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ABSTRACT
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety
of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence
showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies
suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6
and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed
on dissimilar cell types and these cytokines actually have very different roles in biology and pathology.
In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepato-
cytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial
effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells
leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the
context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11
inhibition as therapeutic approaches to treat liver disease.
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Introduction

The interleukin 6 (IL6) family of cytokines are characterized
by their common use of the widely expressed signal-
transducing receptor, glycoprotein 130 (gp130). To date, the
IL6 family has 10 members: IL6, IL11, IL27, oncostatin
M (OSM), leukemia inhibitory factor (LIF), ciliary neuro-
trophic factor (CNTF), cardiotrophin 1 (CT1), cardiotrophin-
like cytokine factor 1 (CLCF1), and two recently added
cytokines, IL35 and IL39.1–4 Specificity for IL6 family member
signaling is established by binding of the individual cytokines
to their cognate, high-affinity ‘alpha’ receptors (i.e. IL6 to
IL6R, IL11 to IL11RA, CNTF to CNTFR), which show cell-
specific expression patterns.5 These cytokine:receptor com-
plexes then bind to gp130 to differentially initiate downstream
signaling pathways, including JAK/STAT or MEK/ERK.

IL6 has been reported to play a pathological role across
a range of conditions including heart failure, inflammatory
diseases (e.g. asthma, rheumatoid arthritis, systemic lupus
erythematosus), and cancers.3,6 In contrast to IL6, IL11 is
little studied and the roles of IL11 in disease, aside from its
effect in cancer, are only now being appreciated (Figure 1).
The IL11 field is also confounded by assumptions that IL11
has cytoprotective, anti-fibrotic, and anti-inflammatory activ-
ity based on previous studies of effects of recombinant human
IL11 (rhIL11) in mouse models of disease.7 Only very
recently, have experiments shown a central role for endogen-
ous and species-matched IL11 in the pathology of fibro-
inflammatory diseases such as inflammatory bowel disease

(IBD), cardiorenal and lung fibrosis, and acute and chronic
liver disease.5,8-11

In this review, we examine the roles IL6 and IL11 in the
liver and discuss the therapeutic opportunities these cytokines
may provide for liver disease. While the older literature pro-
posed these two cytokines have overlapping and redundant
roles in the liver, we discuss recent data that challenges long-
held assumptions.

IL6 and IL11 – different children from the same family

Since the discovery and cloning of IL6 in 1986,12 more than
30 y of extensive research has been carried out on this key
cytokine. Analysis of the published literature shows that IL6 is
the 6th most studied gene of all time.13 The same cannot be
said for IL11, which was first cloned not long after IL6 in
199014 (Figure 1). IL11 remains poorly studied and based on
some recent data, it appears that some of the assumed IL11
functions may have been misinterpreted.7

IL6 consists of 183 amino acids and IL11 is a 178 amino
acid protein but these cytokines share limited (~20%)
sequence homology. Crystal structures show that IL11 is dis-
similar to IL6 and the key gp130 residues required for their
respective hexameric signaling complex formation also
differ.15,16 While these structural and binding properties sug-
gest differences in IL6 and IL11 signaling, perhaps the starkest
example of their dissimilarity is apparent in their receptor
distribution, which verges on mutual exclusivity (Figure 2).
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While IL6R is expressed most highly on immune cells,
IL11RA is expressed in stromal cells, such as fibroblasts and
hepatic stellate cells, and also on parenchymal cells, including
hepatocytes5,10,18,19. Hence, it may be expected that IL6 biol-
ogy relates mostly to immune functions whereas IL11 activity
is more closely linked to the stromal and parenchymal biol-
ogy. Another intriguing dissimilarity is that in healthy
humans IL6 is highly expressed across tissues whereas IL11
is barely detectable (https://gtexportal.org/home/index.html).

