
need to seek unoccupied space in the locally available acoustic 
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spectrum [27]. This places some constraints on the available 
communication bandwidth, since the resonant frequency is 
determined by the size of the radiator and, in order to transmit 
efficiently, the resonant structure should have a diameter 
approaching half of the signal wavelength [28]. There is a 
reproductive and survival advantage from the ability to 
distinguish the frequency composition of predators and 
competing species. In flagellar systems such as the mosquito 
[29], as well as some tympanal systems such as the tree cricket 
Oecanthus henryi [30] and the Noctuid moth [31], this 
frequency tuning is achieved by active amplification where the 
mechanosensory cells can produce sufficient power to drive 
the ear at the frequency of interest. This strategy is discussed 
in Section 4. In this section, we discuss dispersive frequency 

decomposition, where sound travels and is localized to 
particular sites based on its frequency.  
Dispersive frequency decomposition relies on a travelling 

wave, which is typically a flexural mode on the thin medium. 
The most well-known example of this is the travelling wave 
associated with the basilar membrane of the mammalian 
cochlea [32,33]. An acoustic impulse applied to the narrow 
end of the wedge-shaped structure encounters a stiffness 
gradient. The wave shoals, increasing in amplitude whilst also 
slowing down until finally maximal vibration of the 
membrane is reached at a specific point along the membrane’s 
length; afterwards, the wave rapidly decreases in amplitude. 
High-frequency stimuli terminate at a point near the narrow 
end, and those of lower frequency, near the wide end. Sensory 
neurons arranged linearly along the length of the substrate 
respond accordingly: a mechanoreceptor cell at a narrow 
region is activated only by a high frequency stimulus; a cell 
further along only responds to a lower frequency. 
In contrast to vertebrates, among invertebrates, tonotopic 

systems are considerably rarer, and yet invertebrates also 
showcase the most diversity of system design. Moreover, 
invertebrate tonotopy is less understood and provides greater 
scope for novel discovery. Such ears can be categorised into 
two types, cochlea-type tonotopic systems and tympanal 
tonotopic systems. Both are exemplified by the bushcricket 
and the locust, respectively.  
The bushcricket ear appears to possess the only insect 

cochlea yet identified [34], although some sort of cochlea 
analogue has been hypothesised for the cricket [35]. 
Bushcrickets (also known as katydids) are orthopterans, 
alongside crickets and grasshoppers, the latter including 
locusts. Their two ears (one on each of their two front legs) 
consist of two external tympanal membranes on either side of 
the leg, making four eardrums in total. Features of the 
bushcricket ear are reminiscent of the vertebrate peripheral 
auditory anatomy in terms of function. These include the 
tympanal plate, possibly functioning as a middle ear; and the 
crista acustica, the bushcricket’s inner ear or cochlea [36] (see 
Fig. 1).  
The most noticeable characteristic of the bushcricket crista 

acustica is its tapered shape and orderly arrangement of 
sensilla (Fig. 1a). The 25 or so sensory neurons are 
tonotopically arranged from high frequency tuned cells at the 
narrowest tip of the organ (up to and above around 50 kHz) to 
those tuned to lower frequencies its wider end (tuned from 
about 6 kHz) [37]. These sensors lie on a thin wall of a 
cuticular cavity, the anterior tracheal branch. Their dendrites 
project upwards dorsally, and each connects to a cap cell 
which is itself attached to a thin sheet that covers the entire 
organ, the tectorial membrane. Notably, the size gradient of 
these cap cells is correlated with the tonotopy. Nevertheless, 
the correlation is not strong enough to account for the full 
resolution of frequency representation. Rather, the tonotopy 

Fig. 1. (A) Bushcricket crista acustica stained with 
methylene blue. [39] (B) Anatomy of the crista acustica 
[38]. (C) Anatomy of the four locust mechanoreceptor 
attachment points on the underside of the tympanum [42]. 
Adapted to highlight the same points shown in the 
adjacent image, D. (D) SEM of the external surface of the 
locust tympanum [40]. Red outline: thin membrane; 
green outline: thick membrane; blue feature: attachment 
point of mechanoreceptors tuned to high frequencies; 
green highlight: attachment area of low frequency 
sensors.  
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may require another morphological gradient such as features 
of the sensors themselves [38]. This arrangement appears to 
facilitate a travelling wave across the tectorial membrane, 
differentially stimulating the sensory cells according to 
frequency. The wave is initiated at the organ’s narrow end and 
travels along the membrane towards the low frequency tuned 
sensors, terminating closer to the wider tip at low frequency 
impulses and closer to the point of initiation at higher 
frequencies [39]. 
The other type of tonotopic mechanism is not at all like a 

