
IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 1

Balancing Static Islands in Dynamically
Scheduled Circuits using Continuous Petri Nets

Jianyi Cheng, Student Member, IEEE, Estibaliz Fraca, John Wickerson, Senior Member, IEEE
and George A. Constantinides, Senior Member, IEEE

Abstract—High-level synthesis (HLS) tools automatically transform a high-level program, for example in C/C++, into a low-level
hardware description. A key challenge in HLS is scheduling, i.e. determining the start time of all the operations in the untimed program.
A major shortcoming of existing approaches to scheduling – whether they are static (start times determined at compile-time), dynamic
(start times determined at run-time), or a hybrid of both – is that the static analysis cannot efficiently explore the run-time hardware
behaviours. Existing approaches either assume the timing behaviour in extreme cases, which can cause sub-optimal performance or
larger area, or use simulation-based approaches, which take a long time to explore enough program traces.
In this article, we propose an efficient approach using probabilistic analysis for HLS tools to efficiently explore the timing behaviour of
scheduled hardware. We capture the performance of the hardware using Timed Continous Petri nets with immediate transitions,
allowing us to leverage efficient Petri net analysis tools for making HLS decisions.
We demonstrate the utility of our approach by using it to automatically estimate the hardware throughput for balancing the throughput
for statically scheduled components (also known as static islands) computing in a dynamically scheduled circuit. Over a set of
benchmarks, we show that our approach on average incurs a 2% overhead in area-delay product compared to optimal designs by
exhaustive search.

Index Terms—High-Level Synthesis, Formal Methods, Petri Nets, Dynamic Scheduling, FPGA.

✦

1 INTRODUCTION

H IGH-level synthesis (HLS) tools automatically trans-
form programs in a high-level software language (e.g.

written in C/C++), into low-level hardware descrip-
tions (e.g. written in Verilog). They promise software engi-
neers without a hardware background the ability to design
custom hardware, and they promise hardware engineers
improved productivity compared to manual register trans-
fer level (RTL) implementation. Various HLS tools have
been developed in both academia and industry, such as
Bambu from the Politecnico di Milano [1], Dynamatic from
EPFL [2], Xilinx Vitis HLS [3], Intel HLS Compiler [4],
Cadence Stratus HLS [5] and Siemens Catapult HLS [6].

High-level software languages are typically untimed and
do not specify the start time of each operation in clock cycles
but only an order of execution. In HLS, the start time of each
operation is mapped into clock cycles. This process is called
scheduling, which is traditionally either static or dynamic.

In static scheduling, the start times are fixed at compile-
time. In the presence of any run-time variability, these
start times must be chosen conservatively, and this can
lead to statically scheduled circuits having sub-optimal per-
formance. However, the benefit of fixing the schedule at
compile time is that opportunities to share resources can
be readily identified, and this can lead to the generation of
small (and hence energy-efficient) circuits.

• J. Cheng, J. Wickerson, and G.A. Constantinides are with the Department
of Electrical and Electronic Engineering, Imperial College London, UK.
E-mail: {jianyi.cheng17, j.wickerson, g.constantinides}@imperial.ac.uk

• E. Fraca is with the Department of Computer Science, University College
London, UK. E-mail: e.fraca@ucl.ac.uk

Manuscript received April 19, 2005; revised August 26, 2015.

In dynamic scheduling, the start times are not determined
until run-time. Instead, the circuit is built from components
that use handshaking signals to communicate to each other
when they are ready to send or receive data. One advantage
of dynamic scheduling is that the components proceed
as soon as they are ready, thus maximising performance.
However, dynamically scheduled circuits can be consider-
ably larger than statically scheduled ones because of the
overhead of the handshaking machinery and the difficulty
of performing resource-sharing.

Recently, we proposed a hybrid dynamic/static schedul-
ing approach named DASS, and implemented it in an HLS
tool for FPGAs [7], [8]. The key idea is to take a dynamically
scheduled circuit as the starting point, and then to iden-
tify regions of the circuit that can be statically scheduled.
These regions, which we call static islands [9], often consist
of components with fixed or almost-fixed latency, and so
benefit little from dynamic scheduling. Each static island is
synthesized independently, and a wrapper is placed around
it so that it can interface with its dynamically scheduled
surroundings. In the case that the whole circuit is one static
island, the DASS approach degenerates to static scheduling,
and in the case that every static island contains just a single
component, the DASS approach degenerates to dynamic
scheduling.

However, work on DASS to date has left open the
question of how to determine timing parameters of the static
islands, such as their initiation intervals (IIs). An II of a
static island is the difference in clock cycles between the
start times of its two consecutive iterations. A large II leads
to small area but sub-optimal performance, and a small II
leads to high performance but large area. This article tackles

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 2

the challenge of automatically balancing the throughput
between static islands and their dynamically scheduled
surroundings by determining efficient IIs for static islands
at compile time.

Static analysis for dynamically scheduled hardware be-
haviour has a challenge in its scalability, because a program
could often exhibit many possible state traces depending
on the inputs. Existing approaches using simulations ei-
ther customise a certain search algorithm for a particular
application, or construct a huge design space which scales
exponentially with the computation complexity. This article
proposes an efficient approach using probabilistic analysis
by modelling the hardware behaviour in Petri nets. The
key advantage of using a probabilistic model for dynamic
scheduling is that it allows the capture of a huge number
of possible program states within a very compact represen-
tation that can be efficiently explored by existing tools [10],
[11], [12]. By modelling this program using the probabilistic
graphical representation, we are able to implicitly capture a
probability distribution over these traces.

This results in three problems: 1) how to design a
Petri net model expressive enough for describing arbitrary
program behaviour, 2) how to efficiently explore run-time
hardware behaviour using such an efficient model, and
3) how to use this model to improve the performance or
area of the hardware. In this article, we demonstrate how we
solve these problems. The main contributions of this article
are as follows:

• A general technique to formalise the run-time be-
haviour of HLS-generated hardware in the presence of
uncertainty caused by input dependence.

• A formalisation of both static scheduling and dynamic
scheduling using Timed Continuous Petri nets.

• We propose an efficient probabilistic analysis using the
modelling and analysis in Timed Continuous Petri nets
with immediate transitions

• An application on how to use the model to estimate the
run-time hardware performance that has unpredictable
behaviours, like input-dependent computations and ir-
regular memory accesses. This is used for rate balancing
between static islands and their dynamically scheduled
surroundings.

• An empirical evaluation on a range of benchmarks
showing that this approach on average incurs a 2%
overhead in area-delay product compared to opti-
mal designs by exhaustive search. The static analysis
in other tools using static scheduling and dynamic
scheduling incur 112% and 17% overhead in area-delay
product respectively.

The rest of this article is organised as follows. In Sec. 2,
we illustrate a simple motivating example and show the
challenges in rate balancing for static islands within dy-
namically scheduled hardware. Sec. 3 provides background
of scheduling in HLS, performance modelling techniques
in HLS and Petri nets. Sec. 4 presents our Petri net model
for analysing the behaviour of dynamically scheduled hard-
ware. Sec. 5 demonstrates how to construct Petri nets from
arbitrary input programs. Sec. 6 explains our formulation
to estimate the hardware performance by determining the
steady state of a Perti net. Sec. 7 illustrates the proposed

1 int A[M], B[N];
2
3 int ss_func (int x) {
4 return (((((((x+112)*x+23)*x+36)*x
5 +82)*x+127)*x+2)*x+20)*x+100;
6 }
7
8 int g(int i) { return cond(B[i]) ? i+d : i; }
9

10 void vecTrans() {
11 for (int i = 0; i < N; i++)
12 A[g(i)] = ss_func(A[i]);
13 }

Fig. 1: The dependence between A[i] and A[g(i)] is ir-
regular as it depends on the data in array B. It is challenging
to determine the optimal II for ss_func at compile time.

2
4

6
8

10 0

0.5

1

1

15

d
P (cond)

In
fe

rr
ed

II
s

of
s
s
_
f
u
n
c

Vitis HLS gives II = 15

Dynamatic’s throughput
analysis [13] gives II = 1

Fig. 2: The optimal II of function ss_func varies with the
probability of cond being true and the dependence distance
of d.

tooflow integrated into an open-sourced HLS tool named
DASS. Sec. 8 evaluates the impact of our approach on
hardware performance and area on a set of benchmarks.

