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Abstract: Thousands of tonnes of litter enter the ocean every day, posing a significant threat to 

marine life and ecosystems. While floating and beach litter are often in the spotlight, about 70% of 

marine litter eventually sinks to the seafloor, making underwater litter the largest accumulation of 

marine litter that often goes undetected. Plastic debris makes up the majority of ocean litter and is a 

known source of microplastics in the ocean. This paper focuses on the detection of ocean plastic 

using neural network models. Two neural network models will be trained, i.e., YOLACT and the 

Mask R-CNN, for the instance segmentation of underwater litter in images. The models are trained 

on the TrashCAN dataset, using pre-trained model weights trained using COCO. The trained neural 

network could achieve a mean average precision (𝑚𝐴𝑃) of 0.377 and 0.365 for the Mask R-CNN and 

YOLACT, respectively. The lightweight nature of YOLACT allows it to detect images at up to six 

times the speed of the Mask R-CNN, while only making a comparatively smaller trade-off in terms 

of performance. This allows for two separate applications: YOLACT for the collection of litter using 

autonomous underwater vehicles (AUVs) and the Mask R-CNN for surveying litter distribution.  

Keywords: underwater litter; plastic litter; computer vision; litter detection; instance segmentation; 

YOLACT; Mask R-CNN 

 

1. Introduction 

The ocean is a crucial resource for our planet, covering about 71% of Earth’s surface 

and containing over 97% of the planet’s water. However, unsustainable practices such as 

overfishing, pollution, and climate change have put the ocean and its essential resources 

at risk [1]. One of the biggest threats that the ocean is facing is plastic pollution. Every 

day, vast amounts of litter enter the ocean, posing a significant threat to marine life and 

ecosystems. The numbers are staggering: there are over 5.25 trillion pieces of plastic debris 

in the ocean, with 269,000 tonnes floating on the surface and four billion plastic 

microfibres per square kilometre littering the deep sea [2]. In 2021, a study estimated that 

more than 17 million metric tonnes of plastic entered the ocean, making up 85% of marine 

litter, and this volume is expected to double or triple by 2040 [3]. Plastic waste degrades 

over time into micro- (< 5 mm) and nano- (< 1 μm) plastics through several pathways 

such as photodegradation and weathering effects [4]. As plastics are high-molecular-

weight organic polymers made from fossil fuels, they contain some of the most hazardous 

chemicals such as heavy metals, flame retardants, phthalates, bisphenols, and fluorinated 

compounds [5]. Therefore, when plastic waste breaks down and releases these additives 

into the surrounding environment, it constitutes a major threat to the health of marine 

biota and potentially human beings. Some of these additives are endocrine disruptors to 

humans even at very low concentrations, and may accumulate within the food chain [4,6]. 

Therefore, marine debris presents a huge risk to the livelihoods of millions of people who 
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gain economic value from the ocean [7]. To date, human consumption of microplastics has 

yet-known effects; therefore, locating and removing the source of plastics are the essential 

steps to combat them [8]. 

Marine litter finds its way to the sea and ocean and accumulates in three key major 

locations, i.e., on beaches, on the ocean surface, and on the seafloor [9–11]. Most studies 

on the accumulation of marine litter focus on the beach or floating litter, as these locations 

are relatively easier to detect from aerial surveys as compared to submerged marine litter 

in the ocean [12]. As a result, comparatively little research has been conducted on 

submerged and seafloor litter due to its inherent inaccessibility and tough conditions [13]. 

With up to 70% of marine litter eventually ending up on the seafloor, making it the largest 

accumulation of marine litter, any efforts to clean up the ocean of litter should not ignore 

this critical area [14,15]. To facilitate the removal of seafloor litter, the first step is to detect 

where it is. 

1.1. Detection of Marine Plastic 

The majority of marine debris is often located at great depths, which undoubtedly 

poses significant challenges for marine litter detection. The average depth of the ocean is 

3700 m, with a pressure of roughly 370 bar. The harsh conditions associated with the 

survey and collection of seafloor litter present a major challenge for clean-up. Therefore, 

it is common to utilise remotely operated vehicles (ROVs) or automated underwater 

vehicles (AUVs) to perform marine debris clean-up operations on the seafloor, as they can 

be fully automated, requiring no human intervention until they have completed their 

tasks [13,14]. To allow these AUVs to conduct clean-up operations, be it during surveyance 

or the collection of litter, there needs to be a way for them to detect marine litter. Most 

ROVs or AUVs use optical or acoustic technology to detect underwater objects. The optical 

method uses light emitted from a light source to view the objects, similar to how a human 

does with their eyes [14]. This can be achieved with optical sensors and cameras in 

identifying different types of plastic based on absorption spectra. Simple optical sensors 

can be constructed using LEDs and photodetectors. On the other hand, the acoustic 

method detects objects by relying on sound navigation and ranging (SONAR)-based 

technology by emitting sound waves, or pulses, into the water and analysing the echoes 

that bounce back from objects in the surrounding environment [14]. 

