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Abstract. Annotating a large amount of medical imaging data thor-
oughly for training purposes can be expensive, particularly for medi-
cal image segmentation tasks; whereas obtaining scribbles, a less precise
form of annotation, is more feasible for clinicians. Nevertheless, train-
ing semantic segmentation networks with limited-signal supervision re-
mains a technical challenge. In this paper, we present an innovative
scribble-supervised image segmentation via densely ensembling dense
pseudos called Collaborative Hybrid Networks(CHNets), which consists
of groups of CNN- and ViT-based segmentation networks. A simple yet
efficient densely collaboration scheme is introduced to ensemble dense
pseudo label to expand dataset allowing full-signal supervision. Addi-
tionally, internal consistency and external consistency training among
networks are proposed to ensure that each network is beneficial to the
other, resulting in a significant improvement. Our experiments on a pub-
lic MRI benchmark dataset demonstrate that our proposed approach
outperforms other weakly-supervised methods on various metrics. The
source code of CHNets, 10 baseline methods, and dataset are available
at https://github.com/Annoymous.

Keywords: Weakly-Supervised Learning, Convolution, Vision Trans-
former, Image Segmentation, Pseudo Labels

Fig. 1. The Illustration of a Multi-Class Scribble-Supervised Segmentation. (a) Input
sagittal left-facing MRI, (b) dense ground-truth annotations, (c) scribble annotations,
(d) segmentation inference by fully-supervised UNet, (e) segmentation inference by
scribble-supervised UNet, (f) segmentation inference by scribble-supervised CHNets.
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1 Introduction

Recent studies of Convolutional Neural Networks (CNN) and self-attention-
based Vision Transformers (ViT) have shown exhilarating performance in medi-
cal image analysis [19, 23, 6]. Most of the recent studies reported state-of-the-art
achievement, however, relying on a large-scale set with high-quality pixel-level
annotations for training [15, 6, 14]. To tackle the expensive cost of annotation
for segmentation purpose, existing works present network training with Semi-
Supervised Learning(SSL) and Weakly-Supervised Learning(WSL) [8, 17, 16, 25].
SSL medical image segmentation involves training a model with a few pixel-level
labeled data and a large amount of raw data. As an alternative simple way for
clinicians to annotate data, this paper presents a WSL scribble-based approach
to train CNN-based and ViT-based segmentation networks simultaneously and
collaboratively.

WSL for segmentation is normally proposed to leverage sparse annotations
including bounding boxes, points, text, and scribbles for model training [18, 12,
27]. Among them, scribble annotation, seen in Fig. 1, is one of the practical
and convenient forms of clinicians labeling. The lack of sufficient information
signal, however, remains challenging for medical image semantic segmentation,
especially for the classification of pixels on the boundaries of regions of interest.
The current SSL and WSL approaches mostly utilize partial-supervision losses to
initialize the model and leverage the prior assumption to expand data. By doing
so, the inference of the model can be used to expand scribbles and regenerate
dense pixel-level pseudo labels. ScribbleSup [12] proposed a graphical model
that propagates feature information from scribbles to unlabeled pixels with a
unique loss for model training. Conditional random field [4] was explored to
refine the segmentation inference via random walker in an iterative two-step
stage to train segmentation model [7]. Scribble2Label [11] was introduced to
strengthen pseudo-labeling with a novel label filtering with EMA [21] to generate
more reliable pseudo-labels during training. Some works introduce generating
a virtual training set by MixUp [26]. For example, CycleMix [27] introduced
integrating mix augmentation and regularization of supervision from consistency
for scribble-supervised segmentation. Inspired by generative adversarial training,
other works propose to encourage high-quality pseudo-labels by introducing an
additional model for evaluation. AAG [22], Adversarial Attention Gate, explored
adversarial training for the segmentation model with multi-scale attention gates.
Adversarial training requires additional computational costs with challenging
training settings for additional models.

