
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 374 (2023) 154–190
www.elsevier.com/locate/jde

Hybrid stochastic functional differential equations with 

infinite delay: Approximations and numerics

Guozhen Li a, Xiaoyue Li b,a, Xuerong Mao c,∗, Guoting Song d

a School of Mathematics and Stochastics, Northeast Normal University, Changchun, Jilin, 130024, China
b School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China

c Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
d Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received 27 March 2023; revised 16 May 2023; accepted 17 July 2023

Abstract

This paper is to investigate if the solution of a hybrid stochastic functional differential equation (SFDE) 
with infinite delay can be approximated by the solution of the corresponding hybrid SFDE with finite delay. 
A positive result is established for a large class of highly nonlinear hybrid SFDEs with infinite delay. Our 
new theory makes it possible to numerically approximate the solution of the hybrid SFDE with infinite 
delay, via the numerical solution of the corresponding hybrid SFDE with finite delay.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Many dynamic systems in sciences and industry do not only depend on their current state but 
also past states due to unavoidable time delays, while they are often subject to various system 
parameter uncertainties and environmental noise. Moreover, random switching takes place fre-
quently in a finite set resulting in the systems being hybrid, in which continuous dynamics and 
discrete events coexist and interact. Hybrid stochastic functional differential equations (SFDEs) 
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have been used to model such dynamic systems. There are two categories: (A) hybrid SFDEs 
with finite delays; (B) hybrid SFDEs with infinite delays. There is a huge literature on type-(A) 
SFDEs (see, e.g., [5,6,10,20,23,26,34]) but much less on (B). This is certainly not because type-
(B) SFDEs have no use in applications but due to the fact that it is much harder to study (B) 
than (A). As a matter of fact, long memory, also called long-range dependence or persistence, is 
a phenomenon that occurs in many fields including ecology, biology, econometrics, linguistics, 
hydrology, climate, DNA sequencing. It is due to the demand from the research in these fields, 
research on type-(B) SFDEs has been advanced quickly (see e.g., [14,15,28,29,33]). However, 
there are many open problems to be solved in order to meet the need of applications.

One of the open problems is: how to obtain numerical solutions to type-(B) SFDEs? In order 
to introduce the main ideas in this paper clearly, it is necessary to distinguish numerical solu-
tions from approximate ones. By numerical solutions we will mean they can be simulated by 
computers. For example, the Euler-Maruyama (EM) solutions and Milstein solutions can be sim-
ulated by computers using, e.g., the MATLAB programs in [8]. However, approximate solutions 
may not be simulated. For example, the continuous approximate solutions of type-(B) SFDEs to 
be defined in Section 3 below are theoretical approximate solutions which do not have explicit 
forms in general; the EM solutions proposed by Asker in [1] cannot be simulated by computer as 
they need infinitely-many discrete-time initial data which any computer could not cope with. In 
other words, they are in fact approximate ones. In this paper we will tackle this open problem by 
bridging the gap between type-(B) SFDEs and type-(A) SFDEs. More precisely, we will estab-
lish new approximation theory between type-(B) and type-(A) SFDEs. Based on our new theory, 
type-(B) SFDEs can be approximated by the corresponding type-(A) SFDEs (Step 1). Applying 
numerical methods to type-(A) SFDEs, we can obtain the numerical solutions approximating the 
corresponding type-(A) SFDEs (Step 2). By this bridge, we also yield the numerical solutions to 
type-(B) SFDEs. Our approach can be illustrated as follows:

type-(B) SFDEs ⇐Step 1 type-(A) SFDEs ⇐Step 2 numerical solutions.

To see our approach does not only work but is also useful, we need to make four points clear:

• There are existing numerical methods on type-(A) SFDEs (see, e.g., [31,32]), though the 
numerical theory in this area is still developing. In detail, Li and Hou [12] discussed the 
EM method for linear hybrid stochastic delay differential equations (SDDEs). Wu and Mao 
[30] established the strong mean square convergence of the EM method for neutral SFDEs 
under the linear growth condition. Recently, numerical methods for superlinear type-(A) 
SFDEs have been developing quickly. For examples, under the generalized Khasminskii-
type condition in terms of Lyapunov functions, Li et al. [13] proved that the EM numerical 
solutions converge to the exact ones in probability in any finite interval; Guo et al. [7] and 
Song et al. [25] obtained the strong convergence of the truncated EM numerical solutions for 
type-(A) SDDEs; Zhang et al. [35] extended the truncated EM method to type-(A) SFDEs; 
Dareiotis et al. [4] extended the tamed EM to type-(A) SDDEs driven by Lévy noise.

• There are a number of papers where type-(B) SFDEs have been used to model population 
systems [14,15]. To illustrate their results, the Milstein and EM methods were used respec-
tively to perform some computer simulations but there is no explanation on whether the 
numerical methods are applicable to their superlinear type-(B) SFDEs. In [21], the authors 
used the simulations on type-(A) SFDEs to illustrate the results on type-(B) SFDEs but once 
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again there is lack of theoretical support. We hence see there is an urgent need to rigorously 
establish the new approximation theory between type-(B) and type-(A) SFDEs.

• There are a couple of papers where discrete-time solutions were proposed to re-produce the 
stability of some very special type-(B) SFDEs. For example, Asker [1] presented the EM 
solutions of a neutral SFDE with infinite delays under the globally Lipschitz condition and 
examined the stability in distribution of numerical solutions. It is noted that the stability anal-
ysis is theoretical and does not need to compute the EM solutions numerically. As mentioned 
above, the EM solutions there are only approximate ones.

• Similar situation has happened to the stability analysis of numerical methods for determinis-
tic functional differential equations with infinite delays. Song and Baker [27] discretized the 
deterministic Volterra integro-differential equation with infinite delays using the θ method 
and proved that for a small bounded initial function and a small step size the θ method dis-
plays the stability property of the underlying equation. The stability analysis of numerical 
methods can also be found in [2,3].

Our main contributions can therefore be highlighted as follows:

• A novel approximation method is proposed by the truncation technique. More precisely, for 
a given type-(B) SFDE, we define a corresponding truncated SFDE with finite time delay k. 
The general approximation theory is established by showing that the solution of the truncated 
SFDE approximates the solution of the given type-(B) SFDE in the qth moment provided k
is sufficiently large.

• Various approximation principles, including the exponential approximation rate, are given 
for a number of important type-(B) SFDEs.

• Numerical solutions of the truncated SFDE are shown to be close to the solution of the given 
type-(B) SFDE for sufficiently large k and small numerical step size.

• For the global Lipschitz case the convergence error between the EM numerical solution of 
type-(A) SFDE and the exact solution of type-(B) SFDE is given.

The rest of the paper is organized as follows: Section 2 gives some necessary notions and 
assumptions which ensure the well-posedness of the solutions of type-(B) SFDEs. In section 3, 
the corresponding truncated SFDE with finite time delay k is defined for a given type-(B) SFDE, 
while both asymptotic approximation Theorem 3.4 and exponential approximation Theorem 3.7
are established. Section 4 discusses a number of important type-(B) SFDEs to which the approxi-
mation theory established in Section 3 is applicable. Section 5 shows that the numerical solutions 
of the truncated SFDE are close to the solution of the given type-(B) SFDE for sufficiently large 
k and small numerical step size. Two examples with computer simulations are discussed to illus-
trate the theory.

2. Preliminaries

Throughout this paper, unless otherwise specified, we let Rn be the n-dimensional Euclidean 
space and B(Rn) denote the family of all Borel measurable sets in Rn. Let R+ = [0, ∞) and 
R− = (−∞, 0]. If x ∈Rn, then |x| is its Euclidean norm. If A is a vector or matrix, its transpose 
is denoted by AT . If A is a matrix, we let |A| = √

trace(AT A) be its trace norm and ‖A‖ =
max{|Ax| : |x| = 1} be the operator norm. If A is a symmetric matrix (A = AT ), denote by 
λmin(A) and λmax(A) its smallest and largest eigenvalues, respectively. By A > 0 and A ≥ 0, we 
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mean A is positive and non-negative definite, respectively. If both a, b are real numbers, then 
a ∧ b = min{a, b} and a ∨ b = max{a, b}. Let N+ denote the set of nonnegative integers.

We let (�, F , {Ft }t≥0, P ) be a complete probability space with a filtration {Ft}t≥0 satisfying 
the usual conditions (i.e. it is right continuous and increasing while F0 contains all P -null sets). 
For a subset �̄ of �, 1�̄ denotes its indicator function. Let B(t) = (B1(t), · · · , Bm(t))T be an 
m-dimensional Brownian motion defined on the probability space. Let θ(t), t ≥ 0, be a right-
continuous irreducible Markov chain on the probability space taking values in a finite state space 
S = {1, 2, · · · , N} with generator � = (γij )N×N given by

P {θ(t + �) = j |θ(t) = i} =
{

γij� + o(�) if i 
= j,

1 + γii� + o(�) if i = j,

where � > 0. Here γij ≥ 0 is the transition rate from i to j if i 
= j while γii = − 
∑

j 
=i γij . We 
assume that the Markov chain θ(·) is independent of the Brownian motion B(·).

Denote by C(R−; Rn) the family of continuous functions ϕ : R− → Rn. Other families e.g. 
C(Rn ×R; R+) can be defined obviously. Fix a positive number r and define the phase space Cr

with the fading memory by

Cr =
{

ϕ ∈ C(R−;Rn) : sup
−∞<u≤0

eru|ϕ(u)| < ∞
}

(2.1)

with its norm ‖ϕ‖r = sup−∞<u≤0 eru|ϕ(u)|. It is well known that Cr under the norm ‖ · ‖r forms 
a Banach space (see [9] for more details on this phase space).

Moreover, denote by P0 the family of probability measures μ on R−, while for each b > 0, 
define

Pb = {μ ∈P0 :
0∫

−∞
e−buμ(du) < ∞}.

Furthermore, set μ(b) := ∫ 0
−∞ e−buμ(du) for each μ ∈ Pb . Please note that μ(b) is a positive 

number but μ(·) is a measure. Clearly, Pb1 ⊂ Pb ⊂ P0 if b1 > b > 0. Moreover, if μ ∈Pb1 , then 
μ(b) is a strictly increasing and continuous function of b in [0, b1].

