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Abstract

The entropy production rate is a central quantity in non-equilibrium statistical physics, scoring how
far a stochastic process is from being time-reversible. In this paper, we compute the entropy production
of diffusion processes at non-equilibrium steady-state under the condition that the time-reversal of the
diffusion remains a diffusion. We start by characterising the entropy production of both discrete and
continuous-time Markov processes. We investigate the time-reversal of time-homogeneous stationary
diffusions and recall the most general conditions for the reversibility of the diffusion property, which
includes hypoelliptic and degenerate diffusions, and locally Lipschitz vector fields. We decompose the
drift into its time-reversible and irreversible parts, or equivalently, the generator into symmetric and
antisymmetric operators. We show the equivalence with a decomposition of the backward Kolmogorov
equation considered in hypocoercivity theory, and a decomposition of the Fokker-Planck equation in
GENERIC form. The main result shows that when the time-irreversible part of the drift is in the range
of the volatility matrix (almost everywhere) the forward and time-reversed path space measures of the
process are mutually equivalent, and evaluates the entropy production. When this does not hold, the
measures are mutually singular and the entropy production is infinite. We verify these results using exact
numerical simulations of linear diffusions. We illustrate the discrepancy between the entropy production
of non-linear diffusions and their numerical simulations in several examples and illustrate how the entropy
production can be used for accurate numerical simulation. Finally, we discuss the relationship between
time-irreversibility and sampling efficiency, and how we can modify the definition of entropy production
to score how far a process is from being generalised reversible.

Keywords: measuring irreversibility; time-reversal; hypoelliptic; degenerate diffusion; Helmholtz de-
composition; numerical simulation; Langevin equation; stochastic differential equation; entropy production
rate.
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1 Introduction
The entropy production rate ep is a central concept in statistical physics. In a nutshell, it is a measure of
the time-irreversibility of a stochastic process, that is how much random motion differs statistically speaking
as one plays it forward, or backward, in time.

At non-equilibrium steady-state, the ep is quantified by the relative entropy H (a.k.a Kullback-Leibler
divergence)

ep =
1

T
H[P[0,T ] | P̄[0,T ]]

between the path-wise distributions of the forward and time-reversed processes in some time interval [0, T ],
denoted by P[0,T ], P̄[0,T ], respectively.

Physically, the ep measures the minimal amount of energy needed, per unit of time, to maintain a system
at non-equilibrium steady-state. Equivalently, it quantifies the heat dissipated by a physical system at non-
equilibrium steady-state per unit of time [1, p. 86]. The second law of thermodynamics for open systems is
the non-negativity of the entropy production.

The ep plays a crucial role in stochastic thermodynamics. It is the central quantity in the so-called
Gallavotti-Cohen fluctuation theorem, which quantifies the probability of entropy decrease along stochastic
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trajectories [2–4]. More recently, entropy production is at the heart of the so-called thermodynamic un-
certainty relations, which provide estimates of ep from observations of the system [5]. The ep is also an
important tool in biophysics, as a measure of the metabolic cost of molecular processes, such as molecular
motors [2], and it was shown empirically that brain states associated with effortful activity correlated with
a higher entropy production from neural activity [6].

In this paper, we will be primarily concerned with the entropy production of diffusion processes, that is,
solutions of stochastic differential equations. Consider an Itô stochastic differential equation (SDE)

dxt = b (xt) dt+ σ (xt) dwt

with drift b : Rd → Rd and volatility σ : Rd → Rd×m, and wt a standard Brownian motion on Rm,
whose solution is stationary at a probability measure µ with density ρ. A result known as the Helmholtz
decomposition, which is central in non-equilibrium statistical physics [7–10] but also in statistical sampling
[11–14], tells us that we can decompose the drift into time-reversible and time-irreversible parts: b = brev+birr.
In particular, birrρ is the stationary probability current, as considered by Nelson [15]. Jiang and colleagues
derived the entropy production rate for such systems under the constraint that the coefficients of the SDE
b, σ are globally Lipschitz, and the solution uniformly elliptic (i.e., the diffusion matrix field D = 1

2σσ
⊤ is

uniformly positive definite). This takes the form of [1, Chapter 4]:

ep =

∫
Rd

b⊤irrD
−1birrρ(x)dx.

In this paper, we extend their work by computing the entropy production for a greater range of diffusion
processes, which includes non-elliptic, hypoelliptic and degenerate diffusions, and SDEs driven by locally
Lipschitz coefficients. Non-elliptic diffusions are solutions to SDEs whose diffusion matrix field D = 1

2σσ
⊤ is

not positive definite everywhere; this means that there are regions of space in which the random fluctuations
cannot drive the process in every possible direction. Depending on how the volatility interacts with the drift
(i.e., Hörmander’s theorem [16, Theorem 1.3]), solutions initialised at a point may still have a density—the
hypoelliptic case—or not—the degenerate case; prominent examples are underdamped Langevin dynamics
and deterministic dynamics, respectively. In our treatment, we only assume that the time-reversal of a
diffusion is a diffusion (the necessary and sufficient conditions for which were first established by Millet,
Nualart and Sanz [17]) and sufficient regularity to apply Girsanov’s theorem or the Stroock-Varadhan support
theorem.

This extension has become important since many processes that are commonplace in non-equilibrium
statistical physics or statistical machine learning are hypoelliptic. For instance, the underdamped and
generalised Langevin equations in phase space [10], which model the motion of a particle interacting with
a heat bath, and which form the basis of efficient sampling schemes such as Hamiltonian Monte-Carlo
[13], or, stochastic gradient descent in deep neural networks [14], or, the linear diffusion process with the
fastest convergence to stationary state [18], which informs us of the properties of efficient samplers. Much
research in statistical sampling has drawn the connection between time-irreversibility and sampling efficiency
[13, 19–21], so it is informative to understand the amount of time-irreversibility associated with the most
efficient samplers. Lastly, it is known that numerically integrating a diffusion processes can modify the
amount of irreversibility present in the original dynamic [22]. The entropy production rate is thus an
important indicator of the fidelity of a numerical simulation, and can serve as a guide to developing sampling
schemes that preserve the statistical properties of efficient (hypoelliptic) samplers.

The outline of the paper and our contribution are detailed below.

1.1 Paper outline and contribution
Section 2: We give various characterisations and formulas for the ep of stationary Markov processes in
discrete and continuous-time, and recall a crude but general recipe for numerical estimation.

Section 3: We investigate the time-reversal of time-homogeneous diffusions. We give the general condi-
tions under which the time-reversal of a time-homogeneous diffusion remains a diffusion, based on the results
of Millet, Nualart and Sanz [17]. We then recall how the drift vector field of an SDE can be decomposed into
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time-reversible and irreversible parts. We show that this decomposition is equivalent to a decomposition of
the generator of the process into symmetric and antisymmetric operators on a suitable function space. Then
we show that this decomposition is equivalent to two other fundamental decompositions in the study of far
from equilibrium systems: the decomposition of the backward Kolmogorov equation considered in hypoco-
ercivity theory [23, 24] and the decomposition of the Fokker-Planck equation considered in the GENERIC
formalism [23,25].

Section 4: We compute the ep of stationary diffusion processes under the condition that the time-reversal
of the diffusion remains a diffusion. We show that:

• Section 4.1: If birr(x) ∈ Rangeσ(x), for µ-almost every x ∈ Rd1 (in particular for elliptic or time-
reversible diffusions). Then the forward and backward path-space measures are mutually equivalent,
in other words, the sets of possible trajectories by forward and backward processes are equal—and the
entropy production equals ep =

∫
b⊤irrD

−birrdµ, where ·− denotes the Moore-Penrose matrix pseudo-
inverse. See Theorems 4.1, 4.2 for details.

• Section 4.2: When the above does not hold, the forward and backward path-space measures are
mutually singular, in other words, there are trajectories that are taken by the forward process that
cannot be taken by the backward process—and vice-versa2. In particular, the entropy production rate
is infinite ep = +∞. See Theorem 4.4 for details.

Section 5: We compute the ep of various models such as the multivariate Ornstein-Uhlenbeck and the
underdamped Langevin process. We numerically simulate and verify the value of ep when the coefficients are
linear. We then discuss how numerical discretisation can influence the value of ep. As examples, we compute
and compare the ep of Euler-Maruyama and BBK [26, 27] discretisations of the underdamped Langevin
process. We summarise the usefulness of ep as a measure of the accuracy of numerical schemes in preserving
the time-irreversibility properties of the underlying process, and give guidelines, in terms of ep, for developing
accurate simulations of underdamped Langevin dynamics.

Section 6: We give a geometric interpretation of our main results and discuss future perspectives: what
this suggests about the relationship between time-irreversibility and mixing in the context of sampling and
optimisation, and how we could modify the definition—and computation—of ep to quantify how a process
is far from being time-reversible up to a one-to-one transformation of its phase-space.

2 The ep of stationary Markov processes
In this section, (xt)t∈[0,T ], T > 0 is a time-homogeneous Markov process on a Polish space X with almost
surely (a.s.) continuous trajectories.

Definition 2.1 (Time reversed process). The time reversed process (x̄t)t∈[0,T ] is defined as x̄t = xT−t.

Note that since the final state of the forward process is the initial state of the backward process this
definition makes sense only on finite time intervals.

We define (C([0, T ],X ), d∞) as the space of X -valued continuous paths endowed with the supremum
distance d∞, defined as d∞(f, g) = supt∈[0,T ] d(f(t), g(t)), where d is a choice of distance on the Polish space
X . Naturally, when we later specialise to X = Rd, the supremum distance will be given by the L∞-norm
∥ · ∥∞.

Definition 2.2 (Path space measure). Each Markov process (xt)0≤t≤T with a.s. continuous trajectories
defines probability measure P[0,T ] on the canonical path space (C([0, T ],X ),B), where B is the Borel
sigma-algebra associated with the supremum distance. This probability measure determines the probability
of the process to take any (Borel set of) paths.

1µ-almost everywhere: This means that the statement holds with probability 1 when x is distributed according to the
probability measure µ.

2Precisely, two measures are mutual singular if and only if they are not mutually equivalent.
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Remark 2.3 (Cadlag Markov processes). All definitions and results in this section hold more generally for
Markov processes with cadlag paths (i.e., right continuous with left limits), simply replacing the canonical
path-space (C([0, T ],X ), d∞) with the Skorokhod space. We restrict ourselves to processes with continuous
paths for simplicity.

Definition 2.4 (Restriction to a sub-interval of time). Given a path space measure P[0,T ] and times a <
b ∈ [0, T ], we define P[a,b] to be the path space measure describing (xt)t∈[a,b]. This is the restriction of P[0,T ]

to the sub sigma-algebra B[a,b] :=
{
A ∈ B : A|[a,b] ∈ Borel sigma-algebra on (C([a, b],X ), d∞)

}
.

Let P be the path space measure of the Markov process xt and P̄ be that of its time-reversal x̄t,
respectively. We can measure the statistical difference between the forward and time-reversed processes at
time τ ∈ [0, T ] with the entropy production rate

lim
ε↓0

1

ε
H
[
P[τ,τ+ε], P̄[τ,τ+ε]

]
, (1)

where H is the relative entropy (a.k.a. Kullback-Leibler divergence). This measures the rate at which the
forward and backward path space measures differ in the relative entropy sense at time τ .

The following result [1, Theorem 2.2.4] (see also [28, Theorem 10.4]) shows that the limit exists in
stationary and time-homogeneous Markov processes. Obviously, the limit is independent of τ in this case.

Theorem 2.5. Suppose that (xt)t∈[0,T ] is a stationary time-homogeneous Markov process on a Polish space
X with continuous sample paths. Stationarity implies that we can set the time-horizon T > 0 of the process
to arbitrarily large values. Then the quantity

1

t
H
[
P[τ,τ+t] | P̄[τ,τ+t]

]
for all τ ∈ [0,+∞), t ∈ (0,+∞)

is a constant ∈ [0,+∞].

This yields the following general definition of entropy production rate for stationary Markov processes:

Definition 2.6 (Entropy production rate of a stationary Markov process). Let (xt)t∈[0,T ] be a stationary
time-homogeneous Markov process. Stationarity implies that we can set the time-horizon T > 0 to be
arbitrarily large. For such processes, the entropy production rate is a constant ep ∈ [0,+∞] defined as

ep :=
1

t
H
[
P[0,t] | P̄[0,t]

]
(2)

for any t ∈ (0,+∞). ep scores the amount to which the forward and time-reversed processes differ per unit
of time. In particular, Tep is the total entropy production in a time interval of length T . Note that, in the
literature, the ep is often defined as ep = limt→+∞

1
t H
[
P[0,t] | P̄[0,t]

]
, e.g., [1, Definition 4.1.1]; this is just

(2) in the limit of large t. However, Theorem 2.5 showed us that (2) is constant w.r.t. t ∈ (0,+∞) so we do
not need to restrict ourselves to defining the ep as (2) in the limit of large t. This added generality will be
very helpful to compute ep later, by exploiting the fact that (2) is often more easily analysed in the regime
of finite or small t.

Remark 2.7 (Physical relevance of Definition 2.6). In some stationary processes (e.g., Hamiltonian systems),
physicists define entropy production as Definition 2.6 with an additional operator applied to the path space
measure of the time-reversed process; that is,

egen,θp := lim
ε↓0

1

ε
H
[
P[0,ε], θ#P̄[0,ε]

]
, (3)

where θ# is the pushforward operator associated to an involution of phase-space θ (e.g., the momentum
flip [29–31]) that leaves the stationary distribution invariant3. In this article, we will refer to (2) as entropy

3This generalised definition of entropy production is taken as a limit of ε ↓ 0 analogously to (1) to capture the fact that we
are modelling a rate. We cannot, a priori state that the expression is constant for any ε ∈ (0,+∞), as in Definition 2.6, since
we do not know whether a result analogous to Theorem 2.5 holds in this case.
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production and to (3) as generalised entropy production, and proceed to derive general results for (2). The
results we derive are informative of the process and applicable independently of whether (2) is the physically
meaningful definition of entropy production; yet, physicists looking to interpret these results should bear in
mind that they are physically informative about entropy production insofar as Definition 2.6 is physically
meaningful for the system at hand. We will briefly revisit generalised entropy production in the discussion
(Section 6.2).

Proposition 2.8. Let (xt)t∈[0,T ] be a time-homogeneous Markov process on a Polish space X , stationary at
the probability measure µ. Then the entropy production rate equals

ep =
1

t
Ex∼µ

[
H
[
Px

[0,t] | P̄
x
[0,t]

]]
for any t ∈ (0,+∞).

A proof is provided in Appendix A.1.1.

Notation 2.9. By Px we mean the path space measure of the process initialised (possibly out of stationarity)
at a deterministic initial condition x0 = x ∈ X .

Proposition 2.10 (ep in terms of transition kernels). Let (xt)t∈[0,T ] be a time-homogeneous Markov process
on a Polish space X , stationary at the probability measure µ. Denote by pt(dy, x) the transition kernels of
the Markov semigroup, and by p̄t(dy, x) those of the time-reversed process. Then the entropy production rate
equals

ep = lim
ε↓0

1

ε
Ex∼µ [H [pε(·, x) | p̄ε(·, x)]] .

