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Abstract 
This thesis combines experimental and computational methods to investigate aspects of 

fragment identification and elaboration in fragment-based ligand design, a promising 

approach for identifying small molecule drugs, to target the pharmacologically relevant 

bromodomain PHIP(2). The research covers various aspects of the process, from initial 

crystallographic fragment screening to validation of follow-up compounds. 

Chapters 1 and 2 provide an overview of relevant perspectives and methodologies in 

fragment-based drug discovery. Chapter 3 reports a crystallographic fragment screening 

against PHIP(2), resolving 47 fragments at the acetylated-lysine binding site, and evaluates 

the abilities of crowdsourced computational methods to replicate fragment binding and 

crystallographic poses. This chapter highlights the challenges associated with using 

computational methods for reproducing crystallographic fragment screening results with 

submissions performing relatively weakly. Chapter 4 demonstrates the advantages of X-ray 

crystallographic screening of crude reaction mixtures generated robotically, showcasing 

reduced time, solvent, and hardware requirements. Soaking crude reaction mixtures 

maintains crystal integrity which led to the identification of 22 binders, 3 with an alternate 

pose caused by a single methyl addition to the core fragment and 1 hit in assays. It 

demonstrates how affordable methods can generate large amounts of crystallographic data 

of fragment elaborations. Chapter 5 develops an algorithmic approach to extract features 

associated with crystallographic binding, deriving simple binding scores using data from 

Chapter 4. The method identifies 26 false negatives with binding scores enriching binders over 

non-binders. Employing these scores prospectively in a virtual screening demonstrated how 

binding features can be exploited to select further follow-up compounds leading to low 

micromolar potencies. Chapter 6 attempts to integrate more computationally intensive 

methods to identify fragment follow-up compounds with increased potency through virtual 

screening enhanced with free energy calculations. Only two out of six synthesised follow-up 

compounds showed weak binding in assays, and none were resolved in crystal structures. 

This thesis tackles critical challenges in follow-up design, synthesis, and dataset analysis, 

underlining the limitations of existing methods in advancing fragment-based drug discovery. 

It emphasises the necessity of integrative approaches for an optimised “design, make, test” 

cycle in fragment-based drug discovery. 



 6 

Table of Contents 
Chapter 1. Introduction ...................................................................................................................... 12 

1.1. A concise journey through small molecule drug discovery ......................................................... 12 

1.2. A fragment-based approach alternative to high-throughput screenings ................................... 14 

1.2.1. Fragment identification and synergies with structure-based approaches ....................... 16 

1.2.2. Strategies in fragment follow-up design .......................................................................... 19 

1.2.3. Chemical synthesis at scale as a bottleneck ..................................................................... 23 

1.2.4. Experimental validation of fragment follow-up compounds ........................................... 24 

1.3. PHIP(2): a relevant target for fragment-based drug discovery ................................................... 26 

1.4. Advancing fragment-based methods with PHIP(2) ..................................................................... 28 

Chapter 2. Concepts and experiments ............................................................................................... 30 

2.1. Experimental concepts ................................................................................................................ 30 

2.1.1. Basic principles of protein-ligand binding ........................................................................ 30 

2.1.2. Protein-ligand crystallography ......................................................................................... 33 

2.1.3. Grating-coupled interferometry measurement of binding kinetics ................................. 36 

2.2. General experimental methods .................................................................................................. 39 

2.2.1. Protein expression, purification and crystallisation ......................................................... 39 

2.2.2. Crystallographic screening of small molecules and model building ................................. 40 

2.2.3. Grating-coupled interferometry assay ............................................................................. 40 

2.3. Introduction to computational concepts .................................................................................... 41 

2.3.1. Molecular representation, fingerprinting, and similarity calculations ............................. 41 

2.3.2. Binding pose predictions, scoring and filtering ................................................................ 45 

2.3.3. Molecular dynamic simulations ........................................................................................ 47 

2.3.4. MMGBSA and Interaction Entropy ................................................................................... 50 

Chapter 3. A community evaluation of computational methods for fragment screening ................. 53 

3.1. Credits ......................................................................................................................................... 53 

3.2. Publication .................................................................................................................................. 53 

3.3. Introduction ................................................................................................................................ 54 

3.4. Results ......................................................................................................................................... 55 

3.4.1. Crystallographic fragment screening against PHIP(2) reveals novel binders ................... 55 

3.4.2. Stage 1: Discrimination of binders from non-binders ...................................................... 62 

3.4.3. Stage 2: Binding pose predictions for fragment binders .................................................. 67 

3.4.4. Stage 3: Selection of fragment follow-up compounds from a database .......................... 73 

3.5. Discussion .................................................................................................................................... 80 

3.6. Conclusion and future directions ................................................................................................ 83 



 7 

3.7. Methods ...................................................................................................................................... 86 

3.7.1. Crystallographic screening ............................................................................................... 86 

3.7.2. Small molecule featurisation and distance calculations ................................................... 86 

3.7.3. RMSD calculations ............................................................................................................ 86 

3.7.4. Statistical analysis ............................................................................................................. 86 

3.8. Data availability ........................................................................................................................... 87 

Chapter 4. High-throughput X-ray crystallography for rapid fragment growth from crude compound 
arrays by low-cost robotics .................................................................................................................. 88 

4.1. Credits ......................................................................................................................................... 88 

4.2. Preprint ....................................................................................................................................... 88 

4.3. Introduction ................................................................................................................................ 89 

4.4. Results ......................................................................................................................................... 90 

4.4.1. Fragment F709 offers opportunities for robotic elaborations ......................................... 90 

4.4.2. Performing complex reactions robotically with minimal resources ................................. 91 

4.4.3. High-throughput X-ray crystallography of crude arrays ................................................... 94 

4.4.4. Resolving the binding landscape through structural analysis .......................................... 97 

4.4.5. Structural hit exhibits assay binding ............................................................................... 103 

4.5. Discussion .................................................................................................................................. 104 

4.6. Conclusion and future direction ................................................................................................ 107 

4.7. Methods .................................................................................................................................... 109 

4.7.1. Protein expression, purification, and crystallisation ...................................................... 109 

4.7.2. Chemical similarity calculations and clustering .............................................................. 109 

4.8. Data availability ......................................................................................................................... 109 

Chapter 5. Algorithmic recovery of fragment elaboration binding features from large scale 
crystallographic readouts .................................................................................................................. 110 

5.1. Credits ....................................................................................................................................... 110 

5.2. Introduction .............................................................................................................................. 111 

5.3. Results ....................................................................................................................................... 113 

5.3.1. A ligand-based method for analysing large scale crystallographic readouts ................. 113 

5.3.2. Feature identification rationalises crystallographic binding .......................................... 116 

5.3.3. Identification of false negatives in rescreening experiment .......................................... 118 

5.3.4. Benchmarking binding scores against ligand-based approaches ................................... 122 

5.3.5. Virtual screening identifies novel informative series ..................................................... 124 

5.4. Discussion .................................................................................................................................. 129 

5.5. Conclusion and future direction ................................................................................................ 133 

5.6. Methods .................................................................................................................................... 135 



 8 

5.6.1. Small molecule fingerprinting and dimensionality reduction. ....................................... 135 

5.6.2. Bit and compound scoring methodology ....................................................................... 135 

5.6.3. Random forest hyper-parameters optimisation and classification ................................ 137 

5.6.4. Statistical analysis ........................................................................................................... 137 

5.6.5. Virtual screening ............................................................................................................. 138 

5.6.6. Crystallographic screening ............................................................................................. 139 

5.6.7. Grating-coupled interferometry assay ........................................................................... 139 

Chapter 6. Integrating structure-based methods for PHIP(2) fragment elaboration ....................... 141 

6.1. Credits ....................................................................................................................................... 141 

6.2. Introduction .............................................................................................................................. 142 

6.3. Results ....................................................................................................................................... 143 

6.3.1. Investigating binding site interactions and dynamic fragment binding ......................... 143 

6.3.2. Generating a library of synthetically accessible fragment elaborations ........................ 148 

6.3.3. Binding pose prediction and filtering for fragment elaborations ................................... 150 

6.3.4. Free energy ranking of docked poses for follow-up selection ....................................... 154 

6.3.5. Validation identifies weak assay binders lacking crystal structure ................................ 158 

6.4. Discussion .................................................................................................................................. 161 

6.5. Conclusion and future direction ................................................................................................ 164 

6.6. Methods .................................................................................................................................... 166 

6.6.1. Hotspot mapping ............................................................................................................ 166 

6.6.2. Molecular dynamic simulations ...................................................................................... 166 

6.6.3. RMSD calculations .......................................................................................................... 167 

6.6.4. Free energy calculations ................................................................................................. 167 

6.6.5. Library construction ....................................................................................................... 168 

6.6.6. Follow-up fingerprinting and dimensionality reduction ................................................. 168 

6.6.7. Docking and pose filtering .............................................................................................. 168 

6.6.8. Co-crystallisation screening ............................................................................................ 169 

6.6.9. Grating-coupled interferometry assay ........................................................................... 169 

Chapter 7. Lessons and outlooks ..................................................................................................... 170 

7.1. Lessons ...................................................................................................................................... 170 

7.2. Outlooks .................................................................................................................................... 172 

Literature and references .................................................................................................................. 175 

Supplementary information .............................................................................................................. 184 

Supplementary information to Chapter 5 .......................................................................................... 184 

Supplementary information to Chapter 6 .......................................................................................... 193 
 



 9 

Abbreviations 
 

AKT: Protein kinase B 

AUC: Area Under the Curve 

BACE1: Beta-Secretase 1 

BCS: Bit Conservation Score 

BCL2: B-Cell Lymphoma 2 

BRAF: B-Raf Proto-Oncogene 

CBB: Conserved Binding-Bits 

ClogP: Calculated Octanol-Water Partition Coefficient 

CNB: Conserved Non-binding Bits 

CPU: Central Processing Unit 

CRM: Crude Reaction Mixture 

ΔG: Gibbs Free Energy of Binding 

ΔH: Enthalpy Change 

ΔS: Entropy Change 

DMA: Dimethylacetamide 

DMSO: Dimethyl Sulfoxide 

ECFP: Extended-Connectivity Fingerprint 

EG: Ethylene Glycol 

EM: electron microscopy 

FDA: Food and Drug Administration 

FBDD: Fragment-Based Drug Discovery 

FN: Fragment Network 

GAFF: Generalised Amber Force Field 

GCI: Grating-Coupled Interferometry 



 10 

H4K91ac: Acetylated-Lysine 91 on Histone 4 

HIF1α: Hypoxia-inducible factor-1 alpha 

HTS: High-Throughput Screening 

IC50: Half Maximal Inhibitory Concentration 

IE: Interaction Entropy 

IRS: Insulin Receptor Substrate 

IRS-1: Insulin Receptor Substrate-1 

ITC: Isothermal Titration Calorimetry 

Iters: Iterations 

Ka: Association Constant 

ka: Association Rate 

Kd: Association Constant 

kd: Dissociation Rate 

LCMS: Liquid Chromatography-Mass Spectrometry 

LDH5: Lactate-dehydrogenase 5 

MD: Molecular Dynamics 

MMGBSA: Molecular Mechanics Generalised Born Surface Area 

MCS: Maximum Common Substructure 

MSCheck: Semi-Automated LCMS Analyser Tool 

M-Si: Manifold Similarity 

M-Su: Manifold Substruture 

NBS: Negative Binding Scores 

NMR: Nuclear Magnetic Resonance 

NPT: Constant Number of particles (N), Pressure (P), and Temperature (T) 

NVT: Constant Number particles (N), Volume (V), and Temperature (T) 



 11 

PanDDA: Pan-Dataset Density Analysis 

PBS: Positive Binding Scores 

PDB: Protein Data Bank 

PDK1: Pyruvate Dehydrogenase Kinase 1 

PHIP: Pleckstrin-homology domain interacting protein 

PHIP(1): Pleckstrin-homology domain interacting protein’s first bromodomain 

PHIP(2): Pleckstrin-homology domain interacting protein’s second bromodomain 

PR: Precision-Recall 

PTPN1: Protein Tyrosine Phosphatase Non-receptor Type 1 

QC: Quality Control 

QSAR: Quantitative Structure-Activity Relationship 

RMSD: Root-Mean-Square Deviation 

SAMPL: Statistical Assessment of the Modelling of Proteins and Ligands 

SAR: Structure-Activity Relationships 

SASA: Solvent-Accessible Surface Area 

SID: Submission Identification Number 

SMILES: Simplified Molecular Input Line Entry System 

SPR: Surface Plasmon Resonance 

SuMD: Supervised Molecular Dynamic Simulations 

TC: Tanimoto Coefficient 

TLN1: Talin-1 

t-SNE: t-Distributed Stochastic Neighbour Embedding 

VEGF: Vascular Endothelial Growth Factor 

WD40: Beta-Transducin Repeat 

XRC: X-Ray Crystallography   



 12 

Chapter 1. Introduction 

1.1. A concise journey through small molecule drug discovery 
Drug discovery is the process of identifying, designing, and optimising therapeutic agents that 

aim to correct or suppress a pathological phenotype, ultimately contributing to the safe 

management of medical conditions. Prior to therapeutic intervention, identifying an 

appropriate target is crucial, as it underpins the selection of pathways involved in disease 

progression, enabling specific therapeutic interventions. 

Various classes of therapeutic drugs exist, each with distinct properties and targets. Broadly 

speaking, they are two classes of drug agents: biologics are larger molecules with molecular 

weights typically greater than 1 KDa predominantly derived from living organisms, 

encompassing a range of agents such as cells, viruses, proteins, and oligonucleotides.[1] In 

contrast, small molecules are smaller organic compounds, with molecular weights typically 

lower than 1 KDa, often synthesised through chemical processes or derived from natural 

sources.[1] 

Although both classes have specific advantages and drawbacks, small molecules tend to 

exhibit higher permeability and lower immunogenicity due to their smaller size, which can 

also enable oral bioavailability. Additionally, small molecules are typically less expensive to 

produce and have a more straightforward manufacturing process than biologics, whilst 

demonstrating greater stability and longer shelf life. Biologics, however, tend to be more 

specific than small molecules. For a small molecule drug to be both effective and safe, it needs 

to reach and bind to its target in a specific and potent manner.[2] This necessitates that the 

intermolecular interactions between the drug and the target exhibit complementary profiles, 

while remaining distinct enough to prevent the drug from binding to unintended sites, which 

could potentially result in adverse side effects.[3] 

The identification of materials with therapeutic virtues for alleviating pain or combating 

diseases has been an integral aspect of human history (Fig 1.1). Notable examples include the 

use of willow plant extracts containing salicylic acid, a precursor of aspirin, for its analgesic 

and antipyretic properties around 4000 BCE (Fig 1.1).[4] Fast forward, in the late 19th and early 

20th centuries, significant advances in chemical synthesis and analytical techniques, coupled 

with an expanding repertoire of therapeutic substances defined medicinal chemistry as a 
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distinct discipline (Fig 1.1).[5] The conceptualisation of the chemoreceptor principle gave rise 

to pharmacology and early screening methodologies, with notable discoveries including 

arsphenamine. The mid-20th century saw the rise of in vivo testing and phenotypic 

evaluation, which, however, operated as a slow black box process (Fig 1.1).[5] 

 

The second half of the 20th century saw remarkable advancements in technological and 

biochemical techniques, leading to for the development of high-throughput screening 

methods (Fig 1.1).[6] These approaches involve testing large libraries, comprising thousands 

to millions of samples, for biological activity which can be done across various levels, from 

organisms to proteins.[5] A major limitation of traditional high-throughput screenings (HTS) 

lies in the size of the compounds composing the libraries (Fig 1.2). Typically, these compounds 

are drug-sized, with heavy atom counts ranging between 20 and 100 atoms. As the atom 

count increases, there is a combinatorial explosion of possible molecular combinations, 

reaching levels that are unattainable by experiments (Fig 1.2).[7] Consequently, screening 

large libraries are necessary, but these still cover relatively poorly the space of molecules with 

pharmacologic potential.[6] The pharmacological potential of small molecules is typically 

Figure 1.1: A concise timeline of pivotal discoveries and advancements in drug design. The central 
dark blue timeline features labels denoting major areas of influence. Key methodological scientific 
breakthroughs are displayed in the upper row with orange highlights, while applied discoveries, 
illustrated in green and with molecular representations, are depicted in the lower row. Years of Food 
and Drug Administration (FDA) approval are also indicated. This figure was inspired from Pina et al., 
(2009). The timeline above is unscaled. 
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defined by Lipinski's Rule of 5, which stipulates that there should be no more than 5 hydrogen 

bond donors, no more than 10 hydrogen bond acceptors, a molecular mass less than 500 

Daltons, and a calculated octanol-water partition coefficient (Clog P) that does not exceed 

5.[8] However, screening of such large libraries yields a low hit-rate.[6] Smaller libraries tailored 

against specific systems are achievable, but they necessitate prior knowledge of the target, 

which is often not available in the context of drug discovery. 