Consider a hybrid stochastic functional differential equation (SFDE) with infinite delay of the 
form

dx(t) = f (xt , θ(t), t)dt + g(xt , θ(t), t)dB(t) (2.2)

on t ≥ 0 with the initial data

x0 = ξ ∈ Cr and θ(0) = i0 ∈ S. (2.3)

Here f : Cr ×S×R+ → Rn and g : Cr ×S×R+ → Rn×m are Borel measurable and, moreover, 
x(t) is an Rn-valued stochastic process on t ∈ (−∞, ∞) while xt = {x(t + u) : u ∈ R−} is a Cr -
valued stochastic process on t ≥ 0. We impose the local Lipschitz condition on the coefficients 
f and g.
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Assumption 2.1. For each number h > 0, there is a positive constant K̄h such that

|f (ϕ, i, t) − f (φ, i, t)| ∨ |g(ϕ, i, t) − g(φ, i, t)| ≤ K̄h‖ϕ − φ‖r (2.4)

for those ϕ, φ ∈ Cr with ‖ϕ‖r ∨ ‖φ‖r ≤ h and all (i, t) ∈ S ×R+. Moreover,

sup
t∈R+

(|f (0, i, t)| ∨ |g(0, i, t)|) < ∞, ∀ i ∈ S.

We observe that Assumption 2.1 only guarantees the existence of the unique maximal local 
solution x(t) of the SFDE (2.2) on t ∈ (−∞, σe), where σe is known as the explosion time (see, 
e.g., [17,28,29,33]). To have a global solution (namely, σe = ∞ a.s.), we need some additional 
conditions. The classical condition is the linear growth condition (see, e.g., [11,16,22]). How-
ever, we will impose a much more general Khasminskii-type condition (see, e.g., [19]). For this 
purpose, we need a couple of new notations. Let C(Rn; R+) denote the family of all continu-
ous functions from Rn to R+. Denote by C2,1(Rn × S ×R+; R+) the family of all continuous 
non-negative functions V (x, i, t) defined on Rn ×S×R+ such that for each i ∈ S, they are con-
tinuously twice differentiable in x and once in t . Given a function V ∈ C2,1(Rn ×S×R+; R+), 
we define the functional LV : Cr × S ×R+ → R by

LV (ϕ, i, t) = Vt (ϕ(0), i, t) + Vx(ϕ(0), i, t)f (ϕ, i, t)

+ 1

2
trace

(
g(ϕ, i, t)T Vxx(ϕ(0), i, t)g(ϕ, i, t)

) +
N∑

j=1

γijV (ϕ(0), j, t),

where

Vt (x, i, t) = ∂V (x, i, t)

∂t
, Vx(x, i, t) =

(∂V (x, i, t)

∂x1
, · · · ,

∂V (x, i, t)

∂xn

)
,

Vxx(x, i, t) =
(∂2V (x, i, t)

∂xi∂xj

)
n×n

.

Let us emphasize that LV is defined on Cr × S ×R+ while V on Rn × S ×R+. The definition 
of LV is purely based on the following generalized Itô formula (see, e.g., [20, Theorem 1.45 on 
p.48])

dV (x(t), θ(t), t) = LV (xt , θ(t), t)dt + dM(t), (2.5)

where M(t) is a local martingale with M(0) = 0 (whose form is of no use in this paper). More-
over, for each positive number b, define

Wb =
{
W ∈ C(Rn ×R;R+) : sup

(x,u)∈Rn×R−

W(x,u)

1 + |x|b < ∞
}
.

Please note that although W is defined on Rn × R, we only need W(x, u)/(1 + |x|b) to be 
bounded on (x, u) ∈Rn ×R−. It is also easy to see that if W ∈ Wb, then
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sup
−∞<u≤0

erbuW(ϕ(u),u) < ∞, ∀ϕ ∈ Cr . (2.6)

Moreover, denote by K∞ the family of non-decreasing functions β :R+ → R+ such that β(v) →
∞ as v → ∞. We can now form the generalized Khasminskii-type condition.

Assumption 2.2. There are positive constants b1, b2, K , functions V ∈ C2,1(Rn ×S×R+; R+), 
W1 ∈Wb1 , W2 ∈ Wb2 , β ∈K∞, and probability measures μ1 ∈ Prb1 , μ2 ∈ Prb2 , such that

β(|x|) ≤ inf
0≤t<∞W1(x, t), ∀x ∈ Rn, (2.7)

W1(x, t) ≤ V (x, i, t), ∀(x, i, t) ∈Rn × S ×R+, (2.8)

and

LV (ϕ, i, t) ≤ K + K

0∫
−∞

W1(ϕ(u), t + u)μ1(du)

− W2(ϕ(0), t) +
0∫

−∞
W2(ϕ(u), t + u)μ2(du) (2.9)

for all (ϕ, i, t) ∈ Cr × S ×R+.

The following theorem forms the foundation for this paper.

Theorem 2.3. Under Assumptions 2.1 and 2.2, the SFDE (2.2) with the initial data (2.3) has a 
unique solution x(t) on t ∈ (−∞, ∞), which has the property that

sup
0≤t≤T

EW1(x(t), t) ≤ CT , ∀T > 0, (2.10)

where CT is a positive constant dependent on T .

Proof. To show the unique maximal local solution x(t) on t ∈ (−∞, σe) is global, we need to 
show σe = ∞ a.s. For each sufficiently large number h ≥ ‖ξ‖r with β(h) > 0, define the stopping 
time

τh = σe ∧ inf{t ∈ [0, σe) : |x(t)| ≥ h},

where throughout this paper we set inf∅ = ∞ (as usual ∅ stands for the empty set). Obviously, 
τh is increasing in h and τh ≤ σe a.s. It is therefore sufficient if we could show limh→∞ τh = ∞
a.s. Fix T > 0 arbitrarily. By the generalized Itô formula (see, e.g., [20]) and Assumption 2.2, 
we can easily obtain that
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EW1(x(t ∧ τh), t ∧ τh) ≤ K1 + KE

t∧τh∫
0

0∫
−∞

W1(x(s + u), s + u)μ1(du)ds

−E

t∧τh∫
0

W2(x(s), s))ds +E

t∧τh∫
0

0∫
−∞

W2(x(s + u), s + u)μ2(du)ds (2.11)

for t ∈ [0, T ], where K1 = V (ξ(0), i0, 0) +KT . Due to W1 ∈ Wb1 , there exists a constant K̂ > 0
such that

W1(x,u) ≤ K̂(1 + |x|b1), (x,u) ∈ Rn ×R−. (2.12)

This together with the fact ξ ∈ Cr implies

sup
−∞<u≤0

erb1uW1(ξ(u),u) ≤ K̂ sup
−∞<u≤0

erb1u(1 + |ξ(u)|b1) ≤ K̂(1 + ‖ξ‖b1
r ) =: K2. (2.13)

By the Fubini theorem and property (2.12), we derive that

t∧τh∫
0

0∫
−∞

W1(x(s + u), s + u)μ1(du)ds

=
t∧τh∫
0

( −s∫
−∞

W1(x(s + u), s + u)μ1(du) +
0∫

−s

W1(x(s + u), s + u)μ1(du)
)

ds

≤
(

sup
−∞<u≤−s

erb1(s+u)W1(ξ(s + u), s + u)
) t∧τh∫

0

−s∫
−∞

e−rb1(s+u)μ1(du)ds

+
0∫

−(t∧τh)

t∧τh∫
−u

W1(x(s + u), s + u)dsμ1(du)

≤
(

sup
−∞<u≤0

erb1uW1(ξ(u),u)
)( t∧τh∫

0

e−rb1sds
)( 0∫

−∞
e−rb1uμ1(du)

)

+
0∫

−∞

t∧τh∫
0

W1(x(s), s)dsμ1(du)

≤(K2/rb1)μ
(rb1)
1 +

t∧τh∫
0

W1(x(s), s)ds. (2.14)

Similarly,
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t∧τh∫
0

0∫
−∞

W2(x(s + u), s + u)μ2(du)ds ≤ (K3/rb2)μ
(rb2)
2 +

t∧τh∫
0

W2(x(s), s)ds, (2.15)

where K3 = sup−∞<u≤0 erb2uW2(ξ(u), u). Substituting (2.14) and (2.15) into (2.11) yields

EW1(x(t ∧ τh), t ∧ τh) ≤ K4 + KE

t∧τh∫
0

W1(x(s), s)ds

≤ K4 + KE

t∫
0

EW1(x(s ∧ τh), s ∧ τh)ds,

where K4 = K1 + (K2/rb1)μ
(rb1)
1 + (K3/rb2)μ

(rb2)
2 . The well-known Gronwall inequality 

shows

EW1(x(t ∧ τh), t ∧ τh) ≤ CT , ∀t ∈ [0, T ], (2.16)

where CT = K4e
KT . This along with (2.7) implies that CT ≥ Eβ(|x(T ∧ τh)|) ≥ β(h)P (τh ≤

T ), namely

P (τh ≤ T ) ≤ CT

β(h)
. (2.17)

Consequently, limh→∞ P (τh ≤ T ) = 0, namely limh→∞ τh > T a.s. Since T > 0 is arbitrary, 
we must have limh→∞ τh = ∞ a.s. Letting h → ∞ in (2.16) we also get the required assertion 
(2.10). The proof is therefore complete. �

Let us highlight that property (2.17) shows that sup0≤t≤T |x(t)| ≤ h with probability at least 
1 −CT /β(h) for all sufficiently large h. In other words, the solution remains within the compact 
ball {x ∈Rn : |x| ≤ h} for the time interval [0, T ] with a large probability for all sufficiently large 
h. This nice property will play its important role when we discuss the approximate solutions in 
the next section.

3. Approximations by SFDEs with finite delay

3.1. Truncated SFDEs

The key aim of this paper is to approximate the solution of the SFDE (2.2) by the solution 
of an SFDE with finite delay. In turn, we can numerically approximate the solution of the SFDE 
with finite delay, and hence obtain the numerical solution of the original SFDE (2.2) with infinite 
delay.

We first need to design the corresponding SFDE with finite delay. For each positive integer k, 
define the truncation mapping πk : Cr → Cr by
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πk(ϕ)(u) =
{

ϕ(u) if − k ≤ u ≤ 0,

ϕ(−k) if u < −k.

Define the truncation functions fk : Cr × S ×R+ →Rn and gk : Cr × S ×R+ →Rn×m by

fk(ϕ, i, t) = f (πk(ϕ), i, t) and gk(ϕ, i, t) = g(πk(ϕ), i, t)

respectively. We observe that both fk and gk depend on the values of ϕ on the finite time interval 
[−k, 0] but not the values of ϕ on (−∞, −k). In other words, fk and gk can be regarded as 
functionals defined on C([−k, 0); Rn) × S ×R+. Consider the corresponding truncated SFDE

dxk(t) = fk(x
k
t , θ(t), t)dt + gk(x

k
t , θ(t), t)dB(t) (3.1)

on t ≥ 0 with the initial data xk
0 = ξ and θ(0) = i0. This is clearly an SFDE with finite delay.