2 OVERVIEW

Here we use a motivating example to demonstrate the
challenge in finding an optimal II of static island for rate
balancing with dynamically scheduled hardware. Fig. 1
shows a code example with dynamic memory dependence
to be scheduled using DASS [7]. In the loop, an array
element A[i] is loaded and computed by a function named
ss_func(x). The result is then stored back to the same
array at an index of g(i), where g is a function depending
on the loop iterator i and another array named B. Because
the values in B are only known at run time, the store
address g(i) is unpredictable at compile time. Such a loop
can often be dynamically scheduled for achieving a higher
throughput than would be scheduled statically. Meanwhile,
the function ss_func is a Horner-style polynomial ex-
pression in straight-line code, which has predictable timing
behaviour. Therefore, function ss_func can be synthesized

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 3

as a static island and enable hardware optimisations inside
the island including resource sharing.

In HLS design, a reasonable goal is to achieve minimum
area of each component, where that component not being
the performance bottleneck. In this example, we focus on
optimising static islands such as ss_func. A larger II
saves area but may cause sub-optimal performance, while
a smaller II requires a larger area but may improve perfor-
mance. Having an II that matches the throughput of a static
island is ideal. A question is asked in this article: How do
we statically analyse the required run-time throughput of a
static island such as ss_func, and hence determine its II?

Existing HLS tools have limited support for statically
analysing throughput of a hardware design with dynamic
behaviour. For instance, one of the state-of-the-art HLS
tools using static scheduling, Xilinx Vitis HLS [3], uses
its static scheduler to over-approximate the unpredictable
timing behaviour to the worst case. For the example in
Fig. 1, Vitis HLS suggests to sequentially execute the loop,
resulting in an II of 15. Meanwhile, One of the state-of-the-
art HLS tools using dynamic scheduling, Dynamatic, has
a throughput analysis pass for buffering [13]. The analyser
in Dynamatic approximates the control flow decisions, and
ignores memory dependences in the source, resulting in po-
tentially optimistic II. For the example in Fig. 1, Dynamatic
returns an estimated throughput of 1 for the loop, and this
is inefficient because of the actual pipeline stalls caused by
the memory-carried dependencies.

Both the approaches above do not analyse the input
data and provide a constant II. In reality, the optimal II
of the static island ss_func depends on two constraints:
1) how often the dependence between load A[i] and
store A[g(i)] happens across the loop iteration and
2) how far are the distances of these dependences in terms
of iterations.1 Fig. 2 illustrates the optimal II varies over dif-
ferent values of these two constraints. However, the search
space for such a small design is still huge, and it is time-
consuming to explore all the design spaces for every design
point. In the rest of the article, we present a more efficient
and accurate solution for estimating an optimal II of a static
island using probabilistic analysis.

Why Petri nets?

Petri nets are a mathematical modelling language that has
been widely used for modelling and analysing concurrent
processes. When an appropriate time interpretation is used,
they are used for probabilistic analysis with well-studied
techniques in the last decades. Analysis techniques for
Petri nets have been well studied in past decades [14]. By
translating our problem into the formal framework of Petri
nets, we can rely on existing tools including PRISM [10]
and SimHPN [15], or applying known efficient techniques
to explore the states of Petri nets.

For the example in Fig. 1, when cond is true during 40%
of the time, P (cond) = 0.4, and the average dependence
distance is d = 5, our toolflow obtains the results in Table 1
when compared to the optimal design.

1. The distance of a dependence is the number of iterations that
separate an operation from its dependants.

TABLE 1: Comparison of the hardware designs generated
by different approaches for the motivating example.

Comparison Area Performance

Optimal design 1× 1×
Analyser in Vitis HLS 0.33× 0.26×
Analyser in Dynamatic 2.33× 1×
Our approach 1× 1×

The time taken for exhaustively searching for an optimal
II scales with the number of static islands and the II search
space of each static island, because their throughputs may
affect each other. However, the time taken for our probabilis-
tic analysis is independent of these constraints. Our toolflow
analyses the static islands globally and infers their IIs in a
single run. For the example in Fig. 1, our toolflow achieves
2.8× speedup compared to exhaustive search.

Although probabilistic analysis can be inaccurate in per-
formance modelling, the correctness of the hardware only
depends on the correctness of synthesis tools themselves.
Our toolflow only affects the performance or area of the
synthesized hardware by suggesting an II for each static
island, while correctness is always preserved.

3 BACKGROUND

In this section, we first review scheduling in HLS tools. Then
we review and compare existing works on performance
modelling for HLS to our work. Finally, we introduce Petri
nets and the related works on modelling hardware using
Petri nets.

3.1 Scheduling in HLS

Most HLS tools take one of the three scheduling approaches:
static scheduling, dynamic scheduling and hybrid. Tradi-
tional HLS tools for FPGAs, like Xilinx Vitis HLS [3] and
Microchip LegUp [16], use static scheduling [17], [18]. The
scheduler applies static analysis and exploits parallelism
among independent operations for improving hardware
performance at compile time.

In the HLS domain, the idea of dynamic scheduling
started with the work by Page and Luk [19], which maps Oc-
cam programs into synchronous hardware. This work was
later extended to a commercial language named Handel-
C [20]. However, this requires manual efforts for pipelining.
Recently, Josipović [2] proposes an HLS tool that automati-
cally pipelines the hardware with dynamic behaviour from
untimed C code. The resultant hardware is a netlist of a
number of pre-defined components formalised by Carloni et
al. [21]. These components are connected and communicate
via handshake interfaces. To achieve high performance by
out-of-order memory execution, Dynamatic uses load-store
queues (LSQs) that monitors memory dependences and
schedules memory accesses at run time [22].

The third approach is to combine dynamic and static
scheduling. The theory of such a scheduling approach is
proposed by Carloni [23], where each statically scheduled
component is encapsulated into dynamically scheduled
hardware. This method is recently realised within an HLS

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 4

toolflow named DASS which statically schedules part of
the program into static islands [7]. DASS requires manual
selection of the scheduling constraints for each static island.

In this article, we tackle the challenge of statically deter-
mining an efficient initiation interval of each static island.
We formalise and model the DASS hardware behaviour
in Petri nets. Then the performance of both static islands
and dynamically scheduled hardware could be statically
analysed using probabilistic analysis. This addresses one of
the main shortcomings of the original DASS paper.

3.2 Module Selection in HLS
Module selection is to select an efficient module design
among a set of choices with the same functionality to im-
prove performance or area. Our work is also a form of mod-
ule selection by slowing down certain nodes in a dataflow
network. Module selection in HLS has been widely studied.
Ishikawa and Micheli propose a module selection algorithm
that schedules the hardware with a finite set of predefined
components [24]. Ahmad et al. present a problem-space ge-
netic algorithm for static scheduling [25]. Ito et al. propose an
integer linear-programming (ILP) based model for data flow
architecture [26]. Sun et al. combine the module selection
and resource sharing in design exploration [27]. Cong et al.
propose an ILP-based scheduling including module selec-
tion for streaming applications. However, these approaches
all target statically scheduled hardware only. The behaviour
of dynamically scheduled hardware can be unpredictable,
and these methods cannot be applied without assuming the
worst-case computation.

In dynamic scheduling, latency insensitive system
graphs (lis-graphs) are used for hardware optimisation,
such as loop pipelining, retiming and buffering [28]. This is
extended to marked graph in HLS tools like Dynamatic [2].
These graph-based theories make the analysis independent
from the input data, while our model performs throughput
analysis correlated to the input data.

Our prior work [29] models dynamically scheduled
hardware behaviour into discrete Petri nets, in particular
stochastic Petri nets [14], which could lead to poor scal-
ability. The complexity in hardware logic could lead to
exponentially increasing number of states in the reachability
graph. This causes long searching time for the states when
constructing the reachability graph. This article expands the
prior work and shows how to significantly increase the
scalability of our analysis by relaxing our discrete Petri
net model to continuous Petri nets [30]. In this article,
we propose HLS-specific specifications of a general timed
continuous Petri net with immediate transitions (TCPN+i)
for hardware behaviour analysis. We also propose an effi-
cient linear-programming formulation on how to efficiently
estimating the overall hardware performance from a given
TCPN+i model. This replaces the searching process for
discrete Petri nets, and achieves significant speedup on the
analysis at no cost.