Recent studies on SSL and WSL have argued that the consistency of pseudo
labels under feature- and network-perturbation is essential for segmentation per-
formance, as consistency-aware training. Triple-view learning [25] introduced
three different segmentation networks to iteratively generate pseudo labels to
help each model. Cross teaching [16] further explored Cross Pseudo Supervi-
sion [5] between CNN and ViT for SSL. Mix pseudo supervision [17] was then
proposed as a data perturbation technique for pseudo label generation, achieving
state-of-the-art performance for scribble-supervised MRI cardiac segmentation.



Title Suppressed Due to Excessive Length 3

Fig. 2. The Framework of Collaborative Hybrid Networks for Medical Image Segmen-
tation Under Scribble limited-signal Supervision and Dense Pseudo Label full-signal
Supervision. It consists of dual ViT-based & CNN-based segmentation networks, and
the losses are introduced, respectively.

Building on the recent advancements in network architecture engineering
and consistency-aware training with WSL, we propose Collaborative Hybrid Net-
works (CHNets) for learning from scribbles. CHNets comprises two feature learn-
ing networks: a CNN-based encoder-decoder UNet [19], and a Swin-Transformer-
based UNet-style network called SwinUNet [3], which directly replaces the pure
CNN layers of UNet to pure self-attention layers of ViT. Our approach aims
to facilitate simultaneous and collaborative learning between the two networks
by introducing an iterative labeling-ensemble scheme to generate dense pseudo-
labels and retrain networks via external-consistency supervision. Additionally,
we employ a self-ensemble technique on each network separately under internal-
consistency supervision to boost their performance further. Through this dual
consistency supervision mechanism, CHNets fully exploits and strengthens the
two segmentation networks to produce dense pixel-level inference. We evaluate
CHNets on a public scribble-supervised MRI cardiac dataset [2], and our exper-
imental results demonstrate that our approach outperforms other existing WSL
methods [12, 13, 11, 10, 8, 20, 19, 3] on various evaluation metrics.

2 Approach

The proposed CHNets is sketched in Fig. 2, consisting of a CNN-based UNet
fcnn : X 7→ Y cnn, and ViT-based SwinUNet as fvit : X 7→ Y vit, where X ∈
Rh×w,Y ∈ [0, 1, 2, 3]h×w represents a 2D input image, corresponding inference
by UNet and SwinUNet, respectively. We denote a batch of scribble-annotated
data of training set as (X ,Y scrib) ∈ Ttrain where Y scrib ∈ [0, 1, 2, 3, None]h×w

(None indicates no annotation information on the corresponding pixels), and
densely-annotated data of the test set (e.g. in the form of black and white masks)
as (X ,Y gt) ∈ Ttest where Y gt ∈ [0, 1, 2, 3]h×w.
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2.1 Training Objective

The training of CHNets is done in an end-to-end manner and is briefly illustrated
in Fig. 2. In general, the whole framework optimizes the hybrid networks using
the sum of different categories of losses, formulated as:

L = Lcnn
pCE + Lvit

pCE︸ ︷︷ ︸
Scribble−Supervision

+ λ1 (Lcnn
inter + Lvit

inter)︸ ︷︷ ︸
Internal−Consistency

+ λ2 (Lcnn
exter + Lvit

exter)︸ ︷︷ ︸
External−Consistency

(1)

where the scribble-supervision loss, internal-consistency loss, and external- con-
sistency loss are indicated as LpCE, Linter, Lexter, respectively. Depending on
the architecture of the segmentation networks used (in this case CNN-based
or ViT-based networks), losses are also qualified as Lcnn, or Lvit. The λ is
a ramp-up function enforce the training gradually moving from limited-signal
scribble-supervised learning to dense pseudo full-signal supervised learning[24].

2.2 CNN- & ViT-based Networks

Motivated by the success of the legendary UNet and recent advancements in Vi-
sion Transformers (ViT), we intuitively designed a hybrid network architecture
for single segmentation task. Recent strategies for training multi-networks with
limited signal include Multi-View Learning [25] feeding with different augmented
data, Co-Teaching [9] with noisy labels, and Cross Supervision [5] with different
parameter initializations. All of these approaches aim to encourage consistency
in inference with different levels of perturbations. Our hybrid network achieves
desired perturbations not only at the parameter level but also at the architec-
ture level. For a fair comparison, we introduce the UNet [19] as the CNN-based
segmentation network and directly explore two successive Swin-ViT layers as a
network block to the U-shape segmentation network resulting in a pure ViT-
based modified UNet named as SwinUNet [3].