We observe that the truncation functions fk and gk preserve Assumption 2.1 perfectly. In fact, 
for ϕ, φ ∈ Cr with ‖ϕ‖r ∨ ‖φ‖r ≤ h and (i, t) ∈ S ×R+,

|fk(ϕ, i, t) − fk(φ, i, t)| ∨ |gk(ϕ, i, t) − gk(φ, i, t)|
=|f (πk(ϕ), i, t) − fk(πk(φ), i, t)| ∨ |g(πk(ϕ), i, t) − gk(πk(φ), i, t)|
≤K̄h‖πk(ϕ) − πk(φ)‖r ≤ K̄h‖ϕ − φ‖r . (3.2)

We now show that they also preserve Assumption 2.2. In fact, for V ∈ C2,1(Rn ×S×R+; R+), 
the generalized Itô formula shows

dV (xk(t), θ(t), t) = LkV (xk
t , θ(t), t)dt + dMk(t),

where Mk(t) is a local martingale with Mk(0) = 0 and LkV : Cr × S ×R+ →R is defined by

LkV (ϕ, i, t) = Vt(ϕ(0), i, t) + Vx(ϕ(0), i, t)fk(ϕ, i, t)

+ 1

2
trace

(
gk(ϕ, i, t)T Vxx(ϕ(0), i, t)gk(ϕ, i, t)

) +
N∑

j=1

γijV (ϕ(0), j, t).

Under Assumption 2.2, we then derive that

LkV (ϕ, i, t) = Vt (πk(ϕ)(0), i, t) + Vx(πk(ϕ)(0), i, t)f (πk(ϕ), i, t)

+ 1

2
trace

(
g(πk(ϕ), i, t)T Vxx(πk(ϕ)(0), i, t)g(πk(ϕ), i, t)

) +
N∑

j=1

γijV (πk(ϕ)(0), j, t)

≤ K + K

0∫
W1(πk(ϕ)(u), t + u)μ1(du)
−∞
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− W2(ϕ(0), t) +
0∫

−∞
W2(πk(ϕ)(u), t + u)μ2(du). (3.3)

We can therefore show the following theorem in the same way as Theorem 2.3 was proved.

Theorem 3.1. Under Assumptions 2.1 and 2.2, for each integer k ≥ 1 and each 0 < T ≤ k, the 
truncated SFDE (3.1) has a unique global solution xk(t) on t ∈ (−∞, T ]. Moreover, there is a 
positive constant CT , which is the same as in Theorem 2.3, such that

sup
0≤t≤T

EW1(x
k(t), t) ≤ CT , ∀ 0 < T ≤ k, (3.4)

and

P (ρk
h ≤ T ) ≤ CT

β(h)
(3.5)

for all sufficiently large number h, where ρk
h = inf{t ∈ [0, ρk

e ) : |xk(t)| ≥ h}.

Proof. By virtue of (3.2) we know that the truncated SFDE (3.1) has a unique solution xk(t) on 
t ∈ (−∞, ρk

e ), where ρk
e is the explosion time. For any sufficient large number h with h ≥ ‖ξ‖r , 

ρk
h is defined as above. Obviously, ρk

h is increasing with respect to h and ρk
h ≤ ρk

e a.s. By the 
generalized Itô formula and (3.3), we obtain that

EV (xk(t ∧ ρk
h), θ(t ∧ ρk

h), t ∧ ρk
h) ≤ K1 + KE

t∧ρk
h∫

0

0∫
−∞

W1(πk(x
k
s )(u), s + u)μ1(du)ds

−E

t∧ρk
h∫

0

W2(x
k(s), s)ds +E

t∧ρk
h∫

0

0∫
−∞

W2(πk(x
k
s )(u), s + u)μ2(du)ds,

(3.6)

for t ≥ 0, where K1 = EV (ξ(0), i0,0) + KT . Recalling the definition of πk one observes

πk(x
k
s )(u) =

{
xk(s + u), −k ≤ u ≤ 0,

xk(s − k), u < −k.

Then for any t ∈ [0, T ], T ≤ k, we derive that
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t∧ρk
h∫

0

0∫
−∞

W1(πk(x
k
s )(u), s + u)μ1(du)ds

=
t∧ρk

h∫
0

−s∫
−∞

W1(πk(x
k
s )(u), s + u)μ1(du)ds +

t∧ρk
h∫

0

0∫
−s

W1(x
k(s + u), s + u)μ1(du)ds

≤
t∫

0

−s∫
−∞

(
sup

0≤s≤t

sup
−∞<u≤−s

erb1(s+u)W1(πk(x
k
s )(u), s + u)

)
e−rb1(s+u)μ1(du)ds

+
t∧ρk

h∫
0

0∫
−s

W1(x
k(s + u), s + u)μ1(du)ds.

(3.7)

It follows from (2.12) and ξ ∈ Cr that

sup
0≤s≤t

sup
−∞<u≤−s

erb1(s+u)W1(πk(x
k
s )(u), s + u)

≤ K̂ sup
0≤s≤t

sup
−∞<u≤−s

erb1(s+u)(1 + |πk(x
k
s )(u)|b1)

≤ K̂ sup
0≤s≤t

(
1 + sup

−k≤u≤−s

erb1(s+u)E|xk(s + u)|b1
)

≤ K̂ + K̂ sup
−k≤u≤0

erb1u|ξ(u)|b1 ≤ K2, (3.8)

where K2 is given in (2.13). Inserting the above inequality into (3.7) yields

t∧ρk
h∫

0

0∫
−∞

W1(πk(x
k
s )(u), s + u)μ1(du)ds

≤K2

t∫
0

−s∫
−∞

e−rb1(s+u)μ1(du)ds +
0∫

−t∧ρk
h

t∧ρk
h∫

−u

W1(x
k(s + u), s + u)dsμ1(du)

≤K2

t∫
0

e−rb1sds

0∫
−∞

e−rb1uμ1(du) +
0∫

−∞

t∧ρk
h∫

0

W1(x
k(s), s)dsμ1(du)

≤(K2/rb1)μ
(rb1)
1 +

t∧ρk
h∫

0

W1(x
k(s), s)ds.

(3.9)

Similarly,
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t∧ρk
h∫

0

0∫
−∞

W2(πk(x
k
s )(u), s + u)μ2(du)ds ≤ (K3/rb2)μ

rb2
2 +

t∧ρk
h∫

0

W2(x
k(s), s)ds. (3.10)

Substituting (3.9) and (3.10) into (3.6) gives

EV (xk(t ∧ ρk
h), θ(t ∧ ρk

h), t ∧ ρk
h) ≤ K4 + K

t∫
0

EW1(x
k(s ∧ ρk

h), s ∧ ρk
h)ds. (3.11)

According to the Gronwall inequality and W1(x, t) ≤ V (x, i, t), we have

EW1(x
k(t ∧ ρk

h), t ∧ ρk
h) ≤ CT , ∀t ∈ [0, T ], T ≤ k, (3.12)

where CT = K4e
KT . By the same way as Theorem 2.3, we can get the desired assertions. To 

avoid the duplication we omit the last proof. �
3.2. Asymptotic approximations

Recall that our main aim in this paper is to show

lim
k→∞E|x(t) − xk(t)|q = 0, ∀t > 0, (3.13)

for q ≥ 2. It is even more desired if an error estimate can be obtained. To guarantee the finite qth 
moment of the solution, we slightly strengthen Assumption 2.2.

Assumption 3.2. Assumption 2.2 holds with β ∈ K∞ being defined by β(u) = up on u ∈ R+
for some number p > 2.

We also need a slightly stronger local Lipschitz condition.

Assumption 3.3. Let p be the same as in Assumption 3.2. Assume that there is a probability 
measure μ3 ∈Pb with b > r and a positive constant Kh for each h > 0 such that

|f (ϕ, i, t) − f (φ, i, t)| ∨ |g(ϕ, i, t) − g(φ, i, t)| ≤ Kh

0∫
−∞

|ϕ(u) − φ(u)|μ3(du) (3.14)

for those ϕ, φ ∈ Cr with ‖ϕ‖r ∨ ‖φ‖r ≤ h and all (i, t) ∈ S ×R+.

Noting that (3.14) implies

|f (ϕ, i, t) − f (φ, i, t)| ∨ |g(ϕ, i, t) − g(φ, i, t)| ≤ Khμ
(r)
3 ‖ϕ − φ‖r , (3.15)

we see this assumption implies Assumption 2.1. Theorems 2.3 and 3.1 show that under Assump-
tions 3.2 and 3.3, the solutions of equations (2.2) and (3.1) satisfy
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sup
0≤t≤T

(
E|x(t)|p ∨E|xk(t)|p

)
≤ CT , ∀k ≥ T > 0, (3.16)

while (2.17) and (3.5) become

P (τh ≤ T ) ≤ CT

hp
and P (ρk

h ≤ T ) ≤ CT

hp
(3.17)

respectively. The following theorem further shows that xk(·) converge to x(·) in Lq .

Theorem 3.4. Let Assumptions 3.2 and 3.3 hold. Then, for each q ∈ [2, p), the solutions of 
equations (2.2) and (3.1) have the property that

lim
k→∞

(
sup

0≤t≤T

E|x(t) − xk(t)|q
)

= 0, ∀T > 0. (3.18)

Proof. Fix T > 0 arbitrarily and let k ≥ T . For each h > ‖ξ‖r , let τh and ρk
h be the same as 

defined in the proof of Theorem 2.3 (noting that we have already proved σe = ∞ a.s.) and in the 
statement of Theorem 3.1, respectively. Set

σk
h = τh ∧ ρk

h and ek(t) = x(t) − xk(t) for t ∈ (−∞, T ].

For any δ > 0 and t ∈ [0, T ], we can derive by the Young inequality that

E|ek(t)|q = E
(
|ek(t)|q1{σk

h >T }
)

+E
(
|ek(t)|q1{σk

h ≤T }
)

≤E
(
|ek(t)|q1{σk

h >T }
)

+ qδ

p
E|ek(t)|p + p − q

pδq/(p−q)
P (σ k

h ≤ T ). (3.19)

By (3.16) and (3.17), we have

E|ek(t)|p ≤ 2pCT

and

P (σ k
h ≤ T ) ≤ P (τh ≤ T ) + P (ρk

h ≤ T ) ≤ 2CT

hp
.

