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Highlights

• Symmetric filament reconstruction.

• A new optimisation algorithm is proposed based on the bisection method.

• Validated with various benchmarks with high-order convergence and high accuracy.

• Lagrangian advection approach is used without CFL restriction.
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Abstract4

Multiphase flows have implications in many areas of engineering. The5

moment-of-fluid (MOF) method is an interface capturing method using both6

volume fraction and centroid within a cell for interface reconstruction. A7

symmetric approach to reconstruct thin structures is presented. Also called8

filaments, these subcell characteristics involve multi-material reconstruction.9

In addition, a new optimisation algorithm is presented using a bisection10

method without any necessary initial condition. Using a Lagrangian ap-11

proach for dynamic cases, no restrictions are imposed on timestep. The new12

method is validated using several benchmark cases that have been studied13

extensively in the literature. A near quadratic order of convergence and high14

accuracy is achieved while maintaining an acceptable runtime.15
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1. Introduction20

Multiphase flow modelling is crucial in several real-life examples such as21

wave breaking, water splashing or bubbles. It is also important in industrial22

applications from oil-and-gas transportation to inkjet printing. Its modelling23

requires an accurate representation of the interface between two or more24

fluids. In addition, it is challenging to resolve thin filaments during the25

breakup process.26

Several techniques for representing interfaces have been developed over27

the years [1]. These fall into two broad categories: interface tracking and in-28

terface capturing. Interface tracking aims to track a set of points representing29

the interface using the associated velocity field [2, 3, 4, 5]. Its robustness and30

simplicity of implementation makes it easily accessible. However, this may31

not be the case when there is a large deformation of the interface.32

The level set method is an example of an interface capturing technique.33

This method uses a smooth function to describe the sharp interface [6]. The34

zero level set of the function defines the interface. The accuracy and robust-35

ness makes it useful for complex multiphase flows, yet in most engineering36

problems, the lack of mass conservation of this technique makes it undesir-37

able. Improvements have been made on this issue using a conservative level38

set method [7, 8], which has also been extended recently for non-Newtonian39

multiphase flows [9]. Another interface capturing technique is the volume-40

of-fluid (VOF) method which was initially developed by Hirt and Nichols41

[10]. The interface, either horizontal or vertical known as Simple Line Inter-42

face Calculation (SLIC), is defined by the volume fraction of surrounding grid43

cells. In a subsequent development, Young’s method introduced an improved44

orientation to the interface known as Piecewise Linear Interface Construction45

(PLIC) [11]. Both VOF methods are subject to natural diffusion and artifi-46

cial surface tension causing the separation of forming filaments and exhibit47

large errors. In addition, only one interface is able to be reconstructed in a48

cell, which means that structures thinner than a cell size cannot be resolved.49

More sophisticated VOF approaches have been developed using a parabolic50

reconstruction [12, 13] or trying to resolve filaments [14]. Methods coupling51

the level set and VOF methods have also been developed [15].52

The latest advancement in the evolution of the VOF method is the53

moment-of-fluid (MOF) method. The MOF method uses both the volume54

fraction and its centroid to reconstruct the interface thereby increasing the55

accuracy in interface orientation. The error in interface reconstruction is im-56
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proved when compared to a standard VOF method and the MOF method57

possesses superior mesh convergence properties. The MOF method is able58

to reconstruct a piecewise linear interface without using information from59

neighbouring cells. In addition, MOF can be implemented with ease for60

general polyhedral cells. However, MOF can be time-consuming as the com-61

putational bottleneck is an optimisation algorithm which is required in order62

to reconstruct the interface in each cell.63

The initial MOF method was presented in 2005 using an optimisation64

algorithm [16]. While conserving mass in each cell, the best approximation65

is to find the normal to the interface that minimises the distance between the66

reference and reconstructed centroid. In a subsequent development, an ana-67

lytical solution which avoids the need to employ an optimisation algorithm68

was found by Lemoine et al. [17]. However, this is restricted to rectangular69

cells. Further work has been performed with the MOF method using more70

complex approaches. Multi-material reconstruction is facilitated when three71

or more materials are present [18, 19], under-resolved filaments allowing thin72

structure reconstruction [20], symmetric reconstruction [21] and even adap-73

tive mesh refinement [22]. Attempts have also been made to couple the level74

set method with the MOF method [23, 24]. Due to its expensive computa-75

tional cost, further improvements have been made only for Cartesian cells76

using pre-computed values to find the reconstructed centroid in an efficient77

manner [25] and even a machine learning approach [26] improving drasti-78

cally the runtime. When large deformations of the interface occur, standard79

MOF techniques are not precise enough to maintain a smooth interface and80

breakup occurs similar to VOF methods. To overcome the problem of un-81

physical breakup, we propose a novel symmetric multi-material approach82

to maintain the morphology of the interface for under-resolved filamentary83

structures. By combining the advantages of each approach, we construct a84

more precise interface at maximum deformation while maintaining an accept-85

able runtime. The optimisation algorithm uses a bisection method that does86

not require any parameter tuning. Capturing and reconstructing the exact87

topology yields time-consuming computation which has been simplified in88

our model. The novelty of the proposed method and the difference between89

the filament and standard MOF methods are highlighted in Fig. 1. A new90

test is presented to highlight large deformation of thin interfacial structures.91

The paper is structured as follows. In Section 2, the standard MOF92

and its advection approach are described detailing the choice of using a bi-93

section method in the optimisation part. Then, the filamentary method is94
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Figure 1: Flowchart highlighting the key steps for a filament MOF method compared to
a standard MOF method
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presented in Section 3. The conglomeration algorithm and adjacency test95

are described, as well as the choice of capping the number of materials at96

three. Finally, Section 4 presents and analyses the results for many advec-97

tion benchmark problems to demonstrate the accuracy and advantages of the98

proposed method. Some concluding remarks are given in Section 5.99

2. MOF method100

2.1. Interface reconstruction101

2.1.1. Problem definition102

Let us define the problem imposed by the MOF method in order to re-103

construct an interface. Consider a convex polygon ω that is defined by n104

vertices, x1,..., xn. The area of ω, denoted |ω|, and the centroid (centre of105

mass), denoted xc(ω) can be computed as follows106

|ω| =
1

2

n
∑

i=1

[xi × xi+1] (1)

xc(ω) =
1

6 |ω|

n
∑

i=1

[xi × xi+1] (xi + xi+1) (2)

