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Abstract— Assistive robots have the potential to support
disabled and elderly people in daily dressing activities. An
intermediate stage of dressing is to manipulate the garment
from a crumpled initial state to an unfolded configuration
that facilitates robust dressing. Applying quasi-static grasping
actions with vision feedback on garment unfolding usually
suffers from occluded grasping points. In this work, we propose
a dynamic manipulation strategy: tracing the garment edge
until the hidden corner is revealed. We introduce a model-
based approach, where a deep visual-tactile predictive model
iteratively learns to perform servoing from raw sensor data.
The predictive model is formalized as Conditional Variational
Autoencoder with contrastive optimization, which jointly learns
underlying visual-tactile latent representations, a latent gar-
ment dynamics model, and future predictions of garment states.
Two cost functions are explored: the visual cost, defined by
garment corner positions, guarantees the gripper to move
towards the corner, while the tactile cost, defined by garment
edge poses, prevents the garment from falling from the gripper.
The experimental results demonstrate the improvement of our
contrastive visual-tactile model predictive control over single
sensing modality and baseline model learning techniques. The
proposed method enables a robot to unfold back-opening
hospital gowns and perform upper-body dressing.

Index Terms— Tactile manipulation, model-based learning,
robot-assisted dressing.

I. INTRODUCTION

Dressing is a challenging basic aspect of the daily life
of elderly people, and people who suffer from impairments.
Studies have reported that of all the activities of daily living,
dressing has shown the highest burden on caregiving staff,
but the lowest use of assistive technologies [1]. Recent works
have made great progress toward using robots to perform
dressing [2-9]. In [10], a full pipeline of dressing bedridden
users has been proposed, which includes an intermediate
stage of unfolding garment to bring it from an uncertain
state into a configuration that facilitates robust dressing.

Most recent research has successfully tackled garment
unfolding manipulation by adopting quasi-static prehensile
interactions (i.e., grasping) [11]. These approaches usually
rely on strong assumptions about the initial stage of the
cloth: grasping points are visible or not severely occluded.
To expose the key visual features of the cloth for downstream
applications, dynamic non-prehensile garment manipulation
(i. e., fling motion [12], air-based blowing policy [13]) has
been explored to maximize the coverage of the cloth, which
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Fig. 1: The robot unfolds the garment by sliding the garment edge
inside the gripper without loosing it until the hidden corner is
revealed. This is achieved by a visual-tactile-based model predictive
controller using contrastive optimization. A RGB-D camera is
mounted on the robot for capturing visual data, while an optical
tactile sensor is attached on the gripper for tactile sensing.

has attained great progress. In this work, we adopt another
alternative strategy commonly used by humans for garment
unfolding, which is to slide the garment edge inside the
gripper without loosing it until the hidden corner is revealed,
as shown in Fig. 1.

Prior studies on garment edge tracing [14-16] usually rely
on only visual feedback, which might suffer from occlusions
created by the garment. Inspired in part by the notion
that a human can use what he/she feels while performing
deformable manipulation by grasping the object between
fingers, recent studies has incorporated tactile sensing in
various applications including cable following [17], clothing
properties recognizing [18] and cloth layer singulation [19].
However, the single tactile sensor modality might not capture
the global information that is useful for the task [20]. In this
paper, we fuse vision and tactile inputs to complete the task
of garment edge tracing for unfolding.

We propose a deep model predictive control (MPC)
method, a general framework for model-based deep rein-
forcement learning, to iteratively perform servoing from raw
camera and tactile sensor inputs. The predictive model is
formalized as Conditional Variational Autoencoder (CVAE)
with contrastive optimization, which jointly learns the un-
derlying visual-tactile latent representations, latent dynamics
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model for deformable garments, and future predictions of
garment states. We first bootstrap the training of the predic-
tive model from demonstration data to guide and accelerate
the agent toward good behaviors. Then, MPC with one-step
predictions is used to trace the garment edge by minimizing
the costs. The predictive model is iteratively updated given
the corrective action and the observed current state. Instead
of operating on raw sensing data, we calculate the cost using
distilled information, including the garment target corner
position from the visual perspective and the edge pose from
the tactile perspective. The distilled information is learned
across offline demonstration data in a supervised network.