1.2. A fragment-based approach alternative to high-throughput 
screenings 
The advent of high-throughput approaches underscored the significance of an intriguing drug 

discovery paradigm, in which the target, a biological entity, serves as a filter for the chemical 

space. This space can be defined as the collection of all potential pharmacologically active 

molecules. Given the vastness of the chemical space paired with target selectivity, strategies 

are needed to maximise the recovery of the active chemical space while enabling downstream 

experimental and synthetic efforts (Fig 1.2).[9] 

Figure 1.2: The impact of increasing molecular complexity on library combinatorial explosion and 
decreasing hit rate. The target, depicted in blue at the top left corner, features a binding site that 
accommodates three distinct binding modes. At a theoretical molecular complexity of 1, all building 
blocks can interact with the target. However, as complexity increases, fewer compounds can bind due 
to less frequent alignment with the binding site modes. Binding and non-binding building 
blocks/combinations are represented in green and yellow, respectively. This figure was adapted from 
Dr Yuliya Dubianok’s doctoral thesis. 
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Fragment-based approaches present a conceptually elegant solution to this problem. 

Fragments are small molecules adhering to the Rule of 3, which states that their molecular 

weight should be less than 300, ClogP should be less than or equal to 3, and the number of 

rotatable bonds, hydrogen bond donors, and acceptors should each be less than equal to 3. 

As a result, fragments are smaller than drug-like molecules used in traditional high-

throughput screenings. This implies a relatively smaller, and therefore more tractable 

chemical space to be sampled (Fig 1.2). These small-sized compounds tend to bind to the 

target at relatively low potencies, ranging from millimolar to micromolar concentrations.[9] 

However, fragments also exhibit high ligand efficiencies, which are determined by the 

strength of the interaction with the target divided by the number of heavy atoms composing 

the small molecule. Fragments tend to bind by forming a few localised, higher-quality and 

enthalpically driven interactions, such as hydrogen bonds, halogen bonds or π-π stackings.[10] 

Additionally, fragments display increased promiscuity compared to larger molecules, 

resulting in higher hit rates in identification experiments compared to high-throughput 

screening approaches (Fig 1.2). 

In most instances, the targets are proteins identified as key modulators of the phenotype to 

be corrected (Fig 1.8). Fragments are typically screened against a pure sample of the target 

obtained through a combination of recombinant expression and purification steps. Several 

techniques have been developed to categorise protein-ligand interactions and binding, which 

can be applied to the identification of fragments against a particular protein target. However, 

due to the intrinsically weak potency of fragments, these detection tools must be highly 

sensitive to the binding signal and exhibit a high signal-to-noise ratio (Fig 1.7).[9] 

The selection of an appropriate set of fragments for screening, termed a fragment library, is 

a critical phase in the process. This selection ultimately delineates the span of the chemical 

space covered and identifies potential hits. Therefore, fragment libraries should be chemically 

and functionally in order to be capable of sampling a broad spectrum of interaction patterns 

available within binding sites.[11] In addition, other considerations may come into play, such 

as the inclusion of halogen atoms to facilitate density fitting,[12] or the presence of chemical 

groups that can be modified by common reactions.[13] 

Once identified, fragments must be expanded into more potent and selective compounds that 

achieve the desired phenotypic modulation. This is normally accomplished by adding 
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chemical groups to the initial hits to enhance interactions with the target binding site (Fig 

1.5). Consequently, designing fragment libraries that facilitate subsequent synthetic steps is 

crucial. Once synthesised, fragment elaboration must be validated for improved potency. This 

combination of elaboration, synthesis, and validation seldom yields small molecules potent 

enough and often necessitates further iterations (Fig 1.3).[9] 

 

Thus, fragment-based drug discovery is an iterative process (Fig 1.3) in which fragments serve 

as high-quality, low-potency seeds derived from a more constrained chemical ensemble (Fig 

1.2). Fragment identification against a target enables local chemical space sampling of 

potentially active and chemically accessible follow-up molecules, with elaboration primarily 

aimed at increasing the compound's potency (Fig 1.5). 

1.2.1. Fragment identification and synergies with structure-based approaches 
Fragment-based drug discovery projects begin with the identification of fragment binders 

against the target through sensitive techniques. Various methods can be employed for this 

purpose, with most providing information about the interaction strength between the target 

and the compound.[9] 

Although such information is vital, protein-ligand binding is ultimately governed by the 

structural arrangement of the protein target (Fig 1.9), which dictates if and how compounds 

Figure 1.3: Fragment identification facilitates iterative follow-up design. Initial fragments are 
identified, serving as a basis for conceptual design through manual or computational methods. The 
chosen designs must then be acquired via synthesis or ordering, allowing validation through 
biophysical, structural, and biochemical approaches. Data from experimental validation informs 
subsequent design stages. The typical time range, along with exemplary experimental methods 
associated with each step, are highlighted with colours corresponding to cycle step. 
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interact with the binding site. Consequently, understanding protein and binding site 

structures is essential for making informed decisions about fragment elaboration (Fig 1.9).  

X-ray crystallography has emerged as one of the leading techniques in this context, as it 

provides atomic-scale structural information that can support drug discovery by rationalising 

ligand binding and support optimisation decisions.[14] The first protein structure was resolved 

in 1958 with the discovery of the myoglobin structure (Fig 1.1).[15] Initially, protein 

crystallography was an extremely laborious process, unable to keep pace with drug discovery 

efforts. However, methodological and technological improvements led to the first structure-

based drug discovery campaigns from the late 1970s (Fig 1.1). Notable examples include the 

rational design of hemoglobin ligands,[16] which sparked significant interest from drug 

discovery companies. Nowadays, crystallography and structure-based drug discovery are 

integral parts of the pharmaceutical landscape.[17] 

The primary advantage of X-ray crystallography over alternative identification methods is its 

ability to provide high-resolution structures that precisely resolve side-chain orientations, 

water molecule positions, and overall protein conformation. Additionally, it directly informs 

about the position and conformation of the compound, ensuring that it binds to the site of 

interest, thus providing a three-dimensional template for compound optimisation (Fig 1.9).[14] 

Recent advances in automation and synchrotron radiation have enabled large-scale 

screening, with hundreds of potential ligands being screened within hours, yielding bound 

structures at resolutions suitable for drug discovery.[18,19] The XChem is a leading platform in 

this regards as it provides integrated infrastructures, for crystal making, targeting,[20] 

soaking,[21] harvesting,[22] diffraction and structural model building,[23,24] enabling researchers 

to screen hundreds of small molecules within days (Fig 1.4).[25] X-ray crystallography is also 

label-free, preventing artefacts associated with immobilisation or tagging required by most 

other methods. 

X-ray crystallography also has limitations inherent to the technique. Acquiring reproducible, 

high-quality, and resilient crystals can be a laborious and challenging task, primarily 

dependent on trial and error.[26] High quality structure production also require access to 

specialised beamlines at synchrotron which can be limited depending on the location of the 

investigating laboratory. Additionally, lattice effects might confine protein conformations to 

unphysiological states, which may confound subsequent structure-based drug efforts.[27] The 
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resulting crystal structures do not directly convey binding affinity, necessitating the use of 

complementary approaches to fully rationalise binding. 

 

 

A further benefit of using crystals is their enhanced resistance to solvent exposure relative to 

proteins in solution, which enables compound evaluation at relatively more elevated 

concentrations directly from solvent stocks. These higher concentrations reveal weaker 

ligands more efficiently by saturating the binding signal, which is particularly important in 

fragment-based drug discovery due to the low potencies of fragments.[28]  

However, when weak fragments are resolved crystallographically due to unphysiologically 

high soaking concentrations, the resulting hit, pose or interactions may be artificially present 

in the crystal, yet fail to bind in solution, thus yielding no signal in assays. Consequently, 

orthogonal strategies are required to validate these fragment hits. While these often involve 

solution assays, they come with the drawback of necessitating further experiments. Hotspot 

Figure 1.4: Fragment identification through X-ray crystallographic screening at XChem. The various 
steps involved in determining fragment-bound protein structures using high-throughput 
crystallography are outlined in the accompanying box. Initially, appropriate crystals are identified and 
subsequently soaked with fragment stocks using acoustic dispensing. The soaked crystals are 
harvested and exposed to specialised beamlines for data collection. Finally, the diffraction data is 
automatically processed, followed by model building and refinement of the co-crystal structure. This 
figure was adapted from Douangamath et al., (2021). 
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mapping provides a convenient alternative, offering increased confidence in the resolved 

fragments.[29] It use 3D structures to identify pharmacophoric regions, and an overlap 

between hotspots and fragment pose suggests that the crystallographic interactions are not 

coincidental, making them more likely to result in binding during assays. 

Furthermore, the high-throughput capabilities of X-ray crystallography facilitates the analysis 

of vast amounts of data, which can collectively be used to unmask even weaker binding events 

(Fig 1.4).[24] Thus, fragment-based approaches pair well with crystallography, due to its 

scalability and the ability to expose target protein crystals against high fragment 

concentrations. 

Obtaining and optimising protein crystals for drug discovery purposes can be challenging. 

They must be ligand tolerant, sufficiently reproducible, and capable of diffracting at a high 

resolution. Cryo-electron microscopy (EM) is becoming an increasingly prevalent alternative 

to X-ray crystallography for structural elucidation of protein-fragment complexes. Cryo-EM 

involves blotting a sample onto a grid, cryo-cooling it, and using electrons for scattering, from 

which the electron density is inferred for structural model building. Consequently, cryo-EM 

does not necessitate crystal formation, potentially offering an alternative to X-ray 

crystallography in terms of sample preparation, potentially enhancing throughput, and 

reducing associated labour.[30] While some fragment studies have been conducted using cryo-

EM, these often suffer from comparatively lower resolution than methods relying on 

crystallography.[31] 

1.2.2. Strategies in fragment follow-up design 
Fragment libraries are screened against protein crystals, yielding fragment-bound structures  

that serve as starting points for synthetic elaboration and chemical space sampling (Fig 1.4). 

High-resolution structures provide templates for rational compound elaboration strategies 

aiming at increasing potency by targeting additional interactions with the binding site. 

Designing and selecting fragment follow-up compounds is a crucial step in developing more 

potent and specific small molecules against a target.[28] 

Three types of fragment elaboration exist: growing, linking, and merging (Fig 1.5). Growing 

involves expanding a single fragment with chemical groups at appropriate elaboration vectors 

to establish new interactions with the target binding site (Fig 1.5).[28]Growing is a more 
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tractable approach since using a single fragment scaffold places fewer restrictions on the 

chemistry. However, it has the disadvantage of focusing on a single hit, thereby neglecting 

the remaining experimental information generated from the initial screening experiment. 

Linking and merging, on the other hand, involve combining two or more fragments into a 

single molecule (Fig 1.5). In linking, fragments are connected through a linker, whereas in 

merging, fragments are fused together. These approaches are more synthetically challenging. 

A merged scaffold may be non-obvious, and engineering a linker group could distort the 

energy landscape associated with the binding poses.[28] Nevertheless, linking and merging 

make better use of the available experimental information, potentially leading to more 

effective small molecules against the target protein. 

There has been significant success associated with fragment-based drug discovery with half a 

dozen drugs approved by the FDA and about 40 other candidates undergoing trials.[32] 

Significant examples include Venetoclax, a selective BCL2 inhibitors used against leukaemia 

was discovered through fragment linking. Vemurafenib was the first FDA approved drug (Fig. 

1.1) discovered from fragment-based methods, initially optimised identified through a 

growing strategy, and targets mutant BRAF kinase involved in melanoma. No fragment 

mergers have, to the best of the available knowledge been approved by the FDA  but many 

success stories include the inhibition of targets such as PTPN1 or PDK1.[33] 

 

Figure 1.5: Fragment elaboration strategies in follow-up design. Upon identifying fragment hits, they 
can be developed through growing, linking, or merging. Growing involves adding chemical groups to 
engage new binding site interactions, linking entails designing chemical linkers to connect two or more 
fragment hits, and merging involves fusing overlapping fragment hit scaffolds. 
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The use of in silico methods is now a ubiquitous part of drug discovery efforts as they offer 

rapid and objective ways of generating and selecting compounds. In silico methods also pair 

well with fragment-based approach where both chemical and structural information can be 

exploited in follow-up compound design.[34]  

A hierarchical approach utilises computationally inexpensive methods for processing a high 

volume of compounds, gradually shifting to more resource-intensive techniques for smaller 

subsets, ultimately aiming to enhance predictions quality for compounds selection (Fig 

1.6).[35] Ligand-based approaches are on the cheaper end and can serve to build a virtual 

library of compounds. Single or multiple fragments can be employed to filter libraries of 

chemically accessible compounds, with the goal of identifying follow-up molecules that retain 

features observed experimentally. This can be achieved through straightforward chemical 

similarity and substructure analyses or more intricate multi-fragment pharmacophoric 

searches (Fig 1.6).[36] 

 

 

Figure 1.6: Hierarchical application of computational methods in follow-up design. Less demanding 
methods, which generally provide less accuracy due to an incomplete system evaluation, are 
employed to process a larger number of compounds. More demanding methods handle fewer 
compounds but offer greater accuracy because of a more comprehensive system description. Symbols 
on the right signify the description levels provided by computational methods, with the hourglass 
indicating ligand and receptor simulations over time, and the Ouroboros symbol representing multiple 
alchemical windows. 
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Structural information can then be utilised to score a library by predicting ligand binding poses 

against the binding site, from which binding affinity can be estimated (Fig 1.6). This process, 

known as docking, can be carried out using various approaches that are generally driven by 

physics-based modelling or machine learning.[35] Rescoring tools can also be employed to 

select docking poses that overlap with experimentally resolved fragments or recapitulate a 

specific interaction motif with the binding site.[37] Docking methods offer the advantage of 

being relatively inexpensive, but their ability to account for conformational motions and 

water dynamics is limited (Fig 1.6). This can lead to inaccurate predictions when these 

motions impact binding, such as when the low-energy protein solution state deviates from 

the crystal structure.[38] 

Molecular dynamic simulations can account for such motions by estimating the temporal 

behaviour of protein-ligand complexes in solution. These simulations can be initiated using 

bound conformations generated from docking, thus providing more detailed information 

about the quality of the interaction between the target binding site and candidate follow-up 

(Fig 1.6).[39] However, molecular dynamic simulations are significantly more computationally 

expensive than docking predictions and, as a result, require more specialised computer 

infrastructure.[35] These simulations can also be used to estimate binding free energies for 

protein-ligand complexes. Less rigorous but more affordable approaches, such as Molecular 

Mechanics Generalised Born Surface Area (MMGBSA) and Interaction Entropy (IE), can 

employ single trajectories.[40] In contrast, alchemical binding free energies are more 

expensive, as they necessitate simulating non-physical intermediates across multiple 

trajectories, but generally have better predictive power (Fig 1.6).[39] 

Thus, fragment follow-up enumerations and selection can be achieved through various 

means, ranging from human decision-making to more computationally expensive physics-

based modelling. Ultimately, the factors governing fragment elaboration include the initial 

data, access to computational resources, and expertise. 
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1.2.3. Large scale chemical synthesis as a bottleneck  
Follow-up design can be a relatively swift process, provided that all necessary infrastructure 

and software are already in place (Fig 1.3). Once suitable follow-up candidates are identified, 

they must be synthesised for experimental validation. This step can be the rate-limiting factor 

of the cycle, as synthesis demands considerable labour and resource investment for specific 

molecules (Fig 1.3). Consequently, it is crucial for virtual screening libraries to consist of easily 

obtainable molecules.  

Following synthesis, the follow-up products must be purified from the reaction mixtures, 

often via chromatographic methods, which is another laborious and wasteful process. While 

follow-ups can sometimes be ordered directly from vendors, reducing labour, they often incur 

higher costs and lengthier shipping times, further delaying experimental validation.[41] Thus, 

the ability to perform rapid and cost-effective chemistry to generate fragment follow-ups in 

the vicinity of experimental validation infrastructure is a significant consideration. However, 

such infrastructures often necessitate advanced robotic systems for synthesis, purification, 

and quality control, which can be prohibitively expensive for academic laboratories.[42] 

Nonetheless, there has considerable methodological improvements in more affordable high-

throughput synthesis methods, with the range of achievable reactions also expanding. These 

progresses enables better chemical space sampling around fragments.[42] 

As the number of synthesised compounds increases, so too does the number of required 

purifications, as assays are performed using pure products, thus  further slowing down the 

follow-up validation process. Recently, it was demonstrated that X-ray crystallography could 

be conducted by soaking crude reaction mixtures directly onto protein crystals, thereby 

bypassing purification.[43] However, this method was applied to fewer than 100 ligands. 