The fact that the time-reversed process possesses transition kernels holds as it is also a stationary Markov
process [1, p. 113]. A proof of Proposition 2.10 is provided in Appendix A.1.2.

2.1 The ep of numerical simulations
Proposition 2.10 entails a formula for the ep of Markov processes in discrete time:

Definition 2.11. The entropy production rate of a discrete-time Markov process with time-step ε equals

eNS
p (ε) =

1

ε
Ex∼µ̃

∫
pε(y, x) log

pε(y, x)

pε(x, y)
dy, (4)

where µ̃ is the invariant measure of the process.

This definition is useful, for example, to quantify the entropy production of numerical simulations of a
stochastic process [22]. In particular, it suggests a simple numerical estimator of the entropy production
rate for numerical simulations (at stationarity). Consider a small δ (e.g., δ is the time-step of the numerical
discretisation). Given samples from the process at δ time intervals, discretise the state-space into a finite
partition U1, . . . , Un, and approximate P[0,δ] and P̄[0,δ] by the empirical transition probabilities pi→j between
Ui, Uj from time 0 to δ.

eNS
p = lim

ε→0

1

ε
H
[
P[0,ε] | P̄[0,ε]

]
≈ 1

δ
H
[
P[0,δ] | P̄[0,δ]

]
≈ 1

δ

∑
i,j

pi→j log
pi→j

pj→i
.

Note that this method measures the entropy production rate of the numerical discretisation as opposed to
that of the continuous process. This typically produces results close to ep, but does not necessarily converge
to ep in the continuum limit δ → 0 of the numerical discretisation. Indeed [22] showed that numerical
discretisations can break detailed balance, so that the continuum limit of the numerical discretisation can
differ from the initial process. Thus one should choose numerical schemes carefully when preserving the
entropy production rate of a process is important. We will return to this in Section 5.
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3 Time reversal of stationary diffusions
We now specialise to diffusion processes in Rd. These are Markov processes with an infinitessimal generator
that is a second order linear operator without a constant part [32, Definition 1.11.1], which entails almost
surely (a.s.) continuous sample paths. Conveniently, diffusion processes are usually expressible as solutions
to stochastic differential equations. From now on, we consider an Itô stochastic differential equation

dxt = b (xt) dt+ σ (xt) dwt (5)

with drift b : Rd → Rd and volatility σ : Rd → Rd×m, and wt a standard Brownian motion on Rm.

Notation 3.1. Let D = σσ⊤/2 ∈ Rd×d be the diffusion tensor. Denote by ∥ · ∥ the Euclidean distance, and,
for matrices

∥σ∥2 :=
d∑
i=1

n∑
j=1

|σij |2 .

Throughout, ∇ and ∇· are the gradient and the divergence in the distributional sense. We operationally
define the divergence of a matrix field Q : Rd → Rd×d by (∇ · Q)i :=

∑d
j=1 ∂jQij for 0 ≤ i ≤ d. We will

denote by µ the stationary probability measure of the process xt and by ρ its density with respect to the
Lebesgue measure, i.e., µ(dx) = ρ(x)dx (assuming they exist).

3.1 On the time-reversibility of the diffusion property
There is a substantial literature studying the time-reversal of diffusion processes. In general, the time-
reversal of a diffusion need not be a diffusion [17], but Haussman and Pardoux showed that the diffusion
property is preserved under some mild regularity conditions on the diffusion process [33]. A few years later
Millet, Nualart, Sanz derived necessary and sufficient conditions for the time-reversal of a diffusion to be a
diffusion [17, Theorem 2.2 & p. 220]. We provide these conditions here, with a proof of a different nature
that exploits the existence of a stationary distribution.

Lemma 3.2 (Conditions for the reversibility of the diffusion property). Let an Itô SDE (5) with locally
bounded, Lebesgue measurable coefficients b : Rd → Rd, σ : Rd → Rd×m. Consider a strong solution
(xt)t∈[0,T ], i.e., a process satisfying

xt = x0 +

∫ t

0

b (xs) ds+

∫ t

0

σ (xs) dws,

and assume that it is stationary with respect to a probability measure µ with density ρ. Consider the time-
reversed stationary process (x̄t)t∈[0,T ]. Then, the following are equivalent:

• (x̄t)t∈[0,T ] is a Markov diffusion process.

• The distributional derivative ∇ · (Dρ) is a function, which is then necessarily in L1
loc(Rd,Rd).

A proof is provided in Appendix A.2.1.

3.2 Setup for the time-reversal of diffusions
From now on, we will work under the assumption that the time-reversal of the diffusion is a diffusion. We
assume that:

Assumption 3.3. 1. The coefficients of the SDE (5) b, σ are locally Lipschitz continuous. In other words,
∀x ∈ Rd,∃r > 0, k > 0 s.t. ∀y ∈ Rd :

∥x− y∥ < r ⇒ ∥b(x)− b(y)∥+ ∥σ(x)− σ(y)∥ ≤ k∥x− y∥,

2. The solution xt to (5) is defined globally up to time T > 0. Sufficient conditions in terms of the drift
and volatility for Itô SDEs are given in Theorem [34, Theorem 3.1.1].
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Assumption 3.3.1 ensures the existence and uniqueness of strong solutions locally in time [35, Chap-
ter IV Theorem 3.1], while Assumption 3.3.2 ensures that this solution exists globally in time (i.e., non-
explosiveness). Altogether, Assumption 3.3 ensures that the SDE (5) unambiguously defines a diffusion
process.

Furthermore, we assume some regularity on the stationary distribution of the process.
Assumption 3.4. 1. (xt)t∈[0,T ] is stationary at a probability distribution µ, with density ρ with respect

to the Lebesgue measure, i.e., µ(dx) = ρ(x)dx.
Then, ρ ∈ L1(Rd) and, under local boundedness of the diffusion tensor (e.g., Assumption 3.3), Dρ ∈

L1
loc(Rd,Rd×d). Thus, we can define the distributional derivative ∇ · (Dρ). We assume that:

2. ∇ · (Dρ) ∈ L1
loc(Rd,Rd), i.e., the distributional derivative ∇ · (Dρ) is a function.

Assumption 3.4 ensures that the time-reversal of the diffusion process remains a diffusion process, as
demonstrated in Lemma 3.2.

3.3 The time reversed diffusion
Now that we know sufficient and necessary conditions for the time-reversibility of the diffusion property,
we proceed to identify the drift and volatility of the time-reversed diffusion. This was originally done
by Hausmann and Pardoux [33, Theorem 2.1], and then by Millet, Nualart, Sanz under slightly different
conditions [17, Theorems 2.3 or 3.3]. Inspired by these, we provide a different proof, which applies to
stationary diffusions with locally Lipschitz coefficients.

Theorem 3.5 (Characterisation of time-reversal of diffusion). Let an Itô SDE (5) with coefficients satisfying
Assumption 3.3. Assume that the solution (xt)t∈[0,T ] is stationary with respect to a density ρ satisfying
Assumption 3.4. Then, the time-reversed process (x̄t)t∈[0,T ] is a Markov diffusion process, stationary at the
density ρ, with drift

b̄(x) =

{
−b(x) + 2ρ−1∇ · (Dρ) (x) when ρ(x) > 0,

−b(x) when ρ(x) = 0.
(6)

and diffusion D̄ = D. Furthermore, any such stationary diffusion process induces the path space measure of
the time-reversed process P̄[0,T ].

A proof is provided in Appendix A.2.2. Similar time-reversal theorems exist in various settings: for
more singular coefficients on the torus [36], under (entropic) regularity conditions on the forward path space
measure [37,38], for infinite-dimensional diffusions [39–41], for diffusions on open time-intervals [42], or with
boundary conditions [43]. Furthermore, we did not specify the Brownian motion driving the time-reversed
diffusion but this one was identified in [44, Remark 2.5].

We illustrate the time-reversal of diffusions with a well-known example:

Example 3.6 (Time reversal of underdamped Langevin dynamics). Underdamped Langevin dynamics is
an important model in statistical physics and sampling [10,27,45]. Consider a Hamiltonian H(q, p) function
of positions q ∈ Rn and momenta p ∈ Rn. We assume that the Hamiltonian has the form

H(q, p) = V (q) +
1

2
p⊤M−1p,

for some smooth potential function V : Rd → R and diagonal mass matrix M ∈ Rd×d. The underdamped
Langevin process is given by the solution to the SDE [27, eq 2.41]{

dqt =M−1ptdt

dpt = −∇V (qt) dt− γM−1ptdt+
√
2γβ−1dwt

(7)

for some friction, and inverse temperature coefficients γ, β > 0. The stationary density, assuming it exists,
is the canonical density [27, Section 2.2.3.1]

ρ(q, p) ∝ e−βH(q,p) = e−βV (q)− β
2 p

⊤M−1p. (8)
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Thus, the time-reversal of the stationary process (Theorem 3.5) is a weak solution to the SDE{
dq̄t = −M−1p̄tdt

dp̄t = ∇V (q̄t) dt− γM−1p̄tdt+
√
2γβ−1dwt.

Letting p̂t = −p̄t, the tuple (q̄t, p̂t) solves the same SDE as (qt, pt) but with a different Brownian motion ŵt{
dq̄t =M−1p̂tdt

dp̂t = −∇V (q̄t) dt− γM−1p̂tdt+
√
2γβ−1dŵt.

Since path space measures are agnostic to changes in the Brownian motion, this leads to the statement that
time-reversal equals momentum reversal in underdamped Langevin dynamics (with equality in law, i.e., in
the sense of path space measures)

(q̄t, p̄t)t∈[0,T ] = (q̄t,−p̂t)t∈[0,T ]
ℓ
= (qt,−pt)t∈[0,T ].

In other words, we have P[0,T ] = θ#P̄[0,T ] where θ(q, p) = (q,−p) is the momentum flip transformation in
phase space.

3.4 The Helmholtz decomposition
Armed with the time-reversal of diffusions we proceed to decompose the SDE into its time-reversible and
time-irreversible components. This decomposition is called the Helmholtz decomposition because it can
be obtained geometrically by decomposing the drift vector field b into horizontal birr (time-irreversible,
conservative) and vertical brev (time-reversible, non-conservative) components with respect to the stationary
density [11]. These vector fields are called horizontal and vertical, respectively, because the first flows along
the contours of the stationary density, while the second ascends the landscape of the stationary density
(see the schematic in the upper-left panel of Figure 1). For our purposes, we provide a self-contained,
non-geometric proof of the Helmholtz decomposition in Appendix A.2.3.

Proposition 3.7 (Helmholtz decomposition). Consider the solution (xt)t∈[0,T ] of the Itô SDE (5) with
coefficients satisfying Assumption 3.3. Let a probability density ρ satisfying ∇ · (Dρ) ∈ L1

loc(Rd,Rd). Then,
the following are equivalent:

1. The density ρ is stationary for (xt)t∈[0,T ].

2. We can write the drift as

b = brev + birr

brev =

{
D∇ log ρ+∇ ·D if ρ(x) > 0

0 if ρ(x) = 0

∇ · (birrρ) = 0.

(9)

Furthermore, brev is time-reversible, while birr is time-irreversible, i.e.,

b = brev + birr, b̄ = brev − birr.

The fundamental importance of the Helmholtz decomposition was originally recognised in the context
of non-equilibrium thermodynamics by Graham in 1977 [7], but its inception in this field dates from much
earlier: for instance, the divergence free vector field birrρ is precisely the stationary probability current or
flux introduced by Nelson in 1967 [15]. More recently, the decomposition has recurrently been used in non-
equilibrium statistical physics [8–10, 46–49], and in statistical machine learning as the basis of Monte-Carlo
sampling schemes [10–12,50].
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Figure 1: Helmholtz decomposition. The upper left panel illustrates the Helmholtz decomposition of the drift into time-
reversible and time-irreversible parts: the time-reversible part of the drift flows towards the peak of the stationary density,
while the time-irreversible part flows along its contours. The upper right panel shows a sample trajectory of a two-dimensional
diffusion process stationary at a Gaussian distribution. The lower panels plot sample paths of the time-reversible (lower left)
and time-irreversible (lower right) parts of the dynamic. Purely conservative dynamics (lower right) are reminiscent of the
trajectories of massive bodies (e.g., planets) whose random fluctuations are negligible, as in Newtonian mechanics. Together,
the lower panels illustrate time-irreversibility: If we were to reverse time, the trajectories of the time-reversible process would
be statistically identical, while the trajectories of the time-irreversible process be distinguishable by flow, say, clockwise instead
of counterclockwise. The full process (upper right) is a combination of both time-reversible and time-irreversible dynamics.
The time-irreversible part defines a non-equilibrium steady-state and induces its characteristic wandering, cyclic behaviour.

Remark 3.8 (Probabilistic reversibility). Here, time-reversible means reversibility in a probabilistic sense;
that is, invariance under time reversal, also known as detailed balance [1, Proposition 3.3.4]. Probabilistic
reversibility often leads to the non-conversation of quantities like the potential − log ρ(x)For example, the
identity ∇ · (birrρ) = 0 implies that the time-irreversible drift birr flows along the contours of the probability
density; in other words, the probability density and the potential are conserved along the time-irreversible
vector field. In contrast, none of them are conserved when flowing along the time-reversible vector field brev.
See Figure 1 for an illustration.

Remark 3.9 (Stratonovich formulation of Helmholtz decomposition). There exists an equivalent decompo-
sition of the drift of Stratonovich SDEs into time-reversible and irreversible parts. Assuming that σ is
differentiable, we can rewrite the Itô SDE (5) into its equivalent Stratonovich SDE

dxt = bs(xt)dt+ σ(xt) ◦ dwt.

where bs = b − ι and ι is the Itô to Stratonovich correction [10, eq. 3.31]. Note that the correction is
time-reversible. It follows that

bsirr = birr, (10)
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and for x s.t. ρ(x) > 0,

bsrev(x) = (brev − ι)(x) = D∇ log ρ(x) +
1

2
σ∇ · σ⊤(x).

In particular, for x s.t. ρ(x) > 0,

bs(x) ∈ Rangeσ(x) ⇐⇒ bsirr(x) ∈ Rangeσ(x) (11)

as bsrev(x) ∈ Rangeσ(x). For diffusions driven by additive noise, Itô and Stratonovich formulations coincide
bs = b. Thus, we conclude

σ is constant⇒ b(x) =

{
D∇ log ρ(x) + birr(x) if ρ(x) > 0

birr(x) if ρ(x) = 0

⇒ (b(x) ∈ Rangeσ(x) ⇐⇒ birr(x) ∈ Rangeσ(x)) (12)

These identities will be useful to compute the entropy production rate later on.

The time-irreversible part of the drift often takes a simple form:

Proposition 3.10 (Characterisation of time-irreversible drift). Consider a smooth, strictly positive proba-
bility density ρ and an arbitrary smooth vector field birr. Then

∇ · (birrρ) = 0 ⇐⇒ birr = Q∇ log ρ+∇ ·Q

where Q = −Q⊤ is a smooth antisymmetric matrix field.

A proof is provided in Appendix A.2.3. We conclude this section by unpacking the Helmholtz decompo-
sition of underdamped Langevin dynamics.