Note that xn+1 = x1. Let Ω depict an arbitrary convex cell, hence not107

restricted to a Cartesian cell, filled with two different materials. Only con-108

sidering the first material µ1, its area relative to the area of the cell is denoted109

by Fref (µ1) which corresponds to the volume fraction. Similarly, xref (µ1) is110

defined to be the reference centroid of µ1 within the cell.111

The MOF reconstruction problem is formulated as an optimisation prob-112

lem in which the distance between the reference centroid xref (µ1) and the113

reconstructed centroid xact(µ1) is minimised while keeping the volume frac-114

tion of the reconstructed polygon Fact(µ1) equal to the volume fraction of µ1.115

One can summarise the optimisation problem as follows:116

{

min |xref (µ1)− xact(µ1)|

Fref (µ1) = Fact(µ1)
(3)

If µ1 already occupies a polygon with a piecewise linear interface, the117

MOF method aims to reconstruct the exact interface. As shown in Fig. 2,118

the reference interface may be curved, hence the minimised centroid distance119

will aim to give the best reconstruction.120
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(a) Reference interface (b) Reconstructed interface

Figure 2: Reference vs. reconstructed interface with their respective centroids xref and
xact. n denotes the reconstructed normal to the interface. Γ denotes the length of the
interface segment.

2.1.2. Reconstruction121

The reconstructed normal to the interface within a polygon can be evalu-122

ated analytically [17] but only for rectangular cells. However, for cells of any123

other geometrical shape, a minimisation algorithm is needed to evaluate the124

normal to the interface. The unit normal is defined to be n = [cos(φ), sin(φ)]125

where φ corresponds to the angle the interface makes with the horizontal. To126

cover all possible normals, φ ∈ [0, 2π]. The minimisation function, also known127

as the objective function, is recalled f(φ) = |xact(φ)− xref |. In general, f(φ)128

may have multiple local minima. The first derivative of the objective function129

for a convex cell, initially given in [16], is defined by130

f ′(φ) = 2((xact(φ)− xref ) · x
′

act(φ)) (4)

where x′

act(φ) is given by131

x′

act(φ) =
1

12

|Γ(φ)|3

|Ω|Fref (µ1)
[− sin(φ), cos(φ)] (5)

and is evaluated using the length of the reconstructed interface segment Γ(φ).132
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2.1.3. Bisection method133

In this section, a new algorithm is presented to evaluate the normal to the134

interface. The algorithm used in this paper to find the global minimum is a135

bisection method. Using four quadrants, explicitly [0, π/2], [π/2, π], [π, 3π/4]136

and [3π/4, 2π], the zeros of the first derivative of the objective function can be137

determined. The bisection method uses only a maximum of 10 iterations per138

quadrant to find the local minimum with a tolerance of 10−10. When the value139

of the first derivative falls below the specified tolerance at the boundaries of140

a quadrant, the bisection method is terminated for that quadrant. Once the141

minimum for each quadrant is found, evaluating the objective function for all142

valid values will give the global minimum. The global minimum of f(φ) will143

result in the best approximation for the optimisation problem defined above.144

Fig. 3 shows the set of solutions as well as the objective function within the145

four quadrants. Knowledge of the normal enables one to flood the cell [17] to146

reconstruct the interface with the minimum distance between the reference147

and reconstructed centroid, which is defined as the least centroid error.148

This method has the advantage of not requiring any initial condition and149

fine parameter tuning to converge to the solution and is guaranteed to find150

the global minimum. However it may require a larger number of iterations151

to converge.152

(a) Set of solutions (b) Objective function

Figure 3: Set of solution and objective function for various volume fractions F = 0.125,
0.25, 0.5 and 0.75. x∗ denotes the reference centroid.
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2.2. Advection153

Dynamic tests involve advecting materials across multiple time iterations.154

Information from the previous time step is needed in order to reconstruct the155

material interface at the next time step. The most natural way to perform156

this reconstruction is to use a Lagrangian pre-image to capture the volume157

fraction and centroid of a material.158

All vertices of a cell are advected backwards in time using a 2nd-order159

Runge-Kutta scheme to form the backtrace cell as seen in Fig. 4a. The160

backtrace cell may intersect several cells at the previous time level. The161

Sutherland-Hodgman polygon clipping algorithm is used in order to intersect162

each of these cells to gain information about volume fraction and centroid.163

The advantage of using the Lagrangian approach is that there is no limitation164

on the CFL number used in the model. Moreover, the Lagrangian advection165

procedure is said to be unsplit, which means it only requires one advection166

and reconstruction per cell [27].167

2.2.1. Advection of volume fraction168

To compute the volume fraction at the next time step, the sum of inter-169

secting areas form the new volume fraction of the cell as highlighted in purple170

in Fig. 4b. However, in some cases, its value may depend on the backtrace171

cell area relative to the cell area. If the backtrace cell area is larger than172

the cell area, there is potential for the volume fraction to exceed unity. On173

the contrary, if the backtrace cell area is smaller than the cell area, there is174

potential for the volume fraction to be smaller than unity while being en-175

tirely filled with one material. These cases may occur when the backtrace176

cell intersects with only one material, making the new theoretical volume177

fraction equal to unity but the actual volume fraction is either greater than178

or less than unity. If this is the case, a post advection remapping procedure179

is introduced in order to ensure that the total material mass is consistent180

throughout the advection time. The difference between the actual volume181

fraction and unity are gathered, then redistributed equally across all cells182

that can accept a gain or loss of mass/volume fraction. This is defined as183

a global redistribution [28]. The modified mass in each cell is negligible so184

that the shape of the interface is not changed significantly, which has been185

demonstrated later in the validation. To be less expensive, this procedure is186

only performed once per time step, which means there is a risk of not being187

able to redistribute the total mass.188
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2.2.2. Advection of centroid189