Acoustic methods have an advantage over optical methods as sound waves do not 

attenuate as much as light does in the underwater environment, thereby allowing for a 

longer range of detection [16]. However, the key drawback is that acoustic methods can 

only report the shape of the object in question, and therefore they may be inaccurate with 

small objects [14]. Optical methods can discern both colour and shape, allowing for much 

more information to be used to determine the object [17]. Recently, object recognition 

technology has been implemented for real-time plastic waste detection and classification 

through the use of machine learning techniques [18]. The use of deep neural networks 

through deep learning (DL) to detect and classify underwater litter has gained traction 

due to their ability to recognise and classify the various types of marine debris, and 

continuously learn and improve over time [19]. In object identification, a neural network 

is trained on a large dataset of labelled images, where it learns to identify the unique 

features that distinguish different objects from each other. Object identification typically 

involves two stages: object detection and object classification. Object detection involves 

identifying the location of the object in an image, while object classification involves 

assigning a label to the object. Popular algorithms used to perform object detection include 

Region-based Convolutional Neural Networks (R-CNNs), Fast R-CNN, and You Only 

Look Once (YOLO). These algorithms typically use a combination of CNNs and other 

neural network architectures to perform both object detection and classification [16]. 

With the many benefits of machine learning, this paper aims to enhance the current 

methods of underwater litter detection. The neural network models are then used to 

automatically detect underwater marine litter from images. The focus will be on 
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evaluating DL model candidates to detect and classify underwater litter using instance 

segmentation. Two neural network models will be trained, i.e., YOLACT (You Only Look 

at CoefficienTs) and the Mask R-CNN, for the instance segmentation of underwater litter 

in images [20]. 

It should be noted that following the detection and location of underwater litter, 

clean-up methods can be carried out using trawling or removal during diving surveys, 

where the latter can be conducted by divers or with ROVs/AUVs. Clean-up using trawling 

is a non-discriminatory process; hence, the environmental benefits of litter removal must 

outweigh the unavoidable damage or disturbance to the underwater environment. On the 

other hand, removal with ROVs/AUVs or divers can be a highly discriminatory process, 

thereby ensuring minimal damage to the underwater environment [14]. 

1.2. Computer Vision: Instance Segmentation 

Instance segmentation is a challenging task in computer vision that not only involves 

detecting objects but also precisely delineating their boundaries at the pixel level, an 

example of instance segmentation is depicted in Figure 1. Neural-network-based methods 

have revolutionised instance segmentation, enabling the accurate and efficient 

segmentation of individual objects within an image.  

 

Figure 1. Instance segmentation example using YOLACT with the IoU metric. 

Several other state-of-the-art techniques have emerged in the field of instance 

segmentation, each with its unique strengths. One such method is Panoptic FPN, as 

published in [21], which extends the Mask R-CNN to provide both instance-level and 

semantic segmentation in a unified framework. By combining instance and semantic 

segmentation, Panoptic FPN enables a comprehensive understanding of the visual scene. 

Another noteworthy technique is BlendMask [22], which introduces a new paradigm 

called BlenderNet for instance segmentation. BlendMask achieves instance segmentation 

by blending predictions from various feature levels, resulting in highly accurate and 

detailed segmentations. Furthermore, Segmenting Objects by Locations (SOLO), 

published in [23], presents an alternative approach to instance segmentation by adopting 

a fully convolutional framework. SOLO provides the outputs of object masks directly by 

assigning each pixel to a specific object instance, eliminating the need for a separate post-

processing step. This design results in efficient inference and high-quality instance 

segmentations.  

Among the state-of-the-art approaches for instance segmentation, two prominent 

methods chosen for this paper are YOLACT and the Mask R-CNN. YOLACT, as described 

in [20], is a real-time instance segmentation method that combines object detection and 

semantic segmentation. While its primary focus is object detection, YOLACT introduces a 

novel branch for generating instance-level masks. By leveraging a set of learned 
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coefficients, YOLACT predicts object masks efficiently. This simultaneous detection and 

segmentation approach makes YOLACT highly efficient and suitable for real-time 

applications. With its impressive speed and accuracy, YOLACT has established itself as a 

leading method in instance segmentation. On the other hand, the Mask R-CNN, as 

described in [24], is another state-of-the-art method, for instance, segmentation that 

extends the popular Faster R-CNN framework. It combines object detection with pixel-

level segmentation, enabling accurate localisation and segmentation of individual objects. 

