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ABSTRACT
Manual annotation of medical images is time consuming for
clinical experts; therefore, reliable automatic segmentation
would be the ideal way to handle large medical datasets. In
this paper, we are interested in detection and segmentation
of two fundamental measurements in the first trimester ul-
trasound (US) scan: Nuchal Translucency (NT) and Crown
Rump Length (CRL). There can be a significant variation in
the shape, location or size of the anatomical structures in
the fetal US scans. We propose a new approach, namely
Densely Attentional-Aware Network for First Trimester Ul-
trasound CRL and NT Segmentation (DA2Net), to encode
variation in feature size by relying on the powerful atten-
tion mechanism and densely connected networks. Our results
show that the proposed D2ANet offers high pixel agreement
(mean JSC = 84.21) with expert manual annotations.

Index Terms— Video Segmentation, First Trimester,
Spatial Attention, Channel Attention, Ultrasound.

1. INTRODUCTION

The goal of the scan is to ensure pregnancy viability, estab-
lish accurate pregnancy dating, and assess the risk for chro-
mosomal anomalies [1]. A sonographer carries out the first-
trimester scan and manipulates the US probe to achieve a se-
ries of standard imaging planes, which is subjected to compre-
hensive training and experience [2]. Therefore, an automatic
fetal anatomy detection and overlaying method could offer as-
sistance and support to trainees and newly qualified operators.
It has been demonstrated that semantic segmentation-based
methods [3, 4] can accurately recognize and analyze complex
fetal anatomy in US video scans.

Most of the existing semantic segmentation approaches
rely on the encoder-decoder structure [4, 5, 6], which suffer
from a fundamental issue, namely the loss of spatial inter-
connection due to the use of consecutive pooling layers and
strided convolutions. Other approaches use spatial attention,
channel attention or a combination of both either in a paral-
lel or sequential manner. Although they have achieved im-
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proved performance, they suffer from two main issues: (1)
directly fusing the spatial and channel attention feature maps
may produce incorrect importance weights for pixel represen-
tations, and (2) it is unclear what will be the contributions of
each attention.

Related Work. There are a few works that have studied
first-trimester US scans such as standard plane detection [7],
segmentation [8], and fetal biometry [9]. Most of these meth-
ods [10, 8] employed traditional encoder-decoder designs for
semantic segmentation. The majority of these methods use
traditional encoder-decoder designs that require manual an-
notation of medical images, creating fundamental bottlenecks
in the process. Recently, attention-based methods relying
on spatial attention and channel attention or combining both
are gaining more popularity to resolve aforementioned bot-
tleneck. Hu et al., [11] developed an architecture based
on channel attention to examine the relationships between
channels to increase the most important among them, which
improves the model’s performance. DANet [12] proposed a
deep learning architecture that combines spatial and chan-
nel attention by directly adding them together to model the
dependencies along both dimensions (position and channel).
Although these approaches capture dependencies in all di-
mensions, they still treat the dimensions separately, which
can cause conflicting results. To the best of our knowledge,
we make the first attempt at fusing channel and spatial atten-
tions in better way and combine them with dense connectivity
for first trimester US fetal NT and CRL segmentation.

Contribution. This paper proposes a novel network
called Densely Attentional-Aware (D2ANET) Network that
is trained and tested on First Trimester US video scans. The
proposed design of D2ANET is capable to handle variations
in feature size, location, and shape, which are the main chal-
lenges in fetal US images. D2ANet low-compute design is
18% faster than CE-Net [6]. It uses (1) channel-fusion and
spatial attention-based novel Pair Attention Block (PAB), and
(2) dense connectivity to captures important contextual fea-
tures, which improves the overall segmentation performance.
The experimental results show the effectivness of the pro-
posed D2ANet model on two (NT and CRL) first-trimester
US segmentation datasets.



Fig. 1: Details of datasets and tasks used in this study

2. OUR METHOD

We propose a novel Densely Attentional-Aware Network
trained and tested on first-trimester ultrasound (US) scan
video dataset for automatic segmentation CRL and NT. It
contains two major ideas: a novel Pair Attention Block (PAB)
with a Spatio-Channel Fusion layer and a dense connectivity.
On the one hand, the PAB block with the SCF layer enable
the model to fuse the channel and spatial attentions in proper
way to handle both the variations in NT and CRL structures
sizes in fetal US images and capture the appropriate contex-
tual information. On the other hand, inspired by the success
of dense connectivity networks, we add dense connections to
capture the advantages of DenseNets.