To compute the centroid at the next time step, the centroid of the in-190

tersection of the backtrace cell with a cell is computed, then advected using191

the same scheme as for the backtrace cell advection as shown in Fig. 4c.192

All cell intersection centroids are advected forward in time individually. The193

new reference centroid is obtained by weighting the cell intersection centroids194

with their volume fraction. Since all centroids are framed within the back-195

trace cell at the previous time step, the new reference centroid is guaranteed196

to be within the cell after forward advection.197

(a) Lagrangian backtrace (b) Volume intersection (c) Centroid advection

Figure 4: Dynamic test: advection of backtrace cell backwards, intersection of volumes,
advection of centroids individually

3. Filament capturing198

Filaments are defined as thin strands of material surrounded by another199

material within a cell. These are structures thinner than a cell size. A stan-200

dard MOF reconstruction would create a linear interface splitting the cell201

in two, hence not reconstructing the topology correctly as shown in Fig. 5.202

When considering a filament, two linear interfaces emerge, one on each side203

of the structure, meaning that two reconstructions are needed to capture the204

topology perfectly. In filament reconstruction, the conglomeration algorithm205

is capable of detecting polygons of the same material that are not adjacent206

by using the numerical adjacency condition. A fictitious material is intro-207

duced to reconstruct one of the polygons surrounding the filament. Once208

reconstructed, the fictitious material is reassigned to its original material.209

A symmetric multi-material reconstruction is presented to generate a better210

topology.211
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(a) Reference interface (b) Standard reconstruction (c) Filament reconstruction

Figure 5: Schematic diagrams showing (a) a reference interface, (b) the standard MOF
reconstruction and (c) filament MOF reconstruction.

3.1. Conglomeration212

Filament reconstruction is performed when some adjacent polygons form-213

ing one material, called a conglomerate, are not adjacent to other conglom-214

erates of the same material. The conglomeration algorithm allows us to215

identify whether a cell needs a multi-material reconstruction or a standard216

reconstruction. It is possible to identify all polygons of one material inter-217

secting with the backtrace cell as shown in Fig. 6. Once all of these polygons218

are gathered, the conglomeration algorithm tests if each of these polygons219

are adjacent to each other. Conglomerates are considered even when they do220

not split a cell, i.e. being only adjacent to one cell edge. The green conglom-221

erate in Fig. 8b is one of these. Flotsam are not discussed in this paper, in222

general on a coarse mesh they do not tend to exist. If more than one con-223

glomerate is found, then one of these conglomerates is considered to be the224

fictitious material. The conglomeration algorithm is a tree-based structure225

testing adjacency of a list of polygons until the lowest level does not find any226

adjacent polygons. Alg. 1 details the procedure to identify conglomerates.227

The reference volume fraction and reference centroid can easily be computed.228

3.2. Adjacency229

The adjacency test is performed on all sides (segments) of a polygon with230

respect to another polygon. Some tolerance is accepted as sides may not be231

perfectly adjacent but can still be considered adjacent. For the purpose of232

numerical round-off errors, each segment is described by a vector and if the233

magnitude of the cross-product of two vectors meets the lower bound of a234

tolerance, here ∆x∆yǫ with ǫ = 10−3, then segments are considered parallel.235
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Algorithm 1 Conglomeration algorithm

Initialise list of polygons list poly
while list poly do

new group← list poly(1)
while iter do
for k = 1, size(list poly) do
if is adjacent(new group(), list poly(k)) then
Remove list poly(k)
Add list poly(k) to new group()
iter ← true

end if

end for

end while

end while

(a) Intersection and conglomeration of material µ1 (b) Intersection and conglomeration of material µ0

Figure 6: Conglomeration of polygons within the backtrace cell (dashed black outline)
leading to the creation of a fictious material for a 3-material reconstruction. (a) Material
µ1 has 1 conglomerate (outline in blue); (b) Material µ0 has 2 conglomerates (outline in
green)

Segments may be considered parallel, yet they also need to be adjacent.236

Hence, the endpoint of a segment is projected onto the line defined by the237

other segment. If the distance between the endpoint of the segment and its238
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projection falls below the specified tolerance, here ∆xǫ, the projection of an239

endpoint also needs to fall between the bounds of the other segment. Only if240

all conditions are satisfied, both polygons are considered to be adjacent and241

hence form a conglomerate. Alg. 2 summarise the conditional procedure to242

test if two polygons are adjacent with three nested conditions. Fig. 7 shows243

two polygons within a cell. Segments are highlighted in order to indicate244

the process of evaluating parallel and adjacent segments from two distinct245

polygons. Condition 1 is represented with gold segments. Condition 1 and246

2 are represented with blue segments. All three conditions are represented247

with red segments.248

Algorithm 2 Adjacency test

Initialise vector poly1, vector poly2 based on all vertex l1, vertex l2
for l2 = 1, size(vector poly2 ) do
for l1 = 1, size(vector poly1 ) do
{% Condition 1}
if abs(cross product(vector poly2(l2),vector poly1(l1))) ≤ ∆x ·∆y · ǫ

then

{% Condition 2}
if distance(vertex l2, projection on line(vertex l2, line(vector poly1)) ≤

∆x · ǫ then
{% Condition 3}
if projection on segment(vertex l2, segment l1 )← true then

is adjacent← true

end if

end if

end if

end for

end for

3.3. Limitation to three materials249

It may happen that more than three conglomerates form within the back-250

trace cell. In that case, a multi-material reconstruction can be considered.251

However, it can lead to expensive reconstruction when testing all the com-252

binations for several cells per iteration. For this purpose, the number of253

conglomerates is capped at three in our model. Conglomerates are sorted by254

their volume fraction.255
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(a) Parallel segments but not adjacent (b) Adjacent segments

Figure 7: Schematic diagrams to test adjacent segments with another polygon: (a) shows
two configurations where segments are parallel. Projection of the endpoints do not fall
within tolerance (highlighted in gold). One of the projections of the endpoints does not fall
within the other segment (highlighted in blue); (b) shows two segments that are parallel
and adjacent, the projection of the endpoints falls within tolerance and within the other
segment.

