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We study the low-energy limit of Wilson lines (charged impurities) in conformal gauge theories in 2þ 1

and 3þ 1 dimensions. As a function of the representation of the Wilson line, certain defect operators can
become marginal, leading to interesting renormalization group flows and for sufficiently large repre-
sentations to complete or partial screening by charged fields. This result is universal: in large enough
representations, Wilson lines are screened by the charged matter fields. We observe that the onset of the
screening instability is associated with fixed-point mergers. We study this phenomenon in a variety of
applications. In some cases, the screening of the Wilson lines takes place by dimensional transmutation and
the generation of an exponentially large scale. We identify the space of infrared conformal Wilson lines in
weakly coupled gauge theories in 3þ 1 dimensions and determine the screening cloud due to bosons or
fermions. We also study QED in 2þ 1 dimensions in the large Nf limit and identify the nontrivial
conformal Wilson lines. We briefly discuss ‘t Hooft lines in 3þ 1-dimensional gauge theories and find that
they are screened in weakly coupled gauge theories with simply connected gauge groups. In non-Abelian
gauge theories with S duality, this together with our analysis of the Wilson lines gives a compelling picture
for the screening of the line operators as a function of the coupling.
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Introduction.—A natural question in quantum field
theory is to understand the space of extended operators.
Local operators and their correlation functions have been
studied intensely, but relatively little is understood about
the space of extended operators.
Relativistic invariance allows us to think of extended

operators as either nonlocal operators acting at a given time,
or as a modification of the Hamiltonian by an insertion of
an impurity in some region of space. Among the possible
extended operators, line (one-dimensional) defects provide
the simplest examples, as they correspond to a localized
impurity in the Hamiltonian picture.
Here we will consider the simplified (yet of great

physical importance) scenario when the bulk theory (away
from the defect) is a conformal field theory (CFT).
Examples of interesting line defects in CFTs include
symmetry defects [1–4], spin impurities [5–12], localized
external fields [13–17], and ‘t Hooft and Wilson lines in
conformal gauge theories.

While the bulk theory is at a fixed point of the
renormalization group (RG) flow, in general, a nontrivial
RG flow takes place on the defect. One expects on general
grounds an infrared fixed point of the line defect, preserv-
ing (for a straight or circular defect) the one-dimensional
conformal algebra slð2;RÞ. The infrared fixed point may or
may not be trivial. Defect operators are classified according
to their slð2;RÞ charges. Such a system is commonly
referred to as a defect conformal field theory (DCFT). See
[18] for an introduction to the subject. RG flows on a defect
can be triggered by perturbing a DCFTwith relevant defect
operators. A central question about the dynamics of line
defects concerns with their infrared limit, and in particular,
if the infrared is screened (i.e., furnishes a trivial DCFT) or
not. Under the assumptions of locality and unitarity, RG
flows on line defects are constrained by a monotonically
decreasing entropy function [19] (in the case of 1þ 1
dimensional bulk, see also [20–24]). Another general
constraint on RG flows on line defects is due to one-form
symmetry: If the line operator is charged under an endable
one-form symmetry then it cannot flow to a trivial defect in
the infrared (for the definitions and a review, see [25]).
Finally, there are constraints on conformal defects due to
the bootstrap equations; see [26–29] for recent examples
and references.
In this Letter, we focus on a particular class of line

operators that naturally exist in conformal gauge theories,
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i.e., Wilson lines [30]. A Wilson line physically describes
the insertion of an (infinitely heavy) charged test particle
that moves on a worldline γ:

WRðγÞ ¼ trR

�
P exp

�
i
Z
γ
Aμdxμ

��
; ð1Þ

where R is the representation of the gauge group. For a
timelike γ, we can think of the Wilson line as a localized
charged impurity—it changes the Hamiltonian and the
ground state of the system. The definition (1) brings up
the following natural question: What is the infrared limit of
the Wilson line operator as a function of its representation?
In particular, an intriguing property of (1) is that there is no
continuous free parameter in the definition of the Wilson
line operator. However, as we will argue in this Letter, this
does not mean that no RG flow takes place. Physically, this
is expected because the electric field sourced by a Wilson
line in a sufficiently large representation may destabilize
the vacuum. The primary goal of this work is to study this
general phenomenon from the viewpoint of defect RG.
We discuss an instability of Wilson lines to screening by

charged fields (fermions or bosons) in a variety of physical
setups, and relate this to the flow of bilinear operators
integrated along the line defect. These bilinear operators are
in some sense “missing” from the definition of the Wilson
line (1). We calculate the β functions associated with the
flow of these new couplings. For small enough charges, the
new couplings admit several interesting novel fixed points,
while for supercritical charges they flow to large values and
dimensional transmutation takes place on the defect. We
observe fixed-point mergers taking place at a critical
charge. This behavior is reminiscent of how conformality
is lost in some QCD-like theories [31–33]. The dimensional
transmutation associated with the fixed-point merger
implies that the screening cloud is exponentially large.
A brief, qualitative summary of our findings is as

follows: We find that, at weak coupling in 3þ 1 dimen-
sions, Wilson lines are nontrivial in the infrared for charges
(weights) ≲ð1=g2YMÞ, while if the charge (weight) exceeds
∼ð1=g2YMÞ the bilinear operators flow to strong coupling
and screen the infrared partially or fully. In 2þ 1 dimen-
sions the situation is qualitatively different for weakly
coupled charged scalars—a scalar bilinear operator leads to
a trivial infrared limit of the Wilson line already for small
charges (weights). On the other hand a weakly coupled
charged fermion in 2þ 1 dimensions does not lead to
immediate screening of all Wilson lines.
These instabilities of Wilson lines are general. They were

previously discussed for heavy nuclei in QED [34] and for
impurities in graphene [35,36]. We will discuss these two
cases below in more detail.
We cover several examples in this Letter: (i) Scalar

(Fermion) QED4: A relevant bilinear operator must be
added to (1) for Wilson lines with charge jqj > ð2π=e2Þ

(respectively, jqj > ð4π=e2Þ). The coefficient of the bilinear
becomes large, and the infrared is qualitatively different
from a Coulomb field with q units of charge. It is
completely (partially) screened by a condensate cloud,
which in some cases is exponentially large. For jqj <
ð2π=e2Þ (respectively, jqj < ð4π=e2Þ) the bilinear operator
is irrelevant but still important to consider, since there are,
in general, multiple UV fixed points, which lead to new
DCFTs with relevant operators. (ii) Non-Abelian gauge
theories in 3þ 1 dimensions: As in the QED4 examples, for
large enough representations, the infrared limit of the
Wilson lines is either completely or partially screened.
For subcritical representations, there are potentially several
fixed points corresponding to the Wilson line. (iii) QED3

with 2Nf Dirac fermions (this is also an important example
of a deconfined critical point in condensed matter physics):
We find that Wilson lines up to charge ≲0.56Nf are not
screened, while they are screened otherwise. This holds at
leading order in the 1=Nf expansion.
Finally, we also study similar instabilities for ‘t Hooft

lines in four-dimensional conformal gauge theories.
Combined with our analysis of the Wilson lines and with
non-Abelian electric-magnetic duality, we find a compel-
ling picture for the screening of the line operators as a
function of the coupling in N ¼ 4 supersymmetric Yang-
Mills (SYM) and in the SU(2) Seiberg-Witten N ¼ 2
theory with four fundamental hypers.
An expanded version of this Letter can be found in [37],

where the calculations are presented in detail and a few
additional examples in 2þ 1 dimensions are studied.
Scalar QED4.—We consider massless scalar QED in

3þ 1 dimensions with a charge q Wilson line that extends
in the time direction at some fixed spatial location x⃗ ¼ 0. The
action (in mostly minus Minkowski signature) is given by