The Mask R-CNN employs a backbone network to the R-CNN, typically based on a CNN 

such as ResNet or VGG, and incorporates two additional subnetworks: a region proposal 

network (RPN) for generating object proposals and a mask prediction network for 

generating precise object masks. This multi-stage architecture allows the Mask R-CNN to 

achieve state-of-the-art performance in instance segmentation. These advancements in 

instance segmentation will allow for AUVs designed for underwater litter collection to 

achieve a better sense of the location of the object, thereby allowing for better-automated 

control of robotic arms in litter collection. 

2. Material and Methods 

To achieve the goal of detecting marine litter, the overarching procedure involves 

identifying a suitable dataset, selecting and training an appropriate machine learning 

model, and then using the trained model to perform image analysis. The quality of the 

dataset, the capabilities of the model, and the training strategy are crucial factors to 

consider in this procedure. The details of the computer vision (CV), dataset, and machine 

learning models will be described in the subsequent sections [25]. 

2.1. Dataset 

Creating a useful trained model requires an adequately diverse dataset that fully 

represents all of the classes to be analysed [25]. In view of this, the TrashCAN dataset 

published in [26] was used to train the model, whereby this dataset contains 7212 

annotated images that depict underwater trash, ROVs, and undersea flora and fauna. The 

images are annotated with bitmaps for instance segmentation and contain bounding 

boxes that surround the instance segments, as shown in Figure 2. The images in the 

TrashCAN dataset are primarily sourced from the JAMSTEC E-Library of Deep Sea 

Images (J-EDI) dataset curated by the Japan Agency of Marine Earth Science and 

Technology (JAMSTEC). The images are extracted from videos taken by ROVs operated 

by JAMSTEC over the years in the Sea of Japan.  

 

Figure 2. Example of TrashCAN dataset showing bounding boxes and mask annotations. 
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The dataset contains two versions, i.e., instance and material versions, where both 

use the same set of images, but with different sets of annotations. The instance version 

focuses on the exact objects depicted in the image, containing classes that include plastic 

bags, cans, bottles, nets, clothing, and other commonly found trash items. The material 

version focuses on the material of the trash depicted, with classes for plastic, metal, wood, 

fabric, and rubber. In both versions of the dataset, the classes for non-trash items such as 

ROV, flora, and fauna remain the same.  

For this study, the instance version of the dataset was chosen to train the models 

because the intra-class differences in the material version are far too wide to accurately 

train a useful model. To give an example of the trash classified as plastic, plastic can take 

on many forms, i.e., plastic bags, six-pack rings, sheets of cling wrap, and plastic 

household items such as toothbrushes, to name a few. Each of these examples within a 

single class has vastly different shapes and colours. From the perspective of a model trying 

to identify plastic, this is a large hurdle to overcome, as the usefulness of the model is 

highly dependent on the different forms of plastic waste that it will encounter in the 

dataset. On the other hand, the instance version has a much lower intra-class difference, 

as the objects described by any given class are restricted to a much more limited set of 

shapes, with an example being cans or bottles where even if the trash has been damaged 

or crushed, the object can still be identifiable. Furthermore, if material differentiation is 

required for application purposes, the instance classes can simply be ascribed to a material 

type during post-image analysis data processing. 

Samples of the images in the TrashCAN dataset, shown in Figure 3, demonstrate 

some of the difficulties with the image analysis of underwater images. The challenges are 

mainly attributed to the images with low visibility, visual noise, and the presence of 

objects of various forms, as described in the following sections. 

    

Figure 3. Sample of images from TrashCAN [26]. 

2.1.1. Low Visibility 

The most prominent challenge in image analysis is the low visibility range. As can be 

seen from the top left image in Figure 3, the depth displayed by the ROV’s video capture 

system is 2737 m. At this depth, the environment is in a dark condition due to depths 

below 1000 m receiving no light from the surface (all light seen in the images must be 

provided by the ROV itself). The range of visibility can be seen in the top right image, i.e., 

a range of only a few metres. As the ROV gets closer to the object, the range of visibility 

decreases with the light source nearing the target. This creates a light gradient across the 

object, as can be seen in the top left image. The suboptimal lighting of underwater imagery 

primarily affects two factors, i.e., dataset quality and model training time. The dataset 

must contain the objects in multiple lighting situations to prevent any bias in the results, 

and by extension, the dataset must be larger as a consequence due to the increased number 

of lighting scenarios per object. Secondly, it will typically require a larger number of 

iterations to successfully train the model because of the diverse lighting presentations of 

any image [26].  
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2.1.2. Visual Noise 

The visual noise caused by floating particles in the water in front of the camera, as 

shown in Figure 4, may also affect the dataset size and accuracy of the trained model. The 

noise can mislead or obscure key parts of the object, thereby reducing the accuracy of the 

model [26]. Figure 4a shows the same object observed in both clear and noisy situations. 