If two conglomerates exist for each material, the following condition is256

tested. If the second conglomerate of one of the materials has a volume257

fraction smaller than 10−3, then its volume fraction is added to the main258

(largest in volume fraction) conglomerate. If there still exists two conglom-259

erates for each material, no conglomerates are considered and a standard260

reconstruction with the total volume fraction per material is performed. Fig.261

8a highlights this scenario. Indeed, coloured conglomerates belong to Mate-262

rial 2, explicitly 2 and 2′. Material 1 also have two conglomerates in white,263

explicitly 1 and 1′. None of them are smaller than 10−3 in volume fraction.264

In other cases, conglomerates with the smallest volume are ”reattached”265

to the largest conglomerate of the same material in the cell, usually where266

one material has one conglomerate and the other has more than two con-267

glomerates. Then, these smaller conglomerates have their volume fraction268

added to the largest conglomerates. Fig. 8b highlights this scenario. Three269

conglomerates (colored) belong to Material 2, here explicitly 2, 2′ and 2′′.270

Conglomerate 2′′ will be reattached to Conglomerate 2, while Conglomerate271
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2′ will be considered to be the fictitious material for reconstruction. ”Reat-272

taching” to the nearest conglomerates based on the distance between their273

respective centroids may also be considered but does not affect the topology274

greatly as volume fraction for these conglomerates is often very small.275

(a) Two conglomerates exist of size larger than
10−3 for each material leading to them being re-
constructed as a standard MOF

(b) Three conglomerates exist for Material 2 leading
to reattachement of the green conglomerate to the
red (largest in cell)

Figure 8: Schematic showing two complex examples of sorting multiple conglomerates
within the same cell. We assume all colored polygons belong to Material 2.

3.4. Symmetric reconstruction of filaments276

The reason to cap the number of materials at three is based on com-277

putational cost. Reconstructing more than three materials at once has a278

significantly higher cost than only three materials. In addition, using a sym-279

metric reconstruction of filaments may provide a better topology in material280

reconstruction.281

A standard reconstruction aims to reconstruct an interface based only on282

minimising the centroid error of one material regardless of the other material283

in cell reconstruction. In some cases, this can lead to a large error in the284

remaining material centroid. The symmetric reconstruction approach aims285

to minimise both centroids at the same time. The objective function fsym(n),286

combining both centroid defects, is given by287
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fsym(n) = |xref (µ1)− xact(µ1)(n)|+ |xref (µrem)− xact(µrem)(n)| (6)

where xref (µrem) denotes the reference centroid of the remaining material in288

cell, and xact(µrem) is its reconstruction centroid.289

When it comes to filament reconstruction or three material reconstruc-290

tion, the standard approach is to test all ordering combinations and evaluate291

the topology that reduces the total centroid defect. This procedure is called292

a sequential reconstruction. The total centroid defect E can be expressed as293

the sum of all material µi centroid errors294

E =

√

√

√

√

n
∑

i

|xref (µi)− xact(µi)|
2 (7)

Consider three materials A, B and C, then six different configurations are295

possible. Explicitly, and in order of reconstruction, these are (ABC), (ACB),296

(BAC), (BCA), (CAB) and (CBA). A symmetric reconstruction reduces the297

number of combinations to only three, thereby reducing the computational298

effort. Considering the same materials, (ABC) and (ACB) would be redun-299

dant as the first reconstruction minimises A and the grouping of B and C.300

Then, (BC) or (CB) will result in the same reconstruction as only symmetric301

reconstruction is considered. As seen in Fig. 9, a symmetric reconstruction302

provides a better topology.303

4. Results304

In this section, several benchmark problems are considered with the aim305

of testing the performance of the new filament MOF method. Several prob-306

lems are of considerable interest since the associated velocity field yields high307

deformation in the material. Maintaining the correct topology at maximum308

deformation is attractive and important for most engineering problems. How-309

ever, in order to assess the predictive capability of interface capturing meth-310

ods, each of the flows is reversed over the same time period and compared311

to its original configuration. Whilst comparison with the initial condition is312

possible, the MOF enables one to evaluate the difference between the final313

reconstruction and the original/reference configuration rather than the initial314

reconstruction. From a computational cost perspective, our model uses an315
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(a) Sequential reconstruction (b) Symmetric reconstruction

Figure 9: Comparison of (a) sequential and (b) symmetric reconstruction when using three
materials, where (+) denotes the reference centroids and (o) denotes the reconstructed
centroids.

analytical reconstruction where possible. Indeed, when only the reconstruc-316

tion of a piecewise linear interface between two materials in a Cartesian cell317

is required, this approach is significantly more efficient. In order to reduce318

the total error in reconstruction, the interface is reconstructed based on the319

material with the smallest volume fraction in a cell as suggested by Makun-320

dan et al. [24]. For cases involving more than two materials reconstruction,321

the symmetric multi-material approach is chosen.322

4.1. Error evaluation323

Evaluating errors in interface reconstruction is a powerful tool to com-324

pare different interface tracking/capturing methods. The numerical errors in325

terms of volume fraction can be evaluated with the L1 error norm EL1
as326

EL1
=

∑

|Ffinal − Finitial| |Ω| (8)

its relative error norm Er327

Er =

∑

|Ffinal − Finitial| |Ω|
∑

|Finitial| |Ω|
(9)
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and its maximum error norm L∞328

L∞ = max
i
|Ffinal − Finitial| |Ω| (10)

A more representative error measure is the symmetric difference error329

which provides a better estimate of the interface reconstruction error. The330

symmetric difference error Esym is given by331

Esym =
∑

∣

∣ωref ∪ ωact − ωref ∩ ωact
∣

∣ (11)

When comparing the reference interface with its reconstruction in indi-332

vidual cells, the symmetric difference error can be interpreted as the area333

between the two interfaces. Fig. 10 shows three different scenarios of in-334

tersecting interfaces and highlights the area corresponding to the symmetric335

difference error Esym. Some simple calculations are necessary to evaluate the336

area of a segment.337

(a) n = 2 (b) n = 1 (c) n = 0

Figure 10: Symmetric difference error Esym in a single cell. The area shaded in blue
highlights the error corresponding to Esym irrespective of the number of times, n, the
reconstructed interface intersects the reference interface: (a) n = 2, (b) n = 1, (c) n = 0.