We adopt contrastive loss in the predictive model as it
has proven to be capable of efficiently learning latent space
representations in various applications due to its inherent
information maximization objective [21-24]. The contrastive
loss could efficiently map pairs of similar observations to
nearby points, whereas dissimilar pairs are pushed apart
in the embedding space. In our case, the ground truth
future state of the garment and its corresponding predicted
sample are contrastively encoded to match each other for
a better latent dynamics model. Experimental evaluation
empirically demonstrates that the proposed predictive model
with contrastive optimization outperforms standard model-
based learning baselines across garment edge tracing, unfold-
ing, and the consequent dressing tasks. Compared to single
visual-sensory input, we also show that the fusion of visual-
tactile sensing boosts the performance of the controller over a
range of challenging conditions including visual occlusions.

The main contributions can be summarized as follows:
1) A pipeline comprised of garment grasping, unfolding

and dressing is proposed, using tactile sensing for cloth
unfolding with a dynamic sliding-manipulation strategy.

2) An iterative model predictive controller (MPC) with
visual-tactile cost learning is introduced to automate the
pipeline. The experimental results not only prove the im-
portance of multimodality, but also explain the contributions
of each modality (i. e., tactile preventing cloth dropping and
vision data for a mature motion stop).

3) A deep predictive model using contrastive loss in MPC
is proposed to jointly learn underlying latent dynamics model
for deformable garment and predictions of garment states.
The contrastive loss contributes in predicting a representation
that matches the encoding of the true future observation.

II. RELATED WORK

A. Robot-Assisted Dressing

Recent works have made great progress toward addressing
the challenges of using a robot to perform dressing from mul-
tiple perspectives, including dressing different cloth (e. g.,
scarf [2], T-shirt [3]), dressing assistance for various target
users (e. g., healthy users [4], impaired users [6], paralyzed
patients [10]), personalized assistive dressing (e. g., taking
user capabilities [25] and preferences [26] into account), and
learning dressing with a variety of sensing modalities (e. g.,
vision [3], force [6], capacity [5]). While these different

studies have led to promising results of dressing, they usually
simplify the setup of their experiments by manually attaching
the garment to the robot end-effector. [10] has successfully
deployed a complete dressing pipeline, including grasping a
hospital gown hung on a rail and fully unfold the gown.

B. Garment Unfolding

Achieving a fully unfolded garment configuration from
a severely crumpled initial configuration remains a chal-
lenging problem. Most prior works on garment unfolding
have formulated this problem as computing suitable grasping
points on garments, either through extracting handcrafted
features (e. g., wrinkles, edges and corners [27]), or using
deep learning methods (e. g., supervised learning [11, 28],
reinforcement learning [29]). The garments are usually man-
ually strewn across a flat surface, or hold by a robot gripper
in midair using gravity to help expose borders for grasping
points detection. Thus these works might fail to generalize
to severely self-occluded cloth configurations, when the
required key points are not visible.

To reveal the hidden key visual features of the cloth for
downstream applications, dynamic manipulation that com-
bines both prehensile and non-prehensile has been explored
to spread the cloth. Solutions include flinging motions [12],
air-based blowing [13] and swinging [29] to maximize the
garment coverage on the table. Some other research has
contributed to garment unfolding by sliding the garment edge
inside the gripper without loosing it until the hidden corner
is revealed. Early works on this topic either rely on custom
hardware or only use visual feedback [14-16]. A natural
extension is to incorporate tactile modality to imitate human
who can manipulate by feel.

C. Tactile Manipulation

Compared to traditional tactile sensing, optical-based tac-
tile sensors, such as GelSight and DIGIT, have proven to be
an extremely versatile, high-bandwidth, high-spatial resolu-
tion alternative. Some research has exploited these sensors
for system property identification through machine learning
approaches, including cloth texture identification [18] and
liquid classification [30]. Manipulation is another area where
optical-based tactile sensors have received attention. Success-
ful execution of ball-rolling in-hand manipulation task has
been demonstrated with GelSight and DIGIT sensors using
deep tactile model predictive control in [20, 31]. Grasping
stability [32], slip detection [33] and object surface following
[34] have also been improved using tactile sensing. A few
follow ups have extended tactile sensing to deformable object
manipulation such as cloth layer singulation [19].