Example 3.11 (Helmholtz decomposition of underdamped Langevin). Following Example 3.6, it is straight-
forward to decompose underdamped Langevin dynamics into its time-irreversible and time-reversible parts.
Indeed we just need to identify the parts of the drift whose sign changes, and remains invariant, under time
reversal:

brev(q, p) =

[
0

−γM−1p

]
, birr(q, p) =

[
M−1p
−∇V (q)

]
.

We can rewrite these in canonical form recalling the gradient of the stationary density (8)

brev(q, p) = D∇ log ρ(q, p), birr(q, p) = Q∇ log ρ(q, p)

∇ log ρ(q, p) = −β
[
∇V (q)
M−1p

]
, D =

[
0 0
0 γβ−1 Idn

]
, Q = β−1

[
0 − Idn
Idn 0

]
.

Clearly, the time-irreversible part of the process d[qt, pt] = birr(qt, pt)dt is a Hamiltonian dynamic that
preserves the energy (i.e., the Hamiltonian), while the time-reversible part is a reversible Ornstein-Uhlenbeck
process. Example trajectories of the time-irreversible trajectory are exemplified in Figure 1 (bottom right).

3.5 Multiple perspectives on the Helmholtz decomposition
The Helmholtz decomposition is a cornerstone of the theory of diffusion processes. In addition to being a
geometric decomposition of the drift [11], it is, equivalently, a time-reversible and irreversible decomposition
of the SDE (13), of the generator and the (backward and forward) Kolmogorov PDEs describing the process.
Briefly, the Helmholtz decomposition is equivalent to a functional analytic decomposition of the generator into
symmetric and antisymmetric operators in a suitable function space. This corresponds to a decomposition of
the backward Kolmogorov equation—which determines the evolution of (macroscopic) observables under the
process—into a conservative and a dissipative flow. This decomposition can be used as a starting point to
quantify the speed of convergence of the process to its stationary state from arbitrary initial conditions using
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hypocoercivity theory [24]. The same goes for the Fokker-Planck equation, which can be decomposed into a
dissipative gradient flow, and a flow that is conservative in virtue of being orthogonal to the gradient flow
in a suitable function space. This casts the Fokker-Planck equation in GENERIC form (General Equations
for Non-Equilibrium Reversible-Irreversible Coupling), a general framework for analysing dynamical systems
arising in non-equilibrium statistical physics [23,25].

Below we outline these different equivalent perspectives. This section is provided for independent interest
but will not be used to derive our main results on entropy production; you may conveniently skip it on a
first reading.

3.5.1 Helmholtz decomposition of the SDE

Proposition 3.7 is equivalent to a Helmholtz decomposition of the SDE into its time-reversible and time-
irreversible parts, noting that the volatility is invariant under time-reversal (Theorem 3.5)

dxt = birr (xt) dt︸ ︷︷ ︸
Time-irreversible

+ brev (xt) dt+ σ (xt) dwt︸ ︷︷ ︸
Time-reversible

. (13)

Figure 1 illustrates this decomposition with simulations.

3.5.2 Helmholtz decomposition of the infinitesimal generator

Following the differential geometric viewpoint, a deterministic flow—namely, a vector field b—is given by a
first order differential operator b · ∇. Similarly, a stochastic flow given by a diffusion—namely, a vector field
b and a diffusion tensor D—is characterised by a second order differential operator

L = b · ∇+D∇ · ∇, (14)

known as the generator. Note that the first order part is the deterministic flow given by the drift while
the second order part is the stochastic flow determined by the diffusion. More precisely, the generator of a
diffusion process solving the SDE (5) under Assumptions 3.3 and 3.4 is a linear, unbounded operator defined
as

L : C∞
c (Rd) ⊂ DomL ⊂ Lpµ(Rd)→ Lpµ(Rd), 1 ≤ p ≤ ∞, L f(y) := lim

t↓0

1

t
E[f(xt)− f(y) | x0 = y], (15)

f ∈ DomL =

{
f ∈ Lpµ(Rd) | ∃g ∈ Lpµ(Rd) s.t.

1

t
E[f(xt)− f(y) | x0 = y]

t↓0−−→ g(y) in Lpµ(Rd)
}

Diffusions are among the simplest and most canonical Markov processes because they are characterised by
generators that are second order differential operators (with no constant part). Indeed, starting from (15),
a quick computation using Itô’s formula yields (14).

Recall that we have a duality pairing ⟨·, ·⟩µ : Lp
′

µ (Rd)⊗Lpµ(Rd)→ R defined by ⟨f, g⟩µ =
∫
Rd fgdµ, where

1
p′ +

1
p = 1.

A well-known fact is that the generator L̄ of the time-reversed diffusion is the adjoint of the generator
under the above duality pairing [51,52], [1, Thm 4.3.2]. The adjoint L̄ is implicitly defined by the relation

⟨f,L g⟩µ = ⟨L̄f, g⟩µ,∀f ∈ Dom L̄, g ∈ DomL,

Dom L̄ = {f ∈ L1
µ(Rd) | ∃h ∈ L1

µ(Rd),∀g ∈ DomL : ⟨f,L g⟩µ = ⟨h, g⟩µ}.

(The concept of adjoint generalises the transpose of a matrix in linear algebra to operators on function
spaces). The proof of Lemma 3.2 explicitly computes the adjoint and shows that it is a linear operator
L̄ : L1

µ(Rd)→ L1
µ(Rd) which equals

L̄f = −b · ∇f + 2ρ−1∇ · (Dρ) · ∇f +D∇ · ∇f.

Notice how the first order part of the adjoint generator is the drift of the time-reversed diffusion, while the
second order part is its diffusion, as expected (cf. Theorem 3.5).
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Much like we derived the Helmholtz decomposition of the drift by identifying the time-reversible and
irreversible parts (see the proof of Proposition 3.7), we proceed analogously at the level of the generator.
Indeed, just as any matrix can be decomposed into a sum of antisymmetric and symmetric matrices, we may
decompose the generator into a sum of antisymmetric and symmetric operators

L = A+S, A :=
(
L−L̄

)
/2, S :=

(
L+L̄

)
/2, DomA = DomS = DomL∩Dom L̄. (16)

By its analogous construction, this decomposition coincides with the Helmholtz decomposition; indeed,
the symmetric operator recovers the time-reversible part of the dynamic while the antisymmetric operator
recovers the time-irreversible part. In a nutshell, the Helmholtz decomposition of the generator is as follows

L = A+S, A = birr · ∇︸ ︷︷ ︸
Time-irreversible

S = brev · ∇+D∇ · ∇︸ ︷︷ ︸
Time-reversible

,

where the summands are symmetric and antisymmetric operators because they behave accordingly under
the duality pairing:

⟨A f, g⟩µ = −⟨f,A g⟩µ︸ ︷︷ ︸
Antisymmetric

, ∀f, g ∈ DomA, ⟨S f, g⟩µ = ⟨f,S g⟩µ︸ ︷︷ ︸
Symmetric

, ∀f, g ∈ DomS .

Noting that −S is a positive semi-definite operator, we can go slightly further and decompose it into its
square roots. To summarise:

Proposition 3.12. We can rewrite the generator of the diffusion process as L = A−Σ∗ Σ where A is the
antisymmetric part of the generator, and −Σ∗ Σ is the symmetric part, as defined in (16). Here ·∗ denotes
the adjoint with respect to the duality pairing ⟨·, ·⟩µ. The operators have the following functional forms:
A f = birr · ∇f ,

√
2Σ f = σ⊤∇f ,

√
2Σ∗ g = −∇ log ρ · σg −∇ · (σg).

A proof is provided in Appendix A.2.4.

3.5.3 Helmholtz decomposition of the backward Kolmogorov equation

We say that a real-valued function over the state-space of the process f : Rd → R is an observable. Intuitively,
this is a macroscopic quantity that can be measured or observed in a physical process (e.g., energy or
pressure) when the (microscopic) process is not easily accessible. The evolution of an observable f given
that the process is prepared at a deterministic initial condition is given by ft(x) = E[f(xt)|x0 = x].

The backward Kolmogorov equation is a fundamental equation describing a Markov process, as it encodes
the motion of observables

∂tft = L ft, f0 = f ∈ DomL .

In other words, ft = E[f(xt)|x0 = x] solves the equation. This highlights the central importance of the
generator as providing a concise summary of the process.

The Helmholtz decomposition entails a decomposition of the backward Kolmogorov equation

∂tut = A ft + S ft = (A−Σ∗ Σ)ft, f0 = f ∈ DomL . (17)

This decomposition is appealing, as it allows us to further characterise the contributions of the time-reversible
and irreversible parts of the dynamic. Along the time-irreversible part of the backward Kolmogorov equation
∂tft = A ft, the L2

µ(Rd)-norm ∥ · ∥µ is conserved. Indeed, since A is antisymmetric, ⟨A f, f⟩µ = 0 for every
f ∈ DomA, and hence

∂t ∥ft∥2µ = 2 ⟨A ft, ft⟩µ = 0.

On the other hand, along the time-reversible part of the backward Kolmogorov equation generated by −Σ∗ Σ,
the L2

µ(Rd)-norm is dissipated:

∂t ∥ft∥2µ = −2 ⟨Σ∗ Σ ft, ft⟩µ = −2 ∥Σ ft∥2µ ≤ 0.

This offers another perspective on the fact that the time-irreversible part of the dynamic is conservative,
while the time-reversible part is dissipative—of the L2

µ(Rd)-norm.
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Beyond this, hypocoercivity theory allows us to analyse the backward Kolmogorov equation, once one has
written its Helmholtz decomposition. Hypocoercivity is a functional analytic theory developed to analyse
abstract evolution equations of the form (17), originally devised to systematically study the speed of con-
vergence to stationary state of kinetic diffusion processes like the underdamped Langevin dynamics and the
Boltzmann equation. As an important result, the theory provides sufficient conditions on the operators A,Σ
to ensure an exponentially fast convergence of the backward Kolmogorov equation to a fixed point [24, The-
orems 18 & 24]. Dually, these convergence rates quantify the speed of convergence of the process to its
stationary density from a given initial condition.

3.5.4 GENERIC decomposition of the Fokker-Planck equation

This perspective can also be examined directly from the Fokker-Planck equation. The Fokker-Planck equation
is another fundamental equation describing a diffusion process: it encodes the evolution of the density of
the process over time (when it exists). The Fokker-Planck equation is the L2(Rd)-dual to the backward
Kolmogorov equation. It reads

∂tρt = L′ ρt = ∇ · (−bρt +∇ · (Dρt)),

where L′ is the adjoint of the generator with respect to the standard duality pairing ⟨·, ·⟩; in other words
⟨L′ f, g⟩ = ⟨f,L g⟩ where ⟨f, g⟩ =

∫
Rd fg(x) dx.

The Helmholtz decomposition implies a decomposition of the Fokker-Planck equation into two terms:
assuming for now that ρt, ρ > 0 (e.g., if the diffusion is elliptic)

∂tρt = ∇ · (−birrρt) +∇ · (−brevρt +∇ · (Dρt))
= ∇ · (−birrρt) +∇ · (−ρtρ−1∇ · (Dρ) +∇ · (Dρt))

= ∇ · (−birrρt) +∇ ·
(
ρtD∇ log

ρt
ρ

)
.

(18)

We will see that this decomposition casts the Fokker-Planck equation in pre-GENERIC form.
GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) is an important

theory for analysing dynamical systems arising in non-equilibrium statistical physics like the Fokker-Planck
equation. The framework rose to prominence through the seminal work of Ottinger [25] and was later
developed by the applied physics and engineering communities. Only recently, the framework developed into
a rigorous mathematical theory. We refer to [23] for mathematical details. The following Proposition shows
how we can rewrite the Fokker-Planck equation in pre-GENERIC form:

∂tρt = W(ρt)︸ ︷︷ ︸
time-irreversible

−Mρt (dH[ρt | ρ])︸ ︷︷ ︸
time-reversible

, (19)

Proposition 3.13 (GENERIC decomposition of the Fokker-Planck equation). The Fokker-Planck equation
(18) is in pre-GENERIC form (19), with

W (ρt) = ∇ · (−birrρt), −Mρt (dH[ρt | ρ]) = ∇ ·
(
ρtD∇ log

ρt
ρ

)
,

Mρt(ξ) = Σ′(ρtΣξ) = −∇ · (ρtD∇ξ), dH[ρt | ρ] = log
ρt
ρ

+ 1,

where H[· | ·] is the relative entropy, ·′ denotes the adjoint under the standard duality pairing ⟨·, ·⟩, d is the
Fréchet derivative in L2(Rd), and W,Mρt satisfy the following relations:

• Orthogonality: ⟨W(ρt), dH[ρt | ρ]⟩ = 0,

• Semi-positive definiteness: ⟨Mρt(h), g⟩ = ⟨h,Mρt(g)⟩, and ⟨Mρt(g), g⟩ ≥ 0.
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A proof is provided in Appendix A.2.4.
Writing the Fokker-Planck equation in pre-GENERIC form (19) explicits the contributions of the time-

reversible and time-irreversible parts at the level of density dynamics. Indeed, the relative entropy functional
H[ρt | ρ] is conserved along the time-irreversible part of the Fokker-Planck equation ∂tρt = W(ρt)

dH[ρt | ρ]
dt

= ⟨∂tρt,dH[ρt | ρ]⟩ = ⟨W(ρt),dH[ρt | ρ]⟩ = 0.

Contrariwise, the relative entropy is dissipated along the time-reversible part of the equation

dH[ρt | ρ]
dt

= ⟨∂tρt,dH[ρt | ρ]⟩ = −⟨Mρt (dH[ρt | ρ]) ,dH[ρt | ρ]⟩ ≤ 0.

Aggregating these results, we obtain the well-known fact that the relative entropy with respect to the
stationary density is a Lyapunov function of the Fokker-Planck equation; a result sometimes known as de
Bruijn’s identity or Boltzmann’s H-theorem [53, Proposition 1.1].

4 The ep of stationary diffusions
We are now ready to investigate the entropy production of stationary diffusions. First, we give sufficient
conditions guaranteeing the mutual absolute continuity of the forward and time-reversed path space measures
and compute the entropy production rate. Second, we demonstrate that when these conditions fail the
entropy production is infinite.

4.1 Regular case
Theorem 4.1. Let an Itô SDE (5) with coefficients satisfying Assumption 3.3. Assume that the solution
(xt)t∈[0,T ] is stationary with respect to a density ρ satisfying Assumption 3.4. Denote by birr the time-
irreversible part of the drift (Proposition 3.7), and by ·− the Moore-Penrose matrix pseudo-inverse. Suppose
that:

1. For ρ-almost every x ∈ Rd, birr(x) ∈ Rangeσ(x), and

2. The product σ−birr : Rd → Rm is Borel measurable (e.g., if σ−birr is continuous), and

3.
∫
Rd b

⊤
irrD

−birrρ(x)dx < +∞.

Denote by P[0,T ], P̄[0,T ] the path space measures of the forward and time-reversed diffusions, respectively, on
C([0, T ],Rd) (Definition 2.2). Then,

1. The path-space measures are equivalent P[0,T ] ∼ P̄[0,T ], and

2. ep =
∫
Rd b

⊤
irrD

−birrρ(x)dx.

Under the assumptions of Theorem 4.1, the ep is a quadratic form of the time-irreversible drift, see
Figure 2.