As well as evaluating the error in reconstruction, ensuring mass conser-338

vation is also crucial during these advection tests. In 2D, mass conservation339

corresponds to area preservation and mass loss is given by the expression340

∆m =
∑

|Ffinal| |Ω| −
∑

|Finitial| |Ω| (12)

341

342

17



4.2. Benchmark: Zalesak slotted disc343

In this benchmark test case, a slotted disk is advected in a rigid body344

rotation motion. A circle of radius r = 0.15, with a slotted rectangle of width345

w = 0.05 and a maximum height of h = 0.85, is centered at (0.5, 0.75) in a346

unit domain. The corresponding velocity field is given by347

u(x, y) =

[

0.5− y
x− 0.5

]

(13)

348

349

This case does not exhibit any filament formation, however it shows that350

the conglomeration algorithm works for velocity fields that are rotating rather351

than deforming the interface. Five different uniform grids have been used352

explicity 32 × 32, 64 × 64, 128 × 128, 256 × 256 and 512 × 512. On the353

coarsest mesh is 32 × 32, the number of iterations is set to be nit = 1256354

and ∆t = 2π/nit. The number of iterations is increased proportionally with355

increasing mesh refinement. Hence, ∆t is decreased correspondingly.356

In order to study the error convergence, the error calculation for this test357

case is based on the L1 error. Table 1 summarises the L1 error for different358

mesh sizes and highlights the convergence of the numerical approximation.359

In addition, Fig. 11 highlights the final solution after a full body rotation360

for the first three grids. The shape of the original interface is captured well.361

However, the sharp edges around the slotted rectangle have been smoothed362

out during the rotation. Indeed, the MOF method is not able to capture these363

edges regardless of the degree of mesh resolution. The maximum error L∞ is364

a more relevant measure of the error for this problem in order to understand365

the order of convergence around sharp edges. In this case, second order366

convergence may be attained in some instances but it may depend on the367

alignment of the sharp edges of the slotted disk with the grid.368

The behaviour of the L1 error over one rotation is shown in Fig. 12 for369

three different meshes mentioned in Fig. 11. The plot highlights that despite370

the interface only rotating, the error increases during the rotation progresses371

as the interface reconstruction error accumulates at each time step.372

4.3. Benchmark: Reversible Vortex T=8373

The reversible vortex is a benchmark test case for deforming advection374

cases. A circle of radius r = 0.15 centered at [0.5, 0.75] in a unit domain is375
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Table 1: Dependence of the L1 error, EL1
, relative error, Er, and maximum error L∞ on

mesh size for the Zalesak slotted disc problem

Mesh size EL1
Er L∞

32 3.17× 10−3(-) 5.45× 10−2(-) 2.77× 10−4 (-)
64 9.02× 10−4(1.81) 1.55× 10−2(1.81) 5.23× 10−5 (2.40)
128 3.81× 10−4(1.24) 6.54× 10−3(1.24) 3.47× 10−5 (0.59)
256 1.35× 10−4(1.50) 2.31× 10−3(1.50) 1.52× 10−5 (1.19)
512 4.93× 10−5(1.45) 8.47× 10−4(1.45) 2.47× 10−6 (2.62)

(a) 32× 32 mesh (b) 64× 64 mesh (c) 128× 128 mesh

Figure 11: Solution of rigid body rotation for the Zalesak slotted disc. Green depicts a
quarter of rotation. Blue half rotation. Purple three quarter of rotation. Red depicts a
full rotation and final solution. The black outline depicts the reference interface.

deformed in a divergence-free velocity field given by376

u(x, y, t) =

[

− sin2(πx) sin(2πy)
sin2(πy) sin(2πx)

]

cos(πt/T ) (14)

where T represents the full period and T/2 the time at maximum deforma-377

tion. Here T = 8. The Courant-Friedrichs-Lewy (CFL) number is 1, hence378

the number of iterations nit = 256 and ∆t = ∆x when a 32 × 32 uniform379

Cartesian mesh is considered. The number of iterations increases propor-380

tionally with the mesh.381

The circle deforms in a filamentary structure at maximum deformation382

t = T/2. For this test case, filament detection is enabled. Several grids from383

32× 32 to 1024× 1024 have been used to perform this dynamic test case.384

The symmetric difference error, Esym, is shown in Table 2 for the initial385

reconstruction and at the final stage. The performance of our method is386
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Figure 12: Behaviour of the L1 error during the rigid body rotation of the Zalesak slotted
disc for different mesh sizes. Φ denotes the angle of full body rotation.

compared with the results obtained using other MOF methods as well as387

with the standard MOF. Runtime, rounded to the next integer value, is388

also compared because the MOF method can be computationally expensive.389

Currently, the code has not been parallelised and so the computations are390

performed on a single core. The order of convergence of this method is also391

highlighted as well as the mass difference.392

Fig. 13 shows the maximum deformation before reversal and the final393

reconstruction for different mesh sizes: 32 × 32, 64 × 64 and 128 × 128,394

respectively. Using a filament approach, the vortex does not exhibit any395

spurious separated structures, even on a coarse mesh. In this test case, the396

trailing tail shows a thicker structure as the coarse cell cannot reconstruct397

the filament tail accurately. As the mesh is refined, the tail becomes well-398

defined but thicker than the filament width. The MOF method naturally399

creates these structures as it exhibits some cross-stream diffusion, leading to a400

shorter tail than expected. The symmetric difference error converges slightly401

faster than other MOF methods with a smaller error on the finest mesh.402

Runtime is also considerably faster by a factor of between two to five. The403

error shows high order of convergence, almost matching the reference order404

two. The symmetric difference error for standard MOF exhibits a slower405

order of convergence on coarser grids. However, the symmetric difference406

error is almost indistinguishable on the finest meshes for the two approaches.407
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Table 2: Reversible vortex test case data using T = 8 compared with the standard MOF
(STDMOF) and with results generated using other MOF methods in the literature: a stan-
dard MOF with adaptive mesh refinement (AMR) method [22], a filament AMR method
[20], a coupled level-set MOF (CLSMOF) [24].