S¼
Z

d4x

�
−

1

4e2
F2
μνþjDμϕj2−

λ

2
jϕj4

�
−q

Z
dtA0; ð2Þ

where Aμ is the gauge field, Fμν is the field strength, ϕ is a
complex scalar field of charge one, Dμ ¼ ∂μ − ieAμ is the
covariant derivative, e is the electric charge and λ is a
coupling constant. By rescaling ϕ → ϕ=e one identifies the
following double-scaling limit (Similar double-scaling limits
were recently considered in [10,11,38] for different line
defects.):

e → 0; λ → 0; q → ∞;

λ

e2
¼ fixed; qe2 ¼ fixed; ð3Þ

in which the theory can be treated in the saddle point
semiclassical approximation. The generated mass scale
associated with QED (i.e., the Landau pole) becomes
negligible in this limit and thus one can ignore any RG
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flow in the bulk and apply the formalism of DCFT. The
semiclassical solution yields a Coulomb-potential solution
for the gauge field A0 ¼ ðe2q=4πrÞ and a vanishing profile
for the scalar ϕ ¼ 0.
For reasons that will soon become clear, let us consider

the defect operator ϕ†ϕ on the line. Its scaling dimension
can be found from the propagator of ϕ fluctuations in the
backgroundA0 ¼ ðe2q=4πrÞ. The defect scaling dimension

is inferred from the falloff ϕ ∼ rðΔ̂ϕ†ϕ=2Þ−1 of spherically
symmetric solutions to the linearized equations of motion.
One finds (There also exists a second solution for Δ̂ϕ†ϕ,
whose significance will be explained below.)

Δ̂ϕ†ϕ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e4q2

4π2

s
: ð4Þ

The formula (4) is exact in the limit (3). Note that for q ¼ 0,
Δ̂ϕ†ϕ ¼ 2, which ought to be the case since the bulk and
defect scaling dimensions coincide for a trivial defect. For
small e2q, the expression (4) agrees with standard Feynman
diagrammatic calculations in perturbation theory.
Let us take q > 0 without loss of generality. The scaling

dimension (4) implies that for ðe2q=2πÞ ¼ 1 the operator
becomes marginal on the defect, while for ðe2q=2πÞ > 1
the scaling dimension becomes complex. Since the bilinear
operator is marginal at ðe2q=2πÞ ¼ 1 and slightly irrelevant
as we approach ðe2q=2πÞ ¼ 1 from below, we learn that
ignoring it in RG flows is inconsistent. In other words, one
must consider a more general line defect operator

W ¼ P exp

�
iq

Z
dt A0 − ig

Z
dtϕ†ϕ

�
: ð5Þ

In the above, both integrals are evaluated at x⃗ ¼ 0. The
parameter g associated with the bilinear line operator has a
nontrivial beta function (that can be calculated using
methods similar to those given in [39]). The structure
of the beta function is shown in Fig. 1. The resulting
phase diagram is analogous to the one which is found for

double-trace deformations of a theory with an operator in
the double-quantization window in AdS=CFT [40–43].
For ðe2q=2πÞ < 1 there are two fixed points, corre-

sponding to two conformal boundary conditions for the
scalar near the defect. One of them yields a stable DCFT
with no relevant operators, and the other gives an unstable
DCFT with one relevant line operator, ϕ†ϕ. The scaling
dimension of the relevant operator is given by