3.3 Petri Nets
Petri nets are a common mathematical formalism for the
modelling and analysis of distributed systems. A Petri net is
a directed bipartite graph consisting of two types of nodes:

place

timed transition

immediate transition
…

…

M

N

Fig. 3: An example of a Petri net. The transition on the left
has a time delay, and the one on the right has no delay.

transitions and places. A transition, usually represented by
a bar or a rectangle, represents a process. A place, usually
represented by a circle, represents a resource. Places may
contain ‘tokens’, indicated by dots, which represents the
state of a resource. The state of a Petri net, known as its
‘marking’, consists of the overall allocation of tokens to
places. Often, places are bounded, meaning that they can
only contain at most a certain number of tokens.

In a Petri net, an edge always connects a transition and
a place. For each transition, the input places indicate its
preconditions, and the output places indicate its postcondi-
tions. The transition can only fire when all the preconditions
are met, i.e. all the input places have tokens and all the
output places can take the newly generated tokens without
exceeding place bounds.

Most of the Petri net interpretations are “discrete Petri
nets”, where places hold a natural number of tokens, and
transitions can be fired in a positive integer amount. Transi-
tions can have different time interpretations. In this article,
we consider two kinds of transitions: immediate transitions
and timed transitions, for modelling combinational and
sequential logic respectively, depicted in Fig. 3. Timed tran-
sitions are under infinite server semantics, and immediate
transitions fire with no delay. As it is well known, the
number of states for a discrete Petri net grows exponentially
with its size and initial marking (state explosion problem) [30].
In order to improve the scalability of Petri net analysis,
“continuous Petri nets (CPNs)” were proposed. In a CPN,
a transition can fire a positive real number of tokens [30],
dealing to real numbers of tokens in places.

The CPNs that support timed transitions and imme-
diate transitions are named Timed CPN with immediate
transitions (TCPN+i). The specifications of TCPN+i were
proposed by [31], and an algorithm for simulating TCPN+i
was recently proposed by Vazquez and Aguayo-Lara [32].
In this article, we use simplified specifications and analysis
of TCPN+i for HLS scheduling only. In [32], an immediate
transition of a TCPN+i is assumed to be β times faster than
a timed transition. In this work, we consider β is infinite.

Modelling hardware behaviours using Petri nets has
been investigated for decades [33], [34]. These works all
use discrete Petri nets for analysing synchronous or asyn-
chronous hardware, while we use TCPN+i for analysing
synchronous hardware.

4 PETRI NET SPECIFICATIONS

Here we present the specifications of the Petri nets used in
this article. In order to adequately model the complex inter-
action of combinational and sequential behaviour present

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 5

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

Fork Merge

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

Branch Mux

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

Join Buffer

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

Source Sink

d

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

d d

fork join merge

branch mux source/sink

buffer FIFO Transparent buffer

N
N

N N

d

FIFO Transparent Buffer

…

…

𝑛!"#

…

…
II

𝑙

𝑛$%

…

…

𝑛!"#

𝑛$%

General Component/
Static Island

Fig. 4: Modelling hardware components in Petri nets.

in modern dynamically scheduled HLS tools, we specify
two types of transitions, timed transitions and immediate
transitions. A timed transition always fires with a single
cycle delay, and an immediate transition always fires with
no delay. Fig. 3 shows an example of a Petri net containing
three places, a timed transition and an immediate transition.
The place on the left holds a token that can enable the timed
transition in the next clock cycle. At that point, the immedi-
ate transition would be enabled and it will immediately fire,
so the token will immediately reach the place on the right.

The timed and immediate transitions are simply a way of
modelling systems consisting of combinational logic and se-
quential logic. This enables us to model arbitrary hardware
behaviour in clock cycles regardless the hardware being
statically or dynamically scheduled.

The specifications of our Petri net model is extended
from the formulation by Murata [35]. Our Petri net is a 7-
tuple, N = (P, T,N,E,E′,W,M0) where:

• P = (p1, p2, p3, ..., pi) denotes a vector of i places,
• T = (t1, t2, ..., tj) denotes a vector of j transitions,
• N : T → {T, I} denotes the transition type, which

could be either timed (T) or immediate (I),
• E ∈ {0, 1}|P |×|T | denotes a matrix of edges from places

to transitions,

• E′ ∈ {0, 1}|P |×|T | denotes a matrix of edges from
transitions to places,

• W : {E,E′} → {0 ≤ x ≤ 1|x ∈ R} denotes the
probability of an edge to execute respected to the other
edges from the same place, and

• M0 ∈ N|P | denotes the initial marking.
In this model, we approximate program behaviour by only
considering the presence/absence of data at a particular
place – as indicated by a token – rather than its value,
approximating data-dependent operations by probabilistic
execution. A place with tokens indicates the presence of data
held by a component. A transition indicates the computation
of a component. The probability function models the prob-
ability of triggering an edge when its adjacent transition is
enabled, so the sum of all the probabilities of edges from
a place is 1. The initial marking M0 describes the number
of tokens contained in each place at initialisation of the
hardware.

5 PETRI NET MODELLING

Here we show how to model both dynamically and stati-
cally scheduled hardware components. We also show how
an arbitrary program can be modelled in Petri nets using
these component models.

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 6

5.1 Modelling Static Islands

A static island has a predictable hardware behaviour by
static scheduling. It has a constant II and a constant latency.
From the scheduling report, we extract the parameters of a
static island S shown in Eq. 1, and use them to transform
the circuit into a Petri net N .

S = (nin, nout, II , l) (1)

nin and nout are the numbers of inputs and outputs of the
static island. II and l are the initiation interval and latency.

For instance, the Petri net on the right side of Fig. 4
models a static island. The yellow places represent the data
path in the circuit; the purple places represent the back
pressure and the white places represent other control signals
to meet the specifications. 2 Back pressure happens when
the component cannot accept an input from its preceding
component, which causes a pipeline stall.

The model contains nin yellow places for representing
the data inputs and nin purple places for representing the
corresponding back pressure. A token in one of these yellow
places represents the arrival of data at that input. A token
in one of these purple places represents the component can
accept data at that input from its preceding component.

Similarly the model contains nout yellow places for
representing the data outputs and nout purple places for
representing the corresponding back pressure. A token in
one of these yellow places represents the validity of data at
that output. A token in one of these purple places represents
the component can propagate data from that output to its
succeeding component.

A static island can only start its next iteration of com-
putation when all the inputs are valid, indicated by the
adjacent connection to all the input places. The latency in
clock cycles is annotated by the number of timed transitions
from an input place to an output place. For example, l timed
transitions in the path mean that the operation takes l clock
cycles to compute.

Finally, the upper bound of the throughput of a static
island, also known as the initiation interval, is indicated as
the back edge to the input transition, forming a loop. For
instance, a static island can compute at most once every
II cycles, where II = II . In order to model the II, a back
edge is added from the II timed transition to the input
transition, restricting the firing rate of the input transition.
The back edge contains a single token at the initial stage,
which ensures there is at most one token in the loop. The
formulation of S in Eq. 1 above models the time behaviour
of a statically scheduled pipeline using Petri nets.

5.2 Modelling Dynamically Scheduled Components

We now model the hardware behaviour of dynamically
scheduled hardware using the Petri net above. Dynamically
scheduled HLS tools generate a graph consisting of several
pre-defined components. These components can be divided
into three types: control components, general components
and memory components. In this section, we show how to
formalise these components using Petri nets.

2. The colours of places are for annotation only, where all the places
are treated the same in the tool.

5.2.1 Control Components
Control components parallelize the computation and de-
termine the control flow of the circuit. Here we utilise
Dynamatic [2] components. In Dynamatic, the main control
components are as follows:
Fork replicates the data into multiple copies to the con-
sumers.