Similarly, dissociation rate (kd) measurements can be screened from crude reaction mixtures 

using surface plasmon resonance (SPR), which are concentration-independent thereby 

informing the binding strength between the ligand and the protein.[44] However, this 

approach has not yet been expanded to high-throughput levels. Consequently, current 

validation approaches struggle to keep pace with large follow-up libraries generated via 

automated and purification-free synthetic approaches. 
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1.2.4. Experimental validation of fragment follow-up compounds 
Synthesising follow-up designing enables downstream validation using experimental 

techniques. In most instances, validation necessitates testing pure follow-up stocks against 

the target, which is crucial for assessing if and how designs achieve inhibition of the target, 

therefore moving towards phenotypic modulation (Fig 1.7). A comprehensive understanding 

of the follow-up's interaction with the target demands validation from three perspectives: 

structural, biophysical, and biochemical (Fig 1.7).[45] 

 

 

Structural validation assists in determining if the fragment elaboration preserved the initial 

binding pose and provides information about the interactions made, protein conformational 

motions, and water displacement, which contribute to the resulting binding affinity through 

enthalpic, entropic, or kinetic changes (Fig 1.7). Alternative methods to X-ray crystallography, 

such as Nuclear Magnetic Resonance Spectroscopy (NMR) spectroscopy or cryo-Electron 

Microscopy, can also be used for this purpose, although they may be less scalable or have 

lower resolution.[45] 

The second aspect of the validation process is probing the strength of the interaction between 

the follow-up and the target. This is typically measured with biophysical assays in a solution 

Figure 1.7: Follow-up validation requires a 3-fold approach. Follow-up designs need structural 
validation, typically using X-ray crystallography, to determine the protein-ligand binding pose. 
Biophysical validation estimates the interaction strength between the protein and ligand through 
affinity measurements. Biochemical validation assesses the compound's capacity to modulate the 
target's biochemical function. Method illustrations were made using available BioRender templates. 
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that mimics pseudo-physiological salt and pH conditions. Numerous tools have been 

developed for this purpose, generally falling into two categories. Kinetic methods measure 

the association and dissociation rates between the ligand and target, allowing for the 

inference of equilibrium constants and informing binding affinity (Fig 1.7). A variety of tools 

for kinetic measurements exist, with the choice of validation assay often dependent on 

expertise and device availability.[45] Nevertheless, robotic methods have been developed for 

Surface Plasmon Resonance (SPR), Nuclear Magnetic Resonance (NMR) spectroscopy, and 

Grating-Coupling Interferometry (GCI), facilitating larger-scale measurements. 

Thermodynamic methods, such as Isothermal Titration Calorimetry (ITC), enable the 

deduction of entropic and enthalpic contributions to binding but tend to require large 

amounts of protein for testing.[46] 

Ultimately, follow-ups must be biochemically validated to ensure they achieve the desired 

effect on the target's function. For example, when addressing a protein-protein interaction 

facilitator, it is essential to confirm that the follow-up compound effectively disrupts the 

interaction responsible for the phenotypic effect (Fig 1.7).[47] When working with pure protein 

samples, this is frequently accomplished via optical assays. These assays detect and quantify 

light in the form of absorbance, fluorescence, or luminescence. The resulting signal is 

generally converted to half-maximal inhibitory concentration (IC50) values, which represent 

the concentration of the compound required for 50% inhibition of the targeted biochemical 

function (Fig 1.7).[48] 

In drug discovery, validating compounds while considering relevant pharmacodynamic 

properties that yield a good drug is essential. For instance, designing compounds with fast 

association constants (Ka) and slow dissociation constants (Kd) enables rapid absorption and 

extended release, providing a swift and lasting therapeutic effect.[49] Examining and validating 

multiple compounds is vital for understanding structure-activity relationships (SAR) in drug 

discovery. SAR analysis offers insights into how specific chemical modifications affect the 

potency, selectivity, and pharmacodynamic properties of compounds. This valuable 

information can be applied in future iterations of compound design, guiding the optimisation 

process to produce more effective therapeutic candidates. However, the analysis and 

application of SAR data is non-trivial, necessitating the use of cheminformatics and/ or 

machine learning methods. This is especially true in modern  drug discovery projects, where 
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large numbers of compounds are processed, yielding equally extensive datasets that are 

unanalysable manually. As methods generate increasingly complex datasets, it is crucial to 

continue the development of such approaches to support drug discovery efforts.[50] 

1.3. PHIP(2): a relevant target for fragment-based drug discovery 
In this work, the Pleckstrin-homology domain interacting protein (PHIP), specifically its second 

bromodomain (PHIP(2)), will be investigated. Initially, PHIP was identified as interacting with 

the Pleckstrin homology (PH) domain of insulin receptor substrate-1 (IRS-1), a tyrosine kinase 

involved in insulin-mediated processes such glucose transport (Fig 1.8).[51] Later, a larger PHIP 

isoform was discovered in the nuclei of pancreatic beta-cells, where it positively regulates cell 

growth and survival.[52] PHIP deficiency in young mice results in delayed body growth and 

anaemia, emphasising its important physiological function.[53] These findings link PHIP to the 

insulin signalling pathway and suggest its involvement in tumorigenesis (Fig 1.8). Studies 

confirmed that increased PHIP copy number positively regulates metastasis in melanoma 

tumours lacking mutations in the three most common oncogenic genes.[54] 

This revelation opened new avenues for therapies targeting BRAF-negative melanomas, 

which constitute a significant proportion of all human melanomas and lack effective 

treatments. Further support for this strategy emerged when research showed that 

suppressing PHIP inhibits the proliferation and invasion of "driver-negative" melanoma, 

breast, and lung tumours.[55] PHIP also enhances tumour cell mobility in glioblastoma cancer 

cells by acting on the focal adhesion complex, a key regulator of actin cytoskeleton 

organisation and dynamics (Fig 1.8).[56] However, the precise molecular and structural 

mechanisms by which this multi-domain protein operates remain unclear, despite growing 

evidence of its significant role in lethal cancers (Fig 1.9).  

PHIP is a multifunctional protein with multiple subcellular locations, comprising eight WD40 

repeats and two bromodomains, PHIP(1) and PHIP(2) (Fig 1.9). WD40 repeat domains 

participate in various cellular processes through molecular recognition such as protein-

protein or protein-DNA interactions.[57] 



 27 

 

Bromodomains are typically involved in transcriptional regulation or chromatin remodelling 

and feature a conserved α-helical bundle fold, including four α-helices (αZ, αA, αB, and αC) 

connected by flexible loops defined as the ZA, AB, and BC loops (Fig 1.9).[58] Bromodomains 

possess a conserved network of four water molecules at the core of the fold, facilitating the 

binding of an acetylated-lysine (Fig 1.9). These post-translationally modified amino acids are 

commonly found on histone tails, where they serve as epigenetic markers (Fig 1.8). 

Bromodomains act as specific "readers," with acetylated-lysines often being central to more 

complex peptide interactions, where neighbouring residues can also bear other post-

translational modifications like methylation or phosphorylation.[59] Through this interaction, 

bromodomains recruit other factors necessary for cellular function. Pathologically, 

bromodomain-containing proteins are implicated in numerous cancer types, but their well-

defined acetylated-lysine binding site's role as a key mediator of protein-protein interactions 

renders them attractive drug targets. Several bromodomain inhibitors have been reported, 

with ongoing clinical trials.[58] Moreover, chemical probe development offers an alternative 

to extensive laboratory work, such as engineered animal models, required to understand 

bromodomain-containing proteins' cellular functions. 

Figure 1.8: PHIP is a multidomain protein that regulates various oncologic cellular pathways. The 
left panel illustrates PHIP's involvement in cellular pathways and their subcellular locations. In the 
cytoplasm, PHIP interacts with the insulin signalling pathway, potentially contributing to cancer 
invasion, growth, and ulceration. In the nucleus, PHIP binds to histones, which may result in cancer 
cell proliferation. Structurally, PHIP comprises eight consecutive WD repeats, two bromodomains, and 
substantial unstructured regions. Cellular pathways were illustrated using available BioRender 
templates. The cellular pathways were adapted from Kashani-Sabet et al.,  (2018). 
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A small molecule probe specific against PHIP could open opportunities for novel and broad-

based chemotherapy against non-targetable tumours and/or facilitate understanding the 

biology underlying these cancers. Computational, biochemical, and proteomic data indicate 

that PHIP2 binds to acetylated lysine 91 on histone 4 (H4K91ac), supporting the notion that 

PHIP(2) functions as a histone reader in the context of epigenetics (Fig 1.8).[55] PHIP(2) belongs 

to the third bromodomain family and features an atypical acetylated-lysine binding site due 

to the highly conserved asparagine (Fig 1.9), between the αB helix and the BC-loop, being 

replaced by a threonine. This substitution is observed in only 21% of known human 

bromodomains.[13] This special feature of PHIP(2) contributes to its distinct binding properties 

and may offer opportunities for the development of selective inhibitors, potentially aiding in 

the advancement of novel cancer therapies. 

1.4. Advancing fragment-based methods with PHIP(2) 
Previous in-house studies have employed PHIP(2) as a model in the development of fragment-

based approaches. For instance, the DSI-poised library is a collection of fragments enabling 

synthetic elaborations by displaying chemical groups targetable via general synthetic 

Figure 1.9: PHIP(2) exhibits a typical bromodomain fold with an atypical acetylated-lysine binding 
site. The left panel displays the characteristic bromodomain fold, with helical and loop regions 
coloured according to the domain map shown in the bottom panel. The central panel illustrates the 
pharmacologically relevant acetylated lysine binding site, featuring the conserved bromodomain 4-
water molecule network (depicted as red spheres) and side chains involved in ligand binding 
(displayed as sticks). The right panel presents the structure of PHIP(2) bound to an acetylated-lysine 
containing peptide, mimicking histone binding. Peptide binding is associated with the introduction of 
an additional water molecule (shown in orange, labelled PW) and conformational changes of the non-
conserved threonine that is typically an asparagine in other bromodomains. 
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reactions, enabling rapid chemistry.[13] The years of research preceding this work laid solid 

foundations for further methodological and applied research. An effective PHIP(2) expression 

system, purification method, and multiple crystal forms obtained at the Structural Genomic 

Consortium provides excellent material for subsequent crystallographic screening and assay 

studies.[26]  

Consequently, this work focuses on high-throughput crystallographic and computational 

studies of fragment identification and follow-up compounds design and evaluation. 

Fragment-based methods hold considerable potential for the discovery of new drugs and 

chemical probes. However, fragment-based ligand discovery is a rapidly expanding field  with 

new challenges remaining to be addressed. 

Accordingly, this thesis will investigate fragment-based methods using PHIP(2) as a model 

system. To facilitate the understanding of subsequent results, methodological concepts 

relevant to this work will first be introduced in Chapter 2. Crystallographic screening remains 

a laborious and expensive process, while computational methods are becoming increasingly 

precise. Therefore, Chapter 3 will assess the ability of computational methods to replicate 

crystallographic fragment screening data through a community exercise. Follow-up 

purification represents a bottleneck in fragment-based drug discovery, while protein crystals 

can tolerate soaking of crude reaction mixtures. As such, Chapter 4 will examine the chemical 

and structural data resulting from the crystallographic evaluation of crude reaction mixtures 

generated from robot synthesis to evaluate the method's viability. High-throughput 

methodologies produce large and complex datasets that can be challenging to understand 

manually. In Chapter 5, a computational method will be developed to rationalise binding 

events from the extensive crystallographic evaluation of crude reaction mixtures performed 

in the previous chapter. Fragments can be used to generate libraries of follow-up compounds, 

but these must be effectively prioritised for experimental validation. Chapter 6 demonstrates 

how the PHIP(2) fragments, resolved in Chapter 3, can be used to generate a library of 

fragment elaborations, which was subsequently filtered with a range of computational 

methods in an effort to identify more potent binders. Finally, the main lessons and 

conclusions drawn from this work will be summarised. 
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Chapter 2. Concepts and experiments 

2.1. Experimental concepts  

2.1.1. Basic principles of protein-ligand binding 
Protein-ligand binding plays a pivotal role in biochemical processes and has emerged as a 

central focus in drug discovery. This binding process is typically driven by non-covalent 

interactions, which can be classified into polar and non-polar types. Polar interactions, such 

as hydrogen bonding and other electrostatic interactions, are localised and specific, taking 

place between molecules with partially charged regions in proximity (Fig 2.1). These 

interactions facilitate the precise positioning and orientation of the ligand within the protein's 

binding site. In contrast, non-polar interactions, including van der Waals and hydrophobic 

interactions, are less specific and directional than polar interactions (Fig 2.1). These 

interactions take place between non-polar regions of the protein and ligand, which prefer to 

associate with each other to evade water molecules in the surrounding aqueous environment 

(Fig 2.1).[60] 

 

Figure 2.1: Typical molecular interactions observed in protein-ligand binding. Examples from in-
house data illustrates hydrogen bonding, halogen bonding, π-π stacking, and less specific hydrophobic 
interactions. The presence of water molecules in hydrophobic interactions highlights that hydrophobic 
forces arise from the non-specific aggregation of molecules repelled by water's polar forces. 
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The dynamic nature of protein-ligand binding is dictated by the various conformations that 

both protein and ligand adopt across the binding event. A binding event is steered by a lower 

energy bound conformation being favoured over unbound states of the protein and ligand 

(Fig 2.2). Upon ligand binding to a target receptor, both may undergo conformational changes 

to form a stable complex (Fig 2.2). This can involve induced fit, where the protein alter its 

conformation to accommodate the ligand, or conformational selection, where the protein 

and ligand sample different conformations in the unbound states, and the binding event takes 

place when the most suitable conformations are present.[61] Eventually, an equilibrium is 

established between the bound and unbound states. Favourable interactions and energetics 

in the protein-ligand complex shift the equilibrium towards the bound state, facilitating 

complex formation, whereas unfavourable interactions shift the equilibrium towards the 

unbound states (Fig 2.2).[61] 

Overall, the non-covalent and reversible association between a protein and a ligand can be 

described as followed: 

Protein-ligand	binding	 [P] + [L] ⟺ [PL] Equation	2.1	

Where [P], [L] and [PL] indicate the concentration for the free protein, free ligand and protein-

ligand complex, respectively.  Protein-ligand binding kinetics are described by the rate 

Figure 2.2: Favourable protein-ligand interactions promote complex formation over free ligand and 
protein, resulting in energy release. The top panel illustrates how ligand binding can restrict 
molecular motions and release water molecules from the binding site to the solvent. This favourable 
process is associated with a negative change in the binding free energy of the system. 
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constants for association (ka) and dissociation (kd) which are indicative of how quickly the 

ligand bind and unbinds, respectively.  

Kinetic	association	rates	 k![P][L] = k"[PL] Equation	2.2	

At equilibrium the ratio of concentrations for the bound complex against the unbound protein 

and ligand against the bound complex defines the association constant (Ka) which is indicative 

of the interaction’s strength.  

Association	constant	 K! =
[PL]
[P][L]

=
1
K"

=
k!
k"

 Equation	2.3	

Conversely, the dissociation constant (Kd) is the ratio of concentrations for the unbound 

protein and ligand against the bound complex and represents as the ligand concentration 

required to occupy half of the available protein binding sites. 

Dissociation	constant	 K" =
[P][L]
[PL]

=
1
K!

=
k"
k!

 Equation	2.4	

The concepts discussed above relate to the kinetics of the protein-ligand binding process. 

However, when characterising protein-ligand binding, it is also important to consider the 

energetics of the system. In particular, the thermodynamics of ligand binding can be 

described by changes in enthalpy (ΔH) and entropy (ΔS), which together define the Gibbs free 

energy (ΔG) of binding. 

Gibbs	free	energy	 ΔG = ΔH − TΔS Equation	2.5	

Where T represents temperature. A negative ΔG suggests a favourable protein-ligand 

association process (Fig 2.2), while a positive ΔG implies an unfavourable binding process. The 

enthalpy change ΔH represents the energy released or absorbed during binding, while the 

entropy change ΔS signifies the alteration in molecular freedom upon binding (Fig 2.2). For 

instance, when a hydrogen bond forms between the protein and ligand, the enthalpy change 

ΔH will be negative, signifying that energy is released during bond formation. Simultaneously, 

the entropy change ΔS will likely be negative, indicating that the degree of freedom of the 

molecules decreases upon binding (Fig 2.2). The Gibbs free energy (ΔG) can also be related to 

the kinetic equilibrium constants, Kd or Ka.[61] 
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Gibbs	free	energy	 ΔG = −RT ln(K!) =RT ln(K") Equation	2.6	

Comprehending the kinetic and thermodynamic aspects of protein-ligand binding (Fig 2.2), 

along with the underlying interactions and structural information (Fig 2.1), is crucial for a 

thorough understanding of molecular recognition and advancing structure-based drug 

discovery strategies. 