Figure 4b demonstrates how the strong lighting source aboard an ROV can illuminate 

suspended particles in the water to create a noisy image. 

  
(a) (b) 

Figure 4. Images with visual noise. (a) The same object in a clear and noisy observation. (b) Example 

of the strong light source aboard the ROV creating noise from suspended particles. 

2.1.3. Objects of Different Forms 

Lastly, most objects visible underwater will come in many forms but may be 

damaged, partially buried, or biofouled. Figure 5a shows cans in different situations, 

presenting possible distinct designs; they are partially buried and show signs of 

biofouling. Figure 5b shows three possible forms of plastic bags where their malleable and 

light nature allows many possible shapes and presentations of the item. With certain 

shapes, a different angle can show vastly different types of plastics. Figure 5c shows two 

views of the same object taken several seconds apart as it floats past the stationary ROV. 

In the left image of Figure 5c, it is viewed with a flat face perpendicular to the camera. In 

the second image, it is rotated such that its flat face is directly pointing at the camera and 

presents a distinctly different shape. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Objects in different situations. (a) Three different variations of a can. (b) Different shapes 

of plastic bags. (c) The same object is from two angles with a vastly different apparent shape. 
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Considering the variation in marine litter images, it is key that any dataset used to 

train the models contains images with a wide array of combinations of the aforementioned 

situations for similar-looking objects. The TrashCAN dataset contains depictions of 

objects in the described situations. For model training preparation, the dataset is split into 

two subsets, i.e., training and validation subsets, using a script provided by [26] in the 

Microsoft common objects in context (COCO) format. The script randomly distributes the 

images between the two subsets with an 80–20% split between training and validation. 

The script also seeks to maintain this ratio as close as possible for all of the classes in the 

dataset. The split between the different classes can be seen in Table 1. 

Table 1. Split of training (Train) and validation (Val) subsets. 

Class Name Train Instances Validation Instances Total Instances 
Ratio 

(Train–Val) 

animal_crab 246 63 309 0.80–0.20 

animal_eel 259 84 343 0.76–0.24 

animal_etc 170 65 235 0.72–0.28 

animal_fish 611 153 764 0.80–0.20 

animal_shells 188 61 249 0.76–0.24 

animal_starfish 262 136 398 0.66–0.34 

plant 405 102 507 0.80–0.20 

rov 2633 684 3447 0.76–0.20 

trash_bag 727 181 910 0.80–0.20 

trash_bottle 100 26 126 0.79–0.21 

trash_branch 268 68 336 0.80–0.20 

trash_can 366 93 461 0.79–0.20 

trash_clothing 65 17 82 0.79–0.21 

trash_container 407 103 510 0.80–0.20 

trash_cup 47 12 59 0.80–0.20 

trash_net 94 33 130 0.72–0.25 

trash_pipe 114 42 156 0.73–0.27 

trash_rope 88 29 117 0.75–0.25 

trash_snack_wrapper 67 17 84 0.80–0.20 

trash_tarp 90 31 122 0.74–0.25 

trash_unknown_instance 2203 553 2761 0.80–0.20 

trash_wreckage 130 35 165 0.79–0.21 

2.2. Machine Learning Models 

To detect marine litter submerged or sunk in the seabed, two models were chosen for 

training, i.e., the Mask R-CNN and YOLACT. These models use neural networks to parse 

images and identify objects in them. However, they take different approaches, where these 

approaches affect their computational requirements and their accuracy. Two metrics were 

used in evaluating the accuracy of the models, i.e., the mean average precision (𝑚𝐴𝑃) and 

intersection over union (IoU). The details of the Mask R-CNN and YOLACT will be 

described in the subsequent subsections. 

2.2.1. The Mask R-CNN 

The Mask R-CNN is a neural-network-based object instance segmentation 

framework extended from the Faster R-CNN [26]. It was first published in [24] and has 

the capability to predict object masks (i.e., detection and segmentation) in parallel to the 
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classification capabilities of the Faster R-CNN. The detection and segmentation tasks by 

the Mask R-CNN framework are carried out in the mask head, whereas the classification 

task by the original Faster R-CNN is executed in the detection head, as shown in Figure 6.  

