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ABSTRACT

This paper presents a novel, low-compute and efficient gen-
erative adversarial network (GAN) design for automatic seg-
mentation called CNSeg-GAN, which combines 1-D kernel
factorized networks, spatial and channel attention, and multi-
scale aggregation mechanisms in a conditional GAN (cGAN)
fashion. The proposed CNSeg-GAN architecture is trained
and tested on a first-trimester ultrasound (US) scan video
dataset for automatic detection and segmentation of anatomi-
cal structures in the midsagittal plane to enable Crown Rump
Length (CRL) and Nuchal Translucency (NT) measurement.
Experimental results shows that the proposed CNSeg-GAN
is x15 faster than U-Net and yields mIoU of 78.20% on the
CRL and 89.03% on the NT dataset, respectively with only
2.19 millions in parameters. The accuracy of this lightweight
design makes it well-suited for real-time deployment in future
work.

Index Terms— First trimester, ultrasound, video segmen-
tation, midsagittal plane, generative adversarial network.

1. INTRODUCTION

Fetal ultrasound (US) imaging is a crucial part of pregnancy
care, allowing healthcare providers to monitor fetal growth
and health. The first-trimester fetal US scan (also known as
the dating or nuchal scan) is carried out between 11+0 to 13+6

weeksdays of gestation to assure pregnancy viability, accu-
rately date the pregnancy and to assess the risk of chromo-
somal anomalies [1]. During the first-trimester scan, sonog-
raphers acquire various imaging planes, also known as stan-
dard planes (SP), to visualize required anatomical structures.
These SP include the midsagittal plane for measuring Crown-
Rump Length (CRL) and Nuchal Translucency (NT).

Previous deep learning-based US segmentation models
have reported good accuracy [2]. However, previously re-
ported models have a large number of parameters which

Fig. 1: An overview of the fetal anatomy (CRL and NT) for the first-
trimester US scans. Video frames are acquired from frozen video
segments (green), and fine-tune segments (red). For more details,
readers are referred to [3].

limits applicability for real-time deployment on the grow-
ing number of ultrasound-based devices that have limited
computational and memory resources. Fetal standard plane
segmentation is challenging for first-trimester scans due to
relatively small size of fetus and its substructures. The use
of automated segmentation as an overlaying-based assistive
workflow tool could help increase the accuracy (and speed) of
anatomical assessment and measurement, as well as support
newly-qualified operators in these tasks.

Contribution: A lightweight cGAN model (2.19 million
parameters) called CNSeg-GAN is proposed to segment
anatomical structures in the mid-sagittal plane (MSP) from an
US scan video. It segments the key CRL and NT structures
using a multiscale aggregation strategy with spatial and chan-
nel attention modules to capture the correlation between the
spatial and channel features from coarse-to-fine pixel levels
and to discriminate between fetal structures and the speckled
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Fig. 2: An overview of the proposed CNSeg-GAN architecture for automated CRL and NT segmentation in first-trimester US scans.

or blurry background. The CNSeg-GAN has been designed
to be suitable for real-time overlaying and guidance. The
model processing speed is 110 frames-per-second on a single
Nvidia Quadro RTX 5000 (16GB) GPU.

Related Work. Recent reports on CNN-based automated
first-trimester fetal biometry include measurement of the CRL
[4], brain [5] and NT [5]. Cengiz et al. [4] designed a U-Net
based CNN for CRL measurement assuming first-trimester
standard plane images as input. Similarly, Bano et al. [6] pro-
posed to estimate fetal biometry from a limited set of data
using a single frame-based semantic segmentation method.
Prior segmentation methods [2, 7] did not utilize GAN-based
real-time methods the CRL and NT segmentation. Here, we
argue that to be useful in clinical practice, a fully-automated
lightweight neural network must work in real-time. The pro-
posed model provides pixel-wise semantic segmentation of
the midsagittal standard plane from free-hand US video scans.

2. METHODS

2.1. Data Acquisition and Pre-processing

Routine clinical first-trimester fetal US scans were available
from a large-scale study PULSE. According to NHS Fetal
Anomaly Screening Programme (FASP) guidelines [8] CRL
and NT measurements should be made in the first trimester
US scan. US video is acquired through screen-grab signals
at 30 frames per second of a GE Voluson E8 version BT18
(GE Healthcare, Zipf, Austria) US machine. On average, a
complete first-trimester US scan takes 13.73± 4.18 minutes,
with an average of 24, 720 ± 7, 534 frames per scan video.
The fetal structure (CRL) and NT mask were segmented us-
ing a training set of manually annotated video clips. The data
distribution used in this work is summarized in Table 1.