Δ̂ϕ†ϕ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e4q2

4π2

s
: ð6Þ

Starting from the right side of the left-sided fixed point in
the blue (bottom) line, one observes a double-trace-like
flow from the unstable to the stable DCFT [44]. An
analogous RG flow has been recently analyzed in
Chern-Simons theories in the ‘t Hooft limit, for Wilson
lines in the fundamental representation [47,48].
For ðe2q=2πÞ ¼ 1 the two fixed points merge and the

defect operator ϕ†ϕ is marginal. For ðe2q=2πÞ > 1 the
coupling g flows to −∞ and the infrared has to be analyzed
separately. As mentioned in the introduction, the physical
behavior described in Fig. 1 is reminiscent of how con-
formality is believed to be lost in QCD [31]. Here,
conformality is lost when ðe2q=2πÞ ¼ 1 in the sense that
no DCFTs with finite g exist for ðe2q=2πÞ > 1.
It is of physical interest to analyze the flow when

g → −∞ in order to determine the IR behavior of
Wilson lines with sufficiently large charge. Such line
operators are only defined with a cutoff r0, that can be
viewed as the nucleus size. In this case one finds that the
trivial saddle point where ϕ ¼ 0 admits a tachyonic
instability. The stable saddle point can be obtained numeri-
cally. An example is shown in Fig. 2. The electric field
starts in the UV (small r) as a Coulomb field and decays
until it is completely screened. Accordingly, the scalar
profile starts at zero, develops a cloud, and eventually gets
screened as well. The integrated charge associated with the
scalar condensate is exactly −q; i.e., the Wilson line is fully
screened. Therefore defects with ðe2q=2πÞ > 1 are trivial
DCFTs in the infrared. (In particular, all the bulk one-point
correlation functions studied at distances much larger than
the size of the cloud vanish.) The same phenomenon and
screening mechanism are observed also in the case of
ðe2q=2πÞ < 1 if the RG flow starts in the UV from the left
side of the unstable fixed point in the blue (bottom) line
of Fig. 1.
Analogously to some QCD-like theories, one finds that

an exponentially low energy scale is generated when
ðe2q=2πÞ is slightly larger than 1, and dimensional trans-
mutation takes place. This implies that the size of the cloud
is exponentially large in units of the cutoff

FIG. 1. An illustration of the β function associated with the
parameter g in Eq. (5).
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Rcloud ∼ r0 exp

"
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e4q2

4π2
− 1

q
#
: ð7Þ

Equation (7) is derived from the structure of the beta
function, analogously to the correlation length in the BKT
phase transition [31].
We also comment that while we find two fixed points for

ðe2q=2πÞ < 1, we do not claim that our analysis of that
region is complete. For ðe2q=2πÞ ≤ ð ffiffiffi

3
p

=2Þ < 1 the
quartic jϕj4 becomes relevant in the unstable fixed point,
and the dynamics must be reanalyzed. We leave this to
future research. In the range ð ffiffiffi

3
p

=2Þ < ðe2q=2πÞ < 1 the
bilinear operator in (5) is the only operator that must be
added and our analysis is complete in that regime.
Fermion QED4.—We consider massless fermionic QED

in 3þ 1 dimensions in the presence of a Wilson line of
charge q > 0 extending in the time direction. The action is
given by

S ¼ 1

e2

Z
d4x

�
−
1

4
F2
μν þ iψ̄D=DψD

�
− q

Z
dtA0; ð8Þ

where ψD is a Dirac spinor in four dimensions with charge
1 under the U(1) gauge group. We again work in the
semiclassical regime specified by the double-scaling limit
in which e → 0, q → ∞, and e2q ¼ fixed.
The classical saddle point is A0 ¼ ðe2q=4πrÞ, ψD ¼ 0.

Expanding around it we find that there are four spin 1=2
modes that admit two conformal boundary conditions each,
for charges such that ð ffiffiffi

