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Abstract

The focus of my doctoral work has been answering the question: Can lower-dimensional effective gravita-

tional theories be found in a higher-dimensional theory with a non-compact transverse space? To answer

this question this thesis is divided into two parts. First, I explore supergravity solutions on warped

product manifolds and argue that they correspond to solutions of a modified Laplacian. I pay special at-

tention to Type III † solutions, or solutions characterized by the presence of non-constant transverse zero

modes, and emphasize that these are the only higher dimensional solutions corresponding to localized

sources that yield effectively lower-dimensional physics when the transverse space has infinite volume.

Second, I derive the lower dimensional effective field theory about such backgrounds. I discover that

these effective field theories have covert symmetry breaking, spontaneous breaking of gauge symmetry

which only appears at quartic order. I show this explicitly for D = d + 1 scalar electrodynamics with

any boundary condition that corresponds to a non-constant transverse zero mode. The mathematical

prerequisite for both of these conclusions is Sturm–Liouville theory with precise manipulations of Green’s

formula. To support this I derive the fundamental conclusions of Sturm–Liouville theory for a restricted

class of operator, that is the Laplacian, which relaxes some requirements for permissible boundary condi-

tions of Sturm–Liouville theory. The answer to my focal question is: Yes; however, the lower-dimensional

theory has novel corrections which were previously unexplored, and further research is indicated.
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1 Introduction

1.1 Quantum Gravity

Perturbative gravity in d = 1 + 3 dimensions is a unitary, local, and renormalizable theory, pick two.

The study of the renormalization group flow of perturbatively nonrenormalizable theories is the purview

of the asymptotic safety program. Theoretically the flow of operators at low energy need not dictate their

flow at arbitrary energies. Thus theories with irrelevant operators may still flow from a well-defined ultravi-

olet fixed point [95]. This approach relies on the putative existence of non-Gaussian fixed points, which are

manifestly strongly coupled and there is no guarantee that the corrections to this theory define a unitary

theory. However, in principle the asymptotic safety program allows for a circumvention of the requirement

that the renormalization group flow is determined only by the flow of relevant, marginally relevant, and

exactly marginal operators, which might otherwise flummox the pursuit of quantum gravity since.

Contrastingly, gravity with curvature squared corrections is known to be local, perturbatively renor-

malizable, but not unitary [118]. The addition of quartic (in derivatives) covariant terms stabilizes the

renormalization group flow. However, the cost of this is that the theory is equivalent to one with standard

(i.e. two derivative) propagators with negative kinetic signs [119]. The background Minkowski space solution

to these theories may be unstable1, and could decay to some unknown lower-energy state.

Adding infinite derivative corrections to remove singularities from gravitational theories can define a

perturbatively superrenormalizable and unitary theory [90]. However, these corrections break locality as the

value of an analytic function anywhere is precisely known by its infinite derivative expansion at a point.

Perhaps the most well studied nonlocal field theory that includes gravity is string theory.2

In this work we will focus on the low energy limit of string theory, supergravity, and discuss some of its

features as a putative theory of our universe.

1.2 Dimensional Reduction

Famously, one challenge in applying string theory to make physical predictions is that criticality requires we

consider string theory in ten (target-space) dimensions.

A standard method is to require that six of the dimensions of the target space are compact, and usually

small. That is, we consider a solution on a higher-dimensional manifold MH which has, as a sub-manifold,

1It is known that the Minkowski solution can be perturbatively stable in ghostly theories when the ghosts are scalar degrees
of freedom [28]. However, this is not known for spin two degrees of freedom.

2More properly, when we discuss string theory as a nonlocal field theory it might be best to say we are studying string field
theory.
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a maximally-symmetric world-volume Ml with a compact transverse space Mt (MH = Ml ×W Mt)
3. On

these space-times we write our higher-dimensional fields as sums of products of functions on the world-

volume and the transverse space. Under a restricted ansatz at perturbative order, the higher-dimensional

equations of motion of such a theory are identical to lower-dimensional equations of motion. Furthermore,

when we require that our transverse space be a compact group and assume that our higher-dimensional fields

respect not only the maximal symmetry of the world-volume, but also the group symmetry, we find that our

perturbative finding extends to all orders in untruncated fields.

Fundamentally, this is a resurrection of the work of Kaluza and Klein, who first studied a reduction from

R1,4 and R1,3 ×S1, respectively. When the transverse space is a group manifold many essential results from

Fourier analysis applied group theory may be used. We expand our higher-dimensional fields into an infinite

tower of lower-dimensional fields beginning with massless fields which are constant in the transverse space.

The extra degrees of freedom are suppressed by a large mass-squared and controlled by the length scale of

the transverse space (the radius of S1). Mathematically, any combination of the massless (constant) degrees

of freedom cannot interact with a single heavy field. Physically, processes involving only the lightest fields

at energies lower than the mass of the next heaviest particles cannot excite the heavy particles. This is an

example of a so-called consistent truncation.4

Consistent truncations give us an exact embedding of (some of) our lower-dimensional field theories into

our higher-dimensional field theories. Mathematically this is very powerful. We can use the finite number

of ten-dimensional field supergravity theories, each a consistent truncation of the unique eleven-dimensional

supergravity theory, combined with our knowledge of six-dimensional group manifolds to focus our study of

four-dimensional supergravity theories. Similarly we can use the space of theories to predict properties of

possible transverse spaces.

1.3 Localization of Solutions

Consistent truncations, however, are in a sense sparse in the space of possible dimensional reductions, as

group manifolds are in a sense sparse in the space of manifolds. In this work we shall study the effective

dimensional reduction of solutions which correspond to localized5 sources in the higher-dimensional theory.

We will argue that there are two possible origins for such a consistent truncation.

One possibility is to disregard all dependence on the transverse dimension, regardless of whether it is

compact or not. Lower-dimensional sources in such a setting are ‘spokes’ in the higher dimension. Such

consistent truncations, when the transverse space is noncompact, can yield lower-dimensional effective field

3Throughout this text ×W indicates a warped product background.
4Which we shall discuss further in the introductory section on effective field theories.
5In the case of Type I reductions these are notably not localized. This is the essential contrasting point.
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theories with noncompact gauge symmetries (such as those studied in [74]). These models frequently contain

arbitrarily light ‘heavy’ fields, meaning that there is no energy scale at which the lower-dimensional theory

can approximate the full higher-dimensional theory without large corrections.

Alternatively, for some compact spaces, we can instead consider the lower-dimensional effects of a gen-

uinely localized higher-dimensional source. In this case the solution appears lower-dimensional (that is,

approximating the truncated theory) at large separation from the source and higher-dimensional nearby to

the source. These solutions still contain corrections to the consistently truncated theory; however, at some

small (relative to the mass of the heavy particles) energy scale, or long length scale, these corrections are

dominated by the solutions to the lower-dimensional theory. Therefore no matter how sensitive to these

corrections we choose to be,6 there exists a limit in which we cannot detect them. A notable restriction

to these theories, however, is that they will only effectively reproduce massless lower-dimensional solutions

when the transverse space is compact.

The alternative to a consistent truncation is an inconsistent truncation. In this work we shall refer to a

would-be inconsistent truncation to contrast it mathematically with the requirements of a consistent trunca-

tion, but we will study the theory without actually truncating the heavy fields. That is, we study the setting

of an inconsistent truncation, not the act. In such a setting the massless (or lightest) lower-dimensional fields

interact with the heavier lower-dimensional fields so that the heavier fields cannot be set to zero for any but

the background (vacuum) solution. Corrections to such a theory, however, can be quantitatively similar to

the case discussed in the previous paragraph. That is, there can still be an energy scale at which the full

theory is well approximated by a lower-dimensional theory.

A theory can prohibit a consistent truncation for (at least) two reasons. First, because some of the

lightest transverse components of the fields in the higher dimension manifestly excite the heavy fields due

to their tensorial structure. Second, because the transverse dependence of the world-volume light fields is

non-constant in the transverse space. As such, understanding such inconsistent truncations is essential to

understanding many physically interesting transverse spaces, such as reductions on Calabi–Yau manifolds,

or reductions with noncompact transverse spaces.

Further, there are cosmological reasons to look at reductions outside the context of compact transverse

spaces. Some cosmological models require a de Sitter vacuum. Sometimes these vacua can be approximate,

sometimes they must be exact. Such exact vacua cannot be uplifted to ten-dimensional solutions with com-

pact transverse spaces.

Some works relax the assumption of no dependence on the transverse space to attempt to provide an

alternative to compactification. Most notably, Randall and Sundrum studied such an example [114]. In

6Perhaps “no matter how sensitive current experiments are”.
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their example the space is the Poincaré patch of AdS 5 with Neumann boundary conditions at some positive

radius with a reflection, the transverse space is defined by the coordinate of the Poincaré radius. This space,

however, has finite transverse volume. While they cut the transverse space so that the remaining radius had

infinite extent as a variable, upon Z2 reflecting an infinite volume of AdS has been removed. This implies

that their transverse space affords a normalizable constant zero mode, similar to a consistent truncation.

However, their problem also affords transverse modes that give rise to massive lower-dimensional modes

with arbitrarily small mass. Indeed considering only gravitons, their space allows a consistent truncation

mathematically, but not physically.

In this work we will argue that both of these properties, the presence of a normalizable transverse zero

mode and the presence of a mass gap between the said zero mode and the next massive mode, are required

if corrections to the low-energy limit of the theory are to be exponentially and not just polynomially sup-

pressed. That is, for one plus three dimensions where the ‘native’ solution to the Laplace equation is r−1

as a function of world-volume radius (r), corrections to the Randall–Sundrum model are of order r−7 while

corrections to the Kaluza–Klein model are of order r−1 exp(−r) (C.F. [51].

1.4 Effective Field Theories

A correspondence between a subset of solutions of two different field theories can provide an incomplete

comparison between those two theories. For instance, Einstein’s equations in a space with a transverse circle

share some, but not all, solutions to a space with a transverse interval and Neumann–Neumann boundary

conditions. A more systematic method for contrasting theories can be accomplished by studying the full

dynamics of the theory at nonlinear order or at perturbative order, when the higher-dimensional equations

of motion are interpreted as lower-dimensional equations of motion. In the case of Einstein’s equation

mentioned above one would find that these theories are equivalent after considering a (physically) consistent

truncation, but differ when one includes heavy fields.

The study of the dynamics of a theory as opposed to solutions to a theory is the second primary focus

of this work. Our taxonomy can positively prove that a system with a given boundary condition does not

permit any consistent truncation, but it only provides weak evidence that a system permits a consistent

truncation. We further argue that some forms of boundary conditions generically will permit consistent

truncations (Type I reductions). However, including additional degrees of freedom beyond the graviton, or

the graviton’s supermultiplet in the context of a supergravity theory, require additional care.

Effective field theory is a term with an impressive panoply of definitions which all center around the theme

of extracting a theory that represents low-energy predictions out of high-energy dynamics. The example of

4



renormalization group flow, mentioned in passing above, is a primary example in quantum field theory,

however it also has a precise meaning when studying purely classical theories.

Effective field theories are, in this work, the lower-dimensional theory which is observed when studying

physical processes below a certain energy. In the context of a consistent truncation the heavy fields simply

cannot be excited by configurations of light fields in the classical theory. In the context of an inconsistent

truncation the heavy fields are excited, but are integrated out by substituting their (approximately algebraic)

on-shell value into the action or the light field’s equations of motion. This procedure requires inverting the

heavy field’s effective propagator in the lower-dimensional space. As a result the lower-dimensional effective

field theory has higher-derivative corrections, where the order of the derivatives is suppressed by the powers

of the mass of the heavy particles.

In the context of consistent truncations of gauge theories gauge symmetry is maintained within the

untruncated degrees of freedom. That is, since, or perhaps due to the same reason that, the heavy fields

cannot be excited by light fields alone if they are vanishing and do not have any inhomogenous transformation

under some symmetry transformation they cannot be transformed to nonzero values by these transformations.

This is not true in the setting of an inconsistent truncation. Specifically, we will find that the heavy

fields, even when they are unexcited, can receive a nonvanishing contribution at homogenous order from the

transformation of the light fields.

However, one feature of dimensional reductions is that, as the higher-dimensional fields are expanded into

lower-dimensional fields, so are the higher-dimensional gauge parameters expanded into lower-dimensional

gauge parameters. We may therefore resolve this issue of ‘turning on’ the heavy fields by turning them back

off again by using the transformation where they transform inhomogeneously. This has knock on effects at

higher orders for the light fields. This is equivalent to a perturbative redefinition of the light fields and, when

we develop a method to solve this generically, we find it also applies to consistent truncations and can be

used to find standard dimensional reduction ansatz such as the Kaluza–Klein ansatz.

This does not change, however, that the type of effective field theories we study in this work have

spontaneously broken gauge symmetries at higher order. This kind of surreptitious symmetry breaking, we

describe as covert symmetry breaking was first noted in [49], and building towards understanding why this

occurs at the level of effective field theories is the focus of the second half of this work.

1.5 Our Results

To construct solutions on the higher-dimensional theory we require an extension of Fourier analysis to

Sturm–Liouville theory, which is the subject of section 2. Sturm–Liouville theory is an originally physically
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motivated study used for modal simplification of theories in many branches of physics. For example, the time-

independent Schrödinger problem, the heat equation, and (as here) solutions to separable partial differential

equations, are all Sturm–Liouville problems. The central result of Sturm–Liouville theory is in defining the

spectrum of the Sturm–Liouville operator and showing that the eigenvalues of the Sturm–Liouville operator

form a basis for L2 functions on the relevant space. The standard proofs of Sturm–Liouville theory apply to

finite spaces where the spectrum is discrete. We, however, require an understanding of the same results in

the context of semi-infinite spaces; additionally the semi-infinite case can easily be extended to the infinite

case.

Such extensions of Sturm–Liouville theory are well studied in the literature; however, here we summa-

rize how they can all be studied in the same context. Furthermore, we are specifically interested in when

the spectrum contains only positive eigenvalue modes, zero modes and positive eigenvalue modes, negative

modes, etc. We present a summary of the central proofs of Sturm–Liouville theory with special attention

on zero modes with a proof of under which conditions the transverse problem will have negative eigenvalue

modes. Specifically we restrict the space of Sturm–Liouville problems to those defined by Laplace operators,

and, in this context, find the generic solutions to the zero eigenvalue problem. Next we argue how choosing

a specific function to lie within the basis defines boundary conditions that define a basis. Then we show how

simply studying that mode will elucidate whether the transverse spectrum will contain negative eigenvalue

modes.

Following this, in section 3, we study an immediate extension of Sturm–Liouville theory, Green functions.

Manipulations of Green’s formula allow us to find many useful tools which we will apply to both separable

partial differential equations, in our search for solutions, and to effective field theories. We give a manip-

ulation of an augmented Green function that allows us to calculate quantities defined by sums of nonzero

eigenmodes which we will use in later sections to calculate corrections to effective field theories.

We then turn our focus to said field theories directly. In section 4 we give a recount of the argument due

to Bachas and Estes that allows us to apply Sturm–Liouville theory, specifically its implications for separable

partial differential equations, to supergravity. We then augment that argument with a study of Kerr–Schild

perturbations and quantify how corrections to our linearized limit arise in gravitational theory, and argue

how they might be controlled by considering extremal (i.e. supersymmetric) objects without affecting the

leading order of our conclusion. We then present a taxonomy of the solutions to separable partial differential

equations, and then review how this taxonomy applies to supergravity. A summary of these findings is

presented in table 1, in the introduction to section 4.

After presenting our taxonomy we study specific species of such reductions. Specifically, in section 5,

we focus on perturbations about the Salam-Sezgin lift, as three of the four types of solutions exist in this
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background. We first justify our use of the Bachas and Estes equation in the context of traceful operators,

then find solutions of Type II and Type III †, then estimate corrections to Newton’s constant in the context

of Type III † solutions explicitly.

Next we study inconsistent truncations in the context of scalar field theories. In section 6 we introduce

the ‘dimensional reduction square’ and introduce the necessary requirements to integrate over the transverse

space in a higher-dimensional action and find an equivalent lower-dimensional action, the leading components

of which can be seen as an effective field theory. Of essential importance is the nature of a boundary term

at the boundaries of the transverse dimension and the use of a Sturm–Liouville basis which is complete with

regards to the relevant transverse inner product. For the sake of completeness we show how (classically)

different equivalent higher-dimensional boundary terms may be found. We then calculate the corrections

to the lower-dimensional field theory originating from the non-constant zero mode and impossibility of a

consistent truncation, focusing on the effects on the lower-dimensional interaction terms and of integrating

out the massive fields in orders of both light fields and derivatives.

In section 7 we then apply a similar scrutiny to gravitational theories with consistent trunctations, specif-

ically a similar setting to Kaluza–Klein theory, gravity on a transverse interval with Neumann-Neumann

boundary conditions. We investigate the boundary term and discuss its relationship to the Gibbons–

Hawking–York boundary term at both exact and perturbative order. We next diagonalize the (perturbative)

free degrees of freedom of the lower-dimensional effective field theory, then diagonalize the lower-dimensional

effective transformations of these degrees of freedom. Upon doing so we discover that this procedure derives

the Kaluza–Klein ansatz ab initio. We finish the section by presenting the technique for diagonalizing the

lower-dimensional effective transformations which we dub the recursion equation.

After studying effective field theories in the context of inconsistent truncations (specifically due to non-

constant zero modes) and effective field theories in the context of higher-dimensional gauge transformations,

we combine these two issues in section 8. We discover that the gauge symmetry of the lower-dimensional

field theory is spontaneously broken, but only at quartic order (in the action) in interactions. This ‘covert’

symmetry breaking is a generic feature of non-constant zero modes in the dimensional reduction of gauge

theories. However, we focus our study on the easiest case, scalar electrodynamics in one plus three dimen-

sions cross a transverse interval. We calculate the lower-dimensional degrees of freedom at the free level,

present three possible field redefinitions for the scalar sector, calculate the corrections for interacting out

the heavy fields, and show how the field redefinitions and effects of integrating out the heavy fields conspire

with Green function identities to preserve ‘Stueckelberged’ gauge invariance.

We include a brief discussion of covert symmetry breaking in the context of self-interacting field theories

in section 9. We contrast our finding of covert symmetry breaking in scalar electrodynamics, specifically we
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note that the some of the possible cancellation of terms which include the lower-dimensional Stueckelbergs

are not possible in the context of a massless gauge field. We conclude this section with a brief discussion of

how these theories can be related to well-studied Kaluza–Klein by viewing them as different points in the

space of possible boundary conditions.

Finally, we summarize what open questions remain in this work in section 10. Specifically, we describe

how the recursion equation may be solved for Yang–Mills theory with a restricted set of possible gauge

manifolds. We describe how corrections to non-extremal black hole solutions in gravity may be calculated

using a generalization of our technique for integrating out higher-dimensional fields. Lastly we discuss the

physical meanings of covert symmetry breaking in terms of possible corrections to Einstein’s equations, what

a novel seagull coefficient might predict, and how to falsify this possibility.
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2 Sturm–Liouville Theory

This is the first of two sections discussing our exceptional form of Sturm–Liouville theory. We have included

it first, to treat the exceptional limits of certain facts we require that fall outside the standard conditions,

and therefore outside the standard proofs, and second to combine the study of Sturm–Liouville theory on

finite, semi-infinite, and infinite domains, with regularized and non-regularized behavior at the boundaries

of the domain, and with special and general boundary conditions.

In this section we will focus on the Sturm–Liouville theory of a one-dimensional Laplacian. We will focus

on zero modes, complete bases, spectra, and resolutions of the identity. We will not cover Green functions,

overlap integrals, or other applications of Sturm–Liouville theory to separable partial differential equations,

which are the focus of the following section.

One advantage of focusing on Laplacians is that the zero-mode solutions to the theory are much simplified.

We will solve the zero-mode eigenvalue equation for a Laplacian exactly for one solution, and define the other

(non-constant) zero-mode solution by invoking a single anti-derivative, that is, by quadrature.7 Laplace

operators are a specification of the generic Sturm–Liouville problem (see further equation (2.1.12)), but

general enough for this work.

The overall goal of this section is to demonstrate, for our purposes, the equivalence of selecting a zero

mode (or other lightest mode) and selecting boundary conditions, show the generic argument behind Sturm–

Liouville theories, and build up all spectra and bases we will use in later sections. The organization of this

section is as follows.

1. We will introduce the Sturm–Liouville problem, manipulate it into a simplified Laplacian form, define

our inner product space, and clarify the relationship between self-adjointness and boundary terms.

2. We will study the how the finitude of the domain affects the spectrum of the Sturm–Liouville problem.

3. We will discuss the interplay of zero mode solutions, boundary conditions, and negative eigenvalues.

4. We will introduce the main result of Sturm–Liouville theory we require, the resolution of the identity.

5. We will study the relationship between augmented inner products, and derivative bases.

6. Finally, we will discuss explicit bases for several problems.

- We will derive all bases with zero modes for the flat interval.

7Since the Laplacian defines a second-order ordinary differential equation, it (locally) annihilates two linearly independent
functions, or zero modes.
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- We will derive the S-wave bases for Rn.

- We will derive all bases for AdS 5’s transverse dimension which contain zero-modes.

- We will derive two bases for a special type of Pöschl–Teller potential.

2.1 The Sturm–Liouville Problem

2.1.1 The Laplace Eigenvalue Equation

In this work we will use Sturm–Liouville theory to solve separable partial differential equations and to

simplify higher-dimensional equations of motion and actions into lower-dimensional effective equations of

motion and actions. As such we will consider Sturm–Liouville theory where our differential operator is a

Laplacian, that is [100]

∆(·) = ∇2(·) = 1
√
g
∂a
(√
ggab∂b(·)

)
. (2.1.1)

Generically speaking, almost all quantities pertaining to differential operators (and matrix operators) can

be calculated from algorithms beginning with solutions to the eigenvalue equation [69], that is

∆fω = −ω2fω . (2.1.2)

Furthermore, we will only require S-wave expansions of our fields in a single extra coordinate,8 therefore

if we consider equation (2.1.1) acting on a function of only one variable t we have:

∆f(t) = A(t)f ′′(t) +B(t)f ′(t) . (2.1.3)

We want to apply two simplifications to this operator. First, we want to prove this is equivalent to a generic

Sturm–Liouville form [18] (without a homogeneous function) that is we want to define p(t) and w(t) so that

A(t)∂t
2(·) +B(t)∂t(·) =

p(t)

w(t)
∂t

2(·) + p′(t)

w(t)
∂t(·) . (2.1.4)

8Formally we would say that an S-wave is defined at a point by a coordinate patch where one of the coordinates is proper
distance from that point [52] (for example, consider radius for radial or spherical coordinates [102]). However this formality is
mostly unnecessary and for the spacetimes we will discuss in detail the transverse coordinate our solutions depend upon will
be given explicitly.
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Using the equivalence of the coefficients of the relevant powers of ∂t
n to we define two equations.

A(t) =
p(t)

w(t)
, (2.1.5)

B(t) =
p′(t)

w(t)
. (2.1.6)

We solve the quadratic term (equation (2.1.5)) for w(t) in terms of p(t) and A(t) and find

w(t) =
p(t)

A(t)
. (2.1.7)

We solve the linear term for p(t) in terms of B(t) and w(t), then substitute our solution for w(t) into our

solution for p(t) to find

p′(t)

p(t)
=
B(t)

A(t)
. (2.1.8)

From this we solve p(t) and w(t) explicitly

p(t) = exp

(∫ t

0

B(s)

A(s)
ds

)
, (2.1.9)

w(t) =
1

A(t)
exp

(∫ t

0

B(s)

A(s)
ds

)
. (2.1.10)

Therefore our Laplacian can be stated as an ordinary differential operator of the form

∆(·) = 1

w(t)
(∂tp(t)∂t(·)) . (2.1.11)

Here t is our putative coordinate.9

We find that this agrees with the definition of Sturm–Liouville problems

∂t (p(t)∂tgω(t)) + q(t)gω(t) = −ω2w(t)gω(t) , (2.1.12)

given q(t) = 0. Here p(t) and w(t) are nowhere vanishing.10 However, this is still an overgeneralized problem.

To simplify further we define

t = s(z) , (2.1.13)

then

dt = s′(z)dz ⇒ 1

s′(z)
=
dz

dt
. (2.1.14)

9More properly, t is an inverse patch of t : R → D. However, we will simply refer to t or z as the coordinates of our space [91].
10We will discuss domains shortly.
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We may expand the generic Sturm–Liouville problem11

1

s′(z)w(s(z))
∂z

(
p(s(z))

s′(z)
∂zgω(s(z))

)
+
q(s(z))

w(s(z))
gω(s(z)) = −ω2gω(s(z)) . (2.1.15)

Given this, we identify

µ(z) = w(s(z))s′(z) =
p(s(z))

s′(z)
. (2.1.16)

Therefore when q(t) = 0 and if the first-order nonlinear ordinary differential equation

s′(z) =

√
p(s(z))

w(s(z))
, (2.1.17)

has a solution, then the Sturm–Liouville problem may be stated as

1

µ(z)
∂z (µ(z)∂zfω(z)) = −ω2fω(z) , (2.1.18)

where fω(z) = gω(s(z)).

That is, we have proven that we may choose coordinates so that

∆(·) = 1

µ(z)
∂z (µ(z)∂z(·)) = ∂z

2(·) + (∂z log (µ(z))) ∂z(·) . (2.1.19)

Here µ(z) is a real differentiable function with support on all interior points of some domain z ∈ D, µ ∈ C1(D).

µ(z) is sometimes called the weight function; we will call it the measure. It may diverge, or vanish at ∂D

and later we will take two derivatives of its anti-derivative as well as derivatives of 1/µ(z), so it must be

differentiable and nonvanishing on the interior of D.

By the intermediate value theorem, µ(z) is either a positive or negative function; we choose it to be a

positive function. D is some one-dimensional connected manifold with boundary, that is it is either a finite,

semi-infinite, or infinite interval or a circle (S1).12

To summarize, in this work, we will study this form of the Sturm–Liouville problem (with q = 0 and

p = w). Note that we may freely shift or rescale our coordinates as z → mz + c. Given this, we may always

choose z between −1 and 1 or 0 and 1, when our domain is finite, between 0 and ∞ or 1 and ∞, when our

domain is semi-infinite, or between −∞ and ∞, when our domain is infinite. Restating this, our domain is

one of z ∈ (−1, 1) , (0, 1) , (0, ∞) , (1, ∞) , or (−∞, ∞). We will treat all of these cases simultaneously

11We include q(t) ̸= 0 for the sake of anyone who might require such a term.
12S1 affords only a single basis, which is usually described as ‘the’ Fourier basis [61]. We will exclude it until we come to

describe bases for the interval.
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where possible and describe the consequences of solving Sturm–Liouville problems on different domains in

section 2.2.

2.1.2 The Inner Product Space and Boundary Conditions

Our domain will be equipped with an inner product

⟨f , g⟩ =
∫
D
µ(z)f(z)g(z)dz . (2.1.20)

Since D is a one-dimensional connected manifold it has an upper and lower boundary.13 We say z →

u−, l+ for these boundaries, respectively.14 Therefore first-order differential boundary conditions on some

function f are defined by two operators15

a f ′(z) + b f(z)

∣∣∣∣
z→l+

= x , c f ′(z) + d f(z)

∣∣∣∣
z→u−

= y . (2.1.21)

Focusing on the lower boundary, for nonvanishing x, our lower boundary condition is named general or

inhomogeneous. For vanishing x our boundary condition is named special or homogeneous.16 Independently,

for nonvanishing a and b our boundary condition is named mixed or Robin, we will use Robin. When a

vanishes we name our condition Dirichlet, and when b vanishes we name our condition Neumann [65]. The

case of a = 0, b = 1, x = 1, for instance, is a general Dirichlet boundary condition.

Some functions require a more nuanced treatment. For instance, we may only require that our function

be finite at the boundary.

a f ′(z) + b f(z)

∣∣∣∣
z→l+

<∞ . (2.1.22)

In such a case we will say we are requiring normalizability, which will be essential in the context of functions

of semi-infinite or infinite domains. When we want to specify that our conditions require equality to some

finite value, we will call our conditions exact. When we do not state otherwise the reader can assume that

any boundary condition is exact.

Furthermore, if l = 0 and f(z) = log(z), there is no first-order differential operator defined in terms of

finite, constant, not all vanishing, a, b, and x for which

lim
z→0+

(a (∂z log(z)) + b log(z)− x) → 0 . (2.1.23)

13In the case where D = S1 this analysis is still valid, however, the boundary terms vanish for periodic functions per se.
14We do not restrict that u <∞ or l > −∞, which is why we use the arrow notation (→) throughout.
15We use limits throughout, z → l+, for instance, because this is a strong enough requirement for our arguments, and because

f(z) or f ′(z) may both diverge, but we will require specific behavior from their asymptotes.
16The boundary conditions on perturbations of fields are generically special.
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Nevertheless, we will need to define boundary conditions that allow for such singular functions. To handle

such cases we first regularize l, considering the behavior of our function near the boundary z → (l + ϵ)
+

with ϵ ∈ R+. Next, we choose constants so that our boundary condition is well defined

a
1

ϵ
+ b log(ϵ)− x = 0 . (2.1.24)

There are obviously infinitely many choices for a, b, and x. For this example, however, let us choose special

boundary conditions, x = 0, and conditions so that the a and b are both finite for any selection of ϵ. One

such choice is

a = ϵ log(ϵ) , b = −1 , x = 0 . (2.1.25)

Alternatively, we could have stated our initial boundary conditions as

z log(z) f ′(z)− f(z)

∣∣∣∣
z→0+

= 0 . (2.1.26)

This is fundamentally a shorthand, indicating we study the behavior of the regularized Sturm–Liouville

problem in the limit where the parameter of the regularization vanishes. We name such a requirement

a regularized boundary condition. For equation (2.1.26) specifically we have a regularized special Robin

boundary condition.

2.1.3 Self-Adjointness, Boundary Terms, and Orthogonality

A operator A on an inner product space, such as the space of functions on D, is said to be adjoint to another

operator A† when [18]

⟨f , A(g)⟩ =
〈
g , A†(f)

〉
. (2.1.27)

Using integration by parts we find

⟨f , ∆(g)⟩ =
∫
D
µ(z)f(z)

1

µ(z)
∂z (µ(z)∂zg(z)) dz

=

∫
D
µ(z)g(z)

1

µ(z)
∂z (µ(z)∂zf(z)) dz + µ(z) (f(z)∂zg(z)− g(z)∂zf(z))

∣∣∣∣
∂D

= ⟨g , ∆(f)⟩+ µ(z) (f(z) g′(z)− f ′(z) g(z))

∣∣∣∣
∂D

.

(2.1.28)

This teaches us two things. First, the adjoint of an operator is not always defined, since our boundary terms

µ(z) (f(z)∂zg(z)− g(z)∂zf(z))

∣∣∣∣
∂D

may not necessarily vanish. Second, when our Laplacian has an adjoint,

its adjoint will be itself. In this case we say the Laplacian is self-adjoint.
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To ensure that the adjoint of our Laplacian is well-defined we may restrict (the functions in) the in-

ner product space. For instance, if we consider only functions that vanish on the boundaries, that is special

Dirichlet functions, then our boundary terms vanish. However, there is a more direct method for understand-

ing the restriction of our domain. Given any function f(z), can simply define the (generically regularized)

special (generically Robin)17 boundary condition

(µ(z)f(z)∂z − µ(z) (∂zf(z))) g(z)

∣∣∣∣
∂D

= 0 . (2.1.29)

Since our boundary term is antisymmetric in f ↔ g, this operator always annihilates f . The space of

functions on D which obey this boundary condition compose the “self-adjoint domain of ∆ which contains

f(z),” or the space of real functions g on D which obey

⟨g∆ f⟩ = ⟨f ∆ g⟩ . (2.1.30)

Consider any two eigenfunctions of ∆, fα and fβ , which obey the same special boundary conditions

(α2 ̸= β2). Given this we know that they lie within self-adjoint domain, since the boundary terms from

integration by parts vanish. For instance, consider the boundary term at the lower boundary, it is18

µ (fα∂zfβ − fβ∂zfα)

∣∣∣∣
z→l+

= µ

(
fα

(
− b

a
fβ

)
−
(
− b

a
fα

)
fβ

) ∣∣∣∣
z→l+

= 0 . (2.1.31)

We take their inner product19

⟨fα , fβ⟩ = − 1

β2
⟨fα , ∆ fβ⟩ = − 1

β2
⟨fβ , ∆ fα⟩ =

α2

β2
⟨fα fβ⟩ . (2.1.32)

Additionally, we have α2

β2 ̸= 1.20 Therefore the inner product of two distinct eigenvectors in the same basis

is proportional to itself multiplied by non-unitary constant, ergo it must vanish.

In this work we will always consider Sturm–Liouville systems where our eigenvalues are distinct, how-

ever, in the case where the eigenvalues coincide we may freely define, via the Gram-Schmidt process, new

eigenfunctions f̃α and f̃β where their inner product vanishes, and the space of functions spanned by fα and

fβ versus f̃α and f̃β is identical.21

17We specify the behavior for generic µ and f . However, many examples, including usually the first examples given when
defining an explicit basis, such as µ = f = 1, will define special Neumann conditions or some other simplified case. In this text,
however, we require the fully general case.

18If a = 0, then we have a special Dirichlet condition and fα
∣∣
z→l+

vanishes.
19Note, since eigenvalues are unique, we may always choose α = 0, if either eigenvalue vanishes.
20Since α and β are unique, without loss of generality we may allow only α to vanish.
21The case of degenerate eigenvalues is important for D = S1, but does not matter in the rest of the cases we discuss in this

section.
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Our functions may now be normalized so that either

∫
D
µfαfβdz = δαβ , (2.1.33)

where δαβ is the Kroneker delta or ∫
D
µfαfβdz = δ(α2 − β2) , (2.1.34)

where δ(α − β) is a Dirac delta distribution over the spectrum of ∆. The first choice of normalization

is guaranteed when fα and fβ are in L2(µ, D) and the second choice will be derived directly given some

restrictions on µ in section 2.2.2. The essential point is that we also know that if the inner product of

any two eigenfunctions with distinct eigenvalues vanish and they obey the same boundary conditions at one

boundary then they must also obey the same boundary conditions to one another at the opposite boundary.

Furthermore in section 2.2.1 we prove that our self-adjoint domain of functions, which we define by

imposing our boundary conditions, only permits functions with unique eigenvalues under the Laplacian.

That is we must have a sequence such as πn for n ∈ Z≥0, as opposed to 2πn for n ∈ Z≥0 where there are two

eigenfunctions where n > 0, which is the case for S1. The most important immediate consequence of this is

we may have at most one eigenfunction that has support on all of D. This is since any two functions which

vanish nowhere (and are therefore each positive or negative definite) must have nonzero inner product, and

therefore cannot be orthogonal to one another.

2.1.4 Discrete Zeros

An immediate extension of the fact that eigenfunctions with different eigenvalues must have a vanishing

inner product is that we may have at most exactly one zero mode eigenfunction that has support on all of

D. Furthermore we can show that solutions with larger eigenvalue ω0
2 < ω1

2 ‘oscillate faster.’

Stating that a solution oscillates more or less quickly has a colloquial meaning and a precise meaning. A

precise definition of this requires changing variables to Poincaré phase space and applying the comparison

theorem for ODEs and is too long and technical even for this section.22 A more complete discussion is

included in [18]. However, the precise meaning implies the colloquial meaning, which states that faster

oscillating solutions have strictly more zeros within D.23

This colloquial definition is enough to imply if we have a (normalizable) eigenfunction with zero eigenvalue

that has a zero (f0(z0) = 0) then the self-adjoint domain of our Laplacian will have exactly one negative

22Additionally, this section is about showing each step in a novel and efficient way given a only a minor restriction of the
Sturm–Liouville problem, and we have found no such novel or efficient way.

23The use of ‘strictly’ here requires that both eigenvalues belong to solutions that are within the same self-adjoint domain,
the precise meaning makes this clearer.

16



eigenvalue mode (that is −ω2 > 0). We will later argue that any solution with zero eigenvalue can have

at most one zero. Therefore if we have a zero-mode we may have at most one negative eigenvalue mode.

Similarly negative eigenvalue modes may have at most one zero, therefore we may have at most two negative

eigenvalue modes.

In this work we will state all boundary conditions explicitly and will therefore not require the generic

mathematical argument that the eigenfunction corresponding to the nth eigenvalue has exactly n zeroes.

This exact proof is shown in [18].

2.2 Domains and Spectra

Our Laplacian’s eigenvalue equation, (2.1.18), is a second-order linear differential equation. Therefore it has

two linearly independent solutions

fω(z) = Aωζω(z) +Bωξω(z) . (2.2.1)

Applying our (exact) boundary conditions (equation (2.1.21)) we will first restrict the space of nontrivial

solutions from R2 \{(0, 0)}, to R\{0}, by setting either of our boundary conditions. The remaining freedom

in our space of solutions will be set by normalization, which we discuss later. Setting our second (exact)

boundary condition will then restrict the set of allowed eigenvalues.24 How this restriction occurs cannot be

discussed in a domain agnostic way, that is ignoring whether D is finite, semi-infinite, or infinite. We will

divide and conquer each case now.

2.2.1 The Spectra of Finite D

To set our boundary conditions on a finite domain we must calculate the value of the boundary operator on

both ζω and ξω at both boundaries independently. That is, we denote

(a ∂z + b) ζω

∣∣∣∣
z→l+

= Zl
ω , (a ∂z + b) ξω

∣∣∣∣
z→l+

= X l
ω ,

(c ∂z + d) ζω

∣∣∣∣
z→u−

= Zu
ω , (c ∂z + d) ξω

∣∣∣∣
z→u−

= Xu
ω ,

(2.2.2)

when these limits exist. We want to solve

(a ∂z + b) fω

∣∣∣∣
z→l+

= x , (2.2.3)

24Heuristically, this is why the weaker conditions we require of eigenfunctions on infinite and semi-infinte domains allow for
continua of permissible eigenvalues.
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we may simplify our right hand side as

(a ∂z + b) fω

∣∣∣∣
z→l+

= Aω Z
l
ω +BωX

l
ω . (2.2.4)

This is solved by25

Aω = −Bω
X l

ω

Zl
ω

+
x

Zl
ω

. (2.2.5)

Note, this implies that, if an arbitrary eigenfunction with eigenvalue ω obeys the boundary condition,

then it is, up to a scale, the unique eigenfunction which obeys that boundary condition. This because we

have a linear relationship between Aω and Bω and therefore have a unique solution. Restated, we cannot

have degenerate eigenvalues.26 If we then substitute this solution into our upper boundary condition we

have

AωZ
u
ω +BωX

u
ω =

Zu
ω

Zl
ω

x−Bω
Zu
ω

Zl
ω

X l
ω +BωX

u
ω = y . (2.2.6)

Rearranging this we find (
Xu

ω − Zu
ω

Zl
ω

X l
ω

)
Bω = y − Zu

ω

Zl
ω

x . (2.2.7)

When we consider special boundary conditions (x = y = 0) the right hand side of equation (2.2.7)

vanishes and it is only solved when Bω, and by extension Aω, vanishes, or when

Zu
ω

Zl
ω

=
Xu

ω

X l
ω

. (2.2.8)

The above calculation predicated that neither mode (ζω or ξω) obeyed the boundary condition by itself.

Again, we consider special boundary conditions. When one of these constants vanish, say Zl
ω = 0, our lower

boundary condition becomes

BωX
l
ω = 0 . (2.2.9)

Considering the case of nonvanishing X l
ω, our lower boundary condition imposes that Bω = 0. Substituting

this into our upper (again, special) boundary condition we learn

AωZ
u
ω = 0 , (2.2.10)

25The reader may wonder why we are using this combination rather than the Wronskian [18,103]. It is because this is different
from the case of a Wronskian both in simplicity, since we only have two conditions, and generality, since we allow x, y ̸= 0.

26This logic does not imply that eigenvalues of Sturm–Liouville problems which are periodic cannot have degenerate eigen-
values (in fact, they generically do).
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which only has a trivial solution for Zu
ω = 0 .

One of our boundary conditions sets the ratio of our solutions. The other boundary condition imposes

a constraint on the value of Zu
ω and Xu

ω which is not generically solved, and is therefore a constraint our

eigenvalue. We can show that this constraint cannot have two solutions that are perturbatively close together

are disallowed. That is, suppose that we may Taylor expand our solutions in their eigenvalue27

fω+ϵ = fω + ϵFω +O(ϵ2) . (2.2.11)

Since fω and fω+ϵ obey our boundary conditions Fω must also obey our boundary conditions. Applying our

eigenvalue equation we have

∆fω + ϵ∆Fω = − (ω + ϵ)
2
(fω + ϵFω) = −ω2fω − 2ωϵfω − ω2ϵFω +O(ϵ2) . (2.2.12)

We may cancel the leading terms on the left and right hand side. Further, taking the inner product of each

side with fω we have

ϵ ⟨fω , ∆(Fω)⟩ = −2ωϵ ⟨fω , fω⟩ − ω2ϵ ⟨fω , Fω⟩+O(ϵ2) . (2.2.13)

Since both fω and Fω obey the same exact boundary conditions they lie within the same self-adjoint domain

of ∆,28 therefore

ϵ
(
⟨Fω , ∆(fω)⟩+ ω2 ⟨fω , Fω⟩

)
= −2ωϵ ⟨fω , fω⟩+O(ϵ2) . (2.2.14)

The left hand side of this expression vanishes, which makes the entire expression a contradiction except when

ω = 0.29

Ergo either our eigenfunctions which obey the boundary condition are generically not analytic in ω or

every eigenvalue is separated from all other eigenvalues by some minimum value.30 That is, we have shown

that in the case of exact boundary conditions at both boundaries, the spectrum of the Laplacian must be

discrete.

27It is shown that these functions generically are analytic in ω in the Poincaré phase space analysis in [18].
28This is false when we only require normalizability, which we shall leverage to define delta distribution orthonormality.
29Furthermore corrections to our eigenfunctions which do not have a Taylor expansion (e.g. of the form 1

ϵ
) are disallowed

except at ω = 0 since, as is argued in [18], our solutions must also be differentiable with respect to ω for all ω.
30This is not a lower bound on the separation for arbitrary ω, therefore the spectrum may have a limit point, but may not

contain that limit point (except ω = 0).

19



2.2.2 The Spectrum of Semi-Infinite D

In this work, we will only consider µ on semi-infinite domains which obey several simplifying conditions.

First, we will consider only µ that are exponential or subexponential. That is, as z → ∞, we have

µ(z) ∼ exp(λz) , (2.2.15)

µ(z) ≺ exp(z) . (2.2.16)

Here r ∈ R+ and we use the equivalence symbol (∼) and precedes symbol (≺) to imply specific limits. In

the limit z → u+ we say31

f(z) ∼ g(z) ⇔ lim
z→u+

f(z)

g(z)
→ c , (2.2.17)

f(z) ≺ g(z) ⇔ lim
z→u+

f(z)

g(z)
→ 0 . (2.2.18)

Additionally, we only consider µ whose derivative is proportional to µ in the exponential case, and µ whose

derivative is subdominant to µ in the subexponential case

µ(z) ∼ exp(λz) ⇒ ∂zµ(z) ∼ µ(z) , (2.2.19)

µ(z) ≺ exp(z) ⇒ ∂zµ(z) ≺ µ(z) . (2.2.20)

Given such a measure we may simplify our eigenvalue equation for z → ∞; we define

fω(z) =
1√
µ(z)

lω(z) . (2.2.21)

Substituting this into equation (2.1.18) we have

1√
µ(z)

(
∂z

2 +
(∂zµ(z))

2 − 2∂z
2µ(z)

4µ(z)

)
lω(z) = − 1√

µ(z)
ω2lω(z) . (2.2.22)

When µ(z) ∼ exp(λz) we have (
∂z

2 − λ2

4

)
lω ∼ −ω2lω(z) . (2.2.23)

Alternately, when µ(z) ≺ exp(z) we find

∂z
2lω(z) ∼ −ω2lω(z) . (2.2.24)

31We return to the case of an arbitrary limit because these symbols are well-defined even in such domains.
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These two cases may be considered simultaneously, simply allowing λ = 0 in the subexponential case.

Disregarding zero modes (ω2 = 0), as they will be discussed in section 2.3, in either case we have, when

ω2 − 1
4λ

2 < 0,

lω(z) ∼ Aω exp

(
−
√

1

4
λ2 − ω2 z

)
+Bω exp

(√
1

4
λ2 − ω2 z

)
, (2.2.25)

when ω2 − 1
4λ

2 = 0,

lω(z) ∼ Aω +Bωz , (2.2.26)

and, when ω2 − 1
4λ

2 > 0,

lω(z) ∼ Aω cos

(√
ω2 − 1

4
λ2 z

)
+Bω sin

(√
ω2 − 1

4
λ2 z

)
. (2.2.27)

Therefore we have exponentially growing and falling modes with subcritical eigenvalues, that is eigen-

values smaller than our critical value ω2 < 1
4λ

2. We have affine modes with critical eigenvalues, where

ω2 = 1
4λ

2. Also we have oscillating modes with supercritical eigenvalues, that is eigenvalues larger than our

critical value ω2 > 1
4λ

2.

Subcritical eigenvalues follow the same prescription as the discrete spectrum of a finite domain. In our

section discussing zero modes we will note that for orthonormalizablity they will require exact boundary con-

ditions. Furthermore, we note that for a mode to have a finite L2(D) norm, the mode must be exponentially

suppressed as z → ∞, since

∫ ∞

0

µfω
2dz ∼

∫ Λ

0

lω
2dz +

∫ ∞

Λ

(
Aω exp

(
−
√

1

4
λ2 − ω2 z

)
+Bω exp

(√
1

4
λ2 − ω2 z

))2

dz , (2.2.28)

up to corrections for regularizing our integral with a large spacial cutoff Λ. This diverges for any Bω > 0 .

Therefore these modes must obey special Dirichlet boundary conditions as z → ∞. Similarly we learn that

non-zero eigenvalue critical modes may never be normalizable in the semi-infinite case. Therefore non-zero

critical modes cannot be in our spectrum.

For supercritical modes we must impose an exact lower boundary condition and normalizability at the

upper boundary. The lower boundary condition sets the ratio of Aω and Bω. Since any combination of sines

and cosines may be simplified into a single cosine with some shift in the argument [127] we have

lω(z) ∼ Cω cos

(√
ω2 − 1

4
λ2 z + δω

)
. (2.2.29)
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Here δω is some z independent constant, the details of which are unimportant. We consider any two such

solutions and take a regularized inner product

∫ R

l

µ(z)fω(z)fσ(z)dz . (2.2.30)

Inserting ∆ and integrating by parts we find

∫ R

l

µ(z)fω(z)fσ(z)dz = µ(z)
fω(z)∂zfσ(z)− fσ(z)∂zfω(z)

ω2 − σ2

∣∣∣∣
z→R+

. (2.2.31)

Furthermore we may apply fω = 1√
µ lω to simplify

∫ R

l

µ(z)fω(z)fσ(z)dz =
lω(z)∂zlσ(z)− lσ(z)∂zlω(z)

ω2 − σ2

∣∣∣∣
z→R+

. (2.2.32)

Then we may apply our approximate forms to find

∫ R

l

µ(z)fω(z)fσ(z)dz ∼ CωCσ
−σ̃ cos(ω̃z + δω) sin(σ̃z + δσ) + ω̃ cos(σ̃z + δσ) sin(ω̃z + δω)

ω2 − σ2

∣∣∣∣
z→R+

.

(2.2.33)

Here we have used the effective frequency ω̃ =
√
ω2 − 1

4λ
2. Applying trigonometric identities we learn

∫ R

l

µ(z)fω(z)fσ(z)dz ∼
CωCσ

2

(
sin ((ω̃ − σ̃)R+ δω − δσ)

ω − σ
+

sin ((ω̃ + σ)R+ δω + δσ)

ω + σ

)
. (2.2.34)

Therefore the integral of any two of these modes oscillates, and the integral of any individual mode will

never converge. However, if we assume that δω is a function with a Taylor expansion δω+ϵ = δ0 + δ1ω + . . .,

then we may expand σ = ω + ϵ in the small ϵ limit as32

CωCσ

2

sin ((ω̃ − σ̃)R+ δω − δσ)

ω − σ
=
CωCσ

2

sin

((
R√

ω2− 1
4λ

2
+ δ1

)
ϵ+O

(
ϵ2
))

ϵ
. (2.2.35)

We note this is proportional to a sine representation of the Dirac delta distribution [97,121]

δ(x) = lim
R→∞

sin(Rx)

πx
. (2.2.36)

Therefore the inner product of any two supercritical modes which obey the same boundary condition is

proportional to a delta distribution. We will derive precisely how they can be normalized in our explicit

32This is required since our functions are also differentiable in ω.
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cases.

In summary we have found that the spectrum of our Laplacian on a semi-infinite domain may have

subcritical eigenvalue bound states, analogous to the spectrum of a finite domain, and will have supercritical

eigenvalue delta function orthonormalizable bound states. We stress that this is shown generically, and

furthermore, critical states can not be part of the spectrum, with the notable exception of zero modes, which

we have not yet treated.

2.2.3 The Spectrum of Infinite D

Fortunately, for the sake of simplicity, the case of infinite D can largely be treated as an extension of the case

of semi-infinite D. We will consider the same restrictions on µ as z → ±∞ as for z → ∞ for semi-infinite

domain. That is µ may not grow faster than an exponential in either direction.

Next we separate our problem at z = 0 considering either functions that vanish there, or functions whose

derivatives vanish there.33 Consider some arbitrary eigenvalue ω; our functions are

∆ζω(z) = −ω2ζω(z) , ∆ξω(z) = −ω2ξω(z) , (2.2.37)

∂zζω(z)

∣∣∣∣
z=0

= 0 , ξωz (z)

∣∣∣∣
z=0

= 0 . (2.2.38)

A mode is now only part of our discrete spectrum when some linear combination of ζω and ξω is normal-

izable on the entire domain. Similarly, a mode is now part of our continuum only when either it has finite

norm on one half of the domain and is oscillatory on the other half, or is oscillatory on both halves of the

domain. Our asymptotic analysis of our modes for large |z|, equation (2.2.29), is still valid. However, the

asymptotic frequencies for small z ≪ 0 and large z ≫ 0, may differ.

The overlap integral of two modes with arbitrary eigenvalue will therefore be made of a sum of two delta

distributions, one from the z > 0 and z < 0 domain each. However, the sum of two delta distributions can

be simplified to a single delta distribution. That is, suppose we have two functions Aσ(ω) and Bσ(ω) which

have support everywhere except ω = σ, then

∫ ∞

0

(δ (Aσ(ω)) + δ (Bσ(ω))) dω =

∫
I1

δ(x)

|A′
σ(ω)|

dx+

∫
I2

δ(y)

|B′
σ(ω)|

dy . (2.2.39)

33In the case that µ is an even function therefore fω(−z) is also a solution, this is simply the statement that we may take
the even and odd parts of any solution and that will define a solution. When µ is not even this is still possible.
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Here we have substituted x = Aσ(ω) and y = Bσ(ω). The domains of our new integrals (I1 and I2) contain

x = 0 and y = 0, respectively. Given this, we have

∫ ∞

0

(δ (Aσ(ω)) + δ (Bσ(ω))) dω =
1

|A′
σ(σ)|

+
1

|B′
σ(σ)|

. (2.2.40)

Similarly, if we integrate over any domain that does not include ω = σ, the integral of the sum of our

distributions vanish. Therefore we may state

δ (Aσ(ω)) + δ (Bσ(ω)) =

(
1

|A′
σ(σ)|

+
1

|B′
σ(σ)|

)
δ(ω − σ) . (2.2.41)

2.3 Zero-Modes and Negative Eigenvalue-Modes

Let us find the solutions to the zero eigenvalue equation. We have

1

µ
(∂zµ∂zf0(z)) = 0 . (2.3.1)

We may factorize the Laplacian into ‘inside’ and ‘outside’ parts, that is 1
µ∂z and µ∂z. The ‘outside’ operator

has a simple kernel

1

µ
∂zg(z) = 0 ⇒ g(z) = c . (2.3.2)

Since ∆ annihilates f0(z), we have that the ‘inside’ operator action on f0(z) must lie within the kernel of

the ‘outside’ operator. That is

µ∂zf0(z) = c . (2.3.3)

Here c ∈ R is undetermined. Since µ∂z is a linear operator, the scale of c is irrelevant. Therefore, there are

only two cases we need to consider; c = 0, and c = 1. In the former case we have that f0 lies within the

kernel of the ‘inside’ operator; that f0 is constant. In the later case we may use quadrature to find ξ0. We

call these solutions

ζ0(x) = 1 , ξ0(z) = ∂z
−1 1

µ(z)
. (2.3.4)

Generically inverse derivatives are only defined up to a constant. That is, we must be clearer about

definition of ξ0. First, consider the case where µ does not vanish at the lower boundary, that is limz→l+ µ(z) >

0 . In this case we may explicitly define our inverse derivative as

ξ0(z) =

∫ z

l

1

µ(s)
ds . (2.3.5)
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This vanishes as z → l+. Additionally, since µ is a positive function, equation (2.3.5) defines a function

which is positive and monotonically increasing everywhere within D. Similarly, if µ defines a function that

is nonvanishing as z → u−, then, we may define a negative but monotonically increasing ξ0. In these two

cases ξ0 will vanish at the one of the boundaries by construction.