In this work, we focus on deformable object contour fol-
lowing using tactile sensing. [17] has implemented real-time
cable following using GelSight sensor. [35] further extends
such research by training a reinforcement learning agent with
visual-tactile fusion in simulation for cable following. For
garment edge tracing, tactile sensing has been successfully
deployed by [36] with Linear–Quadratic Regulator controller,
and [37] with offline reinforcement learning. However, only



small square cloths, partially strewn across a flat surface,
have been investigated in these works.

D. Contrastive Learning in Robot Manipulation

Many prior works have demonstrated that contrastive loss
and its variants can efficiently learn latent representations and
achieve generalizability in various domains, including vision
[22], language [23] and audio representations [24]. Recent
works have promisingly utilized contrastive optimization to
boost robot manipulation performance. [38] have focused
on using Contrastive Predictive Coding [24] to learn an
embedding which maps temporally neighboring states close
together. Based on the learned latent representations, robot
forward dynamic models or behaviour policies are further
trained with supervised learning or reinforcement learning.
Some other works [21] jointly encode the representation
and forward dynamic model in the latent space, so that the
predicted and ground truth next state could be mapped close
to each other. In our case, we use contrastive learning to get
better underlying visual-tactile latent representations and the
latent dynamics model, and thus boost the performance of
future predictions of garment and sensor states.

III. VISUAL-TACTILE LEARNING GARMENT UNFOLDING

We formulate our robot control task from tactile-visual
observations as a partially observable Markov decision pro-
cess (POMDP). At each time step t, the robot receives the
observation ot that is represented in the latent space as zt,
takes an action at, and moves to the state zt+1. Compared
to standard model predictive control methods. which use
regression over observation-action-observation tuples with
L2 reconstruction error, we add a contrastive auxiliary loss to
encourage better latent representations and dynamics model.

A. Contrastive Deep Predictive Model

The predictive model consists of the following modules:

Observation Encoder, zt = fe(ot)

Latent Forward Dynamics Model, ẑt+1 = fg(zt,at)

Future Predictor, ôt+1 = fd(ẑt+1)

Robot Behaviour Model, at = argmin
as

c(ôt+1)

Observation Encoder: The predictive model is set to
predict future visual-tactile sensor observations ôt+1 =
{Îv

t+1, Î
q
t+1}, a concatenation of the predicted visual and

tactile images, conditioned on the current observations of
visual image Iv

t and tactile image Iq
t , as well as the action at.

As presented in Fig. 2a, we first train an encoder zt = fe(ot)
to embed current observations to the latent space.

Latent Forward Dynamics Model: A garment forward
dynamics model in the latent space is represented as ẑt+1 =
fg(zt,at) to predict next sensor latent state ẑt+1 based
on the current latent representation and action. We use a
contrastive auxiliary loss for training here. The predicted
ẑt+1 and the ground truth obtained by zt+1 = fe(ot+1)
close are considered as positive pairs. The contrastive loss
results in the positive sample pairs being aligned together but

the negative samples pushed further apart, and thus learns
stronger and more planable latent representations. Thus our
learning objective lies with maximizing mutual information
between the predicted encodings and their respective positive
samples. We use the InfoNCE contrastive loss [24]:

Lc = −E

[
log

s(ẑt+1, zt+1)∑N
k=1 s(ẑt+1, zk)

]
where s is a similarity function s(ẑt+1, zt+1) =
exp(−∥ẑt+1 − zt+1∥)2, (ẑt+1, zk) represent negative pairs,
zk is incorrect latent representation of the next state. The
final contrastive loss is computed across the positive pair
(ẑt+1, zt+1) and N samples of negative pairs (ẑt+1, zk)
within minibatch.

Future Predictor: A decoder is then learned to reconstruct
visual-tactile predictions form the latent space ôt+1 =
fd(ẑt+1) with L2 image reconstruction error Ls(ôt+1,ot+1).

Overall, we jointly learn the encoder zt+1 = fe(ot+1), the
latent garment dynamics model ẑt+1 = fg(zt,at), and the
decoder ôt+1 = fd(ẑt+1) with a hybrid loss of contrastive
loss and L2 Mean Squared Errors with a weighting parameter
λ:

L = Lc + λLs

Robot Behaviour Model: Having the predictive model,
we use the Model Predictive Control (MPC) approach with
one-step prediction, where at each time step we randomly
sample actions as and feed them through the forward model
from the current ot, and choose the best action at that
optimizes the objectives (i. e., the cost functions), as shown
in Fig. 2b.