3
p

=2Þ < ðe2q=4πÞ < 1. Criticality
occurs for q ¼ qc ¼ ð4π=e2Þ (which gives qc ≃ 137 in
nature [34]). Because of the four independent modes, there

are 16 independent bilinear operators that must be taken
into account and added to the defect action. These 16
operators can be conveniently classified according to their
parity, axial, and SU(2) spin charges; only one bilinear
operator preserves all the symmetries.
The resulting phase diagram is a generalization of that

shown in Fig. 1. In the subcritical regime, there is one
unstable and one stable fixed point which preserve all the
symmetries, and various unstable mixed-boundary condi-
tions fixed points breaking some of the symmetries. These
are connected by double-trace-like RG flows. Analogously
to the flow from the left side of the unstable fixed point in
the blue (bottom) line of Fig. 1, there exist also runaway
flows for subcritical charges. However, differently from the
bosonic case, these flows only lead to screening of up to
four units of charge (due to the four independent modes
mentioned above). This is a consequence of the Pauli
exclusion principle, which forbids the filling of a single
state with more than one fermion. Similar to scalar QED4,
our analysis of the regime below criticality is not complete,
e.g., for ðe2q=4πÞ < ð ffiffiffiffiffi

15
p

=4Þ a four-fermion term
becomes relevant near the unstable fixed points and the
dynamics must be reanalyzed.
It is physically interesting to ask what is the deep IR

behavior in the supercritical regime when q > qc. Unlike
the scalar case, when q > qc the instability manifests itself
in terms of diving states [49]. Physically, these are states
that change their nature from particles to holes as we raise q
from below to above qc. Since all hole states must be filled
in the ground state, the vacuum develops q − qc units of
screening charge [50]. For

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe4q2=16π2Þ − 1

p
≪ 1, each

four units of screening charge are localized on successive
shells exponentially separated from one another. One may
thus account for the backreaction of the Coulomb field
perturbatively and compute the radius of the exponentially
large fermionic cloud [36]. We find [51]

Rcloud ≃ r0 exp

�
2π2

e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q − qc
2qc

r �
: ð9Þ

As in the scalar case, the screening cloud is exponentially
large due to dimensional transmutation.
Non-Abelian gauge theories.—Let us now discuss the

implications of our findings for Wilson lines in non-
Abelian conformal gauge theories in 3þ 1 dimensions.
To be concrete, we will refer to either SU(2) gauge theory
with maximal N ¼ 4 supersymmetry or the N ¼ 2 SU(2)
Seiberg-Witten theory with four fundamental hypers (and
for simplicity we take a vanishing θ angle). (The analysis of
more general non-Abelian conformal gauge theories is
analogous.) Both theories have a coupling constant g2YM
which can be chosen at will since it is an exactly marginal
parameter. We consider a Wilson loop in the (2sþ 1)-
dimensional representation of SU(2)

FIG. 2. Plots of the scalar profile (blue) and the electric field
(orange) as functions of the distance from the probe charge, all
normalized to be dimensionless. The analysis was carried out for
ðe2q=2πÞ ¼ 1.02 and λ=e2 ¼ 1

2
by numerically solving the

classical equations of motion that follow from (2), with boundary
conditions such that the fields decay at infinity, while at a
minimal radial position r ¼ r0 we have F0rjr¼r0 ¼ ðe2q=4πr2Þ,
and jϕj2jr¼r0 ¼ 0, with ϕ ≠ 0 for all r > r0. Different boundary
conditions for the scalar field lead to a qualitatively similar plot.
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Ws ¼ Tr½Pei
R

dxμAa
μTa �: ð10Þ

This Wilson line is not BPS and it preserves the full
continuous flavor symmetry of the model (unlike the BPS
lines). Note that BPS lines preserve supersymmetry, which
ensures that the ground state has zero energy. Hence there is
no instability associated with BPS lines. (At weak cou-
pling, nonsupersymmetric Wilson lines in small represen-
tations flow to BPS lines via an SO(6)-breaking
deformation [11,52,53].) To analyze the phases of the line
operator (10) at weak coupling, we take the double scaling
limit g2YM → 0 with g2YMs ¼ fixed [analogously to (3)].
Repeating the analysis of the fluctuations around this
saddle point, we find that a massless scalar field in the
spin S representation of the SU(2) gauge group leads to
complex scaling dimensions on the line defect for
g2YMsS > 2π. Similar results hold for charged fermions
and non-Abelian vector bosons. For g2YMsS < 2π several
fixed points, as in Fig. 1, exist. Their characterization
depends on the matter content.
We see that at weak coupling, there is a finite but large