cochlea, and in fact has no comparison among the vertebrates. 
In tympanal tonotopic systems, known in the locust [40] and 
in the cicada [41], the tympanum, responsible for sound 
capture, is also responsible for frequency decomposition; both 
functions occur at the same substrate. This dual functionality 
requires the eardrums to be unusually complex, and indeed the 
locust tympanal membrane may be considered the most 
sophisticated tympanum yet identified. 
Locusts have two tympana, one on each side of their 

abdomen. Around 70 mechanoreceptor cells attach to the 
underside of each tympanum, forming Müller’s organ, a 

ganglion of sensilla divided into four groupings. Three of 
these are tuned to low-frequency bands (3.5 to 4, 4, and 5.5 to 
6 kHz) and one to high frequencies (12 to 20 kHz) [42,43]. 
Each sensory group is secured to its own specific 
morphologically unique tympanal feature (Fig. 1C). In 
addition, the locust eardrum exhibits further, larger-scale 
heterogeneity in the form of two parts to the tympanum, a thin 
membrane and a smaller thicker membrane (Fig. 1D). High-
frequency mechanoreceptors attach to a point on the thin 
region, whereas the others connect to fixtures of the much 
thicker membrane [40,44]. Thus, a degree of morphological 
gradation is provided, enabling travelling waves. When 
stimulated with sound, a travelling wave is initiated in the thin 
membrane that maximally vibrates the tympanum at one of the 
four locations, depending on the stimulus frequency. At 
frequencies above 10 kHz, no movement of the thick 
membrane is detected. Rather, the travelling wave terminates 
at the high-frequency attachment point, rapidly attenuating 
when reaching the thicker cuticle. As such, there is a clear 
spatial frequency decomposition of high and low frequencies 
[40]. 

 

Fig. 2 Array of resonator approaches to mechanical tonotopy (A) Single crystal PMN-PT cantilevers with interdigitated 
electrodes [49] (B) Dual sided cantilever array [52] (C) Clamped-clamped array with triboelectric transduction [53]. 
Bottom row shows solutions to achieving desired frequency while maximising surface area for mechanical sensitivity 
(D) Tapered clamped-clamped beam array [50]. 
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Bio-inspired frequency discriminating sensors 

Engineered systems based on spatial frequency 
decomposition frequently target sub-Nyquist rate sampling as 
the value of their system [45]. An analogue to digital converter 
has a maximum sampling rate, and increasing this sampling 
rate lowers signal-to-noise ratios and increased power 
requirements [46]. A signal which is already filtered can be 
captured with lower sampling frequencies, and yet retain a 
higher effective sampling rate that can be significantly 
compressed by only retaining content when it is above a 
threshold. This strategy has been applied using electronic filter 
banks [47], and even converted to an output spike train to 
mimic the event-driven format of nerve conduction [48]. 
Mechanical filtering of the signal can be grouped into 
solutions using an array of resonators (Fig 2A, D) [49,50] or 
solutions using a tapered membrane [51]. 
Resonator arrays perhaps are the most obliquely connected 

to the natural inspiration, but they are simple to implement on 
silicon as arrays of cantilevers (Fig 2B) [52] or clamped-
clamped beams (Fig 2C) [53]. The resonant frequency of each 
channel can be adjusted by changing the length of the beam; 
and transduction of the signal may be accomplished by 
piezoelectric [54,55], triboelectric [53] or optical means [56]. 
While relatively easy to implement, using a beam as a method 
of acoustic capture is extremely inefficient for lower 
frequencies due to diffraction around the relatively narrow 
beam width. The pressure difference between the front and 
back sides of the cantilever is small, resulting in maximum 
displacements at resonance in the order of tens of nanometres 