B. Planning Cost Functions

In this section, we discuss how to design cost functions
for model predictive control. One naive approach is to use
pixel-wise error between a goal image and the predicted
image. However, there is an issue with such approaches: large
objects in the image (i. e., the robot gripper, garment and
shadows) dominate the cost. Common failures occur when
the planner matches the robot and the garment positions with
their positions in the goal images, while ignoring smaller
details of garment edge and its contact with the robot gripper.
This failure motivates us to use more sophisticated mecha-
nisms with distilled information to specify cost functions.

Garment edge pose objective: Recent works have used
Principal Component Analysis (PCA) to estimate the object
pose given the tactile images [17, 31]. Such methods would
be challenging when applied to garment edge as the garment
is thin and covers a large area, unlike the cables [17] or
marbles [31] which create a distinct imprint. Therefore, we
propose to train a CNN network to estimate the pose of
garment edge (i. e., the starting and ending points of the edge)
in a supervised manner. We then use the estimated pixel
positions of the two points to calculate the position and the
orientation of the garment edge, which are parameterized
with respect to the X axis of the tactile sensor with pixel
distance y and angle θ, as shown in Fig. 2c. We define the
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Fig. 2: Framework of iterative deep visual-tactile model predictive control. (a) A predict model is trained using contrastive loss to jointly
learn the visual-tactile latent representations, garment dynamic model and future sensor data prediction. (b) Given the current visual-tactile
observation, the learned deep predictive model and sampled multiple potential actions, model predictive control with one-step predictions
is used to iteratively update the predictive model. The action that attains lowest cost is then applied to the robot. (c) Costs are computed
based on the estimated distilled information (i. e., corner target position from visual data and edge pose from tactile sensory).

cost cq(Î
q
t+1) as a weighted sum of y and θ. The objective is

to minimize the cost, which maintains the edge position in
the center of the tactile sensor, and the orientation of the edge
to be parallel to the X axis. This inclines that the gripper
could slide the garment along the edge without dropping it.

Garment corner position objective: The objective of
garment unfolding task is to slide the edge until the cloth
corner. We use CNN networks to respectively locate the
garment corner pixel position and the current gripper pixel
position on the image at each frame obtained from the vision
sensor. The network generates two likelihood heat maps,
and the corner and gripper are respectively localized as the
pixel with the maximum likelihood in each map. Even in
the scenarios when the corner is occluded by the other parts
of the cloth which mostly happen in the early stage of
edge tracing, we still use the trained network to guess the
approximate corner position. Then the cost cv(Îc

t+1) here is
defined by calculating the distance dgc between the gripper
pixel position and corner pixel position on the predicted
image at each time step, as shown in Fig. 2c. Minimizing
this cost guarantees that the gripper would move towards the
end of garment edge and stop at the appropriate position.

The overall cost is defined by the sum of edge pose
cost and corner position cost c = cq + βcv with weighting
parameter β. The best action at from sampled candidates as

that optimizes this cost is selected at each time step:

at = argmin
as

c(ôt+1)

C. Implementation Details

We first present the structure details of the predictive
model. The custom encoder architecture is a sequence of

2D convolutions kernel sizes [5,5,3,3,3], and filter sizes
[32,64,128,128,256] respectively, with ReLU activation, max
pooling and batch normalization. The output is flattened
and fed into a fully connected layer, followed by a forward
model using a multi-layer perceptron (MLP) with two hidden
layers of size 64, which is also the dimensionality of the
latent representation of visual-tactile sensing. The garment
dynamics module is formulated as two dense layers of size
128. The decoder is a dense layer followed by 6 transposed
convolutions (reversed structure of the encoder) to upscale
back to 256x256 image size. For the InfoNCE contrastive
loss, in each batch we include 31 negative samples with one
positive pair. The images are scaled to the range of [0, 1].
Other components of the neural network include: an Adam
optimizer for 100 epochs, a batch size of 32 and a learning
rate of 0.0001. We use a Densenet-121 network to estimate
the garment corner positions and edge poses.