The Mask R-CNN uses the RolAlign operation in extracting a small feature map from 

each RoI in the detection and segmentation tasks. The Mask R-CNN executes a parallel 

mask branch (mask head), which is a small fully convolutional network (FCN), for 

predicting segmentation masks in each region of interest (RoI) through pixel-wise 

segmentation mask prediction. It allows for pixel-to-pixel alignment and the preservation 

of spatial location by foregoing quantisation during the RoI detection step. On the other 

hand, the original Faster R-CNN (denoted as the detection head in Figure 6) performs the 

bounding box and classification regression. After both branches were complete, the data 

from the classification branch were combined with the main segmentation branch to 

assign a class to the object mask. The additional mask branch presents a small 

computational overhead to the Faster R-CNN. However, it is noted that the Mask R-CNN 

is still limited by the speed of the first FCN in the model [24]. 

 

Figure 6. The Mask R-CNN framework showing the parallel second stage [27]. 

When this research was conducted, the Mask R-CNN outperformed all of the other 

single-model instance segmentation solutions trained on Microsoft’s COCO dataset, as 

reported in [23]. It serves as a benchmark for instance segmentation models and, for this 

paper, served as a baseline to YOLACT. The primary benefit of using the Mask R-CNN is 

its accuracy. However, this accuracy comes at a price, i.e., the Mask R-CNN is a very 

heavyweight model that uses a large amount of memory during both training and usage. 

It processes images at a rate of 5 frames per second (fps), even though it was run on a 

Nvidia Tesla M40 GPU, a high-performance GPU [24]. It is noted that 5 fps is too slow for 

real-time applications, as real-time image analysis is generally considered to be at speeds 

of 30 fps or greater [20]. The slow speed of the Mask R-CNN, therefore, limits it to the 

post-capture analysis of videos and images with the advantage of higher accuracy. 

2.2.2. YOLACT 

YOLACT is an architecture that can perform real-time instance segmentation. 

YOLACT takes inspiration from models such as YOLO and Single-Shot Detectors (SSD) 

that use single-stage bounding box object detection to give them advantages over the 

Mask R-CNN’s two-stage architecture [20]. Furthermore, instance segmentation used in 

the Mask R-CNN is a much more complex task than bounding box detection used in 

YOLACT. As shown in Figure 6, the Mask R-CNN is an inherently sequential task as it 

uses a two-stage instance segmentation model. Thus, it depends on feature localisation to 
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produce object masks by repooling bounding box features to feed them into a mask 

detection layer; see Figure 6.  

To circumvent the inherent difficulty of optimisation, YOLACT removes an explicit 

localisation step using two parallel tasks to perform instance segmentation, as shown in 

Figure 7. The first task is to generate a set of non-local prototype masks in the Protonet 

step over the entire image, whereas the second task is to predict a set of linear combination 

coefficients per instance. Instance segmentation is then performed by linearly combining 

the prototype masks with the predicted coefficients in each instance. Through this process, 

the neural network can localise the masks instead of using an explicit step to do so, as in 

the Mask R-CNN. 

The parallel stages allow for greatly increased speed over traditional two-step 

approaches, with capabilities of processing images at an fps greater than 30. This does 

come with a minor drop in accuracy, but it is still capable of producing competitive results 

[20]. 

 

Figure 7. YOLACT architecture [20]. 

2.3. Training 

One key aspect of instance segmentation training is that it requires an extremely large 

dataset to train on, i.e., greater than 100k images. However, the TrashCAN dataset is not 

large enough to fully train a model from scratch. The common solution to this problem is 

to take advantage of transfer learning, as shown in Figure 8. Transfer learning makes use 

of a pre-trained model that has already been fully trained on a general dataset. This pre-

trained model contains the weights to differentiate objects from the background, 

distinguish one object from another, and identify individual overlapping objects. To train 

on a smaller dataset, the bottom layers of the pre-trained model are locked while keeping 

the top few layers unlocked. The top layers are then trained on the dataset, refining the 

pre-trained model to the dataset as desired [28]. 

In this paper, both the Mask R-CNN and YOLACT models were trained on dual 

Nvidia RTX A4000 GPUs. It is important to note that the optimal iterations and learning 

rate for YOLACT were calculated differently to the Mask R-CNN and that both models 

were trained to completion while avoiding overfitting. 
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Figure 8. Transfer learning. 