number (of order 1=g2YM) of distinct conformal line defects
preserving the full flavor symmetry. As the coupling is
increased, presumably only a few Wilson lines remain as
nontrivial conformal line operators.
In the N ¼ 4 SYM theory with gauge group SU(2), due

to the Z2 one-form symmetry, the line with s ¼ 1=2 cannot
be screened and must flow to a conformal line defect.
However, in SO(3) gauge theory it is possible that all
Wilson lines are in fact screened at strong coupling. In the
N ¼ 2 Seiberg-Witten theory there is no one-form sym-
metry, and it is reasonable to expect that all the Wilson lines
are screened at strong coupling.
‘t Hooft lines.—It is interesting to ask if the expectations

of the previous paragraphs are compatible with S duality in
these SU(2) gauge theories. To this end we now make some
comments about (nonsupersymmetric) ‘t Hooft lines at
weak coupling. In a U(1) gauge theory, a charge q, Lorentz
spin l particle moving around magnetic flux n encounters
the centrifugal barrier [54]

V ¼ 1

2
jnqj 1 − gl

r2
; ð11Þ

where g is the magnetic moment. The formula (11) applies
when jnqj=2 − l ≥ 0. For scalars we have a repulsive
centrifugal force. For fermions with the standard (weak
coupling) magnetic moment g ¼ 2 the numerator vanishes
and we have no centrifugal barrier, leading to the familiar
fermion zero modes, which correspond to marginal bilinear
defect operators.
Now let us discuss charged vector bosons. In weakly

coupled gauge theories they have g ¼ 2. In the case that
jnqj ≥ 2, Eq. (11) is valid and we clearly see that the
potential is attractive with coefficient − 1

2
jnqj, which leads

to a fall-to-the-center instability of the vector bosons and
conjecturally screens the ‘t Hooft lines. Equivalently, defect
operators which are quadratic in the gauge field would have
no zero for their beta function and flow to strong coupling,
analogously to the behavior of scalars on the green (top)
branch of Fig. 1. In N ¼ 4 SYM theory with gauge group
SU(2) the minimal monopole has jnj ¼ 1 and the vector
boson charge is jqj ¼ 2. Therefore, even the minimal
‘t Hooft line is unstable to W-boson condensation at weak
coupling, and deep in the infrared it presumably becomes
trivial. By contrast, with gauge group SOð3Þþ the charge of
the W boson is 1, and hence in the background of the
minimal ‘t Hooft line jnj ¼ 1 we have no vector boson
instability, and the minimal ‘t Hooft line should furnish a
healthy conformal defect. (It is important that the gauge
theory is SOð3Þþ for the minimal ‘t Hooft line to exist
[55].) ‘t Hooft lines with jnj > 1 are all unstable to
W-boson condensation, though. These results are consis-
tent with the magnetic one-form symmetries of the SU(2)
and SOð3Þþ theories. In summary, recalling that S duality
in N ¼ 4 SYM exchanges the SU(2) and SOð3Þþ gauge
groups, the absence of ‘t Hooft lines at weak coupling is
precisely dual to our expectations for the screening of
Wilson lines as the coupling becomes strong.
For the Seiberg-Witten N ¼ 2 theory with gauge group

SU(2) (which is S dual to itself), there are again no ‘t Hooft
lines at weak coupling, and we expect no unscreened
Wilson lines at strong coupling either. For more general
gauge groups, the labeling of Wilson and ‘t Hooft lines is
explained in [56]. It would be interesting to develop an
understanding of which lines are screened as a function of
the coupling and the θ angle.
2þ 1 dimensional critical points.—The physics of