Join stalls until all the inputs hold valid data.
Merge sends the data from one of the inputs to the output.
Branch sends the data to one of the outputs selected by the
condition bit.

Mux selects the data from the input determined by the
select bit to the output.

Source/Sink constantly sends/accepts data.
The Petri net models of these components are shown

in Fig. 4. In the figure, the symbols on the left-hand side
of the red arrows represent the components in the circuit,
and the symbols on the right-hand side of the red arrows
represent the corresponding Petri net models. A Petri net of
these components consists of two parts, the data path and
the control path (back pressure). The data path propagates
data from its inputs to its outputs, and the control path
propagates back pressure from its outputs to its inputs. For
instance, the transition in the join model only fires when
each yellow place at the input holds a token, corresponding
to the presence of valid data, and the each purple place
at the input holds a token, corresponding to the absence
of back pressure. The source/sink model contains a timed
transition, which can process at most a token in each clock
cycle.

5.2.2 Buffer Components
There are three types of buffers in dynamically scheduled
hardware for improving the throughput of the circuit as
shown at the bottom of Fig. 4. A normal buffer is modelled
based on the following specifications:

1) it accepts at most a token in each clock cycle,
2) it outputs at most a token in each clock cycle,
3) it has a latency of one clock cycle, and
4) it can contain at most one token.

The Petri net model is then the same as a static island with
SBuff = (1, 1, 1, 1). The timed transition at the input ensures
condition 1 always holds. The purple place in the back edge
initially contains a token, restricting at most one token in
the component for satisfying condition 4. The immediate
transition at the output ensures condition 3. Condition 2
always holds because of 4, where there is at most one token
at the input in each clock cycle.

The second buffer type is a FIFO, which has a depth
greater than 1. A FIFO is modelled based on the following
specifications:
1-3) it has the same conditions as conditions 1-3 for a normal

buffer, and
4) it can contain at most d sets of data, where d is the FIFO

depth.
Compared to the Petri net of a normal buffer, the purple
place (annotated with d) in the back edge has d initialised
tokens, allowing multiple sets of data inside the FIFO. This
ensures condition 4. To restrict the output throughput for
satisfying condition 2, a timed loop is added onto the

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 7

A[]
MC
(A)

load A[i]

store A[j]

store A[k]

load A[k]

LSQ
(A)

M(A)

(a) A memory controller (MC) is used for bal-
ancing the memory bandwidth, and a load-
store queue (LSQ) is used for run-time de-
pendence control.

addr

data

store A[k]

data

addr

data

store A[j]

store A[j] may depend on load A[i]

M(A)

p1- p

g

addr

load A[i]

data

addr

load A[k]

(b) All the memory nodes are directly connected to MC. The LSQ is modelled
as probabilistic dependence among memory nodes. The latency of a load
without an LSQ is 2, and the latency of a load with an LSQ is 5.

Fig. 5: Modelling the memory architecture of dynamically scheduled hardware (back edges hidden for simplicity).

immediate transition at the output. The timed loop contains
a token and a timed transition, which ensures that the
immediate transition can fire at most once.

Finally, a transparent buffer acts as a FIFO with a combi-
national delay, leading to a better latency. The specification
is as follows.
1-2) it has the same conditions as conditions 1-2 for a normal

buffer,
3) it has a latency of zero clock cycle, and
4) it can contain at most d sets of data, where d is the

depth.
The latency of zero clock cycle means that the data path
from the input to the output must not contain any timed
transition. Therefore, the input transition becomes immedi-
ate for satisfying condition 3. In order to satisfy condition
1 and 2, timed loops are added on both the input and
output immediate transitions. Condition 4 holds because of
the same setup as the FIFO.

5.2.3 Generic Components
The general components such as arithmetic operators and
logical operators in the dynamically scheduled hardware
compute the data values using a static control flow. They are
modelled the sames as static islands on the right of Fig. 4.
Each component is modelled based on Eq. 1. If a component
is combinational, it only has immediate transitions and no
back edge.

5.2.4 Memory Components
The current version of Dynamatic does not support off-
chip memory access. For on-chip memory accesses, there
are three main types of memory component in dynamically
scheduled hardware: memory controllers (MC), memory
nodes and load-store queues (LSQs). Fig. 5a illustrates an
example of the memory architecture of dynamically sched-
uled hardware. The load, store and BRAM components are
memory units, illustrated as yellow nodes. The MCs and

LSQs are control units, illustrated as purple blocks. The
aliasing analysis is automatically called in Dynamatic and
simplifies the run-time dependence check [36]. In the hard-
ware design, load and store components that are statically
proven cannot have inter-iteration memory dependence are
directly connected to the MC, while the other components
are scheduled through LSQs. For this particular example,
the values of k cannot overlap with the values of i and
j. That is, load A[k] and store A[k] are independent
from load A[i] and store A[j]. Assume store A[k]
already depends on load A[k] in the data flow, where the
loaded data is required for computing the store operation in
the same iteration. Since there is no inter-iteration memory
dependence, these two nodes can be directly connected to
the MC. The other nodes like load A[i] are scheduled by
the LSQ before reaching the MC.

Fig. 5b shows the corresponding Petri net model of the
circuit in Fig. 5a. We now show how the model is obtained
by explaining how these components are modelled in Petri
nets and composed for modelling the whole memory archi-
tecture.

An MC serialises the memory requests from memory
nodes. In Dynamatic, each load or store statement in the
program is synthesized as a memory node in hardware.
Each array is synthesized into a two-port BRAM, a port
only connecting load nodes and a port only connecting store
nodes. Each BRAM block allows at most one load and one
store in every clock cycle. The MC acts as a load arbiter and
a store arbiter. Each arbiter has a latency of one clock cycle,
indicated by the timed transition in the MC.

A memory node sends requests to an MC and expects to
receive the requested data or an acknowledgement signal.
The Petri net models of loads and stores are also pre-
defined models like those in Fig. 4. Each model for loads
and stores is highlighted in block in Fig. 5b. For instance,
a token enters load A[k], passes through a transition and
fires two tokens at the output. One goes to the MC, and one
goes through the internal path inside the load component.

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 8

… …

Fig. 6: The hardware is modelled by directly stitching up
the component models. Yellow places are overlapped with
other yellow places, and purple places are overlapped with
other purple places.

Once the request is granted by the MC, the output token
from MC is sent back to load A[k] among all load nodes
based on the presence of the token in load A[k]

There is always at most one token held among all load
nodes since the MC serialises the requests. The loads con-
nected to the MC and LSQs have the same Petri net model
but different latencies represented as the number of timed
transitions in Fig. 5b. For stores, the model is similar to the
loads but has two input places representing address and
data, respectively. The returned token from the MC only
represents an acknowledgement signal.

An LSQ schedules memory accesses in terms of depen-
dence. For every two memory accesses connected to an
LSQ, the LSQ checks at run time whether there is a depen-
dence. For example, in Fig. 5b, load A[i] may depend
on store A[j]. The LSQ for this dependence is modelled
as LSQ(A) which processes the states of store A[j] and
returns a control signal to enable load A[i] to compute. In
Fig. 5b, whenever store A[j] starts to compute, the LSQ
processes a token from the address place. The token can
take one of the two paths that both reach the place g that
determines whether load A[i] can compute. If there is no
dependence, the token takes the left path and immediately
arrives at g, enabling the load A[i]. However, if the de-
pendence exists, the token takes the right path. It gets stalled
by a join until the completion of store A[j], indicating
the existence of a dependence. The dependence distance is
modelled by the number of initialised tokens k in place g.
These tokens allow the load A[i] to run k iterations ahead
if a dependence occurs. The probability p of load A[i]
depending on store A[j] is modelled as the probability
function of the edge.

For the case where store A[j] also depends on
load A[i], another LSQ block in Fig. 5b is added to the
Petri net but pointing from load A[i] to store A[j].
We analyse every pair of memory nodes that connect to the
same LSQ to capture all possible memory dependences.

5.3 Stitching Together
DASS automatically maps the input program into a
dataflow graph of components, where all the components

in the graph are modelled as above. The top-level hardware
can be modelled by translating each components into Petri
nets and connecting them by overlapping the input/output
places of these components. Fig. 6 shows an example of
hardware model by stitching up the components. The yel-
low places are overlapped with yellow places for modelling
the data path, and the purple places are overlapped with
purple places for modelling the back pressure.