2.3.1. Mask R-CNN 

The implementation used to train the Mask R-CNN in this paper followed the 

method given by Ahmed Gad [29]. It replicates the Mask R-CNN architecture in [24] but 

is implemented in Google’s Tensorflow 2.2. The implementation by Ahmed Gad [29] is an 

adaptation of the implementation created by Matterport for Tensorflow 1.0 [30]. The 

model is trained from model weights that are pre-trained on the COCO2017 dataset using 

a ResNet101 backbone. When training the model, the bottom four ResNet stages are 

locked, except when fine-tuning the model. The model is trained at a learning rate of 0.001 

and is reduced by a factor of 10 when fine-tuning. The Mask R-CNN model resizes images 

to 1024 × 1024 pixels and images that are not square are padded with black bars. The 

training runs for 40,000 iterations but begins to overfit at 30,000 iterations. So, the model 

version at 30,000 iterations was used for evaluation. 

2.3.2. YOLACT 

The implementation used to train the YOLACT model in this paper followed the 

technique given in [20]. Like the Mask R-CNN, it is also trained from model weights that 

are pre-trained on the COCO2017 dataset. A ResNet101 backbone is also used for this 

model. During training, the bottom layer of the prototype mask generator is locked. The 

model is trained with a learning rate of 0.001, with the learning rate being reduced by a 

factor of 10 at 280,000, 360,000, and 400,000 iterations, respectively. Images are resized to 

550 × 550 pixels for training without maintaining the aspect ratio. During the evaluation, 

the images are resized to 550 × 550 pixels, and then the generated masks are upscaled to 

match the full-size image. The training is stopped at 452,000 iterations when the model 

begins to overfit. 

2.4. Evaluation 

Both the Mask R-CNN and YOLACT models were trained and evaluated on the same 

training and validation set. The evaluation was conducted using the standard COCO style 

metrics of average precision (𝐴𝑃) at different intersections over union (IoU) thresholds. 

The 𝐴𝑃 incorporates three key values, i.e., IoU, precision and recall, as described in the 

following sections. 

2.4.1. Intersection over Union (IoU) 

The calculation for IoU is shown in Figure 9 for the case of instance segmentation. 

The IoU is obtained by dividing the area of intersection by the area of union, as shown 

where the area of intersection is the intersection between the pixels bounded by the 

annotated mask and detected mask, whereas the area of union is the union between the 

pixels of both aforementioned masks. A high IoU (close to 1.0) indicates a predicted mask 

closely resembling the annotated mask. Using the IoU metric allows evaluators to 

distinguish between four types of results, i.e., true positives, true negatives, false positives, 

and false negatives. A predicted mask with a different class to the annotated mask would 

have an IoU of 0.0, as there would be no overlapping. 
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Figure 9. Graphic depicting IoU. 

2.4.2. Precision (P) 

The precision is calculated as follows, 

 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,  (1) 

where 𝑃  denotes precision, 𝑇𝑃  denotes the true positives, and 𝐹𝑃  denotes the false 

positives. Precision is calculated with an IoU threshold. For example, with an IoU 

threshold of 0.5, a predicted mask with an IoU of 0.8 would be considered as a true 

positive, while a mask with an IoU of 0.4 will be considered as a false positive. It is to be 

noted that AP does not equate to the mean of precisions. The calculation for AP involves 

an additional metric, i.e., recall. 

2.4.3. Recall (R) 

Recall is a metric that describes the ratio between 𝑇𝑃 and all predictions, given as 

 𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,  (2) 

where 𝑅  denotes recall, 𝑇𝑃  denotes the true positives, and  𝐹𝑁  denotes the false 

negatives. Precision and recall are then plotted on a curve using each IoU threshold 

ranging from 0.0 to 1.0, as shown in Figure 10. 

 

Figure 10. Precision–recall curve [31]. 

2.4.4. Accuracy Metrics—Average Precision (𝐴𝑃) and Mean Average Precision (𝑚𝐴𝑃) 

To calculate average precision for a given IoU threshold, the area under the curve in 

Figure 10, up to the desired threshold, is calculated as 

IoU  
Area of Intersection

Area of Union

Annotated 
Mask

Detected 
Mask

Annotated
Mask

Detected
Mask
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𝐴𝑃|𝐼𝑜𝑈=𝑡ℎ𝑟𝑒𝑠 =  ∫ 𝑃(𝑅)𝑑𝑅
𝑅𝑡ℎ𝑟𝑒𝑠

0

,  (3) 

where 𝑡ℎ𝑟𝑒𝑠  is the IoU threshold and 𝑅𝑡ℎ𝑟𝑒𝑠  is the upper limit of the IoU threshold. 

Equation (3) shows that a high IoU threshold will result in a lower 𝐴𝑃 score as it will take 

a smaller area under the curve. 