[57]. The resultant electrical transduction and signal-to-noise 
level are also prohibitively small since the cantilevers may not 
rely on capacitive sensing through an electrical backplate, as 
in a traditional microphone, due to the impact of thin film 
damping on both the mechanical sensitivity of the device and 
the resonance frequency [58,59]. Piezoelectric sensing can be 
used with the ceramic element implemented either on the 
upper surface with interdigitated electrodes [49], or by 
fabricating the cantilever as a bimorph [60]. However, both 
strategies produce piezoelectric charge sensitivities in the 
order of femto-Coulombs per nm. One strategy to overcome 
this limitation in MEMS consists of using a thickened or disc-
shaped central region in the arrays, maintaining a thin base 
region for the purposes of keeping a desired resonance 
frequency while maximising the surface area for acoustic 
capture (Fig 2E) [61].  
Frequency decomposition based on tapered membrane 

structures is closer to bio-inspired sources, consisting of a 
single membrane with significant acoustic dispersion to 
isolate the frequency bands. Such systems have two 
fundamental requirements: there must be a time-dependent 
pressure gradient along the membrane to support flexural 
wave propagation, and the wave velocity must change along 
the length of the membrane. The support of a travelling 
flexural wave can be achieved by having a defined, highly 
localized sound input point, analogous to the oval window in 
the mammalian cochlea (Fig 3A) [51,62], or by ensuring the 
membrane length is between 1/6 and 1/4 of the frequency 
range of interest to ensure a phase difference across the 

 

Fig 3. Continuous membrane approaches to tonotopy, which have one single graded sensing area with a localized 
transduction mechanism. (A) Hydromechanical model of the basilar membrane with silicon oil backing [51], (B) Fluid 
backed tonotopic sensor using PVDF as the membrane with individual measurement points [64]. (C) Luminescent tapered 
membrane showing some frequency separation at very low frequencies (a,b) 110 Hz; (c,d) 80 Hz; (e,f) 40 Hz. [54]. 
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membrane surface (Fig 3B) [63,64]. Both solutions have 
limitations, since restricting the sound input to a single point 
restrains the power that may be captured by the device, and 
tailoring the membrane length to the phase difference in the 
incoming sound wave either requires prohibitively large 
membranes or a highly restricted high-frequency range of 
interest. 
The second requirement for acoustic dispersion is equally 

challenging to meet within the constraints of MEMS systems. 
The most obvious source of generating dispersion is through 
the tapering of the thickness of the membrane, based on an 
Euler-Bernoulli model of a thin plate where the bending wave 
speed may be given by [65]: 

𝑐! = #
𝐸ℎ(𝑥)"𝜔"

12𝜌(1 − 𝜈")/

#
$
 

Where ρ is the density, ω is the angular frequency, E is the 
Young’s modulus, ν is the Poisson’s ratio, and 𝒉(𝒙) is the 
thickness profile. In theory, for every frequency, there is a 
height below which the wave speed will drop to the point 
where it is no longer transmitted, or at least may be assumed 
to be sufficiently attenuated, analogous to the acoustic black 
hole effect described by Mirinov [66]. In practice, the 
variation in thickness would need to be two orders of 
magnitude over the length in order to separate frequency 
bands in the acoustic range using a common MEMS material 
such as single-crystal silicon. 
The more commonly seen model varies the width of the 

membrane along its length, which should not result in 
variation of the phase velocity [67]. Instead, such systems rely 
on the membrane being placed on a closed channel, or either 
air or some fluid medium, such as water [68] or silicon oil 
[64]. The variation of the velocity of fluid flow in this channel 
generates a variation in the velocity potential [69], and hence 
the local pressure on the membrane; while the depth of the 
fluid channel increases, the fluid loading on the membrane 
reduces the resonance frequency (Fig 3C) [70]. This, in 
combination with the slight spatial variation of the 
membrane’s first-order resonance peak with frequency, results 
in some degree of tonotopy. Despite the size of these 
membranes, over 5 cm in length, they have extremely low 
mechanical responses at the resonance of less than a micron 
displacement and are only able to separate a few, widely 
separated frequency bands with poor spatial confinement 
compared to examples in nature. 