The back pressure also ensures the behaviour of the
synchronous dataflow circuit, where combinational com-
ponents cannot hold data. In Petri net, the corresponding
constraint is that for any path between any two timed transi-
tions and outside buffer components, there is always at most
1 token. This aligns with the fact where a combinational
hardware data path can only hold at most one state of
signals.

6 PETRI NET ANALYSIS

We now show how to estimate the overall throughput of the
dynamically scheduled hardware by analysing the steady
state of the Petri net obtained from Sec. 5.

6.1 Steady State Analysis of Petri nets

We analyse the steady state of a Petri net to estimate the
overall hardware performance. The steady state of a Petri
net represents its most commonly executing states dur-
ing the computation, which indicates the overall hardware
throughput in our model.

For a discrete Petri net, the analyser first constructs
a reachability graph of the given Petri net. A reachabil-
ity graph contains a finite number of vertices and edges.
Each vertex represents a reachable state of the Petri net,
and each edge represents a transition between states. The
analyser translates the reachability graph into a Markov
chain. The Markov chain is further translated into a linear
programming problem by the probabilistic analyser such as
PRISM [10] for determining the steady state. Discrete Petri
nets suffer from the well known state explosion problem, as
its reachability space grows exponentially respect to their
initial marking [30].

The steady state analysis of continuous Petri nets signif-
icantly increases the scalability by skipping the process of
constructing the reachability graph. We use the above spec-
ifications and simulate Petri nets in our proposed TCPN+i
algorithm. We aim to improve the scalability of the steady
state analysis, and minimise the inaccuracy caused by this
approximation.

The use of TCPN+i significantly accelerates the steady
state analysis of our Petri net model. It does not require
constructing the reachability graph for steady state analysis.
The discrepancies caused by approximating token flows
from integer numbers to real numbers are negligible com-
pared to the ones caused by approximating the values of
data to presence of data and probabilities. Our results in
the later section show that using continuous Petri nets can
generate the same result but at a significant faster speed
compared to using discrete Petri nets.

Relaxing discrete PN to continuous PN obtains more
tractable analysis techniques, at the price of loosing some

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 9

w=0.9

w'=0.5

t0

t1
t2

t3

t4

t5 t6

p0

p1
p2

p3

α0

α1
α2

α3

p4 α4

Fig. 7: A simplified TCPN+i for analysis.

fidelity such as losing some properties. In particular, a
deadlock-free dicrete PN could deadlock as continuous, as a
non-reachable deadlock marking holding the state equation
could become reachable [37]. Those potential spurious mark-
ings are the vertex of the polytope of reachable markings
and in most of the cases it would not be computed as the
steady state. Indeed, our implementation does not observe
any deadlock during all the experiments. In the rare event a
deadlock is detected, our tool flow will switch to the discrete
Petri net for steady state analysis.

6.2 Steady State Formulation

The analysis for general TCPN+i is complex and requires
various constraints. Here we propose a simplified analysis
pass that efficiently finds the steady state of TCPN+i from
our hardware translation in Sec. 4. We extend the terms
defined by Silva et al. [12] to model the computation of our
TCPN+i by introducing a new term α.

• C = E′ − E denotes the edges of the Petri net in a
matrix,

• σ ∈ R|T |
≥0 denotes the firing count of the transitions,

• f ∈ R|T |
≥0 denotes the flows of the transitions,

• m ∈ R|P |
≥0 denotes a run-time marking, and

• α ∈ R|P |
≥0 denotes the marking rate in the places.

The flow of a transition ft is the derivative of its firing count
σt, where f = σ̇ [12]. The flow indicates the firing rate of the
transition, also known as the throughput of the transition. By
definition, the II of the hardware component is the reciprocal
of its flow, i.e. 1

f . The new term α represents the rate that a
token passes through a place, which correlates to the firing
rates of the input and output transitions of the place.

We now introduce our steady state formulation using
the given constraints above. Because we specify that all the
immediate transitions have infinite firing rates, and all the
timed transition have a firing rate of 1, the formulation
is significantly simplified compared to existing formula-
tions [15], [32].

First, the flows of transition must not change the mark-
ing at the steady state.

C · f = 0 (2)

Second, the marking at run time must be reachable from the
initial marking after a set of firing iterations of transitions.

m = M0 + Cσ (3)

Third, the flow of a timed transition is affected by the
presence of data in its input places. It is restricted by
the minimum number of tokens among the input places
of the transition. Additionally it is also affected by the
synchronous hardware behaviour where any synchronous
operation must process at most a token in each clock cycle.
The flow of any timed transition must not be greater than 1.

∀t, p.N(t) = T ∧ Ep,t > 0 ⇒ ft ≤ min{1,mp} (4)

Eq. 4 restricts the flows of timed transitions. However, the
flows of immediate transitions can be infinite. The flow of
an immediate transition is not restricted by the presence
of data in its input places since a token can go through
multiple immediate transitions in a clock cycle. Even though
the flow of an immediate transition can be infinite based
on our specification in Sec. 3.3, the flow could be restricted
by the flow of the neighbour transitions of the immediate
transition.

In order to restrict the flow of immediate transitions, we
use the marking rates α to pass the flows of these neighbour
transitions through places. In a Petri net, we define the
marking rate of a place is as the sum of the flow of its input
transitions. We use the following constraint to model α.

∀t, p. αp =
∑

E′
p,t>0

ft (5)

We then use the marking rate of a place to restrict the flow of
its output transitions, which could be immediate or timed.
The flow of a transition is affected by all the edges from its
input places. This includes two constraints, the probability
of the edge and the marking rate of a place at the tail of the
edge. The probability of the edge represents the portion of
the marking rate in the place that could trigger the current
transition. The flow of a transition is then restricted by the
probability-weighted marking rate of each input place.

∀t, p. Ep,t > 0 ⇒ ft ≤ αpW (Ep,t) (6)

With the constraints above, our tool automatically searches
for the maximum of

∑
f and explores the overall through-

put of each component at the steady state. As shown in Eq. 5
and Eq. 6, the α of a transition is restricted by the flow of its
preceding transitions and used for restricting its succeeding
transitions. This method efficiently restricts the throughput
of immediate transitions which are not directly restricted by
any marking or flow.

Fig. 7 illustrates a TCPN+i example for steady state anal-
ysis. Based on the specifications above, the input constraints

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 10

C/C++ LLVM IR

Clang

Input program

DASS front end

LLVM IR

Finding static islands

LLVM IR

Dynamatic front end

Dataflow Graph

LLVM IR Petri Net

Petri net generator

Inferred IIs

Steady state analyser

LLVM IR

Updating IIs for static islands 7

Updating IIs

Dataflow Graph 8

RTL
DASS back end

Dynamatic back end

RTL

Xilinx Vitis HLS
RTL

(Static islands)

(Dynamically
scheduled circuits)

(Wrapper)

Output hardware design

1 2 3 4

5

6

9

9

9

Fig. 8: Our work integrated into the open-sourced DASS HLS flow. Our contributions are highlighted in italic.

to the model are shown as follows:

E =

1 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 1

E′ =

0 0 1 0 1 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0

T =

(
I T T T T T T

)
M0 =

(
1 0 0 0 0

)

W (x, y) =

0.9 (x, y) = (p1, t4)

0.1 (x, y) = (p1, t2)

0.5 (x, y) = (p4, t5) or (p4, t6)
1 otherwise

The edge matrix can be obtained from Equation 2:

C =

−1 0 1 0 1 0 0
1 0 −1 0 −1 0 0
1 −1 0 0 0 0 0
0 1 0 −1 0 0 0
0 0 0 1 0 −1 −1

Our tool searches for the maximum overall throughput of
the Petri net with the objective of max f , where |σ| = |f | = 7
and |α| = |m| = 5. This results in:

σ =
(
3 2 2 1 0 0 0

)
f =

(
1 1 0.1 1 0.9 0.5 0.5

)
α =

(
1 1 1 1 1

)
m =

(
0 1 1 1 1

)
f provides a steady state of the Petri net, including the
average firing rates of transitions. The IIs are the reciprocal
of f , which give the following:

II =
(
1 1 10 1 1 2 2

)
These IIs are used for synthesizing the corresponding static
islands and balancing the rates with the dynamically sched-
uled hardware.