When µ vanishes on the boundary faster than µ ∼ ρ, ξ0 will diverge at that boundary. Specifically ξ0 will

diverge to negative infinity when µ vanishes at the lower boundary and to positive infinity when µ diverges

at the lower boundary. For example, consider µ(z) = z2 for z ∈ (0,∞), then, since z2 vanishes at the lower

boundary, but diverges at the upper boundary, we should choose

ξ0(z) = −
∫ ∞

z

1

s2
ds = −1

z
. (2.3.6)

If µ vanishes at both boundaries, ξ0(z) may diverge to negative infinity at the lower boundary and positive

infinity at the upper boundary, and therefore must vanish at some interior point. In this case we can choose

any internal point, say, s = 0 in the case of a finite or infinite interval and s = 1 in the case of a semi-infinite

interval and uniquely define ξ0. Note, no possible measure can create a zero mode that vanishes on both

boundaries, since f0 is monotonically increasing.

With these solutions explicitly defined we write the most general f0 as

f0(z) = a+ b ξ0(z) . (2.3.7)

With this we define the generically regularized special boundary condition

µ(z)f0(z)g
′(z)− bg(z)

∣∣∣∣
z→l+, u−

= 0 . (2.3.8)

The eigenfunctions in the same basis as ζ0(z) and ξ0(z) we call ζω(z) and ξω(z), respectively. We note,

since selecting one function in the self-adjoint domain of ∆ is equivalent to selecting boundary conditions,

we now have a putative one parameter family of boundary conditions that contain a zero mode, given by

the ratio of a
b .

However, normalizability is not universally satisfied by these states. Essentially, the constant zero mode

may only be normalizable when our space has finite volume. That is we may choose a so that

∫
D
µ(z) (aζ0(z))

2
dz = 1 , (2.3.9)
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only when the integral of µ(z) over D is finite, or

∫
D
µ(z)dz <∞ . (2.3.10)

Therefore we must consider the cases of finite and infinite volume separately. Similarly, ξ0(z) may have finite

or infinite norm. There are, therefore, four possibilities:

• ζ0 and ξ0 normalizable,

• ζ0 normalizable and ξ0 nonnormalizable,

• ζ0 nonnormalizable and ξ0 normalizable,

• ζ0 and ξ0 nonnormalizable.

All four cases can be seen with different selections of subdomains of a transverse AdSN (sections 2.6.3–2.6.6).

We pause momentarily to investigate the case of two normalizable zero modes. Even when both ζ0 and

ξ0 are normalizable some selections of the ratio a
b will define a zero-mode that vanishes somewhere on D,

therefore define spectra that contain negative eigenvalue modes, as explained in section 2.1.4. By construction

ξ0 vanishes on one boundary and is either positive or negative. For illustration, consider the case where it

vanishes at the lower boundary and is positive. In this case, if inf(ξ0) > −a
b > 0, then we have z0 where

f0(z0) = 0, given by

ξ0(z0) = − b

a
. (2.3.11)

However, outside this interval, a
b ∈ (inf(ξ0) , 0), there are two interesting critical points, which are

a
b → 0+ and a

b → ∞. In these two limits we have a zero mode which is constant, and a zero mode which

vanishes at the lower boundary, respectively. All choices of ratio except a
b → ∞, correspond to non-constant

zero modes. However, for all examples where we have calculated, the ‘pure ξ0’ selection,
a
b → 0+, has the

maximum gap between the zero mode and the next eigenvalue.34 We shall show this explicitly for the flat

transverse interval in section 2.6.1.

2.4 Resolving the Identity and Orthonormalization

The primary reason we study Sturm–Liouville theory is the ‘resolution of the identity.’ That is, if we have

a complete set of eigenfunctions {fω} obeying some boundary condition, then these modes form a basis for

34Given a spectrum that does not contain any negative eigenvalue modes.
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L2(µ, D) functions obeying that boundary condition. Or, for any f in L2(µ, D) we have nω so that

f(z) = nωfω(z) . (2.4.1)

Here we sum over the repeated ‘index’ ω. Since f(z) has finite norm, and, as we have already argued, our

fω are orthonormalizable, for a complete orthonormalized set {fω}

fω(z)fω(s)

⟨fω , fω⟩
=
δ(z − s)

µ(z)
. (2.4.2)

Restated, the sum over our orthonormalized eigenmodes form the identity with respect to our inner prod-

uct ⟨· ·⟩ . However, as stated before, normalization has different meanings in the context of discrete modes

and continuum modes. Zero modes and discrete modes must have finite norm to contribute to this sum.

Continuum modes must be normalized so that the delta distribution over their eigenvalues is orthonormal-

ized with respect to ω, not the effective frequency ω̃ =
√
ω2 − 1

4λ
2 .

Showing that a complete set of eigenvalues forms a complete basis is a logical necessity for our work. How-

ever, again, we have found no more efficient method of showing this than an appeal to Poincaré coordinates,

therefore we refer the reader to [18] for further inspection.

2.5 Augmented Inner Products and Augmented Derivative Bases

We will also need to study a very closely related inner product space to L2(µ, D). Specifically, if we consider

any special boundary conditions defined as in equation (2.1.21), we have an augmented inner product

(f , g) =

∫
D
µ(z)f(z)g(z)dz +

c

d
µ(z)f(z)g(z)

∣∣∣∣
z→u+

− a

b
µ(z)f(z)g(z)

∣∣∣∣
z→l−

. (2.5.1)

Given any two basis elements fω and fσ which obey our boundary condition we have

(f ′ω , f
′
σ) =

∫
D
µ(z)f ′ω(z)f

′
σ(z)dz +

c

d
µ(z)f ′ω(z)f

′
σ(z)

∣∣∣∣
z→u+

− a

b
µ(z)f ′ω(z)f

′
σ(z)

∣∣∣∣
z→l−

= −
∫
D
µ(z)fω(z)∆fσ(z)dz + µ(z)

(
fω(z) +

c

d
∂zfω(z)

)
f ′σ(z)

∣∣∣∣
z→u+

− µ(z)
(
fω(z) +

a

b
∂zfω(z)

)
f ′σ(z)

∣∣∣∣
z→l−

= −⟨fω , ∆fσ⟩ = σ2 ⟨fω , fσ⟩ .
(2.5.2)

Therefore our derivative basis inherits orthogonality from the L2(µ, D) inner product under our augmented

inner product. This has a notable sub-case, when we have a zero mode.

When we have a non-constant zero mode in the basis defined by our boundary conditions the augmented
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inner product of f ′0 with itself vanishes

(f ′0 , f
′
0) = −⟨f0 , ∆f0⟩ = 0 . (2.5.3)

In this case our augmented inner product may be simplified to read

(f , g) =

∫
D
µ(z)f(z)g(z)dz + b (µ(z)f0(z)) f(z)g(z)

∣∣∣∣z→u+

z→l−
, (2.5.4)

where f ′0(z) =
b

µ(z) . We will also want to find an additional function, which we name ζ. (Note, it is without

any subscripts or superscripts.) ζ obeys

1

µ(z)
∂z (µ(z)ζ(z)) = f0(z) . (2.5.5)

This mode is orthogonal under our augmented product to the derivative of any non zero mode, since

(f ′ω , ζ) = −
〈
fω ,

1

µ
∂z (µζ)

〉
= −⟨fω , f0⟩ = 0 . (2.5.6)

Furthermore, since the solution to the homogeneous part of (2.5.5) is 1
µ , given an arbitrary solution ζ we

may define ζ = ζ + A
µ which still solves (2.5.5). In the case where each of these quantities is finite we have

(ζ , ζ) =

∫
D
µ(z)ζ(z)2dz+2A

∫
D
ζ(z)+A2

∫
D

1

µ(z)
dz+b

(
µ(z)f0(z)ζ(z)

2 + 2Af0ζ(z) +A2 f0(z)

µ(z)

) ∣∣∣∣z→u−

z→l+
= 0 .

(2.5.7)

Requiring this vanishes generically defines a quadratic equation for A. Therefore we may choose ζ so

that its augmented inner product with itself vanishes. Given this we have

(f0 , f0) = 0 , (ζ , ζ) = 0 (ζ , f0) = 2Z . (2.5.8)

Here our newly defined constant generically does not vanish; 2Z ̸= 0. Applying the Gram–Schmidt process

to f0 and ζ is tantamount to diagonalizing the matrix

M =

 0 2Z

2Z 0

 . (2.5.9)
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This will always generate a negative norm state.35

The relationship between these two bases is best analogized with the relationship between lightcone

coordinates and Minkowski coordinates in a Minkowski space time [133]. In this work we will always select

f0 and ζ coordinates when they are available to us.

We select our orthogonalized basis as

α(z) = A1ξ
′
0(z) +A2ζ(z) , β(z) = B1ξ

′
0(z) +B2ζ(z) . (2.5.10)

Here we would like

(α, α) = −1 , (β, β) = 1 , (α, β) = 0 . (2.5.11)

The equivalent of equation (2.4.2) is

− α(z)α(s) + β(z)β(s)− ξ′ω(z)ξ
′
ω(s) =

δ̂(z, s)

µ(z)
. (2.5.12)

Here ω > 0 is all positive eigenvalues and we have invoked a modified delta distribution which obeys

(
δ̂

µ
, f

)
= f , (2.5.13)

as opposed to the standard Dirac delta distribution which obeys

〈
δ

µ
, f

〉
= f . (2.5.14)

2.6 Explicit Bases for Common Laplacians

Let us apply these techniques to several examples of physical interest.

To reiterate how we accomplish this, recall that, in section 2.1.3, we argued that selecting a single mode

required to be within a basis is equivalent to selecting boundary conditions. Similarly in section 2.3 we give

a methodology for finding zero modes. Therefore if we find the space of zero modes and specify that we want

to study the problem containing that zero mode, that is sufficient information to find the spectrum of the

problem. Our algorithm for studying these spaces is to find the generic zero mode solutions and find their

L2(µ,D) norm (specifically when it is finite). The spaces at question may either have one parameter family

of normalizable zero modes, a unique normalizable zero mode, or no zero modes.

35The sign of Z is irrelevant. What is actually important in this case is not that the right hand side of equation (2.5.5) be
f0, but that it is proportional to f0. Therefore we rescale the right hand side of equation (2.5.5) so that Z = 1.
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When we have a one parameter family of zero modes, some of those zero modes will have a zero on the

interior of D. In this case we will compare the set or parameters (boundary conditions) that allow for such a

zero mode and compare these parameters with the eigenvalue equation found by applying equation (2.2.8).

We will confirm that our space contains a single negative eigenvalue mode precisely when the zero mode has

a zero on the interior of D. We will then study the value of the first positive eigenvalue and argue that it

is maximized for the boundary conditions that select a ‘pure ξ0’ zero mode. On spaces that do not contain

any zero mode we will simply give the spectrum for a Neumann basis, for illustration.

Specifically, in this section we will study:

1. The interval D = (−1, 1) with µ = 1, which has a one-parameter family of zero modes.

2. S-waves on Rn which have no zero modes.

3. AdSN where the only dependence is on the Poincaré basis, which has the same Laplacian as36 Rn .

- We will study the whole of AdSN which has no zero modes.

- We will study an interval of AdSN which37 has a one parameter family of zero modes.

- We will study the ‘upper half’ of AdSN which has a constant zero mode.

- We will study the ‘lower half’ of AdSN which has a non-constant zero mode.

4. We will study the Pöschl–Teller potential which has a non-constant zero mode.

2.6.1 All Bases with Zero Modes for the Flat Interval

Let’s begin with the simplest case. Take the measure µ(z) = 1, with Laplacian ∆ = ∂z
2, and the domain

D = (−1, 1). The generic zero mode is

f0(z) = a+ b (z + 1) . (2.6.1)

Here we have used the definition ξ0(z) =
∫ z

−1
1 ds . We normalize this mode by requiring

2a2 + 4ab+
8

3
b2 = 1 . (2.6.2)

Our zero mode is zero at precisely the endpoint when

f0(−1) = a = 0 , f0(1) = a+ 2b = 0 . (2.6.3)

36with particular negative values of n
37All domains allow for a subdomain which have one parameter family of zero modes.
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Taking our first condition we find a = 0 and b = ±
√
3/8. Taking our second condition we find a =

√
3/2

and b = −
√
3/8 or a = −

√
3/2 and b =

√
3/8. If we imagine traveling along our configuration space from

a = 0 and b =
√

3/8 in the direction of increasing a we have a nonvanishing zero mode, and therefore zero is

the smallest eigenvalue in our spectrum. Our starting point, when a = 0 and b =
√
3/8 is ‘pure ξ0’. When

b = 0 and a =
√
1/2 our solution is ‘pure ζ0’, which is the symmetric solution (that is, symmetric under

exchange of z → −z). Beyond the ‘pure ζ0’ point, all zero modes are just the reflection of a zero mode we

have already seen during our travel from a = 0 to b = 0.

Similarly, if we travel from a = 0 to b =
√
3/8 in the direction of decreasing a, we find vanishing zero

modes. When a = −b =
√

3/2 we find that f0(z) is antisymmetric, f0(z) ∝ z. Therefore to study the entire

space we only need to consider possibilities between a = −b and b = 0.

Figure 1: The configuration space of normalized zero modes on the interval.

In figure (1) we have a plotted on the x-axis and b on the y-axis and highlighted the values for which we

have a nonvanishing zero mode (blue), where it is the lowest eigenvalue, and where we have a vanishing zero

mode (red) where the spectrum contains a negative eigenvalue. The wedge of configuration space between

a = −b and a = 0 represents all states, up to exchange of z → −z and, independently f0(z) → −f0(z), which

define problems with identical spectra.
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The generic negative eigenvalue modes are

fω(z) = Aω cosh(ωz) +Bω sinh(ωz) , (2.6.4)

normalized by requiring

Aω
2 −Bω

2 +
cosh(ω) sinh(ω)

ω

(
Aω

2 +Bω
2
)
= 1 , (2.6.5)

and the generic positive eigenvalue modes are

fω(z) = Aω cos(ωz) +Bω sin(ωz) , (2.6.6)

normalized by requiring

Aω
2 +Bω

2 +
cos(ω) sin(ω)

ω

(
Aω

2 −Bω
2
)
= 1 . (2.6.7)

The boundary conditions that allow for a zero mode are

(
f0(−1)

f ′0(−1)
∂z − 1

)
f(z)

∣∣∣∣
z=−1

= 0 ,

(
f0(1)

f ′0(1)
∂z − 1

)
f(z)

∣∣∣∣
z=1

= 0 , (2.6.8)

or, in terms of a and b

(a
b
∂z − 1

)
f(z)

∣∣∣∣
z=−1

= 0 ,

(
a+ 2b

b
∂z − 1

)
f(z)

∣∣∣∣
z=1

= 0 . (2.6.9)

This condition breaks down when b = 0, or for the symmetric zero mode. This is consistent with Neumann-

Neumann boundary conditions and we may treat this case as a limit of the general case.

Applying our lower boundary condition to our negative and positive eigenvalue modes we learn

a

b
(Aωω sinh(−ω) +Bωω cosh(−ω))− (Aω cosh(−ω) +Bω sinh(−ω)) = 0 , (2.6.10)

a

b
(−Aωω sin(−ω) +Bωω cos(−ω))− (Aω cos(−ω) +Bω sin(−ω)) = 0 , (2.6.11)

respectively. We may simplify these conditions as

Aω

Bω
=
aω cosh(ω) + b sinh(ω)

aω sinh(ω) + b cosh(ω)
, (2.6.12)

Aω

Bω
= −aω cos(ω) + b sin(ω)

aω sin(ω)− b cos(ω)
. (2.6.13)
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The same manipulation at our upper boundary gives us

Aω

Bω
= − (a+ 2b)ω cosh(ω)− b sinh(ω)

(a+ 2b)ω sinh(ω)− b cosh(ω)
, (2.6.14)

Aω

Bω
=

(a+ 2b)ω cos(ω)− b sin(ω)

(a+ 2b)ω sin(ω) + b cos(ω)
. (2.6.15)

Combining these we have the condition on our eigenvalues

aω cosh(ω) + b sinh(ω)

aω sinh(ω) + b cosh(ω)
= − (a+ 2b)ω cosh(ω)− b sinh(ω)

(a+ 2b)ω sinh(ω)− b cosh(ω)
, (2.6.16)

aω cos(ω) + b sin(ω)

b cos(ω)− aω sin(ω)
=

(a+ 2b)ω cos(ω)− b sin(ω)

(a+ 2b)ω sin(ω) + b cos(ω)
. (2.6.17)

The condition on our negative eigenvalues is defined by a hyperbolic function and on our positive eigen-

values by an oscillating function. We find it particularly aesthetic when we set our zero mode normalization

condition (equation (2.6.2)) and we study our positive eigenvalue equation as the condition fa(x) = 0 (this

is illustrated in figure (3))

fa(x) = 6(−1 + a(−a+
√
6− 3a2))ω cos(2ω) + (3 + a(−a+

√
6− 3a2)(−3 + 4ω2)) sin(2ω) . (2.6.18)

Our negative eigenvalue equation may have one or no solutions, and our positive eigenvalue equation will

always have infinitely many solutions [57]. Of particular note are the critical points where our negative

eigenvalue condition becomes, for a = −b, b = 0, and a = 0 respectively

(1 + ω2) tanh(2ω) = 2ω . (2.6.19)

ω2 sinh(2ω) = 0 , (2.6.20)

tanh(2ω) = 2ω . (2.6.21)

The former of these equations has solution ω ∼= 1.9968 and the latter two have no positive solutions. For

a = −b, b = 0, and a = 0 our positive eigenvalue condition becomes

(1− ω2) tan(2ω) = 2ω . (2.6.22)

ω2 sin(2ω) = 0 , (2.6.23)
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tan(2ω) = 2ω . (2.6.24)

In the case of pure ζ0 our solutions are the roots of the sine function; ω = πn. In the case of pure ξ0 we

cannot generically give a closed solution to this transcendental equation [23].

We can numerically solve equation (2.6.16) in the region of our configuration space where we have a

vanishing zero mode (the red region in figure (1)).

Figure 2: A numeric estimate of the negative eigenvalue.

In figure (2) we have a plotted our numeric estimate of the eigenvalue along a path from a = 0 and b = 1

to a = −
√
3/2 and b =

√
3/8. It achieves a minimum at a = −b which is at 1 in the figure. We estimate

this to have a value of ω ∼= 1.9968. An important note is that the negative eigenvalue becomes arbitrarily

large as we approach a configuration with a nonvanishing zero mode.

Additionally, the maximum gap between the eigenvalue of our zero mode and the next positive mode

is achieved when a = −b. The maximum gap for modes with no negative eigenvalue modes is achieved by

‘pure ξ0’, when our zero mode vanishes on one boundary.
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Figure 3: The spectrum of the Laplacian on a flat interval for different boundary conditions.

2.6.2 S-Wave Bases for Rn

The purpose of this section is mainly to contrast the case of two normalizable zero modes against the case of

no normalizable zero modes, to demonstrate precisely how these modes may be normalized, and to establish

explicit bases of spaces with only positive eigenvalues so that we may exhibit how to calculate a Green

function using integrals over special functions in the next section (Section 3). To wit, this section will be

much briefer in analysis, and focus entirely on the normalization of these modes.

The radial metric for Rn is

dsn
2 = dz2 + z2dΩn−1

2 , (2.6.25)

where dΩn−1
2 is the metric for the (n − 1)-dimensional round sphere Sn−1. The associated measure (after

integrating over the angular coordinates) is

Vn−1µ(z) =

∫
Sn−1

√
detg dΩn−1 = Vn−1 z

n−1 = Vα z
α . (2.6.26)
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Here Vn−1 is the surface area of the unit Sn−2 sphere [20]. Our domain is semi-infinite, D = (0, ∞), and

the associated (angle independent) Laplacian is

∆(·) = ∂z
2(·) + α

z
∂z(·) . (2.6.27)

The generic zero mode solution is

f0(z) = a− b
z1−α

α− 1
. (2.6.28)

There exist no α, a, and b, for which the integral
∫∞
0
µf0

2dz converges [61], therefore the spectrum of Rn

never contains a zero mode.38 The spectrum does always contain modes with arbitrarily small eigenvalue,

but not with zero eigenvalue. Our generic positive eigenvalue modes are

fω(z) = Aωz
1−α
2 Jα−1

2
(ωz) +Bωz

1−α
2 Yα−1

2
(ωz) . (2.6.29)

Here Jσ and Yσ are Bessel functions of the first and second type [18,61], respectively, of order σ. If we select

that our solutions are regular as z → 0+ then our solutions become purely Bessel functions of the first type,

or Bω = 0. Next, if we substitute the asymptotic value of these Bessel functions we find

fω(z) = Aωz
1−α
2

(√
2

πωz
cos
(
ωz − απ

4

)
+O

(
1

z−1

))
. (2.6.30)

This agrees with equation (2.2.29) with Cω =
√

2
VαπωAω, r = 0, and δω = −απ

4 . For normalization we

require Cω = 2; therefore we select

Aω =
√
2Vαπω . (2.6.31)

2.6.3 AdSN

In the Poincaré coordinate patch the metric on AdSN is [12, 107]

dsADSN

2 =
1

z2
(
−dt2 + dsN−2

2 + dz2
)
. (2.6.32)

Here t is a timelike coordinate, dsN−2 is the (N − 2)-dimensional Euclidean metric, and z ∈ (0,∞) is the

Poincaré radius. If we ignore dependence on t and x momentarily we have µ = 1
zN and

∆(·) = ∂z
2(·)− N

z
∂z(·) . (2.6.33)

38We may always restrict to a subset of our space such as an annalus, a disc, or an annalus with infinite outer radius of Rn,
but the entire space allows for no normalizable zero mode.
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We may analogize this to the radius dependent part of Rn with the dimension N = −α = −n + 1 . Thus

N -dimensional anti de Sitter space’s Laplacian agrees with the (−n + 1)-dimensional Euclidean Laplacian

(compare equations (2.6.27) and (2.6.33). The ‘negative’ dimension does not affect the non-normalizability

of zero modes, or the behaviour of the spectrum, therefore this problem maps exactly onto the problem

described in 2.6.2.

2.6.4 An Interval of AdSN

This is a generalization of the problem studied in [113]. We may force our spectrum to contain a zero mode

if we consider only a subset of AdSN where z ∈ (A,B) with A,B ∈ R+, A < B, then our generic zero mode

becomes normalizable

⟨f0 f0⟩ =
∫ B

A

1

zN

(
a+ b

zN+1

N + 1

)2

dz

=
A1−N −B1−N

N − 1
a2 +

B2 −A2

N + 1
ab+

BN+3 −AN+3

(N + 1)2(N + 3)
b2 .

(2.6.34)

This is analogous to the system analyzed in 2.6.1. We have a one-dimensional space of boundary conditions

for which the spectrum of our problem contains a zero mode.

Since zN+1 is a positive increasing function, our zero mode will only have a zero (f0(z0) = 0) when

A <
(∣∣∣a
b

∣∣∣ (N + 1)
) 1

N+1

< B . (2.6.35)

Outside of this range of values for our ratio a
b , the associated zero mode has support on z ∈ (A,B), and

therefore 0 is the minimum eigenvalue in our spectrum.

Following equation (2.3.8), the boundary conditions our zero mode obeys is

((
azN +

b

N + 1
z2N+1

)
∂z − b

)
g(z)

∣∣∣∣
z→A−, B+

= 0 . (2.6.36)

Applying this condition to an arbitrary positive eigenvalue solution, generically given in (2.6.29), we find

that neither the Bessel function of the first or second kind satisfies these boundary conditions alone, and

that the spectrum is given by a highly complex transcendental equation given by ratios of Bessel functions

analogous to equation (2.6.11).

Of special interest are the cases when B → ∞ and A→ 0+. In the first case we have

⟨f0, f0⟩ =
BN+3

(N + 1)2(N + 3)
b2 +O

(
B2
)
, (2.6.37)
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and in the the second we have

⟨f0 f0⟩ = −A1−N

1−N
a2 +O

(
A2
)
. (2.6.38)

In these two limits the Sturm–Liouville problem has a zero mode if we require b = 0 and a = 0, respectively.

2.6.5 The Upper Half of AdSN

This is the general case of the problem studied in [114]. In the limit where we allow our subinterval of AdSN

to extend to r → ∞ our boundary conditions become normal Neumann conditions at both z → A− and

z → ∞. Our zero mode is normalized given

b = 0 , a = ±

√
A1−N

N − 1
, (2.6.39)

and we have normalizable positive eigenvalue modes for any positive real number. These are given by

equation (2.6.29) with Aω obeying (up to normalization)

AωJ 1−N
2

(ωA) + 1 Y 1−N
2

(ωA) = 0 . (2.6.40)

Interestingly, this case is one of a transverse space where our coordinate patch has infinite range, but the

space itself has finite volume. That is ∫ ∞

A

1

ZN
dz =

A1−N

N − 1
. (2.6.41)

2.6.6 The Lower Half of AdSN

Since AdSN has infinite volume and the upper half of AdSN has finite volume (see equation (2.6.41)), the

remaining space, z ∈ (0, B) has infinite volume, however it still has a normalizable zero mode. That is

f0 = a+ b
z1−α

α− 1
, a = 0 , b = π

√
BN+3

(N + 1)2(N + 3)
. (2.6.42)

Here our boundary conditions on our massive modes selects Aω = 0 and we then require

lim
z→0+

AωJ 1−N
2

(z) +BωY 1−N
2

(z) = 0 ⇔ Aω sin
(π
2
N
)
−Bω cos

(π
2
N
)
= 0 . (2.6.43)
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2.6.7 The Pöschl–Teller Potential

Of essential importance to our studies is the ‘Crampton–Pope–Stelle’ problem [32], which has the measure

µ(ρ) = sinh(2ρ) . (2.6.44)

Note we have chosen ρ ∈ D = (0, ∞) as our coordinate in place of z for historical reasons. We have the

associated eigenvalue problem

(
∂ρ

2 + 2 coth(2ρ)∂ρ
)
fω(ρ) = −ω2fω(ρ) . (2.6.45)

We can Schrödingerize [32,51] this problem with the substitution fω(ρ) = µ(ρ)−
1
2 lω(ρ) , where lω(ρ) solves

(
∂ρ

2 + coth2(2ρ)− 2
)
lω(ρ) = −ω2lω(ρ) . (2.6.46)

We can shift our eigenvalue and our coordinates (y = 2ρ) as

− 1

4

(
∂ρ

2 + coth2(2ρ)− 1
)
lω(ρ) = −

(
∂y

2 +
1

4
csch2(y)

)
l̃ω(y) = ω̃2 l̃ω(y) =

ω2 − 1

4
l̃ω(y) . (2.6.47)

This is a special form of the more general Schrödinger problem with the Pöschl–Teller potential [11,75,110]

(ψE(y) = l̃ω(y), ω̃
2 = E):

− ∂y
2ψE(y) + V (y)ψE(y) = EψE(y) , (2.6.48)

V (y) = −λ(λ+ 1)sech2(y)− ν(ν + 1)csch2(y) . (2.6.49)

This is an attractive potential when either ν(ν + 1) > 0 or when −λ(λ+ 1) > ν(ν + 1).

After a further substitution of either u = tanh(y),

∂u
((
1− u2

)
∂uψE(u)

)
+

(
λ(λ+ 1) +

ν(ν + 1)

u2
+

E

1− u2

)
ψ̃E(u) = 0 , (2.6.50)

or a substitution of v = coth(y)

∂v
((
1− v2

)
∂vψE(v)

)
−
(
ν(ν + 1) +

λ(λ+ 1)

v2
− E

1− v2

)
˜̃
ψE(v) = 0 , (2.6.51)
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we find we may solve this problem exactly when either λ = 0, −1 or ν = 0, −1. In these cases we have

ψ̃E(u) = AEP
√
−E

λ (u) +BEQ
√
−E

λ (u) , (2.6.52)

˜̃
ψE(v) = AEP

√
−E

− 1
2

(
1−

√
1−4ν(ν+1)

) (v) +BEQ
√
−E

− 1
2

(
1−

√
1−4ν(ν+1)

) (v) . (2.6.53)

Here P ν
µ (u) and Q

ν
µ(u) and Pν

µ(v) and Qν
µ(v) are associated Legendre functions of the first and second kind

with degree µ and order ν with principle domain from u ∈ (0, 1) and v ∈ (1, ∞), respectively.

For this work we are focusing on the zero mode sector. When we set ω = 0 in the Crampton–Pope–Stelle

problem we find E = − 1
4 , λ(λ+ 1) = 0, and ν(ν + 1) = 1

4 . This gives us

l0(ρ) = A 1
4
P

1
2
0 (coth(2ρ)) +B 1

4
Q

1
2
0 (coth(2ρ)) . (2.6.54)

Fortunately, in this special case, we do not need these associated Legendre functions, as we can appeal to

Whipple formulae [20] to simplify

fω(ρ) =
1√

sinh(2ρ)
lω(ρ) =

1√
sinh(2ρ)

(
Ãω̃

√
sinh(2ρ)P− 1

2 (1−
√
1−ω2)(cosh(2ρ)

+B̃ω̃

√
sinh(2ρ)Q− 1

2 (1−
√
1−ω2)(cosh(2ρ))

)
.

(2.6.55)

This nicely agrees with our standard method for finding the zero mode solutions39

f0(ρ) = a− b
1

2
log (tanh(ρ)) . (2.6.56)

Here a = Ã 1
2
and b = 1

2B 1
4
.

If we take any finite section of ρ ∈ (0, ∞) we will find the situation as for the finite interval, where there

are two normalizable zero modes. Of special physical interest is when the we consider the full transverse

domain. We note that the inner product of the constant zero mode and itself, and the inner product of the

constant zero mode and the nonconstant zero mode both diverge,

∫ ∞

0

µ(ρ)dρ→ ∞ , (2.6.57)

∫ ∞

0

µ(ρ)ξ0(ρ)dρ→ ∞ . (2.6.58)

39Here ξ0(ρ) =
∫∞
ρ

1
µ(η)

dη = 1
2
log ◦ tanh(ρ), following section 2.3.
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However the inner product of the nonconstant zero mode with itself converges,

∫ ∞

0

µ(ρ)ξ0(ρ)
2dρ =

∫ ∞

1

1

8
Q0(z)

2dz =
π2

48
. (2.6.59)

That is, when we consider the full domain the constant zero mode becomes nonnormalizable, however

the nonconstant zero mode remains normalizable. The exponential growth of the measure exponentially

suppresses the nonconstant zero mode so that the integral of the square of the nonconstant zero mode

converges.

Therefore if we choose a = 0 and b = 4
√
3

π we have a normalizable zero mode on the entire infinite volume

domain. No other set of boundary conditions will yield a normalizable zero mode state. Furthermore, since

sinh(2ρ) ∼ 1
2 exp(2ρ) we only have scattering states when ω > 1. This is a gapped system with a normalizable

zero mode and an infinite volume space.

One wrinkle that must be addressed however, is the diversity of possible lowest eigenvalue states. We

note that we have when ω2 < 1 we have

∫ ∞

0

µ(ρ)ξω(ρ)
2dρ ∼=

∫ ∞

1

1

8
Q− 1

2 (1−
√
1−ω2)(z)

2dz =
ψ′ ( 1

2

(√
1− ω2 + 1

))
8
√
1− ω2

<∞ . (2.6.60)

Each of these ξω(ρ) with ω2 < 1 are positive definite, therefore we may have only one such mode in our

spectrum. Therefore any boundary condition that selects any ξω(ρ) will have qualitatively similar scattering

states, however will define a unique bound state.

Similarly, we may have seen this behavior by appealing to the asymptotic form of the Pöschl–Teller

problem, since

V (y) =
1

4

1

y2
+O

(
1

y

)
. (2.6.61)

The a 1
y2 potential has a variable number of bound states depending on what the coefficient is [14,27,29,35,85].

The case where a = 1
4 is a boundary case, where the system has only a single bound state. Therefore we need

not calculate the remainder of the spectrum explicitly. This agrees with our argument from the perspective

of Sturm–Liouville theory.

What are the boundary conditions that give us these bound states? Following equation (2.3.8) the

boundary condition that selects ξω(ρ) as its lowest lying mode is

(µ(ρ)fω(ρ)∂ρ − b) g(ρ)

∣∣∣∣
ρ→0+,∞

= 0 . (2.6.62)
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Inserting the asymptotic forms of each of these, as well as factorizing an overall b we have

((
H 1

2 (
√
1−ω2−1) + log(ρ)

)
ρ ∂ρ − 1

)
g(ρ)

∣∣∣∣
ρ→0+

= 0 , (2.6.63)

at the lower boundary and either special Dirichlet or Neumann conditions at the upper boundary (both

conditions are true for all normalizable states). Here Hα is the harmonic number [99] which agrees with

the partial sums of the harmonic series when α is a positive integer. Notably, we cannot impose special

Neumann conditions at the lower boundary and keep a normalizable bound state. This is obvious from the

perspective of Sturm–Liouville theory, since the constant zero mode obeys special Neumann at the lower

boundary, but is not normalizable. This is an interesting case for the supercritical eigenmodes (ω2 > 1),

however, as this is the case where fω(ρ) becomes ‘pure P’. Finally, we note, that no basis can be made to

obey special Dirichlet conditions at the lower boundary. This does not mean that sourced equations such as

1

µ(ρ)
∂ρ (µ(ρ)∂ρg(ρ)) = 1 , (2.6.64)

do not have solutions that obey special Dirichlet conditions. In fact we know

g(ρ) =
1

2
log (cosh(ρ)) , (2.6.65)

is such a solution. However, it does mean that finding such solutions requires considerations other than

Sturm–Liouville theory.

To summarize, the Crampton–Pope–Stelle problem maps neatly onto the Pöschl–Teller potential, which

is, for ‘nice’ values of its configuration space a solved problem. The particular limit of the Pöschl–Teller

problem we are studying has exactly one, known, bound state, and a mass gap with qualitatively similar

scattering states for all boundary conditions that give bound states.
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3 Green Functions

After our interlude at the end of the last section describing several explicit Sturm–Liouville bases, we return

to a generic discussion of the applications of Sturm–Liouville theory. In the last section we derived why there

is a resolution of the identity and what properties the transverse basis obeys. In this section we will derive

what is possible given a resolution of the identity. The central understanding of Sturm–Liouville theory

is that the action of a linear operator on its eigenvectors uniquely defines the operator [47, 92], and that

understanding any higher behavior of the operator may be done by further manipulation of said eigenvectors,

especially the ones in its kernel [69].

This section is organized as follows

1. We begin by finding Green functions for arbitrary Laplacians and their relation to fundamental solutions

for those Laplacians.

- We find the Green function using the kernel of the Laplacian and the Dirac delta distribution.

- We argue the fundamental solution for spaces is given by the Green function in radial coordinates.

- We give the Green function by appealing to the resolution of the identity (Green’s formula).

2. We next find several useful formulae for sums of overlap integrals (products of more than two modes).

- We find for spaces with a constant zero mode almost all relevant overlap integrals vanish.

- We find for other spaces sums of overlap integrals are given by integrals of Green functions.

- We calculate some of these sums explicitly for a few cases relevant to later sections.

3. We use Green’s formula to give solutions to partial differential equations on product spaces.

- We describe the structure of this process for arbitrary separable operators.

- We describe the results of this study when one of our component spaces is odd-dimensional Rn.

- We discuss how to relate Green functions with differing boundary conditions.

- We apply our recently described technique to different solutions of Rn × (−l, l).

- We apply the technique again to a space with a transverse Pöshl–Teller problem.

- We discuss the implications of this technique for different spaces with or without mass gaps.
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3.1 Finding Green Functions

For any linear second-order ordinary differential operator, ∆, which is self-adjoint with respect to some

measure L2(µ, D), we have an associated Green function G(z , s), which obeys [66]

∆G(z , s) =
δ(z − s)

µ(z)
. (3.1.1)

Here, δ(z − s) is the Dirac delta distribution.

Throughout this section all functions of a pair of coordinates on the same space, generically r and t or

z and s are symmetric under exchange of functions on that space unless otherwise stated (r ↔ t and/or

z ↔ s).

The existence of said Green function is equivalent to the proof that the differential equation we solve

using the Green function exists. In this view we may construct our Green function by knowing the kernel

of ∆, which is the focus of the next section 3.1.1. Alternatively we can appeal to the fact that ∆ is a linear

operator between two Hilbert spaces [112] and therefore has an inverse image, which is tantamount to a

Green function. For this inverse image to define an inverse function (which is still not the Green function)

we must have some method of selecting a unique member of the inverse image. Here we can again use that

linear ordinary differential equations have unique solutions. This is a consequence of the Picard–Lindelöf

theorem [30]. This argument misses that the Green function is necessarily a function, for that to be true the

inverse image must be differentiable with respect to changes in the source function.

G(z, s) can be defined for any set of boundary conditions that, as we shall argue, does not permit a zero

mode. One method for finding G(z, s) is appealing to the kernel of our differential operator.

3.1.1 From the Kernel

By the definition of a delta distribution, we have, for any ϵ ∈ R+ [97]

∫ s+ϵ

s−ϵ

µ(z)∆G(z , s)dz = 1 ,∫ s−ϵ

l

µ(z)∆G(z , s)dz = 0 ,∫ u

s+ϵ

µ(z)∆G(z , s)dz = 0 .

(3.1.2)
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We know the zero modes associated with ∆ (given in equation (2.3.7)). Given boundary conditions for

our Green function to obey we may find G explicitly. Begin by noting

∆G(z , s)
∣∣
z ̸=s

= 0 ⇒ G(z , s) =


a+ b ξ0(z) z < s

c+ d ξ0(z) z > s

. (3.1.3)

Applying our boundary conditions sets the ratio between a and b (for our lower boundary condition), then

c and d (for our upper boundary condition). We may set an additional condition between our constants by

requiring symmetry under exchange of z ↔ s. We obtain a final condition on our constants via integration.

That is ∫ s+ϵ

s−ϵ

µ(z)∆G(z , s)dz = 1 . (3.1.4)

Here ϵ ∈ R+ is some infinitesimal. Integrating by parts once we find

∫ s+ϵ

s−ϵ

µ(z)∆G(z , s)dz = µ(z)∂zG(z , s)

∣∣∣∣z=s+ϵ

z=s−ϵ

−
∫ s+ϵ

s−ϵ

µ(z) (∂z1) (∂zG(z , s)) dz . (3.1.5)

This integrand vanishes, and applying our definitions of ζ0, ξ0, and G; we have

∫ s+ϵ

s−ϵ

µ(z)∆G(z , s)dz = d− b = 1 . (3.1.6)

These four constraints on four conditions uniquely define G, and generically have a solution unless the

boundary conditions permit a zero mode.

Given these definitions we may write the most generic Green function as

G(z , s) = A+B ξ0(z) +


ξ0(s) z < s

ξ0(z) z > s

. (3.1.7)

3.1.2 Regular Versus Fundamental Solutions and Radial Problems

Solutions are stated to be regular at any given point if they are C1, that is if limz→p fω(z) = fω(p), and

limz→p ∂zfω(z) = ∂zfω(z)
∣∣
z=p

. On the boundary, a solution is regular if both these limits exist and are finite

when approached from the interior of the domain [98].

Fundamental solutions are solutions defined by a point source at the origin.40 In our context they are

40The origin can be defined arbitrarily for some spaces, such as RN . However for the example of CPS, ρ = 0 indicates a
physically significant location of ‘waist’ and therefore the fundamental solution is specifically defined by a boundary condition
at that point.
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most easily understood by comparison to the Green function. For instance, there exists a fundamental

zero-mode solution to the Laplacian ∆ = ∂z
2 on the interval D = (−1, 1), which obey Dirichlet-Dirichlet

conditions:

ffundamental(z) = |z| − 1 . (3.1.8)

A solution is said to be fundamental at the boundary when the boundary coincides with the origin and the

solution is singular [105]. That is, either the limit for the value of the function or the limit for the derivative

of the function diverges.

In this work fundamental solutions will primarily be relevant in the case of a ‘radial’ Laplacian, for

instance, when our measure µ(z) vanishes at the lower boundary and diverges at the upper boundary. The

introductory examples might be when µ(z) = z2 or µ(z) = z3, as is the case for the S-wave modes of the

three- and four-dimensional radial Laplacians, respectively (equation (2.6.27)). In these cases for G to define

a function continuous at all points in the full space-time its derivative must vanish at z = 0. That is, G

must obey Neumann conditions at z = 0, as illustrated in figure (4).

Furthermore, in these cases, we may restrict G to vanish at the boundary z → ∞. This requires b = 0

G

γ z = 0

γ

z = 0

Figure 4: The value of a scalar function along a path through the origin

and c = 0. The normalization condition, equation (3.1.6), requires then d = 1. Together we have

G(z , s) =


ξ0(s) z < s

ξ0(z) z > s .

(3.1.9)

In such a case, when s → 0, ξ0(z) is proportional to the Green function, and ξ0 diverges at the lower

boundary. In such a case we say that this mode constitutes a fundamental S-wave solution.

In the context of a field theory, this simply implies that the higher-dimensional action requires a boundary

term to support the equations of motion associated with the zero mode (section 6.3). This is likenable to

the electric field in the presence of an additional point source, the electron, at the level of the equations of

motion.

46



3.2 Green’s Formula

If we consider a Laplacian and boundary conditions that do not permit a zero mode, then we have an asso-

ciated spectrum and orthonormalized eigenfunctions fω(z) (ω > 0). These eigenfunctions form a resolution

of the identity (equation (2.4.2)). From this we may define an additional sum, and, through the action of

the Laplacian on said sum find

∆

(
−fω(z)fω(s)

ω2

)
= fω(z)fω(s) =

δ(z − s)

µ(z)
. (3.2.1)

Here we sum or integrate over the repeated Sturm–Liouville eigenvalue, as necessary. Note that ∆ only acts

on z so ∆fω(s) = 0. We notice that this sum solves the same distributional requirement that defines the

Green function. Therefore the Green function, given this boundary condition, is

G(z , s) = −fω(z)fω(s)
ω2

. (3.2.2)

We may immediately extend this identity to any case that includes a zero mode in two independent

manners. First, we note that in the presence of a zero mode, we may still define our sum, but only over

nonzero eigenvalues ω > 0. That is, we have

G(z , s) = −fω(z)fω(s)
ω2 . (3.2.3)

Acting on this with the Laplacian (and adding 0 = f0(z)f0(s)− f0(z)f0(s)) we note

∆G(z , s) = fω(z)fω(s) + f0(z)f0(s)− f0(z)f0(s) =
δ(z − s)

µ(z)
− f0(z)f0(s) . (3.2.4)

Therefore, if we can solve

∆Z(z , s) = f0(z)f0(s) , (3.2.5)

given symmetry in the exchange z ↔ s, then we have

G(z , s) + Z(z , s) = G(z , s) , (3.2.6)

where G(z , s) obeys our boundary conditions even though they permit a zero mode.

This is perhaps best understood with an example. Consider the case of the flat interval D = (−1, 1).
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The most general associated Green function is

G(z , s) = a+ bz +
1

2
|z − s| . (3.2.7)

No choice of a and b, even as generic functions of s will make this G obey Neumann-Neumann conditions.

However, if we consider the associated Z(z , s)

∆Z(z , s) =
1

2
⇒ Z(z , s) = −z

2 + s2

4
, (3.2.8)

then the associated G(z , s), which obeys Neumann-Neumann conditions is (for some a ∈ R)

G(z , s) = a+
1

2
|z − s| − z2 + s2

4
. (3.2.9)

We may find a by calculating the explicit value of the sum over our nonzero spectrum. In this case41

fω(0)fω(0)

ω2 = −
∞∑

n=1

1

4π2n2
= −1

6
. (3.2.10)

Explicitly, we have the sum

−
∞∑

n=1

(
cos(πns) cos(πnz)

π2n2
+

sin
(
π
(
n− 1

2

)
s
)
sin
(
π
(
n− 1

2

)
z
)

π2
(
n− 1

2

)2
)

= −1

6
+

1

2
|z − s| − z2 + s2

2
. (3.2.11)

Note, while we introduce this modified Green function in this context for the purpose of defining handling

zero modes, this technique may be expanded to excluding any specific mode from the sum. Restated, we

may always define a modified Green function G by removing a single mode, such as the lightest nonzero

mode. This technique is especially powerful for finding sums of overlap integrals.

The second method of including a zero mode into our Green function is to shift our Laplacian by a

constant, and define (
∆− σ2

)
Gσ(z , s) =

δ(z − s)

µ(z)
. (3.2.12)

Then we have, even in the case where our spectrum contains a zero mode (so long as σ2 ̸= −ω2 for any ω2

in our spectrum)

Gσ(z , s) = −fω(z)fω(s)
σ2 + ω2

. (3.2.13)

41All such sums over Fourier modes on the interval I have come across have been related to integer values of the Riemann
zeta function [7]. This one is an example of the Basel problem [6]. For more generic values of the Riemann function, see [78].
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This is especially useful in the context of using Sturm–Liouville theory to solve partial differential equations.

Finally, we may combine these methods simultaneously, both shifting the Laplacian and omitting a light

mode. In which case we have the sum

G
σ
(z , s) = −fω(z)fω(s)

σ2 + ω2 . (3.2.14)

If we act on this sum with the shifted Laplacian we see

(
∆− σ2

)
G

σ
(z , s) = fω(z)fω(s) =

δ(z , s)

µ(z)
− f0(z)f0(s) . (3.2.15)

Therefore, if we can solve

(
∆− σ2

)
Zσ(z , s) = −f0(z)f0(s) ⇔ ∆(Zσ(z , s)− Z(z , s)) = σ2Zσ(z , s) , (3.2.16)

given symmetry in the exchange z ↔ s, then we have

G
σ
(z , s) + Zσ(z , s) = Gσ(z , s) . (3.2.17)

3.3 Sums of Overlap Integrals

In the context of field theory we will define a lightest mode, frequently a zero mode, and speak of corrections

to its behavior which arise for ‘integrating out’ couplings to the heavy modes. This may happen in two ways.

3.3.1 Consistent Truncations

In the first case many of our possible couplings, given by overlap integrals, vanish. We consider some lightest

mode, with eigenvalue l, and heavy modes, with eigenvalues ω.

For a consistent truncation to be possible we require the triple overlap integrals vanish when there is

exactly one heavy mode, ∫
D
µ(z)fl(z)fl(z)fω(z)dz = Illω = 0 . (3.3.1)

However, the triple overlap integrals with two heavy modes (with eigenvalues ω and σ) do not vanish,42

∫
D
µ(z)fl(z)fω(z)fσ(z)dz = Ilωσ ̸= 0 . (3.3.2)

42Our analysis does not rely on Ilωσ being nonzero for every pair of ω and σ, simply that it have nonzero support, or be
nonzero for some combination thereof.
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We will use Ilω... interchangeably with the explicit integrals.

In these cases we will justify, at the level of the field theory, setting the degrees of freedom associated

with the heavy modes to zero, or ‘truncating’ the theory. Mathematically we may do this for some set of

modes ω so that all overlaps of l and any modes we keep σ vanish with single modes we have truncated ω.

For example we may truncate odd modes but keep even modes. Physically, this is only justified when we

truncate all but the lightest mode.

These are called consistent truncations, and usually occur when our lightest mode is a constant. In this

Neumann-Neumann case the IlXY is simply proportional to IXY , or just the standard inner product. Since

our modes are orthornormalized, the inner product of any heavy mode with the lightest zero mode vanishes,

therefore Illω = 0.

We may actually prove that the Neumann-Neumann condition is the only case where you can have a

consistent truncation. We begin by noting we may always expand f0(z)
2 in terms of our basis

f0(z)
2 = f0(z)

∫
D
µ(s)f0(s)

3ds+ fω(z)

∫
D
µ(s)f0(s)

2fω(s)ds . (3.3.3)

If Illω = 0 for all ω > l then we have

f0(z)
2 = af0(z) , (3.3.4)

for some a ∈ R. Therefore

∂zf0(z)
2 = ∂zaf0(z) ⇒ (2f0(z)− a) (∂zf0(z)) = 0 . (3.3.5)

Therefore either f0(z) =
a
2 or ∂zf0(z) = 0 for all z. Both of these conditions require f0(z) to be constant.43

3.3.2 Inconsistent Truncations

In the case where, due to field theoretic reasons, we cannot truncate our heavy modes ω ̸= l we may still

integrate them out. To integrate these fields out we will require squares of overlap integrals, or these squares

divided by the relevant eigenvalues. That is,44

X = Illω
2 , (3.3.6)

Y = −Illω
2

ω2 . (3.3.7)

43Hypothetically, in a situation like this, we simply need that the support of our two conditions is disjoint. However, since
the implications of these two conditions agree, that implies that both conditions are true for all z ∈ D.

44We do not sum over explict indices (l or 0). So Illω
2 =

∑
ω>l IllωIllω .
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We recognize the modified Green function (equation (3.2.9)) through the following manipulation45

X =

∫
D
µ(z)fl(z)fl(z)fω(z)dz

∫
D
µ(s)fl(s)fl(s)fω(s)ds

=

∫
D

∫
D
µ(z)µ(s)fl(z)

2fl(s)
2 (fω(z)fω(s)) dzds

=

∫
D

∫
D
µ(z)µ(s)fl(z)

2fl(s)
2

(
δ(z − s)

µ(z)
− fl(z)fl(s)

)
dzds

=

∫
D
µ(z)fl(z)

4dz −
(∫

D
µ(z)fl(s)

3dz

)2

.

(3.3.8)

Y =−
∫
D µ(z)fl(z)fl(z)fω(z)dz

∫
D µ(s)fl(s)fl(s)fω(s)ds

ω2

=

∫
D

∫
D
µ(z)µ(s)fl(z)

2fl(s)
2

(
−fω(z)fω(s)

ω2

)
dzds

=

∫
D

∫
D
µ(z)µ(s)fl(z)

2fl(s)
2G(z , s)dzds .

(3.3.9)

Similarly, this can be extended to the case with an additional shift in the denominator

YM = − Illω
2

M2 + ω2 =

∫
D

∫
D
µ(z)µ(s)fl(z)

2fl(s)
2G

M
(z , s)dzds . (3.3.10)

This constant will be useful when calculating corrections in our field theory in sections 6 and 8. However,

we need not know the value of any overlap integral or set of overlap integrals so long as we may explicitly

calculate our modified Green function.

3.3.3 Explicit Corrections from Inconsistent Truncations

Since the value of these overlap integrals and sums of overlap integrals is relevant in the context of field

theory we will give their values for each of the spaces on which we have described Sturm–Liouville bases in

section 2.6.

The Flat Interval

The augmented Green function for the most general zero mode (f0(z) = az + b(z + 1), equation (2.6.1)

and 2a2 + 4ab+ 8
3b

2 = 1, equation (2.6.2)) for the flat interval is46

G(z , s) = K(z , s) + Z(z , s) +
1

2
|z − s| , (3.3.11)

45Assuming uniform convergence of the sums and integrals.
46To find the explicit value of K(z , s) we must apply that a and b are related by normalization, thus the reason only b

appears in K(z , s)’s definition.
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Z(z , s) =
1

6

(
3(a+ b)2

(
s2 + z2

)
+ b(a+ b)(s+ z)3 + b2sz

(
s2 + z2

))
, (3.3.12)

K(z , s) =

√
3− 2 b2

(
b2 − d

)
(z − s)

√
6 b

+
1

6

(
2− 3

b2

)
d+ d s z . (3.3.13)

Note, the additional constant d is fictitious. However, to calculate G(z , s) explicitly here we applied our

boundary conditions, and d is not constrained by the boundary conditions alone. Two limits in which we

have calculated d are b→ 0 and a→ 0. When b→ 0, to make our generic form of G(z , s) limit to equation

(3.2.11), we have d→ 1
3b

2. When a→ 0, d = 7
16 .

The arbitrary overlap integral of only the zero mode is

I(n) = I00...0 =

∫ 1

−1

f0(z)
ndz =

(a+ 2b)n+1 − an+1

(n+ 1)b
. (3.3.14)

Of special note are I(3) =
(a+2b)4−a4

4b and I(4) =
(a+2b)5−a5

5b . We note I(3) = 0 when a = −b. Therefore, from

equation (3.3.8), we have

X = I00n
2 = I(4) − I2(3) =

(a+ 2b)5 − a5

5b
−
(
(a+ 2b)4 − a4

4b

)2

. (3.3.15)

We further note the three interesting limits of this expression: when b→ 0

X =
1

3
b2 +O(b4) , (3.3.16)

when a→ 0 we have

X =
9

160
+

3

80

√
3

2
a− 3a2

160
+O

(
a3
)
, (3.3.17)

and when a→ −b+ ϵ we have

X =
9

10
− 3ϵ2 −O(ϵ4) . (3.3.18)

That is, we note that the size of this overlap is at minimum47 in the Neumann-Neumann case, has a linear

term when we have ‘pure ξ0’ boundary condition, and is at maximum in the antisymmetric case when our

zero mode solution is an odd function. Similarly we compute

47That is, we can prove that it is a local minimum, and assuming it is monotonically increasing everywhere else, it is also a
global minimum.
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Y = − 2

189b2

(
63a6b2 + 378a5b3 + 1071a4b4 − 126a4b2d− 126a4b2 + 189a4d+ 1764a3b5

− 504a3b3d− 504a3b3 + 756a3bd+ 1764a2b6 − 1008a2b4d− 756a2b4 + 1260a2b2d

+ 1008ab7 − 1008ab5d− 504ab5 + 1008ab3d+ 252b8 − 392b6d− 144b6 + 336b4d

)
.