2.3 Scribble-Supervised Loss

To address the challenge of limited-signal scribble-based supervision, CrossEn-
tropy CE function is applied solely on the annotated pixels, while ignoring un-
labeled pixels as partial supervised segmentation loss(seen in Eq. 2). In this
way, we introduce Partial Cross-Entropy pCE while only scibble signal training
networks [12].

LpCE(ypred, yscrib) = −
∑
i∈ωL

∑
k

yscrib[i, k]log(ypred[i, k]), (2)

where i indicates the i-th pixel, and ωL refers to the set of labeled pixels with
scribble annotations. k indicates the k-th class, and [i, k] indicates the probability
of i-th pixel belongs to the k-th class.
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2.4 Internal Self-Ensembling Consistency Supervision

To boost the performance of each network, we introduce Mean Teacher [21]
method from limited-signal SSL task to the similar WSL scribble-supervision
task as internal Self-Ensembling consistency supervision(denoted as 99K in Fig. 2).
An additional network f(θ) with the same architecture but updated by the other
network f(θ) through Exponential Moving Average(EMA) is utilized(seen in
Eq. 3).

θi = αθi + (1− α)θi−1, (3)

where θ indicates as the parameter of the segmentation network on the training
step i, and α ∈ [0, 1] is to balance the weight of updating. Following the internal-
consistency aware, the Gaussian perturbation is applied during training, and the
inference by the Student is enforced to be similar to the Teacher from the same
input with noise via internal-consistency loss Linter(seen in Eq. 4):

Linter(ys, yt) = CE(ys, yt) +Dice(ys, yt) (4)

where CE , Dice indicates as Cross-Entropy and Dice-Coefficient-based segmen-
tation loss on the dense pseudo label provided by the Teacher.

2.5 External Dynamic Cross-Consistency Supervision

To ensure that multi-networks benefit from each other, we propose external
dynamic cross-consistency supervision. Inspired by MixUp [26, 17], we densely
ensemble the output of group of networks as a dense pseudo label to iteratively
supervise each network. The dense pseudo annotation, which provides a full-
signal supervision, is formulated as:

ypseudo = argmax[
1

2
(βytcnn + (1− β)yscnn) +

1

2
(βytvit + (1− β)ysvit], (5)

where y refers to the inference by CNN- and ViT-based networks fvit(θ),fvit(θ)
,fcnn(θ) ,fcnn(θ) to densely provide dense pseudo labels. β∈[0, 1] is randomly
generated and considered as a kind of ‘dynamic’ enhanced data perturbation.
This process is iterative, thus ypseudo is utilized for network training per iteration
as external-consistency loss Lexter(seen in Eq. 6):

Lexter(ypseudo, ypred) = CE(ypseudo, ypred) +Dice(ypseudo, ypred). (6)

where CE , Dice indicates as Cross-Entropy and Dice-Coefficient-based segmen-
tation loss on the dense pseudo label provided by the dynamic pseudo label
ensembling (denoted as 99K in Fig. 2).

3 Experiments

Data Set. We evaluate our proposed CHNets against other baseline methods as
a 2D semantic segmentation task on a public benchmarking dataset ACDC [2],
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Fig. 3. The four example randomly selected raw images with corresponding inference.
(a) Input MRI image, (b) Ground Truth, and inference by (c) pCE [12], (d) USTM [13],
(e) Scribble2Label [11], (f) Mumford-Shah loss [10], (g) GatedCRFLoss [20] and (h)
CHNets.

a Cardiac MRI segmentation set of 100 patients within five groups: normal con-
trols, heart failure with infarction, dilated cardiomyopathy, hypertrophic car-
diomyopathy, abnormal right ventricle. Dense annotations are for Right Ventricle
(RV), Myocardium (Myo), and Left Ventricle (LV). Following prior scribble an-
notation work [22, 1], in the pre-processing step we generate the scribble based
on the dense annotation already available; we then directly utilize just pure
scribbles (and no other annotations) with raw images for training and valida-
tion [17]. Dense annotations for the test set enables a conventional validation
process to take place by comparing full masks. The data set is randomly splited
as 60%, 20% and 20% for training, validation, and testing with no overlap and
only conducted once for all baseline and CHNets methods. All images are resized
to 224×224 to align with the ViT input style.