Fig. 2: Pair Attention Block architecture consists of fusing
channel attention and spatial attention

Fig. 3: Spatio-Channel Fusion architecture

2.1. Pair Attention Block and Spatio-Channel Fusion

Fig. 4: D2ANet architecture consists of dense connectivity
and PAB blocks

In order to address the issues of feature combination in
the existing channel and spatial attention approaches, we
designed a novel Pair Attention Block (PAB), illustrated in
Fig. 2, which better combines the advantages of channel at-
tention and spatial attention. Given an input feature map,
we apply a channel attention and spatial attention in parallel,
where the result is a feature map with the same dimension as
the input. Given the input feature map I ∈ RC×H×W , the
following equations summarize the spatial attention:

Oi
s =

N∑
j=1

S(i, j) S3(j) + Ii

S(i, j) = softmax(S1(i), S2(j))

(1)

where N = H × W and S(i, j) measures the jth position’s
impact on ith position. The channel attention is summarized
as follows:

Oi
c =

C∑
j=1

(
C(i, j) Ij

)
+ Ij

C(i, j) = softmax(Ii, Ij)

(2)

where C(i, j) measures the jth channel’s impact on ith chan-
nel. We feed the two feature maps to the Spatio-Channel
Fusion (SCF) block, which will play the role of fusion. Fig. 3
shows the architecture of the SCF block (better shown in
color). Segmenting the NT and CRL structures of the fetus
could be challenging, therefore, it is essential for a network
to detect such variations in location and feature size. Our
SCF block solves this challenge by relying on its novel archi-
tecture design. Within SCF, we have three feature maps: the
input, channel, and spatial feature maps. SCF is summarized
as follows:

O = SCF (Oc, Os, I) = h(Oc, Os) pr(I) (3)

where, I ∈ RC×H×W is the output feature map and pr is
the pooled representation applied to the input feature map I .
First, for the spatial and channel attention feature maps, we
apply a dot-product similarity:

h(Oc, Os) = f(Oc)
T g(Os) (4)

where Oc and Os are the the input feature maps from chan-
nel branch and spatial branch respectively. The two functions



f(Oc) = WfOc and g(Os) = WgOs which are two embed-
dings, implemented using 1 × 1 convolution. We note that
the function h plays an important role because it captures the
feature similarity between the two attentions, which means
that they contribute both for a better feature representation.
Second, for the input feature map, it is divided into multiple
pooled regions of different sizes (2 × 2, 3 × 3, 4 × 4 and
6× 6), which are implemented and used in parallel. Lastly, a
dot-product is used to get the final feature map.

By using the spatio-channel fusion block, our network
captures different sized features. This is achieved using the
dot-product between the pooled bins of various sizes and the
two attentions (spatial and channel). Therefore, the network
is able to cover the whole, half, or a small section of the im-
age, and then fuse these to construct coherent information for
the final NT and CRL segmentation.

2.2. D2ANet: Densely Attention-Aware Network

Relying on a single PAB block to extract useful features are
not dense enough to cover the remarkable variations of NT
and CRL structures (size, location, and shape) presented in
fetal US images. Therefore, we propose to combine PAB
block and dense connectivity to form the final D2ANet ar-
chitecture. As shown in Fig. 4, each layer is connected to all
subsequent layers in a feed-forward manner. This architecture
has several advantages. First, it plays a role of regularization
on datasets with small or medium sizes (such as medical im-
age datasets), which reduces overfitting. Second, dense con-
nectivity improves the flow of information and gradients over
the network, which directly accelerates the training process.
Third, feature reuse, which means that feature representation
and gradient flow are improved after each layer. Lastly, an
implicit deep supervision is applied through direct paths be-
tween all the feature maps.

3. EXPERIMENTS

3.1. Datasets and Baselines

Routine clinical first-trimester fetal US scans were available
from a large-scale study PULSE. According to NHS Fetal
Anomaly Screening Programme (FASP) guidelines [13] CRL
and NT are two essential measurements in the first trimester
US scan. US video was acquired through screen-grab signals
at 30 frames per second of a GE Voluson E8 version BT18
(GE Healthcare, Zipf, Austria) US machine. On average a
first-trimester US scan takes 13.73 ± 4.18 minutes, with an
average of 24, 720 ± 7, 534 frames per scan video. The fetal
structures CRL and NT mask were segmented using a training
set of manually annotated video clips. Fig. 1 shows the details
of each dataset. We compare our D2ANet with the following
approaches: U-Net [5], CE-Net [6], and DANet [12].

Table 1: Comparison with state-of-the-art on NT dataset.

Methods Acc DSC JSC Sen
UNet 87.21 ± 0.13 81.78 ± 0.10 70.38 ± 0.09 84.89 ± 0.11
CE-Net 92.12 ± 0.09 84.89 ± 0.10 79.32 ± 0.09 89.44 ± 0.08
DANet 94.14 ± 0.08 86.56 ± 0.09 80.15 ± 0.07 91.15 ± 0.08
D2ANet 99.78 ± 0.06 91.64 ± 0.07 85.11 ± 0.04 96.79 ± 0.06

Table 2: Comparison with state-of-the-art on CRL dataset.