(3.3.19)

This vanishes (Y = 0) in the Neumann-Neumann case (when b→ 0) which is what we expect for a consistent

truncation. When a = 0 we have Y = − 57
244 .

3.4 Green Functions and Solutions to Partial Differential Equations

A second use of Green functions is finding explicit solutions to our field theory, specifically in finding solutions

to the sourced Laplace equation on product spaces.

Consider a higher-dimensional Laplacian48 which can be expressed as a separable sum

∆ = ∆r +∆z . (3.4.1)

For S-wave expansions in both spaces, we can choose coordinates (as in section 2.1.1) so that

∆r =
1

m(r)
∂rm(r)∂r , ∆z =

1

µ(z)
∂zµ(z)∂z . (3.4.2)

Our goal is to compute a higher-dimensional Green function

(∆r +∆Z)G(r , t , z , s) =
δ(r − t)δ(z − s)

m(r)µ(z)
. (3.4.3)

3.4.1 Green’s Formula for Separable Operators

To accomplish this we may find two independent bases and modify Green’s formula for a single basis.

Alternatively we can find one basis and one augmented Green functions and give a related modification. In

the end the formulae are related.

For the sake of illustration our bases are

∆rgσ(r) = −σ2gσ(r) , ∆zfω(z) = −ω2fω(z) , (3.4.4)

48For the remainder of the text we call the total space the higher-dimensional space the space with coordinate r the lower-
dimensional space and the space with coordinate z the transverse space.
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and our augmented Green functions are

(
∆r − ω2

)
Hω(r − t) =

δ(r − t)

m(r)
, (∆z − σ)

2
Kσ(z , s) =

δ(z − s)

µ(z)
. (3.4.5)

These are, of course, related through the formula for our augmented Green function (equation (3.2.13)). All

of these relate to the total Green function via the diagram:

−gσ(r)gσ(t)fω(z)fω(s)
σ2 + ω2

↙ ↘

= Hω(r − t)fω(z)fω(s) = gσ(r)gσ(t)K
σ(z , s)

↘ ↙

= G(r , t , z , s) .

Figure 5: The relationship between Sturm–Liouville bases and higher-dimensional Green functions on a
product space.

3.4.2 Laplace Transformations and Odd-Dimensional Real Space

In section 2.6.2 we found the general solution for the S-wave Laplace equation in Rn. Recall that Bessel

functions of the first type are the regular solutions, and Bessel functions of the second type are the fun-

damental solutions. In odd dimensions these simplify significantly. That is, in odd dimensions our regular

solutions (Bessel functions of the first type) are polynomial functions of world-volume radius multiplied by

an exponential decay.49

We consider a product space such as M = R2n+1 ×W Mz then apply the equation in figure (5). If we

integrate over the spectrum of real space first, setting t = 0, we find our Green functions become

G(r , z , s) =
1

V2nr2n−2

∫
exp(−ωr)(a+ b ω r + c ω2r2 + . . .)fω(z)fω(s)dω . (3.4.6)

Here a, b, c, etc. are the relevant triangle coefficients of the Bessel polynomials [61].

Therefore we understand that our Green function is given by a Laplace transformation of the Sturm–

Liouville basis of our transverse space [61]. Furthermore, since

∫ ∞

0

exp(−ωr)ωα−1dω = Γ(α)r−α , (3.4.7)

49There is a similar generalization for even dimension as well. However, we are principally interested in the case of R3 for
physical reasons, therefore we only present this simple generalization for the sake of brevity.
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we expect each of these terms beyond the zeroth-order (a in equation (3.4.6)) to be subdominant to the

fundamental solution of the Laplace equation in R2n+1. For instance, in three real-space dimensions the

fundamental solution is 1
r and these Laplace transforms generically begin at O

(
1
r2

)
.

3.4.3 Long Distance Mirrors

Understanding how Green functions, with different boundary conditions but on the same product space, are

related provides an interesting window into the relationship between special and general boundary conditions.

Suppose we know one Green function on a product space exactly,50 GK(r , t , z , s), and we want to know

a separate Green function on the same space which obeys different boundary conditions, GT (r , t , z , s).

Further, for illustration, we will consider that our Green functions obey the same upper boundary condition,

but different boundary condition at the lower boundary of our space, z → l+ and all r. That is we will have

some operator Ol which annihilates GT at the lower boundary

OlGT (r , t , z , s)

∣∣∣∣
z→l+

= 0 . (3.4.8)

We may always define an interpolating function, FT (r , t , z , s), such that

GT (r , t , z , s) = GK(r , t , z , s) + FT (r , t , z , s) . (3.4.9)

Since both GT and GK solve the sourced Laplace equation, that is

∆GT (r , t , z , s) = ∆GK(r , t , z , s) =
δ(r − t)δ(z − s)

m(r)µ(z)
, (3.4.10)

FT will solve the unsourced Laplace equation, that is

∆FT = ∆
(
GT −GK

)
= 0 . (3.4.11)

Furthermore since GT obeys special boundary conditions and GK obeys different boundary conditions FT

will obey generic boundary conditions

OlFT

∣∣∣∣
z→l+

= Ol
(
GT −GK

) ∣∣∣∣
z→l+

= −OlGK

∣∣∣∣
z→l+

̸= 0 . (3.4.12)

50As we will argue in section 3.4.5, we actually only need known this Green function approximately. However, for illustration
we say this is the ‘known Green function.’
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Similarly, we may define fω(r − t) as

fω(r , t , s) =

∫
D
µ(z)fω(z)F

T (r , t , z , s)dz . (3.4.13)

Here fω are the eigenfunctions of ∆z which obey our boundary conditions defined byOl, that isOlfω(z)
∣∣
z→l+

=

0. Given this definition we apply our full Laplacian and simplify as

∫
D
µ(z)fω(z)∆F

T (r − t, z , s)dz

= ∆r

∫
D
µ(z)fω(z)F

T (r − t, z , s)dz +

∫
D
µ(z)fω(z)∆zF

T (r − t, z , s)dz

= ∆rf
ω(r − t, s) +

∫
D
µ(z)FT (r − t, z , s)∆zfω(z)dz

+µ(z)
(
fω(z)∂zF

T (r − t, z , s)− FT (r − t, z , s)∂zfω(z)
) ∣∣∣∣

z→l+
.

(3.4.14)

Furthermore if we suppose Ol = ∂z + b, then we may simplify our boundary term as

µ(z)
(
fω(z)∂zF

T (r − t, z , s)− FT (r − t, z , s)∂zfω(z)
) ∣∣∣∣

z→l+

= µ(z)
(
fω(z)∂zF

T (r − t, z , s) + bfω(z)F
T (r − t, z , s)

−FT (r − t, z , s)∂zfω(z)− bFT (r − t, z , s)fω(z)
)∣∣∣∣

z→l+

= µ(z)
(
fω(z)O

lFT (r − t, z , s)− FT (r − t, z , s)Olfω(z)
) ∣∣∣∣

z→l+

= −µ(z)fω(z)OlGK(r − t, z , s)

∣∣∣∣
z→l+

.

(3.4.15)

Therefore our Laplace equation on FT implies the following equation for fω

∆rf
ω(r − t, s)− ω2fω(r − t, s) = µ(z)fω(z)O

lGK(r − t, z , s)

∣∣∣∣
z→l+

. (3.4.16)

Therefore, given any sourced product Laplace equation, and any known Green function GK we may find

the Green function which obeys different boundary conditions GT by solving a series of sourced Laplace

equations in one of the product spaces.
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3.4.4 Long Distance Mirrors and a Transverse Interval

Consider the Green function on R3 × (−l, l), which solves51

(
∂2r +

2

r
∂r + ∂2z

)
GT (r, z) =

δ(r)δ(z)

4πr2
. (3.4.17)

If the transverse interval is infinitely large (l → ∞), then the exact solution, which is Dirichlet in all directions

at infinity, is given by [18]

GK(r, z) = − 1

4π2 (r2 + z2)
. (3.4.18)

On a transverse interval, however, we require different boundary conditions. One possible set of boundary

conditions which trivializes this problem is

GK(r, z)

∣∣∣∣
z→±l

= − 1

4π2 (r2 + l2)
. (3.4.19)

We are, however, more interested in special Neumann conditions. That is,

∂zG
T (r, z)

∣∣∣
z=±l

= 0 . (3.4.20)

The zero modes of relevant bases are given in section 2.6.1. Defining FT = GT −GK and expanding in the

Neumann-Neumann basis we have

F t(r, z) =
1√
2l
f0(r) +

1√
l

∑
n ̸=0

sin
(πn
2l
z +

π

4
(1 + (−1)n)

)
fn(r) . (3.4.21)

Note, we have chosen to label our functions fn by the number of their eigenvalue, as opposed to the actual

value of the eigenvalue.

Following the analysis of the previous section (equation (3.4.16)) we have

(
∂2r +

2

r
∂r

)
f0(r) =

√
l

2

1

π2 (r2 + l2)
2 , (3.4.22)(

∂2r +
2

r
∂r −

π2n2

4l2

)
fn(r) = 0 , n odd , (3.4.23)(

∂2r +
2

r
∂r −

π2n2

4l2

)
fn(r) = − 1√

l

4l

4π2 (r2 + l2)
2 , n positive, even , (3.4.24)

51For the sake of brevity we take t = 0, s = 0.
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for our zero mode, odd modes, and even modes (n > 0), respectively. For regularity at r = 0 and for

vanishing of FT at infinity, we impose Neumann-Dirichlet boundary conditions on the modes,

∂rf
n(r)

∣∣∣
r=0

= 0 , fn(r)
∣∣∣
r→∞

= 0 . (3.4.25)

Of greatest interest is the zero mode. The solution to (3.4.22) obeying the above boundary conditions is

f0(r) = −
√

2

l

tan−1( rl )

4π2r
. (3.4.26)

From this, we observe that f0 encodes a lower-dimensional behavior. When r → ∞, one has asymptotically

f0(r) = −
√

2

l

1

4πr
+O

(
1

r2

)
. (3.4.27)

As r → ∞ the modes fn with n ̸= 0 are exponentially suppressed. Therefore, in the large r regime, the

zero mode, f0, encodes the leading behaviour of the full solution FT (r, z) [43]. Recalling the relation (3.4.9)

between the homogeneous solution FT (r, z) and the full Green function GT (r, z), we find that for large r,

GT (r, z) =
1√
2l
f0(r) +O

(
1

r2

)
= − 1

4πl

1

r
+O

(
1

r2

)
. (3.4.28)

3.4.5 Long Distance Mirrors, Real Space, and Mass Gaps

With a few general arguments based on the long distance mirror technique we can may actually find one

additional condition that the transverse Laplacian for the higher-dimensional Green function to agree with

the lower-dimensional Green function in r space. Not only must we have a transverse zero mode but the

sourcing for that zero mode from any other ‘mirror source,’ (that is boundary term generated by integration

by parts in terms of GK) must converge to zero ‘quickly enough’ that the lower-dimensional fundamental

solution remains dominant at world-volume infinity. To properly quantify the meaning of ‘quickly enough,’

we may scan the space of sourced Rα+1. However, first let us understand how, given a zero-mode, this

‘quickly enough’ condition arises.

First, we note that, the only context in the presence of a non-compact (i.e. infinite volume) transverse

space which permits a zero mode is when that zero mode obeys special Robin conditions. Therefore only

the non-derivative ‘mirror terms’ matter. That is, in the sourcing for the zero-mode’s equation, following

equation (3.4.16), we have

∆rf
0(r) ∝ GK(r, Z) + subleading . (3.4.29)
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To expound further, the mirror terms on the right hand side will comprise of GK near its singularity

multiplied by some function of Z and derivatives of GK with respect to z multiplied by some function of z

and GK . Since derivatives generically decrease the order of a function (except for superexponential functions

which we disregard), and the only r dependence is through GK we have

GK(r, z , s) ≫ ∂z G
K(r, z , s) . (3.4.30)

Restated, the non-derivative mirror terms dominate.

Next, we note that any positive-definite sourcing on the right hand side of f0’s equation will excite

effectively lower-dimensional behavior. Consider the example of a step function source in three world-volume

spacial dimensions

(
∂r

2 +
2

r2

)
f0(r) = θ

(
1

2
− r

)
⇒ f0(r) =

(
r2

6
− 1

8

)
θ

(
1

2
− r

)
− 1

24r
θ

(
r − 1

2

)
. (3.4.31)

Regardless of the form of a source, unless it is oscillatory, we will always have either effectively lower-

dimensional behavior or behavior dominant to that away from the source.

Therefore, when r ≫ 1 we require only

∆rf
out(r) =

k

rα−1
+ subleading . (3.4.32)

If we suppose that GK ∼ 1
rβ
, then we have

(
∂r

2 +
α

r
∂r

)
fout(r) =

1

rβ
⇒ fout(r) =

k

rα−1
+

1

(2− β)(α− β + 1)rβ−2
. (3.4.33)

Therefore we require β > α+ 1. Or that

GK(r, z , s) ≺ 1

rα+1
. (3.4.34)

That is, when this bound is reached GT will have additional effects at leading order.
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4 Taxonomy of Brane Gravity Localizations

In this section we will develop a taxonomy of different solutions to product space Green functions based on

the properties of the transverse space [51]. The overall motivation for this taxonomy is to catalogue what

effective lower-dimensional gravitational physics might arise in spacetimes with differing transverse spaces.

There are three methodologies for finding the lower-dimensional effective physics from a higher-dimensional

system.

For the first type of solution in our taxonomy, we may, by fiat, ignore almost all dependence on the

transverse dimensions. Specifically we state that the transverse dependence of the perturbation of our back-

ground fields will be a warped constant in the transverse direction and any tensors (such as the metric or

form fields) with components in the transverse directions are unperturbed.

For our second type of solution, we we may insist on observing only perturbations that both couple to

a truly isolated (or nearly isolated) source(s) in the higher dimension and are regular at all other points in

the full spacetime. When the transverse space has infinite volume all such perturbations are dominated by

the ‘native’ solution in the higher dimension. This is similar to the relation of GK and GT in section 3.4.4,

whic are asymptotically 1
r and 1

r2 , respectively

For our third type of solution, we may either insist that our transverse space is finite due to periodicity, or

otherwise impose boundary conditions. As we shall argue in our section on Kerr–Schild perturbations [79],

these are in some respect similar requirements from the perspective of graviton self-interaction [41,42]. If we

consider solutions on the universal cover of the transverse space, periodic solutions are simply the interac-

tion of infinitely many ‘colinear’ point charges, or ‘sandwiching the charge between two mirrors’, while other

boundary conditions are the presence of similar boundary objects.

For the sake of completeness for our taxonomy we will define a fourth type of solution. In these spaces

the properties of the transverse Laplacian require we consider a finite transverse domain, but otherwise they

are comparable to our third type of solution. We do not have any examples that correspond to this type, so

we will only mention the possibility briefly.

However, we will find that, in the case of an infinite volume transverse space, only when our boundary

conditions allow for non-constant zero mode may we have lower-dimensional effective physics which agrees

with the ‘native’ lower-dimensional effective physics. Furthermore we will find that, for the transverse mea-

sures with a supergravity origin considered in this work, the universal cover of the transverse space always

has infinite volume.

To make our argument we will first analyze solutions with a maximally symmetric world-volume on a
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warped product background, then specifize this case to a four-dimensional Minkowski world-volume. How-

ever, as we argued in section 3.4.2, these arguments extend to arbitrary even real dimensions, and with a

careful study of integrals of Bessel functions, one may extend our arguments here to odd dimensions with

d > 3. We expect the generic structure of our taxonomy to hold for non-Minkowski world volumes.

To give the summary at the top, see table 1, where we summarize the types of solutions, their boundary

conditions, possible volumes for the transverse space, the presence of zero modes, the presence of a mass gap,

an overview of the lower-dimensional EFT (specifically if it is massless/massive/stable and whether there is

any symmetry breaking), and finally give several known examples.

Table 1: Taxonomy of Brane Gravity Localizations

Type BC Volume Zero Modes Mass Gap EFT Example
Type I N/A Infinite Constant N/A52 Uncoupled53 SS-CGP54

Type II N-N55 Infinite None N/A Massive R1,4 → R1,3

Type II∗ N-N Finite Constant Yes Massless Unknown
Type III R-R56 Either None N/A Massive SS-CGP57

Type III∗ N-N Finite Constant No Massless RS II
Type III† R-R58 Either Nonconstant Yes Massless CSB CPS
Type III♭ R-R Either Nonconstant Unknown Unstable Unknown

Type IV(All) As III As III As III As III As III Unknown

4.1 World Volume Gravitons on Product Spaces

The basis of our taxonomy is a study of the higher-dimensional scalar wave equation. We start by noticing,

according to Bachas and Estes, the higher-dimensional Einstein equations allow for a lower-dimensional

graviton when the transverse space contains a zero mode [10]. The assumptions necessary to isolate this

graviton’s wave equation precluded sourced gravitational solutions [67]. However, in all cases where we have

relaxed the assumptions the leading component of the full solution is still determined by the graviton’s wave

equation [51]. This is consistent with other studies of perturbations of all gravitation degrees of freedom in

warped product backgrounds [46].

Let us consider the physics of gravitational perturbations (in fact arbitrary perturbations) around a

warped maximally symmetric product space MH = Ml ×W Mt. Here Ml is the maximally symmetric

52Higher modes are explicitly excluded.
53Zero mode cannot couple to bulk matter.
54To 6-dimensional Salam–Sezgin Supergravity
55Neumann-Neumann
56Robin-Robin
57General
58Generally, sometimes Robin-Dirichlet
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product space and our metric is [40]

ds2 = exp (2A(Z)) gµν(x)dx
µdxν + gab(Z)dZ

adZb , (4.1.1)

where XM are the coordinates and indices on our total space, xµ are the coordinates and indices on a

maximally symmetric space such as R1,3 or AdS, and Za are the coordinates and indices on the tranvserse

space which need not be compact. When we have precisely one non-compact coordinate we will call it z.

We of course may also consider the product metric [72] related to our metric via Weyl transformation [128]

gMN = exp (2A(Z)) gMN , (4.1.2)

gMNdX
MdXN = gµν(x)dx

µdxν + exp (−2A(Z)) gab(Z)dZ
adZb = gµν(x)dx

µdxν + gab(Z)dZ
adZb . (4.1.3)

Here we have the Riemann tensor associated with the Levi–Civita connection of gµν which obeys [82]

Rµνρσ = k
(
gµρgνσ − gµσgνρ

)
. (4.1.4)

Here k = −1, 0, 1 for anti-de Sitter, Minkowski, or de Sitter space, respectively [39]. We can relate the

Einstein, Riemann, and Ricci tensors [126], and Ricci scalar associated with the Levi–Civita connections of

gMN (∇M ) and gMN (∇M ) via the relation [111]

GMN =RMN −
(
∇2
A
)
gMN − (D − 2)

(
∇M∇NA−

(
∇MA

) (
∇NA

)
+
(
∇A

)2
gMN

)
− 1

2
R gMN + (D − 1)

(
∇2
A
)
gMN +

1

2
(D − 2)(D − 1)

(
∇A

)2
gMN .

(4.1.5)

Here D is the dimension of the total spacetime.

If we consider the µν components of the Einstein equations we may apply the independence of A(Z) from

our world-volume coordinates to simplify the left-hand side.

Gµν +Λgµν = Rµν −
1

2
Rgµν +(D−2)

((
∇2
A
)
+

1

2
(D − 3)

(
∇A

)2)
gµν +Λexp(2A) gµν =

κ2

2
Tµν . (4.1.6)

Here Λ is our cosmological constant and TMN , our energy-momentum tensor, is given by the variation of

our matter Lagrangian density [15]

TMN =
2√
−g

∂

∂gMN

(√
−gLMatter

(√
−det(gµν), gmn, A, Φ

))
. (4.1.7)
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Here we have given the most general form of LMatter, given that it is invariant under transformation which

respect the maximal symmetry of our world-volume [10], which implies that it can only be dependent on

gµν through its determinant. Here all other dependence is on the warp factor (A), the transverse metric

(gmn), and other higher-dimensional fields Φ,59 which themselves must respect the world-volume’s maximal

symmetry.

If we calculate Tµν explicitly we have

Tµν = exp(2A)
(
LMatter + 2

√
−det(gµν)L

(1, 0, 0)
matter

)
gµν = T

(√
− det(gµν), A, gmn

)
gµν . (4.1.8)

Here the essential detail is that T , which is given by tracing over the world-volume components of Tµν ,

captures all behavior of the world-volume components of Tµν , and that it only depends on the world-volume

components of gMN through the trace.

Tracing the world-volume components of our Einstein equations we find60

(
1− d

2

)
Rµ

µ − d

2
Rm

m
+ d(D − 2)

((
∇2
A
)
+

1

2
(D − 3)

(
∇A

)2)
+ dΛexp(2A) = d

κ2

2
T . (4.1.9)

Here d is the dimension of our world-volume, and Rµ
µ
is the Ricci scalar associated with gµν , which is the

same as Rµνg
µν because of gMN ’s block diagonal form. Similarly Rm

m
is the Ricci scalar associated with

gmn. By maximal symmetry we have Rµ
µ
= k(d− 1)d. We further simplify our Einstein equations as

− 1

2
(d− 2)(d− 1) k − 1

2
Rm

m
+ (D − 2)

((
∇2
A
)
+

1

2
(D − 3)

(
∇A

)2)
+ Λexp(2A) =

κ2

2
T . (4.1.10)

We now consider the following perturbation of our metric

ĝµν(x, z)dX
µdXν =

(
gµν(x) +Hµν(x, Z)

)
dXµdXν , (4.1.11)

gMNdX
MdXN = exp(2A(Z))ĝµν(x, Z)dx

µdxν + gab(x, Z)dZ
adZb , (4.1.12)

where all other components of the metric and all other fields are left unperturbed. If we insist that Hµν is

transverse with respect to the lower-dimensional Levi–Civita connection and traceless, that is

gρµ∇ρHµν = 0 , gµνHµν = 0 , (4.1.13)

59This may include the embedding coordinates of a brane XM , etc. This calculation does not require any specific physical
meaning for Φ, simply that Φ not explictly depend on gµν .

60Unless explicitly stated we choose ∇2
= ∇M∇M

and (∇A) · ∇ =
(
∇MA

)
∇M

.
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then the world-volume (that is M = µ, N = ν) first-order perturbation (eliminating all terms proportional

to a transverse derivative of the trace of our metric perturbation) of our Einstein equation becomes

δGµν =− 1

2

(
∇2

+ (d− 2)(∇A) · ∇
)
Hµν −Rµ

ρ
ν
σHρσ +R(µ

σHν)σ

− 1

2
Rm

mHµν + (D − 2)

((
∇2
A
)
+

1

2
(D − 3)

(
∇A

)2)Hµν + Λexp(2A)Hµν =
κ2

2
T Hµν .

(4.1.14)

If we now apply our background equations of motion we find61

− 1

2

(
∇2

+ (d− 2)(∇A) · ∇
)
Hµν = 0 . (4.1.15)

We will call this the Bachas and Estes equation, which is the conformal translation of their equation (2.23)

in [10]. Furthermore, all other equations of motion are trivially solved with no additional conditions on Hµν .

If we now constrain gµν = ηµν and Hµν to have dependence only on z, our noncompact transverse

coordinate, instead of Za, all of our transverse coordinates, we have

(□+∆z)Hµν(x, z) = 0 . (4.1.16)

Therefore our metric perturbation solves a scalar wave equation.

Bachas and Estes extend this argument further by considering the kinetic term for our metric perturbation

at the level of the action. Our above equation of motion is generated in the bulk by the action62

SPerturbation, Free =

∫
Ml×WD

√
−det gµνµ(z)

(
−1

2
∂σHµν∂

σHµν − 1

2
∂zHµν∂

zHµν

)
ddxdz . (4.1.17)

Here we have assumed all contributions from the angular coordinates of Za are finite and normalized by the

choice of µ(z) =
∫
Mangular

√
d
D−d−1

Zangular. Given this, if we assume a separable solution

Hµν(x, z) = hµν(x)ψ(z) , (4.1.18)

then we can integrate over the transverse space to find a lower-dimensional effective field theory (SPerturbation, Free =)

∫
Ml

√
−det gµν

(
−1

2
∂σhµν∂

σhµν
(∫

Mt

µψ2dD−dZ

)
− 1

2
hµνh

µν

(∫
Mt

µ (∂zψ)
2
dD−dZ

))
ddx . (4.1.19)

61Our warp factor, A, is generically a non-constant function in the transverse direction, but is not perturbed.
62This is, of course, only true up to corrections from the boundary.
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Since both of the integrals over the transverse space are of a square, they both must have non-negative

values. Furthermore we have

∫
Mt

µ (∂zψ)
2
dD−dZ = 0 ⇒ ∂zψ = 0 . (4.1.20)

Therefore we may only have solutions to Hµν ’s equation (4.1.16) that correspond to lower-dimensional mass-

less gravitons when H is constant in the transverse directions, or when the total perturbation is conformally

constant in the transverse directions. This implies that no space with a infinite volume transverse space

may have a zero mode associated with the lower-dimensional effective field theory described by the action

of equation (4.1.17).

Furthermore, when the metric perturbation solves equation (4.1.16) no other fields need be excited. This

is since Hµ
µ = ∇µ∇νHµν = 0, therefore there are no scalar or vector quantities sourced by Hµν that can

excite any other field’s equation of motion at this order (except perhaps a second spin-2 field in a bimetric

theory). Lastly, this argument makes no assumptions about what the remaining field content of the the-

ory. It therefore broadly applies to gravity and supergravity theories with or without branes spanning the

transverse dimensions.

4.2 Tracing Out Corrections to World Volume Gravitons

While we will rely on the intuition of the previous section for describing our putative solutions, we will escape

some of its more restrictive conclusions by relaxing its more restrictive assumptions.

First, we note that Bachas’ and Estes’ conclusion that the EFT is effectively described by only the grav-

itational perturbations because all other fields may be consistently truncated is violated at higher orders.

For instance we could have an arbitrary scalar quantity sourced by HµνHµν at quadratic order.

Second, their conclusion that their higher-dimensional bulk action associated with their higher-dimensional

equations of motion determines the lower-dimensional EFT is valid, given a higher-dimensional bulk action

with no boundary terms. This is a workable initial assumption, corrections to which compose of much the

remaining text of this work. To summarize the main conclusion, however, we may always rely on a Sturm–

Liouville decomposition at the level of the equations of motion, but must verify the correspondence of the

action and equations of motion in the higher dimension to rely on the technique of integrating over the

transverse dimension.

Third, the assumption that Hµν is transverse and traceless in the lower-dimensional sense has no basis in

the higher-dimensional theory. It is valid to point out that such perturbations solve the higher-dimensional

theory, but that does not imply that they correspond to valid lower-dimensional effective degrees of freedom.
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Understanding corrections which arise from nonlinear interactions in the effective field theory is covered

in Sections 6 and 8. Understanding corrections from boundary terms in the higher-dimensional action is

covered in Section 6 and specifically for gravity in 7. Understanding corrections from relaxing transverseal-

ity or tracelessness is the focus of this section 4.2, the following section4.3 as well a primary focus in Section 5.

4.3 Kerr–Schild Perturbations and Self-Interaction

Do unsourced solutions of the linear order of a gravitational theory represent the leading order of solutions

to the entire theory? We will present arguments that the answer to both parts of this question is affirmative.

The first part of this question, the relationship between the sourced and unsourced solutions, we will

discuss at linear order in our section on specific solutions (Section (5). However, the question of sourcing

gravitational theories at nonlinear order is an open question we will not discuss in higher precision.

The second part of this question, whether the corrections to the theory from interactions qualitatively

change the solution is a similarly difficult question. We shall discuss this question in this section.

Let us begin by presenting the Kerr–Schild ansatz, then discuss our intuitive understanding. Here we

will use only the total coordinates on our space XM (we choose the same background as equation (4.1.2)).

Consider a perturbation to the total metric [37,124]

ĝMN = gMN − 2ϕkMkN . (4.3.1)

Here ĝMN is the background metric, kM is a null vector field

gMNk
MkN = 0 , (4.3.2)

and ϕ is a scalar function. Given this perturbation we have the exact inverse metric63

ĝMN = gMN + 2ϕkMkN , (4.3.3)

and the perturbed Ricci tensor,

R̂M
N =

(
gMP + 2ϕkMkP

)
RPN −∇P∇M (ϕkNkP )−∇P∇N

(
ϕkMkP

)
+∇P∇P

(
ϕkMkN

)
. (4.3.4)

63In principle, all indices are raised and lowered using the background metric gMN , however, in this special case the quantities
are identical regardless of which metric we use, since kNkN = 0.
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If we further suppose that kN is an autoparallelly transported vector field (i.e. a geodesic vector field) with

respect to the background connection,

kN∇Nk
M = 0 , (4.3.5)

then equation (4.3.4) is exact and k is autoparallelly transported with respect to the perturbed connection,

since

kN ∇̂Nk
M = kN∇Nk

M − 2kMkP kNϕ∇P k
N = 0 . (4.3.6)

We shall call all such null vector fields Kerr–Schild vector fields, or just Kerr–Schild vectors, and call

them perturbative or exact based on whether they satisfy the autoparallelly transported condition. We call

ϕ a Kerr–Schild scalar.

We interpret equation (4.3.4) as an equation on only ϕ, since we began by determining kN . This kN

defines the ‘force lines’ of some ‘source’ which is defined by the singularities of kN . Once we have defined

what these force lines are our choice of ϕ becomes very restricted (as we shall see). That is, once we have

found how gravitons propagate in our space we can define exact solutions with either isolated or highly

symmetric singularities.

4.3.1 Kerr-Schild Solutions in a Five-Dimensional Minkowski Space

Let us illustrate how solutions with isolated singularities can be made exact and how their leading order of

behavior persists with interactions. If we consider M = R1,4 and

ds2 = −dt2 + dR2 +R2dΩ3
2 , (4.3.7)

one choice of exact Kerr–Schild vector would be [37]

k = ∂t + ∂R . (4.3.8)

Given this choice we further restrict our attention to our Kerr–Schild scalar having only radial dependence.

We then find our Kerr–Schild scalar obeys two, in principle, independent equations when we solve all Einstein

equations (given by the tt and one angular equation as representatives).

(
∂R

2 +
3

R
∂R

)
ϕ = 0 , (4.3.9)

− 2

R

(
∂Rϕ+

2

R
ϕ

)
= 0 . (4.3.10)
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These equations are actually degenerate (a solution to the first equation is manifestly a solution to the

second), and select a unique solution (up to scale)

ϕ ∝ 1

R2
. (4.3.11)

Which agrees with one specific solution to the Bachas and Estes equation (4.1.16). To track what occurs at

nonlinear order we first state the total line element

ds2 = −
(
1− 2M

R2

)
dt2 − 4M

R2
dtdR+

(
1 +

2M

R2

)
dR2 +R2dΩ3

2 . (4.3.12)

This line element, given the coordinate transformation

t = −
√
2M arctanh

(
R√
2M

)
+ τ , (4.3.13)

becomes the five-dimensional Scharzschild solution [115]. At long distance we have the same gravitational

potential ϕ ∼ 1
R2 as we did for the Bachas and Estes equation (4.1.16).

We note two details. First, the exact solution must obey a condition beyond only solving the radial

transverse Laplace equation. Therefore not all solutions to the Bachas and Estes equation are realized

with the same Kerr–Schild vector kM . In the next section we will investigate how this can be generalized.

Second, finding the effective gravitational potential ( 2MR2 ) assumes a diagonal metric, which our ansatz

violates. However, since the coordinate transformation to remove the off-diagonal (dtdR) is linear in t it

leaves the potential unchanged. That is, to read off the potential from the Kerr–Schild ansatz we need only

confirm that the off-diagonal terms of the metric are time independent.

4.3.2 Kerr–Schild Perturbations on Four-Dimensional Minkowski Cross a Circle

We now change coordinates from the unperturbed problem and write the background line element as

ds2 = −dt2 + dr2 + r2dΩ2
2 + dz2 . (4.3.14)

68



Note, our original R component is now given as R2 = r2 + z2 . We leave the conditions of periodicity in z

unstated momentarily. There are two notable Kerr–Schild vectors

k1 = ∂t + ∂r , (4.3.15)

k2 = ∂t +
r√

r2 + z2
∂r +

z√
r2 + z2

∂z . (4.3.16)

Similar to the above, (assuming ϕ1 is z independent) we must conclude

ϕ1 ∝ 1

r
, (4.3.17)

ϕ2 ∝ 1

r2 + z2
. (4.3.18)

We recognize ϕ1 as corresponding to a four-dimensional Schwarzschild solution, interpreted in five dimensions

as a black string, and ϕ2 is just a restatement of equation (4.3.11). Notably there is no way of enforcing

periodicity on ϕ2 since it obeys (4.3.10). However, we may superpose displaced copies of the singularity of

ϕ2 in the z direction. We consider a series of such solutions given by

kn = ∂t +
r√

r2 + (z − 2n)2
∂r +

z − 2n√
r2 + (z − 2n)2

∂z , (4.3.19)

ϕn ∝ 1

r2 + (z − 2n)2
, (4.3.20)

ĝµν = gµν +

∞∑
n=−∞

ϕnknµk
n
ν . (4.3.21)

Superposing these solutions gives only an approximate solution since kn · km ̸= 0. However, to perturbative

order, we may now construct the solution

ds2 =−

(
1− 2M

∞∑
n=−∞

1

r2 + (z − 2n)2

)
dt2

− 4M

∞∑
n=−∞

r

(r2 + (z − 2n)2)
3
2

dtdr +

(
1 + 2M

∞∑
n=−∞

r2

(r2 + (z − 2n)2)2

)
dr2

− 4M

∞∑
n=∞

z − 2n

(r2 + (z − 2n)2)
3
2

dtdz + 4M

∞∑
n=∞

r(z − 2n)

(r2 + (z − 2n)2)
2 drdz(

1 + 2M

∞∑
n=∞

(z − 2n)2

(r2 + (z − 2n)2)
2

)
dz2 + r2dΩ2

2 .

(4.3.22)
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Again, we may read off the potential as explained at the end of the previous section. We may compute the

sum analytically to find

V = −2M
π coth

(
1
2 (πr − iπz)

)
+ π coth

(
1
2 (πr + iπz)

)
4r

. (4.3.23)

Note that this function is manifestly periodic in z → z + 2. When r ≫ z we have

V = −πM
r

, (4.3.24)

which agrees with the perturbative finding.

To conclude, we find that we can find force lines corresponding to our solutions to the Bachas and Estes

equation given we superpose solutions and sacrifice giving an exact answer. However, we can now estimate

the size of the corrections to our solution as being of order ∼ kn · kmϕnϕm. That is, we know our solution

is valid up to self-interaction of the source (or superposed sources) with itself (themselves), which should

generically produce sub-leading effects. Furthermore this methodology may be used to find exact solutions

when describing extremal objects (i.e. five-dimensional Reissner–Nordström black holes), where the large-r

asymptotic behavior of the potential is the same [76].

4.4 The Taxonomy (of Scalar Solutions)

We will now elucidate our taxonomy, which can be understood on two separate levels, the level of what

solutions exist to separable partial differential equations, and level of the time-independent solutions to the

sourced perturbation of the Einstein equations. We have already argued that this should represent the

leading behavior of our higher-dimensional theory (section 4.3).

Since we do not have examples of all possible µ and D in gravitational theories we will state the taxonomy

at the level of solutions to equation (3.4.3) begun in (3.4.6) and define our taxonomy on these Green functions

before extending our analysis to gravitational perturbations.

When our world-volume is R1,3 our world-volume Beltrami–Laplace operator is [89]

□ = −∂t2 + ∂r
2 +

2

r
∂r +

1

r2

(
∂θ

2 + cot(θ)∂θ +
1

sin2(θ)
∂ϕ

2

)
= −∂t2 +∆r +

1

r2
∆ang . (4.4.1)

Here t is time, r is world-volume radius, θ azimuthal angle, and ϕ is polar angle. We are only interested

in r dependence, and we denote ∆r = ∂r
2 + 2

r∂r. As derived in the equation in figure (5) we know that
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time-independent S-waves, solving

(∆r +∆z)G(r, z − s) =
δ(r)δ(z − s)

4πr2µ(z)
, (4.4.2)

are given by

G(r, z − s) = −
∫ ∞

0

∫
1

ω2 + σ2

ω sin(ωr)

r
fσ(z)fσ(s) . (4.4.3)

However we still have to select boundary conditions on this G(r, z−s) at the boundaries of our transverse

space. We will argue that there are several natural choices for these boundary conditions that cause different

leading behavior for our functions at large world-volume separation from our source. Cataloguing which

of these boundary conditions (which we use to define different types) yield effectively lower-dimensional

behavior and what modifications they require for equation (4.4.2) led us to recognize a generic pattern when

handling non-compact transverse spaces, which we summarize here.

4.4.1 Type I Solutions

We begin with the exception to our analysis. Type I solutions are not solutions to equation (4.4.2) exactly.

However, they arise as the limit of certain Type II-IV solutions and exact solutions to supergravity theories

in the context of consistent truncations. In this section we present two interesting relations to the full space’s

Green function (equation (4.4.2)).

We note that a s, z independent version of our total Green function

((
∂r

2 +
2

r
∂r

)
+∆z

)
g(r) = − δ(r)

4πr2
, (4.4.4)

is a simple algebraic function64

g(r) = − 1

4πr
. (4.4.5)

This g(r) we dub a Type I solution. Generically, the Type I solution is any solution of either of the separated

terms (∆r or ∆z) in a separable Laplacian (∆r +∆z).

This is unenlightening; however, to relate this to the total Green function we note

∫
D
µ(z) (∆r +∆z)G(r, z − s)dz =

δ(r)

4πr2
. (4.4.6)

64Here R1,3 is simply used because it allows for an easy example where higher- and lower-dimensional behavior are clearly
separated.
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Simplifying the left hand side of this expression and equating to equation (4.4.4) we have

∆rg(r) = ∆r

∫
D
µ(z)G(r, z − s)dz + µ(z) (∂zG(r, z − s))

∣∣∣∣z→u−

z→l+
. (4.4.7)

Dependent on our boundary conditions at z → l+, u− the boundary contribution will vanish and we will

understand that g(r) is given by a smeared source in the transverse space. We call such smeared sources

‘radial black spokes.’

Alternatively we can consider the case when our transverse space has a finite volume, or

∫
D
µ(z)dz = V <∞. (4.4.8)

Therefore the leading component of G(r, z − s) with Neumann conditions at z → l+, u− is

G(r, z − s) =
1

V
g(r) +O (V ) . (4.4.9)

Here the increase in order of the corrections (V ) comes from the normalization of the heavy modes (V ) and

the increased eigenvalue
(
ω ∼ 1

V

)
.

This allows for a clear explanation of how we might understand Type I solutions in the context of

consistent truncations of the transverse modes. Ignoring any tensorial structure, we can understand Type I

solutions as the dimensional reduction limit when the volume of the transverse space vanishes, or when the

higher Fourier modes become suppressed by a factor of V . Alternatively, if we consider an arbitrary theory

and regularize it so that the transverse volume is finite, truncate all transverse dependence, then remove the

regulation, we understand that these transverse space independent, Type I, solutions are what remain.

4.4.2 Type II Solutions

Since we may always restrict our domain to some subdomain with finite volume by imposing boundary

conditions at some point in the interior of our domain, to properly classify solutions outside of such ansätze

we must study what happens when we consider replacing our domain with a larger domain.

That is, consider the measure

µ(z) = (z − 1)(z + 1) , (4.4.10)

with the domain z ∈
(
− 1

2 ,
1
2

)
. If we study the solution at z ∈

(
−1,− 1

2

)
∪
(
1
2 , 1
)
we encounter singular

points65 above and below our domain. That is our differential equation becomes singular at z = ±1. As

65We consider both µ→ ∞ and µ→ 0+ as singular.
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we have shown, the spectrum of operators is qualitatively different on finite measures and semi-infinite and

infinite measures. Therefore to study the more general case we separate problems that cannot be extended

to a semi-infinite or infinite domain into Type IV in section 4.4.10.

By contrast to a problem where we encounter singularities, we consider the measure

µ(z) =
1√
z
, (4.4.11)

where z ∈ (0, 1). In such a case if we impose that our solutions are Neumann at z → 0+, 1−, then our

eigenvalue equation has a normalizable zero mode. That is

ζ0(z) =
1√
2
. (4.4.12)

However, the boundary at z = 1 can be replaced by a boundary at z = u ∈ R+ for any u and the differential

equation will not become singular. Furthermore the Green function, or the solution to equation (4.4.2), that

obeys Neumann boundary conditions at z → 1− is actually: either sourced by a delta function at the image

point:

(∆r +∆z)G(r, z − s) =
δ(r)

4πr2

(
δ(z − s)

µ(z)
+
δ(z − 2 + s)

µ(2− z)

)
, (4.4.13)

or the underlying theory requires a boundary term so that its extrema correspond to such solutions (cf.

section 7.2). Solutions where we have imposed boundary conditions other than Neumann conditions at any

interior point and other than Dirichlet as z → ±∞ we dub Type III and will discuss them momentarily

(section 4.4.5).

Given these restrictions we have only one final bifurcation. Either the measure has finite volume or not.

In the case where the measure has finite volume

∫
D
µ(z)dz <∞ , (4.4.14)

and we consider a semi-infinite domain we have a constant normalizeable zero mode. We dub these solutions

Type II ∗, and discuss them shortly in section 4.4.4.

4.4.3 Type II, General

All remaining problems we dub generic Type II. That is we have an infinite domain, or a semi-infinite

domain and infinite transverse volume. In these cases our transverse Sturm–Liouville problem does not

afford a constant transverse zero mode. We may have discrete normalizable transverse modes and we will
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have a spectrum of delta-distribution normalizeable transverse modes. Therefore our total Green function

can be generically written as

G(r, z − s) = −
N∑
i=0

exp(−ωir)

2πr
fωi

(z)fωi
(s)−

∫ ∞

λ
2

exp(−ωr)
2πr

fω(z)fω(s)dω . (4.4.15)

Here λ ≥ 0 is as in equation (2.2.23). That is, G(r, z − s) is composed of discrete asymptotic Yukawa

modes [132] and a Laplace transform, as noted in equation (3.4.6). Further, as noted in section 3.4.2, the

Laplace transform must always be subdominant to the Green function on R3. Ergo these solutions must be

fundamentally higher-dimensional in their long range behavior.

4.4.4 Type II ∗ Solutions

When the transverse space has finite volume then the transverse basis has a normalizable zero mode, and

therefore the long range behavior of such solutions is effectively lower-dimensional. One possible example is

when the transverse measure is given as

µ(z) =
exp(−z)√

πz
. (4.4.16)

Given this the higher-dimensional solution is, when r ≫ 1,

G(r, z − s) = − 1

4πr
− f2(z)

r2
+O

(
1

r3

)
. (4.4.17)

In these spaces both boundaries have finite proper distance from the source, so our reflecting boundary

conditions concentrate the force back into the bulk of the spacetime. This is analogous to a compact extra

dimension.

4.4.5 Type III Solutions

All solutions that are effectively lower-dimensional at long range that we have seen are caused by the

boundary condition reflecting the effect of the source back into the space. Is this property universal? Is

there an alternative?

The answer to both of these questions is yes, and understanding these solutions is inexorably linked to

the boundary conditions we impose in the transverse space and where we impose those boundary conditions.

If we take a arbitrary extended space from any Type II example and impose Neumann conditions at

points away from any singularities of the transverse measure and at finite values we will always generate

a constant normalizable zero mode. We call such solutions Type III ∗. We note that we need not always

impose that the boundaries be at finite values of z, if we chose a space that has finite volume over some
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semi-infinite domain, but infinite volume over the whole domain, such as for AdS 5.

Another alternative is considering a non-constant transverse zero mode. We are especially interested

in this case, since it has the potential to produce an effectively lower-dimensional solution even when the

transverse space has infinite volume. We call all systems where the transverse space has a non-constant

transverse zero modes Type III † solutions.

One final possibility worth mentioning, mostly for the purpose of contrast to the general case, is the

case where our transverse spectrum contains negative eigenvalue modes. We will call such cases Type III ♭

solutions, and briefly discuss how such solutions appear from the perspective of the lower dimension.

4.4.6 Type III, General

Disregarding all systems that have transverse zero modes and all systems with negative eigenvalue modes,

the general case for Type III solutions is the same as the general case for Type II solutions, that is effectively

higher-dimensional.

These spaces may have Dirichlet boundary conditions at finite boundaries, such as the Dirichlet-Dirichlet

solution with a transverse interval

G(r, z) = −π(csch(π(r − iz)) + csch(π(r + iz)))

8r
, (4.4.18)

which exponentially decays for large r ≫ 1.

Alternatively these solutions may simply have an infinite volume transverse space despite the reflection

of half of the space back on itself, such as D = (0, ∞), µ = 1 with Neumann-Dirichlet conditions,

G(r, z − s) = − 1

2π2

(
1

r2 + (z − s)
2 +

1

r2 + (z + s)
2

)
. (4.4.19)

This decays like the standard (1 + 3)-dimensional solution (that is, like 1
r2 ) for r ≫ 1.

4.4.7 Type III ∗ Solutions

All spaces allow for restricting the transverse domain so that both zero modes become normalizable. When,

due to an internal boundary condition, we have a normalizable constant zero mode we call the Neumann-

Neumann solution a Type III ∗ solution. When we relax our internal boundary condition to a boundary

condition at a singularity or z → ±∞ we call these Type II ∗ solutions.

The simplest example of at Type III ∗ solution is (−1, 1) with µ = 1, where the Neumann-Neumann
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Green function is

G(r, z) = −π coth(πr − iπz) + π coth(πr + iπz)

8r
. (4.4.20)

Which asymptotes to an effectively lower-dimensional solution as r ≫ 1.

4.4.8 Type III † Solutions

If we pick boundary conditions so that our transverse space has a normalizable non-constant zero mode,

we call our solution a Type III † solution. These solutions are of special interest, because they are the only

type of solution where the transverse space can have infinite volume and we can still see effectively lower-

dimensional physics.

These solutions are generically the hardest to give explicitly, since usually the solutions to the eigenvalue

equation associated with the boundary conditions which allow for a non-constant transverse zero mode

require solving some transcendental equation, such as that of equation (2.6.21). However, we can easily

read off the leading component of the solution in the case of the interval with Dirichlet-Robin boundary

conditions, which correspond to the solutions of equation (2.6.21) as

G(r, z − s) = − 1

4π

1

r
(z + 1)(s+ 1) +O

(
1

r2

)
. (4.4.21)

We also immediately see a potential difficulty in stating the physical constants in the lower-dimensional

effective field theory. Since the solutions all vary over the transverse space the effect on a higher-dimensional

particle will change, from a lower-dimensional perspective, when the transverse position of that particle

changes. We see several strategies for handling this issue in section 5.5.

4.4.9 Type III ♭ Solutions

Many possible selections of boundary conditions allow for transverse zero modes. In these cases the leading

component of the higher-dimensional solution will oscillate in the world-volume. This will cause the lower-

dimensional effective field theory to become nonunitary, that is, to develop tachyonic degrees of freedom [21].

However, to continue the analysis of the leading component of these solutions we have the example of

the transverse interval D = (−1, 1) with an antisymmetric zero mode f(1)(z) =
√

3
2z. In this case we also

have a negative eigenvalue mode f(0)(z) = k cosh(ω0z). Here

k =

(
2ω0 + sinh(2ω0)

2ω0

)− 1
2

, (4.4.22)
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and ω0 is the solution to the transcendental equation

coth(ω0) = ω0 . (4.4.23)

That is, ω0
∼= 1.199678640257734 . . ..

The leading component of the transverse Green function is dominated by the augmented world-volume

Green function, (
1

r2
∂rr

2∂r + ω0

)
Giω0(r) =

δ(r)

4πr2
, (4.4.24)

multiplied by this transverse function. That is

G(r, z − s) = − k2

4π

cos(ω0r)

r
cosh(ω0z) cosh(ω0s)−

3

8π

1

r
zs+O

(
1

r2

)
. (4.4.25)

While these create perfectly viable solutions to the Bachas and Estes equation, they will define theories

with manifestly unstable vacua.

4.4.10 Type IV Solutions

As previously stated, Type IV solutions are those where the measure either vanishes or diverges at two finite

values.66 Like Type III solutions, Type IV solutions can be divided into cases:

1. General, where there are no normalizable zero modes (and all eigenvalues are positive),

2. ∗, where the constant zero mode is normalizable,

3. †, where the non-constant transverse zero mode is normalizable,

4. ♭, where there are negative eigenvalues.

We emphasize the difference between our coordinates extending to infinite values and our measure being

finite. Perhaps the most interesting example in this category is D =
(
0, π

2

)
and µ(z) = tan(z). In this case

the volume of the transverse space diverges, but the non-constant transverse wave function,

ξ0(z) =
2√
ζ(3)

log (sin(z)) , (4.4.26)

is normalizeable.

The Green function on this space with the boundary conditions that select ξ0 is an example of a Type

66We will give an example of this in principle, but we do not know of any gravitational solutions where the background has
this property.
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IV † solution, whose leading component

G(r, z − s) = − 1

4π

4

ζ(3)

1

r
log(sin(z)) log(sin(s)) +

1

r2
, (4.4.27)

diverges at z, s→ 0−, but vanishes when z, s→ π
2
−.

We include a brief mention of this possibility for completeness; again, we do not know of any such

gravitational backgrounds. However, from a mathematical standpoint they emphasize the difference between

defining the coordinates on an infinite space, and the space having infinite volume. The volume of the

transverse space is independent of the coordinates we choose, and even when we have a preferred set of

coordinates, such as those that eliminate the constant term of the Laplacian, they do not define when the

transverse space is ‘non-compact’.

4.5 Type I: Ricci-Flat Branes and Radial Black Spokes

From our section on the generalizations of the Bachas and Estes equation (4.1.16) we understand that

we cannot give full nonlinear solutions to Type III solutions with our present techniques. However, we

understand from our section on Kerr-Schild that we can present exact Type I solutions, and even present an

understanding of them at the level of the full field theory.

For supersymmetric brane solutions, whether the brane is resolved by transgression or not, it is possible

to replace the Ricci-flat worldvolume (or effective worldvolume in the resolved case) by an arbitrary Ricci-flat

manifold. This is also true for its transverse space. The metrics of these doubly-Ricci-flat branes are given

by equation (4.1.1) where exp
(
2
aA
)
is a harmonic function on the transverse space. For a flat transverse

space this is an example of a brane with Ricci-flat worldvolume as first explored in [24], which is a special

case of a branes on branes construction, where one considers a consistent truncation to a supergravity theory

on the lower-dimensional worldvolume [87].

It is not difficult to show that the solution (4.1.1), along with its appropriate scalars and fluxes, is

supersymmetric provided that gµν and gab admit covariantly constant spinors with an appropriate projection

condition. This is explored in Appendix A of [51]. From [55], the unique static, Ricci-flat, Lorentzian

manifolds that admit covariantly constant spinors is Minkowski. For the transverse space, on the other

hand, there are many options other than Euclidean space. In particular, depending on dimension, one can

select Calabi–Yau, hyper-Kähler, G(2), or Spin(7) manifolds [64,70,109].

We can infer many details of the effective field theory, including the number of preserved supercharges,

which is determined by the number of singlets in the decomposition of the representation of the Spin(D−d)

spinor with respect to the holonomy group of the transverse space, where D − d is the dimension of the
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transverse space. A more detailed acount of special holonomy manifolds and their relation to supersymmetry

may be found in [58].

A compact Riemannian manifold without boundary only admits a constant solution to the Laplace

equation. Therefore we may only study non-trivial A in the context of a non-compact transverse space. Due

to the non-compactness of the transverse space, A will generically have a singularity. For example, consider

when the transverse space is a conical Calabi–Yau space with metric

ds2(CY ) = dR2 +R2ds2(SED−d−1) . (4.5.1)

Here SED−d−1 is a (D − d − 1)-dimensional Sasaki-Einstein manifold with D − d even.67 If we consider A

with only R-dependence, then

exp

(
2

a
A

)
= 1 +

k

RD−d−2
. (4.5.2)

This is singular at R = 0. For generic spaces this implies a curvature singularity of the solution. However,

for the M2 and M5-branes, the R = 0 singularity is a horizon [3, 44,63].