2.1.2. Protein-ligand crystallography 
Protein crystallography is a technique used to determine the three-dimensional structure of 

proteins at atomic resolution, providing valuable insights into protein function and ligand 

binding. The process begins with obtaining a pure and stable protein sample through 

recombinant expression, where a gene encoding the protein of interest is introduced into a 

suitable expression system, such as bacteria (Fig 2.2). This approach facilitates the 

obtainment of large protein quantities, enabling downstream purification steps to isolate the 

target from cellular contaminants.[62] 

The next step is to find suitable conditions for protein crystal formation, a critical step as the 

quality of the resulting crystals directly impacts diffraction data quality and the subsequent 

structural model (Fig 2.2). To achieve this, a wide range of conditions are often screened, 

varying parameters such as pH, temperature, and precipitant concentrations, identifying 

those that promote well-ordered protein crystal growth (Fig 2.2). These crystals should be 

large enough, have minimal defects, and possess high internal order to ensure high-quality X-

ray diffraction data (Fig 2.2).[26] Ligand incorporation in the workflow helps understand 

whether and how it bind to the protein target. This can be achieved through co-crystallisation 

or soaking, where crystals are either formed in presence of the ligand in the crystallisation 

buffer or directly exposed from ligand stocks to the preformed crystal, respectively. Soaking 

is often more convenient and accessible by allowing rapid screening of many ligands onto 

preformed crystals.[26] 

Once crystals are obtained, they undergo X-ray diffraction experiments at beamlines, using 

high-intensity X-ray sources to probe the crystal's internal structure and generate diffraction 

patterns (Fig 2.2). The collected diffraction data contain information on the reflection and 

intensities of scattered X-rays, used to deduce the protein's 3D structure (Fig 2.2).[26] 



 34 

 

 

Solving protein structures is not straightforward due to missing phase information in 

diffraction data, essential for determining electron density maps. One common approach to 

overcome this phase problem is molecular replacement, using a known homologous protein 

structure as a starting model to estimate phase information. This method involves a 

computational search for the best-fitting orientation and position of the starting model within 

the target protein crystal's unit cell.[63] Once phase information is obtained, the electron 

density map can be generated, and the protein structure, including the ligand, can be 

modelled. Fitting the protein's amino acid sequence into the electron density map and 

refining atomic positions to minimise discrepancies between observed and calculated 

diffraction data result in the final protein-ligand complex structure (Fig 2.2). This reveals 

detailed information about the protein conformation and ligand interactions. 

Figure 2.2: Protein crystallography enables 3D structure determination. The crystallographic process 
comprises multiple steps across various disciplines. Firstly, pure protein samples are obtained and 
plated against a crystallisation mix, allowing crystal formation. The crystals are then exposed to high-
intensity X-rays, producing diffraction patterns. To generate an electron density map, diffraction data 
must be processed to recover the missing phase information, which in turn provides material for 
model building and refinement. The figure was adapted from and available BioRender template. 
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Weak ligands, such as fragments, can lead to incomplete electron density as only a small 

fraction of proteins composing the lattice are in the bound state, making the interpretation 

of the electron density difficult or  if not impossible (Fig 2.3). Pan-Dataset Density Analysis 

(PanDDA) addresses this issue by subtracting the ground state density, representing the 

unbound state, from individual crystal density maps, generating difference maps that can 

reveal weak ligand-binding regions (Fig 2.3).[24] 

Although PanDDa is considered as useful tool in deconvoluting weak binding events, such 

fragments may also be the result of artefactual binding caused by high stock concentration or 

unstable conformation and may therefore not bind in solution assays. The correct treatment 

of structural heterogeneity and water molecules can also be challenging when relying on 

panda for model building. Indeed, PanDDa assumes structural homogeneity within the crystal 

and uses the ground state reference model for background correction.[64] However, protein 

crystals often present some form of structural heterogeneity, and such effect is even more 

prevalent when ligands are present due to conformational variation between the apo and 

bound states. Thus, the event map resulting from the subtraction of the ground state to a 

conformationally different state may generate ambiguous densities or water molecules at 

locations conflicting with protein or ligand conformations.[65] 

 
 

Figure 2.3: Background correction uncovers low-occupancy crystallographic states from electron 
density maps. A conventional electron density map may conceal a low-occupancy state, represented 
by the green star. The background, equivalent to the average density across multiple unbound 
datasets, represented with blue circles, is subtracted from the target dataset, thereby revealing low-
occupancy states for further processing and analysis. The figure was inspired from Pearse et al., (2017). 
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2.1.3. Grating-coupled interferometry measurement of binding kinetics 
Grating-coupled interferometry (GCI) is an optical biosensing technique that enables the 

study of biomolecular interactions, such as protein-ligand binding, in real-time. GCI shares 

similarities with Surface Plasmon Resonance (SPR) as they both measure the accumulation of 

ligand on a sensor chip as a result of biomolecular binding. GCI differ from SPR in its underlying 

detection mechanism, as it relies on changes in the effective refractive index upon molecular 

binding rather than measuring alterations in the plasmon resonance angle that occur due to 

these interactions. 

The fundamental principle of GCI is based on the detection of changes in the refractive index 

near the sensor surface, which occur as a result of molecular binding events (Fig 2.4). The GCI 

platform employs a nanostructured grating on the sensor chip to couple the incident light into 

surface-bound electromagnetic waves (Fig 2.4). As molecules bind to the sensor surface, the 

localised electromagnetic wave's phase and intensity are altered, generating an 

interferometric signal that can be quantitatively analysed to determine binding kinetics and 

affinity (Fig 2.4).[66] 

 

 

Figure 2.4: Grating-coupled interferometry setup for measuring protein-ligand binding kinetic in real 
time. The analyte (here a small molecule) is injected through the flow channel and associating with 
the immobilised protein receptor (here denotated as ligand). The association changes the light signal 
coupled with metal surface through grating technology. Another reference light source is coupled via 
grating after the initial light samples association thus modulating the phase from which light phase 
changes can be calculated allowing binding kinetic determination. The figure was adapted from an 
available BioRender template. 
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The first step in GCI experiments is immobilising the protein of interest onto the sensor chip. 

This can be achieved through amide coupling, which involves the formation of a covalent 

bond between the carboxyl groups on the sensor surface and the amine groups on the 

protein. The surface is typically activated with a mixture of N-hydroxysuccinimide and 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide, which facilitates covalent coupling between the 

receptor and the sensor chip. The amount of protein immobilised on the sensor surface 

defines the maximum theoretical response, as it determines the maximum number of binding 

sites available for interaction with the analyte.[67] 

Following protein immobilisation, the analyte is introduced to the sensor surface by 

controlled injection (Fig 2.4). The binding of the analyte to the immobilised protein causes a 

change in the local refractive index, which is detected by the GCI system (Fig 2.5). The 

association phase begins when the analyte is allowed to flow over the sensor surface, leading 

to interactions between the analyte and the immobilised protein (Fig 2.5). The GCI system 

continuously monitors changes in the refractive index, which are proportional to the amount 

of analyte bound to the protein (Fig 2.4). 

After a predetermined period, the flow of analyte is stopped, and a buffer solution is 

introduced to wash away any unbound analyte (Fig 2.5). During the dissociation phase, the 

remaining bound analyte gradually dissociates from the immobilised protein, and the GCI 

system measures the changes in the refractive index (Fig 2.4).[68] 
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The data analysis step involves fitting the association and dissociation curves obtained from 

the GCI measurements to a suitable mathematical model to extract kinetic parameters, such 

as the association rate constant (ka), dissociation rate constant (kd), and equilibrium 

dissociation constant (Kd) (Fig 2.1). The analysis uses specialised software that allows for the 

comparison of the obtained data with the blank measurements, providing valuable insights 

into the binding interaction and its characteristics.[68] The association rate constant (ka) is 

concentration dependent and is inferred from the accumulation of mass onto the sensor chip 

upon injection of the ligand-containing solution. Reversibly, the dissociation rate constant (kd) 

is concentration independent and is inferred from the depletion of mass from the sensor chip 

being caused by ligand unbinding (Fig 2.5). 

Figure 2.5: Grating-coupled interferometry assay allows binding kinetic measurement by varying 
single-concentration pulses. The association constant is determined from multiple analyte pulses of 
increasing duration (A). The dissociation constant is measured during a single phase, where the 
analyte departs from the target, resulting in a correlated decrease in surface mass (B). The figure was 
adapted from available BioRender templates. 
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2.2. General experimental methods 

2.2.1. Protein expression, purification and crystallisation 
BL21 cells containing a pNIC28-Bsa4 vector coding for PHIP2 were taken from a glycerol stock 

(kindly provided by Dr Tobias Krojer). 2 mL of Luria Broth pre-culture with 50 μM kanamycin 

were inoculated into 1 L Terrific Broth media with 2% glycerol (v/v), 0.01% (v/v) of 10% (v/v) 

sigma Antifoam 204 in ethanol, 50 μM FeCl3, 20μM CaCl2, 10 μM MnCl2, 10 μM ZnSO4 and 2 

μM of CoCl2, CuCl2, NiCl2, Na2MoO4, Na2SeO3 and H3BO3, 2 mM CaCl2, 25 mM(NH₄)₂SO₄, 

2.77mM glucose and 50 μM kanamycin. The cultures were grown for 6 h at 37 °C at 250 rpm. 

PHIP(2) expression was induced overnight at 18 °C with 0.1 mM IPTG. Cultures were 

centrifuged at 4000 g for 30 minutes at 4°C.  

Pellets were resuspended in lysis buffer (10mM HEPES, 500mM NaCl, 5% glycerol, 0.5mM 

TCEP, 0.5 mg/mL Lysozyme, 1 μg/mL Benzonase, pH 7.5). The solution was vortexed and left 

at room temperature for 30 min before. 2% (v/v) triton-X- and 20-mM imidazole finale 

concentrations were added to the mixture before being centrifuged at 4000 g for 30 mins at 

4°C. The supernatant was applied onto a 1 mL His GraviTrap columns (GE healthcare) fitted 

with a LabMate extender. The columns were washed twice with wash buffer (10 mM HEPES, 

500 mM NaCl, 5% Glycerol, 0.5 mM TCEP, 20 mM imidazole, pH 7.5). The columns were 

slotted PD10 columns fitted with LabMate extenders. The proteins were eluted by applying 

2.5 mL of elution buffer (10 mM HEPES, 500 mM NaCl, 5% glycerol (v/v), 0.5 mM TCEP, 500 

mM Imidazole, pH 7.5) onto each GraviTrap column. 3.5 mL of wash buffer was applied onto 

each PD10 column and elutions were collected. 1 OD280 unit of TEV protease per PHIP(2) 10 

OD280 units was added to the elutions and incubated at 4°C. The solutions were run back over 

His GraviTrap columns as mentioned above. The fractions were concentrated by 20-fold and 

applied onto a Yarra SEC 2000 pre-equilibrated with wash buffer. The fractions containing the 

protein were collected using either a biorad C-9 or a Cytiva ALIAS. The fractions were 

concentrated to about 15 mg/mL of protein and flash-frozen in liquid nitrogen. 

PHIP(2) was crystallised in space group C2 at 4°C by vapour diffusion in 230 nL sitting drops, 

by mixing 100 nL protein in wash buffer with 100 nL reservoir buffer (20% PEG8000 and 40 

mM potassium phosphate) and 30 nL seeds of the same composition than reservoir with final 

pH measured to be about 5.6. 
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2.2.2. Crystallographic screening of small molecules and model building 
Small molecule crystallographic screening was performed at the XChem (Harwell, UK).[18] 

Crystals suitable for soaking were located in the plates with TexRank.[20] Suitable crystals were 

soaked with a 20% (v/v) ethylene glycol final concentration in the drops. Compound stock 

dispensing was performed with an ECHO acoustic liquid handler dispenser.[21] The crystals 

were incubated at 5 °C and harvested with a SHIFTER[22] before being plunged into liquid 

nitrogen and shot at the i04-1 or i03 beamlines located at the Diamond Light Source (Harwell, 

UK). 

The XChemXplorer[23] was used for crystallographic workflow management and paralleling. 

Molecular replacements and initial refinements were performed with DIMPLE.[69] Pandda[24] 

was used to identify low occupancy binding events. Ligands were fitted in Coot[70] and the 

structures refined with Buster[71] and/or Refmac[72] before deposition on the protein data 

bank (PDB).  

2.2.3. Grating-coupled interferometry assay 
Pulsed single-concentration surface-based biophysical measurements of binding kinetics 

were performed using a Creoptix®WAVE system (Creoptix, AG).[68] PHIP(2) was immobilised 

on a 4PCH biosensor surface using amine coupling. Briefly, a sensor chip was conditioned 

using injections of borate buffer (10 mM sodium tetraborate pH 9, 1 M NaCl). The sensor chip 

was activated using 1:1 mixture of 400 mM EDC/100 mM NHS for 420 s at 10 µL/min. PHIP(2) 

was diluted in sodium acetate buffer (10 mM, pH 5.0) and injected over the active surface at 

a flow rate of 10 μL/min for immobilisation. The surface was then deactivated with 

ethanolamine-HCl (1.0 M pH 8.5) for 420 s. 

Kinetic analysis for PHIP(2) and small molecules was performed using a pulsed injection 

scheme (waveRAPID)[68] at 25°C with a 5s association and 20s dissociation at a top 

concentration of 200 μM for all compounds. Blank samples of the running buffer were 

injected during the measurements every fifth cycle. Compounds were applied to the 

immobilised surface and a reference channel. Data analysis and visualisation were performed 

using the WAVEcontrol software 4.5.13 (correction applied: X and Y offset; DMSO calibration; 

and double referencing). Kinetic parameters were calculated using the Direct Kinetics fitting 

engine with 1:1 kinetic binding model. 
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2.3. Introduction to computational concepts 

2.3.1. Molecular representation, fingerprinting, and similarity calculations 
The ability to represent molecules as machine-readable data structures are essential for 

computational processing of chemical entities. One such representation is the Simplified 

Molecular Input Line Entry System (SMILES), a versatile notation for encoding the molecular 

structure as a single character string (Fig 2.6). SMILES strings are generated from generating 

a series of path within the molecule which correspond to specific substrings which collectively 

define the molecule.  Their generation is governed by a set of rules that dictate the traversal 

of a molecule's atoms and bonds in a canonical order. These rules cover various aspects of 

molecular structure. Firstly, they include atomic symbols, which represent elements. 

Secondly, they define bond types, such as single, double, or triple bonds. Thirdly, they 

describe ring closures, which use numerical identifiers to connect atoms in a ring via a bond. 

Lastly, they address branching by using parentheses to denote separate paths within the 

structure (Fig 2.6). The orderly application of these rules aim for a SMILES representation to 

be unique for a given molecular structure, facilitating effective comparison and manipulation 

of chemical entities (Fig 2.7).[73]  

 

 

Figure 2.6: SMILES string representation encodes molecular atom content, connectivity, and 
bonding. The image demonstrates how a molecule can be converted into a SMILES string from various 
substructures. The substructures composing the example molecule are coloured, with the dotted lines 
corresponding to the number of connecting atoms in the string. 
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Despite the utility of SMILES in representing molecular structures, there are limitations to 

consider. Small differences in the molecular structure can significantly alter the resulting 

SMILES, making molecules with minor differences appear quite dissimilar at a SMILES level. 

This is particularly problematic as molecules that have similar properties can look very 

different based solely on their SMILES representations. Furthermore, the generation rules can 

differ between software implementations, leading to inconsistencies. This variation could 

potentially confound further processing and analysis.[74,75] Given that the same molecule can 

yield different SMILES strings depending on the generation procedure used, this lack of 

standardisation may pose challenges for comparing and integrating cheminformatic data 

from diverse sources. 

SMILES strings can sometimes require conversion to representation suitable for numerical 

processing. The Morgan fingerprint, also known as the circular fingerprint, is particularly 

recognised for its ability to capture localised chemical environments around each atom in the 

molecule. Morgan fingerprints are essentially a set of bit vectors, with each bit corresponding 

to a chemical group that can be either activated or deactivated for a given molecule. The 

generation of a Morgan fingerprint is an iterative process, in which atom environments are 

hashed in concentric circles, with each iteration corresponding to a wider radius of atom 

neighbours (Fig 2.7).[76] 
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Extended-Connectivity Fingerprints (ECFPs) are a variant of the Morgan fingerprint, sharing 

the same underlying concept of capturing localised chemical environments around each atom 

in a molecule. ECFPs differ from the Morgan fingerprint in their hashing method and 

additional inclusion of topological distance information. This difference results in ECFPs being 

more sensitive to the structural and topological aspects of a molecule, providing a more 

refined fingerprint that can better differentiate between similar yet distinct chemical 

structures. The depth of the fingerprint, often referred to as the radius, controls the extent 

of the local environment considered.[77] At each radius, the algorithm collects information 

about the atom types, bond types, and other molecular features, generating a unique 

identifier based on these properties. This process culminates in the assignment of a unique 

binary code to each atom, which is subsequently combined into a fixed-length binary vector 

representing the entire molecule (Fig 2.7). 