Mesh size 32 64 128 256 512 1024

Esym in [22] 2.34× 10−2 3.31× 10−3 5.78× 10−4 1.22× 10−4 2.01× 10−5 -
Order of convergence - 2.82 2.51 2.24 2.60 -

Esym in [20] 3.12× 10−3 6.91× 10−4 2.77× 10−4 - - -
Order of convergence - 2.17 1.31 - - -
Runtime in [20] 32.6 200 635.3 - - -

Esym in [24] 1.32× 10−3 1.01× 10−3 5.44× 10−4 2.76× 10−4 1.38× 10−4 6.90× 10−5

Order of convergence - 0.39 0.89 0.98 1.0 1.0

Esym for STD MOF 1.42× 10−2 7.46× 10−3 1.29× 10−3 9.19× 10−5 1.45× 10−5 4.07× 10−6

Order of convergence - 0.92 2.53 3.81 2.66 1.83

Initial Esym 1.74× 10−4 4.06× 10−5 1.28× 10−5 2.99× 10−6 1.49× 10−7 4.19× 10−8

Final Esym 2.80× 10−3 5.06× 10−4 1.54× 10−4 4.45× 10−5 1.48× 10−5 3.64× 10−6

Order of convergence - 2.46 1.71 1.79 1.58 2.02
Mass difference 1.09× 10−6 2.54× 10−7 3.98× 10−8 2.31× 10−9 −1.50× 10−6 2.05× 10−12

Runtime (s) 17 31 95 447 4856 43942

4.3.1. Influence of the mass redistribution408

The remapping procedure does not affect the topology greatly as the409

volume fraction that needs to be redistributed during the procedure is very410

small. Indeed, during the deformation of the vortex the volume fraction411

redistributed oscillates between 10−4 and 10−10. During the early stages412

of the deformation, most mass has to be redistributed as there are many413

cells in the inner part of the circle that are over/under-filled and very few414

cells are mixed cells, i.e. cells containing an interface. On the contrary,415

at maximum deformation, very few cells are over/under-filled cells, most416

of them contains an interface, or two in the case of filaments. Fig. 14417

summarises this. The difference between with and without the post advection418

remapping procedure is highlighted in Fig. 14a, whereas Fig. 14b shows419

the variation of volume fraction redistributed per iteration. Note that the420

mass is redistributed equally between mixed cells. Tab. 3 shows the mass421

difference for the reversible vortex case (T = 8) for a case where the mass was422

redistributed and when it was not. Two orders of magnitude of difference can423

be observed, which shows the advantage of the proposed method for mass424
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(a) 32× 32 grid at t = 4 (b) 64× 64 grid at t = 4 (c) 128× 128 grid at t = 4

(d) 32× 32 grid at t = 8 (e) 64× 64 grid at t = 8 (f) 128× 128 grid at t = 8

Figure 13: Reversible vortex test case using T = 8 for 32 × 32, 64 × 64 and 128 × 128
grids. Top row of figures shows the maximum deformation. Bottom row of figures shows
the final interface.

conservation.425

4.3.2. Influence of the CFL number on the interface426

One expects the CFL number to influence the interface reconstruction.427

However, the Lagrangian advection procedure is not greatly affected by the428

CFL number. Therefore, most cases are performed with the maximum avail-429

able CFL number which equals unity. In theory, a CFL number greater than430

unity can be used for such advection benchmarks. However, the stencil used431

in the dynamic test procedure encompasses only a 3×3 stencil and therefore432

limits larger CFL numbers. Fig. 15 shows a zoom on the final reconstruction433

for different CFL numbers 0.2, 0.4, 0.5, 0.8 and 1.0 and the error convergence.434

A lower CFL number will induce a larger number of iterations, therefore in-435

creasing the chances of error in reconstruction. However, the difference in436

error is relatively small in magnitude. The difference on the interface only437
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(a) Filament MOF reconstruction including compar-
ison with post advection remapping procedure

(b) Volume fraction redistributed as a function of
the time period of the reversible vortex T

Figure 14: Comparison showing the effect on the interface shape of the post advection
remapping procedure for mass conservation and the actual mass redistributed per iteration
for different grids.

occurs near the top of the circle which is near the tip of the filament at438

maximum deformation.439

4.3.3. Influence of the filament capable method440

Filament capable MOF is able to reconstruct a moving interface with a441

greater accuracy and better topology. Indeed, under strong deformations,442

materials tend to break up when they are not predicted to do so. At the443

instant of maximum deformation, a continuous interface is more likely and444

will result in better modelling of multiphase flows. Fig. 16 highlights both445

visual reconstruction and convergence of the standard and filament solution.446

Fig. 16a shows that several break ups of the dynamic interface occur when a447

standard MOF reconstruction is implemented. The final reconstruction does448

not match the reference circle. Fig. 16b compares the order of convergence449

between a standard and the proposed filament approach, together with other450

MOF methods. Note that for the finer grids, the error tends to the same451

values as the thickness of the structure is larger than a cell size, hence not452

using the filamentary approach as frequently during the dynamic test.453
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Table 3: Mass difference for the reversible vortex with and without post advection remap-
ping procedure

Mesh size With redistribution Without redistribution

32 1.09× 10−6 1.35× 10−4

64 2.54× 10−7 2.58× 10−5

128 3.98× 10−8 3.75× 10−6

256 2.31× 10−9 5.72× 10−6

(a) Zoom on final reconstruction on a 64× 64 grid (b) Error Esym as a function of the CFL number on
two grids