We are generically interested in doubly-Ricci-flat branes because they allow for effective gravitational

physics on the brane worldvolume. As an example, one possible Ricci-flat worldvolume metric is the

Schwarzschild black hole. In isotropic coordinates it is

ds2 = −

(
1− M

rd−3

1 + M
rd−3

)2

dt2 +

(
1 +

M

rd−3

) 4
d−3 (

dr2 + r2ds2(Sd−2)
)
, (4.5.3)

where d is the worldvolume dimension. This solution, is singular at r = 0, ignoring potential singularities due

to A. However, this r = 0 singularity is ‘smeared’ everywhere in the transverse space. In the perturbative

picture, a doubly-Ricci-flat brane with worldvolume given by equation (4.5.3) can be written as a perturbation

of a doubly-Ricci-flat brane with a R1,d−1 worldvolume,

ds2 = exp(2A) (ηµνdx
µdxν +MHµνdx

µdxν) + gab(Z)dZ
adZb +O(M2) , (4.5.4)

with

H00 =
4

rd−3
, Hij =

4

(d− 3)rd−3
δij , (4.5.5)

67Taking SED−d−1 = SD−d−1 gives the flat metric on RD−d.
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where δij is the flat metric on the Rd−1 slice of R1,d−1. This perturbation is not traceless; however, it does

obey the de Donder gauge

∂µHµν − 1

2
∂νHρ

ρ = 0 . (4.5.6)

The stress tensor that sources this perturbed solution (4.5.4) has the form

TMN =MδM0δN0f(Z)
δ(r)

rn−2
, (4.5.7)

where f(Z) is a smooth function on the transverse space. From the delta function structure of the stress

tensor, we observe that the source of this solution is not localized in the higher dimension, but is spread out

radially like a spoke.

4.6 Type II: Linearized Isolated Sources

If we source our theory at an isolated point then finding the exact solution becomes much more difficult. This

can be explained in two related ways. The independent components (the brane and the black spoke) of the

source of Type I solutions are generically invariant under the diffeomorphisms of the world-volume and the

transverse space, respectively. A source point source breaks both symmetries simultaneously. Alternatively

we may compare our theory to Kerr–Schild perturbations. While either source in Type I solutions can

be described by a Kerr–Schild perturbation where the Kerr–Schild vector is dependent only on one of our

constituent manifolds68 the source to a Type II solution must vary in both spaces.

Significant quantities of ink have been spilled over considering the question of when the solutions we

would identify as Type II solutions are stable at higher order, when they meaningfully approximate different

physical phenomena, and how they may be approximated. Our goal in identifying them here is simply to

restrict their possible asymptotic behavior purely from the study of the relevant Green function. However,

the comparison to Kerr–Schild perturbations allows us to grasp some level of control of these solutions. First,

we can understand the near field behavior of our solution. Second, we can intuitively see why such solutions

will generically not give lower-dimensional behavior.

4.6.1 Near Field Behavior

To this first point, if we choose any arbitrary point in our spacetime we can freely construct a coordinate

system given by the exponential map at that point. More formally we can construct Fermi normal coordinates

at that point. In appendix C we demonstrate the generic algorithm for giving Fermi normal coordinates

68Therefore so is the Kerr–Schild scalar, but this is non-obvious and perhaps only generically true.
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and we apply this algorithm for the spacetime of the dimensionally reduced Salam–Sezgin-Cvetic–Gibbons–

Pope background. The essential argument is that at any (nonsingular) point our spacetime we can give

coordinates in terms of the geodesic distance from that point. These coordinates are manifestly Kerr–Schild

vectors. Moreover if parallel transport along the time-like coordinate of our Fermi normal is a geodesic

curve at any point, our metric approximates the Minkowski metric at that point, therefore our Laplacian

at that point approximates the flat Laplacian. From this we may approximate that the near field limit of a

higher-dimensional point source.

This is perhaps no great innovation in physics, but it does allow us to see another route for corrections to

our solutions. Since our time coordinate must be a geodesic, it will generically oscillate, and in a background

with a brane source, it will generically be attracted to the brane and cause the brane itself to oscillate [56].

Note this is a generic property and we do not state that one can never have a stationary black-hole solution

in the presence of a brane.

4.6.2 Far Field Behavior

To our second point, we know that the force lines of our solution will generically be geodesics away from

that point. In these solutions all of these force lines must end on our source. If we consider a world-volume

slice of our spacetime containing the source there are three possibilities. The forcelines can diverge away

from our world-volume slice faster than linearly, in which case we expect exponential supression of gravity

in the lower dimension (associated with a mass gap and no zero mode). The forcelines can diverge away

from our world-volume slice linearly, in which case we expect an approximately massless higher-dimensional

behavior ( 1
r2 compared to 1

r ). The forcelines can concentrate towards the world-volume slice, which might

lead to lower-dimensional behavior.

We note that, excluding Type II ∗ solutions, we know that the effective behavior must be higher-

dimensional. Therefore we can associate our last case with a finite volume transverse space.

The limitation of this speculation is that we cannot, at the level of the Kerr–Schild ansatz, rule out

that the potential along our force-lines does not have some scalar dependence that invalidates our estima-

tion of the far field potential. However, the comparison we want to draw, is between our understanding of

world-volume gravitons, as per the Bachas and Estes equation, and the leading order of the full solution.

4.7 Type III: Linearized Source-Brane Interactions

By comparison, our boundary conditions in Type III solutions allow us to concentrate the effect of the source

back into the spacetime. If we consider the example of AdS 5, we can calculate the leading order of the Type
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II solution. The Green function associated with the Bachas and Estes operator is [51]

((
∂r

2 +
2

r
∂r

)
+

(
∂z

2 − 3

z
∂z

))
G(r, z − s) =

Λ3z3δ(r)δ(z − s)

4πs3r2
. (4.7.1)

We can verify that this has no associated zero modes for z ∈ D = (0,∞). We can verify our assertion that

this should approximate near-field limit of five-dimensional flat-space solution. That is, nearby to the source

we have

GK(r, z − s) = − Λ3

2π2

1

r2 + (z − s)2
+O

(
1√

r2 + (z − s)2

)
. (4.7.2)

Far from our source (r >> 1 and z = s) we have

GK(r, 0) = −15Λ3s7

4π

1

r7
+O

(
1

r8

)
. (4.7.3)

However, if we demand that out solution obeys Neumann conditions at z = 1
k then we find there is a

transverse zero mode. Using our long-distance mirror technique we find that our related Green function GT

has the same short-range behavior and, when r >> 0 we have

GT (r, 0) = −Λ3k

2πr
+O

(
1

r2

)
. (4.7.4)

The dynamics of this solution has been discussed at length [54, 129], and there are many problems to be

solved and details to be studied about whether these solutions are stable, whether they are stationary, etc.

However from our next perspective (in section 8) all such Type III ∗ are consistent truncations, at least until

you include additional degrees of freedom beyond the metric. Whereas when we consider Type III † solutions

at the level of the field theory these are not inconsistent truncations.

However, these solutions require a more subtle treatment of what precisely the higher-dimensional theory

is. In the case of the Randall–Sundrum II model, or the standard Kaluza–Klein reduction, we can view

our theory as a perturbation about a background with features which compactify the higher-dimensional

space. In the case of Randall–Sundrum II it is the brane by which they stitch the spacetime together, in

Kaluza–Klein reductions it is the fact that one dimension is circular. The perturbations around these spaces

are regular everywhere once this additional requirement is created.

Type III † reductions are, by necessity, not regular at some point, either at the boundary of the higher-

dimensional space or at the interior or the higher-dimensional space. As we will explore in sections 6, 8,

and 9, they require some novel boundary term, or additional source. Continuing the anology with AdS 5,

when Randall and Sundrum reflected the spacetime at their fold they created a cusp in the warp factor of
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their background solution. Type III ∗ solutions just change the world-volume metric underneath such a cusp.

Type III † solutions create a cusp, and therefore either require an additional source or boundary term. For

the sake of making the most favorable comparison to existing work, we will always consider this additional

cusp to be caused by a boundary term which vanishes when the perturbation vanishes.
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5 Species of Brane Gravity Localizations

5.1 The Geometry of the Salam–Sezgin Lift

The uplift of the Salam–Sezgin R1,3×S2 solution into Type IIA supergravity was obtained in Reference [34].

In Einstein frame, this uplifted solution, the SS–CGP solution, is

ds210 = exp(2A)

(
ηµνdx

µdxν + dy2 +
1

4g2
(
dψ + sech2ρ (dχ+ cos θ dφ)

)2)
+

1

g2
exp(6A)ds2EH ,

B(2) =
1

4g2
(
dχ+ sech2ρ dψ

)
∧
(
dχ+ cos θ dφ

)
, e2ϕ = exp(−8A) , A = log ◦ cosh−4 (2ρ) ,

(5.1.1)

where g is a constant, and ds2EH is the metric on the four-dimensional Eguchi–Hanson space [22],

ds2EH = cosh 2ρ
(
dρ2 +

1

4
(tanh 2ρ)2(dχ+ cos θ dφ)2 +

1

4
(dθ2 + sin2 θ dφ2)

)
. (5.1.2)

The coordinates take values in ranges xµ ∈ R1,3, y ∈ [0, ly), χ, φ ∈ [0, 2π), ψ ∈ [0, 4π), θ ∈ [0, π] and

ρ ∈ [0,∞). Since χ has a period of 2π (instead of a period of 4π) the boundary of the Eguchi–Hanson

space at infinity is RP3 ∼= S3/Z2. Here S3 is realised as a Hopf fibration [73] over S2, with χ as the fibre

coordinate. As ρ = 0 the geometry of the Eguchi–Hanson space is approximately R2×S2 for constant (θ, φ),

with (ρ, χ) acting as plane polar coordinates on R2.

As explained in [32], the SS–CGP solution preserves eight supercharges, and has the form of an NS5-

brane wrapped on (y, ψ) ∈ T 2 with an effective worldvolume R1,3 that has a singularity which is resolved by

transgression. The function A, which is usually a harmonic function on the transverse space (Eguchi–Hanson

in our case), is now a particular solution to the sourced Laplacian

∆EH exp(−8A) = −g
2

2
(F(2))

2 , (5.1.3)

where ∆EH is the Laplacian on Eguchi–Hanson space, and F(2) is the field strength of the 1-form

A(1) = sech2ρ (dχ+ cos θ dφ) , (5.1.4)

and is the unique, anti-self-dual 2-form on Eguchi–Hanson space. Geometrically, this transgression is realised

as a U(1) fibration of the worldvolume over Eguchi–Hanson space with fibre coordinate ψ and connection

A(1). We will call this U(1) bundle the transgression bundle. For generic values of ρ, this bundle is non-trivial

84



with second Chern character

∫
ch2(F(2)) =

1

2(2π)2

∫
F(2) ∧ F(2) = 1 , (5.1.5)

where the integral is over the Eguchi–Hanson space. There is a special limit of the SS–CGP solution which

makes the connection to NS5-branes even more manifest. As ρ→ ∞, the field strength F(2) vanishes, so the

transgression bundle trivialises. In this limit, the solution asymptotes to the linear dilaton solution, which

is the near-horizon limit of the NS5-brane. Consequently, there is also an enhancement of supersymmetry

to sixteen supercharges in this limit.

It is worth mentioning that it is possible [32] to include an additional NS5-brane into the SS–CGP

solution without breaking any more supersymmetry by adding to exp(−8A) a homogeneous solution to

(5.1.3). Explicitly, one has

exp(−8A) = sech2ρ− k log tanh ρ , (5.1.6)

where k is a positive constant that is proportional to the tension of the NS5-brane. The logarithmic behaviour

of H for small ρ is indicative of the fact that the topology of the Eguchi–Hanson space is R2 × S2 in this

neighbourhood. In order for this to remain a solution, the NSNS 2-form [93] is also modified to be [32]

B(2) =
1

4g2
(
(1 + k)dχ+ sech2ρ dψ

)
∧
(
dχ+ cos θ dφ

)
. (5.1.7)

We will not be studying this solution further in the present paper, but more information about it can be

found in Reference [32].

5.2 Perturbations from the Salam–Sezgin Cvetic–Gibbons–Pope Background

One method of finding solutions to the perturbation problem about the Salam–Sezgin and Cvetic–Gibbons–

Pope background is to find solutions to the perturbation problem of the five-dimensional theory

L5 = R− 1

2
(∇Φi)

2 − 1

2
e
√
2Φ1 (∇σ)2 − V , (5.2.1)

obtained from Type I supergravity reduced on T 3 × S2, the details of which are presented in Appendix E.69

Here, the scalar potential V is

V = 2g2e
√

2
5Φ2− 8√

15
Φ3

(
e−

√
2Φ1 + σ2 +

1

4
e
√
2Φ1(σ2 − 2)2 − 4e−

√
2
5Φ2+

√
3
5Φ3

)
. (5.2.2)

69The two form in this solution does not originate from a matter field in Type I supergravity, but from the metric in the
reduction, please refer to Appendix E for more detail.
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The (background) Salam–Sezgin solution of Type I supergravity in five dimensions is

ds25 = (sinh 2ρ)
2
3

(
ηµνdx

µdxν +
1

g2
dρ2
)
, e−

√
2Φ1 = (tanh 2ρ)2 ,

e
√
10Φ2 = e

√
15Φ3 = (sinh 2ρ)2 , σ =

√
2sech2ρ .

(5.2.3)

We note g is the (length)−1 dimensional parameter characterising the scale of the H(2,2) hyperbolic geometry

[32]. We perturb about this background (5.2.3),

gMN = (sinh 2ρ)
2
3

(
gMN +HMN

)
, Φi = Φi + ϕi , σ = σ +Σ , (5.2.4)

where g is our conformally related metric described in (4.1.2). Here g is explicitly

ds25 = gMNdX
MdXN = ηµνdx

µdxν +
1

g2
dρ2 . (5.2.5)

Φi and σ are the background values of the scalars. Here, we have used XM = (xµ, ρ). For notational

convenience, we will define a function A(ρ) by

e2A(ρ) = (sinh 2ρ)
2
3 , (5.2.6)

and also make the coordinate rescaling ρ → z(ρ) = ρ/g. In the XM = (xµ, z) coordinate system, gMN =

ηMN , and the linearized Ricci tensor of (5.2.4) is given by

RMN =
1

2

(
∂P∂MHNP + ∂P∂NHMP −□5HMN − ∂M∂NH

)
+

3

2
A′(∂MHNz + ∂NHMz − ∂zHMN

)
+
(
A′
(
∂MHMz −

1

2
∂zH

)
+
(
A′′ + 3(A′)2

)
Hzz

)
ηMN −

(
A′′ + 3(A′)2

)
HMN +O(H2) ,

(5.2.7)

where □5 = ηMN∂M∂N , and H = ηMNHMN . Using the definition of A(z) given in (5.2.6), we find

RMN =
1

2

(
∂P∂MHNP + ∂P∂NHMP −∆5HMN − ∂M∂NH

)
+ g coth(2gz)

(
∂MHNz + ∂NHMz

)
+
(2
3
g coth(2gz)

(
∂MHMz −

1

2
∂zH

)
+

4g2

3
Hzz

)
ηMN − 4g2

3
HMN +O(H2) .

(5.2.8)

The operator ∆5 in (5.2.8) is defined as

∆5 = □5 + 2g coth(2gz)∂z = ηµν∂µ∂ν + g2
(
∂2ρ + 2 coth(2ρ)∂ρ

)
. (5.2.9)
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5.2.1 Scalar Equations

Before looking at HMN ’s field equations, we will consider the equations for ϕi and Σ. At general order these

are

□5Φ2,3 =
∂V

∂Φ2,3
, □5Φ1 =

1√
2
e
√
2Φ1
(
∂σ
)2

+
∂V

∂Φ1
, ∇M

(
e
√
2Φ1∂Mσ

)
=
∂V

∂σ
. (5.2.10)

We use that

√
−g = e5A

(
1 +

1

2
H+O(H2)

)
, (5.2.11)

to expand our scalar equations at first order to find

□5Φi = e−2A∆5Φi + e−2A
(
∆5ϕi −

(
∂MHMz −

1

2
∂zH

)
Φ

′
i −Hzz∆5Φi

)
, (5.2.12)

∇M

(
e
√
2Φ1∂Mσ

)
= e

√
2Φ1−2A∆̃5σ + e

√
2Φ1−2A

(
∆̃5Σ+

(√
2ϕ1 −Hzz

)
∆̃5σ

−
(
∂MHMz −

1

2
∂zH

)
σ′ +

√
2σ′ϕ′1

)
, (5.2.13)

where the operator ∆̃5 is defined as

∆̃5 = ∆5 +
√
2Φ

′
1∂z = ∆5 − 8gcsch(4gz)∂z . (5.2.14)

For the right hand side of the scalar equations, we have, to first order in perturbations,

∂V

∂Sα
=

∂V

∂Sα

∣∣∣∣∣
S

+
∂2V

∂Sβ∂Sα

∣∣∣∣∣
S

δSβ , (5.2.15)

where Sα = {Φi, σ}, δSα = {ϕi,Σ}, and S denote the scalars, scalar perturbations, and background scalars

respectively. Note that there is no 1
2 prefactor on the second derivative of the potential.

We also have

e
√
2Φ1
(
∂σ
)2

= e
√
2Φ1−2A

(
(σ′)2 + (

√
2ϕ1 −Hzz)(σ

′)2 + 2σ′Σ′) . (5.2.16)

Calculation shows that

∂2V

∂Φ2,3∂Φ1

∣∣∣∣∣
S

=
∂2V

∂Φ2,3∂σ

∣∣∣∣∣
S

= 0 . (5.2.17)

Consequently, {ϕ1,Σ} and {ϕ2, ϕ3} are decoupled from each other at this order in perturbations. Explicitly,
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the scalar equations are

ϕ1 :
(
∆5 − 8g2

)
ϕ1 = −4gcsch(4gz)

(√
2Gz + 2 cosh(2gz)

(
∂zΣ+ 2g tanh(2gz)Σ

))
, (5.2.18)

Σ :
(
∆̃5 − 8g2(sech(2gz))2

)
Σ = −2gsech(2gz) tanh(2gz)

(√
2Gz − 2

(
∂zϕ1 − 2g tanh(2gz)ϕ1

))
, (5.2.19)

ϕ2 : ∆5ϕ2 −
8g2

5
ϕ2 +

32

5

√
2

3
g2ϕ3 = 2

√
2

5
g
(
coth(2gz)Gz + 2gHzz

)
, (5.2.20)

ϕ3 : ∆5ϕ3 −
56g2

15
ϕ3 +

32

5

√
2

3
g2ϕ2 =

4g√
15

(
coth(2gz)Gz + 2gHzz

)
, (5.2.21)

where for brevity, we define

Gz = ∂MHMz −
1

2
∂zH . (5.2.22)

We can solve one of the {ϕ1,Σ} equations and one of the {ϕ2, ϕ3} equations by requiring

Σ = sinh(2gz) tanh(2gz)ϕ1 , ϕ3 =

√
2

3
ϕ2 . (5.2.23)

The resulting equations are

ϕ1 :
(
□5 + 2gcsch(4gz)(3 cosh(4gz)− 1)∂z + 8g2

)
ϕ1 = −4

√
2gcsch(4gz)Gz , (5.2.24)

ϕ2 : ∆5ϕ2 +
8g2

3
ϕ2 − 4

√
2

5
g2Hzz = 2

√
2

5
g coth(2gz)Gz . (5.2.25)

The right hand side of the remaining scalar equations are proportional to Gz. We recognize this to be the

z-component of the de Donder combination [41, 116]. Since the supergravity equations are invariant under

linearized diffeomorphisms [9]

HMN 7→ HMN + ∂(MξN) + 2A′ξzηMN , ξM := ηMNξ
N , (5.2.26)

with similar expressions for the transformations of ϕi and Σ, we can set Gz = 0 as a gauge condition.

In this gauge, ϕ1 decouples from the gravity sector. So, for simplicity, we will set ϕ1 = 0. The same is

not true for ϕ2, as it couples to Hzz. For completeness, the equation for ϕ2 in this gauge is

∆5ϕ2 +
8g2

3
ϕ2 − 4

√
2

5
g2Hzz = 0 . (5.2.27)
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5.2.2 Einstein Equations

Now, let us analyze the equations of motion for HMN . The linearized (trace-reversed) stress tensor θ
(1)
MN ,

where R
(1)
MN = θ

(1)
MN , is given by

θ
(1)
MN = ∂(MΦ2∂N)δΦ2 + ∂(MΦ3∂N)δΦ3 +

e2A

3

( ∂V
∂Φ2

∣∣∣
S
δΦ2 +

∂V

∂Φ3

∣∣∣
S
δΦ3

)
ηMN +

e2A

3
V
∣∣∣
S
HMN

=

√
10

3
g coth(2gz)

(
δMz∂Nϕ2 + δNz∂Mϕ2

)
+

4
√
10

9
g2ϕ2 ηMN − 4g2

3
HMN , (5.2.28)

where we have used ϕ1 = Σ = 0 and the Gz = 0 gauge.

For simplicity, we now use our remaining diffeomorphism invariance to set the full de Donder gauge

∂MHMN − 1

2
∂NH = 0 . (5.2.29)

In this gauge, the linearized Ricci tensor given in (5.2.8) becomes

R
(1)
MN = −1

2
∆5HMN + g coth(2gz)

(
∂MHNz + ∂NHMz

)
+

4g2

3
HzzηMN − 4g2

3
HMN , (5.2.30)

and the Einstein equations now simplify to

∆5HMN−4g coth(2gz)∂(MHN)z−
8g2

3
HzzηMN = −4

√
10

3
g coth(2gz)δz(M∂N)ϕ2−

8
√
10

9
g2ϕ2 ηMN . (5.2.31)

Firstly, we examine the zz component of (5.2.31). It reads

∆5Hzz −
8g2

3
Hzz +

8
√
10

9
g2ϕ2 = 4g coth(2gz)

(
∂zHzz −

√
10

3
∂zϕ2

)
. (5.2.32)

Recall that ϕ2 obeys (5.2.27). Performing the field redefinitions

Hzz =
1√
2
ϕ+ φ , ϕ2 =

3

2
√
5
ϕ , (5.2.33)

we find that (5.2.27) and (5.2.32) become

ϕ2 : ∆5ϕ =
8
√
2

3
g2φ , (5.2.34)

φ : ∆5φ = 0 , (5.2.35)

89



where

∆5 = □5 − 2g coth(2gz)∂z . (5.2.36)

Next, we have the µz components of (5.2.31), which read

□5Hµz = 2g coth(2gz)
(
∂µφ− 1√

2
∂µϕ

)
. (5.2.37)

Since ϕ and φ are fixed, if the operator □5 is invertible (which it is in the case of time-independent solutions),

the solution to Hµz is symbolically,

Hµz = 2g
1

□5
coth(2gz)

(
∂µφ− 1√

2
∂µϕ

)
. (5.2.38)

Finally, the µν components of (5.2.31) are

∆5Hµν = 4g coth(2gz)∂(µHν)z +
8g2

3
φηµν . (5.2.39)

Since ∆5 is a linear operator, we can split Hµν into three parts

Hµν = Hµν +Kµν + Jηµν , (5.2.40)

where

∆5Hµν = 0 , (5.2.41)

∆5Kµν = 4g coth(2gz)∂(µHν)z , (5.2.42)

∆5J =
8g2

3
φ . (5.2.43)

As with the µz equation, all of the quantities on the right hand sides are known. In fact, (5.2.43) is equivalent

to (5.2.34) with the choice J = ϕ/
√
2. Thus, provided that appropriate boundary conditions are imposed,

∆5 can be inverted to solve (5.2.41)-(5.2.43).
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5.2.3 Time Independent H00

For time-independent solutions, it is clear from (5.2.38) that H0z = 0 is a solution, and consequently, we

have K00 = 0 as a solution. Then, H00 = H00−J = H00−ϕ/
√
2, where, for completeness, H00 and ϕ satisfy

∆5H00 = 0 , ∆5ϕ =
8
√
2

3
g2φ , ∆5φ = 0 . (5.2.44)

with operators ∆5 and ∆5 as defined in (5.2.9) and (5.2.36) respectively. For solutions that are also radially

symmetric in R1,3, we have, recalling that z = ρ/g,

∆5 = ∂r
2 +

2

r
∂r + g2

(
∂ρ

2 + 2 coth 2ρ ∂ρ
)
, ∆5 = ∂r

2 +
2

r
∂r + g2

(
∂ρ

2 − 2 coth 2ρ ∂ρ
)
, (5.2.45)

with r the isotropic, spatial radius in R1,3. For simplicity, we will consider the case φ = 0.

In summary, we find that, as for Minkowski spacetime, the leading component of any perturbative solution

for H00 is given by a Green function associated with ∆5, the Crampton–Pope–Stelle operator [32].

5.3 Type II and Type III †: Green Functions for the CPS Operator

In section 5.4 we will argue the key to understanding the effective Newton potential is understanding the

behavior of H00, which is given by a Green function of the CPS operator ∆5. Since we are interested in

computing Newton’s constant, which arises from the interaction of a small test particle orbiting a massive

source, we consider the sourced equation,

∆5G(r, ρ) =
gκ̂2Mδ(r)δ(ρ)

4πr2µ(ρ)
=
gκ̂2Mδ(r)δ(ρ)

4πr2 sinh 2ρ
, (5.3.1)

where κ̂2 is the five-dimensional Newton constant, M is the mass of the source, µ(ρ) = sinh 2ρ is the

appropriate measure for integrating over ρ, as seen from consideration of the H2
µν terms in the perturbative

action, and VN (r, ρ) = −2mparticleG(r, ρ) is the Newtonian potential. Eigenfunctions of this operator have

previously been studied in [32]. There, time dependent solutions were found that localize gravity to four

dimensions via a non-constant, normalizable zero mode ξ0 of the ρ-dependent part of ∆5,

(
∂2ρ + 2 coth 2ρ ∂ρ

)
ξ0 = 0 . (5.3.2)
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For convenience, we will call this ρ-dependent part the transverse operator ∆. The solution to (5.3.2) that

is normalizable (and normalized) with respect to the measure µ(ρ) is

ξ0 = ±2
√
3

π
log tanh ρ . (5.3.3)

The existence of this normalizable zero mode is special. In many examples of non-compact, transverse

geometries realized in supergravity, such as BPS branes [120], the zero modes of the associated transverse

operator are non-normalizable, and the coupling of the lower-dimensional massless gravitational sector to

all other modes in the effective field theory consequently vanishes. This is a consequence of the extended

nature of the source in the higher dimension, as is the case with black spokes as discussed in section 4.5.

In this section, we will first inspect asymptotic solutions to (5.3.1) in order to understand the general

behavior of the Green functions. Then, following [32], we will solve for the Green functions by expanding

in a basis of eigenfunctions of the transverse operator ∆. There are two bases of eigenfunctions of interest

which are distinguished by their boundary conditions in ρ. We will start with a mode decomposition where

the Green function G(r, ρ) vanishes at infinity and is continuous everywhere away from the source at the

(r, ρ) = (0, 0) origin. We will find that this solution does not become effectively lower-dimensional (i.e.

4D) for a massless field, but instead becomes exponentially suppressed in the worldvolume radius r. We

will secondly consider a mode decomposition that includes the zero mode (5.3.3) as found in [32], and will

find that the corresponding solution then does effectively become lower-dimensional, but that it also has

logarithmic structure as ρ → 0. The relationship between these two cases is explained in more detail in

Section 3.4.3.

5.3.1 Asymptotic Solutions

There are two main regimes where the ∆5 operator simplifies greatly. The first is when ρ ≪ 1, and the

second is when ρ≫ 1. The relevant asymptotic expansions of the operator are

∆5 = ∂2r +
2

r
∂r + g2

(
∂2ρ +

1

ρ
∂ρ +

4

3
ρ ∂ρ +O(ρ3)

)
, (5.3.4)

when ρ is small, and

∆5 = ∂2r +
2

r
∂r + g2

(
∂2ρ + 2 ∂ρ + 4 exp(−2ρ)∂ρ +O(exp(−4ρ))

)
, (5.3.5)
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when ρ is large. Since we are interested in sources at r = 0 near the ρ = 0 submanifold, we should inspect

the Green function in that limit. Specifically, by substituting the coordinate redefinition

R2 = g2r2 + ρ2 , θ = arctan

(
ρ

gr

)
, (5.3.6)

(5.3.4) becomes

∆5 = g2
(
∂2R +

4

R
∂R +

1

R2

(
∂2θ + (cot(θ)− 2 tan(θ)) ∂θ

))
+O(ρ) . (5.3.7)

For θ-independent functions, this is just the Laplacian on R5. The precise normalization of the radially

symmetric Green function on R5 is given by

(
∂2P +

4

P
∂P

)
1

2π2P 3
= −δ5

(
XM

)
, (5.3.8)

where X ∈ R5 and P 2 = X · X. Defining r2 = (X1)2 + (X2)2 + (X3)2 and ρ2 = (X4)2 + (X5)2, we may

integrate over the angular dimensions in (5.3.8) to find

(
∂2P +

4

P
∂P

)
1

2π2P 3
= −δ(r)δ(ρ)

8π2r2ρ
. (5.3.9)

Now, the right hand side of (5.3.1) in the ρ→ 0 limit reads

gκ̂2Mδ(r)δ(ρ)

4πr2 sinh 2ρ
∼ gκ̂2Mδ(r)δ(ρ)

8πr2ρ
+O(ρ2) . (5.3.10)

Consequently, we expect the leading component of the Green function in the R→ 0 limit to be

G(r, ρ) = − g4κ̂2M

2π (g2r2 + ρ2)
3
2

+O
(

1

R2

)
. (5.3.11)

There are two more regimes of interest. The first is when r ≫ 1 and ρ ≪ 1. For r ≫ 1, the differential

operator takes the same form as in (5.3.4). However, we are interested in solutions expanded as a Laurent

series about r = ∞ [4]. As such, we may use separability to find the leading term, which can be expanded

in inverse integer powers of r. We have

∆5f(r, ρ) = 0 ⇒ f(r, ρ) =
A

r
+
B log(ρ)

r
+O

(
1

r2

)
. (5.3.12)

The second regime is when ρ ≫ 1. In this regime, the transverse operator ∆ can be manipulated into
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the form of the Helmholtz operator [112] in leading-order by writing

∆5

(
exp(−ρ)

r
f(gr, ρ)

)
= 0 ⇒

(
∂2x + ∂2ρ − 1

)
f(x, ρ) = 0 , (5.3.13)

for x = gr. In this regime, we will be interested in the f = exp(−ρ) solution to (5.3.13), since this is the

leading component of the ξ0(ρ)
r solution found in [32]:

ξ0(ρ)

r
∝ log tanh ρ

r
= −2

r
exp(−2ρ) +O (exp(−4ρ)) . (5.3.14)

Knowing the leading components of a Green function in asymptotic regimes, however, does not tell us

how the solution for a given source near (r, ρ) = (0, 0) evolves as it approaches infinity in various directions.

We are left with the question: does the solution with leading behavior (5.3.11) asymptote to the ξ0(ρ)
r solution

at large r? And if so, what is the coefficient of this term?

5.3.2 Type II Solutions from Green’s Formula

To find the corresponding Type II solution (at least asymptotically) it is sufficient to find GK which obeys

special Neumann conditions at ρ = 0. That is

∂ρG
K(r, ρ− η)

∣∣∣
ρ=0

, ∂rG
K(r, ρ− η)

∣∣∣
r=0 and ρ ̸=η

= 0 ,

GK(r, ρ− η)
∣∣∣
r→∞

= 0 , GK(r, ρ− η)
∣∣∣
ρ→∞

= 0 .

(5.3.15)

The transverse basis we must choose for this is the ‘pure ζ0’ basis, and is calculated explicitly in appendix

B. For the sake of the reader we will restate equation (B.1.11). The elements of our basis ζω, with ω > 1,

are Legendre functions of the second type [61] with an detailed normalization coefficient and complex order.

It is

ζω(ρ) =

√
πω2

√
ω2 − 1

tanh
(π
2

√
ω2 − 1

)
P
− 1

2+

√
1−ω2

2

(cosh(2ρ)) . (5.3.16)

Similarly the world-volume basis we must choose also obeys special Neumann as r → 0, and is given in

section 2.6.2. For n = 3 we have

fσ(r) =
sin(σr)√

2πr
. (5.3.17)

Applying Green’s equation for product spaces, as given in figure (5), we have

GK(r, ρ− η) =

∫ ∞

0

∫ ∞

1

1

ω2 + σ2

σ sin(σr)

2π2r
ζω(ρ)ζω(η)dωdσ . (5.3.18)
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As we established in section 3.4.2 we know that integrating over the world-volume eigenvalue (σ) simplifies

this equation to

GK(r, ρ− η) = −
∫ ω

1

exp(−ωr)
4πr

ζω(ρ)ζω(η) dω . (5.3.19)

From this we know that the leading component of GK(r, ρ− η) is exponentially suppressed at large r ≫ 1.

In fact, since we know for no combination of ρ and η does the product of our transverse basis functions

approximate a delta function in ω, we know

GK(r, ρ− η) ≺ exp(−r)
r

. (5.3.20)

5.3.3 Type III † Solutions from Green’s Formula

A similarly low precision estimate of the solutions with the boundary conditions70 which permit our nor-

malizable zero mode ξ0(ρ) (which we show to be normalizable in equation (2.6.59)) is sufficient to find the

leading behavior of this solution as r ≫ 1 as well. Furthermore, it is enough to demonstrate that this is a

Type III † solution.

By definition the transverse basis in which we should expand our target Green function GT (r, ρ − η)

contains ξ0

ξ0(ρ) =
4
√
3

π
Q0(cosh(2ρ)) =

√
12

π
log ◦ tanh(ρ) . (5.3.21)

As well as oscillating modes with ω > 1 with

ξω(ρ) = bωQ− 1
2+

√
1−ω2

2

(cosh(2ρ)) . (5.3.22)

Repeating Green’s equation for product spaces (figure (5)) we have

GT (r, ρ− η) =

∫ ∞

0

1

σ2

σ sin(σr)

2π2r
ξ0(ρ)ξ0(η) +

∫ ∞

0

∫ ∞

1

1

ω2 + σ2

σ sin(σr)

2π2r
ξω(ρ)ξω(η)dωdσ . (5.3.23)

For the same reasons as for equation (5.3.20) the double integral must be dominated by exp(−r)
r . However,

since our spectrum has a discrete zero mode we know

GT (r, ρ− η) = − 1

4πr

12

π
log ◦ tanh(ρ) log ◦ tanh(η) +O

(
exp(−r)

r

)
. (5.3.24)

Notably, this function diverges logarithmically as ρ, η → 0. What this means physically and possible

motivations for this will be discussed in the context of Newton’s constant in section 5.5. However, we could

70The details of the boundary conditions fit more neatly into section 5.3.4 and are given in equation (5.3.27).
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choose to regularize our source around ρ ∼ 0 with respect to some transverse function, f(ρ). In this case the

long-distance potential, V T (r, η), is

V T (r, η) =

∫ ∞

0

µ(ρ)f(ρ)G(r, ρ− η)dρ . (5.3.25)

If we choose to regularize our source with f(ρ) = ξ0(ρ), we have

V T (r, η) =

∫ ∞

0

− 1

4πr

√
12

π
log ◦ tanh(η) . (5.3.26)

Similarly if we regularize the potential of our probe we have that the long-distance effect of a source on a

probe (at leading order) is exactly given as − 1
4πr as a function of r (with some mass factor). Therefore we

exactly reproduce the Newtonian limit at linear order.

5.3.4 Long Distance Mirrors and Transverse Pöschl–Teller Potential

We will now illustrate the relationship between these two solutions via the methodology of 3.4.3. We consider

the Green function GK on R3 ×W M which obeys special Neumann conditions at ρ = 0. That is, we are

interested in comparison between the regularity and boundary conditions which permit a zero mode, that is

(sinh(2ρ) log ◦ tanh ρ ∂ρ − 2)GT (r, ρ− η)
∣∣∣
ρ=0

= 0 , ∂rG
T (r, ρ− η)

∣∣∣
r=0 and ρ ̸=η

= 0 ,

GT (r, ρ− η)
∣∣∣
r→∞

= 0 , GT (r, ρ− η)
∣∣∣
ρ→∞

= 0 .

(5.3.27)

In this case our interpolating function FT solves

(
∂2r +

2

r
∂r + ∂2ρ + 2 coth(2ρ)∂ρ

)
FT (r, ρ− η) = 0 . (5.3.28)

F obeys the following general boundary conditions at ρ = 0,

(sinh(2ρ) log ◦ tanh ρ ∂ρ − 2)F (r, ρ)
∣∣∣
ρ=0

= − (sinh(2ρ) log ◦ tanh ρ ∂ρ − 2)GK(r, ρ)
∣∣∣
ρ=0

. (5.3.29)
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From asymptotic analysis of our differential equation when r ≪ 1 or r ≫ 1, we know GK approximately.

We have, in the small r regime,

− (sinh(2ρ) log ◦ tanh ρ ∂ρ − 2)GK(r, ρ)
∣∣∣
ρ=0

=
2

(r2 + η2)
3/2

−

(
6(η log(ρ) + η)

(r2 + η2)
5/2

ρ+O
(
ρ2
)
+O

(
1

R

)) ∣∣∣
ρ=0

=
2

(r2 + η2)
3/2

+O
(
1

R

)
.

(5.3.30)

The interpolating function F can be expanded in either of the {ζω} or {ξω} bases from section 2.6.7. Choosing

the {ξω} basis for convenience, the Laplace equation (3.4.16) gives

(
∂2r +

2

r
∂r − ω2

)
fω(r) = −µ(ρ)

(
ξω(ρ)∂ρF

T (r, ρ− η)− (∂ρξω)F
T (r, ρ− η)

) ∣∣∣ρ→∞

ρ=0
. (5.3.31)

Here, we have projected (5.3.28) into the {ξω} basis and have integrated by parts as in the previous section.

For the ω = 0 zero mode, this simplifies, in the r → 0 limit, to

(
∂2r +

2

r
∂r

)
f0(r) = ±2

√
3

π

2

(η2 + r2)
3
2

+O
(
1

R

)
. (5.3.32)

We shall momentarily disregard the subleading O
(
1
R

)
corrections. The solution to 5.3.32 is then

f0(r) = ±2
√
3

π

1

η
−

sinh−1
(

r
η

)
r

+
c1
r

+ k1 , (5.3.33)

where c1 and k1 are integration constants. Since f0 must be regular at r = 0, we must have c1 = 0. Now

we consider the O
(
1
R

)
corrections. Since the explicit form of GN is not known, these cannot be written in

closed form.

However, we do know that GK must vanish as r → ∞, at least exponentially fast. So, as r → ∞, the

zero mode of F must solve (
∂2r +

2

r
∂r

)
f0(r) = ±A exp(−r)

r2
, (5.3.34)

where A is some unspecified constant given by the asymptotic form of GK . Assuming that f0 vanishes when

r → ∞, the solution to this is

f0(r) = ±A
(
exp(−r)

r
+ Ei(−r)

)
+
c2
r
, (5.3.35)
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where Ei(−r) is the exponential integral function, and c2 is a constant. We now define

f in = ±2
√
3

π

1

η
−

sinh−1
(

r
η

)
r

+ k1 , fout = ±A
(
exp(−r)

r
+ Ei(−r)

)
+
c2
r
, (5.3.36)

for inside and outside solutions, respectively. We assume some crossover point r = l where exp(−r)
r2 becomes

a better estimate of GK than 1
R3 and require continuity of the functions,

f in(r)
∣∣∣
r=l

= fout(r)
∣∣∣
r=l

, ∂rf
in(r)

∣∣∣
r=l

= ∂rf
out(r)

∣∣∣
r=l

. (5.3.37)

Solving these junction conditions fixes the remaining constants k1 and c2 :

k1 = ±

(
2
√
3

π
√
l2 + η2

− 2
√
3

πη
+AEi(−l)

)
,

c2 = ±

 2
√
3l

π
√
l2 + η2

−
2
√
3 sinh−1

(
l
η

)
π

−Ae−l

 .

(5.3.38)

The constant k1 is irrelevant to the large r behavior, but c2 gives the lower-dimensional behavior at large r.

Specifically, when η ≪ 1, one has

c2 = ±2
√
3

π
log(η) + h(l, η) , (5.3.39)

where h(l, η) = O(η0). The independence of l in the first term of c2 shows that it is valid to estimate f0

by matching f in and fout. Ignoring h(l, η) since it is finite as η → 0+, we reconstruct the leading order of

FT (r, ρ− η) when r ≫ 1 by multiplying our solution for f0 by the zero mode ξ0(ρ) to find

FT (r, ρ− η) =
12

π2
log tanh ρ log(η)

1

r
+O(η0) +O

(
1

r2

)
, (5.3.40)

which agrees with our preliminary analysis in the η → 0+ limit.

5.4 Inferring Newton’s Constant for SS–CGP

Owing to the non-trivial nature of the SS–CGP background, it is difficult to solve for all components of a

gravitational perturbation that is sourced at the (r, ρ) = (0, 0) origin. However, our goal is to understand

whether brane-gravity localization is possible, and, to this end, we only need to compute the effective

gravitational potential associated with the perturbation and from that infer the lower-dimensional Newton

constant. The problem of defining a lower-dimensional Newton constant can be interpreted at the level of
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the field theory action by reading off the coupling of matter fields to the metric. However, one alternate

method by which one might determine the Newton constant, and also determine the dimension to which the

effective gravity corresponds, would be to measure the response of a test particle to a known source mass

and so to infer the corresponding Newton constant by the way geodesics in spacetime are distorted by the

gravitational perturbation.

If one considers a weak-field limit in the neighbourhood of a source mass for a perturbation caused by the

source in a Minkowski spacetime, only the details of the time-time component71 of the perturbation need be

known [26]. We will show that this is also true in the SS–CGP background.

5.4.1 The SS–CGP Background

In this section, we will consider timelike geodesics on the SS–CGP background (5.1.1). The affinely parametrized

geodesic equation for a path γ is given by [126]

d2ZM

dτ2
+ ΓM

KL(Z)
dZK

dτ

dZL

dτ
= 0 , (5.4.1)

where ZM = (Xµ, Y, P,Θ,Φ,Σ,Ψ) are the coordinates of the path γ, and τ is the proper time. We use

capital letters here in order to avoid confusion with the global coordinates in (5.1.1).72 This equation of

motion gives extrema for the Lagrangian73

L = gMN (Z)
dZM

dτ

dZN

dτ
. (5.4.2)

The isometry group of (5.1.1) is given by

Isom10 = ISO(1, 3)× U(1)3 × SO(3)2 , (5.4.3)

where the U(1)3 corresponds to the 3-torus parametrized by (y, ψ, χ), and the SO(3)2 is the isometry of the

S2 parametrized by (θ, φ). Using these isometries, we find that a partial solution to the geodesic equation is

Y = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 . (5.4.4)

71This statement makes use of an implicit gauge. We give full details of our gauge below.
72(Xµ, Y, P,Θ,Φ,Σ,Ψ) correspond to (xµ, y, ρ, θ, φ, χ, ψ).
73We use the form (5.4.2) of the particle Lagrangian in this discussion for simplicity, instead of the worldline reparametrization

invariant proper-time action
∫ dτ(p)

dp
dp involving a square root. The Lagrangian (5.4.2) can of course be obtained from the

einbein form [25] LBdVH = 1
2
(e−1gMN (Z) dZ

M

dτ
dZN

dτ
+m2

particlee) by choosing the reparametrization gauge e = 1
2
.
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Simplifying the Lagrangian (5.4.2) for a solution that obeys conditions (5.4.4), we find

L = (cosh 2P )1/4
[
ηµν

dXµ

dτ

dXν

dτ
+

1

g2

(dP
dτ

)2]
. (5.4.5)

The equation of motion for P (τ) is then

d2P

dτ2
+

1

4
(tanh 2P )

(dP
dτ

)2
− g2

4
(tanh 2P )ηµν

dXµ

dτ

dXν

dτ
= 0 . (5.4.6)

This admits the solution

P (τ) = 0 . (5.4.7)

The remaining equations for Xµ are the usual geodesic equations on R1,3. Remembering that we are looking

for a timelike geodesic, the appropriate solution is

X0 = τ , Xi = 0 . (5.4.8)

To summarize, we find that the SS–CGP geometry admits the stable timelike geodesic

X0 = τ , Xi = 0 , Y = 0 , P = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 . (5.4.9)

This will be the starting point for the next section, where we look for a timelike geodesic on a perturbed

SS–CGP geometry.

5.4.2 Perturbed SS–CGP Geodesics

We consider the perturbed geometry described by a metric ĝ, with

ĝMN = (cosh 2ρ)1/4(ḡMN +HMN ) , (5.4.10)

where ḡ is the string-frame metric [32] on the SS–CGP background,74 and HMN is a perturbation. The

perturbation that we are interested in is independent of the time coordinate x0, and has components only

along the xµ and ρ directions, with H0i = 0. As such, the U(1)3 × SO(3)2 isometry of the SS–CGP

background is unbroken, and we have that

Y = 0 , Θ = π , Φ = 0 , Σ = 0 , Ψ = 0 (5.4.11)

74The string-frame metric is related to the Einstein-frame metric by ds2str = eϕ/2ds2Ein.
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solves the perturbed geodesic equations. With this choice, the perturbed particle Lagrangian is

L = ĝMN (Z)
dZM

dτ

dZN

dτ

= (cosh 2P )1/4
[
(ηµν +Hµν)

dXµ

dτ

dXν

dτ
+ 2Aµ

dXµ

dτ

dP

dτ
+

1

g2
(1 +B)

(dP
dτ

)2]
,

(5.4.12)

where we have defined

Hµρ(X
i, P ) ≡ Aµ(X

i, P ) , Hρρ(X
i, P ) =

1

g2
B(Xi, P ) . (5.4.13)

It is important to note that Hµν , Aµ and B are functions of Xi and P only.

The resulting equations for Xµ and P are given by

(δµν +Hµ
ν)
d2Xν

dτ2
+

1

2
ηµν
(
∂σHλν + ∂λHσν − ∂νHσλ

)dXσ

dτ

dXλ

dτ

+Aµ
(d2P
dτ2

+
1

2
(tanh 2P )

(dP
dτ

)2)
+
(
∂PA

µ − 1

2g2
∂µB

)(dP
dτ

)2
+
(
F µ
ν + ∂PHµ

ν +
1

2
(tanh 2P )(δµν +Hµ

ν)
)dXν

dτ

dP

dτ
= 0 ,

(5.4.14)

and

1

g2
(1 +B)

(d2P
dτ2

+
1

4
(tanh 2P )

(dP
dτ

)2)
+

1

2g2
∂PB

(dP
dτ

)2
+Aµ

d2Xµ

dτ2

+
1

g2
∂µB

dXµ

dτ

dP

dτ
+
(
∂(µAν) −

1

2
∂PHµν − 1

4
tanh 2P

(
ηµν +Hµν

))dXµ

dτ

dXν

dτ
= 0 ,

(5.4.15)

where

∂µ ≡ ∂

∂Xµ
, ∂P ≡ ∂

∂P
, Fµν ≡ 2∂[µAν] , (5.4.16)

and the µ, ν indices are raised by ηµν .

We now consider a deviation of the original timelike geodesic on the SS–CGP background as given in

(5.4.9). We write

X0 = τ + δX0 , Xi = δXi , P = δP . (5.4.17)

We will treat δP and the τ -derivatives of these deviations as small (the Newtonian limit), and will only

consider terms of order 1 in perturbations. Here, the considered perturbations include Hµν , Aµ, and B, the

τ -derivatives of δXµ and δP , as well as δP itself; so we will neglect, for example, terms of the form

B
d2δP

dτ2
= O(pert2) . (5.4.18)
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The resulting linearized equations for Xµ are then

d2δX0

dτ2
= 0 ,

d2δXi

dτ2
=

1

2

∂

∂δXi
H00 , (5.4.19)

where we have used that Hµν is independent of X0. The first equation allows us to set δX0 = 0, and so

X0 = τ at least in this linearized regime. Thus, we are allowed to interpret τ as the underlying manifold’s

time, which we will write as x0 = t. The δXi equation is then Newton’s equation, with a gravitational

potential

VN (δXi, δP ) = −2mparticleH00(δX
i, δP ) , (5.4.20)

where mparticle is the small mass of the test particle following the geodesic.

Finally, we also have the δP equation, which in our approximation reads

d2δP

dt2
+
g2

2
δP − g2

2

∂

∂δP
H00 = 0 , (5.4.21)

where we have used that Aµ is independent of X0. Using the Newtonian potential defined in (5.4.20), and

removing the δ’s from δXi and δP for convenience, we can rewrite these equations as

mparticle
d2Xi

dt2
= − ∂

∂Xi
VN , (5.4.22)

mparticle

(d2P
dt2

+
g2

2
P
)
= −g2 ∂

∂P
VN . (5.4.23)

In conclusion, the leading effect of perturbations about the SS–CGP background is through VN ∝ H00.

5.5 The Worldvolume Newton Constant

Now that we have the effective Newton potentials for the Type I to Type III cases, we want to understand

their physics. In particular, we are interested in studying whether these potentials have a lower-dimensional

(four-dimensional) behaviour, and if they do, what is the effective, four-dimensional Newton constant. Let’s

begin by analyzing the Type I and II cases. Type I solutions (black spokes), as we recall, correspond to

worldvolume Ricci-flat solutions. Although these solutions are clearly four-dimensional in nature and actually

solve a full nonlinear self-interacting equation, they do not correspond to a specific four-dimensional Newton

constant. This is because of the worldvolume ‘trombone’ symmetry that is inherent in the Ricci-flat family

of solutions - any rescaling of the worldvolume metric by any positive constant remains a solution [33]. Due

to the existence of this symmetry, there is no well-defined four-dimensional Newton’s constant, as its value

can always be scaled to a different value by a trombone transformation. The trombone symmetry, however,
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can be broken when we couple to external sources. In such cases, since our transverse space is non-compact,

the usual argument of Reference [74] states that the four-dimensional Newton’s constant vanishes. What this

really means is that, in contrast to the Ricci-flat self interactions, coupling of the black spokes to external

sources would be inherently higher-dimensional instead of four-dimensional.

As for Type II solutions, they clearly do not exhibit four-dimensional behaviour. From (B.4.5), we found

that the large-distance behaviour of the Type II potential is of a form corresponding to massive gravity in

5 dimensions. We will not be examining this further, but will move on to the Type III solutions, which

as we can see from (5.3.24), do indeed have four-dimensional behaviour at large r worldvolume distance.

However, it is not immediately obvious what the four-dimensional Newton constant should be, as it appears

to depend on the non-compact transverse coordinate ρ. In the following, we offer three different approaches

to identifying an appropriate four-dimensional Newton constant.

5.5.1 Newton’s Constant or the Gravitational Coupling κ in Type III

All three interpretive approaches centre on the geodesic equations derived in Section 5.4, which we will

reproduce here in radial coordinates on the worldvolume,

R′′(t)− lW
2

R(t)3
= − 6gκ̂2M

π3R(t)2
log tanh (P (t)) log tanh(η) +O

(
1

R(t)3

)
, (5.5.1)

P ′′(t) +
g2

2
P (t) =

12g3κ̂2M

π3R(t)

log tanh(η)

sinh(2P (t))
+O

(
1

R(t)2

)
, (5.5.2)

where 0 < η ≪ 1 is the transverse coordinate of the mass M source, R2(t) = Xi(t)Xi(t), and lW
2 is

the worldvolume angular momentum. We note that although there is a sign difference between the two

equations, the potential is attractive in both the worldvolume and transverse coordinates since for all x > 0,

tanhx ∈ (0, 1), so the logarithmic terms are negative definite.

Method 1: Fixed Points

Our first approach is to find fixed points of the geodesic equation where P (t) is constant. We can then infer

the four-dimensional Newton constant by substituting this fixed point into (5.5.1). At first glance, however,

we find that there are no fixed points for P (t). In order to generate one, recall that our 5-dimensional system

can be embedded in 10 dimensions, where the ρ coordinate is paired with the angular coordinate χ, forming

an R2. So we may suppose that by restoring nontrivial χ dependence, there will be an additional angular
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momentum term in (5.5.2). More precisely, we have

P ′′(t) +
g2

2
P (t)− lT

2

P (t)3
=

6g3κ̂2M

π3R(t)

log(η)

P (t)
+O

(
1

R(t)2

)
, (5.5.3)

where lT is the transverse angular momentum. If we ignore the higher order corrections involving the radius

R(t) and take P (t) = P to be constant, this equation simplifies to

g2

2
P 4 − 6g3κ̂2M

π3R(t)
log(η)P 2 − lT

2 = 0 . (5.5.4)

The only positive solution for this is

P = 2
1
4

√
lT
g

+
3g

3
2 κ̂2M log(η)

21/4π3R(t)
√
lT

+O
(

1

R(t)2

)
. (5.5.5)

Of course, we can find the leading order of this expression by simply suppressing the quadratic term in

P in equation (5.5.4). This reflects the structure of the background: since there is an attractive potential,

there is a stable circular orbit where

P = 2
1
4

√
lT
g
. (5.5.6)

The additional attractive potential from the mass M source ‘squeezes’ this orbit, but at large world volume

radius this squeezing fades out. If we suppose there is some minimum non-zero transverse angular momentum

lT , as in the Bohr–Sommerfeld quantisation condition, then we may suppose that P takes this value [83].

One may make a similar interpretation for the value of the mass M source transverse coordinate η.

Substituting (5.5.6) into (5.5.1), we then find that the R(t) equation becomes

R′′(t)− lW
2

R(t)3
= − 6gκ̂2M

π3R(t)2

(
log tanh

(
2

1
4

√
lT
g

))2

+O
(

1

R(t)3

)
, (5.5.7)

≈ −
6gκ̂2 log

(√
2 g
lT

)2
M

4π3R(t)2
. (5.5.8)

If we compare this to the usual radial geodesic equation in four dimensions

r′′(t)− l2W
r(t)3

= − κ2M

4πr(t)2
, (5.5.9)
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we find a value for the effective four-dimensional gravitational coupling

κ =

√
6g

π

∣∣∣ log(√
2lT
g

)∣∣∣κ̂ , (5.5.10)

where we recall that κ̂ is the five-dimensional gravitational coupling constant.