Directionality 

The localization of sound sources by small animals is a 
fundamental problem in bioacoustics. Where body size is 
diminutive and inter-ear distance is short, an animal cannot 
rely on comparison between the intensity difference or time 
delay of signals received at either ear. For many animals, the 
detection of a sound is sufficient. For example, all but one of 

the 10 to 12 independent origins of hearing in Lepidoptera 
occurred later than 65 Ma, the currently accepted date for the 
appearance of echolocation in bats [71]. The hearing that 
evolved in these moths is extremely simple, consisting of only 
1-4 neurons per tympanum [72], minimum tuning over a broad 
frequency range [73], and limited or no directionality, yet it 
remains highly effective for escaping predatory bats [74]. 
Moths exposed to bat echolocation signals exhibit random 
evasive movement, diving towards the ground if in flight and 
freezing behaviour if running on the substrate [75]. Knowing 
exactly where the bat is coming from does not change the 
moth’s response and it is not worth the evolutionary cost of 
developing directional hearing. For an insect on the other face 
of the prey-predator relationship, for parasites, or for finding 
the source of a conspecific mating call, it is necessary also to 
know the direction of the source of the sound. 
Bilateral symmetry means that most animals have two ears, 

one for each half of their body (one notable exception is the 
praying mantis, which possesses only one ear [76]). 
Directional hearing in larger animals may be achieved by 
inter-aural intensity differences (IID), where sound shadowing 
from the body creates an appreciable level difference between 
the ears; or inter-aural time differences (ITD) where the basis 
of comparison is the time difference of arrival between the 
ears. For an insect where the body length is a fraction of the 
wavelength of a relevant sound source, the acoustic shadow is 
minimal, and time differences of arrival may be measured in 
nanoseconds [77]. 
This section looks exclusively at tympanal hearing systems, 

as systems which have the closest analogy to the traditional 
microphone. Particle detection hearing systems are inherently 
directional, responding to the velocity vector of the sound field 
however such systems are far less sensitive to far-field sound 
and higher-frequency sound fields. 

Direction of arrival estimation from tympanal structure 

Ormia ochracea has undoubtedly inspired the greatest 
number of engineering designs which seek to mimic the 
unique coupling mechanism between its tympana. Ormia 
ochracea is a fly parasitoid of crickets, locating its host 
Gryllus by phonotaxis to the cricket’s mating calls [78]. The 
auditory system of Ormia ochracea has long been of interest 
to researchers due to the uncanny accuracy with which it can 
locate the host call, a 5 kHz pure tone with a wavelength of 
over ten times the body length of Ormia ochracea and one 
hundred times the separation between the insect’s tympana. 
This insect has directionality down to an accuracy of 2º in the 
azimuthal plane [77]. The system consists of two diaphragms 
mechanically connected by a bridge and pivot allowing the 
transfer of energy from the motion of one diaphragm to 
another (Fig 4A, D) [79]. When the stiffness of this connecting 
bridge is correctly tailored to the system, the signals from the 
stimulating sound wave and the linked companion diaphragm 
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will constructively interfere with the ipsilateral sound source 
and destructively interfere with the contralateral sound source. 
The result is what was termed by Miles and Robert [80] 
mechanical interaural phase difference (mIPD) and 
mechanical interaural intensity difference (mIID) which can 
be 40 times higher than the phase difference in the stimulating 
sound field. Much of the research into Ormia-inspired systems 
targets applications in hearing aids [81,82]; however, there is 
an inherent conflict: the Ormia ’s coupled ears are a resonant 
system and so single-frequency, while hearing aids, or 
teleconferencing applications require broadband sound source 
localization.  
A potentially different tactic is employed by Achroia 

grisella. Achroia grisella is a moth of the Pyralidae family 
within the Lepidoptera order, known as the Lesser Wax Moth. 
It is less than 13 mm long and principally known as a parasite 
of unhealthy bee colonies, on which they deposit their eggs 
and on which their larvae feed. The unusual aspect of Achroia 
is the use of ultrasonic calling as a mating signal, and their use 
of phonotaxis rather than anemotaxis to track their preferred 
mate [83]. As discussed in the introduction to this section, 
simple hearing systems are widespread among nocturnal 
Lepidopters, but evidence of directional response is sparse 

save for some limited negative phonotaxis in Noctuids [84]. 
In contrast to hearing, acoustic communication in moths is rare 
and occurs only among isolated species and genera in the three 
major clades [71]. In many cases, acoustic communication is 
restricted to close-range courtship where directional hearing 
would not be critical [85]; however, Achroia grisella can 
transmit and track sound signals over distances over 2 metres, 
making a sound localization capability expected. Unlike 
Ormia ochracea, whose acoustic perception of host crickets 
has probably evolved de novo, A. grisella already had an 
evolutionary ancient system for perceiving sound, and the 
mechanism for localization reflects an adaptation of the 
tympana as bat detectors to a new purpose [86,87]. 
The tympana of Achroia grisella are located ventrally on 

the first abdominal segment (Fig 5A). They are oval-shaped, 
between 500 microns and 550 microns long in the females and 
divided into an opaque anterior section and a transparent 
posterior section (Fig 5B) [88]. These two sections of the 
tympana oscillate in anti-phase when there is no variation in 
the pressure field across the tympanum (i.e. when the sound 
wavefronts are planar), with a large peak in displacement near 
the neuronal attachment point [73,89,90]. This vibrational 
mode remains relatively stable with sound source angle until 