However, ECFPs also have limitations. A key drawback is the potential for different molecules 

to have identical fingerprints, also known as hash collisions. This can occur when distinct 

structural features generate the same hash value in the fixed-length binary vector. 

Furthermore, ECFP does not include 3D spatial information, leading to a loss of chirality, which 

Figure 2.7: Fingerprinting generates machine-readable bit array vectors from SMILES strings for 
further analysis. The SMILES string serves as input for the fingerprinting process, which decomposes 
the molecules into substructures while capturing molecular atom content, connectivity, and bonding. 
The resulting substructures are then folded into a fixed-length fingerprint, with 1 and 0 indicating the 
presence or absence of a specific substructure within the input enabling comparison with other 
molecules.  
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can be crucial for understanding molecular interactions and function. Consequently, while 

ECFPs are a valuable tool for molecular representation, these limitations could confound data 

interpretation.[78] 

The utilisation of molecular fingerprints enables the calculation of molecular similarity and 

diversity through the employment of distance metrics. A prominent metric in this context is 

the Tanimoto coefficient, also known as the Jaccard index, which measures the degree of 

overlap between two ensembles. The Tanimoto coefficient ranges from 0 to 1, with values 

closer to 1 indicating higher similarity between the molecules being compared. 

Mathematically, the Tanimoto coefficient (TC) is calculated as the ratio of the number of 

shared features between 2 molecules to the total number of features.[79] 

Tanimoto	coefficient	 TC =
|F(A)⋂F(B)|
|F(A)⋃F(B)|

 Equation	2.7	

Where |F(A)| and |F(B)| are the number of elements in the fingerprints F(A) and F(B), 

respectively, and |F(A) ∩ F(B)| is the number of elements that are present in both F(A) and 

F(B). The Tanimoto coefficient can then be translated into the Tanimoto distance. 

Tanimoto	distance	 TD = 1 − TC Equation	2.8	

Molecular fingerprints are also of high dimensionality which renders visualisation and 

clustering tasks challenging. Dimensionality reduction techniques are instrumental in 

addressing this challenge, enabling the projection of high-dimensional fingerprint data into 

lower-dimensional spaces while preserving the essential relationships between data points. 

One such technique is the t-Distributed Stochastic Neighbour Embedding (t-SNE), a nonlinear 

dimensionality reduction algorithm that effectively captures both local and global structure 

in the data.[80]  Molecular fingerprints, can also be used as input for, machine learning 

applications, such as Random Forest classifiers to predict specific properties in molecules, like 

crystallographic binding. By constructing multiple decision trees and aggregating their results, 

the classifier distinguishes between positive and negative outcomes, refining its predictions 

based on features and outcomes.[81]  
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2.3.2. Binding pose predictions, scoring and filtering 
Molecular docking techniques aim to predict the orientation of a ligand within a receptor's 

binding site (Fig 2.8), offering valuable insights for structure-based drug design. Initially, 

various ligand conformations are generated to explore the conformational space (Fig 2.8). 

Genetic algorithms, a type of stochastic optimisation technique inspired by natural selection, 

can then be utilised to identify favourable binding poses. These algorithms enable the 

optimisation of ligand conformations and orientations within the receptor binding site by 

simulating evolutionary processes. Genetic algorithms involve the iterative generation of an 

initial population of candidate solutions (binding poses), selecting the fittest candidates based 

on their scores (defined by the fitness function), executing crossover (recombination) to 

produce offspring, and mutating offspring to introduce diversity (Fig 2.8). In the context of 

binding pose prediction, diversity is often defined as the ligand’s (and sometimes protein side 

chains) rotational and translation degrees of freedom in cartesian coordinates thus defining 

the orientation and position of the pose. 

The fitness or scoring function typically considers factors such as van der Waals interactions, 

hydrogen bonding, electrostatic interactions, and sometimes desolvation effects (Fig 2.8).[82] 

The selection process, driven by conformational sampling and guided by the genetic 

algorithm's fitness criteria, ensures that the best candidates are chosen for crossover and 

mutation in subsequent iterations (Fig 2.8). When a predetermined number of docked 

conformations is achieved and converged by the algorithm, the conformer rank is also 

determined by the scoring function.[83]  

However, these poses can be rescored with other tools, such as machine learning scoring 

functions, developed through training on databases of protein-ligand complexes with known 

affinities.[84] Shape and colour overlay rescoring of docked poses serve as complementary 

methods to traditional docking approaches, filtering "unbiased" docking poses based on 

experimental information. In this process, a ligand, such as an experimentally resolved 

fragment, serves as a template pose for scoring. The docked pose is then compared to the 

template, with only overlapping regions considered. This approach consists of two main 

components: volume and feature overlap scores. The volume score evaluates the volumetric 

overlap between the docked and template pose, while the feature overlap score assesses the 
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overlap of chemical features, considering crucial elements such as hydrogen bond donors and 

acceptor regions.[37] 

Figure 2.8: Genetic algorithm guides docking prediction to identify low-energy ligand binding poses 
against a receptor structure. Starting conformations are scored with the fitness function, providing a 
preliminary sampling of the energy landscape. Poses are then combined, generating offspring, that 
possess conformational features from both parents. Small mutations, corresponding to variations in 
rotational and translational degrees of freedom, are introduced to sample local regions of the 
landscape. The process of crossover and mutations can be iteratively repeated to identify energy 
minima defined by the fitness function. Fitness is typically defined by a scoring function that assesses 
the non-bonded potential between the pose and the receptor, sometimes including solvation and 
intramolecular torsional energies. 
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Constrained docking, another approach to binding pose prediction, incorporates prior 

knowledge of the ligand binding pose into the docking process.[85] Fragmenstein,[86] a newly 

developed software, exemplifies a tool that applies constrained docking. This technique 

predicts a ligand pose for a receptor by using experimentally resolved information directly, 

such as the positions of one or more ligands in complex with the target receptor. The 

maximum common substructure (MCS) of the ligand maps to the positions of the pre-existing 

ligand poses. A conformer is positioned based on this mapping, which often leads to an 

unphysical pose due to conflicting atom positions. To resolve this, the system (protein and 

unphysical ligand) undergoes minimisation to restore normal molecular geometries. This 

process adjusts the ligand pose to reduce steric clashes and optimise protein-ligand 

interactions, resulting in a more accurate binding pose. 

2.3.3. Molecular dynamic simulations 
Molecular dynamics (MD) simulations represent a physics-based methodology for probing the 

conformational space and temporal behaviour of proteins, ligands, and complexes. This 

approach enables researchers to investigate the behaviour of biomolecules in contexts 

approximating physiological settings, yielding valuable insights into their dynamics. The 

procedure of performing MD simulations encompasses a sequence of predetermined stages, 

including model construction, parameterisation, minimisation, unbiased simulation, and 

trajectory analysis. Crystal structures are often used to seed molecular dynamic simulations 

with the ligand either experimentally resolved or modelled via docking. 

Model building is a pivotal phase in MD simulations, establishing the groundwork for 

subsequent steps. This stage necessitates the preparation of both the protein and the ligand. 

Accurate protonation states must be assigned to each, frequently via computational pKa 

predictions, to accurately represent the physiological context. The protein model often 

necessitates the addition of missing loops and atoms that are not present in experimentally 

resolved structures. This is carried out employing techniques such as homology modelling to 

predict protein structures based on sequence resemblance to known structures. 

Furthermore, it is vital to solvate the protein with water and ion molecules to replicate 

physiological conditions.[87] 
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Force fields play an integral role in MD simulations, delineating the mathematical functions 

and parameters that characterise a system's potential energy, encompassing atomic 

interactions such as bond stretching, angle bending, torsional interactions, and non-bonded 

interactions (Fig 2.9). Numerous force fields have been specifically designed for proteins. One 

such is the Amber ff99SB,[88] which brought novel protein backbone dihedral angle 

parameters for better alignment with high-resolution protein crystal structures. Amber 

ff99SB-ILDN,[89] the subsequent update, further refined these parameters and accurately 

accounted for side-chain torsion potentials of isoleucine, leucine, aspartic acid, and 

asparagine residues. Later, Amber ff14SB made further enhancements to both backbone and 

side-chain torsional parameters based on experimental data and high-level quantum 

mechanical calculations.[90] These force fields contain predefined parameters suitable for 

classical biological and solvent molecules, thus highlighting their integral role in the accuracy 

and predictability of MD simulations 

 

Conversely, ligands, often small molecules with diverse chemical structures, are not covered 

by standard protein force fields. Therefore, assigning force field parameters to ligands 

typically necessitates additional procedures, including parameterisation or derivation of 

specific parameters for the unique functional groups present in the ligand. This process may 

Figure 2.9: Typical force field terms used in molecular dynamics simulations. There are two broad 
classes of terms related to bonded and non-bonded molecular interactions. The bonded terms 
describe the potential forces associated with bond stretching, angle bending, dihedral rotation, and 
plane bending. The non-bonded terms define the attractive and repulsive forces generated from 
Coulombic and van der Waals interactions. 
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entail quantum mechanical calculations or the employment of specialised force fields for 

small molecules, such as the Generalised Amber Force Field (GAFF).[87] 

Before initiating the actual simulation, the system  must undergo a series of minimisation 

steps to eliminate steric clashes, mitigate unfavourable conformations, and equilibrate the 

solvent molecules within the simulation box and around the protein. Additionally, the 

system's temperature and pressure are stabilised through dedicated equilibration steps 

conducted in NVT (constant number of particles, volume, and temperature) and NPT 

(constant number of particles, pressure, and temperature) ensembles, respectively.[87] 

Upon suitable equilibration of the system, unbiased MD simulations can be executed. This 

process involves integrating the equations of motion over a predefined time interval, derived 

from Newton's second law of motion. Numerical integration algorithms, such as the Verlet or 

leapfrog method, are utilised to iteratively compute the positions and velocities of atoms over 

discrete time increments. During these calculations, hydrogen to heavy atom bonds are 

frequently constrained using algorithms like LINCS, facilitating longer time steps in the 

femtosecond range while preserving structural integrity. The MD simulation trajectory is 

generated by updating the positions and velocities of atoms in the system at each time 

increment.[87] 

After the simulation, the resulting trajectories must be processed and analysed to extract 

significant information regarding the system's dynamics and energetics. A prevalent 

technique for analysis is the root-mean-square deviation (RMSD) calculation, which quantifies 

the average distance between atoms in a reference structure and the atoms in the simulated 

structures. By monitoring RMSD values over time, it is possible to evaluate structural 

stabilities within the system, thereby offering atomistic and dynamic information relevant to 

aspects such as protein-ligand binding. 

MD simulations, when complemented with suitable analysis tools, can serve as effective 

instruments in unveiling conformational states that may remain obscured within 

experimental structures. An illustrative example is a study that employed extensive MD 

simulations, which led to the consistent revelation of an allosteric site across 

bromodomains.[91] Interestingly, this allosteric site is absent in a vast majority of crystal 

structures, which may provide an explanation for its previous unnoticed existence until 

persistently delineated by MD simulations. Nevertheless, it is essential to exercise caution as 
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it can be challenging, if not entirely impossible, for classical MD simulations to accurately 

sample conformational states in their correct proportions. This is primarily because force 

fields are typically fitted against only a very limited portion of possible conformational 

ensembles.[88] Moreover, there are additional factors that classical force fields might not 

account for, such as polarisation effects,[92] potentially leading to imprecise results. Therefore, 

it is advisable to use MD simulations judiciously, in combination with experimental data, 

thereby facilitating a comprehensive understanding of molecular behaviour and interactions. 

2.3.4. MMGBSA and Interaction Entropy 
The Molecular Mechanics Generalised Born Surface Area (MMGBSA) method and Interaction 

Entropy (IE) method are two widely employed computational approaches to investigate 

protein-ligand binding free energies, which provide insights into the underlying energetics 

driving the formation of protein-ligand complexes (Fig 2.10). 

Both methods rely on pre-processing of molecular dynamics (MD) trajectories, which involves 

solvent removal, and frame selection, to yield a series of representative snapshots that 

describe the structural ensemble of the complex under investigation (Fig 2.10). Overall, the 

enthalpy (ΔH) and entropy (-TΔS) of binding are estimated with MMGBSA[40] and Interaction 

Entropy,[93] respectively, and combined to estimate the Gibbs free energy (ΔG) (Fig 2.10). 

Gibbs	free	energy	

estimation	
ΔG#$% = ΔH&&'($! − TΔS)* Equation	2.9	

The MMGBSA methodology can involve separating the complex, protein, and ligand from an 

individual MD trajectory, and calculating the binding enthalpy (ΔH) as the difference between 

the energies of the protein-ligand complex (HPL) and those of the isolated protein (HP) and 

ligand (HL). 

Binding	enthalpy	estimation	 ΔH+!,+ = 〈H-. − H- − H.	〉-. Equation	2.10	

The energies are averaged over the number of frames with the protein and ligand trajectories 

extracted from protein-ligand complex’s (PL) trajectory . The energies for all 3 components 

(Hx) are computed by summing the molecular mechanical energy (ΔEMM) within individual 

components, and estimated solvation free energy of transferring the component from the gas 

to solvent (ΔGsol) (Fig 2.10). 
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Enthalpy	energy	 H/ = ΔE00/ + ∆G$1,2 	 Equation	2.11	

The molecular mechanical energy is the sum of the bonded and non-bonder interaction 

energies in gas phase. The bonded energies (ΔEB) are the intramolecular interactions which 

are composed of bond (ΔEb), angular (ΔEag) and dihedral (ΔEdhl) energies (Fig 2.9).  The non-

bonded energies (ΔENB) are the intermolecular electrostatic (ΔEele) and van der Waals (ΔEvdW) 

interactions between the protein and the ligand and these are equal to zero for the ligand 

and protein are considered alone. 

Molecular	mechanical	

energy	

ΔE00 = ∆E3 + ∆E43		

= 	 a∆E(" + ∆E!' + ∆E"5,b	

	+	(∆E#,# +	∆E6"7) 

Equation	2.12	

Consequently, most of the energetic contribution for each component to the final binding 

energies is derived from the free energy of solvation calculations. These calculations attempt 

to account for solvation effects, such as structural deformation or cavitation. The free energy 

of solvation is estimated from two terms: the polar (ΔGp) and non-polar contributions (ΔGNP). 

Free	energy	of	solvation	
∆G$1, 	= 	∆G8 + ∆G98	

= 	∆G:3 + ∆G;<;< 
Equation	2.13	

The Generalised Born (GB) approximation (ΔGGB) estimates the polar solvation energy by 

representing the solvent as a dielectric continuum. It calculates the electrostatic interactions 

between the solute and solvent using the Born equation, which relates the solvation energy 

to the charge distribution of the solute and the dielectric properties of the solvent. The 

solvent-accessible surface area (SASA) method (ΔGSASA) estimates the non-polar solvation 

energy, which is related to the hydrophobic effect. It calculates the surface area of a molecule 

that is accessible to solvent molecules, and the non-polar solvation energy is then derived 

from this surface area using a linear relationship with a proportionality constant, representing 

the solute-solvent interaction energy per unit area.[40] 

The precision of MMGBSA calculations varies upon a variety of factors. These include the type 

and charge of protein and ligand under investigation, the choice of force field, the protocol 

followed, and the corrections implemented.[94] As such, it is recommended to carry out 
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comprehensive benchmarking prior to the execution of MMGBSA calculations when 

experimental data is available. Expertly applied, MMGBSA can augment the effectiveness of 

virtual screening processes.[95] This is further evidenced by MMGBSA computations reaching 

a coefficient of determination value of 0.63 when juxtaposed against a curated version of the 

PDBbind database.[96] This indicates that whilst MMGBSA can effectively predict broader 

trends, it may not always provide an exact quantification of binding affinities. Importantly, 

MMGBSA often demonstrates a higher proficiency in ranking compounds based on their 

binding affinities as opposed to delivering precise numerical predictions for these affinities. 

The Interaction Entropy (IE) method presents an interesting paradigm for estimating the 

entropic cost of binding (Fig 2.10). It estimates such quantity with the exponential averaging 

of the protein-ligand intermolecular non-bonded forces across simulation frames.  