Method 2: Quantum Localization

We can go beyond the above semiclassical picture, if we want to consider that our geodesic equation becomes

nonsingular due to quantum effects. Specifically we may ask what the instantaneous worldvolume radial force

is on a purely quantum test particle, defined by a separable wavefunction

Ψ(xi, ρ) = ψ(xi)ϕ(ρ) , (5.5.11)

where we assume that the worldvolume wavefunction ψ is some Gaussian wave packet with a negligible width

compared to the worldvolume radius r of its centroid. To apply a quantum mechanical analysis, we note

that our geodesic equations can be obtained from the following Lagrangian (calculated to give the geodesic

equations (5.5.1) and (5.5.2) as its equation of motion)

L =
1

2

(
d

dt
Xi(t)

)2

+
1

2g2

(
d

dt
P (t)

)2

− 1

2
P (t)2 − µ

R(t)
log tanh(P (t)) , (5.5.12)

where µ = 12gκ̂2M
π3 log tanh(η). If we assume that the Xi are effectively constant, the associated Hamiltonian

is

H =
1

2
Π(t)2 +

g2

2
P (t)2 +

µ

r
log tanh(P (t)) . (5.5.13)

Therefore, we may study functions ϕE(ρ) that solve the associated time independent Schrödinger equation

(TISE),

EϕE(ρ) =

(
−ℏ2

2

d2

dρ2
+
g2

2
ρ2 +

µ

r
log tanh(ρ)

)
ϕE(ρ) , (5.5.14)

and we will focus on the ground state ϕ0 = ϕ, as we are interested in small (low-energy) quantum excitations.

The TISE (5.5.14) was derived with the assumption that the worldvolume motions Xi are effectively

constant. This is a good approximation when r2 = XiXi ≫ 1. Now, if we assume that ρ is finite, then

along with the assumption r2 ≫ 1, the TISE asymptotes to the equation describing a quantum harmonic
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oscillator, with its well-known solutions [62]. The ground state, in particular, is 75

ϕ(ρ) =
√
2
( g

πℏ

) 1
4

exp

(
−gρ

2

2ℏ

)
+O

(µ
r

)
. (5.5.15)

For ρ ≪ 1 on the other hand, the logarithmic term in the TISE is no longer negligible even in the large r

approximation, and the equation for the ground state at fixed r approximates instead to

(
−ℏ2

2

d2

dρ2
+
µ

r
log(ρ)

)
ϕ(ρ) = 0 . (5.5.16)

To our knowledge, the exact solution to this differential equation is unknown. However, if we make a WKB

approximation [13] (noting that the fn(ρ) will in general be complex)

ϕ(ρ) = exp

(
1

ℏ
f−1(ρ) + f0(ρ) + ℏf1(ρ) +O(ℏ2)

)
, (5.5.17)

then, to leading order in ℏ, we find,

(
d

dρ
f−1(ρ)

)2

=
2µ

r
log(ρ) , (5.5.18)

which has solutions

f±−1 = k± ± i

√
2µ

r

(
ρ
√
− log ρ−

√
π

2
Erf
(√

− log ρ
))

, (5.5.19)

where k± are integration constants, and Erf is the error function [2]. Therefore in the ρ ≪ 1 regime, ϕ is

given by a superposition

ϕ(ρ) = A exp

(
i

ℏ

√
2µ

r

(
ρ
√
− log ρ−

√
π

2
Erf
(√

− log ρ
)))

+B exp

(
− i

ℏ

√
2µ

r

(
ρ
√
− log ρ−

√
π

2
Erf
(√

− log ρ
)))

.

(5.5.20)

Since ϕ is a ground-state quantum wavefunction, we will require that it obey the special Neumann boundary

condition at ρ = 0:

∂ρϕ
∣∣
ρ=0

= 0 . (5.5.21)

This is the same condition as that obeyed by the quantum harmonic oscillator ground state (5.5.15), as

is appropriate for an S-wave ground state when one recalls that Equation (5.5.14) is the radial part of a

75Since the domain is the positive real line, we are a factor of
√
2 different from the standard normalization of the ground

state of the quantum harmonic oscillator.
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transverse two-dimensional Schrödinger problem in (ρ, χ). Condition (5.5.21) relates the coefficients A and

B:

A = B exp

(
i

√
2πµ

r

)
. (5.5.22)

We can now determine the remaining coefficient B by matching the large r limit of (5.5.20) with the

harmonic oscillator ground state (5.5.15) at ρ = 0, which gives

B =

√
g

πℏ
. (5.5.23)

In particular, we can match (5.5.20) with (5.5.15).

That is that the solution to the unperturbed problem supports a solution with the same asymptotic

behavior of the perturbed problem at order O (µ/r). If the perturbed problem had qualitatively different

asymptotic solutions (say log(ρ) versus ρ2) and specifically had dominated the unperturbed problem, then

we could, in principle, see corrections that dominate the leading order of our estimate of κ. However, in

this we can, up to corrections of order O(µ/r), compute expectation values using just the solutions to the

harmonic oscillator.

The expectation value we are interested in is the transverse-space dependent part of the right-hand-side

of (5.5.1). This allows us to deduce the four-dimensional effective Newton constant. Explicitly, we find

κ2 =
24gκ̂2

π2
⟨log tanh(ρ)⟩ log tanh(η) , (5.5.24)

with the expectation value for an operator f(ρ) defined as

⟨f(ρ)⟩ =
∫ ∞

0

2

√
g

πℏ
exp

(
−gρ

2

ℏ

)
f(ρ)dρ+O

(µ
r

)
. (5.5.25)

We may similarly choose to consider both the test particle and the source to be governed by the same

transverse quantum Schrödinger problem. Given that, we find the effective four-dimensional gravitational

coupling at large r distance

κ = −
√
24g

κ̂

π
⟨log tanh(ρ)⟩ . (5.5.26)

We are unable to compute such expectation values analytically. But, if we set ℏ/g = 1, we can give a

numerical approximation:

κ =
√
g (1.73338 . . .) κ̂ . (5.5.27)
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Method 3: Smeared Transverse Expectation Values

Of course, calculating expectation values given some transverse profile function does not require a fully

quantum treatment. We can instead imagine measuring the instantaneous acceleration of a particle whose

transverse position is drawn from a smeared distribution of possible positions in the transverse direction.

We may suppose that the test particles have P (0) = P and suppose that the probability P of P taking

a given value between 0 < a < b <∞ is

P(a < P < b) =

∫ b

a

fP (ρ)dρ , (5.5.28)

where we define our random variable, P , by its probability density function fP . The average instantaneous

acceleration we measure for a test particle drawn from this distribution is

⟨R′′(0)⟩ −
〈

l2W
R(0)3

〉
= −

〈
6κ̂2M

π3gR(0)2
log tanh(P (0)) log tanh(η)

〉
+O

(
1

R(0)3

)
. (5.5.29)

Assuming R(0) and P are independent variables and our probability density function is correctly normalized,

that is ⟨1⟩ = 1, then

R′′(0)− l2W
R(0)3

= − 6gκ̂2M

π3R(0)2
⟨log tanh(P )⟩ log tanh(η) +O

(
1

R(0)3

)
. (5.5.30)

Here

⟨log tanh(P )⟩ =
∫ ∞

0

fP (ρ) log tanh(ρ)dρ . (5.5.31)

We might choose to study any number of random distributions, but, given the suggestive form of the

right-hand-side of equation (5.5.31) we will take

fP (ρ) = µ(ρ)ξ0(ρ)
2 =

12

π2
sinh(2ρ) (log tanh(ρ))

2
. (5.5.32)

Given this,

⟨log tanh(P )⟩ = 9ζ(3)

π2
, (5.5.33)

with ζ(z) the Riemann zeta function [61]. This determines the four-dimensional κ to be

κ2 = −216ζ(3)gκ̂2

π4
log tanh(η) . (5.5.34)
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We can similarly average to get an expected value for log tanh(η), to find

κ =
√

6g
18ζ(3)

π3
κ̂ . (5.5.35)

We may compare this with the numerical value of κ given by the quantum treatment of the geodesic equation

(5.5.27), finding here

κ =
√
g (1.70932 . . .) κ̂ , (5.5.36)

and observe that these two approaches calculations agree to 3 parts in 100. Although the numerical result

from the quantum treatment required setting ℏ/g = 1, the result will not change significantly if ℏ/g is

set to another finite constant. This is because the quantum expectation value is dominated by behaviour

of exp(−gρ2/ℏ) log tanh ρ near the origin, which only deviates very slowly as a function of the ratio ℏ/g.

The result of (5.5.35) also agrees precisely with the value found in Reference [32] for the four-dimensional

graviton self-coupling κ, up to corrections arising from the compactification of higher transverse dimensions

other than ρ.

The Force Lines of the Newtonian Potential

In order to help visualizing the effect of the source near the origin on a test particle at some distance r away,

and specifically to show how the resulting near field evolves into the far field, we have made approximate

illustrations for Type II and Type III potentials.

These images were created by taking the leading orders of the potential in the near (R ≪ 1) and far

(r ∼ 1) field limits and interpolating. The change brought about by the source perturbation needs to be

considered in comparison to the effect of the unperturbed SS–CGP background. The effect of the background

is a uniform attraction to ρ = 0 proportional to ρ. At small values of ρ, or for relatively massive sources,

this background effect may be neglected. There is one additional scale of relevance, which is the ratio of g,

the SS–CGP background parameter, to η, the height above the ρ = 0 plane at which the source is placed. In

our illustrations we have chosen η
g = 0.1 . We did not take any obvious limits, such as η

g → 0 or ∞, because

the Type III solution becomes infinite or vanishes in those limits respectively.
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Figure 6: Equipotential surfaces of a Type II potential
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Figure 7: Force lines (gradient flows) of a Type II potential

We can see from Figures (6) and (7) that, near to the source, the Type II potential asymptotes to a

spherically symmetric potential
(

1
R3

)
. Note that the lines in the two figures are orthogonal to each other.

Arbitrarily far away, the equipotential surface shapes asymptote to an oblate spheroid which has twice the

radius in the ρ direction as in the r direction. It is not seen from the illustration that the Type II solution is

exponentially decaying at large r. Overall, the particle is drawn towards the source with relative disregard

(in comparison to Type III) for its ρ position.
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Figure 8: Equipotential surfaces of a Type III potential
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Figure 9: Force lines (gradient flows) of a Type III potential

Now contrast this with the Type III potential shown in figures (8) and (9). Near to the source on the

SS–CGP background in the Type III situation, the potential behaves asymptotically in a similar fashion as

in the Type II situation. The difference occurs for large r.

For the sake of clarity, we have regularized the ξ0 ∝ log tanh(ρ) transverse wavefunction. The equation

for the regularised ξ̃0 is (
∂2ρ + 2 coth(2ρ)

)
ξ̃0(ρ) =

1

ϵ
(tanh (α (ϵ− ρ))− 1) . (5.5.37)

We have chosen to regularise ξ0 in this way so that all force lines in the illustration end on the perturbative

source at the displace point r = 0, ρ = η. When α≫ 1 , the right-hand side of equation (5.5.37) approximates

a step function, normalized so that it integrates to one over the half open integral. In our illustration we

have chosen α = 100 and ϵ = 0.02.

One can see in Figures (8) and (9) that the Type III force lines concentrate as one approaches ρ = 0 or,

alternately, that the equipotential surfaces spread out with increasing r along the ρ = 0 subsurface. The fact

that the potential at large r is proportional to the ξ0 transverse wavefunction is due to the Type III boundary

condition (5.3.27), or, equivalently, to the presence of a boundary term placed at ρ = 0 in order to enforce

111



the boundary condition. The ξ0 → ξ̃0 regularization is equivalent to the smearing of that condition/source.

Due to the ξ̃0 smearing/regularizing, the effect of the boundary term can be seen near to ρ = 0, as

opposed to at ρ = 0 in our illustration. Specifically one sees the force lines on the far right travel downwards

towards ρ = 0, in response to the presence of the boundary term. Close to ρ = 0, the force lines bend left as

the r dependence of the boundary term draws them towards the source. Then as they approach the origin

they then bend back upwards towards the source at (r, ρ) = (0, η). If one removes the ξ̃0 regularization,

almost all force lines concentrate within the ρ = 0 subplane. That does not largely effect the long-range

potential, but the regularized ξ̃0 helps the visualization.

Due to the boundary condition/term at ρ = 0, the force in the Type III situation falls more slowly at

large r than in Type II, that is it does not decay exponentially when r ≫ 1. Instead, the potential has an

1/r falloff as we found in the Type III Green function (5.3.24). The total effect is similar to the RSII ‘brane

bending’ as described by Giddings, Katz, and Randall [60].
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6 Effective Field Theories of Scalars

What are the implications of dimensional reduction outside the standard Neumann-Neumann or periodic

boundary conditions, that is outside of consistent truncations?

At the level of an effective field theory of only scalars, the effect of choosing different transverse spaces

for our effective field theory is only relevant in how it affects the spectrum and overlap integrals, therefore it

creates an ideal juxtaposition with standard Kaluza–Klein reduction (which we cover in section 7). In this

section we will explore how inconsistent truncations can be ‘integrated out’ at the cost of nonlocal operators

suppressed by the mass gap between the lightest particle, and the next lightest particle.

This section also lays out a procedure for accomplishing the dimensional reduction to maintain consistency

between the higher- and lower-dimensional actions and equations of motion, which we dub the ‘Dimensional

Reduction Square’. We will describe the infinitude of possible higher-dimensional boundary terms which allow

us to select any boundary condition, and attempt to argue for a standard form. We will then integrate out

the heavy fields and note the structure of each of the possible corrections as we accomplish this, emphasizing

when these are different to the corrections in a consistent truncation.

6.1 The Dimensional Reduction Square

In general, there are several technical problems with finding an effective field theory (EFT) with any non-

trivial background or boundary conditions, especially at the level of the action. We will present this work in

two steps, first we will find the free theory, and calculate the lower-dimensional degrees of freedom. Second

we will calculate the interactions, and attempt to describe the theory in terms of its lightest ‘effective’ modes.

We have discovered, during this procedure, we must ensure that we are preserving the following properties:

1. The extrema of our action must correspond to the solutions of the equations of motion given our

boundary conditions. This is accomplished through specifying higher-dimensional boundary terms.

2. The higher-dimensional fields must be expressed in a basis which is complete, obeys our boundary

conditions, and hopefully diagonalizes the transverse wave operator(s).

3. The higher-dimensional fields should be expressed in terms of lower-dimensional components which

hopefully diagonalize the lower-dimensional degrees of freedom, and the lower-dimensional gauge trans-

formations simultaneously.

Each of these seems an obvious requirement for the procedure of finding an EFT at the level of the action.

However, the necessity of each of these steps can be illustrated with specific problems that arise in the
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lower-dimensional EFT when they are missed. The purpose of this section is to demonstrate deriving an

EFT where the answer is already known, so that failures can be obviously diagnosed and the procedure can

be derived and verified.

However, if one assumes that we did not have a concrete known answer, how does one identify when

such a problem in the EFT has arisen? Generically we will find that the ‘dimensional reduction square’

will not commute. That is, when we take a higher-dimensional action, vary it to find higher-dimensional

equations of motion, insert a Sturm–Liouville basis, and use linear independence to interpret the higher-

dimensional equations of motion as lower-dimensional equations of motion, this should always produce the

same physical system as when we take a higher-dimensional action, insert a Sturm–Liouville basis, integrate

over the transverse dimension, and then vary the resulting lower-dimensional action to find lower-dimensional

equations of motion.

S higher
variation−−−−−→ EoM higher

in
te
g
ra

tio
n

−−−−−−−→
e
x
p
a
n
sio

n
s

⟳

e
x
p
a
n
sio

n
s

−−−−−−−→

S lower
variation−−−−−→ EoM lower

(6.1.1)

We will spare the reader the somewhat laborious procedure of following the calculation of how the

dimensional reduction square fails to commute when one of our enumerated points is missed, however, we

will emphasize the relevant term in the lower-dimensional action that changes when the step is included

correctly.

6.2 Boundary Terms in One Dimension

Let us first consider the mechanism for finding boundary terms in an arbitrary theory.

Consider Klein–Gordon theory [104] on a one-dimensional manifold with boundary

Sbulk =

∫
M1

1

2
ϕ(t) ∂t

2 ϕ(t) dt . (6.2.1)

The variation of this action is

δSbulk =

∫
M1

1

2
δϕ ∂t

2 ϕ+
1

2
ϕ∂t

2δϕ dt . (6.2.2)
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To find the equations of motion we must add total derivatives

δSbulk =

∫
M1

1

2
δϕ ∂t

2 ϕ+
1

2
ϕ ∂t

2 δϕ− 1

2
∂t (ϕ ∂t δϕ− δϕ ∂t ϕ) dt . (6.2.3)

Applying Green’s theorem (
∫
M1 (∂tf(t)) dt = f(t)|∂M1) we find

δSbulk =

∫
M1

δϕ ∂t
2 ϕ dt+

1

2
(ϕ ∂t δϕ− δϕ ∂t ϕ)

∣∣∣∣
∂M1

. (6.2.4)

Requiring this to vanish (δS = 0) for arbitrary variations in the bulk δϕ(t), requires

∂t
2ϕ = 0 . (6.2.5)

We interpret these as the equations of motion of the system. Vanishing of the entire variation, however,

requires that our boundary terms vanish either when the on-shell condition, or equations of motion, are

applied or when the boundary conditions are applied.

6.3 Boundary Terms in One Dimension

The most generic boundary conditions which we may apply to a second-order set of equations of motion and

still have non-trivial solutions are either one first-order or zeroth-order (in derivatives) condition on both

boundaries or two first-order or zeroth-order conditions on one boundary. For this problem we will consider

the former case. Assuming, without loss of generality, our lower boundary is t = 0 and our upper boundary

is t = 1, our boundary conditions may always be written

a ∂t ϕ+ b ϕ

∣∣∣∣
t=0

= ϕ0 , c ∂t ϕ+ d ϕ

∣∣∣∣
t=1

= ϕ1 . (6.3.1)

The lower (upper) boundary condition is generic when ϕ0 ̸= 0 (ϕ1 ̸= 0), special when ϕ0 = 0 (ϕ1 = 0),

Dirichlet when a = 0 (c = 0), Neumann when b = 0 (d = 0), and mixed or Robin when a ̸= 0 and b ̸= 0

(c ̸= 0 and d ̸= 0).76 Furthermore, we may use the conditions on our fields to derive conditions on our

variations obey

a ∂t δϕ+ b δϕ

∣∣∣∣
z=0

= 0 , c ∂t δϕ+ d δϕ

∣∣∣∣
z=1

= 0 , (6.3.2)

76Boundary conditions on the perturbation of a field are generically special.
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since our variations take us between field configurations which obey our boundary conditions. Given this we

may simplify our boundary term77

1

2
(ϕ ∂t δϕ− δϕ ∂t ϕ)

∣∣∣∣
∂M1

=
1

2
(ϕ ∂t δϕ− δϕ ∂t ϕ)

∣∣∣∣
t=1

− 1

2
(ϕ ∂t δϕ− δϕ ∂t ϕ)

∣∣∣∣
t=0

=
1

2

(
ϕ

(
−d
c
δϕ

)
− δϕ

(
−d
c
ϕ+

1

c
ϕ1

)) ∣∣∣∣
t=1

− 1

2

(
ϕ

(
− b

a
δϕ

)
− δϕ

(
− b

a
ϕ+

1

a
ϕ0

)) ∣∣∣∣
t=0

=− 1

2c
ϕ1δϕ

∣∣∣∣
t=1

+
1

2a
ϕ0δϕ0

∣∣∣∣
t=0

.

(6.3.3)

Therefore if we add

Sboundary =
1

2c
ϕ ϕ1ϕ

∣∣∣∣
t=1

− 1

2a
ϕ ϕ0

∣∣∣∣
t=0

, (6.3.4)

which obeys

δSboundary = −1

2
(ϕ ∂t δϕ− δϕ ∂t ϕ)

∣∣∣∣
∂M1

, (6.3.5)

then the extrema of the action S = Sbulk + Sbound correspond to the solutions of the equations of motion

(equation (6.2.5)) given our field obeys our boundary conditions (equation (6.3.1)).

This is not, however, the only boundary action we could add. Given

a ∂t ϕ+ b ϕ− ϕ0

∣∣∣∣
t=0

= 0 , (6.3.6)

we may add

Slower = flower(a∂t ϕ+ bϕ− ϕ0)− flower(0)

∣∣∣∣
t=0

, (6.3.7)

and a similar boundary term where flower is any smooth function. However, if we restrict our attention to

second-degree polynomials which have 0 as a root, we find there is a four parameter family of possible actions

which correspond to our equations of motion and boundary conditions.

Similarly we note we may add the bulk term

∫
M1

1

2a
∂t ϕ ϕ0 − ∂t flower dt , (6.3.8)

and absorb our lower boundary term into our bulk action and into our upper boundary term. Since adding

such total-derivative term does not change the value of the action ‘off-shell’ (considering both equations

of motion and boundary conditions) any two actions related by addition of such a boundary term are

77When a or c vanish we have generic Dirichlet conditions at the relevant boundary. In such a case the following calculation
is invalid. However, given that this is the most studied example [80,84], we allow it to be an exception to our analysis here.
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equivalent actions (in classical field theory). This contrasts with the addition of flower on the boundary,

since this changes the value of the action action away from its extrema.

Therefore, we want to define a ‘canonical’ form for an action. Since we may always write the second-order

(in derivatives) bulk terms as ‘derivative-field derivative-field’ we say the canonical form of the action is that

which has no second-order (in derivatives) bulk terms and has the lowest-order boundary polynomials (such

as flower).
78

For our current case the canonical action is

S = −1

2

(∫
M1

∂t ϕ ∂t ϕ dt

)
+

(
− d

2c
ϕ2 +

1

c
ϕ ϕ1

) ∣∣∣∣
t=1

+

(
b

2a
ϕ2 − 1

a
ϕ ϕ0

) ∣∣∣∣
t=0

. (6.3.9)

While this appears less compact, it is exceedingly well behaved in the limits of either generic Dirichlet or

special Neumann. In both limits Sbound vanishes.79

Most introductions to the calculus of variations either ignore considerations of boundary terms or restrict

themselves to only the simplest cases of either Dirichlet or special Neumann [80, 84]. We see that this

treatment is justified, so long as the action presented is of canonical form. In this case the equations of

motion do not require careful treatment by addition of total derivatives and cancellation of boundary terms,

but instead may simply be stated as the Euler–Lagrange equations

∂S
∂ϕ

− ∂t
∂S

∂ (∂tϕ)
= 0 . (6.3.10)

To conclude, we will summarize our technique for finding boundary terms. We take the canonical bulk

action, add a generic boundary term with undetermined coefficients, vary, apply our boundary conditions

and equations of motion, solve the coefficient equation for each linearly independent boundary term, and

reduce to the canonical boundary term.

6.4 The Quadratic Theory

We want to study the Klein–Gordon equation on a higher-dimensional product space (Mh = Ml ×D) [117]

(
∇2 −M2

)
Φ(x, z) =

(
□+∆−M2

)
Φ(x, z) = 0 . (6.4.1)

78We only claim this is a well defined quantity in the context of a flat boundary.
79This requires special treatment of denominators the limit c→ 0, for instance, however, in this limit, Sbound still vanishes.
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Here □ is the d’Alembertian on the (Lorenzian) manifold Ml and ∆ is the Laplacian on D. If we suppose

that Φ obeys some special boundary conditions at the upper and lower boundary80 of our D

(a∂z + b) Φ(x, z)

∣∣∣∣
z→l+

= 0 , (c∂z + d) Φ(x, z)

∣∣∣∣
z→u−

= 0 , (6.4.2)

this Klein–Gordon equation corresponds to the following action

Sfree =

∫
Ml

√
−gl(x)

∫
D
µ(z)

(
−1

2
(∇µΦ(x, z))

2 − 1

2
(∂zΦ(x, z))

2 − 1

2
M2Φ(x, z)2

)
dlxdz

−
∫
Ml

√
−gl(x)µ(z)

1

2

a

b
(∂zΦ(x, z))

2

∣∣∣∣
z→l+

dlx+

∫
Ml

√
−gl(x)µ(z)

1

2

c

d
(∂zΦ(x, z))

2

∣∣∣∣
z→u−

dlx .

(6.4.3)

Furthermore, we may expand Φ in terms of the relevant transverse basis

Φ(x, z) = ϕω(x)fω(z) . (6.4.4)

Since the explicit boundary terms we added to Sfree summed with the boundary terms arising from integration

by parts of the transverse derivatives annihilate fω, we have

−
∫
D
µ(z)(∂zfω(z))(∂zfσ(z))dz +

(
µ(z)

b

a
fω(z)fσ(z)

) ∣∣∣∣
z→l+

−
(
µ(z)

d

c
fω(z)fσ(z)

) ∣∣∣∣
z→u−

=

∫
D
µ(z)fω(z)∆fσ(z)dz .

(6.4.5)

Using the orthonormality of our basis we find

Sfree =

∫
Ml

√
−gl(x)

(
−1

2
(∇µϕ

ω(x))
2 − 1

2

(
M2 + ω2

)
ϕω(x)2

)
dlx . (6.4.6)

From this we note several facts. First, neither negative higher-dimensional mass nor imaginary higher-

dimensional eigenvalue indicate a tachyonic mode [21] (negative mass mode) in the lower-dimensional effective

field theory, so long as the sum of these terms is overall positive M2 + ω2 > 0.

Second, at this level any further detail of the transverse problem beyond the spectrum of ∆ given our

boundary conditions is not relevant. If two transverse spaces have the same spectrum, then the lower-

dimensional effective Klein–Gordon theories will agree.

Third, for an arbitrarily massive field in the higher dimension (e.g. when M2 ≫ ω0
2 − ω1

2 for the

80In the case where the transverse space is not one-dimensional we consider an S-wave expansion and D is the manifold of
the radial coordinate only.
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first two eigenvalues of a discrete spectrum) our lower-dimensional fields will have an effective symmetry

mixing between these fields, similar to the broken chiral symmetry of the fermionic sector of quantum

chromodynamics with only the three lightest quarks, up, down, and strange [16]. Experiments on such

particles in such a universe would have additional effective symmetries.

At this level, any discussion of truncation is trivial. This is always true for a free theory. To see the

novel implications of an unusual Sturm–Liouville basis we must introduce interactions, and explore either

the unusual relationship between these couplings, for instance, between the cubic interaction and quartic

interaction, or the effect of integrating out the heavy fields at cubic order.

6.5 Nonlinear Corrections to the Couplings

The first nontrivial interaction term in orders of fields (at zeroth-order in derivatives) are

Scubic + Squartic =

∫
Ml

√
−gl(x)

∫
D
µ(z)

(
−Λ

3
Φ(x, z)3 − K

4
Φ(x, z)4

)
dzdlx . (6.5.1)

Fortunately, as these are non-derivative terms, they require no additional boundary terms. In our effective

field theory the cubic and quartic terms become, respectively

Scubic =

∫
Ml

√
−gl(x)

(
−Λ

3

(∫
D
µfωfσfτdz

)
ϕω(x)ϕσ(x)ϕτ (x)

)
dlx , (6.5.2)

Squartic =

∫
Ml

√
−gl(x)

(
−K

4

(∫
D
µfωfσfτfυdz

)
ϕω(x)ϕσ(x)ϕτ (x)ϕυ(x)

)
dlx . (6.5.3)

We now swap to our ‘I’ notation for overlap integrals defined in equation (3.3.1). Note this term in principle

indicates an interaction between any triplet of scalars, even when they correspond to different eigenvalues.

We are, of course, specifically interested in the case where our spectrum begins with a discrete state or

a zero mode, which we label as the lightest mode, with eigenvalue l (note l can be, but is not necessarily,

zero). This is opposed to the heavy modes, which we say have eigenvalues ω > l. In this case we note that

this mode has some coupling to itself with effective couplings in the lower dimension,

λ = ΛIlll , κ = KIllll . (6.5.4)

The relationship between the effective couplings is now highly dependent on which space we consider.

However, in the case of a consistent trunctation, for example, when fl is a constant, we have

(Illl)
2
= Illll . (6.5.5)
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Therefore, for consistent truncations, any relationship between Λ and K is preserved at the level of the

effective field theory; such as

Λ2 = K ⇒ λ2 = κ2 . (6.5.6)

However, if we consider any reduction where fl is not a constant, which includes any inconsistent trun-

cation where l = 0 by our argument in equation (3.3.5), then we have some nonlinear correction to our

higher-dimensional relationship. For instance, for a flat interval (where our zero mode is as given in section

2.6.1) we have

I0000 − (I000)
2
= 1/135b2(45− 96b2 + 80b4) , (6.5.7)

where b = 0 is the limit where our Sturm–Liouville basis contains a constant zero mode.

This is especially relevant in the context of gauge theories, where the squared relationship of the cubic

and quartic couplings is required for gauge invariance [38]. This is the fact that originally motivated us to

the primary study of section 8. This is a generic property of the nonlinear (in order of fields) corrections to

the couplings, which is equivalent to any inconsistent truncation with a non-constant zero mode.

6.6 Integrating Out Heavy Fields with Cubic Interactions

Expanding our cubic interaction term (equation (6.5.2)) in orders of heavy fields (that is O(1), O(ϕω),

O(ϕωϕσ), etc) followed we have

Scubic =

∫
Ml

√
−gl

(
−λ
3
ϕl

3 − ΛIllωϕ
l2ϕω − ΛIlωσϕ

lϕωϕσ − Λ

3
Iωστϕ

ωϕσϕτ
)
dlx . (6.6.1)

The associated equations of motion for our heavy fields of the action to this order are

(
□−

(
M2 + ω2

))
ϕω − ΛIllωϕ

l2 − 2ΛIlωσϕ
lϕσ − ΛIωστϕ

σϕτ = 0 . (6.6.2)

Solving this expression formally we have

ϕω =
(
□− (M2 + ω2)

)−1
(
ΛIllωϕ

l2 + 2ΛIlωσϕ
l
(
□− (M2 + σ2)

)−1
(
ΛIllσϕ

l2 + . . .
)
+ . . .

)
. (6.6.3)

Here the right hand side is found by inverting the propagator

(
□− (M2 + ω2)

)−1
= − 1

M2 + ω2 − □(
M2 + ω2

)2 − □2(
M2 + ω2

)3 − . . . = − 1

M2 + ω2

∞∑
i=0

(
□

M2 + ω2

)i

,

(6.6.4)
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then recursively substituting the expression into itself for the value of ϕω or ϕσ, and so on. These estimates

assume first that the heavy fields are unexcited in the absence of the light fields, upon relaxing this assumption

we may define exact higher-dimensional sources, and that the momentum of the light modes is much smaller

than the mass of the heavy modes

(M2 + ω2)ϕl ≫ □ϕl . (6.6.5)

We note that the right hand side of equation (6.6.3), therefore, may be given explicitly in orders of 1
M2+ω2

or both ϕl and □, in practice, we will use both. For the sake of completeness we explicitly have

ϕω = − Λ

M2 + ω2 Illωϕ
l2 − Λ(

M2 + ω2
)2 Illω□ϕl2 − 2Λ(

M2 + ω2
) (
M2 + σ2

)IlωσIllσϕ
l3 +O

(
ϕl

4
, ∂4
)
. (6.6.6)

However, we will leave our expression in terms of the formal inverse for the moment and further condense

our notation as Oω = □−
(
M2 + ω2

)
. Substituting our expression for ϕω into our quadratic and cubic action

we have (Sfree + Scubic =)

∫
Ml

√
−gl(x)

(
1

2
ϕlOlϕ

l +
1

2
Oω

−1
(
ΛIllωϕ

l2 + . . .
)
OωOω

−1
(
ΛIllωϕ

l2 + . . .
)

− λ

3
ϕl

3 − ΛIllωϕ
l2OωOω

−1
(
ΛIllωϕ

l2 + . . .
)
+O

(
ϕl

5
, ∂2
))

dlx .

(6.6.7)

We notice that we may simplify OωOω
−1 = 1, and further notice that the effective interactions from setting

the heavy fields onshell in the heavy fields’ kinetic terms and the leading interactions including heavy fields

are repeated terms with a relative − 1
2 . Simplifying we find

Sfree + Scubic =

∫
Ml

√
−gl(x)

(
1

2
ϕlOlϕ

l − λ

3
ϕl

3 − 1

2

Illω
2

M2 + ω2Λ
2ϕl

4
+O

(
ϕl

5
, ∂2
))

dlx . (6.6.8)

The effective coupling at quartic order, Y = − Illω
2

M2+ω2 , is of the form noted in equation (3.3.7), which is

given by integrals of the Green function against the interaction term.

Of course, the majority of study is focused on the case where these corrections identically vanish, or

when Illω = 0 which implies X = 0 [36, 45, 68, 86, 94]. However, these cases are mathematically rare, as we

have argued in section 4, they only occur when the transverse space has finite volume, and for most choices

of transverse space with finite volume, most choices of boundary condition lead to inconsistent truncations.

Therefore we are interested in the case where the effective theory we have derived here is nontrivial and an

accurate description of the low energy physics.
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6.7 Explicit Corrections for a Flat Interval

Overall corrections to the effective theory of the lightest mode are suppressed by both the mass of the

particles in the higher dimension and the effective mass induced by momentum in the transverse space of

the heavy modes (ω2). Of special interest are the cases when M2 + l2 ≪ M2 + ω2. Of course we have the

additional requirement that we study particles whose world-volume momentum is much smaller than the

mass of the lightest heavy particles, where the corrections are largest.

If we consider a theory where the native mass term in the higher dimension is large,M2 ≫ l2, then we are

also obliged to consider only scattering of light particles that are relatively stationary. However, in the case

where M2 = 0 (or is simply relatively small) we have a ‘window’ of effective energies where we may probe

the non-derivative corrections to our theory from the higher dimension before we measure higher-derivative

corrections.

The simplest case in which to study this is the flat interval. We explicitly calculated the relevant sums of

overlap integrals in section 3.3.3. For the full action S = Sfree + Scubic + Squartic we have, for M = 0, l = 0,

ϕ = ϕl = ϕ0, given the ‘pure ζ0’ (Neumann-Neumann) boundary conditions,

S =

∫
Ml

√
−det gl

(
−1

2
∂µϕ∂

µϕ−
(

1√
2

)
Λ

3
ϕ3 −

((
1

2

)
K

4
+ (0)

Λ2

2

)
ϕ4 +O

(
ϕ5, ∂2

))
dlx . (6.7.1)

By contrast, given the ‘pure ξ0’ boundary conditions we have

S =

∫
Ml

√
−det gl

(
−1

2
∂µϕ∂

µϕ−

(√
27

32

)
Λ

3
ϕ3 −

((
9

10

)
K

4
+

(
57

244

)
Λ2

2

)
ϕ4 +O

(
ϕ5, ∂2

))
dlx .

(6.7.2)

Therefore we see the higher-order interactions are enhanced, both without corrections from heavy fields, and

then corrections to the heavy fields enhance these terms further.
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7 Deriving the Kaluza–Klein Ansatz Perturbatively

We now turn our attention to the construction of effective field theories given our boundary conditions and

our backgrounds. The first useful example of such a construction is the Kaluza–Klein (KK) ansatz [108].

The KK ansatz was developed in two stages. First Kaluza noticed that the equations of motion of a higher-

dimensional metric, when a single transverse dimension is ‘read separately,’ reconstruct lower-dimensional

equations of motion for a lower-dimensional metric and other lower-dimensional fields, given that the met-

ric is independent of the separated dimension [77, 96]. Klein introduced the innovation of interpreting the

separated dimension as a compact dimension, thus introducing a length scale to the theory which allows the

interpretation as a lower-dimensional EFT [81].

In our language we would call Kaluza’s work a Type-I reduction and Klein’s addition a Type-III∗ re-

duction.81 Most authors now focus their discussions of the KK EFT and its generalizations on dimensional

reduction, that is whether it is consistent to truncate the massive degrees of freedom, etc. However, we

are presently interested in an EFT which would both lead to an inconsistent truncation, and where gauge

transformations and the lower-dimensional degrees of freedom are much harder to find. In solving the issues

we encountered in our study, we developed an algorithmic method which can be generically applied to ‘in-

tegrating out’ extra dimensions into a lower-dimensional EFT. This section will present this algorithm in a

well-known case so that the reader may both freely apply this algorithm to their problems, and to provide

a reference for later sections.

7.1 The Gibbons–Hawking–York Boundary Term, Exactly

The biggest drawback of illustrating our procedure for finding a lower-dimensional EFT in the content of

Kaluza–Klein theory is that many of the steps of this process result in no change when the transverse space is

an r-cycle, that is a closed manifold without boundary. For this reason we will instead consider the theory of

gravity on (d+1)-dimensional Minkowski with two parallel time-like boundaries82 with Neumann-Neumann

boundary conditions.83 That is, our ((d+ 1)-dimensional) manifold is

M = R1,d−1 ×D , (7.1.1)

81Arguably the full KK ansatz is not a Type-III∗ reduction because the periodicity is not a boundary condition. However,
the massless sector of the KK ansatz is given by a reduction with Neumann-Neumann conditions. We will remark more upon
this when we discuss the spectrum of massive particles the theory.

82These are sometimes referred to as orbifolds.
83The massless theory is the same, however.
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with coordinates (and indices) XM on M, xµ on R1,d−1, and z (coordinate z) on D. Without loss of

generality we say our orbifolds lie at z = ±1, or that D = (−1, 1).

Our bulk action is the Einstein–Hilbert action [48,71],

SEH =

∫
M

√
−g 1

2κ̂2
R(g) dd+1X . (7.1.2)

Here gMN is our metric, κ̂ is our higher-dimensional Einstein constant,
√
−g is the square root of the

determinant of our metric, and R is the Ricci-scalar associated with the Levi–Civita connection of the

metric, ∇.

Famously, the extrema of Einstein–Hilbert action do not correspond to the solutions of the Einstein

equation on a manifold with boundary when the metric obeys generic Dirichlet conditions. That is, we

require the Gibbons–Hawking–York (GHY) boundary term [59,131]

SGHY = −
∫
∂M

√
−γ 1

κ̂2
K(γ)dd−1Y , (7.1.3)

Here γmn is the induced metric on the boundary, K(γ) is the trace of the extrinsic curvature on the boundary

and Y m are some boundary coordinates. We can view this term as a geometrically elegant version of the

canonical boundary term (as in section 6.2). However a derivation of the GHY term may be accomplished

by fairly simple considerations of what the extrema of the action are.

When written in terms of partial derivatives of the metric, the Einstein–Hilbert action reads84

SEH =

∫
M

√
−g
(
+ gMNgPQ (−∂M∂NgPQ + ∂M∂P gNQ)

+ gMNgPQgRS

(
+

3

4
∂MgPR∂NgQS − 1

4
∂MgPQ∂NgRS + ∂MgPQ∂RgNS

− 1

2
∂MgPR∂QgNS − ∂MgNP∂RgQS

))
dd+1X .

(7.1.4)

After integration by parts the bulk Lagrangian density takes the following canonical form85

LADM = gMNgPQgRS

(
−1

4
∂MgPR∂NgQS +

1

4
∂MgPQ∂NgRS − 1

2
∂MgNP∂QgRS +

1

2
∂MgPR∂QgSN

)
.

(7.1.5)

84We have momentarily set 1
2κ̂2 = 1 for the sake of margin space.

85This ‘derivative-field derivative-field’ form of gravity can serve as a first step to writing a fully nonlinear Hamiltonian for
gravity. Therefore we attribute this form to the Arnowitt, Deser, and Misner [9].
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The total derivative we add to convert between the two is

∫
M

(
∂M

√
−g
(
−gPQ∂MgPQ + gPQ∂P gMQ

))
ddX (7.1.6)

=

∫
∂M

√
−g
(
−gPQ∂MgPQ + gPQ∂P gMQ

)
nMddY . (7.1.7)

Here Y are our boundary coordinates and nM is the outward facing unit normal to the boundary.

Upon variation the bulk action S =
∫
M

√
−g LCG dd+1X, where LCG is as in equation (7.1.5), generates

boundary terms, all of which are proportional to δg. Since, even for general Dirichlet conditions on g, δg

obeys special Dirichlet conditions, the variation of this action vanishes when g obeys the equations of motion

and obeys a general Dirichlet condition. These extrema agree exactly with the extrema of the Einstein–

Hilbert action (equation (7.1.2)) plus the Gibbons–Hawking–York boundary term (equation (7.1.3)). Since

both our boundary term and the GHY boundary term are first order in derivatives, this implies that our

boundary term is the GHY boundary term up to some total derivative. However, since the boundary of a

boundary vanishes, adding total derivative terms to the GHY boundary term leaves it invariant. Therefore,

while equation (7.1.7) may, in principle, only agree up to total derivatives with equation (7.1.3), we have

SEH + SGHY =

∫
M

√
−g LCG ddX . (7.1.8)

7.2 The Gibbons–Hawking–York Boundary Term, Perturbatively

Traditionally we derive the massless Fierz–Pauli action by requiring a specific normalization of the kinetic

term [53], and that the action be symmetric under the ‘inhomogeneous part’ of the graviton’s transformation.

That is, assuming a flat background, we write

S =

∫
M

(
− 1

2
∂MHPQ∂MHPQ + a ∂MHN

N∂MHP
P + b ∂MHMN∂

NHP
P

+ c ∂MHMN∂PHNP + d ∂MHPQ∂PHQM

)
dd+1X .

(7.2.1)

Where H is a symmetric 2-tensor, HMN = HNM , − 1
2∂

MHPQ∂MHPQ is our normalized kinetic term and

a, . . . , d are undetermined coefficients multiplying all contractions of ∂MHPQ∂NHRS . We define the

transformation H′
MN = HMN + ∂MχN + ∂NχM , where χM is any vector field and collect terms at O(χ).

The relevant portion of the integrand is

(−2 + 2d)∂MHPQ∂M∂NχQ + (4a+ b)∂MHN
N∂M∂Qχ

Q + b∂MHN
N∂Q∂

QχM

+(2b+ 2c)∂MHMN∂
N∂Qχ

Q + 2c∂MHMN∂Q∂
QχN + 2d∂PHMN∂

M∂NχQ .

(7.2.2)
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There are no values for a, . . . , d for which this vanishes. However, if we integrate by parts off of HMN , our

integrand becomes

(2− 2d− 2c)HMN∂Q∂
Q∂MχN − (4a+ 2b)HQ

Q∂P∂
P∂Mχ

M − (2b+ 2c+ 2d)HMN∂
M∂N∂Qχ

Q . (7.2.3)

This vanishes when a = 1
2 , b = −1, and c = −1 − d. The degeneracy of this solution is again due to the

degeneracy of boundary actions, since the terms multiplying c and d are related by integration by parts. We

choose c = 0 and d = −1.86 To wit, we write the Fierz–Pauli action as

SFP =

∫
M

(
−1

2
∂MHPQ∂MHPQ +

1

2
∂MHN

N∂MHP
P − ∂MHMN∂

NHP
P + ∂MHNP∂

NHPM

)
dd+1X .

(7.2.4)

Further, we note that there is no action of a symmetric 2-tensor which is invariant under the transformation

H′
MN = HMN + ∂MχN + ∂NχM with no boundary conditions on H or χ.

To further explain our point about the fact that the action is only symmetric up to boundary conditions

on H or χ: if we consider a theory composed of objects which are invariant under our gauge transformation,

such as the field-strength tensor in Maxwell or the kinetic term of a charged scalar in Scalar Electrody-

namics, then we do not require integration by parts to eliminate our gauge transformation. In perturbation

gravity, however, the transformation of different terms in the action must be cancelled against each-other

via integration by parts. If we write our action in “derivative-field derivative-field” form, for instance, we

can integrate by parts to express the transformation of our action int terms of only derivatives on the gauge

transformation. This incurs a “field derivative-derivative-gauge parameter” boundary term, which can be

zero because of our boundary conditions on either our perturbation or our gauge parameter. Since the action

is not built out of terms that can be grouped into terms that are gauge-invariant without integration by

parts, to understand gauge invariance of the action, we must consider our boundary terms and conditions.

Since the perturbed metric is a symmetric 2-tensor, and therefore the perturbation transforms inhomo-

geneously in proportion to the background metric, we expect the perturbation of the Einstein–Hilbert action

to agree with the Fierz–Pauli action. However, if we define our metric to be gMN = ηMN +HMN and expand

86We will justify this choice shortly.
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the Einstein–Hibert action in orders of H, we find at second order87

SEH =

∫
M

(
3

4
∂PHMN∂

PHMN +HMN∂P∂PHMN − 1

4
∂PHM

M∂PHN
N − 1

2
HM

M∂P∂
PHN

N

+ ∂MHMN∂NHP
P +HMN∂M∂NHP

P +
1

2
HP

P∂M∂NHMN +HMN∂M∂NHP
P

− 1

2
∂PHMN∂

MHNP − ∂MHMN∂PHNP − 2HMN∂P∂
MHNP

)
dd+1X .

(7.2.5)

The boundary term (with unit boundary normal nP ) which converts between these two actions is88

∫
∂M

(
HMN∂PHMN − 1

2
HM

M∂PHN
N +

1

2
HN

N∂MHPM

+HPM∂
MHN

N −HPM∂NHMN −HMN∂NHPM

)
nP ddY .

(7.2.6)

Equation (7.2.6) agrees with the perturbation of the Gibbons–Hawking–York boundary term (equation

(7.1.3)), which justifies our choice of c = 0 in defining the Fierz–Pauli action. Note, there is no ab

initio way of finding the perturbation of the Einstein–Hilbert action (equation (7.2.5)) or the Gibbons–

Hawking–York boundary term from the action of a symmetric 2-tensor, however we have to second order for

gMN = ηMN +HMN

1

2
SFP = SEH + SGHY . (7.2.7)

7.3 Diagonalizing the Lower-Dimensional Free Theory

For the remainder of the section we will consider the simplified case of Ml = R1,d−1. If we take the (massless)

Fierz–Pauli action (equation (7.2.4)) and separate one dimension (z) the bulk Lagrangian density becomes

(Lbulk =)

−1

2
∂σHµν∂

σHµν − 1

2
∂zHµν∂

zHµν +
1

2
∂σHµ

µ∂σHν
ν +

1

2
∂zHµ

µ∂zHν
ν − ∂µHµν∂

νHσ
σ + ∂σHµν∂

µHνσ

−∂µHνz∂
µHνz + ∂νHµz∂

µHνz + 2∂zHµν∂
µHνz − 2∂zHν

ν∂µHµz − ∂µHµν∂
νHz

z + ∂σHν
ν∂σHz

z .

(7.3.1)

If we attempt to interpret these as lower-dimensional equations of motion the leading terms − 1
2∂σHµν∂

σHµν

− 1
2∂zHµν∂

zHµν could serve as the kinetic term and putative mass term for a lower-dimensional Fierz–Pauli

action. Upon variation these two terms become

(□+∆)Hµν , (7.3.2)

87Since ∂MηPQ = 0 and ∇M = ∂M +O(H), this is the first nonvanishing order.
88The Fierz–Pauli action is a factor of two larger than the second perturbation of Einstein–Hilbert action. We have left this

factor in so that we agree with the standard normalization for both actions.
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from which we recognize the scalar wave operator in the lower dimension, □ = ∂σ∂
σ, and the scalar wave

operator in the transverse dimension, ∆ = ∂z
2. We want to study HMN which obey Neumann-Neumann

conditions therefore we define

HMN (x, z) = Hn
MN (x)ζn(z) . (7.3.3)

Here we sum over repeated Fourier indices (n) and ζn is as in section 2.6.1 when b = 0.

Now we have found a (perturbative) higher-dimensional action whose extrema agree with the solutions

to Einstein’s equations given a metric which obeys Neumann-Neumann boundary conditions at z = ±l

(equation (7.3.1)), and we have expanded our higher-dimensional fields in a Sturm–Liouville basis consistent

with this choice (equation (7.3.3)) we may integrate over the transverse space to find a lower-dimensional

effective action. Applying orthonormality, our Lagrangian density becomes

−1

2
∂σH

n
µν∂

σHnµν +
1

2
∂σH

n
µ
µ∂σHn

ν
ν − ∂µHn

µν∂
νHn

σ
σ + ∂σH

n
µν∂

µHnνσ

−ωn
2

2
(Hn

µνH
nµν −Hn

µ
µHn

ν
ν)− ∂µH

n
νz∂

µHnνz + ∂νH
n
µz∂

µHnνz

−∂µHn
µν∂

νHn
z
z + ∂σH

n
ν
ν∂σHn

z
z + 2Hm

µν (∂
µHnνz − ηµν∂σH

nσz)

∫
D
ζn∂zζmdz .

(7.3.4)

This is almost lower-dimensional massless (n = 0) and massive (n ̸= 0) Fierz–Pauli in terms of Hn
µν ,

with lower-dimensional Maxwell Hn
µz terms, and lower-dimensional Klein–Gordon terms, except there are

putative mixing terms between the world-volume only components of Hn
µν , the off-diagonal components

Hn
µz, and the transverse only components Hn

zz.

To simplify we first note the off-diagonal mixing terms are given as
∫
D ζn∂zζmdz = Inm′ ,

∫
D ζn∂zζ0dz = 0

and
∫
D ζ0∂zζmdz = −

√
2 sin

(
π
2n
)
. Therefore we make the following field redefinition

Hn
µν = hnµν + αηµνϕ

n , (7.3.5)

Hn
µz = An

µ , (7.3.6)

Hn
zz = ϕn , (7.3.7)

where α is a dimension dependent normalization. Inserting this into our action we find

−1

2
(∂σh

n
µν)

2
+

1

2
(∂σh

n)
2 − ∂µhnµν∂

νhn + ∂σh
n
µν∂

µhnνσ − α2 (∂σϕ
n)

2

−ωn
2

2
(ηµρηνσ − ηµνηρσ) (hnµν − Imn′∂µA

m
ν − Imn′∂νA

m
µ + 2∂µ∂νϕ

n)
2
.

(7.3.8)
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If we truncate our heavy fields (hnµν , A
n
µ, and ϕ

n where n > 0) then we have, at the free level, a massless

graviton, a massless scalar and

− 1

ωn
2
Im′0Im′0 = −

∞∑
n=1

2
sin2

(
π
2n
)(

π
2n
)2 = −1 . (7.3.9)

The consequence of this is

− ωn
2

2
(ηµρηνσ − ηµνηρσ)

(
−I0n′∂µA

0
ν − I0n′∂νA

0
µ

) (
−I0n′∂ρA

0
σ − I0n′∂σA

0
ρ

)
= −F 0

µνF
0µν . (7.3.10)

Here Fn
µν = ∂µA

n
ν − ∂νA

n
µ. So we can identify a massless vector as well.

7.4 Diagonalizing the Gauge Transformations

If we consider a truncation of all of the heavy fields (hnµν = 0, An
µ = 0, and ϕn = 0) then we have, as the

first-order perturbation of the metric in the higher dimension, (We now introduce perturbation parameters

for ease of reading ϵ denotes the order of the perturbation.)

ĝMN = ηMN + ϵ HMN , (7.4.1)

ĝµν = ηµν + ϵ hµν + ϵ α ηµνϕ , (7.4.2)

ĝµz = ϵ Aµ , (7.4.3)

ĝzz = ϵ ϕ . (7.4.4)

Under the diffeomorphism defined by some higher-dimensional vector XM the higher-dimensional metric

transforms as (We will use γ to track orders of our diffeomorphism.)

γδĝMN +O
(
γ2
)
= γ (LX ĝ)MN = γ (LX η)MN + γ (LX δH)MN . (7.4.5)

Here (LV Y ) is the Lie derivative of Y with respect to V [126]. We have

γδĝMN = γ∂MXN + γ∂NXM + γϵXP∂PHMN + γϵHPN∂MXP + γϵHMP∂NXP . (7.4.6)
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Formally, we could expand XM in terms of the entire transverse Sturm–Liouville basis, however, for the

purpose of simplicity we will only consider XM which is constant in z. Further we separate indices as

X µ = Xµ , (7.4.7)

X z = λ . (7.4.8)

From this we have, at zeroth-order perturbatively,

δĝµν = γ∂µXν + γ∂νXµ = γ∂µXν + γ∂νXµ , (7.4.9)

δĝµz = γ∂zXµ + γ∂µλ = γ∂µλ , (7.4.10)

δĝz = 2γ∂zλ = 0 . (7.4.11)

From this we may identify the zeroth-order transformation in ϵ of our perturbed fields

δĝMN = δηMN + ϵδHMN . (7.4.12)

In general, we could choose to absorb part of this transformation into the background (in this case, δηMN ).