These biological pointers suggest distinct roles for IL6 and
IL11 and this is apparent when we look at the phenotypes of
individuals with naturally occurring genetic loss-of-function
(LOF) mutations in the general population. IL6R LOF in
humans leads to recurrent infections, inflammatory derange-
ment, eczema and eosinophilia.20 In contrast, IL11RA LOF is
associated with craniosynostosis, delayed tooth eruption and
joint laxity.21 LOF mutations in gp130, the shared partner of
IL6R and IL11RA, cause a combined phenotype of craniosy-
nostosis and immune dysfunction, consistent with loss of both
IL6 and IL11 signaling.22

In summary, IL6 is an established pro-inflammatory factor
that plays an important role in human inflammatory and
immune diseases (e.g. rheumatoid arthritis and cytokine
storm), where its therapeutic inhibition is established as -
beneficial.23 While we know much less about IL11, it has
emerged as an important pro-fibrotic factor across organs
and, more recently, as a hepatotoxin.5,8-11

IL6R and IL11RA expression in hepatocytes and hepatic
stellate cells

IL6, originally termed B cell growth/stimulatory factor II
(BSF2),24 was initially shown to stimulate acute phase
response from HepG2 cells and rat hepatocytes.25

Subsequent studies showed that IL6 can be produced from
and act on the liver and IL6 is a well-established and impor-
tant determinant of the acute phase response, which involves
secretion of CRP, serum amyloid A, hepcidin, among other
factors from hepatocytes. Thus, it is abundantly clear that IL6
stimulates hepatocytes, directly or indirectly.

The published literature states that hepatocytes express the
IL6R26,27 and this would fit with a direct effect of IL6 on
hepatocytes. However, recent studies of primary human and
mouse hepatocytes have struggled to detect IL6R expression at
the transcriptional, translational or protein levels whereas
gp130 and IL11RA are abundantly detected.28 This suggests
that IL6 could possibly act indirectly on hepatocytes, perhaps
via Kupffer cells, infiltrating immune cells, in trans, via very
low levels of receptor expression or through other yet-to-be-
determined mechanisms. These conflicting data present
a conundrum that requires further study but differences may
reflect, at least in part, the variable characteristics of primary
hepatocytes used in the recent studies as compared to HepG2
or AML12 cell lines, often used in the previous literature.

Another important cell type in the liver is the hepatic
stellate cell (HSC). Activated HSCs are the main drivers of
liver fibrosis and a therapeutic target cell in nonalcoholic
steatohepatitis (NASH)29–31 . In disease, HSCs undergo
a cellular transition to become invasive, collagen secreting
and pro-inflammatory myofibroblasts.32 This phenomenon is
similar to fibroblast-to-myofibroblast transformations in
other organs, which is dependent on IL11 signaling.7

Figure 1. Number of publications for IL6 (gray) or IL11 (black) by year (1985–-
2019). The R package Pubmedwordcloud was used to generate these plots using
case insensitive keywords ‘il6ʹ, ‘il-6ʹ, ‘interleukin-6ʹ, ‘interleukin 6ʹ for IL6 and ‘il-
11ʹ, ‘interleukin-11ʹ and ‘interleukin 11ʹ for IL11.

Figure 2. IL11RA is expressed on different cell types as compared to IL6R. Graphs showing example data for (a) correlated gene expression (COL1A1 vs COL1A2), (b)
unrelated gene expression (COL1A1 vs GAPDH), and (c) IL11RA vs IL6R gene expression, which appears largely exclusive and in disparate cell types. The expression
values are normalized counts obtained from the FANTOM consortium.17
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Profiling of primary human HSCs at the protein level shows
high expression of IL11RA and gp130 but no (or very low)
detectable IL6R.10 As with hepatocytes, HSCs are known to be
IL6-responsive and are a source of IL6 themselves.33,34