A proof of Theorem 4.1 is provided in Appendix A.3.1. The idea of the proof is simple: in the elliptic
case, the approach follows [1, Chapter 4] with some generalisations. In the non-elliptic case, the condition
birr(x) ∈ Rangeσ(x) intuitively ensures that the solution to the SDE, when initialised at any point, evolves
on a sub-manifold of Rd and is elliptic on this manifold (e.g., Figure 3). The pseudo-inverse of the diffusion
tensor is essentially the inverse on this sub-manifold. Thus, a proof analogous to the elliptic case, but on the
sub-manifold (essentially replacing all matrix inverses by pseudo-inverses and making sure everything still
holds), shows that the path space measures of the forward and backward processes initialised at a given point
are equivalent—and Girsanov’s theorem gives us their Radon-Nykodym derivative. Finally, Proposition 2.8
gives us the usual formula for the entropy production rate but with the matrix inverse replaced by the
pseudo-inverse. Please see Section 6.3 for a geometric discussion of this proof.

Suppose either of assumptions 2, 3 of Theorem 4.1 do not hold. Then we have the following more general
(and technical) result:
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Figure 2: Entropy production as a function of time-irreversible drift. This figure illustrates the behaviour of sample
paths and the entropy production rate as one scales the irreversible drift birr by a parameter θ. The underlying process is a
two-dimensional Ornstein-Uhlenbeck process, for which exact sample paths and entropy production rate are available (Section
5.1). The heat map represents the density of the associated Gaussian steady-state. One sees that a non-zero irreversible drift
induces circular, wandering behaviour around the contours of the steady-state, characteristic of a non-equilibrium steady-state
(top right and bottom left). This is accentuated by increasing the strength of the irreversible drift. The entropy production rate
measures the amount of irreversibility of the stationary process. It grows quadratically as a function of the irreversible scaling
factor θ (bottom right). When there is no irreversibility (top left), we witness an equilibrium steady-state. This is characterised
by a vanishing entropy production (bottom right).

Theorem 4.2. Let (Ω,F , P ) be a probability space and (wt)t⩾0 a standard Wiener process on Rm, with
respect to the filtration (Ft)t≥0 [34, Definition 2.1.12]. Consider the Itô SDE (5) with coefficients satisfying
Assumption 3.3. Consider its unique strong solution (xt)t∈[0,T ] with respect to the given Brownian motion
on the filtered probability space (Ω,F , (Ft)t≥0, P ). Assume that the solution is stationary with respect to a
density ρ satisfying Assumption 3.4. Denote by birr the time-irreversible part of the drift (Proposition 3.7),
and by ·− the Moore-Penrose matrix pseudo-inverse. Suppose that:

1. For ρ-almost every x ∈ Rd, birr(x) ∈ Rangeσ(x), and

2. σ−birr(xt) is an Ft-adapted process (e.g., σ−birr : Rd → Rm is Borel measurable), and

3. The following holds

EP [ZT ] = 1, ZT := exp

(
−2
∫ T

0

⟨σ−birr(xt), dwt⟩+ |σ−birr(xt)|2dt

)
. (20)

Denote by P[0,T ], P̄[0,T ] the path space measures on C([0, T ],Rd) of the forward and time-reversed diffusions,
respectively (Definition 2.2). Then,
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1. The path-space measures are equivalent P[0,T ] ∼ P̄[0,T ], and

2. ep =
∫
Rd b

⊤
irrD

−birrρ(x)dx.

A proof is provided in Appendix A.3.1. The proof is similar to that of Theorem 4.1, but much shorter,
since (20) allows one to apply Girsanov’s theorem directly; in contrast, a large part of the proof of Theorem
4.1 is dedicated to showing that indeed, a version of Girsanov’s theorem can be applied.

In relation to assumption 2 of Theorem 4.2, note that if a matrix field σ : Rd → Rd×m is Borel measurable,
then its pseudo-inverse σ− : Rd → Rm×d is also Borel measurable. We now give sufficient conditions for the
exponential condition (20).

Proposition 4.3. Consider a stochastic process (xt)t∈[0,T ] on the probability space (Ω,F , (Ft)t≥0, P ), which
is stationary at the density ρ. Assume that σ−birr(xt) is Ft-adapted. Then, either of the following conditions
implies (20):

1. Zt = exp
(
−2
∫ t
0
⟨σ−birr(xs), dws⟩+ |σ−birr(xs)|2ds

)
, t ∈ [0, T ] is a martingale on the probability space

(Ω,F , {Ft}t≥0, P ).

2. EP
(
e2

∫ T
0

|σ−birr(xt)|2dt
)
< +∞ (Novikov’s condition).

3. There exists δ > 0 such that Eρ
(
eδ|σ

−birr(x)|2
)
< +∞.

4. supt∈[0,T ] EP
[
exp

(
−
∫ t
0
⟨σ−birr(xs), dws⟩

)]
< +∞ (Kazamaki’s criterion).

5. There exists K < 1 s.t. for all t ∈ [0, T ]

EP

[
2

∫ T

t

∣∣σ−birr(xt)
∣∣2 ds ∣∣∣∣∣Ft

]
≤ K.

6. The tail of |σ−birr(x)|2, x ∼ ρ decays exponentially fast, i.e., there exists positive constants c, C,R > 0
such that for all r > R

P (|σ−birr(x)|2 > r) ≤ Ce−cr. (21)

Furthermore, (2 or 4) ⇒ 1; 5 ⇒ 2; and 6 ⇒ 3.

A proof is provided in Appendix A.3.1.

4.2 Singular case
When the time-irreversible part of the drift is not always in the range of the volatility matrix field, we have
a different result.

Theorem 4.4. Suppose that the Itô SDE (5) satisfies Assumption 3.3 and that the volatility is twice con-
tinuously differentiable σ ∈ C2(Rd,Rd×m). Furthermore suppose that the solution (xt)t∈[0,T ] is stationary
with respect to a density ρ satisfying Assumption 3.4. Denote by P[0,T ], P̄[0,T ] the path space measures on
C([0, T ],Rd) of the forward and time-reversed processes, respectively (Definition 2.2). If birr(x) ∈ Rangeσ(x)
does not hold for ρ-a.e. x ∈ Rd, then

P[0,T ] ⊥ P̄[0,T ] and ep = +∞.

A proof is provided in Appendix A.3.2. The proof uses a version of the Stroock-Varadhan support
theorem to show that there are paths that can be taken by the forward diffusion process that cannot be
taken by the backward diffusion process—and vice-versa. Specifically, when considering the two processes
initialised at a point x ∈ Rd where birr(x) /∈ Rangeσ(x), we can see that the derivatives of their respective
possible paths at time 0 span different tangent sub-spaces at x. Thus the path space measures Px

[0,T ], P̄
x
[0,T ]
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are mutually singular. Since such x occur with positive probability under the stationary density, it follows
that the path space measures of the forward and time-reversed stationary processes Px

[0,T ], P̄
x
[0,T ] are also

mutually singular. Finally, the relative entropy between two mutually singular measures is infinity, hence
the ep must be infinite.

By Theorem 4.4 and (12) we can readily see that the underdamped (7) and generalised Langevin [10,
eq. 8.33] processes in phase-space have infinite entropy production. Expert statistical physicists will note
that this contrasts with previous results in the literature stating that these diffusions have finite entropy
production. There is no contradiction as physicists usually add an additional operator to the definition
of the entropy production in these systems (Remark 2.7). While obviously informative of the underlying
process, statistical physicists should take the results of Theorems 4.1, 4.2 and 4.4 to be physically relevant to
entropy production insofar as the definition of entropy production we adopted (Definition 2.6) is physically
meaningful for the system at hand. What if it is not? We will return to this in the discussion (Section 6.2).

In contrast to the underdamped and generalised Langevin equations, there exist hypoelliptic, non-elliptic
diffusions with finite entropy production. For example, consider the following volatility matrix field

σ(x, y, z) =

x 1
1 1
0 1

 .
By Hörmander’s theorem [16, Theorem 1.3], for any smooth, confining (e.g., quadratic) potential V : R3 → R,
the process solving the SDE

dxt = −D∇V (xt)dt+∇ ·D(xt)dt+ σ(xt)dwt

is hypoelliptic and non-elliptic. Furthermore, it is stationary and time-reversible at the Gibbs density
ρ(x) ∝ exp(−V (x)).

5 Examples and ep of numerical simulations
We illustrate these results for linear diffusion processes, underdamped Langevin dynamics and their numerical
simulations.

5.1 Linear diffusion processes
Given matrices B ∈ Rd×d, σ ∈ Rd×m, and a standard Brownian motion (wt)t∈[0,+∞) on Rm, consider a linear
diffusion process (i.e., a multivariate Ornstein-Uhlenbeck process)

dxt = b(xt)dt+ σ(xt)dwt, b(x) = −Bx, σ(x) ≡ σ. (22)

This process arises, for example, in statistical physics as a model of the velocity of a massive Brownian
particle subject to friction [54]; it covers the case of interacting particle systems when the interactions are
linear in the states (e.g., the one dimensional ferromagnetic Gaussian spin model [55]); or when one linearises
the equations of generic diffusion processes near the stationary density.

By solving the linear diffusion process (e.g., [55, Section 2.2]) one sees that the solution can be expressed
as a linear operation on Brownian motion—a Gaussian process—thus the process must itself be Gaussian,
and its stationary density as well (when it exists). Consider a Gaussian density ρ

ρ(x) = N (x; 0,Π−1), − log ρ(x) =
1

2
x⊤Πx,

where Π ∈ Rd×d is the symmetric positive definite precision matrix. By the Helmholtz decomposition
(Propositions 3.7 & 3.10), ρ is a stationary density if and only if we can decompose the drift as follows:

b = brev + birr, brev(x) = −DΠx, birr(x) = −QΠx,
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where Q = −Q⊤ ∈ Rd×d is an arbitrary antisymmetric matrix, and, recall D = σσ⊤/2 ∈ Rd×d is the
diffusion tensor. In particular, the drift of the forward and the time-reversed dynamic, are, respectively,

b(x) = −Bx, B = (D +Q)Π, b̄(x) = −Cx, C := (D −Q)Π.

Suppose that birr(x) ∈ Rangeσ for any x ∈ Rd. By definiteness of Π this is equivalent to RangeQ ⊆
Rangeσ. By Theorem 4.1, and applying the trace trick to compute the Gaussian expectations of a bilinear
form, we obtain4

ep =

∫
Rd

b⊤irrD
−birrρ(x)dx = −

∫
Rd

x⊤ΠQD−QΠx ρ(x)dx

= −Tr(ΠQD−QΠΠ−1) = −Tr(D−QΠQ)

= −Tr(D−BQ) + Tr(D−DΠQ)︸ ︷︷ ︸
=0

= −Tr(D−BQ).

(23)

This expression for the entropy production is nice as it generalises the usual formula to linear diffusion
processes to degenerate noise, simply by replacing inverses with pseudo-inverses, cf. [55, eqs. 2.28-2.29]
and [56,57].

Contrariwise, suppose that RangeQ ̸⊆ Rangeσ. Then by Theorem 4.4,

ep = +∞. (24)

5.1.1 Exact numerical simulation and entropy production rate

Linear diffusion processes can be simulated exactly as their transition kernels are known. Indeed, by solving
the process, one obtains the transition kernels of the Markov semigroup as a function of the drift and
volatility [58, Theorem 9.1.1]. The forward and time-reserved transition kernels are the following:

pε(·, x) = N (e−εBx, Sε), Sε :=

∫ ε

0

e−tBσσ⊤e−tB
⊤
dt,

p̄ε(·, x) = N (e−εCx, S̄ε), S̄ε :=

∫ ε

0

e−tCσσ⊤e−tC
⊤
dt.

(25)

Sampling from the transition kernels allows one to simulate the process exactly, and offers an alternative
way to express the entropy production rate. Recall from Proposition 2.10 that the ep is the infinitesimal
limit of the entropy production rate of an exact numerical simulation ep(ε) with time-step ε

ep = lim
ε↓0

ep(ε), ep(ε) =
1

ε
Ex∼ρ[H[pε(·, x) | p̄ε(·, x)]].

We can leverage the Gaussianity of the transition kernels to compute the relative entropy and obtain an
alternative formula for the entropy production rate:

Lemma 5.1. The entropy production rate of the stationary linear diffusion process can also be expressed as

ep = lim
ε↓0

ep(ε),

ep(ε) =
1

2ε

[
Tr(S̄−

ε Sε)− rankσ + log
det∗(S̄ε)

det∗(Sε)

+Tr
(
Π−1(e−εC − e−εB)⊤S̄−

ε (e
−εC − e−εB)

)]
,

(26)

where ·− is the Moore-Penrose pseudo-inverse and det∗ is the pseudo-determinant.

A proof is provided in Appendix A.4. Computing the limit (26) analytically, gives us back (23), (24),
however, we will omit those details here. For our purposes, this gives us a way to numerically verify the
value of ep that was obtained from theory. See Figures 3 and 4 for illustrations.

4To obtain the last equality we used Tr(D−DΠQ) = Tr(ΠQD−D) = −Tr(DD−QΠ). By standard properties of the pseudo-
inverse DD− is the orthogonal projector onto RangeD = Rangeσ. Thus, RangeQ ⊆ Rangeσ implies DD−Q = Q. Finally,
the trace of a symmetric matrix Π times an antisymmetric matrix Q vanishes.

19

Page 19 of 45 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-118732.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Figure 3: Exact simulation of linear diffusion process with birr(x) ∈ Rangeσ. This figure considers an OU process
in 3d space driven by degenerate noise, i.e., rankσ < 3. The coefficients are such that σ = Q are of rank 2. In particular,
birr(x) ∈ Rangeσ holds for every x. The process is not elliptic nor hypoelliptic, but it is elliptic over the subspace in which it
evolves. The upper-left panel shows a sample trajectory starting from x0 = (1, 1, 1). The upper-right panel shows samples from
different trajectories after a time-step ε. There are only two principal components to this point cloud as the process evolves on
a two dimensional subspace. In the bottom panel, we verify the theoretically predicted value of ep by evaluating the entropy
production of an exact simulation ep(ε) with time-step ε. As predicted, we recover the true ep in the infinitesimal limit as the
time-step of the exact simulation tends to zero ε → 0. Furthermore, since the process is elliptic in its subspace, the entropy
production is finite.

5.2 Underdamped Langevin dynamics
In this sub-section, we consider the entropy production rate of underdamped Langevin dynamics and its
numerical simulations. Recall that the ep we compute here is defined without an additional momentum flip
operator on the path space measure of the time-reversed process (i.e., (2) and not (3)), and may be a distinct
quantity from the entropy production that physicists usually consider in such systems (see the discussion in
Section 6.2).