We choose not to, and matching these terms we have

ϵδhµν = γ∂µXν + γ∂νXµ , (7.4.13)

ϵδAµ = γ∂µλ , (7.4.14)

ϵδϕ = 0 . (7.4.15)

This is a requirement for our transformations to be consistently defined in the higher dimension given our

definition of HMN in terms of hµν , Aµ and ϕ. We take as a further condition that our gauge transformation

is small relative to our perturbation ϵ >> γ. Scrutinizing equations (7.4.13), (7.4.14), and (7.4.15) we notice

that these transformations define the linear order of expected diffeomorphism and gauge transformations in

the lower dimension. The standard definition of these variable’s covariant transformations is

δhµν =
γ

ϵ
(LXη)µν + γ (LXh)µν , (7.4.16)

δAµ =
γ

ϵ
∂µλ+ γ (LXA)µ , (7.4.17)

δϕ = 0 + γ (LXϕ) . (7.4.18)
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We note that the terms we have written at linear-order in perturbations in equations (7.4.16), (7.4.17), and

(7.4.18) are a choice, we could choose simply to set the next order of their transformation equal to whatever

it was natively in the higher dimension. As a consequence of this choice, however, the next order of the

transformations in the higher dimension no longer agrees:

γ (LX η)µν + γϵ (LXH)µν = γ∂µXν + γ∂νXµ + γϵαXσηµν∂σϕ (7.4.19)

+ γϵXσ∂σhµν + γϵhσν∂µX
σ + γϵhµσ∂νX

σ

+ γϵαϕησν∂µX
σ + γϵαϕηµσ∂νX

σ + γϵAν∂νλ+ γϵAµ∂µλ (7.4.20)

̸= δĝµν = γ∂µXν + γ∂νXµ + γϵαXσηµν∂σϕ

+ γϵXσ∂σhµν + γϵhσν∂µX
σ + γϵhµσ∂νX

σ + γϵαηµνX
σ∂σϕ . (7.4.21)

There are several possible methods of addressing this inconsistency, and we will study them in general in

the next section 7.5. However, it is simplest (and most consistent with the literature [108]) in this case to

correct HMN at second-order in perturbations as

ϵHµν = ϵ (hµν + αηµνϕ) + ϵ2 (αϕhµν +AµAν) , (7.4.22)

ϵHµz = ϵ (Aµ) + ϵ2 (ϕAµ) , (7.4.23)

ϵHzz = ϵϕ . (7.4.24)

Here the quadratic terms (in perturbations) of Hµz and Hzz are found through the same consistency re-

quirement through which we found Hµν at second order.

If we repeat this process we will find cubic, quartic, and higher terms. However, the primary purpose

of this procedure is to identify possible exact ansätze. Here we may recognize the Taylor expansion of the

exponential function and guess

ĝMNdX
MdXN = exp(ϵαϕ) (ηµν + ϵhµν + ϵAµAν) dx

µdxν + ϵ exp(ϵαϕ)Aµdzdx
µ + ϵϕdz2 , (7.4.25)

This ansatz solves the relationship between the different orders of terms exactly and agrees with our diago-

nalization of the lower-dimensional action.
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7.5 The Generic Recursion Equation

The technique we applied in the last section is actually applicable to an arbitrary dimensional reduction.

That is, in the last section we showed how to derive the quadratic order (in lower-dimensional fields) of the

higher-dimensional field definitions given the goal of diagonalizing a canonical transformation in terms of

the lower-dimensional fields. This generates, at arbitrary order, the Kaluza–Klein ansatz, when we repeat

the analysis of the previous section to arbitrary order. Furthermore, it is applicable to more possible lower-

dimensional transformations. Therefore in this section we will define the generic recursion equation.

To generalize our system, take our usual background with our product manifoldMl×WMz and transverse

spectrum f0 and fω and their putative derivative basis counterparts ζ, f ′0, and f
′
ω. We specify a decomposition

of our higher-dimensional perturbative (of order ϵ) fields Φ, in terms of our lower-dimensional perturbative

(of order ϵ) fields ϕ, and our higher-dimensional transformation specification (of order γ) Λ in terms of

lower-dimensional transformation specification (of order γ) λ order by order.

ϵΦ = ϵΦ1 + ϵ2Φ2 + ϵ3Φ3 + . . . = ϵ(ϕf0 + ϕωfω + . . .) + ϵ2(a2ϕ
2fb(z) + ϕϕωfb,ω + . . .) + . . . , (7.5.1)

γΛ = γΛ0 + γϵΛ1 + . . . = γ(λf0 + λωfω + . . .) + γϵ(d1λϕfd(z) + . . .) + . . . . (7.5.2)

Here fa, . . ., fd are other functions which we may expand in our bases fa = a0f0 + a1f1 + . . .. Also note

that we have defined our transformation Λ in the higher dimension so that it explicitly allows for some

dependence on the fields at nonlinear order (e.g. d1λϕ in equation (7.5.2)).

The recursion equation requires the transformation of the lower-dimensional fields, which we specify in

terms of the lower-dimensional quantities δϕ ∼ λ+. . . (we denote δ for our higher-dimensional transformations

and δ for our lower-dimensional transformations), to equal the transformation of the higher-dimensional

fields. In the case where we only go to linear order in γ (that is, linear order in Λ) we may expand out our

higher-dimensional transformation (given in terms of some function F )

δΦ =F (γΛ, ϵΦ)− F (0, ϵΦ) (7.5.3)

=�����
F 0,0(0, 0) + γΛF (1,0)(0, 0) + ϵΦ�����

F (0,1)(0, 0) (7.5.4)

+ γ2
1

2
Λ2

�����
F (2,0)(0, 0) + γϵΛΦF (1,1)(0, 0) + ϵ2

1

2
Φ2

�����
F (0,2)(0, 0)

+ γ3
1

6
Λ3

�����
F (3,0)(0, 0) + γ2ϵ

1

2
Λ2Φ�����

F (2,1)(0, 0) + γϵ2
1

2
ΛΦ2F (1,2)(0, 0) + ϵ3

1

6
Φ3

�����
F (0,3)(0, 0) +O(Φ3) .

We can expand this further in terms of the internal order ϵ for Λ and Φ. When we take the transformation of

some term that will add one order of γ, however, it will not necessarily decrease the order of ϵ, since we may
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have terms such as δϕ = LXϕ as in the previous section. Therefore we will define operators deltan which

act on our higher-dimensional fields and select the ϵn order term. We may have an ϵ0 term if we suppose

that ϵ >> γ

ϵδΦ =ϵ0δ0Φ+ ϵ1δ1Φ+ ϵ2δ2Φ+O(ϕ3) , (7.5.5)

ϵ0δ0Φ =γϵ0Λ0F (1,0)(0, 0) , (7.5.6)

ϵδ1Φ =γϵ
(
Λ1F

(1,0)(0, 0) + Λ0Φ1F
(1,1)(0, 0)

)
, (7.5.7)

ϵ2δ2Φ =γϵ2
(
Λ2F

(1,0)(0, 0) + Λ1Φ1F
(1,1)(0, 0) +

1

2
Λ0 (Φ1)

2
F (1,2)(0, 0)

)
. (7.5.8)

Similarly we define a lower-dimensional transformation operator δ. Further, we define operators δ
n
which

selects the ϵn term

ϵδϕ = ϵ0δ
0
ϕ+ ϵδ

1
ϕ+ ϵ2δ

2
ϕ+O(ϕ3) . (7.5.9)

δ is an operator which obeys the Leibniz rule [123]

ϵ2
(
δϕψ

)
= ϵ2

(
δϕ
)
ψ + ϵ2ϕ

(
δψ
)
. (7.5.10)

So we may expand δΦ order by order as well, by expanding both Φ = Φ1 +Φ2 + . . . and δ = δ
1
+ δ

2
+ . . ..

ϵδΦ = ϵ0
(
δ
0
Φ1

)
+ ϵ
(
δ
1
Φ1 + δ

0
Φ2

)
+ ϵ2

(
δ
2
Φ1 + δ

1
Φ2 + δ

0
Φ3

)
. (7.5.11)

The recursion equation is

δΦ = δΦ . (7.5.12)

Specifying this order by order, it is

γϵ0Λ0F (1,0)(0, 0) = ϵ0δ
0
Φ1 , (7.5.13)

γϵΛ1F (1,0)(0, 0) + γϵΛ0Φ1F
(1,1)(0, 0) = ϵδ

1
Φ1 + ϵδ0Φ2 , (7.5.14)

γϵ2Λ2F (1,0)(0, 0) + γϵ2Λ1Φ1F
(1,1)(0, 0) + γϵ2

1

2
Λ0 (Φ1)

2
F (1,2)(0, 0) = ϵ2δ

2
Φ1 + ϵ2δ

1
Φ2 + ϵ2δ

0
Φ3 . (7.5.15)

If we suppose that some part of our definitions are unspecified, then either the field or transformation

parameter decomposition (Φ1, Φ2, . . . or Λ0, Λ1, . . .), or the definition of the lower-dimensional transfor-

mations (δ
0
ϕ, δ

1
ϕ, . . .), or potentially some combination, is underspecified. This may allow a non-trivial

field redefinition from one set of lower-dimensional ϕ that transform in one way to an alternative ϕ′ with
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a different transformation, perhaps making some fields invariant under the transformation at the cost of a

noncanonical transformation of a different field. This is relevant in the context of a non-linear realization,

because we can prove that there does not exist any perturbative field redefinition that linearizes said realiza-

tion. We will explore this possibility in the next section (8.6). In the end there is only one lower-dimensional

physical theory, but using this technique we can express it in several different ways, and hopefully more

easily connect to the literature.
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8 Covert Symmetry Breaking in Scalar Electrodynamics

We have covered all prerequisite aspects of dimensional reduction in the context of inconsistent truncations

to handle the case where we reduce a gauge theory with nonlinear interaction terms and boundary conditions

other than Dirichlet or special Neumann. Specifically we understand what boundary terms we require in

the higher-dimensional action (Section 7), and what corrections to the effective field theory we can expect

(section 6). Additionally, from Section 7, we understand how our higher-dimensional gauge transformations

become our lower-dimensional gauge transformations corresponding to massless gauge fields and our sponta-

neously broken lower-dimensional gauge transformations corresponding to massive vectors, gravitons. This

understanding, however, was in the context of constant transverse zero modes and consistent truncations.

The purpose of this section is to study what happens when we combine non-constant transverse zero modes

and higher-dimensional gauge transformations.

We will accomplish this by studying free higher-dimensional Maxwell theory, then higher-dimensional

Maxwell theory coupled to a complex scalar. We will learn that, similar to the case Maxwell theory with

Neumann-Neumann conditions, we have one massless lower-dimensional vector degree of freedom and one

massless scalar degree of freedom.

8.1 The Quadratic Theory

The higher-dimensional Maxwell equations on a totally flat manifold (Ml = R1,d−1 × D as in equation

(7.1.1)) are [106]

∂N∂
NAM − ∂M∂

NAN = 0 . (8.1.1)

If we separate out our indices we have

(□+∆)Aµ − ∂µ∂
νAν − ∂µ∂

zAz = 0 , (8.1.2)

for our world-volume (M = µ) equation and

□Az − ∂z∂
µAµ = 0 , (8.1.3)
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for our transverse (M = z) equation.

We choose D = (−1, 1) for ease of demonstration. Our transverse boundary conditions are

(f0(−1)∂z − b)Aµ(x, z)

∣∣∣∣
z→−1+

= 0 , (f0(1)∂z − b)Aµ(x, z)

∣∣∣∣
z→1−

= 0 . (8.1.4)

Here f0 is as in section (2.6.1). Note, these are only for the world-volume components. If we focus only on

terms that include only world-volume components and transverse derivatives in the bulk action we have

S = . . .+

∫ ∫ 1

−1

−1

2
(∂zAµ)

2
dzddx+ . . . . (8.1.5)

As in equation (6.4.3), for the extrema of this action to correspond to the solutions of our equations of

motion given the boundary conditions that allow for f0 we require an additional boundary term

S = . . .+

∫
1

2

f0(z)

b
(∂zAµ)

2

∣∣∣∣z→1−

z→−1+
ddx + . . . . (8.1.6)

Of course, the total action must be invariant under gauge transformations. Explicitly, invariant under

A′
µ(x, z) = Aµ(x, z) + ∂µΛ(x, z) , (8.1.7)

A′
z(x, z) = Az(x, z) + ∂zΛ(x, z) , (8.1.8)

where Λ(x, z) is an arbitrary higher-dimensional function. The terms in equations (8.1.5) and (8.1.6) are

paired with the appropriate ∂µAz terms to combine to gauge invariant quantities. The total action reads

S =

∫ ∫ 1

−1

{
−1

4
(∂µAν − ∂νAµ)

2 − 1

2
(∂µAz − ∂zAµ)

2

}
dzddx+ SMaxwell boundary . (8.1.9)

Here our boundary term is

SMaxwell boundary =

∫
1

2

f0(z)

b
(∂µAz − ∂zAµ)

∣∣∣∣z→1−

z→−1+
ddx . (8.1.10)

This action is symmetric under arbitrary higher-dimensional gauge transformation. However, if Λ obeys

different boundary conditions at z → ±1∓ than Aµ, then our transformed fields, A′
µ will not obey our

boundary conditions. Therefore this system is only invariant under Λ which obey

(f0(−1)∂z − b)Λ(x, z)

∣∣∣∣
z→−1+

= 0 , (f0(1)∂z − b)Λ(x, z)

∣∣∣∣
z→1−

= 0 . (8.1.11)
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At the free level this system is also invariant under transformations of Az alone. It is

A′
z(x, z) = Az(x, z) + ∂zΓ(x, z) , (8.1.12)

where Γ lies within the kernel of □ and ∆ independently, or

□Γ = ∆Γ = 0 . (8.1.13)

Given that Aµ obeys boundary conditions that allow for f0, we should expand Aµ in the {fωi
} basis. We

will call this the {fi} basis for the sake of margin space. Further, we see that Az’s kinetic terms, those are

(∂µAz)
2
, are under not the standard L2(−1, 1) inner product, but the augmented inner product associated

with Az, described in section 2.5 due to the boundary terms described in equation (8.1.10). Together we

have

Aµ(x, z) = Ai
µ(x)fi(z) , (8.1.14)

Az(x, z) = Bi(x)f ′i(z) + C(x)ζ(z) . (8.1.15)

Note, we adopt the shorthand that ϕ0 = ϕ for any lower-dimensional field ϕi, or, if we omit the Sturm–

Liouville index, we are referring to the mode corresponding to the smallest (in this case zero) eigenvalue.

With this we integrate over the transverse dimension in our higher-dimensional action and find (Z = (ξ0 ζ)

where (·, ·) is as in section 2.5)

S =

∫ {
−1

4

(
∂µA

i
ν − ∂νA

i
µ

)2 − 1

2
ωi

2
(
Ai

µ − ∂µB
i
)2

+ Z∂µC
(
A0

µ − ∂µB
0
)}

ddx . (8.1.16)

This corresponds to a Stueckelberged [1] (Lorenz) gauge-fixed [19] lower-dimensional Maxwell field A0
µ (B0

is a Stueckelberg [122] and C is a Lagrange multiplier [117]) and a series of Stueckelbered Proca fields Ai
µ

(Bi are Stueckelbergs).

To verify this we also decompose our higher-dimensional gauge parameter Λ as well as Γ,

Λ(x, z) = λi(x)fi(z) , Γ(x, z) = γ(x)f0(z) , (8.1.17)

then our lower-dimensional fields transform as

Ai′
µ(x) = ∂µλ

i(x) , (8.1.18)
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Bi′(x) = λi(x) + δi0γ(x) . (8.1.19)

Combining each of these symmetries we deduce that the lower-dimensional theory comprises one lower-

dimensional massless vector degree of freedom and a tower of lower-dimensional massive degrees of freedom

with masses m2 = ωi
2. However, a definitive calculation of the degrees of freedom requires either an analysis

of our lower-dimensional equations in Fourier space or a Hamiltonian analysis.

8.2 A Fourier Space Analysis of the Degrees of Freedom

We define our lower-dimensional Fourier transforms as [106]

Ai
µ(x) =

∫
exp(−ik · x)

(
aiµ(k) + kµϵ

i
)
ddk , (8.2.1)

Bi(x) =

∫
exp(−ik · x)bi(k)ddk , C(x) =

∫
exp(−ik · x)c(k)ddk . (8.2.2)

Here, without loss of generality, aiµ is linearly independent of kµ. Our lower-dimensional equations of motion

(from the variation of equation (8.1.16)) read

□Ai
µ − ∂µ∂

νAi
ν − ωi

2
(
Ai

µ − ∂µB
i
)
+ Zδi0∂µC = 0 , (8.2.3)

ωi
2
(
□Bi − ∂µAi

µ

)
+ Zδi0□C = 0 , (8.2.4)

Z
(
□B0 − ∂µA0

µ

)
= 0 , (8.2.5)

for Ai, Bi and C, respectively. We note, first, that B0 appears only in C’s equation. Furthermore we note

that Bi’s equation is simply the divergence Ai
µ’s equation for all i, and therefore they are redundant. In

Fourier space our system’s equations are (excluding the redundant equation (8.2.4))

k2aiµ − kµk
νaiν − ωi

2
(
aiµ + kµϵ

i + ikµb
i
)
+ iZδi0kµc = 0 , (8.2.6)

Z
(
k2b0 + ikµa0µ + ik2ϵ0

)
= 0 . (8.2.7)

We are mainly interested in the zero mode’s equation, which is

k2aµ − kµk
νaν + iZkµc = 0 . (8.2.8)
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Since aiµ and kµ are linearly independent, equation (8.2.6) implies

(
k2 − ωi

2
)
aiµ = 0 , (8.2.9)

kµ
(
−kνaiν − ωi

2ϵi − iωib
i + iZδi0c

)
= 0 . (8.2.10)

From equation (8.2.9) we learn that aiµ may only have support onshell. Restated aiµ = 0 when k2 ̸= ωi
2.

Similarly, when k2 = 0, b0 and ϵ0 do not appear in c’s equation (8.2.8). Therefore kνa0ν = 0 onshell as

well. Applying this to equation (8.2.10) for i = 0 we learn

ω0
2
(
ϵ0 + ib0

)
− iZc = 0 , (8.2.11)

everywhere. Since ω0
2 = 0, this implies c = 0 everywhere. Combining equations (8.2.8) and (8.2.10) we have

kµaiµ + k2ϵi + ik2bi = 0 , (8.2.12)

for all i. This entire quantity is gauge invariant, however ϵi and bi both transform proportionally to the

gauge parameter, that is, under a gauge transformation (λi =
∫
exp(−ik · x)li(k)ddk)

ϵi
′
= ϵi − ili , bi

′
= bi + li . (8.2.13)

For the sake of clarity let us set li = −iϵi, or ϵi′ = 0 for all i. Since the difference of ϵi and ibi must have

the same support as aiµ, this implies bi = 0 offshell.

At the free level, we still have one final transformation for this system, which is, for γ =
∫
exp(−ik ·

x)g(k)dk,

b0
′
= b0 + g . (8.2.14)

Selecting g0 = −b0 we eliminate b0 as well.

In the final count for i > 0 we have the d − 2 degrees of freedom of aiµ which have mass m2 = ωi
2

with one more degree of freedom, bi, with the same mass. Together these compose a massive vector. A0

comprises d− 2 degrees of freedom. Further, at the free level we have one scalar degree of freedom that can

be removed by our harmonic symmetry. Removing this degree of freedom, however, may not be well-defined

at interacting order for our system.
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8.3 Hamiltonian Analysis of the Quadratic Theory

To ease the calculation of the Hamiltonian of this theory we will gauge fix the lower-dimensional effective

field theory, in the B = 0 gauge, and consider only the lightest fields.

L = −1

4
(∂µAν − ∂νAµ)

2
+ Z (∂µC)Aµ . (8.3.1)

In this gauge we notice that our Lagrangian density is a limiting form of Rξ gauge fixed Lagrangian density

which generically reads [106]

L = −1

4
(∂µAν − ∂νAµ)

2
+ C∂µAµ − ξ

2
C2 . (8.3.2)

Here ξ is not a Sturm–Liouville eigenvalue but an arbitrary numeric constant named ξ by convention. Note

we have rescaled C to eliminate Z. Given this Lagrangian we calculate the canonical momenta (which we

name Ei and π)
89

Ei =
∂L

∂∂0Ai
= ∂0Ai − ∂iA0 , π =

∂L

∂∂0A0
= C . (8.3.3)

We then note the equivalence of our lower-dimensional effective action in Hamiltonian and Lagrangian form

to define our Hamiltonian density

H = Ei∂0Ai + π∂0A0 − L , (8.3.4)

H =
1

2
Ei

2 +
1

4
Fij

2 +
ξ

2
π2 +A0 (∂iEi) + π (∂iAi) . (8.3.5)

8.4 Higher-Dimensional Scalar Electrodynamics

In section 6 we analyzed a higher-dimensional interacting theory with a non-constant transverse zero mode

and observed nonlinear (as a function of the number of fields) corrections to the couplings. How does this

square with a gauge symmetry, which normally constrains the relationship between couplings at different

orders?

Consider a higher-dimensional complex scalar Φ which is gauge covariant; its gauge transformation is [106]

Φ′(x, z) = exp(ieΛ(x, z))Φ(x, z) , (8.4.1)

89We choose 0 to be the index of our time coordinate.
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(under higher-dimensional gauge transformations with parameter Λ). The (gauge covariant) equations of

motion of higher-dimensional scalar electrodynamics are

∂N∂
NAM − ∂M∂

NAN − ieΦ (∂M − ieAM ) Φ + ieΦ (∂M + ieAM ) Φ = 0 , (8.4.2)

∂N∂
NΦ− ie

((
∂NAN

)
Φ+ 2AN∂

NΦ
)
− e2ANANΦ = 0 . (8.4.3)

The first challenge in defining our higher-dimensional field theory is in ensuring the covariance of our

boundary conditions. For instance, consider a gauge-covariant complex scalar Φ and a linear special Neumann

boundary condition at z → 1+

∂zΦ(x, z)

∣∣∣∣
z→1−

= 0 . (8.4.4)

If we consider a Φ and Φ′ which both obey our boundary conditions and are related by a gauge transformation,

then

∂zΦ
′(x, z)

∣∣∣∣
z→1−

= exp(ieΛ(x, z) (ie (∂zΛ(x, z)) Φ(x, z) + ∂zΦ(x, z))

∣∣∣∣
z→1−

= ie (∂zΛ(x, z)) exp (ieΛ(x, z)) Φ(x, z)

∣∣∣∣
z→1−

= 0 .

(8.4.5)

That is, our boundary condition on Φ further restricts our possible gauge transformations. Note that this

restriction agrees with the restriction we already observed from Aµ’s boundary condition (equation (8.1.11))

only when Aµ obeys special Neumann boundary conditions.

To resolve this issue we must make our boundary condition gauge covariant itself, by appealing to the

covariant derivative. For the case of special Robin boundary conditions we generalize our boundary conditions

(as given in equation (6.4.2)) to

(a (∂z − ieAz(x, z)) + b) Φ(x, z)

∣∣∣∣
z→−1−

= 0 , (c (∂z − ieAz(x, z)) + d) Φ(x, z)

∣∣∣∣
z→1−

= 0 , (8.4.6)

and generalize our boundary terms (which are given for a real scalar field in equation (6.4.3) to

Sscalar boundary = −
∫
a

b
(|∂z − ieAz) Φ|2

∣∣∣∣
z→−1+

ddx+

∫
c

d
|(∂z − ieAz) Φ|2

∣∣∣∣
z→1−

ddx . (8.4.7)

Our bulk higher-dimensional action now reads (SSED bulk =)

∫ ∫ 1

−1

{
−1

4
(∂µAν − ∂νAµ)

2 − 1

2
(∂µAz − ∂zAµ)

2 − |(∂µ − ieAµ) Φ|2 − |(∂z − ieAz) Φ|2
}
dzddx , (8.4.8)
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where SMaxwell boundary is as given in equation (8.1.10). Our total action is

S = SSED bulk + SMaxwell boundary + Sscalar boundary . (8.4.9)

Our boundary terms are constructed so that whenever we vary either Aµ or Φ the terms found by integration

by parts which collect on the boundary cancel the variation of the terms already on the boundary. For Az

however, since there are no terms in the bulk which include transverse derivatives of Az, the total variation

on the boundary terms is, at the upper boundary for instance,

∫ {
1

2
XδAz∂µ (∂zAµ − ∂µAz) +

c

d
δAz

(
ieΦ (∂z − ieAz) Φ− ieΦ (∂z + ieAz) Φ

)} ∣∣∣∣
z→1−

ddx . (8.4.10)

If we apply Φ’s boundary condition the terms involving covariant derivatives of Φ cancel. Similarly if we

consider the z component of our higher-dimensional vector’s equation of motion

□Az − ∂z∂
µAµ − ieΦ (∂z − ieAz) Φ + ieΦ (∂z + ieAz)Φ = 0 , (8.4.11)

and impose Φ’s boundary condition at z → 1+, the terms involving covariant derivatives of Φ cancel.

Therefore, as in the case of free Maxwell, the terms from the variation on the boundary are proportional to

the bulk equations of motion.

8.5 Nonlinear Boundary Conditions and Perturbative Field Redefinitions

Since we have linear boundary conditions for Aµ and Az we choose to expand them in the bases given in

(8.1.14) and (8.1.15), respectively. However Φ obeys nonlinear boundary conditions, which require a more

subtle treatment.

In principle for two different points on the world volume xa, xb ∈ R1,d−1, where the transverse components

of our higher-dimensional vector do not agree at the boundary Az(xa, 1) ̸= Az(xb, 1), we have two separate

boundary conditions (
c∂z + d− cieA(xa/b, 1)

)
Φ(x, z)

∣∣∣∣
z→1−

= 0 . (8.5.1)

There are several possible resolutions to this problem. First, we may consider only special Dirichlet

conditions for Φ, that is Φ(x,±1) = 0. Since this is covariant without the inclusion of Az, this avoids any of

the following discussion.
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Second, we note we have a basis expansion for Az which permits the transverse antiderivative, that is

∂z
−1Az(x, z) = Bi(x)fi(z) + C(z)Z(z) . (8.5.2)

Here ∂zZ(z) = ζ(z).90 If we consider the gauge transformation of our lower-dimensional fields, δBi(x) =

λi(x) and δC(x) = 0, then there is a separate gauge-inert quantity we can define in the higher dimension

Ψ(x, z) = exp
(
−ie∂z−1Az(x, z)

)
Φ(x, z) = exp

(
−ieBi(x)ξi(z)− ieC(x)Z(z)

)
Φ(x, z) . (8.5.3)

This Ψ obeys a linearized version of the boundary conditions Φ obeys. We therefore expand it in corre-

sponding Sturm–Liouville basis, which we name gn with eigenvalues −σn2, (a∂z + b) gn(z)

∣∣∣∣
z→−1+=0

, etc.

Ψ(x, z) = ψn(x)gn(z) . (8.5.4)

Third, if we expand Φ within the same basis as Ψ, that is

Φ(x, z) = ϕn(x)gn(z) , (8.5.5)

and Taylor expand the exponential in equation (8.5.3) about Az = 0, then

ψn(x)gn(z) = ϕn(x)gn(z)− ieBi(x)ϕmfi(z)gm(z)− ieC(x)ϕm(x)Z(z)gm(z) +O
(
ϵ3
)
. (8.5.6)

Here ϵ represents the total order in lower-dimensional fields for an expression. If we suppose that the total

functional dependence on the right hand side may be expanded in the gn basis using the resolution of the

identity

δ(z − s) = gn(z)gn(s) , (8.5.7)

then we have

ψn(x)gn(z) = ϕn(x)gn(z)− ieBi(x)ϕm(x)gn(z)

∫ 1

−1

fi(s)gm(s)gn(s)ds

− ieC(x)ϕm(x)gn(z)

∫ 1

−1

Z(z)gm(s)gn(s)ds+O
(
ϵ3
)
.

(8.5.8)

90We momentarily ignore the x dependent constant (in z) function.
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We define the notation

Iij...,mn... =

∫ 1

−1

(fi(z)fj(z) . . .) (gm(z)gn(z) . . .) dz , (8.5.9)

Iij′...,m′n... =

∫ 1

−1

(fi(z) (∂zfj(z)) . . .) ((∂zgm(z)) gn(z) . . .) dz , (8.5.10)

IiZz...,mn... =

∫ 1

−1

(fi(z)Z(z)ζ(z) . . .) (gm(z)gn(z) . . .) dz . (8.5.11)

Here, Iij...,mn... represents an overlap integral of arbitrarily many (i and j) elements of the {fi(z)} basis,

arbitrarily many (z) ζ(z) and (Z) Z(z), as well as (m and n) elements of {gm(z)}. If any given index is

followed by a prime, n′ for example, that function appears under a transverse derivative.

Integrating equation (8.5.8) against an arbitrary gn we find

ψn = ϕn − ieIi,mnB
iϕm − ieIZ,mnCϕ

m +O
(
ϵ3
)
. (8.5.12)

This can be perturbatively redefined order by order to give

ϕn = ψn + ieIi,mnB
iψm + ieIZ,mnCψ

m +O
(
ϵ3
)
. (8.5.13)

Therefore the corrections to our Sturm–Liouville basis due to our nonlinear boundary conditions can be

understood as a perturbative series away from the gn in orders of the transverse components of Az.

However, the lower-dimensional systems are the same between these two procedures. That is the dimen-

sional reduction square commutes (equation (6.1.1)) when we expand Φ in our {gn} basis then make the

redefinition in the lower dimension (equation (8.5.13)) or if we make the redefinition in the higher dimension

(equation (8.5.8)) then expand Ψ in our {gn} basis. Therefore these two procedures define the same physical

system.
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8.6 Lower-Dimensional Scalar Electrodynamics, Original Variables

Expanding Aµ, Az, and Φ as in equations (8.1.14), (8.1.15), and (8.5.5) then integrate over the transverse

dimension our lower-dimensional Lagrangian density S =
∫
LSED EFT d

dx becomes (LSED EFT =)

−1

4

(
∂µA

i
ν − ∂νA

i
µ

)2 − 1

2
ωi

2
(
Ai

µ − ∂µB
i
)2

+ Z∂µC
(
A0

µ − ∂µB
0
)
− |∂µϕn| − σn

2 |ϕn|2

−ieIi,mnA
i
µ

(
ϕ
m
∂µϕn − ϕm∂µϕ

n
)
− ie (Ii′,mn′ − Ii′,m′n)B

iϕ
m
ϕn − ie (Iz,mn′ − Iz,m′n)Cϕ

m
ϕn

−e2Iij,mnA
i
µA

jµϕ
m
ϕn − e2Ii′j′,mnB

iBjϕ
m
ϕn − 2e2Ii′z,mnB

iCϕ
m
ϕn − e2Izz,mnC

2ϕ
m
ϕn .

(8.6.1)

If we focus on the gauge charge of the lightest scalar field ϕ0 with respect to the massless vector A0
µ,

then we may define an effective coupling

eeff = eI00,0 . (8.6.2)

Usually gauge symmetry restricts the coupling of the theory to all orders given only the cubic coupling [38].

That is the quartic coupling must be the square of the cubic coupling, or e4 = (eeff)
2
. In this case, however

as with section 6.5 the effective coupling at quartic order is

e4 = e2I00,00 . (8.6.3)

Since I00,00 ̸= (I00,0)
2
, this relationship is broken.

This unusual behavior is not due to the Stuckelbergs or the spontaneously created gauge fixing term in

the vector’s quadratic theory. Instead, it is due to a nonlinear realization of the gauge symmetry involving

all of the heavy scalar fields. Expanding equation (8.4.1) with Λ in the {fi} basis we find, to first order in

gauge parameter

ϕm′ = ϕm + ieIi,nmλ
iϕn . (8.6.4)

If we gauge transform equation (8.6.1) and collect only terms containing one each of A0
µ, λ

0, ϕ0, and ϕ
0
,

we find

−ieI0,0nA0
µ

(
ϕ
0
∂µ
(
ieI0,0nλ

0ϕ0
)
+
(
−ieI0,0nλ0ϕ

)
∂µϕ0 − ϕ0∂µ

(
−ieI0,0nϕ

0
))

−2e2I00,00A
0
µ

(
∂µλ0

)
ϕ
0
ϕ0 .

(8.6.5)

Expanding this we find that these terms cancel. That is

I0,0nI0,0n =

∫ 1

−1

f0g0(z)gn(z)dz

∫ 1

−1

f0(s)g0(s)gn(s)ds =

∫ 1

−1

f0(z)
2
g0(z)

2
dz = I00,00 . (8.6.6)
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Why do the Stueckelberg appear in the interactions at all? Usually the mass terms are gauge invariant by

themselves, since ϕn and ϕ
n
transform, at infinitesimal order in the gauge parameter, in opposite directions.

However, if we consider the transformation of the mass terms here

− σn
2
((

−ieIi,nmλiϕ
m
)
ϕn + ϕ

n (
ieIi,nmλ

iϕm
))

. (8.6.7)

These two terms generically do not cancel. However, if we combine this with the transformation of the

Stueckelberg at cubic order

− ie (Ii′,mn′ − Ii′,m′n)λ
iϕ

m
ϕn , (8.6.8)

these terms cancel, since

−Ii,nmσn2 + Ii,nmσm
2 =

∫ 1

−1

fi(s)gn(s)gm(s)ds

∫ 1

−1

gn(z)∆gn(z)dz − (n↔ m)

=

∫ 1

−1

fi(z)gm(z)∆gn(z)dz − (n↔ m) =

∫ 1

−1

f ′i(z)g
′
m(z)gn(z)dz − (n↔ m) = Ii′,m′n − Ii′,mn′ .

(8.6.9)

Notably, the antisymmetry of these terms implies that, if we consider a system of only the lightest scalar

and massless vector, the scalar does not appear at cubic order.

In summation, the terms which include the gauge fields A0
µ excepting the quadratic gauge fixing term,

are invariant among themselves, taking the entire tower of gauge fields into account. The presence of the

Stueckelberg field (B0) is necessary because the off-diagonal transformation of mass terms corresponding to

the scalars.

It is also worth noting that C has been promoted from a Lagrange multiplier to an auxiliary field, since

there now are terms at quartic order involving C2. C’s equation of motion now reads,

Z□B0 − Z∂µA0
µ − ie (Iz,mn′ − Iz,nm′)ϕ

m
ϕn − 2e2Ii′z,mnB

iϕ
m
ϕn − 2e2Izz,mnCϕ

m
ϕn = 0 . (8.6.10)

8.7 The Gauge Inert Basis and the Interaction Basis

Substituting the redefinition given in equation (8.5.3) into the higher-dimensional action we find the higher-

dimensional bulk Lagrangian density (SSED bulk =
∫ ∫ 1

−1
LSED bulkdzd

dx) becomes

LSED bulk = −1

4
(∂µAν − ∂νAµ)

2 − 1

2
(∂µAz − ∂zAµ)

2 −
∣∣(∂µ − ieAµ + ie∂µ∂z

−1Az

)
Ψ
∣∣2 − |∂zΨ|2 . (8.7.1)
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Expanding Aµ, Az, and Ψ as in equations (8.1.14), (8.1.15), and (8.5.4) then integrating over the transverse

dimension our lower-dimensional Lagrangian density S =
∫
LSED EFT d

dx becomes (LSED EFT =)

−1

4

(
∂µA

i
ν − ∂νA

i
µ

)2 − 1

2
ωi

2
(
Ai

µ − ∂µB
i
)2

+ Z∂µC
(
A0

µ − ∂µB
0
)
− |∂µψn| − σn

2 |ψn|2

−ieIi,mn

(
Ai

µ −
(
∂µB

i
)) (

ψ
m
∂µψn − ψm∂µψ

n
)
+ ieIZ,mn (∂µC)

(
ψ
m
∂µψn − ψm∂µψ

n
)

−e2Iij,mn

(
Ai

µ −
(
∂µB

i
)) (

Ajµ −
(
∂µBj

))
ψ
m
ψn

−2e2IiZ,mn

(
Ai

µ −
(
∂µB

i
))

(∂µC)ψ
m
ψn − e2IZZ,mn (∂µC) (∂

µC)ϕ
m
ϕn .

(8.7.2)

The gauge invariance of this action is obvious, since, with the exception of Ai
µ’s kinetic term, which are

inherently gauge invariant, every appearance of every vector is gauge inert, i.e. Ai
µ − ∂µB

i.

An important relationship between the action presented here (8.7.2) and the action presented in (8.6.1)

is that they transform into each other given our perturbative field redefinition (equation (8.5.13) in the

lower-dimensional effective field theory. For example, if we inspect the perturbative redefintion of the kinetic

terms we find

|∂µϕn|2 =
(
∂µψ

n − ieIi,mn

(
∂µB

iψ
m
)
− ieIZ,mn

(
∂µCψ

m
)
+O

(
ϵ3
))

×
(
∂µψn + ieIi,pn

(
∂µBiψp

)
+ ieIZ,pn (∂

µCψp) +O
(
ϵ3
))

= |∂µψn|2 − ie
(
Ii,mn

(
∂µB

i
)
+ IZ,mn (∂µC)

) (
ψ
m
∂µψn − ψm∂µψ

n
)
+O

(
ϵ4
)
.

(8.7.3)

Here we have cancelled terms where derivatives do not act on either Bi or C.

One final question we may ask about field redefinitions is: can any field redefinition correct the unusual

quartic coefficient. The answer is, first, no perturbative field redefinition can. This can be argued as a fact

about gauge invariance which we will demonstrate in the context of the theory in the original variables after

integrating the heavy fields out. However, if we expand the accepted space of field redefinitions, then we

may define the most general redefinition at linear order in fields, defined by some operator Knm

φn = Knmϕ
m , (8.7.4)

and consider its gauge transformation

φn′ = Knmϕ
m′ = Knmϕ

m + ieKnmIi,mpλ
iϕp = φn + ieKnmIi,mpK

pqλiφq . (8.7.5)
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Here we have invoked Kpq’s inverse, Kpq, defined so that KnpKpm = δnm. We cannot simultaneously

diagonalize Ii,mn for all i, however, if we suppose that Kmn diagonalizes I0,mn, that is

KmnIi,npK
pq = Jδi0δm

q + Ji,m
q , (8.7.6)

where J is some constant and J0,m
q = 0, then we have

φn′ = φn + ieJλ0φn +O
(
λi
)
+O

(
λ2
)
. (8.7.7)

If we (inconsistently) truncate all heavy vectors and insert this field redefinition our Lagrangian density

becomes

−1

4
(∂µAν − ∂νAµ)

2
+ Z∂µC (Aµ − ∂µB)

− |(∂µ − ieJAµ)φ
n|

−σn2
∣∣Knmφm + ieLi

nmBiφm + ieLz
nmCφm

∣∣2 .
(8.7.8)

That is, our covariant derivatives become diagonalized, but our mass terms become undiagonalized.

8.8 The Effective Field Theory of the Light Fields

Selecting the original basis, that is ϕn as in the Lagrangian density given in equation (8.6.1), we know that

the theory is best approximated by A0
µ, B

0, C, and ϕ0 with all of the massive vectors (Ai
µ and ϕ

n
with

i, n > 0) and heavy scalars put onshell. We start by making the gauge choice that Bi = 0. In this gauge

the massive vectors’ equations of motion read

(
□− ωi

2
)
Ai

µ − ∂µ∂
νAi

ν = ieIi,mn

(
ϕ
m
∂µϕ

n − ϕm∂µϕ
n
)
+ 2e2Iij,mnA

j
µϕ

m
ϕn . (8.8.1)

Also, our heavy scalars’ equations of motion read

(
□−σn2

)
ϕn =

ieIi,nm
((
∂µAi

µ

)
ϕm + 2Ai

µ∂
µϕm

)
+ ie (I0′,nm′ − I0′,n′m)B0ϕm + ie (Iz,nm′ − Iz,n′m)Cϕm

+ e2Iij,nmA
i
µA

jµϕm + 2e2I0′z,nmB
0Cϕm + e2I0′0′,nm

(
B0
)2
ϕm .

(8.8.2)

Therefore to leading order in light fields (ϵn), and derivatives (∂n), we have

Ai
µ = −ie

Ii,00
ωi

2

(
ϕ∂µϕ− ϕ∂µϕ

)
+O

(
ϵ3
)
+O

(
∂3
)
, (8.8.3)
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ϕn =− ie
I0,n0
σn2

((∂µAµ)ϕ+ 2Aµ∂
µϕ)− ie

I0′,n′0 − I0′,0′n
σn2

Bϕ− ie
Iz,n′0 − Iz,0′n

σn2
Cϕ

− ie
I0′,n0′ − I0′,n′0

σn4
(□Bϕ)− ie

Iz,n′0 − Iz,0′n
σn4

(□Cϕ) +O
(
ϵ3
)
+O

(
∂3
)
.

(8.8.4)

Substituting these into our Lagrangian density (equation (8.6.1)) we find (LSED EFT =)

−1

4
(∂µAν − ∂νAµ)

2
+ Z∂µC (Aµ − ∂µB)− |∂µϕ|2 − σ2 |ϕ|2

−ieI0,00Aµ

(
ϕ∂µϕ− ϕ∂µϕ

)
− e2I00,00AµA

µ |ϕ|2

−e2I0′0′,00B2 |ϕ|2 − 2e2I0′z,00BC |ϕ|2 − e2Izz,00C
2 |ϕ|2

+
1

2
e2
Ii,00Ii,00
ωi

2

(
ϕ∂µϕ− ϕ∂µϕ

)2
+ e2

I0,0nI0,0n
σn2

|(∂µAµ)ϕ+ 2Aµ∂
µϕ|2

+e2
(I0′,n′0 − I0′,0′n)

2

σn2
B2 |ϕ|2 + e2

(Iz,n′0 − Iz,0′n)
2

σn2
C2 |ϕ|2

+
1

2
e2
I0,0n (I0′,n′0 − I0′,0′n)

σn2

((
(∂µAµ)ϕ+ 2Aµ∂

µϕ
)
Bϕ+Bϕ ((∂µAµ)ϕ+ 2Aµ∂

µϕ)
)

+
1

2
e2
I0,0n (Iz,n′0 − Iz,0′n)

σn2

((
(∂µAµ)ϕ+ 2Aµ∂

µϕ
)
Cϕ+ Cϕ ((∂µAµ)ϕ+ 2Aµ∂

µϕ)
)

+2e2
(I0′,n′0 − I0′,0′n) (Iz,n′0 − Iz,0′n)

σn2
BC |ϕ|2 + 1

2
e2

(I0′,n′0 − I0′,0′n)
2

σn4

(
Bϕ (□Bϕ) +

(
□Bϕ

)
Bϕ
)

+
1

2
e2

(I0′,n′0 − I0′,0′n) (Iz,n′0 − Iz,0′n)
2

σn4

(
Bϕ (□Cϕ) + Cϕ (□Bϕ) +

(
□Bϕ

)
Cϕ+

(
□Cϕ

)
Bϕ
)

+
1

2
e2

(Iz,n′0 − Iz,0′n)
2

σn4

(
Cϕ (□Cϕ) +

(
□Cϕ

)
Cϕ
)
+O

(
ϵ5
)
+O

(
∂3
)
.

(8.8.5)

Here, the gauge transformation of our lightest scalar field is also changed by setting ϕn onshell. This is

since

ϕ′ = ϕ+ ieI0,00λϕ+ ieI0,0nλϕ
n +O

(
λ2
)

= ϕ+ ieI0,00λϕ+ e2
I0,0n

2

σn2
λ ((∂µAµ)ϕ+ 2Aµ∂

µϕ))

+ e2
I0,0n (I0′,n′0 − I0′,0′n)

σn2
λBϕ+ e2

I0,0n (Iz,n′0 − Iz,0′n)

σn2
λCϕ+O

(
λ2
)
+O

(
∂2
)
+O

(
ϵ3
)
.

(8.8.6)

This causes ϕ’s mass term in equation (8.8.5) to produce a term which cancels against the transformation

of quartic order terms. From the mass term, if we collect only terms involving λ, Aµ, ϕ, ϕ, and a single

derivative ∂µ, we have

− σ2ϕ

(
e2
I0,0n

2

σn2
λ ((∂µAµ)ϕ+ 2Aµ∂

µϕ))

)
− σ2

(
I0,0n

2

σn2
λ
(
(∂µAµ)ϕ+ 2Aµ∂

µϕ)
))

ϕ . (8.8.7)

We note that this is identical in structure to the terms mixing Aµ, B, ϕ, ϕ, and a single derivative ∂µ in our

action (equation (8.8.5)). If we add total derivatives to write these terms so that no derivatives act on Aµ
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these terms simplify to

2e2σ2 I0,0n
2

σn2
Aµ∂

µλ |ϕ|2 . (8.8.8)

That is, the higher-order transformation of the mass term, as well as the induced terms involving Aµ, B, ϕ,

ϕ, and a single derivative ∂µ, all cancel given

I00,00 − I0,00
2 −

I0,0n (I0′,n′0 − I0′,0′n)

σn2
− 2σ2 I0,0n

2

σn2
= 0 . (8.8.9)

Of vital importance, there exist cases when
I0,0n(I0′,n′0−I0′,0′n)

σn
2 = 0 and when 2σ2 I0,0n

2

σn
2 = 0 (especially when

σ2 = 0), but not simultaneously. Therefore a massive field could potentially have a perturbative redefinition

to a field with a linearly realized gauge symmetry, but a massless field (such as a self-interacting gauge field)

never can.
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9 Covert Symmetry Breaking in Yang–Mills

This section will present a preliminary analysis of covert symmetry breaking in the context of a self-interacting

gauge-theory, Yang–Mills [130].

9.1 Yang–Mills Boundary Terms and Conditions

At linear order, our study of the behavior of Yang–Mills is essentially a restatement of our study of Maxwell.

First, we invoke our bulk higher-dimensional theory

Sbulk =

∫
R1,d−1

∫ 1

−1

−1

4
tr
{
(∂MAN − ∂NAM + g [AM , AN ])

2
}
dzddx . (9.1.1)

Here we have used the same coordinate split as in section 7. We of course also have the pithier expression

Lbulk = − 1
4 tr

{
FMN

2
}
for our gluon field strength tensor FMN = ∂MAN − ∂NAM + g [AM , AM ].

Next we impose the following boundary conditions on the world-volume components of our field

(
∂z −

b

a

)
Aµ(x, z)

∣∣
z=−1

= 0 ,

(
∂z −

b

a+ 2b

)
Aµ(x, z)

∣∣
z=1

= 0 . (9.1.2)

Next we vary our action and collect boundary terms at z = ±1.

δSbulk =

∫
R1,d−1

{∫ 1

−1

tr
{
δAM

(
∂NFNM + g

[
AN , FNM

]) }
dz + tr {δAµFµz}

∣∣∣z=1

z=−1

}
ddx . (9.1.3)

Requiring this to vanish we learn the bulk equations of motion

∂NFNM + g
[
AN , FNM

]
= 0 . (9.1.4)

However, the boundary term which usually vanishes, does not. Normally it vanishes either due to the

world-volume components of our field’s variation obeying a special Dirichlet condition (δAµ
∣∣
z=±1

= 0) or

our world-volume components of our field obeying a special Neumann condition (∂zAµ

∣∣
z=±1

= 0) and the

transverse component of field obeying a special Dirichlet condition Az

∣∣
z=±1

= 0, or some mixture.
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We wish to study Robin conditions, however, so we augment our action S = Sbulk + Sz=±1.

Sz=+1 = +

∫
R1,d−1

(a+ b) + b

b

1

2
tr
{
Fµz

2
} ∣∣∣

z=+1
ddx , (9.1.5)

Sz=−1 = −
∫
R1,d−1

(a+ b)− b

b

1

2
tr
{
Fµz

2
} ∣∣∣

z=−1
ddx , (9.1.6)

Given these terms the variation (at quadratic order) at the upper boundary, becomes

∫
R1,d−1

tr

{
−
((

a+ 2b

b
∂z − 1

)
δAµ

)
Fµz − δAz∂µFµz

} ∣∣∣∣∣
z=1

ddx . (9.1.7)

The terms including δAµ vanish given that our variation takes us from a field configuration which obeys our

boundary condition, to a field configuration which obeys our boundary condition. That is

(
∂z −

b

a+ 2b

)
A′

µ(x, z)
∣∣
z=1

= 0 and

(
∂z −

b

a+ 2b

)
Aµ(x, z)

∣∣
z=1

= 0

⇒
(
∂z −

b

a+ 2b

)
δAµ(x, z)

∣∣
z=1

= 0 .

(9.1.8)

Here we have used A′
µ(x, z) = Aµ(x, z) + δAµ(x, z). Furthermore, the boundary terms which include δAz

vanish given the (linear) equation of motion derived from varying δAz in the bulk. Since the variation of

δAz is not constrained by any boundary condition on Az, we have our equation of motion independently at

every point in our higher dimensional space, therefore the term on the boundary vanishes.

Of course, we only considered the quadratic variation/linear equations of motion. To covariantize the

boundary operator that which acts on the variation of Aµ we have

(
a+ 2b

b
∂z − 1

)
δAµ

∣∣∣∣∣
z=+1

= 0 →
(
a+ 2b

b
Dz − 1

)
δAµ

∣∣∣∣∣
z=+1

= 0 , (9.1.9)

(a
b
∂z − 1

)
δAµ

∣∣∣∣∣
z=−1

= 0 →
(a
b
Dz − 1

)
δAµ

∣∣∣∣∣
z=−1

= 0 . (9.1.10)

Here our expression for the covariant derivative, DzδAµ = ∂zδAµ + g [Az, δAµ], is sensible as the difference

between two gauge fields is a covariant object, even if the gauge-field itself is not. This leaves us with a

conundrum; we state boundary conditions on fields, not variations. However, we require a covariant nonlinear

boundary condition on our variation, which would have to be derived from some non-covariant nonlinear

boundary condition on our field. To find what the boundary condition on Aµ is requires the recursion

equation (7.5.12).
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9.2 The Quadratic Lower-Dimensional Theory

First, however, allow us to determine what the physical degrees of freedom of our lower-dimensional theory

are. There is a coordinate invariance for picking which Sturm–Liouville basis we desire to use, however, using

a Sturm–Liouville basis which is incompatible with our boundary conditions will require careful collection

of boundary terms in the lower dimension. Alternatively, using a Sturm–Liouville basis that is compatible

with our boundary conditions leads to a straight-forward projection of our higher dimensional equations of

motion into our lower dimension.

Given equation (9.1.2) the Sturm–Liouville basis for Aµ which will diagonalize the quadratic lower di-

mensional action is our f basis. That is

Aµ(x, z) = Ai
µ(x)fωi(z) . (9.2.1)

Of course, we are particularly interested in our possibly massless zero mode A0
µ, which we shall also call

Aµ. Similarly, we will diagonalize our action if we select the derivative basis for our transverse modes, as

the relevant inner product (which is (·, ·) from equation (2.5.1)). That is

Az(x, z) = C(x)ζ(z) +Bi(x)f ′ωi
(z) . (9.2.2)

Again, we may call B0 as B. Inserting these terms into our action with boundary terms and collapsing

the relevant delta-distributions (equations (2.4.2) and (2.5.13)) against the transverse integral and boundary

terms we find, at quadratic order (S =)

∫
tr

{
−1

4

(
∂µA

i
ν − ∂νA

i
µ

)2 − ωi
2

2

(
Ai

µ − ∂µB
i
)2

+ ∂µC (Aµ − ∂µB)

}
ddx+O

(
ϕ3
)
. (9.2.3)

Here ϕ3 is a combination of fields at cubic order. We recognize a Stueckelberged Landau gauge-fixed action

for our zero modes and Stueckelberged Proca action for our massive modes [122].

9.3 The Recursion Equation

From equation (9.1.9) we know precisely what nonlinear condition we require on our variation, and we know

precisely what linear boundary condition we want on our fields. We know the gauge invariance of the action

in the higher dimension and the inherited transformation of our lower-dimensional fields at linear order.

To summarize these last two points, for some gauge group valued higher-dimensional function Y(x, z), our
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higher-dimensional fields transform as

A′
M = Y−1AMY +

1

g
Y−1∂MY . (9.3.1)

This is the full nonlinear transformation, however, to specify how it acts at linear order we require an infinites-

imal expansion. To wit, we specify an adjoint valued higher-dimensional function υ(x, z) = log(Y(x, z)), and

state

A′
M = AM +

1

g
∂Mυ + [υ, AM ] +O

(
υ2
)
. (9.3.2)

At linear order we can see that whatever boundary conditions Aµ obeys, υ must also obey. If υ does not obey

the boundary conditions of Aµ then our gauge transformation will take us from a field configuration obeying

our of boundary conditions to a field configuration not obeying those boundary conditions. Therefore we

suppose that υ (to linear order) may be expanded using our f basis

υ(x, z) = yi(x)fωi
(z) . (9.3.3)

From this we find

Ai′
µ =

〈
f i, A′

µ

〉
= Ai

µ +
1

g
∂µy

i +O(yϕ) , (9.3.4)

Bi′ = ((∂zfi) , A′
z) = Bi +

1

g
yi +O(yϕ) , (9.3.5)

C ′ = (ζ, A′
z) = C +O(yϕ) . (9.3.6)

This confirms that these fields indeed do transform at linear order as gauge fields (for Ai
µ) and Stueckelberg

fields (for Bi).