 

Fig 4. (A) Micro-CT images of tympanal system of O. ochracea. Arrays of Ormia inspired membranes [91]. (B) four 
coupled membranes [81] (C) Array of 3 see-saw style Ormia membranes [98]. (D) Illustration of rocking and 
translational mode along with standard two degree of freedom model of the Ormia system [80]. SEM images of Ormia 
membranes targeting low acoustic frequencies using (E) silicon-on-insulator MEMS [91] and (F) Silicon nitride 
patterning [93]. (G) Transduction of membrane motion using capacitive comb sensing [95].  
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a 100 kHz sound source is located along the major axis of the 
tympanum at which point the peak in displacement near the 
attachment point grows sharply in magnitude [87]. 

Bio-inspired directional sensors 

Ormia-inspired directional microphones are undoubtedly 
the largest class of bio-inspired hearing sensors and, 
consequently, have in themselves been subject to a number of 
dedicated reviews [91,92]. The overwhelming direction of 
design has been towards a single-layer see-saw design realised 
in a silicon-on-insulator or related MEMS process, either as a 
single sensor (Fig 4E, F) or an array (Fig 4B,C) [93–96]. This 
operates similarly to the Ormiine system, with each of the 
‘wings’ of the device comparable to one tympanum, while the 
torsional stiffness of the bridge connecting the device to the 
substrate performs the equivalent function of the raised bridge 
and fulcrum in O. ochracea. The system is attractive to 
researchers as it is easily implemented in a multi-user MEMS 
process, and it can, with careful tailoring of the relative 

stiffness of the membrane wings and the torsional stiffness of 
the bridge, amplify directional cues in a similar manner to O. 
ochracea. This design path has several challenges which have 
not yet been overcome besides the inherent resonant nature of 
the device. The first is the signal-to-noise ratio achievable in 
this system. As the Ormia-inspired microphone relies on the 
interaction between the resonant modes, a traditional 
capacitive backplate is generally not used, at least partially 
because of the thin-film damping such a structure would 
introduce [97,98]. Because the system works optimally at the 
frequency where the in-phase resonance and the out of phase 
resonance are the same power, increasing the bandwidth of 
these resonances necessarily means increasing the separation 
between the frequency peaks of the two modes. This has the 
effect of lowering the amplification of directional cues, but 
does broaden the frequency range over which this is possible 
[99]. Principally, designers avoid this issue entirely by 
incorporating optical [97] or capacitive comb-based sensing 
schemes (Fig 4G) [96,99]. The first of these adds significantly 

 

Fig 5. (A) Illustration of the ear location and orientation on the first abdominal segment of A. grisella [90]. (B) X-
Ray CT voxel images of the structure of the tympanum showing the scolopale attachment point in the centre of the 
lower section of the tympanum [105]. (C) Laser Doppler vibrometry measurement of A. grisella tympanal motion 
in response to a planar sound field and (top) and COMSOL reconstruction of the membrane (bottom) [105]. 
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to the design complexity and cost, while both piezoelectric and 
capacitive comb-based methods in MEMS devices have low 
sensitivities [94,101,102]. 
The second obstacle to a good signal-to-noise ratio is more 

fundamental to the design – as the see-saw mechanism must 
be released from the periphery except at the anchor points, 
sound is free to diffract around the device. Since these devices 
are typically of a maximum size of 1 by 2 mm and the target 
sound field is in the acoustic range, the pressure difference 
across the membrane is minimal. This can be solved by 
making a more direct model of Ormia’s hearing system, 
however so far all examples have been demonstrated at the 
mesoscale due to the complexity of fabricating a true 3D 
structure using lithographic methods [103,104].  
On the other hand, finite element modelling of Achroia 

grisella’s tympana and tests on 3D-printed models have 
shown that this single membrane directivity pattern can be 
replicated in a relatively simple stepped-thickness membrane 
(Fig 5C) [105].  