7 TOOLFLOW

This section illustrates how our work is integrated into
an open-sourced HLS tool named DASS [7]. Fig. 8 shows
the complete toolflow. The synthesis of DASS is on top of
Dynamatic [2] for dynamic scheduling and Vitis HLS [3] for
static scheduling. The toolflow contains the following steps:

1⃝ The input C program is lowered into LLVM IR using
Clang.

2⃝ The LLVM IR is optimised at software level in the front
end of DASS.

3⃝ The static islands are extracted from the LLVM IR based
on the user annotated pragmas (sent to bottom). The
rest of LLVM IR is to be synthesised into dynamically
scheduled circuit (sent to right).

4⃝ The front end of Dynamatic translates the LLVM IR into
a dataflow graph output in dot format.

5⃝ The dataflow graph is then translated into a Petri net of
the top-level hardware.

6⃝ Our Petri net analyser automatically determines the
steady state of the Petri net and returns an inferred II
for each static island.

7⃝ The scheduling constraints of these static islands in
LLVM IR are updated with these inferred IIs.

8⃝ On the dynamically scheduled part, the IIs of static
islands are also updated which guides Dynamatic to
insert buffers in the dynamically scheduled circuit for a
better hardware performance.

9⃝ Finally, the hardware code is generated. The code for
dynamically scheduled circuit is generated by Dyna-
matic, and the code for static islands is generated by
Vitis HLS. DASS also generates a wrapper for each
static island for correct data communication between
the static island and its dynamically scheduled sur-
roundings.

8 EXPERIMENTS

The experiments in this section evaluate the effectiveness of
our approach based on the following results: the hardware
resource usage on FPGAs as area, the wall clock time (the
total latency in clock cycles divided by the maximum clock
frequency), and the total compilation time. We compare our

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 11

−10 0 10 20
0

20

40

Percentage difference

Te
st

ca
se

s

Fig. 9: Percentage differences in area-delay product between
our approach and the exhaustively searched designs for
vecTrans over different input distributions. Small differ-
ence means better design quality.

approach with three baselines: the static analysis used by
Vitis HLS scheduler for estimating II, the throughput anal-
ysis in Dynamatic and exhaustive search using simulations.
The results are obtained over a set of benchmarks that are
applicable to our approach. The total latency was measured
by running simulations using ModelSim 10.6d. The area and
frequency results were measured from the Place & Route
report in Xilinx Vivado 2020.2. The compilation time was
measured by the ‘time’ command in bash script. The FPGA
family we used for all the experiments is xc7z020clg484.

8.1 Benchmarks
Finding suitable benchmarks is a perennial problem for
papers that push the limits of HLS, in part because existing
benchmark sets such as Polybench [38] and CHStone [39]
tend to be tailored to what HLS tools can already comfort-
ably handle.

Specifically, we select six benchmarks that are amenable
for our approach. These benchmarks all have unpredictable
behaviours at run time, such as data-dependent conditions
and unpredictable memory accesses so that the hardware
performance can benefit from dynamic scheduling. Also, the
static islands have the opportunities for resource sharing, so
II> 1 can be beneficial. The benchmarks for the experiments
are as follows and have been open-sourced3.
vecTrans is the motivating example in Fig. 1.
vecTrans2 is similar to the motivating example, however,
the store operation is conditional depending on the array
data.

vecTrans3 is also similar to the motivating example but all
the memory accesses are indirectly addressed. The type of
array data is floating-point.

evalPos is an evaluation function for a chess engine, which
evaluates the given position on the board [40].

levmarq is an implementation of the Levenberg-Marquardt
algorithm for solving least-squares problems [41].

chaosNCG is a function for the Naive Czyzewski Generator
in the Chaos engine to pull the data from the buffer [42].

8.2 Results
This section illustrates the effectiveness of our approach.
First, we present a case study of benchmark vecTrans on
the difference of area-delay product between the hardware

3. https://github.com/JianyiCheng/HLS-benchmarks

generated by our approach and the optimal design. Second,
we show the overall results over six benchmarks. Finally,
we compare the compilation time of our approach with
the approaches using simulations and discrete Petri net
analysis.

For vecTrans, we exhaustively enumerated all the pos-
sible IIs for each static island for each input data distribution
in Fig. 2. The optimal II by exhaustive search is determined
as the largest II with a latency of no more than 110% 4 of the
minimum latency among all the IIs. Then we compare the
searched IIs with the inferred II by our tool for each case.

Fig. 9 illustrates a histogram of the difference in area-
delay product between the exhaustively searched design
and our design. The area-delay product is the product of
the total wall clock time and the total number of LUTs.
We enumerated 110 test cases over different input data and
different probability constraints. A small difference means
better design quality. In the figure, we observe the following:

1) The quality of the hardware design generated by our
approach is close to the exhaustive searched design.
86% of the cases show differences of less than 10% in
the area-delay product.

2) 14% of the cases have a difference greater than 10%
because the approximation made by our approach
causes discrepancies. Particularly for this example, the
memory model in Petri net neglects the dependences
that occur in sequence and approximates them into
probabilities.

Table 2 shows the results in area and performance for
all six benchmarks. For each benchmark, we use a set of
randomly-generated data that is not an extreme case. We
compare the area and delay of the designs with the inferred
II by our tool to the designs with the IIs suggested by Vitis
HLS (base 1), the IIs manually calculated from Dynamatic
throughput analysis (base 2) and the optimal IIs by ex-
haustive search using simulations (search). In the table, we
observe the following:

1) The II given by Vitis HLS is usually large due to the
conservatism in static scheduling. Compared to the
optimal design by exhaustive search, Vitis HLS achieves
0.74× area but 0.27× performance on average.

2) The II given by Dynamatic using its internal through-
put analysis is usually small because the throughput
analyser approximates control flow and ignores mem-
ory dependence. Compared to the optimal design by
exhaustive search, such unduly optimistic IIs achieve
comparable performance but result in 1.76 × DSPs on
average.

3) The area-delay product overhead for Vitis HLS and
Dynamatic are 112% and 17% respectively.

4) The II inferred by our tool achieves close area and
performance to the exhaustively searched design with
only 2% overhead in the area-delay product.

5) Both Vitis HLS and Dynamatic could achieve com-
parable results with exhaustive search when dealing
with examples with simple control flow or memory
dependences. For example, evalPos only has condi-
tional loop-carried data dependence and does not have

4. 110% is determined because of the additional latency caused by
adding a wrapper for each static island [7]

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 12

TABLE 2: Experiment results of our approach and a few baselines over a set of benchmarks: “base 1” denotes the designs
with IIs conservatively chosen by Vitis HLS; “base 2” denotes that the designs with IIs manually inferred from Dynamatic
throughput analysis; “ours” denotes the designs with IIs inferred by our model; and “search” denotes the designs with IIs
by exhaustive search.

Benchmark II LUTs5 DSPs Fmax (MHz) Wall clock time (µs)

base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search base 1 base 2 ours search

vecTrans 15 1 3 3 785 759 922 922 3 21 9 9 112 104 79.6 79.6 898 563 755 755
vecTrans2 15 6 6 7 150 470 470 434 3 6 6 3 58.6 60.0 60.0 62.7 694 403 403 391
vecTrans3 49 1 2 2 1.22k 2.59k 2.68k 2.68k 5 27 15 15 102 100 97.7 97.7 1920 144 145 145
evalPos 5 10 11 14 3.63k 3.68k 3.63k 3.55k 14 14 14 14 80.5 77.0 80.4 80.4 28.7 29.1 27.8 27.8
levmarq 59,72 1,2 59,6 59,8 2.86k 7.01k 4.141k 4.141k 26 75 31 31 63.8 54.2 61.2 61.2 21000 17100 15300 15800
chaosNCG 74 1 8 28 3.61k 5.67k 3.78k 3.44k 0 0 0 0 93.0 92.5 87.9 5170 1500 1580 1720

Normalised
geom. mean - - - - 0.74× 1.21× 1.03× 1× 0.75× 1.76× 1.17× 1× 1.05× 1.03× 1× 1× 3.58× 0.96× 0.99× 1×

TABLE 3: Evaluation of compilation time taken for our approach and a few baselines over a set of benchmarks. “Synthesis”
denotes the time taken for emitting RTL code from C code with determined IIs; “analysis” denotes the time taken for
determining the II of static islands; “total” denotes the complete end-to-end compilation time. “Simulation” denotes
exhaustive search using simulations; “Discrete PN” denotes the analysis using discrete Petri net; and “TCPN+i” denotes
the analysis using timed continuous Petri net with immediate transitions.