The next order of the transformations, however, will mix the transformation of all of our fields. The next

order of our transformations is

Ai′
µ = . . .+

[
yj , Ak

µ

]
⟨fi, fjfk⟩+O(y2) , (9.3.7)

Bi′ = . . .+
[
yj , Bk

]
(f ′i , fjf

′
k) +

[
yj , C

]
(f ′i , fjζ) +O(y2) , (9.3.8)

C ′ = . . .+
[
yj , Bk

]
(ζ, fjf

′
k) +

[
yj , C

]
(ζ, fjζ) +O(y2) . (9.3.9)

We see even our auxiliary field (C) will transform. Despite these nonlinearities, we still find the action is

gauge invariant by applying these transformations and our resolutions of the identity.
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This is tantamount to declaring whatever our true boundary conditions are, they are such that equation

(9.1.9) is obeyed. Given these conditions, we still have the coordinate invariance of choosing whichever

Sturm–Liouville basis to expand AM we desire. We choose our {fi} basis, despite our fields not obeying

the boundary condition that our fs obey, and the cost of this is that our lower-dimensional action has a

nonlinear mixing of our fields.

To restate the last point colloquially, we may suppose our fields as currently given by the linear order,

since any Sturm–Liouville basis is a basis for all L2(D) functions, are the fields to arbitrary order. This is

the same as studying standard Kaluza–Klein reduction in terms of the undiagonalized higher-dimensional

fields (equation (7.4.1)).

Alternately we may declare that equations (9.3.4), (9.3.5), and (9.3.6), are exact91 and attempt to find

a nonlinear field redefintion which solves the recursion equation. That is we suppose

Aµ(x, z) =A
i
µ(x)fi(z) +O(ϕ2) , (9.3.10)

as well as some similar expansion for Az, and attempt to solve the recursion equation. This, it eventuates,

is impossible. One might suspect that the presence of our lower-dimensional Stueckelberg field would make

finding such a transformation trivial. This is because almost all terms required at some order (yϕn−1) may

be cancelled by the transformation of the Stueckelberg at the same order, heuristically −Bϕn−1. The one

field that this cannot work for, however, is the Stueckelberg itself. It is

A′
z = [yi, Bj ]fif

′
j + [yi, C]fiζ . (9.3.11)

While the term including C may be cancelled easily by [Bi, C]fωi
ζ, there is no possible redefinition which

can cancel the [yi, Bj ] term, instead, we must consider a redefinition of both Az and Y. We will spare the

reader the most general A redefinition which obeys the necessary diffeomorphism covariant [126] structure92

and instead consider

Aµ = Ai
µfi + [Bi, Aj

µ]gij + [Bi, ∂µB
j ]hij +O(ϕ3) , (9.3.12)

Az = Cζ +Bif ′i + [Bi, C]ki + [Bi, Bj ]lij +O(ϕ3) , (9.3.13)

Y = yihi + [yi, Bj ]pij +O(ϕ2) . (9.3.14)

91We will handle the desired nonlinear transformation of the gauge group shortly.
92Although considering the full redefinition is easy using computer algebra.
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Alternatively we say

A1
µ = Ai

µfi , A2
µ = [Bi, Aj

µ]gij + [Bi, ∂µB
j ]hij , (9.3.15)

A1
z = Cζ +Bif ′i , A2

z = [Bi, C]ki + [Bi, Bj ]lij , (9.3.16)

Y0 = yifi , Y1 = [yi, Bj ]pij . (9.3.17)

Here gij , . . . , pij are as yet unknown transverse functions. The first order of our recursion equation is already

solved, and the following order is

δ̂2AM =
1

g
∂MY1 + [Y0, A1

M ] = δ2AM = δ0A2
M + δ1A1

M = δ2AM . (9.3.18)

Given equations (9.3.4), (9.3.5), and (9.3.6) are exact, then δ1Φ = 0, that is, the fields only transform

non-homogeneously at linear order. We find

1

g
∂µ
(
[yi, Bj ]pij

)
+ [yifi, A

j
µfj ]

=
1

g
[yi, Aj

µ]gij +
1

g
[yi, ∂µB

j ]hij +
1

g
[Bi, ∂µy

j ](gij + hij) ,

(9.3.19)

1

g
∂z
(
[yi, Bj ]pij

)
+ [yifi, Cζ +Bjf ′j ]

=
1

g
[yi, C]ki +

1

g
[yi, Bj ] (lij − lji) .

(9.3.20)

Matching unique terms in Aµ’s recursion equation we learn

g[yi, Aj
µ]fifj = [yi, Aj

µ]gij . (9.3.21)

A solution to this equation is

gij = g fifj . (9.3.22)

Similarly we learn

[∂µy
i, Bj ]pij = [Bi, ∂µy

j ] (gij + hij) , [yi, ∂µB
j ]pij = [yi, ∂µB

i]hij . (9.3.23)

A solution is

hij = pij = −1

2
gij = −1

2
g fifj . (9.3.24)
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Substituting this into Az’s recursion equation we learn

ki = g fiζ , lij =
1

2
g fif

′
j . (9.3.25)

Restating our redefinition given this we have

A2
µ = g [Bi, Aj

µ]fifj −
1

2
g [Bi, ∂µB

j ]fifj , (9.3.26)

A2
z = g [Bi, C]fiζ −

1

2
g [Bi, Bj ]fif

′
j , (9.3.27)

Y1 = −1

2
g [yi, Bj ]fifj . (9.3.28)

We can then repeat this process at arbitrary order in our recursion equation. However, we can identify

that Y is obeying the Baker–Campbell–Hausdorff identity at this order [8], and hypothesize that it will obey

this identity to arbitrary order. That is, if we define

N = exp
(
g Bifi

)
, (9.3.29)

we have

N ′ = exp
(
g Bifi + g yifi

)
= N exp

(
log
(
exp

(
−g Bifi

)
exp

(
g Bifi + gyifi

)))
= NY . (9.3.30)

Given this we can define

Aµ = N−1
(
Ai

µ − ∂µB
i
)
fi N +

1

g
N−1∂µN , (9.3.31)

Az = N−1CζN +
1

g
N−1∂zN . (9.3.32)

This field redefinition exactly obeys equation (9.3.1), for example,

A′
µ = (N ′)

−1
(
Ai′

µ − ∂µB
i′
)
fi N ′ +

1

g
(N ′)

−1
∂µN ′

= Y−1N−1
(
Ai

µ + ∂µy
i − ∂µB

i − ∂µy
i
)
fi NY +

1

g
Y−1N−1∂µNY +

1

g
Y−1N−1N∂µY

= Y−1AµY +
1

g
Y−1∂µY .

(9.3.33)

However, these redefinitions are only possible when we either restrict what gauge groups we study to those

covered by the exponential map [125], or we restrict our study to perturbations about the identity small
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enough that the Baker–Campbell–Hausdorff identity converges [17].

9.4 The Higher-Order Effective Field Theory

We notice that our field redefinition appears to be a gauge transformation away from N = 1, Bi = 0.

Therefore to discover the lower-dimensional field theory to general order we need set this gauge transformation

in the higher dimension, reduce the theory, then gauge transform back in the lower dimension.

Our higher-dimensional bulk theory is

Sbulk =

∫
R1,d−1

∫ 1

−1

− 1

4
tr
{(
∂µA

i
νfi − ∂νA

i
µfi + g

[
Ai

µ, A
i
ν

]
fifj

)2}
− 1

2
tr
{(
∂µCζ −Ai

µf
′
i + g[Ai

µ, C]fiζ
)2}

dzddx .

(9.4.1)

Our gauge-fixed higher-dimensional boundary theory is

Sz=±1 = ±
∫
R1,d−1

(a+ b)± b

b

1

2
tr
{(
∂µCζ −Ai

µf
′
i + g[Ai

µ, C]fiζ
)2} ∣∣∣

z=±1
ddx , (9.4.2)

Therefore our gauge-fixed lower-dimensional Lagrangian density is (L =)

tr

{
− 1

4

(
∂µA

i
ν + ∂νA

i
µ

)2 − ωi
2
(
Ai

µ

)2
+ (∂µC)Aµ

− g
(
∂µA

i
ν

)
[Ajµ, Ak

ν ] ⟨fifjfk⟩ −
g2

4
[Ai

µ, A
j
ν ][A

kµ, Alν ] ⟨fifjfkfl⟩)

− g (∂µC) [A
iµ, C]

(
ζ2fi

)
− gAi

µ[A
jµ, C] (ζf ′ifj)−

g2

2
[Aiµ, C][Ajµ, C]

(
ζ2fifj

)}
.

(9.4.3)

We may find the gauge invariant version of this Lagrangian by replacing Ai
µ → Ai

µ − ∂µB
i. Under this

replacement every combination of Ai
µ and Bi is manifestly gauge inert and, like the case for Maxwell, Bi’s

equation of motion is simply the transverse derivative of Ai
µ’s equation of motion.

If we follow our program from the previous section and integrate our massive vectors out we generically

find that corrections to the theory start at quartic order in Aµ, B, and C and second order in derivatives.

This is since the cubic couplings (in the action, quadratic in the equations of motion) between A and Ai are

derivative couplings. Therefore the gauge transformation of our vector only closes at higher order (both cubic

and quartic) due to the presence of the Steuckelberg field. We therefore ask, is there any field redefinition

that will remove this scalar?

We define the most generic perturbative second-order field redefinition involving only Aµ and up to first
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derivatives of B. That is

aµ = Aµ +X[B, Aµ] + Y [B, ∂µB] +O
(
ϕ3
)
, (9.4.4)

Aµ = aµ −X[B, aµ]− Y [B, ∂µB] +O
(
∂µ, ϕ

3
)
. (9.4.5)

Here X and Y are arbitrary constants. Similarly we define the most generic perturbative second-order gauge

transformation redefinition involving only B. That is

y = u+ Z[B, u] +O
(
ϕ2
)
, u = y − Z[B, y] +O

(
ϕ2
)
. (9.4.6)

Here Z is another arbitrary constant. The gauge transformation of aµ may be found by substituting the

gauge transformation of Aµ into the definition of aµ and then substituting the solution of aµ’s equation in

terms of Aµ. That is

a′µ =A′
µ +X[B′, A′

µ] + Y [B′, ∂µB
′] +O

(
∂µ, ϕ

3
)

=Aµ + g∂µy +X[B, Aµ] +X[y, Aµ] +X[B, aµ]

+ Y [B, ∂µB] + Y [y, ∂µB] + Y [B, ∂µy] +O
(
∂µ, ϕ

2, y
)

=aµ −X[B, aµ]− Y [B, ∂µB] + ∂µu− Z[∂µB, u]− Z[B, ∂µu]

+X[B, aµ] +X[u, aµ] +X[u, ∂µB]

+ Y [B, ∂µB] + Y [u, ∂µB] + Y [B, ∂µB] +O
(
∂µ, ϕ

2, y
)
.

(9.4.7)

Therefore if we select Y = − 1
2X, and Z = 1

2X we have

a′µ = aµ + ∂µu+X[u, aµ] +O
(
∂µ, ϕ

2, y
)
. (9.4.8)

That is, we can undo our higher-dimensional gauge-fixing in the lower-dimension. Furthermore if we select

X = gI000 we find a lower-dimensional Lagrangian density (L =)

tr

{
− 1

4
(∂µaν − ∂νaµ)

2
+ (∂µC) (aµ)− gI000 (∂µaν) [a

µ, aν ]

− g2

4
(I000)

2
[aµ, aν ][a

µ, aν ]− g2

4
X[aµ, aν ][a

µ, aν ]

− 1

2
gI000 (∂

muC) [B, aµ] + g2 (I000)
2
∂µC

(
O
(
B2, aµ

)
+O

(
∂µ, B

3
))

− g
(
ζ2f0

)
(∂µC) [a

µ, C]− g (ζf ′0f0) aµ[a
µ, C]− g2

2

(
ζ2f0f0

)
[aµ, C][aµ, C]

}
.

(9.4.9)
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Here X = I0000 − (I000)
2
is a novel seagull coefficient and aµ = aµ − ∂µB is the gauge inert (at linear order)

combination of aµ and B in the lower dimension. We have not explicitly calculated the cubic redefinition of

Aµ and its inverse in terms of aµ, however, it is sufficient to state the action, and therefore the equations of

motion, at linear order in B. We can use this to find B’s equation exactly since it is given by the derivative

of Aµ’s equation from equation (9.4.3).

In short, we see that, like for the case of scalar electrodynamics (in section 8.6) we have a promotion of

our Lagrange multiplier C to an auxiliary field. Further analysis of this action will have to wait for later

authors.
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10 Summary

In this text, we first, in section 2, preemptively studied the conditions under which a one-dimensional

Laplacian will have a zero mode, the conditions that give that zero mode, what the remaining spectrum of

the problem will be, and a related augmented inner product. In section 3 we showed what we could compute

from our Sturm–Liouville bases, that was we showed how to calculate Green functions, their augmented and

shifted relatives, complicated sums of overlap integrals, and further Green functions on product spaces.

In section 4 we studied the perturbation problem about maximally symmetric warped product spaces,

discussed how it related to the exact problem, and catalogued how different effective behavior could be

quickly diagnosed from different boundary conditions. We then supplemented our catalogue, in section 5,

by studying a specific problem and relating its solutions to each other.

We then shifted again and, in section 6, studied the effects of selecting boundary conditions (in the

context of Klein–Gordon theory) other than Type I, Type II, and Type III ∗ in a dimensional reduction. We

contrasted such problems, in 7, to Type III ∗ reductions with tensorial components, and described how to

diagonalize effective degrees of freedom and gauge transformations.

Finally, in section 8, we studied what happens when you combine these two complexities, and studied a

Type III † reduction of an interacting higher-dimensional gauge theory in detail. Then, in section 9, we laid

the groundwork for studying Type III † self-interacting higher-dimensional gauge theory, and showed how

the relevant recursion equations can be solved using the exponential map.

From this we can see our two main foci were then:

• Identifying when the perturbation problem in a higher dimension can be effectively lower-dimensional.

• Building a toolkit for understanding the effective field theories about such backgrounds.

Towards our first focus, to study theories that cannot be consistently truncated, we must generalize from

the standard Fourier basis expansion of our higher-dimensional field to a Sturm–Liouville basis. In studying

the Sturm–Liouville theory, focusing on zero modes (so that we may have an effectively lower-dimensional

solution once we apply Green’s formula for a product space) given by Laplacians we discover that we can

easily construct the space of zero modes, one is always a constant and the other is always given by quadrature.

We then discover that we can easily specify what boundary conditions correspond to what zero modes, and

that the zero modes will appear (or not appear) in the basis in one of four ways:

• We may have a one-dimensional space of normalizable zero modes.93

93Some of these bases correspond contain negative eigenvalue (and therefore negative mass) modes.
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• We may have a space where only the constant zero mode is normalizable.

• We may have a space where only the non-constant zero mode is normalizable.

• We may have a space with no normalizable zero modes.

We then find evidence of the adage ‘all perturbative physics is contained in the zero mode’. Specifically, we

show how the presence or absence of a zero mode determines the leading behavior of Green functions for

Laplacians on product spaces.

Finally we study the perturbation problem about a warped product background. We find that, for

gravitons, that product space Laplacian is the relevant quantity. We then explore how the graviton’s equation

can inform black hole solutions. We find that we can find some solutions exactly, i.e. Type I solutions and

sometimes Type II solutions, but that, in the context of an infinite volume transverse space, you may never

have lower-dimensional effective physics linked to a localized higher-dimensional source. We then explore

how to compact the space to find an approximate solution to a consistent truncation, which we call Type

III ∗, or how sometimes the transverse space will allow for a nonconstant zero mode and how these can persist

even when the transverse space has infinite volume, which we call Type III †.

We then give an example of a Type III † reduction, show that the solution to the product space Laplacian

is a valid approximation of the leading order of the theory, and describe several techniques for extracting

the lower-dimensional physical constants from this theory.

Towards our second focus, our study of Sturm–Liouville theory further informs further investigations

of Green functions. We find that manipulations of the zero mode94 can give us the sum of the overlap

integrals of heavy modes. Further we discover that theories with non-constant zero modes, which necessarily

correspond to the context of inconsistent truncations, have many novel corrections that are simple to identify,

but pose possible issues for gauge invariance. Furthermore we understand that it does not require any explicit

knowledge of the remainder of the spectrum to study the corrections to the theory. This is a unique feature

of our context of inconsistent truncations and can possibly be leveraged to understand exact solutions in

self-interacting theories in a new way.

94As well as its closely related cousin the functions in the kernel of the square of the Laplacian.
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A Shape Invariant Schrödinger Problems

One of the most powerful tools for solving one-dimensional Schrödinger problems is the application of shape

invariance [75]. Shape invariance is built up in stages, from initial theoretical observations of factorization, to

the relations of two differential operators in so-called supersymmetric quantum mechanics or SUSYQM [31],

to the relations of infinitely many differential operators all linked by factorization.

Shape invariance is not a problem with infinitely large reach. Its reach is limited by its power, as it al-

lows you to solve entire classes of problems, given that they are described by highly restrictive requirements.

Finding all possible problems described by those restrictions leads one to discover that there are precisely

six possibilities.

These six problems have important applications in many physically important problems such as spherical

harmonics, meson fields, and the Keppler problems [75]. The underlying reason why is revealed with a

slight generalization of shape invariance, from a univariate shape invariant problem to a bivariate problem,

will allow us to define additional operators that will relate these problems to several different Lie algebras,

revealing the underlying symmetry of the problems in which the potentials are frequently found.

From a mathematical perspective shape invariance informs us about how we might use a series of differ-

ential operators to relate a family of special functions to itself through change of parameters. This is possibly

the most efficient method of finding recurrence relations, and often of calculating these special functions [61].

Lastly, these problems can serve as toy models for many more intricate problems in quantum field theory,

etc. However, the application of these tools are frequently superseded by others such as the theory of special

functions, and the manipulation of Green functions in Sturm–Liouville theory, as they are for this work.

However, for the sake of completeness, and in the hope that the study of these tools might reach an audience

which might apply them, they are included here.

The organization of this appendix is as follows.

1. We define Darboux transformations, and find the superpotential for an arbitrary Schrödinger operator.

2. We then define SUSYQM, and introduce the superspace formulation of such.

3. We repeat Darboux transformations [5] to relate an entire (shape invariant) family of problems [75].

4. We use the definition of shape invariance to find all possible shape invariant families.

5. We generalize shape invariance to a bivariate family and show how they recreate a Lie algebra.
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A.1 Darboux Transformations

In the shape invariance literature Schrödinger problems are usually defined in terms of a Hamiltonian H [75],

− ∂x
2 + V (x) = H , (A.1.1)

and its eigenvalue problem

Hψl(x) = Elψl(x) . (A.1.2)

We note that we may universally transform the eigenvalue problem of a Laplacian into this form using the

technique demonstrated in equation (2.2.22).95

Given such a problem we might attempt to find a factorization, that is operators A and its adjoint under

the standard L2 inner product A† so that

H = AA† = (∂x +W (x))(−∂x +W (x)) . (A.1.3)

Here A = ∂x + W (x) and its adjoint is A† = −∂x + W (x). Simplifying the right hand side of equation

(A.1.3), we have

− ∂x
2 +W ′(x) +W (x)2 = −∂x2 + V (x) . (A.1.4)

Taken as a nonlinear ordinary differential equation for W (x) we recognize a Riccati equation and propose

the variable redefinition W (x) = y′(x)
y(x) [101]. Given this we find

y′′(x)

y(x)
= V (x) , (A.1.5)

which we may restate

Hy(x) = 0 . (A.1.6)

That is, finding a factorization of a Schrödinger problem is equivalent to finding a vacuum solution to the

same. ThisW (x) is referred to as the ‘superpotential’ of the Hamiltonian H. However, there is slightly more

flexibility in defining W (x) then there generically is in finding eigenstates of the Hamiltonian, since any y(x)

which lies within the kernel of H, whether it obeys the boundary conditions of the Schrödinger problem or

not, defines a unique superpotential [75]. Therefore there exists a one parameter family of superpotentials.

95To complete the dictionary explicitly we have El = −ω2 and lω = ψl.
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For example, for the free Hamiltonian V (x) = 0 we have y = cos2(θ) + sin2(θ)x, for any θ, and therefore96

W (x) =
1

cot2(θ) + x
. (A.1.7)

Given a factorized Hamiltonian (that is, given explicit A and A†), we may define a one-parameter family

of Hamiltonia Hθ defined via Darboux transformation as

Hθ = A†A = −∂x2 +
(
W (x)2 −W ′(x)

)
. (A.1.8)

For example, the family of Hθ defined via Darboux transformation of the free Hamiltonian is

Hθ = ∂x
2 +

2(
cot2(θ) + x

)2 . (A.1.9)

Given any eigenvalue to the original HamiltonianH, ψl(x), we may apply our factor A† to find a eigenvalue

to Hθ. That is

Hψl = AA†ψl = Elψl ⇒ HθA
†ψl = A†AA†ψl = A†Hψl = ElA

†ψl . (A.1.10)

Similarly, given a solution to Hθ we may find a solution to H.

One notable exception to this technique is any function, ϕ(x), which lies within the kernel of A†. These

obey

A†ϕ(x) = −ϕ′(x) + y′(x)

y(x)
ϕ = 0 ⇒ ϕ′(x)

ϕ(x)
=
y′(x)

y(x)
. (A.1.11)

If we integrate the left and right hand sides of this final expression we find log(ϕ(x)) = log(y(x)) + c .

Therefore ϕ(x) = exp(c)y(x) . That is, the mode we used to define our superpotential W (x) is not related

to a solution of Hθ by Darboux transformation.

A.2 SUSYQM

If we consider two Hamiltonia related by Darboux transformation H− = AA† and H+ = A†A then we may

define an overall Hamiltonian H defined as97

H =
1

2

H− 0

0 H+

 . (A.2.1)

96Since non-trivial y(x) constitute a two parameter family, we may be tempted to surmise there is a two parameter family of
W . However, the overall scale of any solution cancels in the variable redefinition, leaving us with only one parameter.

97We have introduced a factor of 1
2
to standardize the later conversion to the Lagrangian formalism.
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Further we may define supercharges

Q =

0 0

A 0

 , Q† =

0 A†

0 0

 . (A.2.2)

These obey the anticommuntation relations

2H = {Q, Q†} . (A.2.3)

We may rewrite this as

H =
1

2

(
p2 +W (x)2

)
1̂− [σ+, σ−]W

′(x) . (A.2.4)

Here p is the standard momentum operator. This Hamiltonian (with its associated time-dependent Schrödinger

problem) has the associated Lagrangian

L =
1

2
ẋ(t)2 + iσ−∂tσ+ − 1

2
W (x)2 +

1

2
[σ+, σ−]W

′(x) . (A.2.5)

Which is used as a toy problem to study supersymmetry in the context of a field one-dimensional field theory.

A.3 Shape Invariance

Of course, there is no reason that we must stop at two related Schrödinger problems. We may repeatedly

select a specific factorization and Darboux transform our problems for an infinite family of Hn given by

Hn = An−1
†An−1 + Ln−1 = AnAn

† + Ln . (A.3.1)

Here we have chosen to shift the eigenvalues of the nth problem by Ln, which leaves the eigenfunctions

invariant.

Each of these Hamiltonians has its own associated eigenfunctions ψn
l (x) which obey

Hnψ
n
l (x) = En

l ψ
n
l (x) . (A.3.2)

Even with shifting our eivenvalues during our Darboux transformation, our kinetic terms, i.e. −∂x2, are

invariant. Therefore we only need track what occurs to the potentials

Vn(x) =Wn−1(x)
2 −W ′

n−1(x) + Ln−1 =W ′
n(x) +Wn(x)

2 + Ln . (A.3.3)
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Subtracting the nth and n− 1st factorizations of Hn we find

Wn(x)
2 +W ′

n(x) + Ln −Wn−1(x)
2 +W ′

n−1(x)− Ln−1 = 0 . (A.3.4)

We, of course, can always find solutions to these equations for any series of Hamiltonians related by

sequential Darboux transformations, which we have argued always exist. Shape invariance is the additional

requirement that Wn and Ln may be expanded in terms of finite power series of n. This restriction allows us

to, given either knowledge of all of the modes in H0’s spectrum, or knowledge of each of our superpotentials,

Wn, give the full spectrum for each of our operators. Furthermore, the restriction to finite power series in n

allows us to explicitly find all families of shape invariant potentials. We would first note that there is a

seemingly trivial solution with

Wn(x) = fn , Ln = fn
2 . (A.3.5)

However, this form of relation, of the free Schrödinger problem to itself, even with an arbitrary shift in

energy, is simply a restatement of the quantum harmonic oscillator [75], which is a special case of shape

invariance, yes, but is also best studied in a more symbolically tractable case. We will attempt to investigate

solutions that relate distinct Vn(x).

We now assume

Wn(x) =W (x) + nX(x) , (A.3.6)

and substitute to find

2 (W ′(x) +W (x)X(x)) + (2n− 1)
(
X(x)2 +X ′(x)

)
= Ln−1 − Ln , (A.3.7)

for all n. We may rewrite the left hand side

(
n2
(
X(x)2 +X ′(x)

)
+ 2n (W ′(x) +W (x)X(x))

)
(A.3.8)

−
(
(n− 1)2

(
X(x)2 +X ′(x)

)
+ 2(n− 1) (W ′(x) +W (x)X(x))

)
. (A.3.9)

If we assume Ln may be written as a power series of n, we have

Ln = −n2
(
X(x)2 +X ′(x)

)
− 2n (W ′(x) +W (x)X(x)) + f(x) , (A.3.10)
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where f(x) is an arbitrary function of x. If we assume L0 = 0, we have f(x) = 0. In such a case we have

X(x)2 +X ′(x) = −c2 , W ′(x) +W (x)X(x) = −ck . (A.3.11)

Here c and k are arbitrary constants. Solving these equations sequentially we have

X(x) = −c tan(cx+ ca) , W (x) = b sec(c(a− x)) + k tan(c(a− x)) . (A.3.12)

Here a and b are two further integration constants.

We may further consider X(x)2 + X ′(x) = 0 and W ′(x) +W (x)X(x) = −l, for a simpler definition of

Ln, however, all such combinations can be considered as limiting forms of the explicit case when c → 0+

and ck → l, or some similar combination of limits. More relevant is the question of how our assumption of

the form of Wn(x) might be relaxed.

If we assume Wn(x) = . . .+ n2Y (x) is a quadratic polynomial in n, then we discover

4n3Y (x)2 +O(n2) = Ln−1 − Ln . (A.3.13)

If we expand the left and right in series in n, each coefficient function of a given order in n on the left

must be x independent, therefore ∂xY (x)2 = 0. Furthermore the addition of an an2 term in Wn(x) causes

a similarly non-differential requirement for the n term in Wn(x). If one follows this chain of implication we

find Wn(x) = f(n) after including any term beyond linear order in n.

However, if we generalize from Taylor series to Laurent series, assuming

Wn(x) =
1

n
U(x) +W (x) + nX(x) , (A.3.14)

and repeat this calculation we will discover a new solution with

X(x) = −c tan(cx+ ca) ,W (x) = 0 , U(x) = b . (A.3.15)

With similar limiting cases.

Assembling all of this we find six relevant sublimits of these problems, labeled cases A through F in [75].
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B Asymptotic Approximations of Solutions with a Transverse Pöschl–

Teller Potential

B.1 Orthonormalised Transverse Wavefunctions

To eke out any higher precision than the expression given in equation (5.3.20), first note that our separated

solutions (
∂2r +

2

r
∂r + g2

(
∂2ρ + 2 coth(2ρ)∂ρ

))
fω(r)ζω(ρ) = 0 , (B.1.1)

have transverse factors ζω(ρ), which, after changing variables to y = cosh(2ρ) and ζω(ρ) = ψω(cosh(2ρ)) =

ψω(y), solve (
4∂y

(
y2 − 1

)
∂y + ω2

)
ψω(y) = 0 . (B.1.2)

This is a known version of Legendre’s differential equation with the general solution given by Legendre

functions (since the order is in general complex) [61].

ψω(y) = aωP− 1
2+

√
1−ω2

2

(y) + bωQ− 1
2+

√
1−ω2

2

(y) . (B.1.3)

The Legendre functions of the second type (Q) have a logarithmic divergence as y → 1. For the moment

we want to consider only solutions that are regular when r ̸= 0 and ρ→ 0 (y → 1), so we consider solutions

involving only the Legendre function of the first type (P).

Returning to the ρ variables, we now investigate orthonormality. We require

∫ ∞

0

sinh(2ρ)ζω(ρ)ζυ(ρ)dρ = δ(ω − υ) . (B.1.4)

Applying our transverse operator and integrating by parts, we find that this integral may be given purely in

terms of contact terms at infinity. We recall the identity98

lim
R→∞

1

ω2 − υ2
(ω sin(ωρ) cos(υρ)− υ cos(ωρ) sin(υρ))

∣∣∣∣
ρ=R

∝ δ(ω − υ) . (B.1.5)

Our solutions do not asymptote to sinusoidal functions with frequency ω. Instead, they asymptote with

frequency σ =
√
ω2 − 1 as can be seen both from the asymptotic form of Equation (B.1.2), and via the

98We ignore momentarily the numerical factors of the form
√
2,

√
π, etc.
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properties of Legendre functions. Specifically, the large y asymptote is

Pν(y) ∼ B

(
ν +

1

2
,
1

2

)−1

(2y)
−ν−1

, (B.1.6)

where B is the Euler beta function [61]. There are actually two asymptotic regimes that we need to consider:

when Re(ν) > − 1
2 and when Re(ν) < − 1

2 (although they actually agree in the present case). Furthermore,

we will need the connection formula for Legendre functions, the definition of the Euler beta function and

the reflection formula for Euler gamma functions:

Pν(y) = P−1−ν(y) , B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, Γ(z)Γ(1− z) = π csc(πz) . (B.1.7)

These allow us to derive the necessary normalization aω so that the amplitude of our solutions as ρ→ ∞ is

ω independent. That is, given

ζω(ρ) ∝
√
πσ tanh

(πσ
2

)
P− 1

2+
iσ
2
(cosh(2ρ)) , (B.1.8)

we have
√

sinh(2ρ)ζω(ρ) ∼ 2 sin(σρ+δ). The shift δ is irrelevant for orthonormalization. These almost satisfy

the equation that we require. We require one additional normalization, since the asymptotic frequency is

given by a function of the separation constant, rather than the separation constant we näıvely expected.

That is, since σ =
√
ω2 − 1, we have

∫ ∞

0

sinh(2ρ)

(√
πσ tanh

(πσ
2

)
P− 1

2+
iσ
2
(cosh(2ρ))

)(√
πτ tanh

(πτ
2

)
P− 1

2+
iτ
2
(cosh(2ρ))

)
dρ

= δ (σ − τ) .

(B.1.9)

To build our Green functions we require this integral to generate a delta function distribution with respect

to ω, not σ. We use the well-known following property of delta function distributions,

δ(f(ω)− f(τ)) =
δ(ω − τ)

f ′(ω)
, (B.1.10)

then divide by the derivative of the function of the asymptotic frequency with respect to the separation

constant, to find the correctly normalized transverse wavefunctions. At the end, they are

ζω(ρ) =

√
π (σ2 + 1)

σ
tanh

(πσ
2

)
P− 1

2+iσ
2
(cosh(2ρ)) , (B.1.11)
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written in terms of σ and

ζω(ρ) =

√
πω2

√
ω2 − 1

tanh
(π
2

√
ω2 − 1

)
P
− 1

2+

√
1−ω2

2

(cosh(2ρ)) , (B.1.12)

when written in terms of ω. These now, by construction, obey the identity

∫ ∞

1

ζω(ρ)ζω(η)dω =
δ(ρ− η)

sinh(2ρ)
. (B.1.13)

We set η = 0 for ease since Pν(0) = 1 for all ν.

As for the worldvolume factors fω(η), we know the fundamental solution to the corresponding worldvol-

ume differential equation, (
∂r

2 +
2

r
∂r − gω2

)
exp

(
−g2ωr

)
4πr

=
δ(r)

4πr2
. (B.1.14)

We may then write the fundamental solution to the total Laplacian

G(r, ρ) =

∫ ∞

1

exp (−gωr)
4πr

(
πω2

√
ω2 − 1

tanh
(π
2

√
ω2 − 1

))
P
− 1

2+

√
1−ω2

2

(cosh(2ρ)) dω . (B.1.15)

Alternately, we may state the integral in terms of σ

∫ ∞

0

exp
(
−g

√
σ2 + 1r

)
4πr

π
√
σ2 + 1 tanh

(πσ
2

)
P− 1

2+iσ
2
(cosh(2ρ))dσ . (B.1.16)

B.2 The Ray Trick

No general form of the integral (B.1.16) is known to our knowledge, as it involves an integral with respect

to the order of a Legendre function. However, we can find some limits of this integral. Let us introduce the

ray trick. If we want to consider the limit of some integral, say

I(r, ρ) =

∫ ∞

0

exp(−ωr)
4πr

cos(ωρ)dω , (B.2.1)

we can take explicit ratios of r = xt and ρ = t as t→ 0+. Then our integral becomes

I(x, t) =

∫ ∞

0

exp(−ωxt)
4πxt

cos(ωt)dω . (B.2.2)
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Multiplying this integral by xt2, and taking the limit t→ 0+, we define

J(x) = lim
t→0+

xt2
∫ ∞

0

exp(−ωxt)
4πxt

cos(ωt)dω . (B.2.3)

This can be rewritten as

J(x) = lim
t→0+

∫ ∞

0

tfx(ωt)dω , (B.2.4)

which, after a variable redefinition y = ωt, becomes

J(x) lim
t→0+

∫ ∞

0

fx(y)t t
−1dy = lim

t→0+

∫ ∞

0

fx(y)dy , (B.2.5)

where, crucially, the integrand is t independent. Thus,

J(x) = lim
t→0+

xt2
∫ ω

0

exp(−ωxt)
4πxt

cos(ωt)dω =
1

4π

∫ ∞

0

exp(−xy) cos(y)dy =
1

4π

x

1 + x2
. (B.2.6)

We can now divide by the factor that we used to get the equation into the t independent form and we find

I(x, t) =

∫ ∞

0

exp(−ωxt)
4πxt

cos(ωt)dω ∼ 1

4π

1

t2x

x

1 + x2
=

1

4π

1

(1 + x2)t2
=

1

4π

1

r2 + ρ2
. (B.2.7)

This gives us the expected value of the integral in the r ∼ ρ ∼ 0 region.

B.3 The R ≪ 1 Expansion

Let us verify that the solution in equation (B.1.15) is the same (or at least proportional to) the solution

in equation (5.3.11). We begin by multiplying the total function by the SS–CGP parameter g, redefining

r̃ = gr, then dropping the tilde. That is, by rescaling r and GN by g we may find the solution in terms of

the integral when g = 1.

GN (r, ρ) = g

∫ ∞

1

exp (−ωr̃)
2πr̃

(
πω2

√
ω2 − 1

tanh
(π
2

√
ω2 − 1

))
P
− 1

2+

√
1−ω2

2

(cosh(2ρ)) dω

= gG̃ (gr, ρ) ,

(B.3.1)

where G̃ = GN
∣∣
g=1

. We then break the dual space into low frequency and high frequency contributions

separated at a value Λ, writing the integrand as E(ω, r, ρ)

G̃(r, ρ) =

∫ Λ

1

E(ω, r, ρ)dω +

∫ ∞

Λ

E(ω, r, ρ)dω . (B.3.2)
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Let us now focus on the large frequency integral. When ω ≫ 1 most of the terms of the integral simplify.

We use the following asymptotic forms for square root, hyperbolic tangent, and Legendre functions [2]

√
ω2 − 1 ∼ ω − 1

2ω
+O(ω−3) ,

tanh(X) ∼ 1− 2 exp(−2X) +O (exp(−4X)) ,

P− 1
2+iω

2
(cosh(2ρ))

√
sinh 2ρ ∼

√
2ρJ0(ωρ) + subleading .

(B.3.3)

Given these expansions and a sufficiently large cutoff, we may now write the high frequency integral in terms

of a new simpler integrand E , plus subleading corrections

∫ ∞

Λ

E(ω, r, ρ)dω = π

∫ ∞

Λ

exp(−ωr)
4πr

ωJ0(ωρ)

√
2ρ√

sinh(2ρ)
+O

(
1

ω

)
dω

=

∫ ∞

Λ

E(ω, r, ρ) +O
(
1

ω

)
dω .

(B.3.4)

This integral is still unknown. However, using the fundamental theorem of calculus, we may approximate it

in the small Λ limit:

∫ ∞

Λ

E(ω, r, ρ)dω =

∫ ∞

0

E(ω, r, ρ)dω −
∫ Λ

0

E(ω, r, ρ)dω

=

√
2ρ

4
√
sinh(2ρ)

(
1

R3
+

Λ2

2r
− Λ3

3
+

(
2r2 − ρ2

)
Λ4

r
+O

(
Λ5
))

,

(B.3.5)

where we recall that R2 = g2r2 + ρ2. We will address the validity of the small Λ limit momentarily. The

low frequency contribution may be done using different approximations of these functions. First we shift

ω = ω̃ + 1 so that our integral is from ω̃ = 0 to Λ̃ = Λ− 1. Our integrand becomes

∫ Λ

1

E(ω, r, ρ)dω = exp(−r)
∫ Λ̃

0

exp(−ω̃r)
4πr

(
π2

2
+

(
π2 − π4

12

)
ω̃ +O

(
ω̃2
))

×
(
1 +

1

4
ρ2
(
−ω̃2 − 2ω̃ − 1

)
+O

(
ρ4
))

dω̃ .

(B.3.6)

We can expand this in the small Λ̃ and small ρ limit to find

∫ Λ

1

E(ω, r, ρ)dω =
πΛ̃e−r

8r
− πΛ̃ρ2e−r

32r
+O

(
λ̃2
)
+O

(
ρ4
)
. (B.3.7)

Therefore as R→ 0, G→ 1
R3 . We confirm that this is (proportional to) the solution given above. All terms

that contain factors of the cutoff accurately represent the forms of corrections. However, since the cutoff is

arbitrary the exact function will, of course, be independent of the cutoff, but the actual coefficients of these
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corrections remain unknown.

B.4 The ρ≪ 1 Expansion

First we set ρ = 0 when Pν(1) = 1. We shift our integrand as before to find

G̃(r, 0) = exp(−r)
∫ ∞

0

exp(−ωr)
4πr

(
π (ω + 1)

2√
(ω + 1)2 − 1

tanh
(π
2

√
(ω + 1)2 − 1

))
dω . (B.4.1)

This integral still escapes the domain of known integrals giving named functions, but we can expand the

integrand excluding the exp(−ωr) term in the small ω limit. This is valid when r becomes large as all large

ω terms become exponentially suppressed. This gives us the following series

G̃(r, 0) =
exp(−r)

4π

(
π2

r2
−

2π2
(
π2 − 3

)
3r3

+
2π2

(
15− 25π2 + 8π4

)
15r4

+O
(

1

r6

))
. (B.4.2)

If we expand our transverse functions at small ρ, we find the following series

P
− 1

2+

√
1−(ω+1)2

2

(cosh(2ρ)) = 1 +

(
−1

4
− ω

2
− ω2

4

)
ρ2 +

(
11

192
+

7ω

48
+

13ω2

96
+
ω3

16
+
ω4

64

)
ρ4 +O

(
ρ6
)
.

(B.4.3)

Using these two series we can find exp(r)G̃(r, ρ) to arbitrary order in 1
r and ρ. Furthermore, we may find

the exact coefficient of the leading term in the expansion in exp(−r)
r by first substituting ω = 0 into our

transverse wavefunction. We find

P− 1
2
(cosh(2ρ)) =

2

π
K
(
− sinh2(ρ)

)
, (B.4.4)

where K is the complete elliptic integral of the first kind. The best estimate we have for G̃ is therefore

G̃(r, ρ) =
exp(−r)

4r2
K
(
− sinh2(ρ)

)
+

exp(−r)
4πr3

(
−
(
π4

12
+ π2

)
+

(
π4

48
− π2

2

)
ρ2 +

(
25π2

192
− 11π4

2304

)
ρ4
)
,

(B.4.5)

up to corrections of order O
(

exp(−r)
r4

)
or O

(
ρ5
)
. We find a similar solution when we assume G̃ is given in

an expansion in exp(−r)r−nfn(ρ) with minimum n = 2 and solve equation (B.1.1) in the large r limit order

by order, using the same technique as for finding the large R expansion. Unfortunately the first sourced

order (f3, the coefficient of exp(−r)r−3) cannot be solved analytically except for the case when ρ≪ 1.
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B.5 The ρ≫ 1 Expansion

When ρ≫ 1 we may approximate our differential equation as

(
∂2r +

2

r
∂r + ∂2ρ + 2∂ρ

)
G̃(r, ρ) = 0 . (B.5.1)

To simplify, we change variables to

G̃(r, ρ) =
exp (−r − ρ)

r
U(r, ρ) . (B.5.2)

We can further simplify our differential equation by multiplying by r exp(r + ρ). We find f satisfies

(
∂2r + ∂2ρ − 1

)
U(r, ρ) = 0 . (B.5.3)

Unfortunately we cannot translate our boundary conditions onto any condition on this U , other than that

it must not grow exponentially fast as ρ→ ∞ of r → ∞. We may, however, suppose the ansatz that it has a

Laurent series in r starting with 1
r . Given that choice and using the same technique as for small R we find

U(r, ρ) =
a1ρ+ b1

r
+

−a1

3 ρ
3 − b1ρ

2 + a2ρ+ b2

r2
+O

(
1

r3

)
. (B.5.4)

Returning to the actual solution given in integral form we may approximate the Legendre function when

ρ≫ 1 as above:

Pν (cosh(2ρ)) ∼
1

2

(
B

(
ν +

1

2
,
1

2

)−1

exp(2ρ)
−1−ν

+B

(
µ+

1

2
,
1

2

)−1

exp(2ρ)
−1−µ

)
, (B.5.5)

where ν and µ are complex conjugates given that the real part of ν = − 1
2 . Using the mirror symmetry of

gamma functions (Γ(z∗) = Γ(z)∗) we may identify B(ν + 1
2 ,

1
2 )

−1 = m exp(iδ) for some real variables m and

δ. Given our ν = − 1
2 + iσ2 , we have

Pν (cosh(2ρ)) ∼ exp (−ρ)m1

2
(exp(iδ) exp(−iσρ) + exp(−iδ) exp(iσρ)) . (B.5.6)

Simplifying, we find

P− 1
2+iσ

2
(cosh(2ρ)) ∼ exp (−ρ)m cos (ρσ − δ (σ)) . (B.5.7)
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Since we require an expansion of this quantity in ω we may no longer ignore the frequency shift, δ. The

formulae for m and δ are

m =

√√√√Γ
(
1
2

)2
Γ
(
− iσ

2

)
Γ
(
iσ
2

)
Γ
(
1
2 − iσ

2

)
Γ
(
iσ
2 + 1

2

) , δ = arctan

(
Im
{
B(−iσ2 ,

1
2 )
}

Re
{
B(−iσ2 ,

1
2 )
}) , (B.5.8)

where we may use the reflection formula for gamma functions to find an exact value for the first and a Taylor

expansion for the second:

m =

√
2π

σ tanh
(
π
2σ
) , δ =

π

2
− 1

2

(
ψ0(1)− ψ0

(
1

2

))
σ +

1

48

(
ψ2(1)− ψ2

(
1

2

))
+O(σ3) . (B.5.9)

Inserting (B.5.9) into (B.5.7) then into (B.1.15), we must then change coordinates from σ =
√
ω2 − 1 to ω,

then ω = ω̃ − 1 to ω̃. We may then expand the integrand (save exp(−ω̃r)) as a Taylor series in ω̃. This

becomes

G̃(r, ρ) =
exp(−r − ρ)

4πr

∫ ∞

0

exp(−ω̃r)

(
π2 (4ρ+ log(16))

4
√
2

−
π2
(
(ρ+ log(2))

(
4
(
ρ(ρ+ log(4))− 6 + log2(2)

)
+ π2

)
+ 6ζ(3)

)
12
√
2

ω̃ +O
(
ω̃2
))

dω̃ .

(B.5.10)

From this we approximate

G̃(r, ρ) =
exp(−r − ρ)

4πr

(
π2(ρ+ log(2))√

2r

−
π2
(
(ρ+ log(2))

(
4
(
ρ(ρ+ log(4))− 6 + log2(2)

)
+ π2

)
+ 6ζ(3)

)
12

√
2r2

+O
(

1

r3

))
,

(B.5.11)

which we see obeys the expansion that we derived previously as the most general solution.
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C Fermi-Normal Coordinates and Self-Asymptotic Problems

C.1 A Five-Dimensional Cognate Sigma Model

We note that the geodesic equations ((5.5.1) and (5.5.2)) are associated with a sigma model in five dimensions

S = −1

2

∫
d5X

√
ggµν∂µF∂νF . (C.1.1)

Here, our background line element takes the form

ds2 = sinhβ(2ρ)
(
dx2 + dy2 + dz2 + dρ2 + sinh2−2β(2ρ)dχ

)
. (C.1.2)

One obvious geodesic that includes the origin (x = y = z = ρ = 0) is given by

Xµ
l = (vxt, vyt, vzt, vρt, χ0)

µ
. (C.1.3)

When β = 0 and ρ≫ 1 this becomes approximately

ds2 = dx2 + dy2 + dz2 + dρ2 + exp(4ρ)dχ2 . (C.1.4)

Where we have rescaled χ by a factor of two. The associated geodesic equations are

x′′(t) = 0 , y′′(t) = 0 , z′′(t) = 0 , ρ′′(t)−2 exp (4ρ(t)) (χ′(t))
2
= 0 , χ′′(t)+4ρ′(t)χ′(t) = 0 . (C.1.5)

The most general solution with non trivial time dependence of χ to the geodesic equation is

Xµ
t =

(
vxt+ x0, vyt+ y0, vzt+ z0, log(2)−

1

4
log
(
c2sech2

( c
2
t+ k

))
, χ0 +

c

8
tanh

( c
2
t+ k

))µ

.

(C.1.6)

This geodesic has the property that ρ′(t) = 0 when k = 0, which means at any arbitrary point in our manifold,

the metric that passes through that point and the origin can be given by some Xµ
l . Then, when ρ≫ 1, the

space of orthogonal geodesics is spanned by some collection of geodesics described by Xµ
t , generically with

ρ = ρ0 and χ = χ0, or with vx = vy = vz = 0 and k = 0.
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C.2 Asymptotic Fermi Normal Coordinates

Before diving into what the Fermi normal coordinates [88] are for the full system we will derive them in a less

specialized case. We will first derive the asymptotic case of the sigma model currently under consideration,

then for the point of clarity, show how some solutions to the asymptotic problem are solutions to the original

problem. Then, for the sake of completeness, we will derive the Fermi normal coordinates to show how the

correspondence was discovered.

The asymptotic line element when β = 0 (and rescaling χ→ 1
2χ) is

dsA
2 = ds3

2 + dρ2 + exp(4ρ)dχ2 . (C.2.1)

The associated Laplacian is

∆A = ∆3 + ∂ρ
2 + 2 ∂ρ + exp(−4ρ)∂χ

2 . (C.2.2)

We note the known χ independent fundamental solutions by first considering

exp(ρ)∆A [exp(−ρ)f(r, ρ)] =
(
∆3 + ∂ρ

2 − 1
)
f(r, ρ) . (C.2.3)

That is, when we multiply our solution by an exponential we find the operator on our remaining functional

dependence is the Helmholtz operator in four dimensions with k = 1 [61]. The fundamental solution to the

Helmholtz operator in n > 3 dimensions is

(∆n − 1) f(R) =
δ(R)

Vn−1Rn−1
⇒ f(R) = − 1

(2π)
n
2R

n
2 −1

Kn
2 −1 (R) . (C.2.4)

Where Vn−1 is the volume of the unit n−1 sphere and Kα is the modified Bessel function of the second kind

with order, also known as the MacDonald function. So our problem has the χ independent fundamental

solution

∆AF (r, ρ) =
δ(r)δ(ρ)

V2r2 exp 2ρ
⇒ F (r, ρ) = − exp(−ρ)

4π2
√
r2 + ρ2

K1

(√
r2 + ρ2

)
. (C.2.5)

However, if we consider a specific mixture of χ dependence, we make the following observation:

∆AF (r,
1

2
exp(2ρ)χ) =

(
∆3 + 4∂A

(
1 +A2

)
∂A
)
F (r,A) . (C.2.6)
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Here we defined A = 1
2 exp(2ρ)χ. Alternately we can consider an analytic completion of a variable transfor-

mation in the original problem

(
∆3 + ∂ρ

2 + 2 coth(2ρ)∂ρ
)
F (r, i cosh(2ρ)) =

(
∆3 + 4∂B

(
1 +B2

)
∂B
)
F (r,B) . (C.2.7)

Here we defined B = i cosh(2ρ). So we see that some solutions to the asymptotic problem constitute solutions

to the original problem.

To see why this happens, we will now finally derive the Fermi normal coordinates. The procedure for

deriving Fermi normal coordinates is a five step procedure. First, find the first set of ‘trunk’ geodesics and

value of the vielbeins along it. Second, find a family of linearly independent intersecting ‘arm’ geodesics

(name chosen for similarity to saguaro anatomy). Third, orthogonalize and solve the ‘arm’ parameters so

that they intersect the ‘trunks.’ Fourth, define the Fermi normal coordinates and solve for the parameters

of ‘arm’ geodesics. Finally, substitute the Fermi normal coordinates into the expressions for the geodesics,

to define the coordinate transformation.

Let us see this in action. We will begin by focusing only on finding Fermi normal coordinates for the ρ, χ

subspace. We begin by noting lines of constant χ always form geodesics, so we choose our ‘trunk’ geodesics

to be

τ(T )µ = (0, 0, 0, T, χ0)
µ . (C.2.8)

Fortunately our vielbeins are parallelly transported trivially along these geodesics, so the first step is com-

plete.

Second, we must solve the geodesic equation in our background with non-zero derivative in the χ direction.

Considering the following ansatz

α(σ)µ = (0, 0, 0, f(σ), g(σ))µ , (C.2.9)

the geodesic equation is

d2αµ

dσ2
+ Γµ

θϕ

dαθ

dσ

dαϕ

dσ
=
(
0, 0, 0, f ′′(σ)− 2 exp (4f(σ)) (g′(σ))

2
, g′′(σ) + 4f ′(σ)g′(σ)

)µ
= 0 . (C.2.10)

We note the following solution for f ′(σ) given the χ component of the geodesic equation

f ′(σ) = −1

4

g′′(σ)

g′(σ)
⇒ f(σ) = −1

4
log (g′(σ)) + C . (C.2.11)
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Actually, we have discovered a general property of metrics of the form

ds2 = dsW
2 + dρ2 +A(ρ)dχ2 . (C.2.12)

The ρ (f), and χ (g) components of the geodesics (other than those of constant χ) are always related as

f(σ) = −A−1 (g′(σ)) + C . (C.2.13)

We can leverage this later to find geodesics using the exact metric. For simplicity we choose f as given above

with C = 0 and the remaining component of our geodesic equation becomes

− 1

4

g′′′(σ)

g′(σ)
+

1

4

(
g′′(σ)

g′(σ)

)2

− 2g′(σ) = 0 . (C.2.14)

This third-order ODE has the solutions

g(σ) =
1

4
c tanh(cσ + k) + l . (C.2.15)

This concludes the second step.

The orthogonality condition

gµν
dα(σ)µ

dσ

dτ(T )µ

dT
= 0 , (C.2.16)

is satisfied when d
dσf(σ)|σ=0 = 0 . This requires

f ′(σ) =
1

2
c tanh(cσ + k)

∣∣∣∣
σ=0

= 0 . (C.2.17)

This may be satisfied if either c = 0 or tanh(k) = 0. The former corresponds to σ independent solutions,

and is therefore not the case of interest at the moment. Changing the value k given that tanh(k) = 0 is

equivalent to changing the value of C, so we consider k = 0 for convenience. Next we require these geodesics

intersect at some point specified by the first parameter T when σ = 0 therefore we require

f(0) = −1

2
log

(
1

2
c sech(c · 0)

)
= T ⇒ c = 2 exp(−2T ) . (C.2.18)

We therefore have

αµ(σ) =

(
0, 0, 0, T − 1

2
log (sech(2 exp(−2T )σ)) ,

1

2
exp(−2T ) tanh (2 exp(−2T )σ) + χ0

)µ

. (C.2.19)
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Which concludes the third step.

Fermi normal coordinates are T , which is the affine parameter of the distance you must travel along a

‘trunk’ geodesic, and X, which is linearly related to the affine parameter of the distance you must travel

along the ‘arm’ geodesic. Consider the following image, which represents the coordinates in our spacetime:

Figure 10: An illustration of the geodesics of the SS–CGP spacetime

The ‘trunk’ is drawn in black, distance along that trunk selects the colored lines drawn with equal spacing

in the T direction. The color along that line represents the X coordinate. To get to any point you travel T up

the ‘trunk’ until you find the correct ‘arm’ then travel out the ‘arm’ X until you arrive at your destination.

We have already given T by definition in our ‘trunk’ geodesic. The equation for X is

Xi = σ

(
dα(σ)µ

dσ
eµ

i(α(σ))

) ∣∣∣∣
σ=0

. (C.2.20)

This allows for, in principle, many such geodesics indexed by an additional parameter i. In our case we have
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only one ‘arm’ parameter which gives us

X = σ
c2

4
exp(2T ) ⇒ σ = 2 exp(2T ) X . (C.2.21)

This concludes the fourth step.