We hence have

E|ek(t)|q ≤E
(
|ek(t)|q1{σk

h >T }
)

+ 2pCT qδ

p
+ 2CT (p − q)

phpδq/(p−q)
. (3.20)

Now, let ε > 0 be arbitrary. Choosing δ sufficiently small for 2pCT qδ/p ≤ ε/3 and then h suffi-
ciently large for 2CT (p − q)/(phpδq/(p−q)) ≤ ε/3, we see from (3.20) that for this particularly 
chosen h,

E|ek(t)|q ≤ E
(
|ek(t)|q1{σk

h >T }
)

+ 2ε

3
. (3.21)
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If we can show that for all sufficiently large k,

sup
0≤t≤T

E
(
|ek(t)|q1{σk

h >T }
)

≤ ε

3
, (3.22)

we then have

lim
k→∞

(
sup

0≤t≤T

E|ek(t)|q
)

= 0,

which is the required assertion (3.18). In other words, to complete our proof, all we need to do 
from now on is to show (3.22) for the particularly chosen h.

For t ∈ [0, T ], it follows from (2.2) and (3.1) as well as the definition of fk and gk that

E
(

sup
0≤v≤t

|ek(v ∧ σk
h )|q

)

≤2q−1E
(

sup
0≤v≤t

∣∣∣
v∧σk

h∫
0

[f (xs, θ(s), s) − f (πk(x
k
s ), θ(s), s)]ds

∣∣∣q)

+2q−1E
(

sup
0≤v≤t

∣∣∣
v∧σk

h∫
0

[g(xs, θ(s), s) − g(πk(x
k
s ), θ(s), s)]dB(s)

∣∣∣q)
.

By the Hölder inequality, the Burkholder-David-Gundy inequality (see, e.g., [16,18]) as well as 
Assumption 3.3, it is not difficult to show that

E
(

sup
0≤v≤t

|ek(v ∧ σk
h )|q

)
≤K5E

t∧σk
h∫

0

( 0∫
−∞

|xs(u) − πk(x
k
s )(u)|μ3(du)

)q

ds, (3.23)

where K5 = 2q−1K
q
h [T q−1 + (qq+1/2(q − 1)q−1)q/2T (q−2)/2]. But, for 0 ≤ s ≤ t ∧ σk

h (which 
is less than T < k),

0∫
−∞

|xs(u) − πk(x
k
s )(u)|μ3(du) =

0∫
−s

|ek(s + u)|μ3(du) + J, (3.24)

where

J =
−s∫

−∞
|x(s + u) − πk(x

k
s )(u)|μ3(du).

Noting that x(s + u) = ξ(s + u) for u ≤ −s while
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πk(x
k
s )(u) =

{
ξ(s + u) if − k ≤ u ≤ −s,

ξ(s − k) if u < −k.

We derive that

J =
−k∫

−∞
|ξ(s + u) − ξ(s − k)|μ3(du)

≤
−k∫

−∞

(|ξ(s + u)| + |ξ(s − k)|)μ3(du)

≤
−k∫

−∞

(‖ξ‖re
−r(s+u) + ‖ξ‖re

−r(s−k)
)
μ3(du)

≤ 2‖ξ‖r

−k∫
−∞

e−r(s+u)μ3(du)

≤ 2‖ξ‖r

−k∫
−∞

e−bu+(b−r)uμ3(du)

≤ 2‖ξ‖re
−(b−r)k

−k∫
−∞

e−buμ3(du) ≤ K6e
−(b−r)k,

where K6 = 2‖ξ‖rμ
(b)
3 . Putting this into (3.24) we obtain

0∫
−∞

|xs(u) − πk(x
k
s )(u)|μ3(du) ≤

0∫
−s

|ek(s + u)|μ3(du) + K6e
−(b−r)k.

Then

( 0∫
−∞

|xs(u) − πk(x
k
s )(u)|μ3(du)

)q ≤ 2q−1

0∫
−s

|ek(s + u)|qμ3(du) + 2q−1K
q

6 e−q(b−r)k. (3.25)

Substituting this into (3.23) yields

E
(

sup
0≤v≤t

|ek(v ∧ σk
h )|q

)

≤2q−1K5K
q

6 T e−q(b−r)k + K5E

t∧σk
h∫ ( 0∫

|ek(s + u)|qμ3(du)
)

ds. (3.26)
0 −s
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But

t∧σk
h∫

0

( 0∫
−s

|ek(s + u)|qμ3(du)
)

ds =
0∫

−(t∧σk
h )

( t∧σk
h∫

−u

|ek(s + u)|qds
)
μ3(du)

≤
0∫

−(t∧σk
h )

( t∧σk
h∫

0

|ek(s)|qds
)
μ3(du) ≤

t∧σk
h∫

0

|ek(s)|qds. (3.27)

It therefore follows from (3.26) that

E
(

sup
0≤v≤t

|ek(v ∧ σk
h )|q

)
≤ 2q−1K5K

q

6 T e−q(b−r)k + K5E

t∧σk
h∫

0

|ek(s)|qds

≤2q−1K5K
q

6 T e−q(b−r)k + K5

t∫
0

E
(

sup
0≤v≤s

|ek(v ∧ σk
h )|q

)
ds. (3.28)

An application of the Gronwall inequality yields

E
(

sup
0≤v≤T

|ek(v ∧ σk
h )|q

)
≤ 2q−1K5K

q

6 T eK5T −q(b−r)k.

Hence

E
(

sup
0≤v≤T

|ek(v)|q1{σk
h >T }

)
≤ 2q−1K5K

q

6 T eK5T −q(b−r)k. (3.29)

This implies (3.22) of course. The proof is therefore complete. �
3.3. Approximations with exponential convergence order

The convergence of xk(·) to x(·) in Theorem 3.4 is described in the asymptotic way. The proof 
itself provides us with a way to estimate the error. Namely, for a given ε > 0, we can determine 
a positive integer k0 = k0(ε) (by choosing δ, h first) so that

sup
0≤t≤T

E|x(t) − xk(t)|q < ε, ∀k ≥ k0.

On the other hand, we observe that (3.29) gives an exponential estimate on the error up to the 
stopping time σk

h ∧ T . If we can remove the stopping time there, we will have a stronger conver-
gence order of xk(·) to x(·). In this sub-section, we aim to establish the exponential convergence 
order described by

lim sup
1

log
(
E|x(T ) − xk(T )|q

)
< 0, ∀T > 0.
k→∞ k
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We need a couple of new notations. Given a function V̄ ∈ C2,1(Rn × S × R+; R+), we define 
the functional LV̄ : Cr × Cr × S ×R+ → R by

LV̄ (ϕ,φ, i, t) = V̄t (ϕ(0) − φ(0), i, t) + V̄x(ϕ(0) − φ(0), i, t)[f (ϕ, i, t) − f (φ, i, t)]
+ 1

2
trace

([g(ϕ, i, t) − g(φ, i, t)]T V̄xx(ϕ(0) − φ(0), i, t)[g(ϕ, i, t) − g(φ, i, t)])

+
N∑

j=1

γij V̄ (ϕ(0) − φ(0), j, t).

Let us emphasize that LV̄ is defined on Cr × Cr ×S×R+ while V̄ on Rn ×S×R+. For β > 0, 
let U0,β denote the family of continuous functions U : Rn × Rn → R+ such that U(x, y) = 0
whenever x = y ∈ Rn while

sup
x,y∈Rn

U(x, y)

1 + |x|β + |y|β < ∞.

It is easy to see

sup
−∞<u≤0

erβuU(ϕ(u),φ(u)) < ∞, ∀ϕ,φ ∈ Cr . (3.30)

For example, if U(x, y) = |x − y|(1 + |x| + |y|) for (x, y) ∈ Rn ×Rn, then U ∈ U0,2.

Assumption 3.5. There are positive numbers β, q̄, K̄, b4, b5, functions V̄ ∈ C2,1(Rn × S ×
R+; R+), U ∈ U0,β , as well as two probability measures μ4 ∈ Pb4 , μ5 ∈ Pb5 , such that b4 > rq̄ , 
b5 > rβ ,

V̄ (0, i, t) = 0, ∀(i, t) ∈ S ×R+, (3.31)

|x|q̄ ≤ V̄ (x, i, t), ∀(x, i, t) ∈ Rn × S ×R+, (3.32)

and

LV̄ (ϕ,φ, i, t) ≤ K̄

0∫
−∞

|ϕ(u) − φ(u)|q̄μ4(du)

− U(ϕ(0),φ(0)) +
0∫

−∞
U(ϕ(u),φ(u))μ5(du) (3.33)

for all (ϕ, φ, i, t) ∈ Cr × Cr × S ×R+.

Remark 3.6. Assumption 3.5 is the generalized Khasminskii-type condition for the continuous 
dependence of the solutions on the initial data—any two solutions are close to each other in 
the q̄th moment as long as their corresponding initial data are close to each other. There is 
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a large class of SFDEs satisfying this assumption, for examples, the SFDEs with the global 
Lipschitz coefficients in Section 4.1 and the stochastic functional volatility equation (5.20) in 
Example 5.11.

Theorem 3.7. Let Assumptions 2.1, 2.2 and 3.5 hold. Set λ = (b4 − rq̄) ∧ (b5 − rβ). Then the 
solutions of equations (2.2) and (3.1) have the properties that, for all T > 0,

lim sup
k→∞

1

k
log

(
E|x(T ) − xk(T )|q̄) ≤ −λ, (3.34)

and

lim sup
k→∞

1

k
log(|x(T ) − xk(T )|) ≤ −λ

q̄
a.s. (3.35)

Proof. Fix any T > 0 and integer k > T . Let h > ‖ξ‖r . Let ek(t) and σk
h be the same as defined 

in the proof of Theorem 3.4. Obviously, σk
h → ∞ almost surely as h → ∞. By the generalized Itô 

formula as well as the definitions of fk, gk, πk , it is straightforward to verify that, for t ∈ [0, T ],

EV̄ (ek(t ∧ σk
h ), θ(t ∧ σk

h ), t ∧ σk
h ) = E

t∧σk
h∫

0

LV̄ (xs,πk(x
k
s ), θ(s), s)ds.