Active hearing 

The third central problem for insect hearing is the 
inherently low energy of a propagating sound wave over the 
length scales that the insect can hope to capture. This problem 
is compounded for velocity sensing organs, such as the 
antenna in mosquitos and fruitflies, where the mechanism for 
energy capture is through the viscous drag losses in the 
antennal hairs [106]. In order to maximise the capture of these 
sounds and the transduction into neuronal signals, the 
mechanoreceptor neurons themselves add energy to the 
system, resulting in a non-linear response to sound [29]. The 
system is analogous to the active hearing contributions of hair 
cells in the cochlea; however, in insects, it can be directly 
observed in antennal systems. The existence of active hearing 
can be inferred from non-linear response characteristics in 
tympanal systems in insects, such as otoacoustic emissions or 
self-generated oscillations, in tree crickets [107] and Katydids 
[36]; nevertheless, the small scale of these systems and the 
relatively low number of congregated mechanoreceptors 
compared to Johnson’s organ in the mosquito, make these 
systems harder to study. 

Particle velocity sensors and active hearing 

The champion species for active amplification in flagellar 
systems is the elephant mosquito, Toxorhynchites brevipalpis. 
The hearing organ consists of an antenna shaft which sits 
within a pedicel. Mechanically, it acts as a rotational spring, 
causing the antenna to oscillate in a rigid body motion with a 
resonant frequency of between 300 to 500 Hz [108]. Within 
the pedicel is Johnston’s organ, a collection of some sixteen 
thousand mechanosensory cells arranged in a bowl shape 
along the base of the antenna. These consist of a scolopale rod 
which connects the antennal structure to the chordotonal 

neuron, which both senses the motion of the antenna and can 
inject additional energy into the antenna’s oscillations [109]. 
If we model this system in a sound field as a passive oscillator, 
it can be approximated as a damped harmonic oscillator 
[110,111]. Such a system will have a defined resonant 
frequency and a Q factor given by the ratio between resonant 
frequency and damping, which gives the half-power 
bandwidth of the resonant response. 
Mosquitoes use their auditory receptors for mating 

purposes, detecting the acoustic signature of a female’s wing 
beats. The female creates an extremely weak and brief sound 
signal, a sound particle displacement of around 3.5 nm at a 
distance of 10 cm [112]. As the sound intensity varies so 
sharply and so quickly with the change in distance between 
the male and the potential mate, the mosquito requires a sensor 
with an extremely fast temporal response. Mechanically, this 
would be a broadband, low Q factor, allowing the detection of 
higher frequency transients in the signal. Conversely, to 
successfully track the female, the male must filter out 
environmental noise for which a broadband sensor would be a 
poor choice and a sharply resonant, high Q factor sensor 
would be preferred. The antenna’s frequency selectivity in 
passive hearing is principally determined by the resonance of 
the flagellum and spring base, which is well-damped and low 
Q factor [108]. The mosquito maximises its tracking 
efficiency by switching from the initial passive response to a 
sharply resonant response through the generation of force in 
the neurons at the base of the antenna [108]. These neurons 
fire at twice the frequency of the antenna’s sound field-driven 
oscillation, sharpening the tuning of the resonant frequency 
(Fig 6A) [113]. 

Bio-inspired active amplification sensors 

The concept of active Q control has found applications in 
atomic force microscopy [114,115] and in optical amplifiers, 
where it is referred to as parametric amplification. Rather than 
directly injecting energy, parametric amplification involves 
changing some property of the system with a specific phase 
timing, analogous to a child on a swing. In acoustic systems, 
the forcing mechanism is usually directly applied to either the 
membrane or the flagellum through electrostatic actuation, 
perhaps more analogous to someone pushing a swing. At root, 
this is a feedback system where the oscillations of the acoustic 
receiver are filtered through a leaky integrate and fire stage 
and recombined. In practice, this has meant generating a 
pulsed actuation signal controlled by a computational control 
mechanism, designed to fire in time with the oscillations of 
the incoming microphone signal. A MEMS microphone 
directly inspired by this principle was demonstrated by 
Guerreiro et al. (Fig 6B) [116,117], using capacitive combs to 
inject the pulsed feedback signal. This was a unipolar signal, 
firing only once per oscillation of the membrane as opposed 
to the 2:1 mode of the mosquito [113]. The Q factor of the 
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MEMS microphone is already high in the absence of strong 
damping sources such as thin film damping; however, the 
feedback mechanism demonstrated an increase of the Q factor 
from 30 to 66 with a consequent amplification of 2.19 [116]. 
The mechanism has also been used to lower the effective Q 