With all of our ingredients assembled we write the value of ρ and χ in terms of the arm geodesics with

their parameters written in terms of the Fermi normal coordinates. That is

ρ = f(σ) = T − 1

2
log (sech(2X)) , (C.2.22)

χ = g(σ) = −1

2
exp(−2T ) tanh(2X) . (C.2.23)

For record keeping we also include the inverse transformations

T = ρ− 1

4
log
(
4χ2 exp(4ρ) + 1

)
, (C.2.24)

X =
1

2
arcsinh (−2χ exp(2ρ)) . (C.2.25)

We can now substitute these into our asymptotic metric to find

dsA
2 = ds3

2 +
1

2
(1 + cosh(4X)) dT 2 + dX2 . (C.2.26)

This has the associated Laplacian

∆A =
(
∆3 + sech2(2X)∂T

2 + ∂X
2 + 2 tanh(2X)∂X

)
. (C.2.27)

This becomes, after a shift into complex X and T

∆AF (r, iT,X +
iπ

4
) =

(
∆3 + csch2(2Y )∂S

2 + ∂Y
2 + 2 coth(2Y )∂Y

)
F (r, S, Y ) . (C.2.28)

Here we have chosen Y = X + iπ
4 and S = iT . Therefore we discover that χ independent solutions to the

original problem are T independent solutions to the asymptotic problem.
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C.3 Exact Fermi Normal Coordinates

Now that we have seen the process once, let us repeat this procedure for the full metric. Given a non-constant

ρ = f(σ) and χ = g(σ) dependence our χ geodesic equation becomes

2f ′(σ) tanh(f(σ))g′(σ) + 2f ′(σ) coth(f(σ))g′(σ) + g′′(σ) = 0 . (C.3.1)

We notice all terms including f are paired with a factor of g′, therefore we consider the ansatz

f(σ) → η(g′(σ)) . (C.3.2)

Our χ geodesic equation becomes

4g′(σ)g′′(σ)η′ (g′(σ)) coth (2η (g′(σ))) + η′′(σ) = 4xη′(x) coth(2η(x))g′′(t) + g′′(t) = 0 , (C.3.3)

where we have made the substitution g′(σ) = x. Dividing by the common factor of g′ we find

η(x) =
1

2
arcsinh

(
A√
x

)
⇒ f(σ) =

1

2
arcsinh

(
A√
g′(σ)

)
. (C.3.4)

Given this substitution the ρ geodesic equation becomes

A
(
16A4g′(σ)3 − 2A2g′′(σ)2 + 32A2g′(σ)4 + 2g(3)(σ)g′(σ)

(
A2 + g′(σ)

)
+ 16g′(σ)5 − 3g′(σ)g′′(σ)2

)√
g′(σ)

√
A2

g′(σ) + 1 (A2 + g′(σ))
= 0 .

(C.3.5)

One solution is

g(σ) = D − 1

2
arctan

(
−16A3B + i

(
16A2 +B2

)2
eAB(C+σ) +AB3

8A2B2

)
. (C.3.6)

We now build our solutions by imposing f(0) = T , f ′(0) = 0, g(0) = 0, σg′(0)e5χ = X and setting all

remaining constants (there is one more that corresponds to rescalings of T ) to unity and find our geodesics

are given in terms of the Fermi normal coordinates as

ρ(T, X) =
1

2
arcsinh

(
1√
2

√
cosh(4X) cosh2(2T ) + sinh2(2T )− 1

)
, (C.3.7)

χ(T, X) =
1

2

(
gd(2T )− arccot

(
2 sinh(2T )

e−4X cosh2(2T ) + sinh2(2T )− 1

))
. (C.3.8)
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Here gd is the Gudermannian function. under this substitution our metric becomes

ds2 = ds3
2 +

1

2
(1 + cosh(4X)) dT 2 + dX2 . (C.3.9)

So we see the exact correspondence between the problem and its asymptote through Fermi normal coordi-

nates.
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D Overlap Integrals of Multiple Legendre Functions

D.1 Outline

In the following Appendix the solution to the integral (over both (−1, 1) and (1,∞)) of n–many Legendre

functions is derived. The general form of the Integral of n many Legendre functions over (−1, 1) is given

recursively by ∫ 1

−1

Pµ1
(x) · · ·Pµm

(x)Qν1
(x) · · ·Qνn

(x)dx = Iµ1···µm
ν1···νn

, (D.1.1)

(with certain conditions on µi and νj given below), where Iµ1···µm
ν1···νn may be defined as

Iµ1···µm
ν1···νn

=

∞∑
i1,··· ,im=0
j1,··· ,jm=0

2i1 + 1

2
Ii1µ1 · · · 2im + 1

2
Iimµm

2j1 + 1

2
Ij1ν1

· · · 2jn + 1

2
Ijnνn

Ii1···imj1···jn , (D.1.2)

and Iijk1···kn with integral indices may be reduced by

Iijk1···kn =

i+j∑
k=|i−j|

(
i j k
0 0 0

)2
Ikk1···k2 . (D.1.3)

Iµ1µ2 , Iµν , and Iν1ν2
with complex arguments are given by

Iµ1µ2 =
2π sin(π(µ1 − µ2))− 4 sin(πµ1) sin(πµ2) (Hµ1

−Hµ2
)

π2(µ1 − µ2)(µ1 + µ2 + 1)
, (D.1.4)

Iµν =
1− cos(π(µ− ν))− 2π−1 sin(πµ) cos(πν) (Hµ −Hν)

(µ− ν)(µ+ ν + 1)
, (D.1.5)

Iν1ν2 =
π
2 sin(π(ν1 − ν2))− (1 + cos(πν1) cos(πν2)) (Hν1

−Hν2
)

(ν1 − ν2)(ν1 + ν2 + 1)
, (D.1.6)

where Hν is the harmonic number Hnu = ψ(ν + 1) + γ where γ = ψ(1) is the Euler–Mascheroni constant

and
(

i j k
m n p

)
are the Clebsch–Gordan coefficients and Im1m2 , Imn , and In1n2

for integral arguments are

Im1m2 =
2

2m1 + 1
δm1m2

, (D.1.7)

Imn =
1− (−1)m+n

(m− n)(m+ n+ 1)
, (D.1.8)

In1n2
=

(−1 + (−1)n1+n2)(Hn1
−Hn2

)

(n1 − n2)(n1 + n2 + 1)
. (D.1.9)
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The general form of the integral of n many Legendre functions over (1,∞) is given recursively by

∫ ∞

1

Pµ1(z) · · · Pµm(z)Qν1(z) · · · Qνn(z)dz = Jµ1···µm
ν1···νn

, (D.1.10)

(with certain conditions on µi and νj given below) where Jµ1···µm
ν1···νn satisfies the equation

Jµ1···µm
ν1···νn

+Iµ1···µm
ν1···νn

+

(
− iπ

2

) n∑
i=1

Iνiµ1···µm

ν1···�νi···νn

+

(
− iπ

2

)2 n−1∑
i=1

n∑
j=i+1

I
νiνjµ1···µm

ν1···�νi···�νj ···νn
+ · · ·+

(
− iπ

2

)n

Iν1···νnµ1···µm

+(−1)neiπ(µ1+···+µm−ν1−···−νn)Jµ1···µm
ν1···νn

+(−1)n
(
− 2

π

) m∑
i=1

eiπ(µ1+···+��µi+···+µm−ν1−···−νn) sin(πµi)J
µ1···��µi···µn
µiνi···νn

+(−1)n
(
− 2

π

)2 m−1∑
i=1

m∑
j=i+1

eiπ(µ1+···+��µi+···+��µj+···+µm−ν1−···−νn)×

sin(πµi) sin(πµj)J
µ1···��µi···��µj ···µn
µiµjνi···νn

+ · · ·+ (−1)n
(
− 2

π

)m

eiπ(−ν1−···−νn

m∏
i=1

sin(πµi)Jµ1···µmν1···νn

= 0 . (D.1.11)

This implies that a solution to such an integral over (1,∞) involving m Legendre functions of first type and

n Legendre functions of second type requires the solution to m integrals over (1,∞) involving m−1 Legendre

functions of first type and n+ 1 Legendre functions of second type, and
(
m
2

)
integrals over (1,∞) of m− 2

Legendre functions of first type and n + 2 Legendre fuctions of second type, and so on. The m integrals

over (1,∞) involving m− 1 Legendre functions of first type, in principle involve m− 1 integrals over (1,∞)

involving m− 2 Legendre functions of first type, however, each of these terms is duplicated in the previous

expansion. Additionaly thre are n2 integrals over (−1, 1) which need be done to solve any integral involving

n Legendre functions of second type, however, these are already given in terms of a series. This problem

does terminate and the answer can be given in terms of roughly m2n2 series.

Calculating integrals of Iµ1µ2 , Iµν , or Iν1ν2
type is accomplished through the use of the self-adjoint

properties of the Legendre differential equation. Further integrals of Iµ···ν··· type are done through use of the

orthogonal system which Legendre polynomials themselves provide, combined with utilization of Clebsch–

Gordon coefficients, relating these solutions back to solutions involving two Legendre polynomials. Finally,
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calculating integrals of the Jµ···
ν··· type is done via using opportunistic contour integration, relating different

segments of the contour integral to the original integral and previously known integrals using the analytic

completion of Legendre functions.

D.2 Introduction to Legendre Functions, Analytic Continuation

The Legendre differential equation [61]

d

dz

[(
1− z2

) d
dz

[y (z)]

]
+ ν (ν + 1) y (z) = 0 , (D.2.1)

is a second–order differential equation with regular singular points at −1, 1, and ∞, (i.e. of Fuchsian type).

Its solutions may be written in terms of the Riemann P–symbol, or hypergeometric functions, which will

converge about ±1 or ∞. In general the singular points of the above differential equation are branch points

of the solutions. Depending on whether a solution on (−1, 1) ∋ x or (1,∞) ∋ z is desired, Legendre functions

of the first and second type are denoted

Pν(x) and Qν(x) , (D.2.2)

or (D.2.3)

Pν(z) and Qν(z) , (D.2.4)

which are linearly independent within each pair and related via analytic continuation between each pair.

Further, for real ν(ν + 1) where ν is complex, Qν and Qν are also linearly independent. To calculate the

above integrals, only their asymptotic behavior and the relation between different branches is necessary.

These identities are readily available in many sources which differ, unfortunately, in convention.

Here we use the following conventions. First, relating Legendre functions which have principle branch

(1,∞) to themselves, the value of Legendre functions after following a contour which has winding number 1
2

about 1 and −1 (Arg {z} < π and |z| > 1)

Pν

(
zeiπ

)
=eiπνPν(z)−

2

π
sin(πν)Qν(z) , (D.2.5)

Qν

(
zeiπ

)
=− e−iπνQν(z) . (D.2.6)
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Next, relating Legendre functions with principle branch (1,∞) to Legendre functions on (−1, 1), the value

of Legendre functions after following a contour which has winding number 1
2 about 1 and 0 about −1

Pν(x) =Pν(x) , (D.2.7)

Qν(x) =Qν(x)−
iπ

2
Pν(x) . (D.2.8)

Calculating these integrals also requires knowledge of the asymptotic behavior of these functions, specifically

as z → 1

Pν(z) ∼ 1 , (D.2.9)

Qν(z) ∼
1

2
log

(
z + 1

z − 1

)
, (D.2.10)

for ν ̸∈ {−1,−2, · · · }. Similarly, as z → ∞

Pν(z) ∼
Γ(ν + 1/2)

π
1
2Γ(ν + 1)

(2z)ν , (D.2.11)

Pν(z) ∼
Γ(−ν − 1/2)

π
1
2Γ(−ν)(2z)ν+1

, (D.2.12)

Qν(z) ∼
π

1
2Γ(ν + 1)

Γ(ν + 3
2 )(2z)

ν+1
, (D.2.13)

for ℜ{ν} > − 1
2 or ℜ{ν} < − 1

2 , respectively for the first and second formulae for Legendre functions of the

first type and for ν ̸∈ {−1,− 3
2 ,−2,− 5

2 , · · · } for Legendre functions of second type. Finally, for x→ 1−

Pν(x) ∼ 1 , (D.2.14)

Qν(x) ∼
1

2
log

(
1 + x

1− x

)
−Hν , (D.2.15)

for ν ̸∈ {−1,−2, · · · }, and for x→ −1+ the formulae

Pν(−x) = − 2

π
sin(πν)Qν(x) + cos(πν)Pν(x) , (D.2.16)

Qν(−x) = −π
2
sin(πν)Pν(x)− cos(πν)Qν(x) , (D.2.17)
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may be used. That is as ξ → −1+, ξ = −x, x→ 1−

Pν(ξ) = Pν(−x) ∼ − 2

π
sin(πν)

(
1

2
log

(
1 + x

1− x

)
−Hν

)
+ cos(πν) , (D.2.18)

Qν(ξ) = Qν(−x) ∼ −π
2
sin(πν)− cos(πν)

(
1

2
log

(
1 + x

1− x

)
−Hν

)
. (D.2.19)

Finally, in the following analysis one specific recurrence relation will be essential

(1− x2)
d

dx
[Rν(x)] =

ν(ν + 1)

2ν + 1
(Rν−1(x)−Rν+1(x)) , (D.2.20)

where Rν is either solution to the Legendre differential equation.

D.3 Iµ1µ2, Iµν , and Iν1ν2

The integral of two solutions to an operator of Sturm–Liouville type, such as the Legendre differential

operator, is a well studied problem. A simple example given here is, since

− ν(ν + 1)Rν(x) =
d

dx

[
(1− x2)

d

dx
[Rν(x)]

]
, (D.3.1)

where Rν is a Legendre function of first or second type, the integral

∫
D
Rµ(x)Rν(x)dx =

−1

µ(µ+ 1)

∫
D

d

dx

[
(1− x2)

d

dx
[Rµ(x)]

]
Rνdx (D.3.2)

=
−1

ν(ν + 1)

∫
D
Rµ

d

dx

[
(1− x2)

d

dx
[Rν(x)]

]
dx , (D.3.3)

therefore for µ ̸= ν the integral may be rewritten as

(µ(µ+ 1)− ν(ν + 1))

∫
D
Rµ(x)Rν(x)dx =∫

D

{
Rµ(x)

d

dx

[
(1− x2)

d

dx
[Rν(x)]

]
− d

dx

[
(1− x2)

d

dx
[Rµ(x)]

]
Rν(x)

}
dx , (D.3.4)
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which may then be partially evaluated using integration by parts

(µ(µ+ 1)− ν(ν + 1))

∫
D
Rµ(x)Rν(x)dx ={

(1− x2)

(
Rµ(x)

d

dx
[Rν(x)]−

d

dx
[Rµ(x)]Rν(x)

)} ∣∣∣∣∣
∂D

(D.3.5)

−
∫
D

{
d

dx
[Rµ(x)] (1− x2)

d

dx
[Rν(x)]− (1− x2)

d

dx
[Rµ(x)]

d

dx
[Rν(x)]

}
dx , (D.3.6)

each term in the final integrand above cancels and the formula may be simplified

∫
D
Rµ(x)Rν(x)dx =

{
(1− x2)

(
Rµ(x)

d
dx [Rν(x)]− d

dx [Rµ(x)]Rν(x)
)} ∣∣∣∣∣

∂D
µ(µ+ 1)− ν(ν + 1)

. (D.3.7)

If this limit can, in general, be evaluated, then the integral of
∫
D Rµ(x)Rµ(x)dx may be identifiable with the

limit as µ→ ν. Often, if D is non-compact, the solution may be identified with a Dirac delta–function.

Therefore Iµ1µ2 , Iµν , and Iν1ν2
are given by

Iµ1µ2 =

{
(1− x2)

(
Pµ1

(x) d
dx [Pµ2

(x)]− d
dx [Pµ1

(x)]Pµ2
(x)
)} ∣∣∣∣∣

1

−1

µ1(µ1 + 1)− µ2(µ2 + 1)
, (D.3.8)

Iµν =

{
(1− x2)

(
Pµ(x)

d
dx [Qν(x)]− d

dx [Pµ(x)]Qν(x)
)} ∣∣∣∣∣

1

−1

µ(µ+ 1)− ν(ν + 1)
, (D.3.9)

Iν1ν2
=

{
(1− x2)

(
Qν1(x)

d
dx [Qν2(x)]− d

dx [Qν1(x)]Qν2(x)
)} ∣∣∣∣∣

1

−1

ν1(ν1 + 1)− ν2(ν2 + 1)
. (D.3.10)

Each of these boundary terms must be done in the limit, and the value of this integral is given in [61]

Iµ1µ2 =
2π sin(π(µ1 − µ2))− 4 sin(πµ1) sin(πµ2) (Hµ1

−Hµ2
)

π2(µ1 − µ2)(µ2 + µ1 + 1)
. (D.3.11)

Similarly,

Iµν =
1− cos(π(µ− ν))− 2π−1 sin(πµ) cos(πν) (Hµ −Hν)

(µ− ν)(µ+ ν + 1)
, (D.3.12)

Iν1ν2
=

π
2 sin(π(ν1 − ν2))− (1 + cos(πν1) cos(πν2)) (Hν1

−Hν2
)

(ν1 − ν2)(ν2 + ν1 + 1)
, (D.3.13)
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D.4 Iµ···ν···

Simplifying more complicated integrals of multiple Legendre functions of both types may be done by first

considering Iµ1µ2µ3 where µi ∈ Z+

Iµ1µ2µ3 =

∫ 1

−1

Pµ1
(x)Pµ2

(x)Pµ3
(x)dx = 2

µ1 µ2 µ3

0 0 0


2

. (D.4.1)

To see this first use the expansion of Legendre polynomials in terms of Wigner 3j symbols [2]. This may be

done pairwise on any two of the integral degree Legendre polynomials. Since the resultant sum is finite, and

integration is linear, the sum and integral commute.

Iµ1µ2µ3 =

∫ 1

−1

Pµ1
(x)Pµ2

(x)Pµ3
(x)dx

=

∫ 1

−1

µ1+µ2∑
j=|µ1−µ2

2(2j + 1)

µ1 µ2 j

0 0 0


2

Pj(x)Pµ3(x)dx

=

µ1+µ2∑
j=|µ1−µ2

2(2j + 1)

µ1 µ2 µ3

0 0 0


2 ∫ 1

−1

Pj(x)Pµ3
(x)dx , (D.4.2)

next, integrate and simplify the sum using of the Kronecker delta.

Iµ1µ2µ3 =

µ1+µ2∑
j=|µ1−µ2|

2(2j + 1)

µ1 µ2 j

0 0 0


2

δjµ3

2µ3 + 1
= 2

µ1 µ2 µ3

0 0 0


2

. (D.4.3)

The above technique generalizes to m many integral degree Legendre polynomials

Iµ1µ2···km =

µ1+µ2∑
µ=|µ1−µ2|

2(2µ+ 1)

µ1 µ2 µ

0 0 0


2

Iµµ3···µm . (D.4.4)

However, integrals of more than four Legendre polynomials simplify to finite sums.

Iµ1µ2µ3µ4 =

µ1+µ2∑
µ=|µ1−µ2|

2(2µ+ 1)

µ1 µ2 µ

0 0 0


2

2

µ3 µ4 µ

0 0 0


2

. (D.4.5)

This does allow for direct calculation of some of these integrals. For instance, when |µ1 − µ2| > (µ3 + µ4)

Iµ1µ2µ3µ4 = 0.
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Next, to evaluate integrals of Legendre functions of non-integral degree, the nature of the complete or-

thogonal system consisting of Legendre polynomials may be employed. That is, for any piecewise continuous

square integrable function f(x) where x ∈ (−1, 1),

f(x) =

∞∑
i=0

aiPi(x) , (D.4.6)

where

ai =
2i+ 1

2

∫ 1

−1

f(x)Pi(x)dx . (D.4.7)

Note the correction to the integral since Legendre polynomials are not an complete orthonormal system.

In practice this implies if the above integral can be done, then the integral of f with m many Legendre

polynomials may also be done. Therefore since Iµ1µ2 and Iµν are known the general integral may be rewritten

Iµ1···µm
ν1···νn

=

∫ 1

−1

Pµ1
(x) · · ·Pµm

(x)Qν1
(x) · · ·Qνn

(x)dx

=

∫ 1

−1

∞∑
i1=0

2i1 + 1

2
Ii1µ1Pi1(x) · · ·

∞∑
im=0

2im + 1

2
IimµmPim(x)×

∞∑
j1=0

2j1 + 1

2
Ij1ν1
Pj1(x) · · ·

∞∑
jn=0

2jn + 1

2
Ijnνn

Pjn(x)dx . (D.4.8)

Then, assuming the sums and integrals commute, the integral may be calculated

Iµ1···µm
ν1···νn

=

∞∑
i1,··· ,im=0
j1,··· ,jm=0

2i1 + 1

2
Ii1µ1 · · · 2im + 1

2
Iimµm

2j1 + 1

2
Ij1ν1

· · · 2jn + 1

2
Ijnνn

×

∫ 1

−1

Pi1(x) · · ·Pim(x)Pj1(x) · · ·Pjn(x)dx

=

∞∑
i1,··· ,im=0
j1,··· ,jm=0

2i1 + 1

2
Ii1µ1 · · · 2im + 1

2
Iimµm

2j1 + 1

2
Ij1ν1

· · · 2jn + 1

2
Ijnνn

Ii1···imj1···jn . (D.4.9)

That the integrals and sum commute due to Fubini’s theorem, when the integral is guaranteed to be

finite. This point requires stressing. If there is some argument to show that for a given combination of µ · · ·

and ν · · · then the above power series is equivalent to the integral.
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D.5 Jµ···ν···

The technique of expressing Legendre functions as a series of Legendre polynomials does not work for Pµ(z)

or Qν(z) since the Legendre polynomials do not form an orthonormal basis on z ∈ (1,∞), however contour

integration does allow for relating the J type integrals to the I type integrals with certain requirements on

the arguments.

Before looking directly at J type integrals, consider the following contour

××
1 + ε R−R −1− ε −1 + ε 1− ε x

y

O

C+
εC−

ε

ΓR

This contour contains none of the singularities of Legendre functions, i.e. the integral of a product of

Legendre functions over this entire contour should equal zero.

The integral over either C+
ε or C−

ε tends to zero for any combination of Legendre functions. This is

because

Pν(z) ∼ 1 , (D.5.1)

Qν(z) ∼
1

2
log

(
z + 1

z − 1

)
, (D.5.2)

as stated above, therefore

∫
C+

ε

Pµ(z) · · · Qν(z) · · · dz =
∫ π

0

iεe−iεθPµ(−e−iεθ) · · · Qν(−e−iεθ) · · · dθ . (D.5.3)
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Note the substitution z = −e−Iεθ, dz = iεe−iεθdθ. Applying the asymptotic form of these functions, that is

Qν(1− iεθ + · · · ) ∼ 1

2
(log(2)− log(−iεθ)) ∼ −1

2
log(−iεθ) , (D.5.4)

therefore the integrand is asymptotic to A ε log(ε)n where A is constant. Furthermore substituting x→ et

lim
x→0+

x log(x)n = lim
t→−∞

et log(et)n = lim
t→−∞

ettn = 0 . (D.5.5)

Therefore

lim
ε→0+

iεe−iεθPµ(−e−iεθ) · · · Qν(−e−iεθ) · · · = lim
ε→0+

iεe−iεθ1 · · · 1
2
(log(2)− log(−iϵθ)) · · · = 0 . (D.5.6)

In fact, this limit converges uniformly, that is,

∀ θ ∈ (0, π) and δ ∈ R+

∃ ε ∈ R+ so that

|iεe−iεθPµ(−e−iεθ) · · · Qν(−e−iεθ) · · · | < δ . (D.5.7)

Therefore, since the interval is finite, the limit and integral commute and the integral vanishes. The integral

over C−
ε may also be related, using the analytic continuation formulae given above, to finite product of

logarithms of an infinitesimal with an infinitesimal, which also vanishes.

Finally, consider the integral over ΓR, using a similar substitution, z = Reiθ, dz = iReiθdθ, we find

∫
ΓR

Pµ1
(z) · · · Qν1

(z) · · · dz =
∫ π

0

iReiθPµ1
(Reiθ) · · · Qν1

(Reiθ) · · · dθ . (D.5.8)

Now the precise nature of the degrees of these polynomials must be considered. Specifically given l ≤ m

where ℜ{µi} > − 1
2 and ℜ{µj} < − 1

2 for i ≤ l and j > l, respectively, the asymptotic form of the above

integrand is

iReiθPµ1
(Reiθ) · · · Qν1

(Reiθ) · · · ∼

iReiθ
Γ(µ1 + 1/2)

π
1
2Γ(µ1 + 1)

(2Reiθ)µ1 · · · Γ(−µl+1 − 1/2)

π
1
2Γ(−µl+1)(2Reiθ)µl+1+1

· · · π
1
2Γ(ν1 + 1)

Γ(ν1 +
3
2 )(2Re

iθ)ν1+1
· · · ∼

A eiθ(1+µ1+···−µl+1−1−···−ν1−1··· ) R1+µ1+···−µl+1−1−···−ν1−1··· , (D.5.9)
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where A is a constant. This converges uniformly to zero if ℜ{1 + µ1 + · · · − µl+1 − 1 − · · · − ν1 − 1 · · · } =

ℜ{µ1+ · · ·−µl+1 · · ·−ν1 · · ·− (m− l+n)+1} < 0, and may converge to a representation of a delta function

for specific values of µs and νs. Therefore given the above condition on the degrees, this integral is also

equal to zero.

Therefore integrals on (−R,−1−ε), (−1+ε, 1−ε), and (1+ε,R) may be related to Js and Is. Specifically,

apply the formula giving the asymptotic completions above

∫ −1

−∞
Pµ1(z) · · · Qν1(z) · · · dz

= −
∫ 1

∞
Pµ1(−s) · · · Qν1(−s) · · · ds

=

∫ ∞

1

(
eiπµ1Pµ1

(s)− 2

π
sinπµ1Qµ1

(s)

)
· · ·
(
−e−iπν1Qν1

(s)
)
· · · ds

= (−1)neiπ(µ1+···−ν1−··· )Jµ1···
ν1··· + (−1)neiπ(µ1+···+µm−ν1−···−νn)Jµ1···µm

ν1···νn

+(−1)n
(
− 2

π

) m∑
i=1

eiπ(µ1+···+��µi+···+µm−ν1−···−νn) sin(πµi)J
µ1···��µi···µn
µiνi···νn

+(−1)n
(
− 2

π

)2 m−1∑
i=1

m∑
j=i+1

eiπ(µ1+···+��µi+···+��µj+···+µm−ν1−···−νn)×

sin(πµi) sin(πµj)J
µ1···��µi···��µj ···µn
µiµjνi···νn

+ · · ·+ (−1)n
(
− 2

π

)m

eiπ(−ν1−···−νn

m∏
i=1

sin(πµi)Jµ1···µmν1···νn
. (D.5.10)

Here, the first equality is given via the substitution s = −z, the second is via the analytic continuation

formulae given in Eqs. (D.2.5) and (D.2.6), and the third is given by distributing the integrand, commuting

the finite summation and integral, and applying the definition of Jµ···
ν··· . This requires, for the evaluation of

an integral with m Legendre functions of the first type in the integrand, the evaluation of roughly m2 new

integrals, however, since each new J type integral involves at least one fewer Legendre function of the first

type int the integrand, the recursion terminates.
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Similarly, for the integral over (−1, 1)

∫ 1

−1

Pµ1(z) · · · Qν1(z) · · · dz

=

∫ 1

−1

Pµ1
(z) · · ·

(
Qν1

(z)− iπ

2
Pν1

(z)

)
· · · dz

= Iµ1···µm
ν1···νn

+

(
− iπ

2

) n∑
i=1

Iνiµ1···µm

ν1···�νi···νn

+

(
− iπ

2

)2 n−1∑
i=1

n∑
j=i+1

I
νiνjµ1···µm

ν1···�νi···�νj ···νn
+ · · ·+

(
− iπ

2

)n

Iν1···νnµ1···µm . (D.5.11)

This equality is given using the same method as above for the second and third equalities.

Since the semicircular contours contribute zero in the limit, and all of the poles of Legendre functions lie

outside the integrand, the sum of these three integrals is zero

∫ −1

−∞
Pµ1(z) · · · Qν1(z) · · · dz +

∫ 1

−1

Pµ1(z) · · · Qν1(z) · · · dz +
∫ ∞

1

Pµ1(z) · · · Qν1(z) · · · dz = 0 . (D.5.12)

Therefore Jµ1···µm
ν1···νn may be given as

Jµ1···µm
ν1···νn

=
(
−(−1)neiπ(µ1+···+µm−ν1−···−νn) − 1

)−1
(
Iµ1···µm
ν1···νn

+

(
− iπ

2

) n∑
i=1

Iνiµ1···µm

ν1···�νi···νn

+

(
− iπ

2

)2 n−1∑
i=1

n∑
j=i+1

I
νiνjµ1···µm

ν1···�νi···�νj ···νn
+ · · ·+

(
− iπ

2

)n

Iν1···νnµ1···µm

+(−1)n
(
− 2

π

) m∑
i=1

eiπ(µ1+···+��µi+···+µm−ν1−···−νn) sin(πµi)J
µ1···��µi···µn
µiνi···νn

+(−1)n
(
− 2

π

)2 m−1∑
i=1

m∑
j=i+1

eiπ(µ1+···+��µi+···+��µj+···+µm−ν1−···−νn)×

sin(πµi) sin(πµj)J
µ1···��µi···��µj ···µn
µiµjνi···νn

+ · · ·+ (−1)n
(
− 2

π

)m

eiπ(−ν1−···−νn

m∏
i=1

sin(πµi)Jµ1···µmν1···νn

)
. (D.5.13)

D.6 Examples

D.6.1 J0···0n

First consider J0···0n, the integral of n Legendre functions of second-type of order 0. The recursive formula

given above is invalid when applied to this integral for n odd, however one of the values can be changed
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from 0 to ϵ ∈ R+, and a limit can be taken. Alternately Q0(z) may be simplified to arccoth(z) and the

substitution z = coth(t) may be used

J0···0n =

∫ ∞

1

Q0(z)
ndz =

∫ 0

∞
arccoth(coth(t))(−csch2(t))dt (D.6.1)

=
n!

2n+1

2n+1

Γ(n+ 1)

∫ ∞

0

t csch2(t)dt =
n!

2n+1
ζ(n) . (D.6.2)

D.6.2 J0ν

Another integral locatable in an integral table, and a valuable acid test of the above formula is the integral

of a Q0 and Qν . Integral tables give this value as

J0ν =
Hν −H0

ν(ν + 1)
. (D.6.3)

The recursive formula gives the integral as

J0ν = (−(−1)2e−iπν − 1)−1

(
I0ν − iπ

2
(Iν0 + I0ν )−

π2

4
I0ν
)

=
Hν

ν(ν + 1)
. (D.6.4)

Given, H0 = 0, the formulae agree.

D.6.3 J00ν

Consider

J00ν =

∫ ∞

1

Q0(z)
2Qν(z)dz , (D.6.5)

where ℜ{ν} = − 1
2 . The hypothetically problematic top contour converges to zero by the above argument

since ℜ{−0− 0− ν − 3 + 1} < 0 ⇔ ℜ{ν} > −2. Therefore

J00ν =(
−(−1)3eiπ(−0−0−ν) − 1

)−1
(
I003 +

(
− iπ

2

)(
I00ν + I00ν + Iν00

)
+

(
− iπ

2

)2 (
I00ν + I0ν0 + I0ν0

)
+

(
− iπ

2

)3

I00ν

)
. (D.6.6)
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This may be simplified since P0(z) = 1, therefore I0µ···ν··· = Iµ···ν··· , unless there are exactly two arguments.

Therefore

J00ν =

− 1

e−iπν + 1

(
I003 +

(
− iπ

2

)
(I0ν + I0ν + Iν00)

+

(
− iπ

2

)2 (
I0ν + Iν0 + Iν0

)
+

(
− iπ

2

)3

I0ν

)
. (D.6.7)

Each three–argument integral may be given in terms of series of two–argument integrals

J00ν =

− 1

e−iπν + 1

( ∞∑
i,j=1

i+j∑
k=|i−j|

2i+ 1

2
Ii0

2j + 1

2
Ij0

2k + 1

2
Ikν 2

i j k

0 0 0


2

+

(
− iπ

2

)I0ν + I0ν +

∞∑
i,j=1

i+j∑
k=|i−j|

2i+ 1

2
Ii0

2j + 1

2
Ij0

2k + 1

2
Ikν2

i j k

0 0 0


2

+

(
− iπ

2

)2 (
I0ν + Iν0 + Iν0

)
+

(
− iπ

2

)3

I0ν

)
. (D.6.8)

Each two–argument integral may be given explicitly

J00ν =

− 1

e−iπν + 1

( ∞∑
i,j=1

i+j∑
k=|i−j|

2i+ 1

2

1− (−1)i

i(i+ 1)

2j + 1

2

1− (−1)j

j(j + 1)

2k + 1

2

1− (−1)k cos(πν)

(k − ν)(k + ν + 1)
2

i j k

0 0 0


2

+

(
− iπ

2

)(
2

π
2 sin(πν)− (1 + cos(πν))Hν

ν(ν + 1)

+

∞∑
i,j=1

i+j∑
k=|i−j|

2i+ 1

2

1− (−1)i

i(i+ 1)

2j + 1

2

1− (−1)j

j(j + 1)

2k + 1

2

−2(−1)k sin(πν)

π(k − ν)(k + ν + 1)

i j k

0 0 0


2)

+

(
− iπ

2

)2
(
cos(πν)− 1

ν(ν + 1)
+ 2

π − π cos(πν)− 2 sin(πν)Hν

πν(ν + 1)

)

+

(
− iπ

2

)3
2 sin(πν)

πν(ν + 1)

)
. (D.6.9)
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E A Consistent Truncation about the SS–CGP Background

We will start with the bosonic sector of ten-dimensional type I supergravity,

L̂10 = R̂∗̂1− 1

2
dϕ̂ ∧ ∗̂dϕ̂− 1

2
e−ϕ̂Ĥ(3) ∧ ∗̂Ĥ(3) , (E.0.1)

where Ĥ(3) = dB̂(2). The solution of interest is the lifted Salam–Sezgin vacuum with an NS5-brane inclusion.

This was derived in Reference [32], and we reproduce it here:

dŝ210 =W (ρ)−
1
4

(
ηµνdx

µdxν + dy2 +
1

4g2

(
dψ + sech2ρ

(
dχ+ cos θ dφ

))2
+

1

g2
W (ρ) ds2EH

)
,

e2ϕ̂ =W (ρ) , B̂(2) =
1

4g2
(
(1 + k)dχ+ sech2ρ dψ

)
∧
(
dχ+ cos θ dφ

)
, (E.0.2)

where W (ρ) = sech2ρ− k log tanh ρ, and ds2EH is the Eguchi-Hanson metric

ds2EH = cosh 2ρ
(
dρ2 +

1

4
(tanh 2ρ)2

(
dχ+ cos θ dφ

)2
+

1

4

(
dθ2 + sin2 θ dφ2

))
. (E.0.3)

The coordinates ψ, y, and χ are S1 coordinates, (θ, φ) parametrizes an S2, ρ ∈ [0,∞) is the non-compact

radius, and k is a positive constant. The six-dimensional worldvolume of the NS5-brane is parametrized by

(xµ, ψ, y). Our goal is to reduce the type I theory on T 3 ∋ (y, ψ, χ) via the usual Kaluza–Klein methods,

and S2 on the background given in (E.0.2) to obtain a five-dimensional theory.

E.1 10 → 9: Reduce on y

The background metric in (E.0.2) does not have a fibre over the circle parametrised by y. So, the appropriate

Kaluza–Klein ansatz is

dŝ210 = e
− 1

2
√

7
ϕ2ds29 + e

√
7

2 ϕ2dy2 , B̂(2) = B(2) , ϕ̂ = ϕ1 , (E.1.1)

where the un-hatted fields are eight-dimensional fields. The resulting equations of motion are encoded in

the action

L9 = R∗1− 1

2
dϕi ∧ ∗dϕi −

1

2
e
−ϕ1+

1√
7
ϕ2H(3) ∧ ∗H(3) , (E.1.2)
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where H(3) = dB(2), and i ∈ {1, 2}. The background solution (E.0.2) reduces to

ds29 =W− 2
7

(
ηµνdx

µdxν + dy2 +
1

4g2

(
dψ + sech2ρ

(
dχ+ cos θ dφ

))2
+

1

g2
W ds2EH

)
,

e2ϕ1 = e−2
√
7ϕ2 =W , B(2) =

1

4g2
(
(1 + k)dχ+ sech2ρ dψ

)
∧
(
dχ+ cos θ dφ

)
. (E.1.3)

We observe that in the background solution, the combination ϕ1+
√
7ϕ2 = 0. This suggests a field redefinition,

Φ2

Φ1

 =
1

2
√
2

 1
√
7

−
√
7 1


ϕ1
ϕ2

 . (E.1.4)

Substituting this into (E.1.2), and noting that the transformation matrix (E.1.4) is orthogonal, we have

L9 = R∗1− 1

2
dΦi ∧ ∗dΦi −

1

2
e2
√

2
7Φ1H(3) ∧ ∗H(3) , (E.1.5)

and the background solution is

Φ2 = 0 , e−
√

7
2Φ1 =W . (E.1.6)

From (E.1.5), we find that Φ2 is decoupled, so there is a consistent truncation of the nine-dimensional theory

given by Φ2 = 0, Φ1 = ϕ. For completeness, the truncated theory is given by

L̂9 = R̂∗̂1− 1

2
dϕ̂ ∧ ∗̂dϕ̂− 1

2
e2
√

2
7 ϕ̂Ĥ(3) ∧ ∗̂Ĥ(3) , (E.1.7)

where we have reintroduced hats on all nine-dimensional fields. We will take (E.1.7) as the starting point

for the next reduction step.

E.2 9 → 8: Reduce on ψ

The background metric in (E.1.3) is fibred over the ψ̃ = ψ/2g coordinate. This suggests that the appropriate

Kaluza–Klein ansatz is

dŝ29 = e
− 1√

21
ϕ2ds28 + e

6√
21

ϕ2
(
dψ̃ +A(1)

)2
, B̂(2) = B(2) +A(1) ∧ dψ̃ , ϕ̂ = ϕ1 . (E.2.1)
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The resulting equations of motion are encoded in the action

L8 = R∗1− 1

2
dϕi ∧ ∗dϕi −

1

2
e
√

7
3ϕ2F(2) ∧ ∗F(2)

− 1

2
e
2
√

2
7ϕ1− 5√

21
ϕ2F(2) ∧ ∗F(2) −

1

2
e
2
√

2
7ϕ1+

2√
21

ϕ2H(3) ∧ ∗H(3) , (E.2.2)

where F(2) = dA(1), F(2) = dA(1), H(3) = dB(2) − dA(1) ∧ A(1), and i ∈ {1, 2}. The background solution in

(E.1.3) reduces to

ds28 =W− 1
3

(
ηµνdx

µdxν +
W

g2
ds2EH

)
, B(2) =

1 + k

4g2
cos θ dχ ∧ dφ ,

A(1) = −A(1) =
1

2g
sech2ρ (dχ+ cos θ dφ) , e−

√
7
2ϕ1 = e−

√
21ϕ2 =W . (E.2.3)

From this, we observe that ϕ1 −
√
6ϕ2 = 0. This suggests the field redefinition

Φ2

Φ1

 =
1√
7

 1 −
√
6

√
6 1


ϕ1
ϕ2

 . (E.2.4)

For the background solution, we have

Φ2 = 0 , e−
√
3Φ1 =W . (E.2.5)

Now, substituting the field redefinition into (E.2.2), and noting that the transformation matrix (E.2.4) is

orthogonal, we obtain

L8 = R∗1− 1

2
dΦi ∧ ∗dΦi −

1

2
e
−
√
2Φ2+

1√
3
Φ1F(2) ∧ ∗F(2)

− 1

2
e
√
2Φ2+

1√
3
Φ1F(2) ∧ ∗F(2) −

1

2
e

2√
3
Φ1H(3) ∧ ∗H(3) . (E.2.6)

Let us now examine the equations of motion of A(1), A(1), and Φ2:

A(1) : d
(
e
−
√
2Φ2+

1√
3
Φ1∗dA(1)

)
− e

2√
3
Φ1dA(1) ∧ ∗H(3) = 0 ,

A(1) : d
(
e
√
2Φ2+

1√
3
Φ1∗dA(1)

)
− e

2√
3
Φ1dA(1) ∧ ∗H(3) = 0 ,

Φ2 : d∗dΦ2 =
1

2
√
2
e

1√
3
Φ1
(
e
√
2Φ2F(2) ∧ ∗F(2) − e−

√
2Φ2F(2) ∧ ∗F(2)

)
. (E.2.7)

These equations admit the solution

A(1) = ±A(1) , Φ2 = 0 . (E.2.8)
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For our background solution, we have A(1) = −A(1). Using this simplifying ansatz, we find that the rest of

the equations of motion are encoded in the action

L8 = R∗1− 1

2
dϕ ∧ ∗dϕ− e

1√
3
ϕ
F(2) ∧ ∗F(2) −

1

2
e

2√
3
ϕ
H(3) ∧ ∗H(3) , (E.2.9)

where F(2) = dA(1), H(3) = dB(2) + dA(1) ∧ A(1), and we relabelled Φ1 = ϕ. To put the action in canonical

form, we have to rescale A(1) by a factor of 1/
√
2. The final eight-dimensional theory is

L̂8 = R̂∗̂1− 1

2
dϕ̂ ∧ ∗̂dϕ̂− 1

2
e

1√
3
ϕ̂
F̂(2) ∧ ∗̂F̂(2) −

1

2
e

2√
3
ϕ̂
Ĥ(3) ∧ ∗̂Ĥ(3) , (E.2.10)

where F̂(2) = dÂ(1), Ĥ(3) = dB̂(2) +
1
2dÂ(1) ∧ Â(1), and we have restored the hats for all eight-dimensional

fields.

E.3 8 → 7: Reduce on χ

The background solution (E.2.3) is fibred over χ̃ = χ/2g. The appropriate Kaluza–Klein ansatz is then

dŝ28 = e
− 1√

15
ϕ2ds27 + e

√
5
3ϕ2
(
dχ̃+ Ã(1)

)2
,

B̂(2) = B(2) +B(1) ∧ dχ̃ , Â(1) = A(1) + σ dχ̃ , ϕ̂ = ϕ1 . (E.3.1)

The resulting equations of motion are encoded in the action

L7 = R∗1− 1

2
dϕi ∧ ∗dϕi −

1

2
e

1√
3
ϕ1−

√
5
3ϕ2dσ ∧ ∗dσ − 1

2
e2
√

3
5ϕ2F(2) ∧ ∗F(2)

− 1

2
e

1√
3
ϕ1+

1√
15

ϕ2F(2) ∧ ∗F(2) −
1

2
e

2√
3
ϕ1− 4√

15
ϕ2H(2) ∧ ∗H(2) −

1

2
e

2√
3
ϕ1+

2√
15

ϕ2H(3) ∧ ∗H(3) ,

(E.3.2)

where F(2) = dÃ(1), F(2) = dA(1)−dσ∧Ã(1), H(2) = dB(1)+
1
2 (σdA(1)−dσ∧A(1)), H(3) = dB(2)+

1
2dA(1)∧

A(1) −H(2) ∧ Ã(1), and i ∈ {1, 2}. The background solution (E.2.3) reduces to

ds27 =
(sinh 2ρ)

2
5

(W cosh 2ρ)
1
5

(
ηµνdx

µdxν +
W cosh 2ρ

g2
dρ2 +

W cosh 2ρ

4g2
(
dθ2 + sin2 θ dφ2

))
,

σ =
√
2sech2ρ , Ã(1) =

1

2g
cos θ dφ , A(1) = σÃ(1) , B(1) = −(1 + k)Ã(1) ,

e−
√
3ϕ1 =W , e

√
5
3ϕ2 =W

2
3 (sinh 2ρ)2sech2ρ , B(2) = 0 . (E.3.3)
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It is convenient to perform the field redefinition

Φ1

Φ2

 =
1√
6

 1 −
√
5

√
5 1


ϕ1
ϕ2

 . (E.3.4)

The background solution is then

e−
√
2Φ1 =W (sinh 2ρ)2sech2ρ , e

√
10Φ2 =W−1(sinh 2ρ)2sech2ρ . (E.3.5)

Substituting the field redefinition into (E.3.2), and noting that the transformation matrix (E.3.4) is orthog-

onal, we find that

L̂7 = R̂∗̂1− 1

2
dΦ̂i ∧ ∗̂dΦ̂i −

1

2
e
√
2Φ̂1dσ̂ ∧ ∗̂dσ̂ − 1

2
e−

√
2Φ̂1+

√
2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2)

− 1

2
e
√

2
5 Φ̂2 F̂(2) ∧ ∗̂F̂(2) −

1

2
e
√
2Φ̂1+

√
2
5 Φ̂2Ĥ(2) ∧ ∗̂Ĥ(2) −

1

2
e2
√

2
5 Φ̂2Ĥ(3) ∧ ∗̂Ĥ(3) , (E.3.6)

where we have restored the hats to the seven-dimensional fields.

E.4 7 → 5: Reduce on S2

The reduction ansatz that is consistent with the seven-dimensional background solution (E.3.3) is

dŝ27 = e
− 2√

15
Φ3ds25 +

1

4g2
e
√

3
5Φ3ds2(S2) , Φ̂1,2 = Φ1,2 , σ̂ = σ ,

F̂(2) = − 1

2g
vol(S2) , F̂(2) = − σ

2g
vol(S2) , Ĥ(2) = −σ

2 +m

4g
vol(S2) , Ĥ(3) = 0 , (E.4.1)

where ds2(S2) and vol(S2) are the metric and volume form on the unit 2-sphere respectively, m is a constant,

and all un-hatted fields are five-dimensional fields. The ansatz for the field strengths is consistent with the

seven-dimensional Bianchi identities:

dF̂(2) = 0 , dF̂(2) = dσ̂ ∧ F̂(2) , dĤ(2) = dσ̂ ∧ F̂(2) , dĤ(3) =
1

2
F̂(2) ∧ F̂(2) − Ĥ(2) ∧ F̂(2) . (E.4.2)
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Let us first look at the seven-dimensional gauge field equations of motion:

B̂(2) : d
(
e2
√

2
5 Φ̂2 ∗̂Ĥ(3)

)
= 0 , (E.4.3)

B̂(1) : d
(
e
√
2Φ̂1+

√
2
5 Φ̂2 ∗̂Ĥ(2)

)
− e2

√
2
5 Φ̂2F̂(2) ∧ ∗̂Ĥ(3) = 0 , (E.4.4)

Â(1) : d
(
e
√

2
5 Φ̂2 ∗̂F̂(2)

)
+ e

√
2Φ̂1+

√
2
5 Φ̂2dσ̂ ∧ ∗̂Ĥ(2) + e2

√
2
5 Φ̂2 F̂(2) ∧ ∗̂Ĥ(3) = 0 , (E.4.5)

Â(1) : d
(
e−

√
2Φ̂1+

√
2
5 Φ̂2 ∗̂F̂(2)

)
+ e

√
2
5 Φ̂2dσ̂ ∧ ∗̂F̂(2) − e2

√
2
5 Φ̂2Ĥ(2) ∧ ∗̂Ĥ(3) = 0 , (E.4.6)

σ̂ : d
(
e
√
2Φ̂1 ∗̂d̂σ̂

)
− e

√
2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2) − e

√
2Φ̂1+

√
2
5 Φ̂2 F̂(2) ∧ ∗̂Ĥ(2) = 0 . (E.4.7)

We note that

∗̂ vol(S2) = 4g2e
− 8√

15
Φ3 vol(M5) , ∗̂dσ̂ =

1

4g2
(∗dσ) ∧ vol(S2) , (E.4.8)

where vol(M5) and ∗ are the volume form and Hodge star defined with respect to the five-dimensional metric

ds25 in (E.4.1) respectively. From this, we find that ∗̂F̂(2), ∗̂F̂(2), and ∗̂Ĥ(2) are all proportional to vol(M5),

which is a top-form on M5. This means that d(eS ∗̂F̂(2)) = d(eS ∗̂F̂(2)) = d(eS ∗̂Ĥ(2)) = 0 for any field

S ∈ C∞(M5), and dσ̂ ∧ ∗̂F̂(2) = dσ̂ ∧ ∗̂Ĥ(2) = 0. Therefore, the only non-trivial equation from the above is

the σ̂ equation. After some algebra, we find that the σ̂ equation reads

d
(
e
√
2Φ1∗dσ

)
= 2g2e

√
2
5Φ2− 8√

15
Φ3
(
2 + e

√
2Φ1(σ2 +m)

)
σ∗1 , (E.4.9)

where we used the identity ∗1 = vol(M5).

Next, we have the seven-dimensional dilaton equations,

d∗̂dΦ̂1 +
1√
2

(
e−

√
2Φ̂1+

√
2
5 Φ̂2F̂(2) ∧ ∗̂F̂(2) − e

√
2Φ̂1dσ̂ ∧ ∗̂dσ̂ − e

√
2Φ̂1+

√
2
5 Φ̂2Ĥ(2) ∧ ∗̂Ĥ(2)

)
= 0 , (E.4.10)

d∗̂dΦ̂2 −
1√
10
e
√

2
5 Φ̂2
(
e−

√
2Φ̂1F̂(2) ∧ ∗̂F̂(2) + F̂(2) ∧ ∗̂F̂(2) + e

√
2Φ̂1Ĥ(2) ∧ ∗̂Ĥ(2)

)
= 0 , (E.4.11)

where we have substituted the ansatz Ĥ(3) = 0. Using (E.4.8), we find that these equations become

d∗dΦ1 =
1√
2
e
√
2Φ1dσ ∧ ∗dσ +

g2√
2
e
√

2
5Φ2− 8√

15
Φ3
(
e
√
2Φ1(σ2 +m)2 − 4e−

√
2Φ1
)
∗1 , (E.4.12)

d∗dΦ2 =
1√
10
g2e

√
2
5Φ2− 8√

15
Φ3
(
e
√
2Φ1(σ2 +m)2 + 4e−

√
2Φ1 + 4σ2

)
∗1 . (E.4.13)

213



Finally, we have the seven-dimensional Einstein equation

R̂MN =
1

2
∂M Φ̂i∂N Φ̂i +

1

2
e
√
2Φ̂1∂M σ̂∂N σ̂

+
1

2
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√
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√
2
5 Φ̂2

(
F̂MP F̂ P

N − 1

10
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ĝMN
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F̂MP F̂

P
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(
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)2
ĝMN
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+

1

2
e
√
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2
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(
ĤMP Ĥ

P
N − 1

10

(
Ĥ(2)

)2
ĝMN

)
,

(E.4.14)

where i ∈ {1, 2}, and we have substituted the Ĥ(3) = 0 ansatz. We have to consider the equations where the

indices M,N lie in the five-dimensional directions and the S2 directions independently. Let A,B, . . . be the

five-dimensional indices, and m,n, . . . be the S2 indices. The R̂mn equations give

d∗dΦ3 = − 4g2√
15
e
√

2
5Φ2− 8√

15
Φ3
(
e
√
2Φ1(σ2 +m)2 + 4σ2 + 4e−

√
2Φ1 − 10e−

√
2
5Φ2+

√
3
5Φ3
)
∗1 . (E.4.15)

The R̂Am equations give a 0 = 0 identity, and the remaining R̂AB equations read

RAB =
1

2
∂AΦi∂BΦi +

1

2
e
√
2Φ1∂Aσ∂Bσ

+
2g2

3
e
√

2
5Φ2− 8√

15
Φ3

(
e−

√
2Φ1 + σ2 +

1

4
e
√
2Φ1(σ2 +m)2 − 4e−

√
2
5Φ2+

√
3
5Φ3

)
gAB , (E.4.16)

where i ∈ {1, 2, 3}. The five-dimensional equations (E.4.9), (E.4.12), (E.4.13), (E.4.15), and (E.4.16) can be

obtained from the action

L5 = R∗1− 1

2
dΦi ∧ ∗dΦi −

1

2
e
√
2Φ1dσ ∧ ∗dσ − V ∗1 , (E.4.17)

where V is the scalar potential given by

V = 2g2e
√

2
5Φ2− 8√

15
Φ3

(
e−

√
2Φ1 + σ2 +

1

4
e
√
2Φ1(σ2 +m)2 − 4e−

√
2
5Φ2+

√
3
5Φ3

)
. (E.4.18)

The five-dimensional Newton constant is related to the ten-dimensional one by

κ̂2 =
g4κ̂210
2π3ly

. (E.4.19)
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The seven-dimensional background solution (E.3.3) is now reduced to

ds25 = (W cosh 2ρ)
1
3 (sinh 2ρ)

2
3

(
ηµνdx

µdxν +
W cosh 2ρ

g2
dρ2
)
, e−

√
2Φ1 =W (sinh 2ρ)2sech2ρ ,

e
√
10Φ2 =W−1(sinh 2ρ)2sech2ρ , e

√
15Φ3 = (W cosh 2ρ)4(sinh 2ρ)2 , σ =

√
2sech2ρ . (E.4.20)

The NS5-brane charge k is related to the parameter m by k = −1−m/2. Since k ≥ 0, we find that m ≤ −2.

For the purposes of the present work, we set k = 0, so m = −2.
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