Figure 15: (a) Influence of the CFL number on the final reconstruction of part of the
interface; (b) symmetric difference error, Esym, as a function of the CFL number for two
grids: 32× 32 and 64× 64

4.4. Test case: Reversible Vortex T=12454

This is the same benchmark test case as considered in Section 4.3 except455

that the full period is increased to T = 12. A larger period increases the456

deformation and thinner filaments are exhibited. Table 4 summarises the457

symmetric difference error for six different mesh sizes from 32× 32 to 1024×458

1024. As the material is more deformed than in the previous benchmark459

with T = 8, the expected symmetric difference error is larger. As the mesh460

is refined, there are no longer significant benefits associated with using the461

filament method as the thickness of the deformed filament is greater than a462

cell width. Consequently, the order of convergence decreases from quadratic463
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(a) Standard MOF reconstruction for a 32× 32 grid
at reversal (in red) and final (in green). Black out-
line denotes the reference interface.

(b) Convergence Behaviour of the standard MOF
and filament MOF compared with the literature us-
ing Esym.

Figure 16: (a) Influence of the filament capable method on the reconstruction; (b) Sym-
metric difference error Esym compared with other MOF methods. Convergence rate is
compared with a linear and quadratic reference.

to linear until the order of convergence of the filament MOF follows that for464

standard MOF. The mass difference is very comparable. However, runtime465

is increased significantly. Indeed, the number of cells containing a filament466

structure compared to a standard interface is very large. Fig. 17 highlights467

the morphology of the very thin interface. Because filament reconstruction468

is computationally more expensive, the runtime is increased by a factor of469

three.470

4.5. Benchmark: Droplet flow471

The droplet flow test case has a nonlinear divergence free velocity field.472

The deformation of material tears an initial circle of radius r = 0.125 centred473

in a unit domain into a V-shape. The velocity field is given by474

u(x, y, t) =

[

0.125(8x− 4)
0.125 [−(8y − 4)− 4− (1− (8x− 4)2 − (8x− 4)4)]

]

f(t) (15)

The velocity field is a function of time as the amplitude, f(t), varies in time475

according to476
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Table 4: Symmetric difference error, L1 error, mass difference and runtime for the re-
versible vortex test case using T = 12 and its comparison with the standard MOF (STD
MOF).

Mesh size 32 64 128 256 512 1024

Final Esym 4.98× 10−3 9.91× 10−4 2.48× 10−4 1.27× 10−4 2.06× 10−5 6.33× 10−6

Order of convergence - 2.32 1.99 0.96 2.62 1.70
E(L1) 4.18× 10−3 9.62× 10−4 2.58× 10−4 1.23× 10−4 4.11× 10−5 6.29× 10−6

Order of convergence - 2.11 1.89 1.06 1.58 2.70
Mass difference 3.12× 10−6 3.08× 10−7 4.93× 10−8 4.01× 10−9 −8.93× 10−12 −7.33× 10−7

Runtime (s) 51 95 180 958 7334 65418

Esym for STD MOF 2.66× 10−2 1.81× 10−2 3.37× 10−3 1.18× 10−3 4.05× 10−5 7.70× 10−6

Order of convergence - 0.55 2.42 1.51 4.86 2.39

(a) 32× 32 grid at t = 6 (b) 64× 64 grid at t = 6 (c) 128× 128 grid at t = 6

(d) 32× 32 grid at t = 12 (e) 64× 64 grid at t = 12 (f) 128× 128 grid at t = 12

Figure 17: Reversible vortex test case using T = 12 for 32× 32, 64× 64, 128× 128 grids.
Top row of figures shows the maximum deformation. Bottom row of figures shows the
final interface

f(t) =















1 0 ≤ t < Tmax − tǫ/2

cos
(

π(t−Tmax+tǫ/2
tǫ

)

Tmax − tǫ/2 ≤ t ≤ Tmax + tǫ/2

−1 Tmax + tǫ/2 < t ≤ 2Tmax

(16)
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At Tmax = 0.8, time at maximum deformation, the flow is reversed. The flow477

is reversed smoothly during a transition period of tǫ = 0.1.478

This test case provides a good insight into the filamentary formation of479

materials as the filament tip is leading as opposed to trailing in the previous480

benchmark. For the base grid, 32 × 32, the number of iterations is set to481

nit = 160 for the entire simulation and ∆t = 0.01. The number of itera-482

tions is increased proportionally with the mesh and therefore ∆t is decreased483

proportionally with the mesh.484

The dynamic test is performed for different grids from 32×32 to 256×256485

using a filamentary method. As the mesh is refined, this approach becomes486

less relevant. The symmetric difference error is compared with [20] despite487

an AMR capability being used in that paper. In addition, details of mass488

conversation and runtime are given in Table 5. Fig. 18 shows the maximum489

deformation and final reconstruction for 32 × 32, 64 × 64, 128 × 128 grids,490

respectively. It can be seen that coarser meshes lead to larger error in re-491

construction. In addition, the method exhibits some diffusion in the sense492

of ”floating” elements. These ”floating” elements could be attenuated with493

a higher tolerance in available cell volume fraction. Lower volume fraction494

tends to create long and thin polygons, hence a larger error in reconstruction.495

The lower bound of volume fraction available in a cell is set to 10−5 in our496

model, compared to 10−8 in most comparative studies. We note that both497

maximum deformation and final reconstruction show a symmetric left-right498

deformation. As the tip of the filament gets thinner, even the filamentary ap-499

proach cannot reconstruct the structure accurately. This leads to a shrinked500

filament structure. When the grid is refined, the tip of the filaments are well-501

defined and the final solution shows acceptable errors. The mass difference502

is acceptable, bearing in mind the choice of only one round of redistribution.503

In terms of runtime, the performance is compared with AMR [20] which uses504

fewer cells than in this paper. The order of convergence of the solution shows505

a remarkable performance compared to methods described in other papers.506

4.6. Benchmark: Rotating filament507

The rotating filament benchmark is a test case where a thin rectangle is508

advected anti-clockwise in a rigid body rotation motion. The velocity field509

is the same as in Sec. 4.2 and is given in Eq. (13). The rectangle is centered510

at (0.505, 0.75) in a unit domain. Its initial width is w = 0.006 and height is511

h = 0.3. For a coarse mesh, here a 100× 100 grid, the initial condition may512
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(a) 32× 32 grid (b) 64× 64 grid (c) 128× 128 grid

Figure 18: Intermediate and final reconstruction for the droplet flow test case for different
mesh sizes. Red depicts the maximum deformation before reversal. Green depicts the final
reconstruction. The black outline is the reference circle.