Consider a Hamiltonian H(q, p) function of positions q ∈ Rn and momenta p ∈ Rn of the form

H(q, p) = V (q) +
1

2
p⊤M−1p (27)

for some smooth potential function V : Rn → R and diagonal mass matrix M ∈ Rn×n.
The underdamped Langevin process is the solution to the SDE [27, eq 2.41]{

dqt =M−1ptdt

dpt = −∇V (qt) dt− γM−1ptdt+
√
2γβ−1dwt

(28)
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Figure 4: Exact simulation of linear diffusion process with birr(x) ̸∈ Rangeσ. This figure considers an OU process in 3d
space driven by degenerate noise. The coefficients are such that Range birr is two-dimensional while Rangeσ is one-dimensional,
and such that the process does not satisfy Hörmander’s hypoellipticity condition. As such the process is hypoelliptic on a two-
dimensional subspace; see a sample trajectory in the upper-left panel. By hypoellipticity its transition kernels are equivalent
in the sense of measures, although far removed: On the upper right panel we show samples from different trajectories after a
time-step ε. There are only two principal components to this data-cloud as the process evolves on a two dimensional subspace.
In the bottom panel, we verify the theoretically predicted ep by evaluating the entropy production of an exact simulation ep(ε)
with time-step ε. As predicted, we recover ep = +∞ in the infinitessimal limit as the time-step of the exact simulation tends
to zero ε ↓ 0. This turns out to be as the transition kernels of the forward and time-reversed processes become more and more
mutually singular as the time-step decreases.

for some friction coefficient γ > 0. This process arises in statistical physics, as a model of a particle coupled
to a heat bath [59], [10, Chapter 8]; in Markov chain Monte-Carlo as an accelerated sampling scheme [13,45];
and also as a model of interacting kinetic particles.

The invariant density, assuming it exists, is [27, Section 2.2.3.1]

ρ(q, p) =
1

Z
e−βH(q,p) =

1

Z
e−βV (q)e−

β
2 p

⊤M−1p.

Since the noise is additive the Itô interpretation of the SDE coincides with the Stratonovich interpretation,
thus the irreversible drift is in the range of the volatility if and only if the drift is in the range of the volatility
(12). Observe that when the momentum is non-zero p ̸= 0 the drift is not in the image of the volatility: in
the q components the drift is non-zero while the volatility vanishes. Since p ̸= 0 has full measure under the
stationary density ρ(q, p) we obtain, from Theorem 4.4,

ep = +∞. (29)

Note that the entropy production of an exact numerical simulation with time-step ε > 0 is usually finite
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Figure 5: Exact simulation of underdamped Langevin dynamics. This figure plots underdamped Langevin dynamics in
a quadratic potential. Here, the process is two dimensional, i.e., positions and momenta evolve on the real line. We exploit the
fact that underdamped Langevin in a quadratic potential is an Ornstein-Uhlenbeck process to simulate sample paths exactly.
The choice of parameters was: V (q) = q2/2,M = γ = 1. The upper left panel plots a sample trajectory. One observes that the
process is hypoelliptic: it is not confined to a prespecified region of space, cf. Figures 3, 4, even though random fluctuations
affect the momenta only. The upper right panel plots samples of the forward and time-reversed processes after a time-step of ε.
In the bottom panel, we verify the theoretically predicted ep by evaluating the entropy production of an exact simulation ep(ε)
with time-step ε. As predicted, we recover ep = +∞ in the infinitessimal limit as the time-step of the exact simulation tends
to zero ε ↓ 0. This turns out to be because the transition kernels of the forward and time-reversed processes become more and
more mutually singular as the time-step decreases.

by hypoellipticity5

ep(ε) < +∞. (30)

Figure 5 illustrates this with an exact simulation of underdamped Langevin dynamics in a quadratic potential.
When the potential is non-quadratic, the underdamped process is a non-linear diffusion and one is

usually unable to simulate it exactly. Instead, one resolves to numerical approximations to the solution of
the process. We now turn to two common numerical discretisations of underdamped: the Euler-Maruyama
and BBK discretisations. We will examine whether these discretisations are good approximations to the true
process by computing their entropy production rate.

5(30) always holds in a quadratic potential, whence the process is a linear diffusion and the results from Section 5.1 apply.
We conjecture this to hold in the non-linear case as well, as hypoellipticity guarantees that the transition kernels are mutually
equivalent in the sense of measures.
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5.2.1 Euler-Maruyama discretisation

In this section, we show that an Euler-Maruyama (E-M) discretisation of underdamped Langevin dynamics
at any time-step ε > 0 has infinite entropy production

eE-M
p (ε) = +∞. (31)

To see this, we take a step back and consider an arbitrary Itô SDE in Rd

dxt = b(xt)dt+ σ(xt)dwt

The Euler-Maruyama discretisation for some time-step ε > 0 is

xi+1 = xi + b(xi)ε+ σ(xi)ωi, ωi ∼ N (0, ε Idd).

This is a Markov chain with the following transition kernels

pE-M
ε (xi+1, xi) = N (xi+1;xi + εb(xi), 2εD(xi)),

p̄E-M
ε (xi+1, xi) := pE-M

ε (xi, xi+1) ,
(32)

where p̄E-M
ε denotes the transition kernel of the backward chain6.

It turns out that when the SDE is not elliptic the transition kernels pE-M
ε (·, x) , p̄E-M

ε (·, x) tend to have
different supports:

Lemma 5.2. For any x ∈ Rd

supp pE-M
ε (·, x) = {y : y ∈ x+ εb(x) + RangeD(x)}

supp p̄E-M
ε (·, x) = {y : x ∈ y + εb(y) + RangeD(y)}

Lemma 5.2 is immediate from (32) by noting that the support of p̄E-M
ε (·, x) is the closure of those elements

whose successor by the forward process can be x.
Unpacking the result of Lemma 5.2 in the case of underdamped Langevin dynamics yields

supp pE-M
ε (·, x) = {y : yq = xq + εxp}, supp p̄E-M

ε (·, x) = {y : yq + εyp = xq},

where x := (xq, xp) respectively denote position and momenta. One can see that pE-M
ε (·, x) ⊥ p̄E-M

ε (·, x) ,∀x ∈
Rd. From Definition 2.11, we deduce that the entropy production rate of E-M applied to the underdamped
process is infinite for any time-step ε > 0.

5.2.2 BBK discretisation

Contrariwise to Euler, the BBK integrator [26, 27] is a splitting scheme that when applied to underdamped
Langevin yields absolutely continuous transition kernels. The numerical scheme consists of three intermediate
steps

pi+ 1
2
= pi −∇V (qi)

ε

2
− γM−1pi

ε

2
+
√
2γβ−1ωi

qi+1 = qi +M−1pi+ 1
2
ε

pi+1 = pi+ 1
2
−∇V (qi+1)

ε

2
− γM−1pi+ 1

2

ε

2
+
√
2γβ−1ωi+ 1

2

with ωi, ωi+ 1
2
∼ N

(
0, ε2 Id

)
. Its stability and convergence properties were studied in [26, 27] and its ergodic

properties in [60–62].
It was shown in [22, Theorem 4.3] that the BBK discretisation of the underdamped Langevin process is

quasi time-reversible, so that

eBBK
p ≤ O(ε). (33)

One sees from Figure 7 that the BBK integrator better approximates the transition kernels than E-M,
however it still is largely inaccurate from the point of view of the entropy production rate as the simulation
becomes reversible when the time-step tends to zero.

6Caution: this is different from the E-M discretisation of the time-reversed process.
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Figure 6: Euler-Maruyama simulation of underdamped Langevin dynamics. This figure compares the Euler-Maruyama
simulation of underdamped Langevin dynamics with the exact simulation available in Figure 5. The choice of parameters was
the same: V (q) = q2/2,M = γ = 1. The upper left panel plots a sample trajectory of the numerical scheme. One observes that
the numerical scheme is not confined to a prespecified region of space like the true process. The upper right panel plots samples
of the numerical scheme after a time-step of ε (in orange) given an initial condition at x0 (in red). This is superimposed onto
a heat map of the true transition kernel (in black). We see that samples from the numerical scheme are in the right region of
space, but are confined to a subspace which is not aligned with the heat map of the true transition kernel. The support of the
transition kernel of the time-reversed scheme is shown in blue. One sees that the supports of forward and reverse transition
kernels are mutually singular, thus the entropy production of the numerical discretisation is infinite for any time-step, which
differs from the true process which has finite entropy production for any positive time-step.

5.2.3 Summary

In summary, the underdamped Langevin process has infinite entropy production rate in phase space7, but
finite entropy production rate for any exact simulation with a positive time-step. When the potential is non-
quadratic, the process is a non-linear diffusion that one usually cannot simulate exactly. To simulate it as
accurately as possible, one should seek an approximating numerical scheme that has finite entropy production
for any time-step, and whose entropy production tends to infinity for infinitesimally small time-steps.

Two well-known choices of numerical discretisation are the Euler-Maruyama and BBK schemes. By
comparing their transition kernels with an exact simulation, we saw that the BBK scheme is a much better
approximation to the true process than Euler-Maruyama. Analysis of the entropy production rate shows
how these discretisations still far short in capturing important statistical properties of the process: the E-
M discretisation has infinite entropy production for any time-step; while the BBK discretisation has finite
entropy production for any time-step, and vanishing entropy production for infinitesimally small time-steps.
Whenever possible, a good way to choose a time-step size for the BBK integrator might be matching its
entropy production rate with that of an exact simulation. These results indicate that employing a BBK
scheme with very small time-steps might be inadequate. Luckily, large step-sizes are usually preferred in
practice.

In conclusion, the entropy production rate is a useful statistic of stochastic processes that can be used as
a tool to devise accurate numerical schemes, particularly in a non-equilibrium statistical physics or sampling
context where preserving the amount of time-irreversibility is important. Future development of numerical
schemes should take entropy production into account; for example, in developing numerical schemes for
underdamped Langevin, one should seek a finite entropy production rate for any positive time-step, which
tends to infinity when time-steps become infinitesimally small. Other numerical schemes should be analysed
in future work, such as those based on the lexicon for the approximation of the underdamped process
developed by Leimkühler and Matthews [63, p. 269 & 271].

7Recall that the ep we computed here is defined without an additional momentum flip operator on the path space measure
of the time-reversed process, i.e., (2) and not (3). See also the discussion in Section 6.2,
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Figure 7: BBK simulation of underdamped Langevin dynamics. This figure compares the BBK simulation of un-
derdamped Langevin dynamics with the exact simulation available in Figure 5. The choice of parameters was the same:
V (q) = q2/2,M = γ = 1. The upper left panel plots a sample trajectory of the numerical scheme. One observes that the
numerical scheme is not confined to a prespecified region of space like the true process. The upper right panel plots samples of
the numerical scheme after a time-step of ε (in orange) given an initial condition at x0 (in red). This is superimposed onto a
heat map of the true transition kernel (in black). We see that samples from the numerical scheme fit the true transition kernel
relatively well, but have a higher variance. The bottom panel estimates the entropy production rate of the numerical scheme for
several choices of time-step ε. This is done by discretising the state-space into a number of bins and numerically evaluating the
entropy production of the resulting Markov chain using samples, see Section 2.1 for details. The numerical values are consistent
with the theoretical result (33).

6 Discussion
Briefly, we unpack a couple of observations and possible extensions of this work.

6.1 ep and sampling efficiency
A well-known criterion for efficient sampling is time-irreversibility [13, 20, 21, 64]. Intuitively, non-reversible
processes backtrack less often and thus furnish more diverse samples [65]. Furthermore, the time-irreversible
part of the drift flows along the contours of the stationary probability density which yields mixing and
accelerates convergence to the target measure. It is well known that removing non-reversibility worsens the
spectral gap and the asymptotic variance of the MCMC estimator [20,21,64], which are two main indicators
of the speed of convergence to stationary state [13]. Thus efficient samplers at non-equilibrium steady-state
have positive entropy production.

In elliptic linear diffusions, one can construct the optimal time-irreversible drift to optimise the spectral
gap [50, 66] or the asymptotic variance [64]. This indicates that one cannot optimise elliptic samplers by
simply increasing their entropy production at steady-state without any other constraints, as, we recall, ep is
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a quadratic form of the strength of the time-irreversible drift (Figure 2).
Beyond this, the entropy production rate of general diffusions (Theorems 4.1, 4.2) bears a formal resem-

blance to the Donsker-Varadhan functional [20, Theorem 2.2], from which the asymptotic variance of MCMC
estimators is derived [20]. It is entirely possible that one might be able to relate the non-stationary entropy
production rate ((1) or [1, eq. 3.19]) to the Donsker-Varadhan functional, and thus give a more complete
characterisation of sampling efficiency in terms of entropy production.

Many diffusion models of efficient sampling (the underdamped (7) and generalised [10, eq. 8.33] Langevin
dynamics, the fastest converging linear diffusion [18]), and stochastic optimisation (stochastic gradient de-
scent in deep neural networks [14]) are not elliptic; that is, they are driven by less Brownian drivers than
there are dimensions to their phase space. In particular, these processes have their forward and backward
path space measures which are mutually singular, and infinite entropy production8. In light of this, we con-
jecture that mutual singularity of the forward and backward path space measures is an important facet of
sampling efficiency (provided the process is ergodic). Mutual singularity apparently exacerbates the mixing
effect that time-irreversibility introduces in the elliptic case. Heuristically, if some paths can be taken by the
forward process and not by the backward process, these trajectories cannot be reversed, thus the process is
constantly forced to visit new regions of phase space, which contributes to the (non-reversible) convergence
to steady-state.

If the above intuition holds, a useful statistic of sampling efficiency might be the probability that the
forward process takes paths that cannot be taken by the backward process. By the Lebesgue decomposition
theorem we can decompose the forward path space measure P into Preg + Psing such that Preg ≪ P̄ and
Psing ⊥ P̄. This statistic is the non-negative real number

P({γ ∈ C([0, T ],Rd) : dP/dP̄(γ) = +∞}) = Psing
(
C([0, T ],Rd)

)
,

where dP/dP̄ is the Lebesgue derivative between forward and backward path space measures. Note that
the linear diffusion that converges fastest to steady-state maximises the latter (under the constraint that the
process remains ergodic) since it has only one Brownian driver [18]. However, this statistic does not tell us all
since the direction of the Brownian driver with respect to the drift and the stationary density is important to
determine sampling efficiency. Yet, these observations indicate that employing diffusions with less Brownian
drivers might be an advantage for sampling and optimisation (provided ergodicity is maintained). A careful
investigation of these relationships is left to future work.

6.2 Generalised non-reversibility and entropy production rate
Many diffusions studied in statistical physics are not time-reversible but they are generalised reversible; that
is, they are time-reversible up to a one-to-one transformation θ of phase-space which leaves the stationary
measure invariant [23, Section 5.1], [27, eq. 2.32]. For example, the underdamped langevin equation is
generalised reversible—it is reversible up to momentum reversal (Example 3.6); the generalised Langevin
equation is also generalised reversible.

The entropy production, as defined in Definition 2.6, measures time-irreversibility as opposed to gen-
eralised non-reversibility. However, as pointed out in Remark 2.7, the physically meaningful definition of
entropy production rate sometimes comprises additional operators applied to the path-space measure of the
time-reversed process. This modified notion of ep, which we refer to as generalised entropy production,
usually takes the form of

egen,θp := lim
ε↓0

1

ε
H
[
P[0,ε], θ#P̄[0,ε]

]
, (34)

where θ# is the pushforward operator associated to an involution of phase-space θ that leaves the stationary
distribution invariant. The generalised entropy production rate measures the generalised non-reversibility of
the process; that is, the extent to which the process is time-irreversible up to the one-to-one transformation

8 [14, Section 5] shows that stochastic gradient descent is out of equilibrium. Furthermore, it shows empirically that the
rank of the diffusion matrix is about 1% of its dimension in deep neural networks. The sparsity of the noise with respect to the
highly out-of-equilibrium behaviour they observe conjectures birr(x) ̸∈ Rangeσ(x) and thus, mutual singularity of forward and
backward path space measures.
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θ. Of course, generalised entropy production reduces to entropy production, as defined in Definition 2.6,
when θ ≡ Id.