As discussed in the Section I-Introduction, we first boot-
strap the network training from demonstration data, followed
by MPC with one-step predictions to iteratively update the
predictive model. Demonstration data has been collected
in a kinesthetic teaching manner by human users holding
the robot arm to perform garment edge sliding. A total of
100 trials of sliding (including 7,862 pairs of visual-tactile
images) have been collected. For the iterative MPC, we
collect another 100 trials of sliding (6,936 pairs of visual-
tactile images). The actions are centered and scaled to the
range of [-1, 1], and rescaled back to [-3cm, 3cm] for both x,
y and z coordinates. Both the visual and tactile cost networks
are trained in a supervised manner using the demonstration
data. Five people (ages 25-31, mean: 27, std: 2.21, female: 2),
who are familiar with robots, have been involved in sliding
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Fig. 3: Examples of ground truth and predicted visual-tactile
trajectories of garment edge tracing.

data collection and cost function data annotation.
We implement our method on the Baxter robot with

a RealSense L515 camera mounted for capturing visual
data, and a GelSight Mini tactile sensor attached on the
Robotiq 2F-85 gripper for tactile sensing. The coordinate
transformation between the sensors and the robot has been
determined prior to the experiments. Both the camera and
tactile sensors are operated at 30Hz. We use Robot Operating
System (ROS) to integrate all devices for synchronous data
recording. The network takes an average of 0.11 seconds for
prediction given the tactile-visual information. We use the
latest fusion of observations at each time step for prediction.

IV. EXPERIMENTS AND RESULTS

We conduct three experiments to investigate: 1) how the
visual-tactile fusion outperforms the single sensing modality
(Visual-Tactile Fusion Evaluation); 2) the effects of con-
trastive learning on model predictive control (Model Pre-
dictive Control Evaluation); and 3) the overall performance
of the proposed method on garment unfolding and dressing
compared against multiple experimental baselines (Garment
Unfolding and Dressing Evaluation).

A. Experimental Setup

We have tested the proposed approach on two back-
opening hospital gowns. We compare our work against nine
baselines in total. For baseline 1 to baseline 5, we focus
on comparing various methods for garment edge tracing.
For baseline 6 and 7, we investigate different garment
grasping/manipulation strategies and their influence on the
dressing performance. For baseline 8 and 9, we explore
multiple visual-tactile fusion network structures.
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Fig. 4: Results of the garment edge followed ratio using the
proposed method and baselines. (top) The ratio of the followed
garment edge over actions with 95% confidence interval shaded.
(bottom) The boxplot pictures the final ratio of garment edge
followed. The central dot corresponds to the median value of the
errors, while the sides of the box refer to the first and third quartiles
of the data. The outliers are displayed as individual circles.

• Baseline 1: MPC but only using vision feedback, as
customary in the literature [39].

• Baseline 2: MPC but only using tactile feedback. This
baseline corresponds to the method used in literature [31].

• Baseline 3: Visual-tactile MPC without contrastive
learning. This is equal to jointly learning a classical au-
toencoder together with a garment forward dynamics model
in the latent space. The autoencoder is trained to minimize
the L2-loss between reconstructed and actual image. This
baseline and its variants have been adopted in multiple robot
manipulation research, for example conditional autoencoder
in [20] and sequential VAE in [40].

• Baseline 4: Behaviour cloning. The manipulation policy
is directly learned from visual-tactile pixel space, as in [10].

• Baseline 5: Tactile-based LQR control. [17] has pro-
posed to learn a linear dynamics model that finds the
relationship between a cable state and pulling angle.

• Baseline 6: Using grasping-only actions for garment
unfolding and dressing as in [11, 28].

• Baseline 7: Using a pre-grasp manipulation strategy for
garment unfolding and dressing as in [10].

• Baseline 8: A 3D convolution-based visual-tactile fusion
deep neural network as in [41].

• Baseline 9: A Transformers-based visual-tactile fusion
deep neural network as in [42].