Table 1. Direct Comparison of Weakly-Supervised frameworks on the test set
WSL Net mDice↑ mIOU↑ Acc↑ Pre↑ Sen↑ Spe↑ HD↓ ASD↓
[12] ViT 0.8459 0.7355 0.9954 0.8324 0.8709 0.9975 28.6010 7.3933
[13] ViT 0.8745 0.7802 0.9959 0.8648 0.8920 0.9977 13.4157 3.6616
[11] ViT 0.8641 0.7630 0.9960 0.8704 0.8655 0.9982 6.4881 1.7645
[10] ViT 0.8632 0.7614 0.9960 0.8718 0.8620 0.9982 7.6870 2.2027
[20] ViT 0.8493 0.7405 0.9955 0.8475 0.8678 0.9978 8.3234 2.3858
[12] CNN 0.6455 0.4918 0.9831 0.5318 0.8945 0.9848 163.5975 69.0296
[13] CNN 0.8588 0.6147 0.9904 0.6501 0.9203 0.9916 143.5347 44.8333
[11] CNN 0.8645 0.7644 0.9955 0.8449 0.8904 0.9973 28.4650 7.6293
[10] CNN 0.8681 0.7709 0.9957 0.8518 0.8915 0.9975 23.6676 6.6040
[20] CNN 0.8709 0.7755 0.9957 0.8519 0.9030 0.9974 7.8396 1.8412

Ours Hybrid 0.8906 0.8058 0.9964 0.8698 0.9158 0.9978 5.4180 1.6484

Implementation Details. The original UNet [19], and SwinUNet [3] are
utilized as CNN- and ViT-based segmentation backbone for all WSL methods.
The code of experiments is developed with Pytorch on a single NVIDIA GeForce
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RTX 3090 GPU, and Intel Core i9-10900K CPU. The dataset is preprocessed for
a 2D segmentation task. The training iteration is 60,000, the batch size is 12, and
the optimizer is SGD(learning rate=0.1, momentum=0.9, weight decay=0.0001).
The memory cost is 7 GB, and the runtimes averaged around 4.5 hours. The
network performed best on the validation set is utilized for final testing.

Evaluation Metrics. Various evaluation metrics are utilized to validate the
CHNets against other baseline methods including Dice, IOU, Accuracy (Acc),
Precision (Pre), Sensitivity (Sen), Specificity (Spe), Hausdorff Distance (HD)
in mm with a 95% threshold, Average Surface Distance (ASD) in mm. Each
metric is annotated with ↑ or ↓ to indicate whether higher is better or lower
is better. mDice in Table 1 and Dice in Table 2 respectively refer to the mean
Dice-coefficient over the three classes (RV, Myo and LV), or per class.

Table 2. Direct comparison of Weakly-Supervised frameworks on the test set of each
segmented feature

WSL Net RV Myo LV
Dice↑ HD↓ ASD↓ Dice↑ HD↓ ASD↓ Dice↑ HD↓ ASD↓

[12] ViT 0.8587 9.3925 3.7748 0.7859 45.0363 10.0612 0.8929 31.3743 8.3438
[13] ViT 0.8639 9.4354 2.9105 0.8230 14.83338 4.3353 0.9366 15.9782 3.7390
[11] ViT 0.8727 6.7018 1.6205 0.8105 5.7516 1.5848 0.9091 7.0109 2.0971
[10] ViT 0.8678 6.9280 1.6073 0.8137 7.1041 2.1839 0.9081 9.0291 2.8168
[20] ViT 0.8622 6.9086 1.7250 0.7904 8.0107 2.2518 0.8952 10.0510 3.1806
[12] CNN 0.5806 182.2923 87.5389 0.5260 160.3049 68.6412 0.8300 163.5975 69.0296
[13] CNN 0.7304 138.4518 41.0612 0.7102 125.1634 31.8241 0.8360 166.9888 61.6147
[11] CNN 0.8502 11.2341 3.3072 0.8156 29.3005 8.0682 0.9276 44.8603 11.5125
[10] CNN 0.8354 29.2791 8.0856 0.8260 24.3843 7.6606 0.9427 17.3394 4.0656
[20] CNN 0.8519 13.5882 3.1754 0.8164 3.8603 1.2166 0.9444 6.0701 1.1317