Interaction	Entropy	 −T∆S	 = 	KT ln 〈𝑒
∆*!"

#$

>? 〉 Equation	2.14	

Where ∆E!"#$  are the non-bonded electrostatic and van der Waals interactions between the 

protein and the ligand. T and K are the temperature and gas constant, respectively. Together 

with the MMGBSA estimation of binding enthalpy, the Gibbs free energy of binding can be 

estimated from MD trajectories (Fig 2.10).[93] 

Figure 2.10: Molecular dynamics simulations provide material required for free energy calculations 
using Molecular Mechanics with Generalised Born and Surface Area Solvation and Interaction 
Entropy calculations. The trajectories stripped of water are used to calculate the energies for the 
protein, ligand, and complex. The solvation free energy is then estimated using generalised Born and 
surface area solvation approximations assuming implicit solvent for polar and non-polar terms, 
respectively. The protein and ligand enthalpies are subtracted from the protein complex enthalpy, 
thus estimating the binding enthalpy. The entropy is estimated from the protein-ligand trajectory and 
combined with the enthalpy to estimate the binding free energy. 
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Chapter 3. A community evaluation of computational 
methods for fragment screening 

3.1. Credits 
The research and manuscript presented in this chapter were conducted and authored by 

Harold Grosjean. Harold Grosjean was responsible for protein expression, purification, and 

crystallisation, as well as crystallographic fragment screening, structure refinement, challenge 

organisation, submission evaluation, and cheminformatic analysis. Additionally, Harold 

Grosjean prepared the manuscript and created the figures. The PHIP(2) expression system 

and crystal form were provided by Dr Tobias Krojer. Dr Anthony Aimon, Dr Romain Talon and 

Dr Alice Douangamath assisted with the crystallographic screening and analysis under the 

supervision of Prof Frank von Delft. The initial coding and statistical analysis infrastructure 

were established by Dr Mehtap Işık. Dr Tim Dudgeon generated follow-up database subsets 

with the fragment network. Prof John Chodera offered guidance in conceptualising the 

project, while Philip C. Biggin and Prof David Mobley aided in refining and reviewing the 

manuscript. 

3.2. Publication 
The research conducted in this chapter led to a publication, which can be accessed using the 

following reference: 

Grosjean, H. et al. (2022) “SAMPL7 protein-ligand challenge: A community-wide evaluation 

of computational methods against fragment screening and pose-prediction,” Journal of 

Computer-Aided Molecular Design, 36(4), pp. 291–311. 

Available at: https://doi.org/10.1007/s10822-022-00452-7.  
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3.3. Introduction 
Chapter 1 and 2 outlined the basic concepts and challenges associated with fragment 

identification and elaboration. Computer-assisted drug discovery aims to computerise 

experimental procedures to reduce labour, time and costs, therefore increasing turnover. 

Fragment identification is not exempt from this paradigm. However, there is little in the way 

of systematic validation specifically for fragment-based approaches. To address this issue the 

SAMPL challenges prospectively assess the predictive power of methods involved in 

computer-aided drug design. 

In this chapter a large crystallographic fragment screen was performed against the 

therapeutically relevant second bromodomain of the Pleckstrin-homology domain interacting 

protein that revealed 52 different fragments bound across 4 distinct sites, 47 of which were 

bound to the pharmacologically relevant acetylated-lysine binding site. These data were kept 

undisclosed and used to assess computational screening, binding pose prediction and follow-

up enumeration in a blinded fashion. All submissions performed randomly for screening. Pose 

prediction success rates (defined as less than 2 Å root mean squared deviation against heavy 

atom crystal positions) ranged between 0 and 25% and only a very few follow-up compounds 

were deemed viable candidates from the manual analysis of common molecular descriptors. 

The tighter deadlines imposed here, compared to similar challenges, led to a small number of 

submissions suggesting that the accuracy of rapidly responsive workflows remains limited. In 

addition, the application of these methods to reproduce crystallographic fragment results still 

appears to be very challenging. This work shows that there is room for improvement in the 

development of computational tools, particularly when applied to fragment-based drug 

design. In addition, the results suggest that experimental approach are still required for 

identifying fragments against a target. 
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3.4. Results 

3.4.1. Crystallographic fragment screening against PHIP(2) reveals novel 
binders 
The second bromodomain of the Pleckstrin-homology domain interacting protein (PHIP(2)) 

was initially crystallised in a C2 space group that diffracts to a resolution of approximately 1.2 

Å by Dr Tobias Krojer. This crystal form is easily reproducible making it ideal for an XChem 

screen.[97] The DSI-poised[98] and FragLites[12] libraries were screened against the C2 crystals. 

The former library is composed of 768 fragments and was designed to ease follow-up 

chemistry. FragLites is composed of 31 halogenated fragments, all of which have a paired H-

bond donor/acceptor motif to probe interaction doublet in the binding site while the halogen 

atoms assist electron density fitting.  

Out of these 799 fragments, no binding was observed for 707 of them despite the acquisition 

of adequate diffraction data sets. To minimise the number of missed fragments, all FragLites 

were screened in duplicate. The remaining fragments were re-screened if the diffraction 

dataset did not display the expected C2 space group or had a resolution lower or equal to 2 Å 

or if the Rcryst and Rfree values were lower than 0.23 and 0.25, respectively. This led to the re-

soaking of 202 fragments that resulted in the identification of 10 additional hits including 8 

acetylated-lysine binding site hits (Fig. 3.1).  

In total, 52 hits were identified across 4 sites (Fig. 3.1), achieving a global hit rate of 6.51%.  

47 fragment hits are bound to the pharmacologically relevant acetylated-lysine binding site 

(Fig. 3.1) and are summarised in Table 3.1. 7 hits were resolved at a small, solvent-exposed 

cavity located between α-helices C and Z and 4 out of these also bind to the main binding site, 

implying dual binding. 2 additional hits were found, 1 behind the BC-loop and 1 in between 

the α-helices A and B (Fig. 3.1). The fragments binding away from the main acetylated-lysine 

binding site are largely solvent exposed and contact other proteins in the lattice and hence 

may be artefacts of crystal contacts. Thus, only the acetylated-lysine (Kac)  binding site hits 

were considered going forward. 
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Figure 3.1: Overview of the fragment hits against the C2 crystal form. (A) Overlay of the 52 structures 
resulting from the XChem screen. The Kac binding is the most populated site. The other sites can be 
seen on the right and left of the Kac binding site. An additional fragment hit is located behind the 
purple BC-loop. B illustrates the 4 fragment binding subsites with BCI, CV, ZAC and WC denoting the 
BC-interface, central void, ZA-channel, and the water cavity, respectively, as grey spheres. C shows 
selected fragment binding poses to illustrate the interactions and binding regions identified. C1 shows 
F421 that forms an H-bond with serine 1392 at the BC-interface. C2 shows F126 that forms a halogen 
bond with threonine 1396 and serine 1401 at the BC-interface. C3 shows F558 with 2 aromatic 6-
membered rings that form perpendicular π-π stacking with tyrosine 1350 and tyrosine 1395. C4 shows 
F393 which has a morpholine moiety that fills the central void. Finally, C5 shows F368 which forms H-
bonds on the ZA-channel with backbone nitrogen and oxygen of Aspartic acid 1346 and proline 1350, 
respectively. The red arrow in panel A indicates the point of view used in panels B and C. 
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Table 3.1: The 47 Fragments identified in the acetylated-lysine binding pocket of PHIP(2). The 
fragment IDs and corresponding PDB accession numbers are showed, below each 2D molecular 
representation on the left and right, respectively. 
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Inspection of fragments binding to the acetylated-lysine binding site suggests this pocket can 

be divided into 4 sub-sites (Fig. 3.1). These were named: i) The BC interface (BCI), which 

includes interactions with α-helices B and C and, the BC-loop (BCL) ii) the water cavity (WC), 

which is defined by the location of the 4 water-molecule network iii) the ZA channel (ZAC), 

which is the part of the ZA loop that forms a semi-circle iv) the central void which lies at the 

centre of the 3 other sub-cavities. The subsites and exemplar fragments are displayed in 

Figure 3.1, respectively. 

The screen probed the binding site well with fragments contacting most all side chains 

composing its surface (Fig. 3.1). The most frequently occurring H-bond forming amino acids 

were side chains of serine 1392, threonine 1396 and serine 1401, all of which are located at 

the BC-interface as well as the backbone nitrogen of aspartic acid 1346 and the backbone 

oxygen of proline 1340, which are located on the ZA channel. Halogen bonds show the same 

interaction pattern around the BC-loop but penetrate deeper between with α-helices B and 

C to interact with multiple side chains simultaneously. Tyr1350 seals the top of the central 

void, whilst Tyr1395 is located on the BC-interface. These side chains are positioned in such a 

way that fragments form perpendicular π-π stackings. Other hydrophobic residues that 

frequently contact the fragments are valine 1345, isoleucine 1403, which are in the central 

void. The PHIP(2) water appears to be easily displaceable as all fragments that interact at the 

BC interface displace it (Fig. 3.1). 
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Overall, the C2 crystal form appears to be rigid with few fragments inducing protein motions. 

F760 induces the largest protein motions by relaxing the ZA- and BC-loops and bringing 

tyrosine 1395 closer to the binding site core. Fragments F95, F503 and F600 cause the re-

arrangements of threonine 1396 into a peptide-bound conformation (Fig. 3.1). In F95 and 

F503, this is paired with the formation of a water bridge between the fragment and threonine 

1396 whilst F600 contacts this side chain directly (Fig. 3.2). In addition, the 2 former fragments 

(F95 and F503) rotate isoleucine 1403 away from the binding site in a parallel orientation with 

α-helix C. 5 fragments disrupt the 4-water network (Fig. 3.2). F584 is the most remarkable hit 

by displacing the 4 water molecules network to locate itself deep in the binding cavity where 

its benzene moiety interacts with tyrosine 1353, and its 7-membered ring fills the 

hydrophobic space of the central void. F467, F616, F618 and F760 all displace the fourth water 

of the network. 

Cheminformatic analysis of the fragments bound to the acetylated-lysine binding site 

suggests they tend to be smaller in molecular weight and more hydrophobic than the library 

average and most of them have 1 and 3 H-bond donors and acceptors, respectively (Table 

3.2). 

Figure 3.1: Special acetylated-lysine site binder cases. The annotation “flip” indicates that the 
fragment induces a re-arrangement of threonine 1396 into a peptide-bound like conformation, which 
is paired with a change of the BC-loop conformation. The annotation “Wn out” indicates that the 
fragment displaces the Nth bromodomain water. 
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Table 3.2: Comparison of common molecular descriptor between the screened fragments (excluding 
the acetylated-lysine site binders) and acetylated-lysine site fragment binders. The plots show the 
density of molecules at a given descriptor value normalised by the number of molecules composing 
the set. The full library excluding Kac site binders and Kac binders are displayed in blue and orange, 
respectively.  A, B, C, D, E F, G show the distributions of H-bond donors, H-bond acceptors, rings, and 
rotatable bonds counts, respectively. Panel H shows the distribution of Tanimoto coefficients for all 
against all molecules within each set. 
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No usable data could be collected for 1 FragLites (F12) and 39 other DSI-poised fragments led 

to consistently damaged crystals (despite repeated soaking) resulting in the absence of 

diffraction data for these molecules (Table 3.3). The exact cause(s) of such degradation 

remain, unclear and could be diverse but may be due to relative crystal tolerance to individual 

ligands at the soaking concentration or defective ligand stock solutions.  

 

Table 3.3: Molecular structure of screened fragments for which no usable diffraction data could be 
obtained. 
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3.4.2. Stage 1: Discrimination of binders from non-binders 
The aim of the first stage was to discriminate binders from non-binders identified at the 

acetylated-lysine binding site from screening presented above. The participants were 

provided with the SMILES strings of the 799 screened fragments. In addition, they were also 

provided with a PHIP(2) apo-structure in the C2 space group. The location of the acetylated-

lysine binding site was also indicated by a dummy noble gas atom positioned in the PDB file. 

The experimental protocol was also supplied to reproduce the crystallographic results 

computationally. Experimental information provided included: crystallisation conditions, pH, 

and the fragment soaking concentration. 

The participants were asked to categorise each fragment listed with Boolean values: True and 

False for binders and non-binder, respectively. Ranking, scoring, or confidence metric were 

not asked to be reported. Participants were given 1 month to submit entries. Predictions were 

requested for all four binding sites seen in the screen.  However, most participants only 

submitted solutions for the main acetylated-lysine binding site; thus, these peripheral sites 

further were not investigated further.  Table 3.4 provides a summary of submissions, which 

were expanded in detail via the individual submission identification numbers (SIDs). 
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Table 3.4: Overview of Stage 1 virtual screening submissions. 9 sets of predictions were submitted 
for Stage 1. The first, second, third and fourth columns correspond to the submission identification 
number (SID), the affiliation of the participants, the method’s name and the list of software used. The 
last column shows the ratio of predicted non-binders over predicted binders. 

 

SID Participant 
Affiliation Method Name Method 

category Software used 

Non-
Binders to 

binders 
ratio 

38 

Akiyama Lab, 
Department of 

Computer 
Science, Tokyo 

Institute of 
Technology 

AutodockVina-
VirtualScreening Docking 

Autodock Vina 1.1.2, 
MOE 2019.0102, 
Openbabel 3.0.0, 

AutodockTools 1.5.6 

0.001 

55 Not provided dock_score Docking, 
(MD) 

OpenEye docking toolkit 
v1.1 7.528 

56 
The University 

of Tokyo, Japan 
 

Template 
docking and 

similarity search 

Docking, 
Ligand-
based 

Molegro Virtual Docker 
(7.0.0), 

Schrödinger suite (2019-3), 
PubChem (current) 

10.859 

52 

Institut de 
Chimie des 
Substances 
Naturelles, 

CNRS, Gif-sur-
Yvette, France 

docking-S1-G2-
chemscore-

top5perc 
Docking 

Schrodinger LigPrep 
v48012,  

CACTVS Chemoinformatics 
Toolkit V3.4.6.26, 

CORINA v4.2.0, 
CCDC GOLD v5.7.1 (CSDS-

2019-1) 

17.975 

35 University of 
Oxford, UK 

Molecular 
Docking with 

MM-GBSA 
Scoring 

Docking, 
MD 

OpenBabel v3.0, 
UCSF Chimera v1.12, 

PDB2PQR v2.1, 
SPORES v1.3, 
PLANTS v1.2, 
DOCK v6.8, 

AmberTools v2019, 

20.686 

37 
Universitat 

Pompeu Fabra, 
Spain 

ECFP4rdkit-RF Ligand-
based, ML 

MOE 2016.08, 
python 3.6.9, 

rdkit 2019.09.1.0, 
scikit-learn 0.21.3, 

68.000 

43 

Institute of 
Systems 

Biomedicine, 
Peking 

University 

Deep Learning; k-
deep; docking Docking, ML Python, 

RDKIT, 68.000 

44 
University of 
Barcelona, 

Spain 

DUck-aided 
Virtual Screening 

(DaViS) 

Docking, 
MD 

rDock 2013.1, 
Amber16, 

AmberTools16, 
MDmix 0.2.0, 

Gromacs version 2018.1, 
LigPrep version 46013, 

MOE 2019.0102, 
Prime version 5.6 (r012) 

25.172 
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SID 38 used a typical workflow, whereby ligand conformations and protein protonation states 

were generated by MOE, which was followed by docking with AutoDock Vina.[82]  A threshold 

of ≤ 4.0 kcal/mol for the best scoring pose was used to categorise a fragment as a binder.  

SID 55 used OpenEye Omega Toolkit[99] for conformer generation and docking, respectively 

with docks being scored with the Chemgauss4 scoring function. The participants behind SID 

55 did not provide the threshold employed to discriminate binders from non-binder.  

SID 33 corresponds to a negative control random submission where compounds were 

selected randomly of compounds were selected as binders using an in-house python script 

generated by Prof David Mobley. 

SID 56 employed two separated protocols. The fragment-hits from Cox et al.[98] were 

considered as binders and used in a PubChem and 3D fingerprints similarity searches. Then, 

the remaining fragments were protonated at crystallographic pH then template docking was 

employed against 2 fragment-bound structures in a different (P21212) symmetry group. The 

participants mentioned that they considered docking scores, similarity scores and ligand 

efficiency when defining binders and non-binders without further explanations.  

SID 52 first built a validation set of 1499 compounds from assay and crystallographic data 

which includes 45 fragments belonging to the provided library. Those 45 compounds were 

classified as active. 3D conformers for each validation active were generated with Corina[100] 

and protonated at physiological. Gold was used with 4 scoring function (GoldScore, 

ChemScore, ASP and ChemPLP) to dock the 1499 validation actives onto 3 distinct conformers 

identified from 8 fragment-bound structures.[101] They then looked at the ranking of the 45 

active fragments as well as RMSDs to all 8 fragment-bound PDBs. ChemScore with the second 

conformer (out of the 3) yielded the best scores. They used those parameters to subsequently 

dock the 799-fragment library and defined the top 5% as binders. 