By Assumption 3.5, we then have

E|ek(t ∧ σk
h )|q̄ ≤ K̄E

t∧σk
h∫

0

( 0∫
−∞

|xs(u) − πk(x
k
s )(u)|q̄μ4(du)

)
ds

−E

t∧σk
h∫

0

U(x(s), xk(s))ds

+E

t∧σk
h∫

0

( 0∫
−∞

U(xs(u),πk(x
k
s )(u))μ5(du)

)
ds. (3.36)

In the same way as (3.25) was proved, we can show that

0∫
−∞

|xs(u) − πk(x
k
s )(u)|q̄μ4(du) ≤

0∫
−s

|ek(s + u)|q̄μ4(du) + K7e
−(b4−rq̄)k (3.37)

and
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0∫
−∞

U(xs(u),πk(x
k
s )(u))μ5(du)

≤
0∫

−s

U(x(s + u), xk(s + u))μ5(du) + K8e
−(b5−rβ)k, (3.38)

where K7 and K8 are both positive constants independent of k. Substituting these into (3.36) and 
making use of

t∧σk
h∫

0

( 0∫
−s

|ek(s + u)|q̄μ4(du)
)

ds ≤
t∧σk

h∫
0

|ek(s)|q̄ds

and

t∧σk
h∫

0

( 0∫
−s

U(x(s + u), xk(s + u))μ5(du)
)

ds ≤
t∧σk

h∫
0

U(x(s), xk(s))ds

(please see (3.27)), we obtain

E|ek(t ∧ σk
h )|q̄ ≤ K9e

−λk + K̄

t∫
0

E|ek(s ∧ σk
h )|q̄ds, (3.39)

where λ has been defined in the statement of the theorem and K9 = T (K̄K7 + K8). An applica-
tion of the Gronwall inequality implies

E|ek(T ∧ σk
h )|q̄ ≤ K10e

−λk,

where K10 = K9e
K̄T . Letting h → ∞ yields

E|ek(T )|q̄ ≤ K10e
−λk, (3.40)

which implies immediately the first required assertion (3.34).
To show the second assertion (3.35), we let ε ∈ (0, λ) be arbitrary. It follows from (3.40) that

P {|ek(T )|q̄ > e−(λ−ε)k} ≤ E|ek(T )|q̄
e−(λ−ε)k

≤ K10e
−εk, ∀k > T .

By the well-known Borel-Cantelli lemma (see, e.g., [18, Lemma 2.4 on page 7]), we can find a 
subset �0 ⊂ � with P (�0) = 1 so that for each ω ∈ �0, there is an integer k0(ω) such that

|ek(T ,ω)|q̄ ≤ e−(λ−ε)k, ∀k ≥ k0(ω).
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This yields

lim
k→∞

1

k
log(|ek(T ,ω)|) ≤ − (λ − ε)

q̄
, ∀ω ∈ �0.

This further implies the another assertion (3.35) as ε is arbitrary while P (�0) = 1. The proof is 
hence complete. �
Remark 3.8. We observe that both Assumptions 2.1 and 2.2 were not used explicitly in the proof 
of Theorem 3.7. But they were in fact used to guarantee both SFDEs (2.2) and (3.1) have their 
own unique solution. In other words, Theorem 3.7 holds if both Assumptions 2.1 and 2.2 are 
replaced by the condition that both SFDEs (2.2) and (3.1) have their own unique solution.

4. Important classes of SFDEs

To show the power of the general approximation theory established in the previous section, 
we will study a couple of important classes of SFDEs and their approximations in this section.

4.1. Global Lipschitz

We start with the class of SFDEs under the global Lipschitz condition.

Assumption 4.1. There are two constants c1 > 0, p > 2 and a probability measure μ6 ∈ Prp

such that

|f (ϕ, i, t) − f (φ, i, t)| ∨ |g(ϕ, i, t) − g(φ, i, t)| ≤ c1

0∫
−∞

|ϕ(u) − φ(u)|μ6(du) (4.1)

for all ϕ, φ ∈ Cr and (i, t) ∈ S ×R+. Moreover,

sup
t∈R+

(|f (0, i, t)| ∨ |g(0, i, t)|) < ∞, ∀ i ∈ S. (4.2)

This assumption implies Assumption 3.3 obviously. It is also easy to verify that Assump-
tion 3.2 is satisfied with V (x, i, t) = |x|p , W1(x, t) = |x|p , W2(x, t) = 0 etc. To verify Assump-
tion 3.5, we let V̄ (x, i, t) = |x|q̄ for q̄ ∈ [2, p). From now on, we also let δ0(·) be the Dirac 
measure at 0, which can be regarded as a probability measure on R− and it belongs to 

⋂
b≥1 Pb . 

For ϕ, φ ∈ Cr and (i, t) ∈ S ×R+, we can then derive that

LV̄ (ϕ,φ, i, t)

≤q̄|ϕ(0) − φ(0)|q̄−2
(
(ϕ(0) − φ(0))T (f (ϕ, i, t) − f (φ, i, t)) + q̄ − 1

2
|g(ϕ, i, t) − g(φ, i, t)|2

)
≤0.5q̄(q̄ − 1)|ϕ(0) − φ(0)|q̄ + q̄

(|f (ϕ, i, t) − f (φ, i, t)|q̄ ∨ |g(ϕ, i, t) − g(φ, i, t)|q̄)

≤0.5q̄(q̄ − 1)

0∫
|ϕ(u) − φ(u)|q̄ δ0(du) + q̄c

q̄

1

0∫
|ϕ(u) − φ(u)|q̄μ6(du)
−∞ −∞
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≤[0.5q̄(q̄ − 1) + q̄c
q̄

1 ]
0∫

−∞
|ϕ(u) − φ(u)|q̄ (δ0(du) + μ6(du))

=q̄[q̄ − 1 + 2c
q̄
1 ]

0∫
−∞

|ϕ(u) − φ(u)|q̄ μ̄6(du), (4.3)

where μ̄6(·) = 0.5(μ6(·) +δ0(·)) ∈ Prp . This shows that Assumption 3.5 is satisfied with U(x) =
0 etc. By Theorem 3.7, we can therefore conclude that under Assumption 4.1, the solutions of 
equations (2.2) and (3.1) have properties (3.34) and (3.35) with λ = (p − q̄)r for any q̄ ∈ [2, p).

4.2. Khasminiskii case

A much wider class of SFDEs is covered by the Khasminskii condition than the global Lips-
chitz condition. We here propose a special Khasminskii-type condition.

Assumption 4.2. There are constants c2 > 0, p̄ > 2 and a probability measure μ7 ∈ Prp̄ such 
that

(ϕ(0) − φ(0))T [f (ϕ, i, t) − f (φ, i, t)] + p̄ − 1

2
|g(ϕ, i, t) − g(φ, i, t)|2

≤ c2

0∫
−∞

|ϕ(u) − φ(u)|2μ7(du) (4.4)

for all ϕ, φ ∈ Cr and (i, t) ∈ S ×R+. Moreover, condition (4.2) holds.

This assumption does not in general imply the local Lipschitz continuity of both f and g, 
we hence need to retain Assumption 2.1. But this assumption does imply Assumptions 2.2 and 
3.5. Let us verify Assumption 2.2 first. Let V (x, i, t) = |x|p for any p ∈ (2, p̄). For (ϕ, i, t) ∈
Cr × S ×R+, we have

LV (ϕ, i, t) ≤ p|ϕ(0)|p−2
(
ϕ(0)T f (ϕ, i, t) + p − 1

2
|g(ϕ, i, t)|2

)
.

Making use of the elementary inequality

|a + b|2 ≤ p̄ − 1

p − 1
a2 + p̄ − 1

p̄ − p
b2, ∀a, b ≥ 0

as well as Assumption 4.2, we can get

LV (ϕ, i, t) ≤ p|ϕ(0)|p−2
(
c3 + c3|ϕ(0)| + c2

0∫
|ϕ(u)|2μ7(du)

)
,

−∞
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where c3 and the following c4, c5 are all positive constants. By the well-known Young inequality, 
we can further get

LV (ϕ, i, t) ≤ c4

(
1 +

0∫
−∞

|ϕ(u)|pδ0(du) +
0∫

−∞
|ϕ(u)|pμ7(du)

)

≤ 2c4

(
1 +

0∫
−∞

|ϕ(u)|pμ̄7(du)
)
, (4.5)

where μ̄7(·) = 0.5(δ0(·) + μ7(·)) ∈ Prp̄ . This shows that Assumption 2.2 is satisfied with 
W1(x, t) = |x|p , W2(x, t) = 0, etc. To verify Assumption 3.5, we let V̄ (x, i, t) = |x|q̄ for 
q̄ ∈ [2, p̄). For ϕ, φ ∈ Cr and (i, t) ∈ S × R+, it then follows from the first inequality in (4.3)
and Assumption 4.2 that

LV̄ (ϕ,φ, i, t)

≤q̄c2|ϕ(0) − φ(0)|q̄−2

0∫
−∞

|ϕ(u) − φ(u)|2μ7(du)

≤c5

( 0∫
−∞

|ϕ(u) − φ(u)|q̄ δ0(du) +
0∫

−∞
|ϕ(u) − φ(u)|q̄μ7(du)

)

=2c5

0∫
−∞

|ϕ(u) − φ(u)|q̄ μ̄7(du). (4.6)

This shows that Assumption 3.5 is satisfied with U(x) = 0 etc. By Theorem 3.7, we can conclude 
under Assumptions 2.1 and 4.2, the assertions of Theorem 3.7 hold with λ = (p̄ − q̄)r for any 
q̄ ∈ [2, p̄).

4.3. Highly nonlinear SFDEs

In this subsection we will consider a class of highly nonlinear SFDEs in the form

dx(t) = F(x(t),ψ1(xt ), θ(t), t)dt + G(x(t),ψ2(xt ), θ(t), t)dB(t) (4.7)

on t ≥ 0 with the initial data (2.3). Here F : Rn ×Rn × S ×R+ → Rn and G : Rn ×Rn × S ×
R+ →Rn×m are Borel measurable while ψ1, ψ2 : Cr → Rn are defined by

ψ1(ϕ) =
0∫

−∞
ϕ(u)μ8(du) and ψ2(ϕ) =

0∫
−∞

ϕ(u)μ9(du) (4.8)
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with μ8, μ9 ∈ P0 (which will be strengthened later). Equation (4.7) becomes our underlying 
SFDE (2.2) if we define f : Cr × S ×R+ → Rn and g : Cr × S ×R+ →Rn×m by

f (ϕ, i, t) = F(ϕ(0),ψ1(ϕ), i, t) and g(ϕ, i, t) = G(ϕ(0),ψ2(ϕ), i, t) (4.9)

respectively. Moreover, the corresponding truncated SFDE (3.1) becomes

dxk(t) = f (πk(x
k
t ), θ(t), t)dt + g(πk(x

k
t ), θ(t), t)dB(t)

= F(xk(t),ψ1(πk(x
k
t )), θ(t), t)dt + G(xk(t),ψ2(πk(x

k
t )), θ(t), t)dB(t) (4.10)

on t ≥ 0 with initial data xk
0 = πk(ξ) and θ(0) = i0.