Table 1: Details of datasets and tasks used in this study.

Anatomy Datasets Video Segments Frames

C
R

L Training 100 12534 (77.9%)

Test 28 3559 (22.1%)
N

T Training 110 10174 (79.3%)

Test 36 2647 (20.7%)

2.2. Model Architecture

The key modules of our proposed model architecture are de-
signed in accordance with the cGAN baseline of pix2pix [9]
methods. It consists of two main networks: the generator G
and the discriminator D. Fig. 2 depicts the overall CNSeg-
GAN architecture further explained in detail next. Generator
Network (G): As shown in Fig. 2 G consists of two mod-
ules, namely an encoder and a decoder. Encoder module of
CNSeg-GAN comprises of one multiscale aggregation block
(MSA), three downsampling convolutional layers (DCL),
four spatial attention blocks (SAB), twelve 1-D kernel fac-
torized networks (FKN), and twelve channel attention blocks
(CAB). Here, the spatial attention block (SAB) feature map
FSAB is defined as,

FSAB = FA ⊕ (FD
r ⊗ exp(FB

r,t ⊗ FC
r ))r, (1)

where feature maps are denoted FA = (ReLU(BN(CL))),
BN denotes batch normalization, FB

r,t, F
C
r , and FD

r denotes
new feature maps generated from FA by applying reshape (r)
and transpose (t) to the height (H) and width (W ) only (chan-
nel (C) is fixed) with exp for the softmax function. Moreover,
the spatial attention block (CAB) feature map FCAB is de-
fined as,

FCAB = FA ⊕ (FA
r ⊗ exp(FA

r,t ⊗ FA
r ))r, (2)



where FA
r is an altered version of FA that has undergone re-

shaping in the channel dimension, FA
r,t is an altered version

of FA that has undergone reshaping and transposition in the
channel (C) dimension. In addition, the feature map of kernel
factorized networks (FKN) FFKN is defined as,

FFKN = F v(Fh(F v(Fh(F k))))⊕ F k, (3)

where F k is the input feature, F v = ReLU(BN(F k
1×3)) rep-

resenting an FKN with a vertical kernel of 1×3, and Fh =
ReLU((F k

3×1) with a 3×1 horizontal kernel. The CNSeg-
GAN Decoder module contains three UCL, two SAB, four
FKN, and four CAB consecutively and is shown in Fig. 2.
These blocks create the segmentation masks with a size of
128×128 from the encoder module prediction by applying a
threshold of 0.5.

Discriminator Network (D). Fig. 2 presents the D as four
layers, including four DCLs, one SAB, and one CAB. The
first 3 DCLs consist of a CL with kernel size 4×4, stride 2,
and padding 1. A SAB and CAB are used after the second and
third DCL blocks, respectively. Finally, a sigmoid activation
function is included in the final layer of D.

2.3. Model Training and Implementation

Model Training. We train the G and D networks in CNSeg-
GAN via adversarial back-propagation. Assume that i is
an input US image and o is the corresponding segmentation
mask ground truth. Let d be a random variable included as
a dropout in the decoder’s layers to prevent the model from
overfitting and to expand the learning process. Further, let
G(i, d)and D(i, G(i, d)) describe the outputs of the genera-
tor and discriminator, respectively. The loss function of the
generator ℓGe is defined as,

ℓGe(G,D) = Ei,o,d(− log(D(i, G(i, d))))

+ γEi,o,d(ℓL1
(o,G(i, d))).

(4)

Here γ is an empirical weighting factor. The loss function of
the generator ℓDi is defined as,

ℓDi(G,D) = Ei,o,d(− log(D(i, o)))

+ Ei,o,d(− log(1−D(i, G(i, d)))).
(5)

Here, − log(1−D(x,G(x, z)) and − log(D(x, y)) represents
the predicted segmentation and the ground-truth mask, re-
spectively.

Implementation Details. The CNSeg-GAN architecture
was implemented by PyTorch v0.4.1. US video frames were
scaled to 128 × 128 pixels. A learning rate of 0.0002, batch
size of 2, Adam optimization with β1 = 0.5 and β2 = 0.999
were used. Data augmentation was not used for the proposed
model, all CNSeg-GAN G and D layers were trained from
scratch. To train the comparative CNN models, data augmen-
tation with a pre-trained model (ResNet101) was used.

3. RESULTS AND DISCUSSION

Table 2.3 reports the performance evaluation for the CNSeg-
GAN model and five comparative CNN segmentation models
using accuracy (AC), Dice score (DS) and mean intersection
over union (mIoU) metrics.