SID 35 kept 5 water molecules during the preparations step with DockPrep tool.[102] Protein 

and ligand were protonated with PDB2PQR and OpenBabel[103], respectively before 

performing docking with PLANTS[104] using the ChemPLP as scoring function. The poses were 

further scored using DOCK6[102], which performs minimisation, Molecular Dynamic simulation 

and generalised Born/Surface Area (GB/SA) continuum model scoring in Amber. 
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SID 37 was the only submission that did not employ docking at any stage of the predictions. 

Instead, they built a random forest classifier based on data from publications, ChEMBL and 

the PDB. For the training set, they identified a total of 10 and 448 binders and non-binders, 

respectively.  An additional 1214 structures were obtained from the PDB by searching for 

other bromodomain family member and the associated ligands were classified as binders. 

70,000 additional molecules were retrieved from ChEMBL and classified as binders based on 

activity measurements. Model training was performed against chemical descriptors and 

Morgan fingerprints.  Finally, they classified the provided SMILES and they were predicted to 

be binders if their probability score was higher than 0.5. 

SID 43 did not provide their protocol describing the method employed for predictions despite 

multiple requests.  A combination of machine learning and docking was seemingly employed.  

SID 44 employed different MD-based methods and docking in their workflow. The stability of 

the water network was, first, assessed with MDmix[105] which concluded only water-4 to be 

easily displaceable.  Classical MD simulations were then employed against the provided Apo 

state and ligand bound structures identified from Cox et al.[98] to evaluate protein motions. 

They observed that the ZA-loop is the most flexible region by visiting opened, semi-opened 

and closed states and that the presence of ligands stabilises the protein in an opened state. 

Thus, another structure that displays a more open state of the ZA-loop was selected for 

further processing instead of the provided Apo state. They then used rDock[106] with 

pharmacophore restraints to generate poses. 3 different protocols, which used different sets 

of restraints and water molecules, were applied onto the provided smiles after tautomer and 

protomer enumeration at pH 5.6 +/- 1.0 For each fragment, the resulting poses were first 

clustered and then finally selected based on the protein-ligand interaction score. The docking 

poses resulting from each 3 protocols were evaluated with a Dynamic Undocking-like[107] 

procedure which extracts the ligand and nearby binding-site environment, performs steered-

MD and measures work to assess interaction strength. A threshold was used to categorise 

binders from non-binders with binders scoring lower than -2 kcal/mole. Further refinement 

was applied to the predicted binders list which excluded the docking poses that were unstable 

in Duck or MD windows. 

 



 66 

To assess the performance of each submission the sensitivity and specificity were calculated, 

which are the True Positive and True Negative rates, respectively. Since the dataset is largely 

populated of non-binders, balanced accuracy was to evaluate the results. The balanced 

accuracy is the simple arithmetic average of True Positive and True Negative rates and a value 

of 0.5 indicates a random prediction. The predictions were compared to ground truth values 

as defined by the outcome of the crystallographic fragment screening experiment. 

Here an experimental positive was defined when an interpretable electron density, in which 

a fragment can be fitted, and a negative where such signal is absent. It is difficult if not 

impossible to discriminate non-binding events that are caused by structural (i.e binding 

allowed by receptor’s conformation(s) and/ or energetics) or chemical factors (such as crystal 

or ligand stock conditions). Negatives therefore correspond to experimental negatives, 

irrespectively of their underlying nature. No usable diffraction data could be obtained for the 

fragments listed in Table 3.3; therefore, these were removed from the subsequent analysis.  

 

 

Figure 3.2: Performance summary of submissions to Stage 1 of the challenge. The Sensitivity, 
Balanced accuracy and Specificity rates for each submission are shown in blue, orange and green, 
respectively. The error bars associated which each metric was estimated via bootstrapping of the data 
and the orange horizontal line shows a random perfection based on balanced accuracy values. 
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This stage turned out to be extremely challenging with all submissions performing 

approximately random with an average balanced accuracy across all submissions of 0.49 ± 

0.01 (Fig. 3.3). Overall, all methods, but SID 38, tended to correctly classify the majority of the 

fragments as non-binders as indicated by their high specificity rates. However, these failed to 

identify most binders with submissions 37, 43 and 44 being unable to identify a single binding 

event and submissions 55, 56, 52 and 35 only correctly identifying 5 (F95, F199, F558, F579, 

F740), 4 (F13, F14, F96, F488), 3 (F275, F529, F760) and 1 (F362) binding events, respectively 

(Table 3.1). SID 38, however, showed an opposite outcome where all fragments were 

categorised as binders, therefore, leading to a Sensitivity rate of 1. 

3.4.3. Stage 2: Binding pose predictions for fragment binders 
The objective of the second stage was to correctly predict the crystallographically resolved 

binding pose for the 47 protein-fragment complexes resolved at the acetylated-lysine binding 

site. The participants were provided with the same C2 apo state structure (as in Stage 1) and 

binders SMILES strings. It was also specified that compounds were purchased as racemic 

mixtures and that higher affinity conformers should be revealed in the electron density or 

that both stereo-isomers could bind, thus resulting in an average electron density.[108] 

The entrants were tasked to submit at least one and no more than 5 poses for each of the 47 

fragments and given about 2 weeks to submit predictions. It was also asked the poses to be 

ranked (from best to worst) if more than one was submitted. Finally, participants were 

reminded that predictions should be done considering the C2 space group as crystallographic 

screening against different crystal forms often leads to differential fragment-hit 

identification.[109] It is known that this is true for PHIP(2) as a previous screen against a P21212 

form revealed different binders than against the C2 form.[98] It was decided to hide the 

information about differential crystal binding to strengthen the blinded aspect of the 

challenge and evaluate how the participant select their system. Only 5 submissions were 

received for this stage of the challenge for publication, summarised in Table 3.5. 
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Table 3.5: Overview of the Stage 2 binding pose prediction submissions. 5 sets of predictions were 
received for Stage 2. The first, second, third and fourth columns correspond to the submission 
identification number (SID), the affiliation of the participants, the method’s name and the list of 
software used. 

SID Participant Affiliation Method Name Method 
category Software used 

77 

Molecular Modeling 
Section Lab (Prof. 

Stefano Moro) 
University of Padova, 

Italy 

HT-SuMD Other, 
(MD) 

MOE 2019.01 
Acemd3 

VMD 
Python 3.6 

scikit-learn 0.21.3 
AmberTools 2016 

75 Acellera rDock-rDeep Docking, 
ML 

rdkit 2018.03.4 
HTMD 

Playmolecule proteinPrepare 
rDock 

rDeep v0 

64 Not provided 2d feature 
model Docking Smina 

79 
The University of 

Tokyo, Japan 
SHaLX Inc. 

Template 
docking Docking Molegro Virtual Docker (7.0.0) 

80 

Institut de Chimie des 
Substances Naturelles, 
CNRS, Gif-sur-Yvette, 

France 

ranking_stage2 Docking 

Schrodinger LigPrep v48012  
CACTVS Chemoinformatics Toolkit 

V3.4.6.26 
CORINA v4.2.0 

CCDC GOLD v5.7.1 (CSDS-2019-1) 

 

Only SID 77 was totally agnostic of docking. Instead, they used Supervised Molecular Dynamic 

Simulations (SuMD).[110] SuMD is a relatively novel Molecular Dynamics-based method that 

aims to sample binding and unbinding paths between a ligand-receptor pair. The algorithm 

positions the ligand in an MD box, monitors the translation of the ligand towards the binding 

site and selects frames that are closer to the target binding site. Once the ligand is sufficiently 

close to the binding site (around 5 Å), the engine switches to a classical unbiased molecular 

dynamic simulation of the protein-ligand complex. The final unbiased production runs are 

analysed and scored. Triplicate SuMD runs were carried out and the relevant conformations 

were extracted from production simulations using a DBSCAN clustering. The different clusters 

were ranked by a consensus approach that accounts for the cluster sizes, MMGBSA energies 
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and MOE-Hyd estimation of the hydrophobic contributions to binding. Finally, the centroid 

structures for the top 5 scoring clusters were selected. 

SID 75 kept structural water molecules and prepared their system at pH 6.0 with 

playmolecules.com.[111] 100 poses per fragment were generated with rDock[106]  which were 

rescored with a seemingly in house, convolutional neural network function and the top 5 non-

redundant poses were submitted. 

SID 64 used a simple docking protocol where they used AutockVina[82] to dock the fragments 

into acetylated-lysine binding site of the provided apo structure. The participants gave little 

additional information about their protocol. 

SID 79 selected 3 ligand-bound PHIP(2) PDB structures: 3MB3, 5ENF and 5ENI. The provided 

binders were classified by template matching which resulted in 3MB3, 5ENF and 5ENI being 

associated with 19, 15 and 12 binders, respectively. Molegro Virtual Docker[112] was used for 

docking of the binders into the receptors. The provided apo structure was only used in one 

case after alignment of 3MB3. 

SID 80 used a similar method to their Stage 1 submission. The same validation set of 1499 

compounds which contained 45 actives was used. The systems were prepared as mentioned 

in Stage 1 and the validation compounds were each docked onto 3 different ligand 

conformations with 50 poses generated for each. Again, ChemScore on the second 

conformation performed best. The provided fragment-hits were prepared and docked using 

the workflow described in Stage 1 and the top scoring pose submitted. 

The performance of each submission was assessed by calculating the fragment root mean 

square deviation (RMSD) between the docked and the crystallographic poses. The top scoring 

(here referred as “Best” or “Top 1”) and lowest RMSD poses (here referred as “Best in all” or 

“Top 5”) amongst submitted poses for a given fragment, were recorded for success rate 

evaluation. Calculation of the success rate as a function of RMSD shows how a particular 

submission performs as the RMSD cut-off defining success rate is changed.  An RMSD cut-off 

of ≤ 2Å was chosen to categorised docking pose predictions as successful (Fig. 3.4).  
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Figure 3.3: Success rate variation as a function of RMSD cut-off value. The top (Best) and bottom 
(Best in all) panels show the variation in success rate for the best scoring and lowest RMSD poses. 
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There was no difference in success rates between the Top 1 (Best) and Top 5 (Best in all) for 

SIDs 64, 79 and 80 as these participants only submitted one pose per fragment. This resulted 

in a better performance of methods 75 and 77 when the lowest RMSD pose is considered 

over the best scoring pose (Fig. 3.5A).  

 

 

Overall, this stage also appeared to be challenging (Fig. 3.5A). The method that was the most 

capable to reproduce binding poses was SID 77, which performed best for both rankings. SID 

77 predicted correctly 7 and 11 fragment poses out of 45 for the top 1 and top 5, respectively. 

SID 77 treated the systems dynamically, which resulted in binding site conformations different 

Figure 3.4: Submission's success rate at RMSD cut-off of 2Å. Submissions’ success rate at a RMSD cut-
off of 2Å. The top left panel (A) compares the success rate across all fragments for the different 
submissions. The top left panel (B) show the pose for the best predicted fragment pose, F205. The 
bottom panel (C) compares the success rate per fragment across all submissions. The top right panel 
shows the binding pose of the fragment with the highest success rate. 
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to the one observed in the provided C2 crystal form. However, this did not prevent them from 

correctly identifying the binding pose of 16% and 24% of the binders for the Top 1 and Top 5, 

respectively. The success of submissions 75 and 77 were significantly enhanced when looking 

at the Top 5 over the Top 1 which was 9 and 13 % higher, respectively. Thus, the SID 75 success 

experienced the most dramatic drop between the Top 5 and Top 1. For the Top 5, SIDs 75 and 

77, however, performed better than the others that did not submit 5 poses implying that, in 

this case, the Top 1 pose is not necessarily the one with the lower RMSD (Fig. 3.5A). 

Submissions 79 and 80 performed relatively poorly with success rates of 2% and 0%, 

respectively. 

These poor results might reflect the fact that the provided C2 apo state was not used in their 

workflow. Instead, other ligand-bound structures were used as receptors, which have 

different binding site conformations. Evidently, the scoring scheme used in submissions 79 

and 80 was targeted toward different static binding site states that prevented the 

identification of the correct binding poses. Contrarily, submissions 64 and 75 employed the 

provided C2 structures which led to an improvement in the results when compared to 

submissions 79 and 80. 

When looking at the success rates for individual fragments (Fig. 3.5C), no clear correlation 

could be robustly established given the small number of submissions, which translated into 

an even smaller number of predictions per ligand. Qualitative observations could, however, 

be made. F205 was the fragment predicted with the highest success rate for the Top 1 (Fig. 

3.5B). F205 was predicted correctly in 3 and 2 submissions out of 5 for the top 1 and top 5, 

respectively. This relatively polar and flat fragment hit fills the central void and makes an H-

bond with serine 1392. F558, F616, F618, F760 and F763 were correctly predicted twice for 

the Top 5.  F763 has a similar chemotype and binding pose to F205. F558 one of the largest 

of the fragments that binds to 3 out of 4 subsites (the BC-interface, the central void and the 

ZA-channel) and fills most of the available binding site volume. Interestingly, F616, F618 and 

F760 all displace the 4th water molecule from the water network and their binding pose were 

relatively well predicted (Fig. 3.2). This highlights how correctly accounting for water 

molecules' dynamics and/ or positioning can lead to better results in binding pose predictions 

for fragments.  
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3.4.4. Stage 3: Selection of fragment follow-up compounds from a database 
The goal of the third and final stage of this SAMPL challenge was to enumerate fragment 

follow-up compounds from a provided database. These follow-ups should target the PHIP(2) 

acetylated-lysine binding site and aim to be potent. The participants were provided with the 

co-crystal structures of the Round 2 fragment hits to support their selection. They were also 

given a library of more than 40 million molecules, which was a combination of the Molport 

"AllStockCompounds" (dating from July 2019) and a subset of the Enamine Real© library.[113] 

In addition, library subsets generated using the fragment network[114] (by Dr Tim Tim 

Dudgeon) were also provided in case participants preferred to work with smaller numbers of 

compounds. The fragment network provides a convenient way to identify similar compounds.  

Molecules are fragmented by the removal of substituents, rings and linkers and a graph 

database assembled with nodes corresponding to molecules and their sub-fragments and 

edges corresponding to the parent-child relationships between those nodes. The search 

algorithm requires an input molecule and 3 parameters: 1- the number of edges to traverse 

from the query molecule, 2- number of changes in heavy atom count, 3- number of changes 

in ring atoms counts. The fragment hits were used in queries with number of edges to 

traverse, changes in heavy atom count and number of changes in ring atoms counts ranging 

between 1 and 4, 3 and 5 and 1 and 2, respectively. The resulting molecules typically 

correspond to variants of the query with substituents, rings and linkers added and, deleted 

and/or replaced. 

Participants were asked to suggest between 10 and 100 follow-up compounds from the 

provided library, along with a confidence score, for each follow-up, between 0 and 10. The 

participants were encouraged to submit poses when using Molecular Dynamics- or docking-

based methods. The entrants were given 1 month to submit their follow-ups. 

Initially, the submitted follow-up compounds would have been purchased and validated 

against the C2 crystal form at the XChem by X-ray crystallography and also potentially with 

biochemical and/ or biophysical assays. The follow-ups and generation methods would have 

been examined by medicinal and computational chemists to assess whether the molecules 

were worthy of being bought. A total of 50 to 100 compounds were expected to be purchased 

given the available budget at the time of setting up stage 3. 
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Unfortunately, the COVID-19 pandemic resulted in a diversion of funds before validation and 

the challenge terminated at this point.  Here, instead, the top 10 submitted follow-ups will be 

criticised and comment on their value as likely molecules for purchase. Only 4 submissions 

were received in total and summarised in Table 3.6. 

Table 3.6: Overview of the Stage 3 follow-ups enumeration submissions. 4 sets of predictions were 
submitted for stage 3. The first, second, third and fourth columns correspond to the submission 
identification number (SID), the affiliation of the participants, the method’s name and the list of 
software used. 

SID Participant 
Affiliation Method Name Method 

category Software used 

82 Peking University XGboost_gnina_Yu Docking, 
ML 

rdkit 
xgboost 
gnina 

85 Acellera SkeleDock-rDock Docking 
SkeleDock 

RDKit 
HTMD 
rDock 

86 

Institut de Chimie 
des Substances 

Naturelles, CNRS, 
Gif-sur-Yvette, 

France 

ranking_stage3 Docking 

Schrodinger LigPrep v48012  
CACTVS Chemoinformatics 

Toolkit V3.4.6.26 
CORINA v4.2.0 

CCDC GOLD v5.7.1 (CSDS-
2019-1) 

87 
The University of 

Tokyo, Japan 
SHaLX Inc. 