To apply our theory established in the previous sections, we impose the local Lipschitz con-
dition on F and G.

Assumption 4.3. For each h > 0, there is a positive constant K̃h such that

|F(x, y, i, t) − F(x̄, ȳ, i, t)| ∨ |G(x,y, i, t) − G(x̄, ȳ, i, t)| ≤ K̃h(|x − x̄| + |y − ȳ|)(4.11)

for all x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ h and (i, t) ∈ S ×R+.

We also impose a generalized Khasminskii-type condition (see, e.g., [19]).

Assumption 4.4. There are nonnegative constants c6 - c9, p, p̄ such that c7 ≥ c8 + c9, p > 2, 
p̄ > 0 and

xT F (x, y, i, t) + p − 1

2
|G(x, z, i, t)|2

≤c6(1 + |x|2 + |y|2 + |z|2) − c7|x|2+p̄ + c8|y|2+p̄ + c9|z|2+p̄ (4.12)

for all (x, y, z, i, t) ∈ Rn ×Rn ×Rn × S ×R+. Moreover, μ8, μ9 ∈Pr(p+p̄).

We first verify Assumption 3.2 under Assumption 4.4. Let V (x, i, t) = |x|p . Then

LV (ϕ, i, t) ≤ p|ϕ(0)|p−2
(
ϕ(0)T F (ϕ(0),ψ1(ϕ), i, t) + p − 1

2
|G(ϕ(0),ψ2(ϕ), i, t)|2

)
,

for (ϕ, i, t) ∈ Cr × S ×R+. By Assumption 4.4,

LV (ϕ, i, t) ≤p|ϕ(0)|p−2
(
c6(1 + |ϕ(0)|2 + |ψ1(ϕ)|2 + |ψ2(ϕ)|2)

− c7|ϕ(0)|2+p̄ + c8|ψ1(ϕ)|2+p̄ + c9|ψ2(ϕ)|2+p̄
)
.

By the Young inequality, we can then easily show that

LV (ϕ, i, t) ≤2pc6(1 + |ϕ(0)|p + |ψ1(ϕ)|p + |ψ2(ϕ)|p)

−c̄7|ϕ(0)|p+p̄ + c̄8|ψ1(ϕ)|p+p̄ + c̄9|ψ2(ϕ)|p+p̄,
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where c̄7 = pc7 − p(c8 + c9)(p − 2)/(p + p̄), c̄8 = pc8(2 + p̄)/(p + p̄) and c̄9 = pc9(2 +
p̄)/(p + p̄) so c̄7 ≥ c̄8 + c̄9. Using |ψ1(ϕ)|p ≤ ∫ 0

−∞ |ϕ(u)|pμ8(du), we further get

LV (ϕ, i, t) ≤4pc6

(
1 +

0∫
−∞

|ϕ(u)|pδ0(du) +
0∫

−∞
|ϕ(u)|pμ8(du) +

0∫
−∞

|ϕ(u)|pμ9(du)
)

−c̄7|ϕ(0)|p+p̄ + c̄8

0∫
−∞

|ϕ(u)|p+p̄μ8(du) + c̄9

0∫
−∞

|ϕ(u)|p+p̄μ9(du)

≤4pc6

(
1 + 3

0∫
−∞

|ϕ(u)|pμ10(du)
)

−c̄7|ϕ(0)|p+p̄ + c̄7

0∫
−∞

|ϕ(u)|p+p̄μ11(du),

where μ10(·) = [δ0(·) +μ8(·) +μ9(·)]/3 ∈ Pr(p+p̄) and μ11(·) = [c̄8μ8(·) + c̄9μ9(·)]/(c̄8 + c̄9) ∈
Pr(p+p̄). We therefore see that Assumption 3.2 is satisfied with W1(x, t) = |x|p , W2(x, t) =
c̄7|x|p+p̄ etc.

Let us now verify Assumption 3.3. Let h > 0 and set h̄ = h(μ
(r)
8 ∨ μ

(r)
9 ). For ϕ, φ ∈ Cr with 

‖ϕ‖r ∨ ‖φ‖r ≤ h and (i, t) ∈ S ×R+, we derive from Assumption 4.3 that

|F(ϕ(0),ψ1(ϕ), i, t) − F(φ(0),ψ1(φ), i, t)| ∨ |G(ϕ(0),ψ2(ϕ), i, t) − G(φ(0),ψ2(φ), i, t)|

≤K̃h

( 0∫
−∞

|ϕ(u) − φ(u)|δ0(du) +
0∫

−∞
|ϕ(u) − φ(u)|μ8(du) +

0∫
−∞

|ϕ(u) − φ(u)|μ9(du)
)

=3K̃h

0∫
−∞

|ϕ(u) − φ(u)|μ10(du),

where μ10 has been defined above. We can therefore conclude from Theorem 3.4 that under 
Assumptions 4.3 and 4.4, the solutions of equations (4.7) and (4.10) have property (3.18) for 
each q ∈ [2, p).

5. Numerical methods

The theory established in the previous sections enables us to obtain numerical approximate 
solutions to SFDEs with infinite delay. More precisely, in order to numerically approximate the 
solution of the SFDE (2.2), we can now obtain the numerical solution of the corresponding 
truncated SFDE (3.1) for a sufficiently large k.

As pointed out before, the truncated SFDE (3.1) is an SFDE with finite delay. Although nu-
merical methods for the SFDEs with finite delay have been studied by many authors (see, e.g., 
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[7,30–32,35]), the existing results can not be applied directly to the SFDE (3.1) due to its spe-
cial truncated feature. Fortunately, numerical methods can be modified to obtain the numerical 
solutions of the truncated SFDE (3.1). To demonstrate the idea, we will concentrate on obtaining 
the numerical solutions of the truncated SFDE (4.10) and hence the numerical solutions of the 
SFDE (4.7).

5.1. Lipschitz case

How the existing numerical analysis can be modified to obtain the numerical solutions of the 
truncated SFDE (4.10) is best illustrated in the globally Lipschitz case.

Assumption 5.1. There exists a constant L1 > 0 such that

|F(x, y, i, t) − F(x̄, ȳ, i, t)| ∨ |G(x,y, i, t) − G(x̄, ȳ, i, t)| ≤ L1(|x − x̄| + |y − ȳ|)

for all x, y, x̄, ȳ ∈ Rn, t ∈ R+ and i ∈ S. Moreover,

sup
t∈R+

(|F(0,0, i, t)| ∨ |G(0,0, i, t)|) < ∞, ∀ i ∈ S.

This assumption of course guarantees that the truncated SFDE (4.10) has a unique global 
solution xk(t). Let us now fix a sufficiently large k and apply the EM method (see, e.g., [30]) to 
the truncated SFDE (4.10) to obtain its numerical solutions. Let k1 be a positive integer and set 
the step size � = 1/k1. Let tj = j� for j = −kk1, −(kk1 − 1), · · · , −1, 0, 1, · · · . We first need 
to form discrete-time numerical approximations Xk

�(tj ) ≈ xk(tj ) for j ≥ 0 given the initial data 
xk

0 = πk(ξ) and θ(0) = i0. Recall that πk(ξ) depends only on the values ξ(u) for u ∈ [−k, 0]. 
Accordingly, we set Xk

�(tj ) = ξ(tj ) for j = −kk1, · · · , −1, 0 and form Xk
�(tj+1) for j ≥ 0 by

Xk
�(tj+1) = Xk

�(tj ) + F(Xk
�(tj ),ψ1j , θ(tj ), tj )� + G(Xk

�(tj ),ψ2j , θ(tj ), tj )�Bj , (5.1)

where �Bj = B(tj+1) − B(tj ), and

ψ1j =
−1∑

h=−kk1

Xk
�(tj+h)μ8([th, th+1)) + Xk

�(tj−kk1)μ8((−∞,−k)).

Here ψ2j is defined as ψ1j by replacing μ8 with μ9. Note that {θ(tj )}j≥0 is a discrete-time 
Markov chain starting from θ(0) = r0 with the one-step transition probability matrix e��. The 
numerical simulation of {θ(tj )}j≥0 can be performed in the way as described in [20, p.112]. We 
next form the continuous-time numerical solution

Xk
�(t) =

∞∑
j=0

Xk
�(tj )1[tj ,tj+1)(t), t ≥ 0. (5.2)

Although this is the numerical solution we usually compute in practice, the numerical analysis is 
carried out via the continuous auxiliary process defined by
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X̄k
�(t) := ξ(0) +

t∫
0

F(Xk
�(s),ψ1(s), θ̄ (s), τ (s))ds +

t∫
0

G(Xk
�(s),ψ2(s), θ̄ (s), τ (s))dB(s),

(5.3)
for t ≥ 0 while set X̄k

�(t) = ξ(t) for t ∈ [−k, 0], where

τ(t) := tj , θ̄ (t) := θ(tj ), ψ1(t) := ψ1j , ψ2(t) := ψ2j , t ∈ [tj , tj+1).

Note that X̄k
�(tj ) = Xk

�(tj ) for all j . That is, X̄k
�(t) coincides with the numerical solution Xk

�(t)

at the grid-points. We need two more assumptions.

Assumption 5.2. There exist constants α ∈ [1/2, 1] and L2 > 0 such that

|F(x, y, i, t1) − F(x, y, i, t2)| ∨ |G(x,y, i, t1) − G(x,y, i, t2)| ≤ L2(1 + |x| + |y|)|t1 − t2|α

for all x, y ∈ Rn, t1, t2 ∈ R+ and i ∈ S.

Assumption 5.3. There exist constants β ≥ 1/2 and L3 > 0 such that the initial function ξ satis-
fies

|ξ(s1) − ξ(s2)| ≤ L3|s1 − s2|β, ∀s1, s2 ∈ (−∞,0].

In the remaining of this section we fix p ≥ 2, T > 0 and k > T arbitrarily and let C stand for a 
universal positive constant dependent on p, T , ξ etc. but independent of � and k. Let us present 
a number of useful lemmas.