Wilson lines is of interest in 2þ 1 dimensions both from
the particle theory point of view and also due to the
existence of deconfined critical points. We will present here
the physics of Wilson lines at the critical point of QED3

with 2Nf charge 1 Dirac fermions. This fixed point is the
infrared limit of the Lagrangian

L ¼ −1
4e2

F2 þ i
X2Nf

a¼1

Ψ̄að=∂ − i=AÞΨa: ð12Þ

This theory has Uð1ÞT × SUð2NfÞ global symmetry as well
as time reversal symmetry. [Uð1ÞT stands for the monopole
symmetry.] For sufficiently large Nf, (12) flows to an
infrared fixed point [57], where the gauge kinetic term is
irrelevant. In the presence of a charge q Wilson line,
integrating out the fermions, we have the following
effective (Euclidean) action

S ¼ −2NfTr logð=∂ − i=AÞ þ iq
Z

dτA0: ð13Þ
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The saddle point in the presence of the Wilson line is fixed
up to conformal invariance Fτi ¼ iEðxi=jxj3Þ, where E is
some function of q, Nf. Since for large Nf the fermions are
approximately free, we can determine when the fermions
become unstable by treating them as free fields propagating
in the background Fτi ¼ iEðxi=jxj3Þ. This again requires
expanding the fermions in fluctuations around the saddle
point and reading out the dimension of fermion bilinears
from the falloff of the fluctuations. We find that the scaling
dimension of fermion bilinears on the line defect is Δ ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4E2

p
and hence the saddle point Fτi ¼

iEðxi=jxj3Þ is self-consistent only for jEj ≤ 1=2. For q ≪
Nf we expect E ≪ 1 and hence one can solve for the saddle
point by linearizing the determinant in (13). One finds

E ¼ 4q
πNf

þO
�
q2

N2
f

�
: ð14Þ

It is more difficult to find the answer for arbitrary q=Nf ∼ 1.
Numerically solving the saddle point equation of (13) we
find that ðjqcj=NfÞ ≃ 0.56, i.e., Wilson lines are not
screened for jqj ≤ jqcj (at leading order in 1=Nf).
The massive phases of QED3 are Uð1Þ�Nf

Chern-Simons
theory, which admit Nf lines with nontrivial mutual
braiding. It is therefore tempting to assume that the jqj ≤
jqcj conformal lines at the critical point, of which there are
(slightly) more than Nf, become the topologically non-
trivial lines in the massive phases. Another general lesson
from this example is that Wilson lines in 2þ 1 dimensional
theories with small values ofNf and kwould typically have
few (or no) conformal Wilson lines. This is analogous to the
screening of Wilson lines as the coupling is made strong
in 3þ 1D.
The critical value E ¼ 1=2 is general for weakly coupled

fermions in 2þ 1 dimensions. In particular it also applies to
fermions living on a 2þ 1 dimensional plane coupled to a
four-dimensional gauge field: a setup which famously
describes the low energy limit of graphene [58]. Because
of the enhanced Coulomb coupling of these quasiparticles,
E ¼ 1=2 corresponds to q ∼ 3 [35,36]; remarkably, this
was experimentally confirmed in [59]. Our findings addi-
tionally suggest that the charge impurity admits a phase
diagram analogous to the one discussed in QED4, including
the existence of new UV fixed points and runaway flows at
subcritical q.
As a final comment, we notice that for a weakly coupled

charged scalar in a Coulomb field background the trivial
saddle point is always unstable in 2þ 1 dimensions. This is
because the free bulk scaling dimension of the scalar
bilinear is 1, hence the scalar sits at the fixed-point merger
already at q ¼ 0. (Indeed, the bilinear defect perturbation
of free field theory is marginally irrelevant [15].)
These facts about conformal lines in bosonic and

fermionic 2þ 1 dimensional theories could be important

for 3D dualities, in the spirit of [47,48]. We leave this
subject for the future.
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