Once the 𝐴𝑃  has been obtained, the 𝑚𝐴𝑃  is calculated. The 𝑚𝐴𝑃  is a metric 

proposed in the COCO2017 Evaluation Challenge which has ten IoU thresholds ranging 

from 0.50 to 0.95, with a step size of 0.05. To calculate 𝑚𝐴𝑃 , the 𝐴𝑃  must first be 

calculated for each class, at each IoU threshold, and then the average of all classes at all 

thresholds is taken. This typically results in an 𝑚𝐴𝑃 of approximately 0.30 for a model 

well-trained on the COCO dataset. The reason it seems so low is that the COCO dataset is 

a complex dataset with over 80 classes [27]. 

When evaluating the model in this paper, the evaluation was run on two differently 

performing GPUs, i.e., the higher-performing Nvidia Quadro A4000 and the lower-

performing Nvidia GTX 1050 Ti, for a comparison between a machine-learning-optimised 

GPU and a lower-power GPU. Both evaluations arrived at similar results, as they used the 

same model weights and the same validation set. The only difference between the two 

evaluations was the computational time taken. This shows that a lower-power and less-

costly GPU could be placed on board an ROV for image detection without much loss in 

accuracy. 

3. Results 

3.1. Qualitive Analysis 

The sample results comparing both the Mask R-CNN and YOLACT models are 

presented in Figure 11. The predicted masks are denoted by the rectangular bounding 

boxes in each image. The images in Figure 11 show that the masks and classification are 

similar, but with some key differences. The masks generated by the Mask R-CNN are 

more irregular (denoted by the uneven borders in Figure 11a,b) when compared to the 

counterparts generated by YOLACT, and do not necessarily cover the entire object; hence, 

they show a slightly lower IoU. This can be tied back to the pre-trained model and how it 

interacts with transfer learning. The pre-trained models for both the Mask R-CNN and 

YOLACT were trained on COCO2017, which has many classes. However, most of the 

images in the COCO2017 dataset show relatively good lighting and were taken during the 

daytime. In the present case, the worst lighting conditions of the TrashCAN dataset 

present a challenge for the sequential architecture of the Mask R-CNN. 

The lack of clarity around the edges of the mask generated by lower light levels is 

likely caused by the RoIAlign layer not being able to accurately localise RoIs. This is 

because the RoIAlign layer is locked during training, which results in the mask layer 

‘looking in the wrong place’ by the time it gets to the mask generation step. On the other 

hand, YOLACT, which lacks an explicit feature localisation step, can circumvent this issue, 

as any errors in the prototype mask generator due to the lower light levels can be lightly 

corrected when combined with the linear combination coefficients in the last step, as 

shown in Figure 7 [20]. To improve the mask accuracy of the Mask R-CNN with the 

existing pre-trained weights, it is likely that it would require modification to the 

architecture of the RoIAlign step for it to account for softer edges on objects caused by low 

light levels. An alternative solution to this issue is to make use of a pre-trained model that 

has been trained on lower-light-level images. The optimal solution would be to have a 

model trained exclusively on underwater images. 
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Figure 11. Sampled results comparing both models displaying the class and IoU of the predicted 

mask (Mask R-CNN labels have been overlayed for better viewing). 

Figure 12 demonstrates the differences in classification between YOLACT and the 

Mask R-CNN. The Mask R-CNN can detect the individual instances and label them 

correctly, whereas YOLACT classifies all objects as large unknown instances. Another 

thing to note is that in the Mask R-CNN’s detection, there is an additional instance 

(highlighted in yellow in Figure 12b) that is detected but not included in the annotations. 

When detecting across the dataset, this type of ‘phantom’ detection around the border of 

the image is occasional and typically occurs in images with darker borders, such as the 

one found in Figure 12. The likely cause of this is the large number of images in the dataset 

with portions of the ROV visible, or cases where the ROV parts are partially obscured by 

the low light level. This can be mitigated by enriching the dataset using image 

augmentation of the original images by reducing the proportion of images containing the 

ROV. 

 Annotation Mask R-CNN YOLACT 

(a
) 

   

(b
) 

   

Figure 12. Comparison between the annotated mask and the detected mask for selected images. (a) 

Example image of a singular plastic bag in the image. (b) Example image with multiple objects. 