Quantitative Evaluation of Trained Models: We trained
and tested benchmark CNN-based segmentation models (U-
Net [10], PAN [11], MA-Net [12], DeepLabV3+ [13], and
NHG [2]) which were selected due to their high bench-
mark segmentation performance on public medical imaging
and computer vision datasets. The experimental results in
Table 2.3 show that the CNSeg-GAN model outperforms
all other tested models in terms of AC, DS, and mIoU on
both study datasets. CNSeg-GAN achieves AC, DS, and
mIoU scores of 95.22%, 90.85%, and 78.20% on the CRL
dataset and 99.84%, 93.80%, and 89.03% on the NT dataset.
CNSeg-GAN yields 2.49%, 2.64% higher DS, and 1.28%,
18.47% higher mIoU on the CRL and NT datasets respec-
tively compared with the U-Net. The superior performance
is particularly notable for the NT dataset where it is more
challenging to segment the small structure within a complex
background. Fig. 2 presents an example box plot of mIoU for
all CRL test samples. The coloured boxes show the range of
scores for different models. Performing the Wilcoxon signed-
rank test between the CNSeg-GAN model and second-best
model (U-Net) on the CRL and NT datasets was statistically
significant (p-value < 0.001).

Qualitative Analysis: Fig. 4 presents a qualitative evalu-
ation of the CNSeg-GAN model with the second-best model
(U-Net). We show sample frame segmentations of the CRL
and NT and their ground truth. These US frames contain
speckle and incomplete anatomical boundaries. In the first
row, the proposed approach can be seen to accurately segment
the boundaries in the presence of hypoechoic tissue regions.
However, U-Net does not accurately delineate the entire fetal
region where the pixel intensities change for the fetal struc-
tures. The attention mechanism of the CNSeg-GAN model
aids detection of hypoechoic tissue pixels even when speckle

Fig. 3: Box plot of mIoU for different benchmark CNN models and
ours on the CRL test dataset.



Table 2: Quantitative analysis of trained models on CRL and NT test datasets.

Methods Parameters CRL NT
Millions AC(%) DS(%) mIoU(%) AC(%) DS(%) mIoU(%)

U-Net [10] 51.51 95.12± 0.06 88.36± 0.08 76.92± 0.09 99.91 ± 0.01 91.16± 0.11 70.56± 0.13

PAN [11] 43.25 94.95± 0.03 87.76± 0.09 76.31± 0.12 99.93± 0.01 92.28± 0.11 71.93± 0.12

MA-Net [12] 166.43 94.55± 0.04 86.68± 0.11 74.75± 0.12 99.90± 0.01 89.29± 0.13 68.30± 0.15

DeepLabV3+ [13] 45.66 95.54± 0.02 86.59± 0.12 74.74± 0.13 99.89± 0.01 89.21± 0.14 68.42± 0.15

NHG [2] 11.46 92.32± 0.03 88.24± 0.09 74.42± 0.04 92.49± 0.05 82.14± 0.01 67.37± 0.01

CNSeg-GAN (proposed) 2.19 95.22 ± 0.03 90.85 ± 0.07 78.20 ± 0.09 99.84± 0.01 93.80 ± 0.07 89.03 ± 0.10

(a) (b) (c) (d) (e) (f)

C
R
L

N
T

Fig. 4: Examples of proposed segmentation results on compared to
U-Net model on CRL and NT datasets. (a) input video frame, (b)
ground truth mask, (c) U-Net prediction, (d) U-Net model predic-
tion overlaid on the US frame, (e) proposed model prediction (f)
proposed model prediction overlaid on the US frame. Note that the
colors of the overlay visualization results are as follows: TP (or-
ange), FP (green), FN (red) and TN (background).

is present. The second-row example illustrates another case
where the CNSeg-GAN model works well. In this case, a
multi-scale input and the attention blocks place more empha-
sis on neighboring hyperechoic and hypoechoic pixels, result-
ing in fewer false positives than for the U-Net.

4. CONCLUSION

We have presented a lightweight cGAN-based architecture
that takes a free-hand US scan video frame as an input and
outputs key structure segmentations (NT, CRL) for first-
trimester fetal ultrasound images. The proposed low-compute
CNSeg-GAN model relies on factorized kernels with spatial
and channel attention blocks to perform segmentations. The
proposed model has only 2.19 million parameters and out-
performed other benchmark architectures in terms of DS and
mIoU with better parameter efficiency on the reported test
data. Our lightweight design allows for the real-time accurate
segmentations of CRL and NT structures. In the future, we
aim to extend the current architecture towards different fetal
anatomies for segmentation and guidance tasks.
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