Since generalised entropy production can sometimes be more physically meaningful, we spend the rest of
this section computing it in a couple of examples.

It seems to be a general consensus in statistical physics that the physically relevant notion of entropy
production for the underdamped Langevin process is the generalised entropy production when θ is the
momentum reversal [29–31, 67]. It is then a by-product of Example (3.6) that underdamped Langevin
dynamics has zero (generalised) entropy production egen,θp = 0, which contrasts with the infinite entropy
production one obtains in the non-generalised case (Section 4.2) when one sets θ ≡ Id.

Beyond this, generalised entropy production could be a useful construct to quantify how far certain
diffusion processes are from being generalised reversible. For example we can quantify to what extent
certain time-irreversible perturbations of underdamped Langevin dynamics are far from being generalised
reversible up to momentum reversal.

Example 6.1 (egen,θp of perturbed underdamped Langevin dynamics). Consider the following perturbations
of underdamped Langevin dynamics [68, eq. 8]{

dqt =M−1pt dt−Q1∇V (qt) dt

dpt = −∇V (qt) dt−Q2M
−1pt dt− γM−1pt dt+

√
2γβ−1dwt,

(35)

where Q1, Q2 ∈ Rd×d are constant antisymmetric matrices. By inspection this equation has a Helmholtz
decomposition that is similar to underdamped Langevin dynamics (cf. Example 3.11)

brev(q, p) = D∇ log ρ(q, p), birr(q, p) = Q∇ log ρ(q, p)

∇ log ρ(q, p) = −β
[
∇V (q)
M−1p

]
, D =

[
0 0
0 γβ−1 Idn

]
, Q = β−1

[
Q1 − Idn
Idn Q2

]
.

The time-reversed process solves the following SDE (Section 3.4){
dq̄t = −M−1p̄tdt+Q1∇V (q̄t) dt

dp̄t = ∇V (q̄t) dt+Q2M
−1p̄t dt− γM−1p̄tdt+

√
2γβ−1dwt.

Define θ(q, p) = (q,−p) to be the momentum reversal transformation of phase space (that leaves under-
damped Langevin dynamics invariant as shown in Example 3.6). Letting p̂t = −p̄t, the time-reversed
momentum-flipped equation looks like{

dq̄t =M−1p̂tdt+Q1∇V (q̄t) dt

dp̂t = −∇V (q̄t) dt+Q2M
−1p̂t dt− γM−1p̂tdt+

√
2γβ−1dŵt.

(36)

Denote by bgen,θirr the vector field whose sign changes after successively applying these two transformations:

bgen,θirr (q, p) =

[
−Q1∇V (q)
−Q2M

−1p

]
.

It follows that the time-reversed, momentum-flipped equation (36) does not induce the same path space
measure as the initial equation (35) unless Q1 = Q2 = 0. To see this, we follow the proofs of Theorems 4.4
and 4.1 to compute the generalised entropy production rate

Q1 ̸= 0⇒ P ⊥ θ#P̄⇒ egen,θp = +∞,

Q1 = 0⇒ P ∼ θ#P̄⇒ egen,θp =

∫∫
Rn

bgen,θirr ·D−bgen,θirr ρ(q, p) dpdq

= γ−1β

∫
Rn

(Q2M
−1p)2ρ(p)dp

= −γ−1β Tr
(
Q2M

−1Q2

)
< +∞.

The last line equality follows from a standard result about expectations of bilinear forms under Gaussian
distributions, since ρ(p) is Gaussian with covariance matrix M . As usual, the generalised entropy production
rate is a quadratic form of the (generalised) irreversible drift.
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6.3 Geometric interpretation of results
Our main results concerning the value of entropy production have a straightforward geometric interpretation.
The Stratonovich interpretation of the SDE

dxt = bs(xt) + σ(xt) ◦ dwt

is the natural one to consider in a geometric context, when looking at the directions of the drift bs and
volatility vector fields σ·i, i = 1, . . . ,m (i.e., the columns of the volatility matrix field).

Recall from Remark 3.9 that the Stratonovich SDE also admits a Helmholtz decomposition bs = bsrev+b
s
irr

with bsirr = birr, so that

bs(x) ∈ Rangeσ(x) ⇐⇒ bsirr(x) ∈ Rangeσ(x) ⇐⇒ b̄s(x) ∈ Rangeσ(x) for any x ∈ suppµ, (37)

where b̄s is the drift of the time-reversed Stratonovich SDE. In particular, time-reversal is a transformation
that sends bs to b̄s, bsirr to −bsirr, or, equivalently, adds −2bsirr to the drift.

Our main results can be summarised in a nutshell:

µ
({
x ∈ Rd : bs(x) ∈ Rangeσ(x)

})
= 1⇒ ep =

∫
Rd

bsirr ·D−bsirrdµ (see Theorem 4.1 or 4.2 for details),

µ
({
x ∈ Rd : bs(x) ∈ Rangeσ(x)

})
< 1⇒ ep = +∞ (see Theorem 4.4 for details).

(38)

We derived our main results using the Itô interpretation of an SDE because this allowed us to make more
general statements, notably in the context of the general existence and uniqueness theorem of strong solutions
to Itô SDEs; it turns out, however, that these results are more naturally interpreted in the Stratonovich
context.

Consider the case where there is noise in the direction of the vector field bs, (almost every-) where the
process is; in other words, assume that µ

({
x ∈ Rd : bs(x) ∈ Rangeσ(x)

})
= 1. Consider the process at

any point x ∈ suppµ. In virtue of (37), the drifts of the forward and time reversed processes both live in
Rangeσ(x), the subset of the tangent space that is spanned by the volatility vector fields. Since the driving
fluctuations are Gaussian on Rangeσ(x), the time-reversal transformation will be reversed by the random
fluctuations with positive probability. Thus, the forward and time-reversed Markov transition kernels (for
an infinitesimally small time-step) have the same support—they are mutually equivalent. Under sufficient
regularity, made explicit in Theorems 4.1 or 4.2, their relative entropy is finite. The ep is the relative entropy
between such Markov kernels on an infinitesimally small time-step (Proposition 2.10), so it too will be finite.

On the other hand, if there exists x ∈ suppµ such that there is no noise in the direction of the vector
field bs, that is bs(x) ̸∈ Rangeσ(x), then the direction of the forward and time-reversed dynamics in an
infinitesimal time-step lie on different tangent spaces, bs(x)+Rangeσ(x) and b̄s(x)+Rangeσ(x), respectively.
This means that the forward and time-reversed transition kernels (for an infinitesimally small time-step) are
mutually singular and their relative entropy is infinite; thus, the ep is also infinite.

In particular, it should be straightforward to extend these observations and calculations to diffusions on
manifolds.
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A Proofs
Here we provide proofs supporting the main text.

A.1 The ep of stationary Markov processes
A.1.1 ep in terms of path space measures with deterministic initial condition

We prove Proposition 2.8:

Proof. The proof is straightforward

ep =
1

t
H
[
P[0,t] | P̄[0,t]

]
=

1

t
Ex•∼P

[
log

dP[0,t]

dP̄[0,t]

(x•)

]
=

1

t
Ex∼µ

[
Ex•∼Px

[0,t]

[
log

dP[0,t]

dP̄[0,t]

(x•)

]]
=

1

t
Ex∼µ

[
Ex•∼Px

[0,t]

[
log

dPx
[0,t]

dP̄x
[0,t]

(x•)

]]
=

1

t
Ex∼µ

[
H
[
Px

[0,t] | P̄
x
[0,t]

]]
.

A.1.2 ep in terms of transition kernels

We prove Proposition 2.10:

Proof. By Proposition 2.8,

ep = lim
ε↓0

1

ε
Ex∼µ

[
Ex•∼Px

[0,ε]

[
log

dPx
[0,ε]

dP̄x
[0,ε]

(x•)

]]

= lim
ε↓0

1

ε
Ex∼µ

[
Ey∼pε(·,x)

[
log

dpε(·, x)
dp̄ε(·, x)

(y)

]]
= lim

ε↓0

1

ε
Ex∼µ [H [pε(·, x) | p̄ε(·, x)]] .
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A.2 Time-reversal of stationary diffusions
A.2.1 Conditions for the reversibility of the diffusion property

We prove Lemma 3.2:

Proof. Recall the following facts:

• (xt)t∈[0,T ] is a Markov diffusion process. Its generator is an unbounded, linear operator given by

L : C∞
c (Rd) ⊂ DomL ⊂ Lpµ(Rd)→ Lpµ(Rd), 1 ≤ p ≤ ∞, L f = b · ∇f +D∇ · ∇f. (39)

• The time-reversal of a Markov process is also a Markov process. Let L̄ be the generator of the time-
reversed process (x̄t)t∈[0,T ]. It is known that L̄ is the adjoint of L. In other words, we have the
identity ∫

Rd

f L g dµ =

∫
Rd

gL̄f dµ, ∀f ∈ Dom L̄, g ∈ DomL, (40)

where Dom L̄ =
{
f ∈ L1

µ(Rd) | ∃h ∈ L1
µ(Rd),∀g ∈ DomL :

∫
Rd f L gdµ =

∫
Rd hgdµ

}
. This follows from

the fact that the Markov semigroup of the time-reversed process is the adjoint semigroup [1, p. 113],
and thus the infinitesimal generator is the adjoint generator [51,52], [1, Thm 4.3.2].

• L1
loc-functions define distributions, and hence admit distributional derivatives (which need not be func-

tions).

We identify the generator of the time-reversed process by computing the adjoint of the generator. In the
following, all integrals are with respect to the d-dimensional Lebesgue measure. Let f, g ∈ C∞

c (Rd). Noting
that fρb · ∇g, fρD∇ · ∇g ∈ L1(Rd), we have∫

Rd

f L gρ =

∫
Rd

fρb · ∇g +
∫
Rd

fρD∇ · ∇g.

On the one hand, noting that fρb, ρb ∈ L1
loc(Rd,Rd), we have∫

Rd

fρb · ∇g = −
∫
Rd

g∇ · (fρb) = −
∫
Rd

g (ρb · ∇f + f∇ · (ρb))

= −
∫
Rd

g (ρb · ∇f + f∇ · ∇ · (ρD)) ,

where the last equality follows from the stationary Fokker-Planck equation. (Recall that local boundedness
of coefficients b, σ, and Itô’s formula imply that the stationary density ρ satisfies ∇ · (−bρ +∇ · (Dρ)) = 0
where the equality is in a distributional sense).

On the other hand, noting that fρD, ρD ∈ L1
loc(Rd,Rd×d), we have∫

Rd

fρD∇ · ∇g =

∫
Rd

fρD · ∇ · ∇g =

∫
Rd

g∇ · ∇ · (fρD)

=

∫
Rd

g∇ · (ρD∇f + f∇ · (ρD))

=

∫
Rd

g (2∇ · (ρD) · ∇f + ρD∇ · ∇f + f∇ · ∇ · (ρD)) .

Finally, summing the previous two equations yields:∫
Rd

f L gρ =

∫
Rd

g (−ρb · ∇f + 2∇ · (Dρ) · ∇f + ρD∇ · ∇f) =
∫
Rd

gL̄fρ.

And thus, the generator of the time-reversed process satisfies ρL̄f = −ρb ·∇f+2∇· (Dρ) ·∇f+ρD∇·∇f for
all f ∈ C∞

c (Rd). The time-reversed process is a diffusion if its generator is a second order differential operator
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with no constant part. This is the case here, except for the fact that the generator outputs distributions as
opposed to functions. For the generator to be a diffusion operator we need to assume that the distributional
derivative ∇ · (Dρ) is indeed a function (which is then necessarily in L1

loc(Rd,Rd)). Thus, the following are
equivalent:

• ∇ · (Dρ) ∈ L1
loc(Rd,Rd),

• L̄f ∈ L1
µ(Rd) for any f ∈ C∞

c (Rd), where L̄f = −b · ∇f + 2ρ−1∇ · (Dρ) · ∇f +D∇ · ∇f ,

• (x̄t)t∈[0,T ] is a Markov diffusion process.

A.2.2 The time-reversed diffusion

We prove Theorem 3.5.

Proof. Since (x̄t)t∈[0,T ] is a Markov diffusion process with generator L̄, we have shown that its drift and
diffusion are indeed b̄, D, in the proof of Lemma 3.2.

To show that any such diffusion process induces the path space measure of the time-reversed process, it
suffices to show that the martingale problem associated to (L̄, ρ) is well-posed. First note that, by Assumption
3.3, the Itô SDE (5) has a unique strong solution. Therefore it also has a unique weak solution. Therefore,
(xt)t∈[0,T ] is the unique solution to the martingale problem associated to the generator L = b ·∇+D∇·∇ [69,
Theorem 1.1]. In other words, the martingale problem associated to (L, ρ) is well-posed. It remains to show
that there is a one-to-one correspondence between stationary solutions to the martingale problem associated
to L and L̄.

Consider Markov processes (yt)t∈[0,T ], (ȳt)t∈[0,T ], ȳt = yT−t stationary at the density ρ. We show that
(ȳt)t∈[0,T ] solves the martingale problem wrt L̄ if and only if (yt)t∈[0,T ] solves the martingale problem wrt L.

• (ȳt)t∈[0,T ] solves the martingale problem wrt L̄ if and only if for arbitrary 0 ≤ s ≤ t ≤ T , f, g ∈ C∞
c (Rd)

E
[
f(ȳt)−

∫ t

0

L̄f(ȳr)dr | ȳθ, 0 ≤ θ ≤ s
]
= f(ȳs)−

∫ s

0

L̄f(xr)dr

Markov⇐⇒ E
[
f(ȳt)−

∫ t

0

L̄f(ȳr)dr | ȳs
]
= f(ȳs)−

∫ s

0

L̄f(xr)dr

⇐⇒ E
[
f(ȳt)− f(ȳs)−

∫ t

s

L̄f(ȳr)dr | ȳs
]
= 0

⇐⇒ E
[(
f(ȳt)− f(ȳs)−

∫ t

s

L̄f(ȳr)dr

)
g(ȳs)

]
= 0.

(41)

If we make the change of variable t← T − s, s← T − t, so that 0 ≤ s ≤ t ≤ T , this is equivalent to:

⇐⇒ E

[(
f(ys)− f(yt)−

∫ T−s

T−t
L̄f(yT−r)dr

)
g(yt)

]
= 0

⇐⇒ E
[(
f(ys)− f(yt)−

∫ t

s

L̄f(yr)dr

)
g(yt)

]
= 0

• Repeating the equivalences in (41), (yt)t∈[0,T ] solves the martingale problem wrt L if and only if for
arbitrary 0 ≤ s ≤ t ≤ T , f, g ∈ C∞

c (Rd)

E
[(
g(yt)− g(ys)−

∫ t

s

L g(yr)dr

)
f(ys)

]
= 0.