Ours Hybrid 0.8752 8.9538 2.3428 0.8445 3.6503 1.5336 0.9519 3.6499 1.0687

Comparison with Baseline Methods. CHNets is compared against five
other scribble-supervised segmentation methods including pCE [12], USTM [13],
Scribble2Label [11], Mumford-Shah loss [10], and GatedCRFLoss [20]. All base-
line methods and CHNets are trained with the same hyper-parameter setting,
the same loss functions (pCE), and the same quality of scribble annotations.
Each of the scribble-supervised methods is extended to be with either CNN- or
ViT-based network as the segmentation backbone. The quantitative results of
the direct comparison of baseline methods and CHNets are reported in Table 1,
and we further report the performance of each region of interest in Table 2. The
best performance is highlighted with Bold, and the second best of ours is high-
lighted with Underline.. The qualitative performance is sketched in Fig. 3 where
the outside boundary of inference on the test set is evaluated against published
ground truth at pixel level of 4 classes.

Ablation Study. We further investigate the effect of different contribu-
tions for the CHNets, where all combinations of internal-consistency or external-
consistency with CNN or ViT backbone are reported in Table 3.!× 2 are always
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with internal-consistency training to meet the architecture requirement by a
self-ensembling fashion.!with all internal-consistency and external-consistency
with CNN and ViT refers to CHNets which achieve the best performance demon-
strating the promising improvement by our proposed techniques. The pixel-level
ground truth supervised training with CNN and ViT is further reported as the
upper bound of performance, and we find our proposed method has achieved
very similar results compared with the upper-bound performance.

Table 3. Ablation study with two internal-external supervision on test set and fully
supervised supervision

Consistency-Aware Supervision Performance
Internal Consistency External Consistency mDice↑ mIOU↑ HD↓ ASD↓CNN ViT CNN ViT
!× 2 0.7083 0.5544 150.5851 50.3175

!× 2 0.7612 0.6253 148.5577 43.7664
!× 2 0.8837 0.7945 6.1310 4.9041

!× 2 0.7392 0.6087 62.4700 24.7017
!× 2 ! 0.8846 0.7964 8.2995 2.8425

!× 2 ! 0.8880 0.8012 12.2475 3.2928
!× 2 ! 0.8815 0.7902 12.7286 3.7176

!× 2 ! 0.8633 0.7632 7.3206 2.4864
! ! ! ! 0.8906 0.8058 5.4180 1.6484
Pixel-level Supervision CNN 0.9167 0.9120 3.7452 0.8615
Pixel-level Supervision ViT 0.9049 0.8290 3.6233 0.8749

Clinical Application. It is important to emphasise that the numerical eval-
uation measures are only indicative of the power of such methods. To identify
cardiomyopathy, for instance, clinicians are interested in the strength of the My-
ocardium. This, in turn, is indicated by the circularity of the Left Ventricle. A
precise segmentation of the LV is, therefore, not essential: what is important is
to gauge its correct xy aspect ratio, which can be obtained by scribble-training.

4 Conclusion

The CNN and ViT architectures have been developed and trained simultaneously
in an end-to-end manner. Internal- and external-consistency training schemes are
proposed to boost the performance of each network and benefit each other. The
quantitative experiments on the public benchmark MRI dataset demonstrate
promising performance of the proposed method against other scribble-supervised
methods. In future, we will extend experiments to other limited-signal supervi-
sion for training such as bounding boxes or point-based annotations.
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