factor in Ormia-inspired devices. As noted, MEMS devices 
without backplates will experience very light damping and 
therefore exhibit sharply resonant behaviour which can be a 
detriment to sound localization. The introduction of passive 
damping systems would increase thermal noise and reduce the 
microphone’s fidelity. Miles et al. [118] have demonstrated 
active Q control aimed to reduce damping, here using a 
proportional and differential gain and feedback scheme to an 
electrostatic mesh, successfully broadening the resonant 
response without noise gain. A similar effect can be achieved 
with pulse train stimulation, changing the phase timing of the 
pulse with respect to the diaphragm oscillations [119]. Active 
control over the damping in this manner relies on separate 
methods of measurement and feedback; for example, 
piezoelectric measurement of membrane motion and 

capacitive comb feedback [120], or laser diffraction-based 
measurement and actuation through a capacitive backplate 
[121,122].  
Particle velocity acoustic sensors are relatively rarer, with 

the majority of the bioinspired hair sensors being directed 
towards the detection of fluid flow [123], and we have few 
examples of hair or flagellum-based sensors that are directly 
mosquito inspired (for example [124]), although the claimed 
incorporation of active feedback appears in reality to be a 
simple directional response. A velocity feedback controller on 
a cantilever beam was demonstrated by Joyce and Tarazga 
[125], the device was constructed at scale being a 5 cm long 
aluminium beam with a resonance of 10.8 Hz. Antenna-
inspired acoustic sensors should have large surface area 
relative to their mass (or moment of inertia) and stiffness 
[126,127]. This can be achieved via sub-micron diameter 
thickness wires, either arranged individually (Fig 6D,E) [128] 
or in a mesh via electrospinning (Fig 6F) [129]. This leads to 
a significant challenge with signal transduction since a 
mechanical element that is sufficiently agile to respond to the 

 

Fig 6 (A) Impact of twice frequency forcing in the mosquito antenna, changing the broadband response of the antenna 
into a sharp narrowband response [113]. Frequency forcing in a MEMS microphone using piezoelectric sensing and 
capacitive combs to inject the motile force, (B) resultant amplification with forcing [116], (C) SEM of the membrane 
design [117]. (D) Hair sensor microphone using electrostatic transduction [127], and (E) larger scale proof of concept 
of same using optical sensing [126]. (F) Meshed hair sensing using electrospun PVDF [129]. 
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drag forces from a sound field will also be driven more 
powerfully by any electrostatic or capacitive field [130]. 
Solutions based on electrospun meshes have the convenient 
electrical transduction mechanism of a piezoelectric polymer 
[131], in this case, P(VDF-TrFE) however, due to the random 
orientation of the fibres, the weak reverse piezoelectric effect 
and the clamped-clamped nature of the mesh the return 
pathway would be challenging to implement. 

Conclusion 

Insect hearing systems are diverse, but there are common 
sets of problems that all small animals must deal with: size and 
energy. This tells us the type of problems we should be 
approaching with an insect-inspired solution. A system that 
uses a locust or bushcricket-inspired mechanical tonotopy will 
not outperform a well-designed digital filter in terms of 
frequency decomposition, but it will enable a low-power 
solution and reduce the data transmission needs by lowering 
the necessary sampling frequency. Directional sensors that 
make use of Ormia or Achroia-inspired directional 
membranes will not be more accurate than a well-spaced and 
sampled microphone array, but they will achieve the 
directionality in a fraction of the space. Only the active 
hearing processes are truly unique, having no digital 
equivalent that can change the response pattern of the sensor 
itself. There is great potential for this approach as we begin to 
consider autonomous sensors and remote ‘fit-and-forget’ 
networks for structural health monitoring, environmental 
monitoring or health monitoring purposes. The great difficulty 
thus far is in our ability to reproduce the mechanical functions 
of natural materials such as cuticle and resilin and to develop 
a reliable method of transducing the signal captured. 
In summary, bio-inspired solutions are one of the most 

innovative and useful approaches to engineering design that 
prioritises energy and resource efficiency rather than the best 
performance possible, and have the potential to become even 
more so in the future as our knowledge of the principles 
behind biological solutions widen and our manufacturing 
capabilities improve. 
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