31

Page 31 of 45 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-118732.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



• Thus, it suffices to show that the two last expressions are equal, i.e.,

E
[(
f(ys)− f(yt)−

∫ t

s

L̄f(yr)dr

)
g(yt)

]
= E

[(
g(yt)− g(ys)−

∫ t

s

L g(yr)dr

)
f(ys)

]
By stationarity, we have

E [(f(ys)− f(yt)) g(yt)] = E [f(ys)g(yt)− f(yt)g(yt)]
= E [f(ys)g(yt)− f(ys)g(ys)] = E [(g(yt)− g(ys)) f(ys)] .

Thus, it remains to show that

E
[∫ t

s

g(yt)L̄f(yr)dr

]
= E

[∫ t

s

f(ys) L g(yr)dr

]
We proceed to do this. On the one hand:

E
[∫ t

s

f(ys) L g(yr)dr

]
=

∫ t

s

E [f(ys) L g(yr)] dr

=

∫ t

s

E [E [f(ys) L g(yr) | ys]] dr

=

∫ t

s

E [f(ys)E [L g(yr) | ys]] dr

=

∫ t

s

E [f(ys) Pr−s L g(ys)] dr

=

∫ t

s

∫
Rd

f(y) Pr−s L g(y)ρ(y)dydr (stationarity)

=

∫
Rd

f(y)

∫ t

s

Pr−s L g(y)drρ(y)dy

=

∫
Rd

f(y) (Pt−s−P0) g(y)ρ(y)dy (∂t Pt = Pt L)

=

∫
Rd

g(y)
(
P̄t−s − P̄0

)
f(y)ρ(y)dy

On the other hand:

E
[∫ t

s

g(yt)L̄f(yr)dr

]
=

∫ t

s

E
[
g(yt)L̄g(yr)

]
dr

=

∫ t

s

E
[
E
[
g(yt)L̄f(yr) | yt

]]
dr

=

∫ t

s

E
[
g(yt)E

[
L̄f(yr) | yt

]]
dr

=

∫ t

s

E
[
g(yt)P̄t−rL̄f(yt)

]
dr

=

∫ t

s

∫
Rd

g(y)P̄t−rL̄f(y)ρ(y)dydr (stationarity)

=

∫
Rd

g(y)

∫ t

s

P̄t−rL̄f(y)drρ(y)dy

=

∫
Rd

g(y)
(
P̄t−s − P̄0

)
f(y)ρ(y)dy (∂tP̄t = P̄tL̄)

This shows the one-to-one correspondence and completes the proof.
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A.2.3 The Helmholtz decomposition

We prove Proposition 3.7.

Proof. "⇒" We define the time-reversible and time-irreversible parts of the drift

brev :=
b+ b̄

2
, birr :=

b− b̄
2

.

We now show that the have the predicted functional form. For x such that ρ(x) = 0, brev =
(
b+ b̄

)
/2 =

0. For x such that ρ(x) > 0

brev =
b+ b̄

2
= ρ−1∇ · (Dρ) = ρ−1D∇ρ+ ρ−1ρ∇ ·D = D∇ log ρ+∇ ·D. (42)

For the time-irreversible drift, first note that the stationary density ρ solves the stationary Fokker-
Planck equation [10,70]

∇ · (−bρ+∇ · (Dρ)) = 0.

Decomposing the drift into time-reversible and time-irreversible parts, from (42)

−bρ+∇ · (Dρ) = −brevρ− birrρ+∇ · (Dρ) = −birrρ,

we obtain that the time-irreversible part produces divergence-free (i.e., conservative) flow w.r.t. the
steady-state density

∇ · (birrρ) = 0.

"⇐" From (42) the time-reversible part of the drift satisfies the following identity

brevρ = ∇ · (Dρ). (43)

It follows that the density ρ solves the stationary Fokker-Planck equation

∇ · (−bρ+∇ · (Dρ)) = ∇ · (−brevρ− birrρ+∇ · (Dρ)) = ∇ · (−birrρ) = 0.

We prove Proposition 3.10:

Proof. "⇒" Recall that any smooth divergence-free vector field is the divergence of a smooth antisymmetric
matrix field A = −A⊤ [7, 8, 71,72]

birrρ = ∇ ·A.

This result holds most generally a consequence of Poincaré duality in de Rham cohomology [72, Ap-
pendix D]. We define a new antisymmetric matrix field Q := ρ−1A. From the product rule for
divergences we can rewrite the time-irreversible drift as required

birr = Q∇ log ρ+∇ ·Q.

"⇐" Conversely, we define the auxiliary antisymmetric matrix field A := ρQ. Using the product rule for
divergences it follows that

birr = ρ−1∇ ·A.

Finally,
∇ · (birrρ) = ∇ · (∇ ·A) = 0

as the matrix field A is smooth and antisymmetric.
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A.2.4 Multiple perspectives on the Helmholtz decomposition

We prove Proposition 3.12:

Proof of Proposition 3.12. The proof is analogous to [24, Proposition 3]. In view of Section 3.5.2, we only
need to check that: 1) if

√
2Σ f = σ⊤∇f , then

√
2Σ∗ g = −∇ · (σg)−∇ log ρ · σg; 2) the symmetric part of

the generator factorises as S = −Σ∗Σ.

1) For any f, g ∈ C∞
c (Rd) :

⟨f,
√
2Σ∗g⟩L2

µ(Rd) = ⟨
√
2Σf, g⟩L2

µ(Rd) =

∫
gσ⊤∇fρ(x) dx

=

∫
σgρ · ∇f(x) dx = −

∫
f∇ · (σgρ)(x) dx

=

∫
−f∇ log ρ · σgρ(x)− f∇ · (σg)ρ(x) dx

= ⟨f,−∇ log ρ · σg −∇ · (σg)⟩L2
µ(Rd)

This implies
√
2Σ∗g = −∇ log ρ · σg −∇ · (σg).

2) For any f ∈ C∞
c (Rd):

−Σ∗Σf = ∇ log ρ ·D∇f +∇ · (D∇f)
= ∇ log ρ ·D∇f + (∇ ·D) · ∇f +D∇ · ∇f
= brev · ∇f +D∇ · ∇f = S f

where the penultimate equality follows since brev = D∇ log ρ+∇ ·D, µ-a.e.

We now prove Proposition 3.13:

Proof of Proposition 3.13. • We compute the Fréchet derivative of H[· | ρ]. First of all, we compute its
Gâteaux derivative in the direction of η.

d

dε
H[ρt + εη | ρ] = d

dε

∫
Rd

(ρt + εη) log
ρt + εη

ρ
dx =

∫
Rd

η log
ρt + εη

ρ
+ ηdx =

∫
Rd

η

(
log

ρt + εη

ρ
+ 1

)
dx.

By definition of the Fréchet derivative, we have d
dε H[ρt + εη | ρ]|ε=0 = ⟨dH[ρt | ρ], η⟩. This implies

dH[ρt | ρ] = log ρt
ρ + 1 by the Riesz representation theorem.

• Recall, from Proposition 3.12, that
√
2Σ = σ⊤∇. We identify Σ′. For any f, g ∈ C∞

c (Rd)

⟨g,
√
2Σf⟩ =

∫
Rd

gσ⊤∇fdx =

∫
Rd

σg · ∇fdx = −
∫
Rd

f∇ · (σg)dx.

This yields
√
2Σ′g = −∇ · (σg). And in particular, Σ′(ρtΣξ) = −∇ · (ρtD∇ξ).

• We define Mρt(ξ) := Σ′(ρtΣξ) = −∇·(ρtD∇ξ) and verify that this is a symmetric semi-positive definite
operator. For any g, h ∈ C∞

c (Rd):

⟨Mρt h, g⟩ = ⟨Σh,Σg⟩ = ⟨h,Mρt g⟩, ⟨Mρt g, g⟩ = ⟨Σg,Σg⟩ρt ≥ 0.

Also, −Mρt (dH[ρt | ρ]) = ∇ · (ρtD∇ log ρt
ρ ) is immediate.

• We define W (ρt) = ∇ · (−birrρt) and verify the orthogonality relation:

⟨W(ρt),dH[ρt | ρ]⟩ =
∫
Rd

(
log

ρt
ρ

+ 1

)
∇ · (−birrρt)dx =

∫
Rd

birrρt∇
(
log

ρt
ρ

+ 1

)
dx

=

∫
Rd

birrρt
ρ

ρt
∇
(
ρt
ρ

)
dx = −

∫
Rd

∇ · (birrρ)
ρt
ρ
dx = 0,

where the last equality holds by Proposition 3.7.
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A.3 The ep of stationary diffusions
A.3.1 Regular case

We prove Theorem 4.1:

Proof. By Assumption 3.3 the Itô SDE (5) has a unique non-explosive strong solution (xt)t≥0 with respect
to the given Brownian motion (wt)t≥0 on a filtered probability space (Ω,F , {Ft}t≥0 , P ). (Even though
Assumption 3.3 ensures non-explosiveness of the solution on a finite time-interval, stationarity implies that
we may prolong the solution up to arbitrary large times).

By Theorem 3.5 we know that a solution to the following SDE

dx̄t = b̄(x̄t)dt+ σ(x̄t)dwt, x̄0 = x0, (44)

induces the path space measure of the time-reversed process. By Proposition 3.7, we can rewrite the (forward
and time-reversed) drifts as b = brev + birr and b̄ = brev − birr.

We define the localised coefficients

b(n)(x) := b

((
1 ∧ n

|x|

)
x

)
=

{
b(x) if |x| ≤ n
b
(
n x

|x|

)
if |x| > n,

and analogously for b̄(n), σ(n), b
(n)
rev, b

(n)
irr . Note that the assignment ·(n) respects sums and products, in par-

ticular

b(n) = (brev + birr)
(n) = b(n)rev + b

(n)
irr ,

b̄(n) = (brev − birr)(n) = b(n)rev − b
(n)
irr .

(45)

It is easy to see that the localised SDE

dx
(n)
t = b(n)(x

(n)
t )dt+ σ(n)(x

(n)
t )dwt, x

(n)
0 = x0

also has a unique strong solution x(n) = (x
(n)
t )t≥0 with respect to the given Brownian motion (wt)t≥0 on the

probability space (Ω,F , {Ft}t≥0 , P ). This follows from the fact that the localised SDE has locally Lipschitz
continuous and bounded coefficients that satisfy the assumptions of Theorem [34, Theorem 3.1.1].

From assumption 1, we obtain that for ρ-a.e. x ∈ Rd

birr(x) ∈ Rangeσ(x)⇒ birr(x) = σσ−birr(x)

b
(n)
irr (x) ∈ Rangeσ(n)(x)⇒ b

(n)
irr (x) = σ(n)σ(n)−b

(n)
irr (x).

(46)

Then, (45) and (46) imply that we can rewrite the localised SDE as

dx
(n)
t = b(n)rev(x

(n)
t )dt+ σ(n)(x

(n)
t )

[
σ(n)−b

(n)
irr

(
x
(n)
t

)
dt+ dwt

]
, x

(n)
0 = x0.

By the definition of Itô’s stochastic calculus, x(n)t is an Ft-adapted process. By assumption 2, σ−birr is Borel
measurable and thus it follows that the localised map σ(n)−b

(n)
irr is Borel measurable. Thus −2σ(n)−b

(n)
irr

(
x
(n)
t

)
is also an Ft-adapted process. In addition, by continuity and localisation, σ(n)−b

(n)
irr is bounded. Therefore,

by [73, Proposition 10.17 (i)] applied to −2σ(n)−b
(n)
irr

(
x
(n)
s

)
,

Z
(n)
t = exp

[
−2
∫ t

0

〈
σ(n)−b

(n)
irr

(
x(n)s

)
, dws

〉
+
∣∣∣σ(n)−b

(n)
irr

(
x(n)s

)∣∣∣2 ds] , t ≥ 0,

is a martingale on the probability space
(
Ω,F , {Ft}t≥0 , P

)
. We define a new probability measure P̄n on

the sample space Ω through
dP̄n
dP

∣∣∣∣
Ft

= Z
(n)
t , ∀t ≥ 0. (47)
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By Girsanov’s theorem [73, Theorem 10.14], x(n)t solves the SDE

dx
(n)
t = b(n)rev(x

(n)
t )dt− σ(n)(x

(n)
t )

[
σ(n)−b

(n)
irr

(
x
(n)
t

)
dt+ dwt

]
, x

(n)
0 = x0.

on the probability space
(
Ω,F , {Ft}t≥0 , P̄n

)
. Using (46), x(n)t solves

dx
(n)
t = b̄(n)(x

(n)
t )dt+ σ(n)(x

(n)
t )dwt, x

(n)
0 = x0

on said probability space.
We define a sequence of stopping times τ0 = 0 and τn = inf {t ≥ 0 : |xt| > n} for n > 0. Since (xt)t≥0 is

non-explosive, P -a.s. limn→∞ τn = +∞. As xt = x
(n)
t when t ≤ τn, we have P -a.s.

Z
(n)
t∧τn = exp

[
−2
∫ t∧τn

0

〈
σ−birr(xs), dws

〉
+
∣∣σ−birr(xs)

∣∣2 ds] .
As Z(n+1)

t 1{t<τn} = Z
(n)
t 1{t<τn}, we define the limit as n→ +∞

Zt ≡
+∞∑
n=1

Z
(n)
t 1{τn−1≤t<τn} = lim

n→+∞
Z

(n)
t 1{t<τn} = lim

n→+∞
Z

(n)
t∧τn .

By definition, Zt is a continuous local martingale on
(
Ω,F , {Ft}t≥0 , P

)
.

We compute Zt. Let’s write − logZ
(n)
t∧τn =M

(n)
t + Y

(n)
t , where

M
(n)
t = 2

∫ t∧τn

0

〈
σ−birr(xs), dws

〉
, and, Y (n)

t = 2

∫ t∧τn

0

∣∣σ−birr(xs)
∣∣2 ds.

We also define Mt = 2
∫ t
0
⟨σ−birr(xs), dws⟩ and Yt = 2

∫ t
0
|σ−birr(xs)|

2
ds.

From assumption 3, we have∫
Rd

∣∣σ−birr(x)
∣∣2 ρ(x)dx =

1

2

∫
Rd

b⊤irrD
−birrρ(x)dx < +∞.

Thus, we obtain that

EP
∣∣∣M (n)

t −Mt

∣∣∣2 = 4EP
∣∣∣∣∫ t

0

〈
σ−birr(xs)1{s>τn}, dws

〉∣∣∣∣2
= 4EP

∫ t

0

∣∣σ−birr(xs)
∣∣2 1{s>τn}ds (Itô’s isometry)

n→+∞−−−−−→ 0,

EP
∣∣∣Y (n)
t − Yt

∣∣∣ = 2EP
∫ t

0

∣∣σ−birr(xs)
∣∣2 1{s>τn}ds

n→+∞−−−−−→ 0.