Table 5: Symmetric difference error, order of convergence, mass difference and runtime
for the droplet flow test case at final reconstruction compared to reference papers.

Mesh size 32 64 128 256

Esym in [20] 2.48× 10−3 6.37× 10−4 2.96× 10−4 -
Order of convergence - 1.96 1.10 -
Runtime (s) 191.3 529.3 940.4 -

Esym 1.71× 10−3 7.36× 10−4 1.26× 10−4 5.09× 10−5

Order of convergence - 1.21 2.54 1.30
Mass difference −1.16× 10−9 −1.07× 10−7 −4.49× 10−11 9.31× 10−12

Runtime (s) 3 9 29 166

already contain a filament structure. The corresponding number of iterations513

is set to nit = 300 and ∆t = 2π/nit.514

This benchmark can only be tested with a filament enabled approach on515

such coarse meshes. Indeed, even with a 200× 200 grid, the filament body is516

subject to under-resolved filamentary structures. Fig. 19 shows the rotating517

filament at different stages of the full body rotation. The filament body is518

well reconstructed. However, both ends of the filament show cross-stream dif-519

fusion because the MOF method cannot reconstruct sharp edges accurately.520

In addition, the filament height is shortened due to the reconstruction error.521

The filament shortening matches with the height shown in [20]. The zoom522

on the top left of the figure highlights both shortening of the filament and523

cross-stream diffusion compared to the reference rectangle outlined in black.524
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(a) 100× 100 grid (b) 200× 200 grid

Figure 19: Solution of rigid body rotation for the rotating filament. Green depicts a
quarter of rotation. Blue half rotation. Purple three quarter of rotation. Red depicts a
full rotation and final solution. The black outline depicts the reference interface.

4.7. Benchmark: S-shape525

The S-Shape test case comprises a circle of radius r = 0.25 initialised in526

the centre of a unit domain. The associated velocity field is nonlinear and527

divergence free and given by528

u(x, y, t) =

[

0.25[(4x− 2) + (4y − 2)3]
−0.25[(4y − 2) + (4x− 2)3]

]

f(t) (17)

The advection process creates a highly deformed and thin structure which529

means the filamentary capability is also enabled here. The amplitude f(t)530

is given in Eq. (16). However, in this benchmark problem the maximum531

deformation occurs at Tmax = 4 and the smooth transition period is tǫ = 2.532

This case shows strong deformation and thin structures, mainly in the533

centre of the domain. A coarse mesh would struggle to reconstruct these534

structures. Indeed, for the 32 × 32 grid in Fig. 20, the central part may535

have three interfaces within a cell. Therefore, capping to three materials is536

a limiting factor, creating larger errors in reconstruction. Because of large537

reconstruction errors, several structures may merge and lead to different end538

results. The 64×64 grid is fine enough to have a maximum of two interfaces in539

a cell. The deformed interface shows an accurate representation at maximum540

deformation.541
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(a) 32× 32 grid (b) 64× 64 grid

Figure 20: Maximum deformation for the S-shape benchmark.

5. Conclusions542

In this paper, a new MOF method with a symmetric multi-material ap-543

proach has been presented where thin structures are resolved using a fila-544

ment approach for a fixed coarse mesh. A novel robust approach to solve545

the optimisation is proposed using a bisection method. No initial condition546

or parameters are necessary and the global minimum can be always found.547

A Lagrangian backtracking approach offers no limitation on the CFL num-548

ber when advecting materials. Solving under-resolved filaments inherently549

involves a higher computational cost, which is reduced by choosing to cap550

the number of conglomerates at three and using a symmetric approach. As551

a result, almost quadratic order of convergence is achieved and the error552

converges as the grid is refined. However in complex and large material de-553

formation, the limitation of this method is shown and the topology might554

not be well maintained at sharp edges.555

This efficient approach is applied to several benchmark problems with556

different levels of deformation. Most of these benchmark problems are com-557

pared with different MOF approaches, filaments, AMR, CLSMOF and stan-558

dard MOF. First, the Zalesak slotted disc does not exhibit any filament559

behavior, yet our approach shows good qualitative results. Other bench-560

marks such as the reversible vortex and the droplet flow case are tested for561
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large deformation highlighting the quality of reconstruction of filaments on562

coarse meshes. Finally, the rotating filament benchmark is presented, only563

applicable using filament reconstruction for such coarse grids. The limitation564

of our method is shown in the S-shape deformation benchmark. For most565

benchmarks, the error and runtime are comparable or better than other MOF566

methods. Furthermore, the accuracy in interface reconstruction is improved567

for large deformation. In addition, runtime has been decreased compared to568

most MOF methods.569

The MOF method, like most interface capturing methods, diffuses when570

advecting sharp edges. In addition, the tip of filaments is not well-resolved571

regardless of the mesh resolution. In future work we would like to include the572

possibility to reconstruct four conglomerates within a cell while maintaining573

a high level of accuracy in reconstruction with an acceptable runtime. For574

a fixed coarse mesh, this may lead to an increased precision in thin layered575

filaments while reducing the natural diffusion of material. This approach576

could involve an optimised selection of which material to reconstruct. We577

would also like to use a selective adaptive mesh refinement method for com-578

plex and large deformation. Coupling our accurate MOF method with a fluid579

flow solver is our next priority with interest in both incompressible [29] and580

compressible [30] multiphase flows.581
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