Lemma 5.4. Suppose that Assumption 5.1 holds and μ8, μ9 ∈ Pr (please recall (4.8) regarding 
μ8 and μ9). Then

sup
0<�≤1

E
(

sup
t∈[0,T ]

|X̄k
�(t)|p) ≤ C. (5.4)

Proof. Fix � ∈ (0, 1] arbitrarily. It is standard (see, e.g., [18,20]) to show from (5.3) along with 
Assumption 5.1 that for t ∈ [0, T ],

E
(

sup
0≤u≤t

|X̄k
�(u)|p) ≤ C + CE

t∫
0

(|Xk
�(s)|p + |ψ1(s)|p + |ψ2(s)|p)ds. (5.5)

For each s ∈ [0, T ], there is a unique j such that s ∈ [tj , tj+1) and ψ1(s) = ψ1j . By the definition 
of ψ1j and μ8 ∈Pr , we further derive

|ψ1j | = |
−1∑

h=−kk1

Xk
�(tj+h)μ8([th, th+1)) + Xk

�(tj−kk1)μ8((−∞,−k))|

≤
−1∑

|Xk
�(tj+h)|μ8([th, th+1)) + |Xk

�(tj−kk1)|μ8((−∞,−k))
h=−kk1
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≤
−1∑

h=−kk1

erth |Xk
�(tj+h)|e−rthμ8([th, th+1)) + ert−kk1 |Xk

�(tj−kk1)|e−rt−kk1 μ8((−∞,−k))

≤
(

sup
h≤0

erth |Xk
�(tj+h)|

)( −1∑
h=−kk1

e−rthμ8([th, th+1)) + e−rt−kk1 μ8((−∞,−k))
)

≤
(

sup
h≤0

erth |Xk
�(tj+h)|

) 0∫
−∞

er�−ruμ8(du)

≤
(

sup
h≤0

erth |Xk
�(tj+h)|

)
erμ

(r)
8 . (5.6)

Note that

sup
h≤0

erth |Xk
�(tj+h)| = e−rtj sup

h≤j

erth |Xk
�(th)|

≤ e−rtj
(

sup
h≤0

erth |Xk
�(th)| + sup

0≤h≤j

erth |Xk
�(th)|

)

≤ e−rtj
(

sup
θ≤0

erθ |ξ(θ)| + sup
0≤h≤j

erth |Xk
�(th)|

)

≤ C + sup
0≤h≤j

er(th−tj )|Xk
�(th)| ≤ C + sup

0≤h≤j

|Xk
�(th)|

Inserting the above inequality into (5.6) gives

|ψ1j | ≤ C + sup
0≤h≤j

|Xk
�(th)|.

Consequently

|ψ1(s)|p ≤ C
(

1 + sup
0≤u≤s

|X̄k
�(u)|p

)
. (5.7)

Similarly

|ψ2(s)|p ≤ C
(

1 + sup
0≤u≤s

|X̄k
�(u)|p

)
. (5.8)

Substituting these into (5.5), we obtain

E
(

sup
0≤u≤t

|X̄k
�(u)|p) ≤ C + C

t∫
0

E
(

sup
0≤u≤s

|X̄k
�(u)|p)

ds.

An application of the Gronwall inequality implies
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E
(

sup
0≤u≤T

|X̄k
�(u)|p) ≤ C.

As � is arbitrary, we must have the desired assertion (5.4). �
Remark 5.5. By virtue of Lemma 5.4, it follows from (5.7) and (5.8) that

sup
t∈[0,T ]

E|ψi(t)|p ≤ C, i = 1,2.

Lemma 5.6. Suppose that all conditions of Lemma 5.4 hold. Then for any � ∈ (0, 1],

E|X̄k
�(t) − Xk

�(t)|p ≤ C�p/2, ∀ t ∈ [0, T ]

Proof. Fix any � ∈ (0, 1]. For each t ∈ [0, T ], there exists a unique integer j ≥ 0 such that 
tj ≤ t < tj+1. Recalling the definitions of X̄k

�(·) and Xk
�(·) we derive from (5.3) along with 

Assumption 5.1 easily that

E|X̄k
�(t) − Xk

�(t)|p

≤ 2p−1
(
E|

t∫
tj

F (Xk
�(s),ψ1(s), θ̄ (s), τ (s))ds|p +E|

t∫
tj

G(Xk
�(s),ψ2(s), θ̄ (s), τ (s))dB(s)|p

)

≤ C�(p−1)/2

t∫
tj

(
1 +E|Xk

�(s)|p +E|ψ1(s)|p +E|ψ2(s)|p
)
ds.

By Lemma 5.4 and Remark 5.5 we obtain the assertion. �
Lemma 5.7. Let Assumptions 5.1, 5.2, 5.3 hold and μ8, μ9 ∈Pr . Then for any � ∈ (0, 1]

E|xk(t) − X̄k
�(t)|2 ≤ C�, ∀ t ∈ [0, T ]. (5.9)

Proof. Fix � ∈ (0, 1] arbitrarily. Let e�(t) = xk(t) − X̄k
�(t) for t ∈ [0, T ]. It is straightforward 

to see that

E|e�(t)|2 ≤ C(I (t) + J (t)), (5.10)

where

I (t) := E

t∫
0

|F(xk(s),ψ1(πk(x
k
s )), θ(s), s) − F(Xk

�(s),ψ1(s), θ̄ (s), τ (s))|2ds,

J (t) := E

t∫
|G(xk(s),ψ2(πk(x

k
s )), θ(s), s) − G(Xk

�(s),ψ2(s), θ̄ (s), τ (s))|2ds.
0
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It is also easy to see that

I (t) ≤ C(I1(t) + I2(t) + I3(t)), (5.11)

where

I1(t) := E

t∫
0

|F(xk(s),ψ1(πk(x
k
s )), θ(s), s) − F(Xk

�(s),ψ1(s), θ(s), s)|2ds,

I2(t) := E

t∫
0

|F(Xk
�(s),ψ1(s), θ(s), s) − F(Xk

�(s),ψ1(s), θ̄ (s), s)|2ds,

I3(t) := E

t∫
0

|F(Xk
�(s),ψ1(s), θ̄ (s), s) − F(Xk

�(s),ψ1(s), θ̄ (s), τ (s))|2ds.

By Assumption 5.1 and Lemma 5.6, we have

I1(t) ≤ 2L2
1E

t∫
0

(
|xk(s) − Xk

�(s)|2 + |ψ1(πk(x
k
s )) − ψ1(s)|2

)
ds

≤ C� + CE

t∫
0

|e�(s)|2ds + CE

t∫
0

|ψ1(πk(x
k
s )) − ψ1(s)|2ds. (5.12)

For each t > 0, let N = �t/�� and tN+1 = t for a meanwhile. Recalling the definition of πk , 
using the Hölder inequality and Assumption 5.3, we derive that

E

t∫
0

|ψ1(πk(x
k
s )) − ψ1(s)|2ds =

N∑
j=0

E

tj+1∫
tj

|ψ1(πk(x
k
s )) − ψ1j |2ds

=
N∑

j=0

E

tj+1∫
tj

∣∣ 0∫
−k

xk(s + u)μ8(du) + xk(s − k)μ8((−∞,−k))

−
−1∑

h=−kk1

Xk
�(tj+h)μ8(th, th+1) − Xk

�(tj − k)μ8((−∞,−k))
∣∣2ds

≤
N∑

j=0

E

tj+1∫
tj

( −1∑
h=−kk1

th+1∫
th

|xk(s + u) − Xk
�(tj + th)|μ8(du)

+|xk(s − k) − Xk
�(tj − k)|μ8((−∞,−k))

)2

ds
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≤ 2
N∑

j=0

E

tj+1∫
tj

( −1∑
h=−kk1

th+1∫
th

|xk(s + u) − Xk
�(tj + u)|μ8(du)

)2

ds

+2
N∑

j=0

E

tj+1∫
tj

(
|ξ(s − k) − ξ(tj − k)|μ8((−∞,−k))

)2

ds

≤ 2
N∑

j=0

E

tj+1∫
tj

0∫
−k

|xk(s + u) − Xk
�(tj + u)|2μ8(du)ds + 2T L2

3�
2β

≤ 4
N∑

j=0

E

tj+1∫
tj

−s∫
−k

|ξ(s + u) − ξ(tj + u)|2μ8(du)ds + 2T L2
3�

2β

+4
N∑

j=0

E

tj+1∫
tj

0∫
−s

|xk(s + u) − Xk
�(tj + u)|2μ8(du)ds

≤ C�2β + 4E

t∫
0

0∫
−s

|xk(s + u) − Xk
�(τ(s) + u)|2μ8(du)ds. (5.13)

But we obviously have

E

t∫
0

0∫
−s

|xk(s + u) − Xk
�(τ(s) + u)|2μ8(du)ds

≤ 3E

t∫
0

0∫
−s

|e�(s + u)|2μ8(du)ds + 3E

t∫
0

0∫
−s

|X̄k
�(s + u) − X̄k

�(τ(s) + u)|2μ8(du)ds

+3E

t∫
0

0∫
−s

|X̄k
�(τ(s) + u) − Xk

�(τ(s) + u)|2μ8(du)ds.

In the same way Lemma 5.6 was proved, we can show that E|X̄k
�(s +u) − X̄k

�(τ(s) +u)|2 ≤ C�

for any s ∈ [0, T ]. Applying this and Lemma 5.6 to the inequality above yields

E

t∫
0

0∫
−s

|xk(s + u) − Xk
�(τ(s) + u)|2μ8(du)ds

≤ C� +E

t∫ 0∫
|e�(s + u)|2μ8(du)ds
0 −s
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≤ C� +E

0∫
−∞

t∫
0

|e�(s)|2dsμ8(du)

= C� +E

t∫
0

|e�(s)|2ds.

Substituting this into (5.13) yields

E

t∫
0

|ψ1(πk(x
k
s )) − ψ1(s)|2ds ≤ C� + CE

t∫
0

|e�(s)|2ds.