We use three metrics to evaluate performance: 1) the
ratio of garment edge followed with respect to the total
garment edge length; 2) garment unfolding success rate; and
3) dressing success rate. For the methods using MPC, in
the testing phase, the sliding motion stops when the selected
optimized cost is smaller than a threshold. Then the robot
fully closes the gripper to grasp the garment. While for the
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Fig. 5: Pipeline snapshots. (a) The robot first grasps a hospital gown that is naturally hung on a rail. (b) Then the robot grasps a point
on the segmented edge next to the first hand. (c-d) The robot traces the edge until the corner. (e) The robot would then slide the edge to
the other garment corner in the same manner. (f) The robot would pull the hospital gown through the user’s arm to dress the user.

other baselines, the stopping condition is that the predicted
action is smaller than a threshold. To be considered as a
success, the sliding motion has to stop at the appropriate
position near the garment corner with the gripper fully
closed. Other circumstances, including the garment dropping
from the gripper, or a premature stop (too early or too late) of
edge sliding when the corner is not reached, are all regarded
as failures. In the case that the robot reaches the corner but
continues sliding instead of stopping, we reckon that the edge
is fully followed (ratio = 1), but consider it as a failure.
In each trial, we record the gripper positions in the whole
process until the robot stops or the garment drops to calculate
the percentage of edge followed.

B. Visual-Tactile Fusion Evaluation

We first present the ablation studies of using single sensory
input. The robot has grasped the garment around the middle
of the collar prior to the experiment. Then the robot slides
the garment edge to reveal the corner. Fig. 3 visually presents
examples of ground truth and predicted sequences of visual-
tactile data in one trial of garment sliding experiment.

We compare our proposed method against baseline 1 and
2. For each baseline and our proposed method, 50 trials
of garment tracing have been carried out. Fig. 4-top shows
the results of garment edge followed ratio over the first
50 actions during the sliding process with 95% confidence
interval shaded. Note that the sliding process might stop
before or after 50 actions. If it is fewer than 50 actions,
only the data before the sliding stops or the garment drops
is included. Fig. 4-bottom presents the results of the garment
edge followed ratio using the proposed method and baselines.

Three conclusions can be made from Fig. 4:
1) We can see that the robot behaviour changes signif-

icantly depending on the input signal. When both sensing
modalities are used, the robot achieves best performance
(largest median edge followed ratio: 0.89).

2) Baseline 2 (tactile only) achieves a median garment
edge followed ratio of 0.44, which is around 49.4% of the
results from the proposed method. Tactile data might not
capture the global information that is useful for the task. We
observe during the experiments that without vision, the robot
tends to finish the sliding movement prematurely (too early
or too late). This is expected as tactile signals might appear

similar at some certain time steps and do not hold much
information that allows to identify the end of the garment
edge. The tactile cost value could be small during the sliding
process and cause an inappropriate stop. Only the vision
input allows the model to stop and hold the edge at the
appropriate moment.

3) Baseline 1 (vision only) achieves a median garment
edge followed ratio of 0.83. The vision-only baseline per-
forms better than the tactile-only baseline, as the vision input
allows the model to stop and grasp the edge at the appropriate
moment. However, our multi-modal sensory method still
outperforms baseline 1. An explanation is that the garment
edge pose information, which is more certain in the case of
tactile input, is still useful in learning edge tracing to interpret
and take advantage of the local information.

To further evaluate the necessity of tactile sensing, we
investigate the garment edge pose estimation based on vi-
sual inputs and tactile inputs respectively. Similarly to our
proposed tactile-based approach, for the vision-only input,
we manually label the starting and ending points of the edge
on RGB images, and calculate its relevant pose with respect
to the gripper through the gripper poses information obtained
from ROS topics and URDF. Then a CNN network is trained
to estimate the pose of garment edge. We use the labeled data
on the tactile images as ground truth as the tactile sensors
capture clearer local information. The proposed garment edge
pose cost is used as a metric for evaluation. The results show
that pose cost using the vision sensor is 1.32 times larger than
when using the tactile sensor. The results are expected as the
visual feedback might suffer from severe occlusions and low
resolutions for the local pose information.

We can make a clear conclusion from these results that the
vision plays a crucial role in finishing the task at the end of
the garment edge. Tactile sensory is important for the agent
to go further along the garment edge without dropping it,
especially when the garment edge and corner are occluded.

C. Model Predictive Control Evaluation

In this experiment, we investigate how the contrastive
loss improves the performance of model predictive con-
trol with respect to the garment edge tracing task. We
benchmark the proposed method with classical conditional
autoencoder without contrastive loss (baseline 3), behaviour



cloning (baseline 4) and LQR controller (baseline 5). Two
conclusions can be made from this Fig. 4:

1) With our proposed method, the robot achieves best
performance (largest median edge followed ratio).