Methods Acc DSC JSC Sen
UNet 85.21 ± 0.11 75.78 ± 0.09 63.52 ± 0.12 81.69 ± 0.11
CE-Net 89.81 ± 0.08 79.48 ± 0.10 67.48 ± 0.08 85.59 ± 0.11
DANet 86.76 ± 0.10 77.26 ± 0.09 61.76 ± 0.08 90.37 ± 0.07
D2ANet 91.84 ± 0.05 90.65 ± 0.07 83.32 ± 0.05 91.84 ± 0.06

3.2. Training Settings and Metrics

We implemented D2ANet using PyTorch. We use a pretrained
ResNet34 as a backbone for UNet, CENet and D2ANet. The
models were trained for 200 epochs with a batch size of 16.
We use an Adam optimizer with the default initial learning
rate of 3.10−3 and weight decay of 10−4. We use the poly
learning rate policy by multiplying the initial rate with (1 −
epoch/maxEpochs)0.9. Models are trained on a 12 GB Ti-
tanX GPU. To evaluate the models’ performance, we used the
following established metrics: accuracy (Acc), Jaccard simi-
larity (JSC), Dice score (DSC), and sensitivity (Sen). We use
the Dice coefficient loss with regularization (weight decay).

3.3. Quantitative Results

For a fair comparison of our proposed D2ANet, we choose
two categories of approaches: (1) models based on encoder-
decoder structure (UNet and CENet) and (2) a model based
on spatial and channel attentions (DANet). Table 1 summa-
rizes a direct comparison with existing experimental results
on NT segmentation dataset, with D2ANet results being av-
eraged over four training episodes. The experiments show
that we were able to outperform all the algorithms on all met-
rics. For the CRL segmentation, Table 2 summarizes the com-
parison results of our D2ANet model against the same algo-
rithms. The experiments show that D2ANet outperforming
previous models by a significant (> 6%) margin when con-
sidering three metrics (Acc, DSC and JSC). These results il-
lustrate our model’s strong learning ability even from chal-
lenging US segmentation tasks such as CRL and NT.

3.4. Qualitative Results

It is always important to look at the qualitative results of the
images when measuring the effectiveness of a segmentation
model. We have selected different images from the test sets
of both NT and CRL segmentation datasets. Fig. 5 offers
a preview of the raw data, followed by the predictions of
UNet, CENet, DANet and D2ANet and the corresponding
GT mask. For NT segmentation, it is clear that our model



(a) US (b) UNet (c) CENet (d) DANet (e) Ours (f) GT

Fig. 5: Qualitative performance. The columns show the US input frames (CRL on top and NT on the bottom), segmentation
predictions of UNet, CENet, and DANet against our proposed method followed by the ground truth (GT), respectively.

Table 3: Ablation study of the D2ANet on NT dataset.

Methods Acc DSC JSC Sen
Model 1 94.64 ± 0.07 85.96 ± 0.08 80.11 ± 0.06 90.98 ± 0.07
Model 2 98.12 ± 0.06 88.13 ± 0.05 82.17 ± 0.07 94.12 ± 0.05
Model 3 97.87 ± 0.06 87.56 ± 0.05 81.35 ± 0.06 92.78 ± 0.05
D2ANet 99.78 ± 0.06 91.64 ± 0.07 85.11 ± 0.04 96.79 ± 0.06

can precisely locate and segment the area of tissue at the back
of the fetus neck. We notice a slightly better performance of
DANet compared to UNet and CENet, which failed in their
segmentation. The same remark is valid in CRL segmenta-
tion, where our proposed D2ANet shows better segmentation
performance compared to the other algorithms.

3.5. Ablation Study

We implemented a set of ablation studies to verify the effec-
tiveness of D2ANet components, the contribution of spatio-
channel fusion block, and the impact of dense connectiv-
ity. All the experiments were done on the NT segmentation
dataset. In summary, the following models are compared:

• Model 1: the baseline model, the network without dense
connectivity and SCF block

• Model 2: baseline model with the SCF block, and
• Model 3: baseline model while adding dense connectivity

In all the previous models, we replace the SCF block with
a simple adding operation. The results are reported in Ta-
ble 3. The addition of each component, including SCF block
and dense connectivity, each contributes a considerable per-
formance increase over the baseline on all segmentation met-
rics. The SCF block has the highest positive effect on perfor-
mance metrics. 4. CONCLUSION

We have presented a novel segmentation network (D2ANet)
tailored to predict NT and CRL structures from first trimester
fetal US video scans. Our network differs from the previ-
ous methods based either on encoder-decoder structure or
dual parallel/sequential attentions due to its architecture de-
sign and structure which combines two main ideas: SCF
block and dense connectivity in a novel way leading to bet-
ter segmentation. The experiments on both NT and CRL
datasets, show that our model outperforms all the benchmark

approaches on all segmentation metrics. The future work will
study the performance of D2ANet on other medical image
modalities.
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