3.2. Quantitative Analysis 

3.2.1. Comparison between Mask R-CNN and YOLACT 

The performance of the Mask R-CNN and YOLACT in accurately classifying marine 

underwater litter from the TrashCAN dataset is summarised in Table 2. 
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The 𝐴𝑃 metric was used to evaluate the performance of the models. The results show 

that the Mask R-CNN outperforms YOLACT in the accuracy metrics, as the Mask R-CNN 

is a much more computationally expensive model. YOLACT’s lightweight structure using 

the parallel stages of mask prototypes and coefficients is more limited by the implied 

nature of its calculation. However, it is interesting to note that both models outperformed 

their pre-trained models’ performance on the COCO dataset. The 𝑚𝐴𝑃 of the original 

pre-trained model weights on the COCO dataset is widely considered to be the most 

cutting-edge in general-use instance segmentation [20]. Achieving metrics that exceed 

those of the pre-trained weights in a specialised dataset can be explained by the fact that 

the TrashCAN dataset has considerably fewer classes than the COCO dataset. Therefore, 

the model has fewer possibilities of incorrectly classifying an object as the wrong class, 

thus improving its 𝑚𝐴𝑃. 

The difference in the speed of the models is also clearly seen in Table 3. With YOLACT 

taking advantage of its parallel stages, it is capable of being over three times faster on the 

lower-end GPU and six times faster on a machine-learning-optimised GPU, while only 

trading off a comparatively smaller amount of accuracy. The difference in the increased 

speed of YOLACT between the two GPUs is likely a result of differing bottlenecks between 

the two GPUs. 

Table 2. Instance segmentation evaluation results. 

Property Mask R-CNN YOLACT 

Backbone ResNet-101 Resnet-101 

𝒎𝑨𝑷 0.377 0.365 

𝑨𝑷𝑰𝒐𝑼 = 𝟎.𝟓𝟎 0.588 0.563 

𝑨𝑷𝑰𝒐𝑼 = 𝟎.𝟕𝟓 0.425 0.413 

𝑨𝑷𝑰𝒐𝑼 = 𝟎.𝟗𝟎 0.103 0.096 

Original 𝒎𝑨𝑷 of pre-trained weights on COCO2017 

evaluation 
0.361 0.298 

Table 3. Speed comparison of both models on two graphic cards. 

GPU Mask R–CNN YOLACT 

Nvidia GTX 1050 Ti (lower-end GPU) 1.6 FPS 5.1 FPS 

Nvidia Quadro P4000 (higher-end GPU) 6.1 FPS 41.2 FPS 

3.2.2. Comparison to Other Models 

The two models studied in this paper were compared to other published results of 

models trained on the TrashCAN dataset as shown in Table 4. The accuracy results of the 

present method are in line with previously published results, particularly in terms of the 

𝐴𝑃𝐼𝑜𝑈=50  metric. These publications did not publish data about the speed of the trained 

models, but it can be inferred that they would have similar speeds to the Mask R-CNN 

results of this paper. 

It is worth noting that there are limited published results that meet the requirements 

for a fair comparison to the results published in this paper. The majority of existing 

publications study the object detection of many types of marine litter, i.e., shore and 

floating, and only a handful are related to instance segmentation models on underwater 

litter [19]. 

Table 4. Comparison to other published results. 

Model mAP AP50 

YOLACT (present method) 0.365 0.588 

Mask R-CNN (present method) 0.377 0.563 

Mask R-CNN [28] 0.300 0.553 
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Modified Mask R-CNN [27] 0.351 0.592 

4. Conclusions 

This paper presented two different instance segmentation methodologies for the 

detection of marine underwater litter, i.e., YOLACT and the Mask R-CNN. YOLACT, 

being a lightweight model that can run quickly on lower-end hardware, has the potential 

to be deployed in a fleet of smart AUVs for the automated collection of marine litter. The 

low computational power requirement in YOLACT requires less costly hardware and a 

lower energy requirement, thereby prolonging the battery life and allowing longer litter 

detection duration in real-time. On the other hand, the study from the Mask R-CNN 

showed a higher 𝑚𝐴𝑃 , thus indicating higher accuracy in marine litter detection. The 

Mask R-CNN is more suitable to be used in surveying. The high computational 

requirements of the Mask R-CNN can be overcome by processing the imagery on a land-

based data centre, where parallel computing can be used to increase the effective frame 

rate. The Mask R-CNN has an advantage over YOLACT as it allows for trawling, which 

is an indiscriminate process to detect marine flora and fauna. With the detection of marine 

flora and fauna, these populations can be protected during the clean-up process. The 

instance segmentation techniques presented in this paper served as an important step in 

cleaning up the ocean, as the results shown by YOLACT and the Mask R-CNN are 

promising and can be used in marine litter clean-up. Future research with larger datasets 

and better-optimised models will be able to achieve more accurate results. 
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