Benchmarks Synthesis - s Analysis - s Total - s

Simulation Discrete PN TCPN+i Simulation Discrete PN TCPN+i

vecTrans 189 3.96k 1.08k 1 3.96k 1.46k 379
vecTrans2 165 3.46k 10 2 3.46k 340 332
vecTrans3 187 11.8k 1.08k 2 11.8k 1.45k 376
evalPos 212 13.2k 9 8 13.2k 433 432
levmarq 560 2.70M 1.09k 51 2.70M 2.21k 1.17k
chaosNCG 187 23.0k 1.08k 11 23.0k 1.45k 385

Geom. mean (speedup) 1× 14× 2.8k× 1× 8.7× 22×

any memory dependences. The data dependence can
be resolved by applying internal source transformation
passes in Vitis HLS, which leads to an II smaller than
the optimal II. However, the area overhead caused by
the small II is not significant because the code size for
evalPos is small. An II of 5 already achieves most
of the resources being shared among operations, and
further increasing II will not lead to a noticeable area
reduction.

6) The results in Table 2 have already achieved the max-
imum performance allowable by the dependence con-
straints in DASS. Source transformations such as loop
unrolling cannot exploit more parallelism because of
the memory dependence between certain iterations.

The time taken for analysis is usually significantly less
than the implementation time. Table 3 shows the compila-
tion time breakdown for each approach. Synthesis means
the time taken to emit RTL code. We measure the time taken
for analysis using three approaches, simulation, discrete
Petri net analysis [29] and analysis for continuous Petri net
with immediate transitions. In the table, we observe the
following:

1) The time for exhaustive search using simulations de-
pends on both the synthesis and simulation time be-
cause it needs to generate RTL code for simulations.

5. The LUT count is for the whole design except the area for LSQs,
which are constant among all the approaches [2]. Optimising the LSQs
is a separate problem.

The analysis time scales exponentially with the number
of static islands and the number of possible IIs, such as
levmarq.

2) Both Petri net-based analysis approaches reduce the
scalability issue because it does not scale with the
constraints above. It achieves significant speedup com-
pared to exhaustive searches.

3) The analysis using continuous Petri nets with im-
mediate transitions achieves the fastest analysis. The
formulation introduced in Sec. 6 skips the process of
constructing the reachability graph and leads to further
speedup compared to discrete Petri net analysis.

4) The discrepancies caused by continuous Petri net anal-
ysis are not observed when compared with discrete
Petri nets. Such discrepancies are negligible compared
to the discrepancies caused by modelling in Petri nets
in Sec. 5.

5) Overall, we achieve a 22× speedup in the total com-
pilation time for synthesizing a hardware design with
optimised IIs.

9 CONCLUSION

Static analysis techniques for dynamic hardware behaviour
in HLS only consider extreme cases or take a long time using
profiling. In order to tackle this problem, we propose an effi-
cient approach for analysing dynamic hardware behaviours
in a compact representation in Petri nets. We use probabilis-
tic analysis to efficiently explore various computation traces

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 13

caused by data-dependent choices and irregular memory
accesses. With the proposed modelling in Petri nets, we use
pre-existing analysis techniques for Petri nets to statically
analyse the dynamically scheduled hardware behaviour. We
also implement new techniques for the analysis of TCPN+i
[32]. Our approach is generic and suitable for HLS hardware
produced from arbitrary code.

As an application of the proposed Petri net model, we
demonstrate how to statically estimate the overall through-
put of each static island in a dynamically scheduled circuit.
This suggests an efficient II for the static island, which
efficiently shares hardware resources and does not cause
noticeable performance overhead. Over a set of benchmarks
that are applicable to our approach, we show that this
work achieves 22× speedup on determining efficient IIs
for static islands compared to exhaustive search, with 2%
overhead in area-delay product. Existing tools, Vitis HLS
and Dynamatic, produce designs with an overhead of 112%
and 17% in area-delay product respectively. Our future work
will explore the fundamental limits of this approach, both
theoretically and practically.

ACKNOWLEDGMENTS

This work is supported by the EPSRC (EP/P010040/1,
EP/R006865/1). For the purpose of open access, the au-
thor(s) has applied a Creative Commons Attribution (CC
BY) license to any Accepted Manuscript version arising.

REFERENCES

[1] V. G. Castellana, A. Tumeo, and F. Ferrandi, “High-level syn-
thesis of memory bound and irregular parallel applications with
bambu,” in 2014 IEEE Hot Chips 26 Symposium (HCS). Cupertino,
CA: IEEE, Aug 2014, pp. 1–1.

[2] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled
high-level synthesis,” in Proceedings of the 2018 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, ser. FPGA
’18. Monterey, CA: ACM, 2018, pp. 127–136.

[3] Xilinx Vitis HLS, 2022. [Online]. Available: https://docs.xilinx.
com/r/en-US/ug1399-vitis-hls

[4] Intel HLS Compiler, 2022. [Online]. Avail-
able: https://www.intel.co.uk/content/www/uk/en/software/
programmable/quartus-prime/hls-compiler.html

[5] Stratus High-Level Synthesis, 2022. [Online]. Avail-
able: https://www.cadence.com/en US/home/tools/digital-
design-and-signoff/synthesis/stratus-high-level-synthesis.html

[6] Catapult High-Level Synthesis, 2022. [Online]. Avail-
able: https://eda.sw.siemens.com/en-US/ic/ic-design/high-
level-synthesis-and-verification-platform

[7] J. Cheng, L. Josipović, P. Ienne, G. Constantinides, and J. Wick-
erson, “Combining dynamic & static scheduling in high-level
synthesis,” in Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’20. Mon-
terey, CA: ACM, 2020.

[8] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wick-
erson, “Dass: Combining dynamic and static scheduling in high-
level synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 3, pp. 628–641, 2022.

[9] J. Cheng, J. Wickerson, and G. A. Constantinides, “Finding
and finessing static islands in dynamically scheduled circuits,”
in Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 89–100.
[Online]. Available: https://doi.org/10.1145/3490422.3502362

[10] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585–591.

[11] M. Drazić, V. Kovacevic-Vujcić, M. Cangalović, and N. Mladen-
ović, “Glob—a new vns-based software for global optimization,”
in Global optimization. Springer, 2006, pp. 135–154.

[12] M. Silva, J. Júlvez, C. Mahulea, and C. R. Vázquez, “On flu-
idization of discrete event models: observation and control of
continuous Petri nets,” Discrete Event Dynamic Systems: Theory and
Applications, vol. 21, no. 4, pp. 427–497, 2011.

[13] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow
circuits,” in The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’20. Monterey, CA:
Association for Computing Machinery, 2020, p. 186–196. [Online].
Available: https://doi.org/10.1145/3373087.3375314

[14] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte, “Generalized
stochastic petri nets: a definition at the net level and its implica-
tions,” IEEE Transactions on Software Engineering, vol. 19, no. 2, pp.
89–107, 1993.

[15] J. Júlvez and C. Mahulea, “Simhpn: a matlab toolbox for
continuous petri nets,” IFAC Proceedings Volumes, vol. 43, no. 12,
pp. 21–26, 2010, 10th IFAC Workshop on Discrete Event
Systems. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1474667015324289

[16] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
T. Czajkowski, S. D. Brown, and J. H. Anderson, “Legup:
An open-source high-level synthesis tool for fpga-based
processor/accelerator systems,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 2, Sep. 2013. [Online]. Available: https://doi.org/10.
1145/2514740

[17] Z. Zhang and B. Liu, “Sdc-based modulo scheduling for pipeline
synthesis,” in 2013 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2013, pp. 211–218.