Thus, − logZt =Mt+Yt. By Itô calculus, Mt is a martingale on the probability space
(
Ω,F , {Ft}t≥0 , P

)
,

and in particular EP [Mt] = 0.
Let T > 0. Let

(
C([0, T ],Rd),B

)
denote the path space, where B is the Borel sigma-algebra generated by

the sup norm ∥ ·∥∞. Denote trajectories of the process by x• := (xt)t∈[0,T ] : Ω→ C([0, T ],Rd). By definition
of Itô calculus, ZT is measurable with respect to ⟨xs : 0 ≤ t ≤ T ⟩, so there exists a positive measurable
function ZCT on the path space, such that P -a.s. ZCT (x•(ω)) = ZT (ω) for ω ∈ Ω, i.e., the following diagram
commutes

C([0, T ],Rd)

Ω R>0.

ZC
Tx•

ZT
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Note that the path space
(
C([0, T ],Rd),B

)
admits a canonical filtration (Bt)t∈[0,T ], where

Bt =
{
A ⊂ C([0, T ],Rd) : A|[0,t] ∈ Borel sigma-algebra on

(
C([0, t],Rd), ∥ · ∥∞

)}
.

For any path γ ∈ C([0, T ],Rd) and n ∈ N, we define the hitting time tn(γ) = inf {t ≥ 0 : |γt| > n}.
Claim: These hitting times are stopping times wrt to the canonical filtration, i.e., {γ ∈ C([0, T ],Rd) :
tn(γ) ≤ t} ∈ Bt for any t ∈ [0, T ].
Proof of claim. Let A := {γ ∈ C([0, T ],Rd) : tn(γ) ≤ t}. Then,

A|[0,t] = {γ ∈ C([0, t],R
d) : tn(γ) ≤ t}

=
{
γ ∈ C([0, t],Rd) : min{s ≥ 0 : |γs| > n} ≤ t

}
(continuity of γ)

=
{
γ ∈ C([0, t],Rd) : ∥γ∥∞ > n

}
,

which is clearly a Borel set in
(
C([0, t],Rd), ∥ · ∥∞

)
. ■

Thus we can define stopping time sigma-algebras in the usual way

BT∧tn =
{
A ∈ BT : A ∩ {γ ∈ C([0, T ],Rd) : T ∧ tn(γ) ≤ t} ∈ Bt,∀t ∈ [0, T ]

}
.

We showed above that, under P, P̄n, the distributions of x restricted to (C([0, T ],Rd),BT∧tn) are
P[0,T∧tn] := P[0,T ]

∣∣
BT∧tn

and P̄[0,T∧tn] := P̄[0,T ]

∣∣
BT∧tn

, respectively.
By inspection, we have, for any t ≥ 0,

{T < τn} ∩ {T ∧ τn ≤ t} =

{
{T < τn} ∈ FT ⊂ Ft if T ≤ t
∅ ⊂ Ft if T > t.

Setting t = T ∧ τn, we have {T < τn} ∈ FT∧τn , which also yields {T ≥ τn} ∈ FT∧τn and {τn−1 ≤ T <
τn} ∈ FT∧τn .

Fix i ≥ 0 and A ∈ BT∧ti . Then x−1
• A ∈ F as x• is measurable. Thus x−1

• A ∩ {T < τi} ⊂ FT∧τi and
x−1
• A ∩ {τn−1 ≤ T < τn} ⊂ FT∧τn for any n > i. Finally,

EP

[
ZCT 1A

]
= EP

[
ZT1x−1

• A

]
= EP

[
Z

(i)
T 1x−1

• A∩{T<τi}

]
+

+∞∑
n=i+1

EP
[
Z

(n)
T 1x−1

• A∩{τn−1≤T<τn}

]
= EP̄i

[
1x−1

• A∩{T<τi}

]
+

+∞∑
n=i+1

EP̄n

[
1x−1

• A∩{τn−1≤T<τn}

]
= EP̄

[
1A∩{T<ti}

]
+

+∞∑
n=i+1

EP̄

[
1A∩{tn−1≤T<tn}

]
= EP̄ [1A] .

From the arbitrariness of i and that limn→∞ τn = +∞ P -a.s., it follows that

dP̄[0,T ]

dP[0,T ]
= ZCT .
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Finally, we compute the relative entropy between the forward and backward path-space measures

H
[
P[0,T ], P̄[0,T ]

]
= EP

[
log

dP[0,T ]

dP̄[0,T ]

(γ)

]
= EP

[
log

dP[0,T ]

dP̄[0,T ]

(x(ω))

]

= EP
[
− logZCT (x(ω))

]
= EP [− logZT ] =

=0︷ ︸︸ ︷
EP [MT ] +EP [YT ]

= EP

[
2

∫ T

0

∣∣σ−birr(xs)
∣∣2 ds] = 2T

∫
Rd

∣∣σ−birr(x)
∣∣2 ρ(x)dx

= T

∫
Rd

b⊤irrD
−birrρ(x)dx,

where we used Tonelli’s theorem and stationarity for the penultimate equality. By Theorem 2.5, we obtain
the entropy production rate

ep =
1

T
H
[
P[0,T ], P̄[0,T ]

]
=

∫
Rd

b⊤irrD
−birrρ(x) dx.

We now prove Theorem 4.2:

Proof. By assumption 1, for ρ-a.e. x ∈ Rd

birr(x) ∈ Rangeσ(x)⇒ birr(x) = σσ−birr(x). (48)

Then, (48) implies that we can rewrite the SDE (5) as

dxt = brev(xt)dt+ σ(xt)
[
σ−birr (xt) dt+ dwt

]
, x0 ∼ ρ.

By assumptions 2, 3, we may define a new probability measure P̄ on the sample space Ω through the
relation

dP̄

dP

∣∣∣∣
FT

= ZT , (49)

and it follows by Girsanov’s theorem [73, Theorem 10.14] applied to the process −2σ−birr (xt), that (xt)t∈[0,T ]

solves the SDE

dxt = brev(xt)dt− σ(xt)
[
σ−birr (xt) dt+ dwt

]
, x0 ∼ ρ.

on the probability space (Ω,F , {Ft}t≥0 , P̄ ). Using (48), (xt)t∈[0,T ] solves

dxt = b̄(xt)dt+ σ(xt)dwt, x0 ∼ ρ

on said probability space. By Theorem 3.5 we know that under P̄ , (xt)t∈[0,T ] induces the path space measure
of the time-reversed process.

Let
(
C([0, T ],Rd),B

)
denote the path space, where B is the Borel sigma-algebra generated by the sup

norm ∥ · ∥∞. Denote trajectories of the process by x• := (xt)t∈[0,T ] : Ω → C([0, T ],Rd). In summary, we
showed that, under P, P̄ , the distribution of x• on (C([0, T ],Rd),B) are P[0,T ] and P̄[0,T ], respectively.

By definition of Itô calculus, ZT is measurable with respect to ⟨xs : 0 ≤ t ≤ T ⟩, so there exists a positive
measurable function ZCT on the path space, such that P -a.s. ZCT (x•(ω)) = ZT (ω) for ω ∈ Ω, i.e., the following
diagram commutes

C([0, T ],Rd)

Ω R>0.

ZC
Tx•

ZT
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Fix A ∈ B. Then x−1
• A ∈ F as x• is measurable. Obviously,

EP

[
ZCT 1A

]
= EP

[
ZT1x−1

• A

]
= EP̄

[
1x−1

• A

]
= EP̄ [1A] .

It follows that

dP̄[0,T ]

dP[0,T ]
= ZCT .

Through this, we obtain the relative entropy between the forward and backward path-space measures

H
[
P[0,T ], P̄[0,T ]

]
= EP

[
log

dP[0,T ]

dP̄[0,T ]

(γ)

]
= EP

[
log

dP[0,T ]

dP̄[0,T ]

(x(ω))

]
= EP

[
− logZCT (x(ω))

]
= EP [− logZT ]

= EP

[
2

∫ T

0

⟨σ−birr(xt), dwt⟩

]
+ EP

[
2

∫ T

0

|σ−birr(xt)|2dt

]

= 2T

∫
Rd

∣∣σ−birr(x)
∣∣2 ρ(x)dx

= T

∫
Rd

b⊤irrD
−birrρ(x)dx.

The penultimate equality follows from the fact that Itô stochastic integrals are martingales (and hence
vanish in expectation), Tonelli’s theorem and stationarity. Finally, by Theorem 2.5, we obtain the entropy
production rate

ep =
1

T
H
[
P[0,T ], P̄[0,T ]

]
=

∫
Rd

b⊤irrD
−birrρ(x)dx.

We prove Proposition 4.3:

Proof. 1. Follows as Z0 = 1 and by definition of a martingale.
We define the Ft-adapted process ψt = −2σ−birr(xt).

2 ⇒ 1. This follows from [74, Theorem 1].

3. By [73, Proposition 10.17 (ii)], a sufficient condition for (20) is the existence of a δ > 0 such that
supt∈[0,T ] EP

(
eδ|ψt|2

)
< +∞. By stationarity of xt at ρ, EP

(
eδ|ψt|2

)
= Eρ

(
e4δ|σ

−birr(x)|2
)
, and so the

result follows.

4 ⇒ 1. Follows from [74, Theorem 1].

5 ⇒ 2. At := 1
2

∫ t
0
|ψs|2 ds = 2

∫ t
0
|σ−birr(xs)|

2
ds is a non-decreasing, Ft-adapted process. By assumption,

EP [AT −At | Ft] ≤ K for all t ∈ [0, T ]. By [75, Theorem 105 (b)] EP [exp(AT )] < +∞.
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6 ⇒ 3. Let δ ∈ (0, c). The first equality follows a standard fact about non-negative random variables:

Eρ
[
eδ|σ

−birr(x)|2
]
=

∫ ∞

0

P
(
eδ|σ

−birr(x)|2 > r
)
dr

≤ 1 +

∫ ∞

ecR
P
(
eδ|σ

−birr(x)|2 > r
)
dr

= 1 +

∫ ∞

ecR
P
(
|σ−birr(x)|2 > δ−1 log r

)
dr

≤ 1 + C

∫ ∞

ecR
r−cδ

−1

dr (by 6 as δ−1 log r > R)

< +∞.

A.3.2 Singularity

We prove Theorem 4.4:

Proof. Under the assumption that birr(x) ∈ Rangeσ(x) does not hold for ρ-a.e. x ∈ Rd, we will show that
there are paths taken by the forward process that are not taken by the backward process—and vice-versa—
resulting in the mutual singularity of forward and backward path space measures.

Recall from Theorem 3.5 that any solution to the following SDE

dx̄t = b̄(x̄t)dt+ σ(x̄t)dwt, x̄0 ∼ ρ, (50)

induces the path space measure of the time-reversed process.
We rewrite the forward and backward SDEs into their equivalent Stratonovich SDEs [10, eq. 3.31]

dxt = bs(xt)dt+ σ(xt) ◦ dwt, x0 ∼ ρ,
dx̄t = b̄s(x̄t)dt+ σ(x̄t) ◦ dwt, x̄0 ∼ ρ,

By Remark 3.9, time-reversal and the transformation from Itô to Stratonovich commute so b̄s is unambiguous,
and birr = bs(x)− b̄s(x). The volatility and Stratonovich drifts are locally Lipschitz as σ ∈ C2.

Consider an initial condition x = x0 = x̄0 to the trajectories, with ρ(x) > 0. Consider trajectories in the
Cameron-Martin space

γ ∈ C := {γ ∈ AC ([0, T ];Rm) | γ(0) = 0 and γ̇ ∈ L2 ([0, T ];Rm)}

Given such a trajectory, the approximating ODEs

dxt = bs(xt)dt+ σ(xt)dγt, x0 = x,

dx̄t = b̄s(x̄t)dt+ σ(x̄t)dγt, x̄0 = x,

have a unique solution in [0, T ], with T > 0 uniform in γ.
We can thus apply the Stroock-Varadhan support theorem [76, Theorem 3.10] to state the possible paths

under the forward and backward protocols. These are as follows

suppPx
[0,T ] =

{
xγt = x+

∫ t

0

bs(xγs )ds+

∫ t

0

σ(xγs )γ′(s)ds, t ∈ [0, T ] | γ ∈ C
}
,

supp P̄x
[0,T ] =

{
x̄γt = x+

∫ t

0

b̄s(x̄γs )ds+

∫ t

0

σ(x̄γs )γ′(s)ds, t ∈ [0, T ] | γ ∈ C
}
.

where the closure is with respect to the supremum norm on C
(
[0, T ];Rd

)
. The time derivatives of these

paths at t = 0 are

∂t suppP
x
[0,T ] |t=0 = {∂txγt |t=0 ∈ Rd | γ ∈ C} = {bs(x) + σ(x)v | v ∈ Rd},

∂t supp P̄
x
[0,T ] |t=0 = {∂tx̄γt |t=0 ∈ Rd | γ ∈ C} = {b̄s(x) + σ(x)v | v ∈ Rd}.
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where the closure is with respect to the sup norm on Rd.
Consider an initial condition x with birr(x) ̸∈ Rangeσ(x). This implies that the forward and backward

path space measures are mutually singular because the time derivatives of the possible paths differ at the
origin

2birr(x) = bs(x)− b̄s(x) ̸∈ Rangeσ(x)

⇐⇒ bs(x) + Rangeσ(x) ̸= b̄s(x) + Rangeσ(x)

⇐⇒ ∂t suppP
x
[0,T ] |t=0 ̸⊂ ∂t supp P̄x

[0,T ] |t=0 and vice-versa

⇒ suppPx
[0,T ] ̸⊂ supp P̄x

[0,T ] and vice-versa

⇒Px
[0,T ] ⊥ P̄x

[0,T ]

Finally, from Proposition 2.8

ep = Ex∼ρ
[
H
[
Px

[0,T ] | P̄
x
[0,T ]

]]
≥ ρ

(
{x ∈ Rd | Px

[0,T ] ⊥ P̄x
[0,T ]}

)
· ∞

≥ ρ
(
{x ∈ Rd : birr(x) ̸∈ Rangeσ(x)}

)︸ ︷︷ ︸
>0

·∞

= +∞.

A.4 Entropy production rate of the linear diffusion process
We require the following Lemma, which can be proved by adjusting the derivation of the relative entropy
between non-degenerate Gaussian distributions, cf. [77, Section 9].

Lemma A.1. On Rd

2H[N (µ0,Σ0) | N (µ1,Σ1)] = tr
(
Σ−

1 Σ0

)
− rankΣ0 + log

(
det∗ Σ1

det∗ Σ0

)
+ (µ1 − µ0)

⊤
Σ−

1 (µ1 − µ0) .

where ·− is the Moore-Penrose pseudo-inverse and det∗ is the pseudo-determinant.

Proof of Lemma 5.1. We insert the definitions of the transition kernels (25) into Lemma A.1.

Ex∼ρ[2H[pε(·, x) | p̄ε(·, x)]]

= Tr(S̄−
ε Sε)− rankσ + log

det∗(S̄ε)

det∗(Sε)

+ Ex∼ρ
[
x⊤(e−εC − e−εB)⊤S̄−

ε (e
−εC − e−εB)x

]
= Tr(S̄−

ε Sε)− rankσ + log
det∗(S̄ε)

det∗(Sε)

+ Tr(Π−1(e−εC − e−εB)⊤S̄−
ε (e

−εC − e−εB))

To obtain the last line, we used the trace trick for computing Gaussian integrals of bilinear forms. The proof
follows by Proposition 2.10.
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