Consequently, inserting this into (5.12) we arrive at

I1(t) ≤ C� + CE

t∫
0

|e�(s)|2ds. (5.14)

By the Markov property of θ(·), Assumption 5.1, Lemma 5.4 and Remark 5.5, we derive that

I2(t) =
N∑

j=0

E

tj+1∫
tj

|F(Xk
�(tj ),ψ1j , θ(s), tj ) − F(Xk

�(tj ),ψ1j , θ(tj ), tj )|2ds

=
N∑

j=0

E

tj+1∫
tj

|F(Xk
�(tj ),ψ1j , θ(s), tj ) − F(Xk

�(tj ),ψ1j , θ(tj ), tj )|21{θ(s)
=θ(tj )}ds

≤ C

N∑
j=0

tj+1∫
tj

E

[(
1 + |Xk

�(tj )|2 + |ψ1j |2
)
E

(
1{θ(s)
=θ(tj )}|Ftj

)]
ds

≤ C�

N∑
j=0

tj+1∫
tj

E

[(
1 + |Xk

�(tj )|2 + |ψ1j |2
)]

ds

≤ C�. (5.15)

It follows from Assumption 5.2, Lemma 5.4 and Remark 5.5 that

I3(t) ≤ CE

t∫
0

(
1 + |X̄k

�(s)|2 + |ψ1(s)|2
)
�2αds ≤ C�2α. (5.16)

Inserting (5.14)-(5.16) into (5.11), we obtain that I (t) ≤ C� + C
∫ t

0 E|e�(s)|2ds. Similarly, we 
can show J (t) ≤ C� + C

∫ t E|e�(s)|2ds. Putting these into (5.10) gives
0
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E|e�(t)|2 ≤ C� + C

t∫
0

E|e�(s)|2ds.

An application of the Gronwall inequality yields that

E|e�(t)|2 ≤ C�

as required. The proof is hence complete. �
Combining Lemmas 5.6 and 5.7, we obtain the strong convergence of the EM numerical 

solutions to the true solution of the truncated SFDE (4.10).

Theorem 5.8. Let Assumptions 5.1, 5.2, 5.3 hold and μ8, μ9 ∈Pr . Then for any � ∈ (0, 1]

E|xk(t) − Xk
�(t)|2 ≤ C�, ∀ t ∈ [0, T ]. (5.17)

On the other hand, in a similar way as Theorem 3.7 was proved, we can show the following 
corollary.

Corollary 5.9. Suppose that Assumption 5.1 holds and μ8, μ9 ∈ Pb with b > r . Then the solution 
xk(t) of the truncated SFDE (4.10) approximates the solution x(t) of the given SFDE (4.7) in 
the sense that

E|x(t) − xk(t)|p ≤ Ce−(b−r)pk, ∀ t ∈ [0, T ]. (5.18)

Consequently, we obtain the following strong convergence result of the EM numerical solu-
tions to the true solution of the given SFDE (4.7).

Theorem 5.10. Suppose that Assumptions 5.1, 5.2, 5.3 hold and μ8, μ9 ∈ Pb with b > r . Then 
for any � ∈ (0, 1] and any integer k > T ,

E|x(t) − Xk
�(t)|2 ≤ C(e−2(b−r)k + �), ∀ t ∈ [0, T ]. (5.19)

5.2. Highly nonlinear case

In Section 4.3, we already showed that the solution xk(t) of the truncated SFDE (4.10) ap-
proximates the solution of the given SFDE (4.7) under Assumptions 4.3 and 4.4. To obtain the 
numerical solution of the truncated SFDE (4.10) under these assumptions, we can apply the trun-
cated EM method (see, e.g., [7,35]). Due to the page limit, we leave the details to the reader but 
discuss a couple of examples and carry out some simulations using MATLAB to illustrate the 
idea.

Example 5.11. In 1973, the well-known Black-Scholes model with constant volatility was pre-
sented. But tests of this model on real market data have questioned the assumption of constant 
volatility in the stock dynamics. For this reason, several variants of the Black-Scholes model with 
non-constant volatility such as stochastic functional volatility equations have been proposed [24]. 
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In this example, we consider a scalar stochastic functional volatility equation with infinite delay 
of the form

dx(t) = f (xt , θ(t), t)dt + g(xt , θ(t), t)dB(t), t ≥ 0, (5.20)

where the coefficients are defined by

f (ϕ, i, t) =
{

1 + 4ϕ(0) − 4ϕ3(0), i = 1,

2 + 3ϕ(0) − 5ϕ3(0), i = 2,

g(ϕ, i, t) =
{ ∫ 0

−∞ ϕ2(u)μ(du), i = 1,

1
2

∫ 0
−∞ ϕ2(u)μ(du), i = 2,

for ϕ ∈ C1/5, the probability measure μ(·) has its probability density function eu on (−∞, 0]
(i.e., μ(du) = eudu), B(t) is a scalar Brownian motion and θ(t) is a Markov chains on the state 
space S = {1, 2} with its generator

� =
( −1 1

2 −2

)
.

Let the initial data ξ(u) = eu ∈ C1/5 and θ(0) = 1. Recalling the definition of truncation mapping 
πk we get the corresponding approximation SFDEs

dxk(t) = fk(x
k
t , θ(t), t)dt + gk(x

k
t , θ(t), t)dB(t). (5.21)

Here fk and gk are defined by

fk(ϕ, i, t) =
{

1 + 4ϕ(0) − 4ϕ3(0), i = 1,

2 + 3ϕ(0) − 5ϕ3(0), i = 2,

and

gk(ϕ, i, t) =
{

e−kϕ2(−k) + ∫ 0
−k

ϕ2(u)μ(du), i = 1,

1
2e−kϕ2(−k) + 1

2

∫ 0
−k

ϕ2(u)μ(du), i = 2,

for ϕ ∈ C1/5. One observes that f and g satisfy Assumption 2.1 owing to μ ∈ Pγ for any γ ∈
[0, 1) and Assumption 2.2 with W1(x, t) = V (x, i, t) = x4 and W2(x, t) = x6. Thus, (5.20) has a 
unique global solution. Furthermore, Assumption 3.5 holds with q̄ = 2, V̄ (x, t) = x2, μ4 = δ0 ∈
Pγ for any γ > 0, μ5 = μ and U(x, y) = |x − y|2|x + y|2 ∈ U0,4. By virtue of Theorem 3.7, 
xk(T ) converges to x(T ) exponentially for any T > 0.

In order to test the efficiency of the result in Theorem 3.7 we carry out some numerical ex-
periments by MATLAB. We use the truncated EM numerical solution of (5.21) with k = 200
and � = 2−6 as the exact solution of (5.20) and plot the mean square error E|x(10) − xk(10)|2
for 1000 sample points between the solution of (5.20) and that of (5.21) as function of k when 
k ∈ {10, 11, 12, 13, 14}. Furthermore, in order to characterize the error between the exact solu-
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Fig. 1. (a) The mean square error for 1000 sample points between x(10) and xk(10) as the function of k ∈
{10, 11, 12, 13, 14}. (b) The root mean square errors for 1000 sample points between x(10) and X50

� (10) as the function 
of � ∈ {2−6, 2−8, 2−10, 2−12, 2−14}.

tion and numerical solution with respect to �, we take the truncated EM numerical solution of 
(5.21) with k = 200 and � = 2−18 as the exact solution of (5.20). Fig. 1 depicts the root mean 
square error (E|x(10) − Xk

�(10)|2)1/2 between the exact solution and the numerical solution of 
(5.20) with k = 50, as a function of � ∈ {2−6, 2−8, 2−10, 2−12, 2−14} for 1000 sample points.

Example 5.12. The delay Lotka-Volterra systems have received great attention owing to their 
extensive applications. The author of [14] analyzed the global asymptotic stability of the generic 
stochastic Lokta-Volterra systems with infinite delay. Let us consider such a system with special 
coefficients described by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1(t) =x1(t)[(0.5 + 0.1 sin t) − 0.8x1(t) − 0.2x2(t)]dt + 0.5x1(t)dB1(t),

dx2(t) =x2(t)
[
(0.3 + 0.2 sin 2t) − 0.6x2(t)

− 0.12

0∫
−∞

x1(t + u)μ(du))
]
dt + 0.5x2(t)dB2(t),

(5.22)

and the initial data are given by ξ1(u) = 0.8eu for u ≤ 0 and x2(0) = 0.6. Here (B1(t), B2(t)) is a 
2-dimensional Brownian motion and μ is the same probability measure as in Example 5.11. Ac-
cording to [14], (5.22) has a unique global positive solution x(t) = (x1(t), x2(t)) for t ≥ 0. One 
observes that Assumption 3.2 holds with β(x) = W1(x, t) = V (x, i, t) = |x|4, W2(x, t) = 0 and 
μ1 = δ0. Assumption 3.3 holds with μ3(·) = 0.5(δ0(·) + μ(·)). For any k > 0, the corresponding 
approximation equation is
187



G. Li, X. Li, X. Mao et al. Journal of Differential Equations 374 (2023) 154–190
Fig. 2. (a) The mean square error for 1000 sample points between x(10) and xk(10) as the function of k ∈
{10, 12, 14, 16, 18}. (b) The root mean square error for 1000 sample points between x(10) and X30

� (10) as the func-

tion of � ∈ {2−6, 2−8, 2−10, 2−12, 2−14}.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxk
1 (t) =xk

1 (t)[(0.5 + 0.1 sin t) − 0.8xk
1 (t) − 0.2xk

2(t)]dt + 0.5xk
1(t)dB1(t),

dxk
2 (t) =xk

2 (t)
[
(0.3 + 0.2 sin 2t) − 0.6xk

2(t) − 0.12e−kx1(t − k)

− 0.12

0∫
−k

xk
1 (t + u)μ(du))

]
dt + 0.5xk

2(t)dB2(t),

(5.23)

which has a unique global solution xk(t) = (xk
1 (t), xk

2 (t)) for t ≥ 0. Thus, by virtue of The-
orem 3.4, xk(t) converges to the solution x(t) in L2. For illustration, we carry out some 
numerical experiments using MATLAB. Due to the unsolvability of (5.23) we regard the nu-
merical solution of the truncated EM scheme with � = 2−6 and k = 200 as the exact x(t)

of (5.22), while for k ∈ {10, 12, 14, 16, 18}, we regard the numerical solution of the truncated 
EM scheme with � = 2−6 as the exact xk(t) of (5.23). Furthermore, we view the truncated 
EM numerical solution of (5.23) with k = 200 and � = 2−18 as the exact solution of (5.22). 
Let k = 30 and � ∈ {2−6, 2−8, 2−10, 2−12, 2−14}. Fig. 2 depicts the root mean square error 
(E|x(10) − Xk

�(10)|2)1/2 between the exact solution and the numerical solution of (5.22) for 
1000 sample points, as functions of � for 1000 sample points.
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