2) Baseline 3 achieves a median edge followed ratio of
0.85. A classical autoencoder without contrastive learning is
optimized to have pixel-level perfect reconstructions. Thus
features, such as lighting and color, must be encoded in the
latent space even when they are not needed for garment dy-
namics model learning. When used along contrastive loss, the
system adds auxiliary constraints and induces the latent space
to capture information that is maximally useful to predict
future garment states. Thus contrastive learning contributes to
creating a more robust forward dynamics model. This could
also explain the results of baseline 4, 5.

D. Garment Dressing Evaluation

Lastly, we deploy all the above learned control policies
(nine baselines and our proposed method) on the physical
robot to perform dressing. Two human participants (i. e.,
the authors) are involved in the dressing task. Note that no
expertise in robotics is required for this experiment, and the
authors are exempt from the ethics approval. Fig. 5 describes
the framework of our garment unfolding task. The robot
first grasps a hospital gown that is naturally hung on a
rail (Fig. 5a). The grasping point is randomly selected on
the segmented garment collar near the hanging point. The
segmentation is implemented using Mask R-CNN with R-
101-FPN backbone pretrained weights on the COCO dataset,
and finetuned on our custom data. The ground truth of
garment edge is obtained through color. Then the robot
grasps an point on the segmented edge next to the first
hand (Fig. 5b) and trace the edge until the corner is reached
(Fig. 5c-d). The robot would then slide the edge to the other
garment corner (Fig. 5e) and finish the dressing task (Fig. 5f).

The dressing motion is an open-loop process which is
updated based on the real-time tracked user posture through
the RealSense L515 camera mounted on the top of the robot,
using HRNet library [43]. The real-time detected user’s hand,
elbow and shoulder positions are defined as the waypoints
of the dressing trajectories, which are then executed using a
standard proportional-derivative (PD) controller. All interme-
diate stages have to be performed correctly to be considered
as a success. For instance, the dressing will only be executed
on the condition that the unfolding is successful. Note that
most robots lack dexterous grippers to tie the gown on the
back, which would be another complicated robot task.

For each learned policy, 50 trials of garment unfolding
and dressing have been carried out. Note that we only run
experiments of different policies when the robot slides to the
first corner (Fig. 5b-d). For the sliding motion to the second
corner (Fig. 5e), all trials are executed using visual-MPC
only since no tactile sensor is mounted on the second gripper
and the sliding distance is relatively short. Fig. 6 shows our
method outperforms all other baselines. In baseline 6 and
7, both the grasping and pre-grasp manipulation strategies
rely on the assumption that the grasping points are fully or
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Fig. 6: Results of garment unfolding and dressing success rates.

partially visible. In our experiments, we have included some
challenging setups when the grasping point is fully occluded,
which are not considered in the previous work [10, 11, 28].
We also observe some dressing failures. In some cases, after
the successful unfolding, the garment can tangle itself in the
process of the robot approaching the user, which also makes
the sleeve opening not easily accessible for the user.

We observe that similar results have been obtained be-
tween our method and baseline 8 and 9 when using differ-
ent neural network structures for visual-tactile fusion. We
speculate the reason is that our task may not require much
spatial reasoning, which is one advantage of 3D convolution
(baseline 8 [41]) and Transformers in (baseline 9 [42]).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the use of visual-
tactile inputs to complete the garment edge tracing task
for unfolding. The tactile sensing provides rich but easy-to-
interpret imprints for tracking the garment edge pose. Such
local garment pose information are otherwise difficult to be
captured from vision system during continuous manipulation,
as they are usually occluded and expensive to interpret. The
results reveal the contributions of each modality: 1) the
tactile sensing contributes to preventing the garment edge
from dropping out of the gripper; 2) the visual data helps
the robot trace towards the end and stop accurately at the
garment corner. Although adding the tactile sensor increases
the complexity of the system (e. g., extra cost and time
for the software and hardware), no significant difference on
the time cost of data collection and network training has
been observed when compared to the vision-only method.
In the meanwhile, the robot behaviour is indeed boosted
around 15% due to tactile sensing. Future extensions include
controlling gripping force using tactile feedback to maintain
it within a reasonable value for cable sliding.