[18] A. Canis, S. D. Brown, and J. H. Anderson, “Modulo sdc schedul-
ing with recurrence minimization in high-level synthesis,” in
2014 24th International Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–8.

[19] Ian Page and Wayne Luk, “Compiling occam into Field-
Programmable Gate Arrays,” in FPGAs, W. Moore and W. Luk, Eds.,
Abingdon EE&CS Books, 1991.

[20] Celoxica, “Handel-C,” 2005. [Online]. Available: http://www.
celoxica.com

[21] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Theory of latency-insensitive design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 9, pp. 1059–1076, Sep. 2001.

[22] L. Josipović, P. Brisk, and P. Ienne, “An out-of-order load-store
queue for spatial computing,” ACM Trans. Embed. Comput. Syst.,
vol. 16, no. 5s, pp. 125:1–125:19, Sep. 2017.

[23] L. P. Carloni, “From latency-insensitive design to communication-
based system-level design,” Proceedings of the IEEE, vol. 103, no. 11,
pp. 2133–2151, Nov 2015.

[24] M. Ishikawa and G. De Micheli, “A module selection algorithm
for high-level synthesis,” in 1991., IEEE International Sympoisum on
Circuits and Systems, 1991, pp. 1777–1780 vol.3.

[25] I. Ahmad, M. K. Dhodhi, and C. Y. R. Chen, “Integrated schedul-
ing, allocation and module selection for design-space exploration
in high-level synthesis,” IEE Proceedings - Computers and Digital
Techniques, vol. 142, no. 1, pp. 65–71, 1995.

[26] K. Ito, L. E. Lucke, and K. K. Parhi, “Ilp-based cost-optimal dsp
synthesis with module selection and data format conversion,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 6, no. 4, pp. 582–594, 1998.

[27] W. Sun, M. J. Wirthlin, and S. Neuendorffer, “Fpga pipeline
synthesis design exploration using module selection and resource
sharing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 254–265, 2007.

[28] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance
analysis and optimization of latency insensitive systems,” in
Proceedings of the 37th Annual Design Automation Conference, ser.
DAC ’00. New York, NY, USA: Association for Computing
Machinery, 2000, p. 361–367. [Online]. Available: https://doi.org/
10.1145/337292.337441

[29] J. Cheng, J. Wickerson, and G. A. Constantinides, “Probabilistic
scheduling in high-level synthesis,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021, pp. 195–203.

[30] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets.
Berlin: Springer, 2004, (2nd edition, 2010).

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-prime/hls-compiler.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform
https://doi.org/10.1145/3490422.3502362
https://doi.org/10.1145/3373087.3375314
https://www.sciencedirect.com/science/article/pii/S1474667015324289
https://www.sciencedirect.com/science/article/pii/S1474667015324289
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2514740
http://www.celoxica.com
http://www.celoxica.com
https://doi.org/10.1145/337292.337441
https://doi.org/10.1145/337292.337441

IEEE TRANSACTION ON COMPUTERS, VOL. , NO. , JUNE 2022 14

[31] L. Recalde, C. Mahulea, and M. Silva, “Improving analysis and
simulation of continuous petri nets,” in 2006 IEEE International
Conference on Automation Science and Engineering, 2006, pp. 9–14.

[32] C. Vazquez and E. Aguayo-Lara, “Immediate transitions in timed
continuous petri nets: Performance evaluation and control,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–12,
2023.

[33] J. Carmona, J. Cortadella, and E. Pastor, “A structural encoding
technique for the synthesis of asynchronous circuits,” Fundamenta
Informaticae - FUIN, vol. 50, pp. 157–166, 01 2001.

[34] J.-I. Rocha, O. Páscoa Dias, and L. Gomes, “Improving
synchronous dataflow analysis supported by petri net mappings,”
Electronics, vol. 7, no. 12, 2018. [Online]. Available: https:
//www.mdpi.com/2079-9292/7/12/448

[35] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[36] L. Josipović, A. Bhattacharyya, A. Guerrieri, and P. Ienne, “Shrink
it or shed it! minimize the use of lsqs in dataflow designs,” in 2019
International Conference on Field-Programmable Technology (ICFPT),
2019, pp. 197–205.

[37] L. Recalde, E. Teruel, and M. Silva, “Autonomous Continuous P/T
Systems,” in Application and Theory of Petri Nets 1999. Springer
Berlin Heidelberg, 1999, pp. 107–126.

[38] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark
suite,” URL: http://www. cs. ucla. edu/pouchet/software/polybench, vol.
437, 2012.

[39] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Ch-
stone: A benchmark program suite for practical c-based high-level
synthesis,” in 2008 IEEE International Symposium on Circuits and
Systems, 2008, pp. 1192–1195.

[40] LosAlamosChessEngine, 2020. [Online]. Available: https://
github.com/gfmcknight/LosAlamosChessEngine

[41] levenberg-maquardt-example, 2020. [Online]. Available: https:
//github.com/leechwort/levenberg-maquardt-example

[42] Libchaos, 2020. [Online]. Available: https://github.com/
maciejczyzewski/libchaos

Jianyi Cheng (S’20) received an MSc in Ana-
logue and Digital Integrated Circuit Design from
Imperial College London in 2018 and a BEng in
Electrical and Electronic Engineering from Uni-
versity of Nottingham in 2017. Currently, he is
a PhD student in Electrical and Electronic En-
gineering from Imperial College London. His re-
search interests include reconfigurable comput-
ing, high-level synthesis, program analysis and
formal verification. He is a Student Member of
the IEEE and the ACM.

Estibaliz Fraca received a Ph.D. in Computer
Science and Systems Engineering from Uni-
versidad de Zaragoza in 2015. She is a Re-
search Fellow in the Department of Computer
Science in University College London. Her re-
search interests include modelling and analysis
of distributed systems, hybrid systems, contin-
uous and hybrid Petri nets, system interfaces,
software verification, automated reasoning and
separation logic.

John Wickerson (M’17, SM’19) received a
Ph.D. in Computer Science from the University of
Cambridge in 2013. He is a Lecturer in the De-
partment of Electrical and Electronic Engineer-
ing at Imperial College London. His research
interests include high-level synthesis, the design
and implementation of programming languages,
and software verification. He is a Senior Member
of the IEEE and a Member of the ACM.

George A. Constantinides (S’96, M’01, SM’08)
received the Ph.D. degree from Imperial College
London in 2001. Since 2002, he has been with
the faculty at Imperial College London, where
he is currently Royal Academy of Engineering /
Imagination Technologies Research Chair, Pro-
fessor of Digital Computation, and Head of the
Circuits and Systems research group. He has
served as chair of the FPGA, FPL and FPT
conferences. He currently serves on several pro-
gram committees and has published over 150

research papers in peer refereed journals and international conferences.
Prof Constantinides is a Senior Member of the IEEE and a Fellow of the
British Computer Society.

https://www.mdpi.com/2079-9292/7/12/448
https://www.mdpi.com/2079-9292/7/12/448
https://github.com/gfmcknight/LosAlamosChessEngine
https://github.com/gfmcknight/LosAlamosChessEngine
https://github.com/leechwort/levenberg-maquardt-example
https://github.com/leechwort/levenberg-maquardt-example
https://github.com/maciejczyzewski/libchaos
https://github.com/maciejczyzewski/libchaos

	Introduction
	Overview
	Background
	Scheduling in HLS
	Module Selection in HLS
	Petri Nets

	Petri Net Specifications
	Petri Net Modelling
	Modelling Static Islands
	Modelling Dynamically Scheduled Components
	Control Components
	Buffer Components
	Generic Components
	Memory Components

	Stitching Together

	Petri Net Analysis
	Steady State Analysis of Petri nets
	Steady State Formulation

	Toolflow
	Experiments
	Benchmarks
	Results

	Conclusion
	References
	Biographies
	Jianyi Cheng
	Estibaliz Fraca
	John Wickerson
	George A. Constantinides