However, based on the receptor expression data,10 HSCs do
not appear to be a direct target for IL6, unless direct binding
of IL6 to gp130 in the absence of the alpha receptor was
possible, which has been reported.35,36 In contrast, IL11 can
act directly on HSCs through binding to its cognate IL11RA
receptor and this effect can be either paracrine or autocrine,
as HSCs themselves secrete large amounts of IL11 when
stimulated by disease factors.10

IL6 gain-of-function could be a therapeutic approach for
treating liver disease

There is a large body of data showing that, overall, the effects
on IL6 on liver health – separate to its role in the acute phase
response – are beneficial and that IL6 activity in the liver
promotes cytoprotection, regeneration and is metabolically
advantageous.26,37,38 In addition to cis-signaling, IL6 can also
bind to soluble IL6R (sIL6R), which is generated from mem-
brane-bound IL6R expressing cells by ADAM-mediated pro-
teolysis. In this way, IL6:sIL6R complexes can signal in trans
to activate cells that express gp130 but do not have their own
IL6R. An artificial fusion protein construct of IL6 coupled to
sIL6R, called Hyper-IL6, has been shown to potently activate
cells, including hepatocytes, independent of IL6R.26,39

Given the limited evidence for IL6R expression on primary
human hepatocytes or HSCs, IL6 trans-signaling may be of
specific importance for liver health. Indeed, while IL6 knock-
out mice have impaired liver regeneration following partial
hepatectomy or chronic injury,40,41 only Hyper-IL6 (not IL6)
reverses D-galactosamine-mediated liver toxicity and pro-
motes hepatocyte proliferation and survival.42 A similar phe-
notype was observed in mice subjected to hepatectomy in that
only Hyper-IL6 (but not IL6) accelerated liver regeneration.43

Exacerbation of acute liver damage in mice following block-
ade of trans-signaling using soluble gp130 (sgp130) further
supports a role for IL6 trans signaling in promoting liver
health.44,45 Hence, Hyper-IL6 treatment could potentially be
beneficial for patients following liver damage by boosting
hepatocyte regeneration. Recently, an approach of transplant-
ing Hyper-IL6-pretreated hepatic progenitor cells into the
injured livers of mice was shown to promote liver
regeneration.46 While the weight of experimental data points
to a beneficial effect of IL6 cis and trans signaling in the liver,
hepatic IL6 trans signaling has also been suggested as
maladaptive.26,37,47-49 However, specific therapeutic inhibition
of IL6 trans-signaling using gp130 decoy constructs was found
to have no beneficial effect in two independent studies of
murine NASH.28,50

Overall, the manipulation of IL6 signaling for patient ben-
efit in liver disease is hard to envision in the near future.
While the majority of the data point to IL6 gain-of-function
(in cis or trans) as beneficial, the literature is discordant and
administration of Hyper-IL6-like therapies may have unto-
ward effects. In the clinic, therapies targeting IL6 (sarilumab)
or IL6R (tocilizumab) are approved for inflammatory

conditions (e.g. rheumatoid arthritis, cytokine storm) but
may possibly be associated with hepatocellular injury.51

Outside the liver, clinical trials investigating the therapeutic
potential of IL6 inhibition with therapeutic antibodies or
decoy molecules and of JAK/STAT inhibition with small
molecules are underway for cancer as well as for additional
inflammatory and autoimmune diseases.51

Inhibiting IL11 signaling to treat liver disease

Most of the published literature on IL11 in the liver suggests
that IL11 gain-of-function is beneficial for liver health. For
instance, rhIL11 was shown to be protective in mouse models
of ischemia/reperfusion injury, acetaminophen (APAP)-
induced liver injury (AILI), acute endotoxemia, and
Concanavalin A-induced T cell-mediated hepatotoxicity.52–57

Based on the premise that the beneficial effects of rhIL11 in
mice infer the true biology of IL11, a single clinical trial using
rhIL11 was performed in patients with chronic Hepatitis C.58

However, Widjaja et.al recently showed that species-
matched IL11 is in fact hepatotoxic and induces reactive
oxygen species (ROS)-dependent hepatocyte cell death via
c-Jun N-terminal kinase (JNK) while also inhibiting liver
regeneration.8 The discrepancy of these newer findings with
the published literature, where a high dose of rhIL11 was
injected to rodents, may be explained by the fact that while
rhIL11 binds to mouse IL11RA, it does not activate the same
signaling pathways as endogenous IL11. As such, rhIL11
injection to the mouse inhibits physiologically relevant IL11
signaling (i.e. rhIL11 is an antagonist of murine IL11 signaling
in the mouse). This has a large implication for our under-
standing of IL11 biology in the liver and other organs.