A deep model predictive controller has been introduced
to learn better garment latent dynamics using contrastive
optimization. It is envisaged that the method could be readily
generalized to held-out garment, given more collected data
containing various RGB images of cloth and tactile textures,
and other knowledge transfer methods.
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[2] A. Colomé, A. Planells, and C. Torras, “A friction-model-based
framework for reinforcement learning of robotic tasks in non-rigid
environments,” in 2015 IEEE international conference on robotics and
automation (ICRA). IEEE, 2015, pp. 5649–5654.

[3] T. Matsubara, D. Shinohara, and M. Kidode, “Reinforcement learning
of a motor skill for wearing a t-shirt using topology coordinates,”
Advanced Robotics, vol. 27, no. 7, pp. 513–524, 2013.

[4] E. Pignat and S. Calinon, “Learning adaptive dressing assistance from
human demonstration,” Robotics and Autonomous Systems, vol. 93,
pp. 61–75, 2017.

[5] Z. Erickson, H. M. Clever, V. Gangaram, G. Turk, C. K. Liu, and
C. C. Kemp, “Multidimensional capacitive sensing for robot-assisted
dressing and bathing,” in 2019 IEEE 16th International Conference
on Rehabilitation Robotics (ICORR). IEEE, 2019, pp. 224–231.

[6] F. Zhang, A. Cully, and Y. Demiris, “Personalized robot-assisted
dressing using user modeling in latent spaces,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3603–3610.

[7] ——, “Probabilistic real-time user posture tracking for personalized
robot-assisted dressing,” IEEE Transactions on Robotics, vol. 35, no. 4,
pp. 873–888, 2019.

[8] F. Zhang and Y. Demiris, “Learning grasping points for garment
manipulation in robot-assisted dressing,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
9114–9120.

[9] N. Koganti, T. Tamei, K. Ikeda, and T. Shibata, “Bayesian nonpara-
metric learning of cloth models for real-time state estimation,” IEEE
Transactions on Robotics, vol. 33, no. 4, pp. 916–931, 2017.

[10] F. Zhang and Y. Demiris, “Learning garment manipulation policies
toward robot-assisted dressing,” Science robotics, vol. 7, no. 65, p.
eabm6010, 2022.

[11] K. Saxena and T. Shibata, “Garment recognition and grasping point
detection for clothing assistance task using deep learning,” in 2019
IEEE/SICE International Symposium on System Integration (SII).
IEEE, 2019, pp. 632–637.

[12] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot
Learning. PMLR, 2022, pp. 24–33.

[13] Z. Xu, C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song,
“Dextairity: Deformable manipulation can be a breeze,” arXiv preprint
arXiv:2203.01197, 2022.

[14] H. Yuba, S. Arnold, and K. Yamazaki, “Unfolding of a rectangular
cloth from unarranged starting shapes by a dual-armed robot with a
mechanism for managing recognition error and uncertainty,” Advanced
Robotics, vol. 31, no. 10, pp. 544–556, 2017.

[15] A. Gabas, Y. Kita, and E. Yoshida, “Dual edge classifier for robust
cloth unfolding,” ROBOMECH Journal, vol. 8, no. 1, pp. 1–12, 2021.

[16] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova,
A. Varava, J. Borras, C. Torras, A. Marino, G. Alenya et al., “Bench-
marking bimanual cloth manipulation,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1111–1118, 2020.

[17] Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson,
“Cable manipulation with a tactile-reactive gripper,” The International
Journal of Robotics Research, vol. 40, no. 12-14, pp. 1385–1401,
2021.

[18] W. Yuan, Y. Mo, S. Wang, and E. H. Adelson, “Active clothing material
perception using tactile sensing and deep learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 4842–4849.

[19] S. Tirumala, T. Weng, D. Seita, O. Kroemer, Z. Temel, and D. Held,
“Learning to singulate layers of cloth using tactile feedback,” arXiv
preprint arXiv:2207.11196, 2022.

[20] S. Tian, F. Ebert, D. Jayaraman, M. Mudigonda, C. Finn, R. Calandra,
and S. Levine, “Manipulation by feel: Touch-based control with deep
predictive models,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 818–824.

[21] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
arXiv preprint arXiv:2003.05436, 2020.

[22] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Interna-
tional conference on machine learning. PMLR, 2020, pp. 1597–1607.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[24] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[25] Y. Gao, H. J. Chang, and Y. Demiris, “Iterative path optimisation for
personalised dressing assistance using vision and force information,”
in 2016 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE, 2016, pp. 4398–4403.
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