Using a mouse model, Widjaja et al. showed that thera-
peutically targeting IL11 signaling using neutralizing IL11RA
antibodies 10 hours following acetaminophen-induced liver
damage, reverses hepatic failure, promotes liver regeneration
and improves survival. This study also suggested the transla-
tional potential of anti-IL11 therapies as an adjunctive
approach to the current standard of care (N-Acetyl Cysteine
(NAC)) for patients suffering from liver damage due to acet-
aminophen poisoning.

A central importance of IL11 in NASH has also recently
been described.10 In this study, a specific effect of IL11 on
HSC-to-myofibroblast transformation was shown and inhibi-
tion of IL11 signaling genetically or with antibodies reduced
liver fibrosis, inflammation and hepatocyte damage. Most
recently, a role for IL11 in steatohepatitis has also been
observed, inferring a role for pathological IL11 signaling in
hepatocytes themselves in the early stages of metabolic liver
disease.28

Based on data from preclinical models, targeting
Transforming Growth Factor β1 (TGFβ1) as a therapeutic
strategy for treating acute and chronic liver disease has been
proposed.59,60 However, systemic and long-term inhibition of
TGFβ1 provokes inflammation and autoimmune diseases, in
addition to increasing risk of neoplasia and cardiovascular
problems.61,62 While IL11 acts downstream of TGFβ1 (and
many other disease factors) in hepatocytes and HSCs,10 it is
important to recognize that the safety profile for inhibiting
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IL11, rather than TGFβ1 upstream, is promising. Humans
lacking TGFβ1 have severe childhood onset IBD,63 whereas
loss of IL11RA function in humans has mild effect, as dis-
cussed above. Furthermore, long-term treatment of mice with
high dose (10 mg/kg) of anti-IL11 therapy is well tolerated
both in healthy mice and in models of liver disease over many
months.10 Whether or not anti-IL11 therapy translates to the
clinic for treating human liver disease has yet to be tested.

Concluding remarks

Here we reviewed the biology of IL6 as compared to IL11 in
the context of liver health, disease and regeneration. There is
a substantial body of work relating to IL6 function in the liver
and, overall, this shows that IL6 cis and trans signaling to be
beneficial for liver function and regeneration. In contrast, the
literature on IL11 in the liver is limited and the earlier studies
that suggested IL11 is beneficial for the liver were likely
misinterpreted due to a reliance on the use of rhIL11 in
mouse models of liver disease. Thus, paradoxically, inhibiting
IL11 activity, rather than potentiating it, may be as
a therapeutic approach for treating liver disease.

In the case of IL6, while its inhibition is highly effective for
treating inflammatory diseases (Table 1), its activity overall is
beneficial for liver function. Delivering an IL6 gain-of-function
therapeutic (e.g. Hyper-IL6) might be envisaged in liver disease
but this approach could be pro-inflammatory and there remains
the possibility of IL6 trans signaling being hepatotoxic. There
are also potential issues with manufacturing, pharmacokinetics
and immunogenicity for alien protein constructs like Hyper-
IL6. On the other hand, there is strong genetic evidence in
humans and mice of an acceptable safety profile for IL11 inhibi-
tion. Thus, therapeutic antibodies against IL11 or IL11RA offer
an accepted therapeutic approach for targeting liver diseases
with an established mechanism of action in both acute and
chronic liver diseases (Table 1).
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