Template filtering 
then template 

docking 
Docking RDKit (2018.09.1) 

Molegro Virtual Docker (7.0.0) 

SID 82 failed to provide a complete description of the method employed for follow-up 

identification. However, the method appears to have filtered the library using an Xboost 

classifier built as part of Stage 1. The database molecules were represented as Molecular 

ACCess System (MACCS) fingerprints and the classifier achieved a mean area under the curve 

of 0.73 with 10-fold cross-validation. The top 200 scoring molecules were taken forward for 

docking with GNINA[84] into all the provided crystal structures. The molecules were ranked by 

their final mean predicted affinities. 

SID 85 used a fragment-network generated library subset corresponding to 2, 5 and 2 

numbers of edges to traverse, changes in heavy atom count and number of changes in ring 

atoms counts, respectively. They justified that those parameters would provide a good 

balance between similarity to the co-crystallised compounds and increased molecular size of 
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the follow-ups which is necessary to increase the number of favourable contacts. They 

removed compounds that have a Dice Similarity over Morgan Fingerprints of the 

co-crystallised compounds smaller than 0.7. Finally, they removed compounds lacking large 

enough common substructures which resulted in a final set of >8000 molecules. They then 

used SkeleDock[111] to generate follow-up poses. This software uses maximum common 

substructure constrained docking over provided protein-ligand structure which were, here, 

the co-crystallised fragments. The poses were scored with rDock[106] and the top 100 

compounds were selected and manually inspected. 

SID 86 used did not filter the database in their workflow. All compounds were generated from 

the provided SMILES with CORINA[100] and protonated at physiological pH with Schrodinger 

LigPrep. Single docking poses were generated in GOLD and scored with ChemScore using a 

ligand efficiency of 30% (against 200% in Stage 1) and top 100 scoring compounds submitted. 

SID 87 applied filtering to the whole database based on chemical descriptors. Selected 

compounds should have between 10 and 34 heavy atoms, more than 2 hydrogen bond 

donors, between 50 and 100% of the heavy atoms in a SP3 hybridisation form, between 3 to 

10 rotatable bonds, between 2 and 3 aromatic rings, 1 or more aromatic heterocycle, 

between 1 and 2 aliphatic rings, no more than 4 rings and a molecular weight between 360 

and 440 Da. They further filtered out compounds containing amide bonds except tertiary 

amides and lactams. They built a pharmacophore in Molegro Virtual Docker[112] by merging 

the poses of F367, F389, F558 and F584 which cover all areas of the acetylated-lysine binding 

site. The pharmacophore was used to apply template filtering to the selected compounds and 

the top 10% of those were selected. Finally, the poses were scored against the C2 apo crystal 

structure and the top 16 structures were submitted. 
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Table 3.7: Chemical structures of the top 10 compounds submitted in Stage 3 follow-ups enumeration 
submissions. The column and row labels indicate the SID and ranks, respectively. The Molport or Enamine 
Real identifiers are shown below each 2D molecular representation. 
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Expectedly, all submissions showed an increase in all molecular descriptor counts (Table 3.8), 

with respect to the provided binding fragments, which is paired with an increase in molecular 

weight. Similarly, the Tanimoto coefficient distributions are shifted toward 1 for each 

submission indicating that follow-ups have a higher degree of chemical similarity than the 

native fragments. The intrinsic molecular size bias of the Tanimoto coefficient may also 

participate in the shift. The larger the molecules the larger number of features present in the 

binary array and is reflected by a higher similarity.[115] The top 10 molecules for each 

submission are displayed in Table 3.7. 

SID 82 increased the number of rotatable bonds and molecular weight.  However, the other 

descriptors were moderately raised. This implies that these molecules would be relatively 

more flexible for a low number of H-bond donor and acceptors implying a potentially high 

entropic penalty of binding for a low enthalpic compensation. Some molecules also showed 

a high degree of chemical similarity to each other with a Tanimoto coefficient higher than 0.8 

(Table 3.8). Molecules ranked 2 to 9 are too flexible to be selected for validation. Molecules 

ranked 1 and 10 could potentially have good scaffold sampling all areas of the binding site 

while maintaining reduced flexibility relatively to other compounds in that submission (Table 

3.7). 

SID 85 increased relatively largely the H-bond donors and acceptors whilst maintaining the 

number of rings and molecular weight relatively low which had a positive and negative impact 

on the topological surface area and clogP, respectively (Table 3.7). Reducing hydrophobicity 

in that fashion may be a suitable strategy, however, PHIP(2) and bromodomain in general 

have a  relatively hydrophobic binding site implying that more hydrophobic compounds are 

likely to have an increased affinity. In addition, some compounds have low feature counts 

keeping them in a fragment-like category. The compounds are also relatively diverse when 

compared to other submissions. No molecules from that submission would have been 

selected for biophysical validation and they are too small and/ or too similar to the fragment 

hits and would likely not significantly increase binding affinity. For example, molecules 2, 3, 

4, 5 and 7 are almost identical to fragments 579, 217, 709, 217 and 710 (Table 3.8). 

SID 86 increased the most the number of rings without a similar increase in polar features in 

the follow-ups which resulted in large clogP and molecular weight against a low topological 

polar surface area indicative of greasy compounds (Table 3.7). Only 4 out of the top 10 were 
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rule of 5 compliant.  Although those compounds would probably sample well the 

predominantly hydrophobic binding site, they would lead to aggregation problems in 

solution. Only compounds 5, 7 and 9 have an acceptable predicted clogP. 5 and 7 are 

extremely similar so one of the two would be selected along with compound 7 for further 

testing (Table 3.8). 

Finally, the molecules submitted by SID 87 are relatively similar and have relatively large and 

varied numbers of H-bond donors and rotatable bonds while the count of ring and H-bond 

acceptors remain low (Table 3.8). They are almost all based on a central ring that expands 

into 3 different directions to potentially sample the whole binding site (Table 3.1). This 

appears to be suitable strategy, but care should be given to keeping molecules flexibility to a 

minimum. For example, molecules 2, 8 and 10 display a high number of rotatable bonds. 

Molecules 1 and 3 would not be able to sample the water cavity. Thus molecules 4, 5, 6 and 

7 would have been selected for biophysical validation (Table 3.7).  
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Table 3.8: Molecular descriptors for acetylated-lysine site fragment elaborations and top 10 for each 
submission. The plots show the normalised density of a molecule having a descriptor value for a given 
set (top 10 follow-ups for submission or Kac fragment binders). A, B, C, D, E F, G show the distributions 
of H-bond donors, H-bond acceptors, rings, and rotatable bonds counts, respectively. Panel H shows 
the distribution of Tanimoto coefficients for all against all molecules within the sets. 
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3.5. Discussion 
The application of computational methods is now an essential part of almost all fragment-

based drug discovery pipelines. These tools are, however, better suited for larger molecules 

and there is a lack of prospective evaluation in the fragment space. To that end, a unique 

opportunity arising from the PHIP(2) work presented itself.  The crystallographic fragment 

screening resulted in the identification of 52 binders across 4 sites (Fig. 3.1), 47 of which were 

bound to the pharmacologically relevant acetylated-lysine binding site (Table 3.1) translating 

to hit rates of 5.88% and 6.50%, respectively. Crude analysis of historical Xchem data shows 

that hit rates vary between approximately 2% and 15% with an average of 7%, per protein 

target. 

Stage 1 assessed the ability of submitted methods to discriminate crystallographic binders 

and non-binders. A variety of protocols were submitted with techniques involved ranging in 

computational expense and complexity (Table 3.4). Some methods applied the correct bias 

strategy. All submissions but 1 predicted a large excess of non-binders which is in accordance 

with the experimental binder to non-binder ratio (Fig. 3.3). Few studies have prospectively 

assessed virtual screening of both fragment-like and larger molecules. Notably, SAMPL3 

focused on trypsin binders and built a dataset of 544 fragments against which some bound 

structures were resolved, and affinity measurements were collected by ITC and SPR.[116] 20 of 

these 544 fragments were considered as true binders. SAMPL3 virtual screening performance 

was better than with the PHIP(2) fragments with submissions achieving an areas under the 

curve of up to 0.8 with the best submission employing a similar docking protocol to SID 52.[117]  

SAMPL4 focused on fragment follow-ups that bind to the HIV integrase. They built an 

elaboration library around 4 fragments in an attempt to design a more potent inhibitor 

implying that the subsequent follow-ups share a similar scaffold and therefore have some 

degree of chemical similarity.[118] Compounds resolved with X-ray crystallography and did not 

bind better than 2 mM, based on SPR measurements, were classified as inactives. A total of 

305 compounds, including 56 actives, were put forward for the challenge. 5 submissions out 

of 26 achieved an area under the curve equal or better than 0.6 which is, again better than 

the predictions presented above (Fig. 3.5).[119] It is hard to precisely rationalise the poor 

results of the Stage 1 submissions (Fig. 3.3). 
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One notable difference between this task and SAMPL3 and SAMPL4 is that the classification 

was solely based on crystallographic binding. This was emphasised when setting up the stage, 

by suggesting that participants should aim to reproduce the crystallographic screening 

results. This may be a more important consideration than first assumed as there is the 

possibility that the PHIP(2) fragments do not necessarily bind in solution, whereas scoring 

functions are mostly calibrated and validated against affinity and structural data.[120] 

Furthermore, the fragments also have relatively more similar physico-chemical characteristics 

than larger compounds (Table 3.2) which may further hinder predictions due to a relatively 

reduced number of discriminatory features.  

Stage 2 was a binding pose prediction exercise - a task that is more frequently assessed than 

virtual screenings. Only 5 ranked submissions were received for this stage of the challenge 

(Table 3.5). This low number of participations was likely due to the short timeframe imposed; 

only 2 weeks (due to internal pressures on Stage 3). Although this stage was shorter than 

initially planned, the small number of submissions suggests a lack of flexible, fast and 

automated workflows available. The 5 submissions received did not perform well, stressing 

the difficulty and potential scope for improvement regarding fast 3D binding pose prediction 

for fragments (Fig. 3.5). The best performance was SID 77 and employed a biased MD-based 

protocol (Fig. 3.5) providing an example where a protocol treating protein and water as 

flexible can outperform rigid dockings when trying to reproduce static crystallographic data. 

The second and third best performing methods docked the compounds into the provided apo 

structure. The two worst performing methods picked different fragment-bound PHIP(2) 

structures from the PDB. This show and example where binding pose predictions for 

fragments by docking-based methods, can be sensitive to the chosen receptor conformation. 

Additionally, the availability of alternative ligand-bound structures does not consistently 

enhance prediction quality (Fig. 3.5). 

Another challenging aspect of docking to PHIP(2), and bromodomains in general, is that only 

some fragments retain the conserved water network. This implies that the choice of retaining 

or removing these waters will have an adverse impact on some predictions.[121] For example, 

SID 75, kept all structural waters in their protocol, which made impossible the correct 

prediction of water-displacing fragments such as F584 (Fig. 3.2). 
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SAMPL4 also assessed binding pose prediction of a similar number of ligands. Only one third 

(3 out 15) of the submissions performed better than the predictions presented in this 

work.[119] Here most ligands were incorrectly predicted in all submissions as opposed to 

SAMPL3 where most ligands were correctly predicted in at least 1 submission, but this is likely 

due to the relatively higher number of submissions in SAMPL3.[117,119] D3R grand challenges 

also assess blinded predictions of binding pose as well as other quantities meaningful to drug 

discovery. D3R grand challenge 4 submissions achieved excellent results for binding pose 

predictions of macrocycles against BACE1.[122] The good performances were partially 

attributed to the presence of many ligand-bound crystal structures in the PDB which could 

guide docking results. 

The most obvious difference with the data presented here is the ligand size, thus suggesting, 

that docking of larger ligand may be an easier task than smaller fragment-like molecules 

although correct sampling of the large number of ligand conformations may present issues. 

Fragments typically have relatively low potencies, in the μM to mM ranges, suggesting that 

their free energy surfaces are relatively flat with shallow minima potentially associated with 

alternative binding poses and therefore, rendering discrimination tasks more difficult. 

Stage 3 of this challenge was atypical. It consisted in selecting compounds from a large 

database. To the best of available information, this was the first challenge of the kind and 

compounds would have been initially screened by X-ray crystallography at the XChem with 

potential additional assays. Unfortunately, this stage did not go forward because of the 

COVID-19 pandemic. The participants were given 1 month to submit up to 100 molecules, and 

only 4 submissions were received (Table 3.6) which, like stage 2, indicates a lack of responsive 

workflow despite this potentially unique opportunity to test follow-up enumeration methods 

in a truly prospective way. One striking submission from the top 10 compounds was within 

SID 86 where the library was not filtered, and all compounds docked (Table 3.6). This resulted 

in large molecules with larger clogP values that in most cases violated the rule of 5 (Table 3.8). 

Such molecules would not be viable candidates for screening and would likely not have been 

tested experimentally which illustrates that appropriate library or pose filtering is necessary. 

The workflows employed in this stage were computationally cheap compared to what is 

available and more routinely applied such MD-based screening or free energy calculations.  
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3.6. Conclusion and future directions 
To the best of available information, no  inhibitor has been discovered against PHIP(2), despite 

its implicating in cancers[55] thus legitimising the crystallographic effort. This dataset 

presented an ideal scenario to set up a SAMPL challenge to explore the capability of 

computational tools for exploring fragment binding. The challenge was initially divided into 3 

stages: 1) virtual screening, 2) binding pose prediction and 3) enumeration of fragment 

follow-up compounds from a database. All stages of this SAMPL edition were clearly 

challenging.  What was learned from this?   

Most submissions did not directly aim to reproduce experimental results by mimicking 

crystallographic conditions and binding although this was strongly emphasised during the 

challenge. Chemical factors were not taken into consideration despite the detailed 

experimental protocol being provided. For example, some participants protonated the 

protein and ligands assuming a physiological pH of 7.4 although it was highlighted that PHIP(2) 

crystals were grown around pH 4.6. 

No ligand-bound structural information with this C2 crystal form was available prior to the 

start of the challenge. Thus, participants employed fragment-bound PHIP(2) structures 

crystalised in other space groups to guide their predictions. Given that using various ligand-

bound structures showed improved predictions in previous challenges this was a sensible 

move. However, previous challenges considered larger, non-fragment molecules. In this 

challenge, using other fragment-bound structures appeared to have had a negative effect on 

binding pose predictions (Fig. 3.5). Indeed, small conformational variations between binding 

sites may significantly change the energy landscape sampled by the docking algorithms.  For 

example, the C2 and P21212 crystal forms show conformational variation at the BC- and ZA-

loops (Fig. 3.1), where amino acids important in binding, such as tyrosine 1350 or threonine 

1396 have different orientations. These structural differences at the binding site would 

explain the impact on fragment docking performances as they have a direct impact on binding 

site volume and available interactions. Thus, it is perceived that, in this case, using different 

fragment-bound crystals was a mistake and computational identification of crystal binders 

should be preferably performed against the targeted crystal form. 

Another important factor may be that scoring methods are normally calibrated based on 

existing structures paired with affinity data[123], whereas the PHIP(2) fragments benchmark 
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was only based on crystallographic results, and it are presently unknown if these bind into 

solution. Thus, commonly used methods may not be able to detect nor reproduce such weak 

crystallographically observed events. Other target specific considerations, such as the 

important water networks, likely also participate in making this SAMPL7 challenge difficult. 

Overall, performance of those that did enter illustrates that this is difficult to apply 

computational predictions on fragments in a prospective way at least in the case of this target. 

Despite the relatively poor performance of the predictions, this work illustrates that there is 

plenty of scope of improvement in this area. This also implies that experimental procedures 

are still heavily needed to identify crystallographic fragment binders. The small number of 

submissions received, particularly for Stage 2 and 3 (Tables 3.5 and 3.6) also highlights the 

lack of responsive workflows although the short timescales were designed to reflect real-

world conditions.  

The potential avenues to improve such predictions may include better treatment of water 

molecules. This could be done by selecting strongly interacting water by using MD-based 

methods or Grand Canonical Monte Carlo analysis[124]. Alternatively, creating an ensemble of 

receptors that include all possible combinations of water networks within and surrounding 

the binding site may also be useful.  Identification of relevant conformational changes may 

also be achieved via MD-based methods or flexible docking. Including crystal symmetry mates 

around the binding site may also improve prediction by mimicking crystal conditions more 

precisely. 

Fragments make few but usually “high-quality” interactions and thus an explicit stage that 

captures those might well improve confidence. This could be done via hotspot or 

pharmacophore rescoring.[29,125] Creating tailored scoring functions trained on fragments and 

crystallographic data may yield better results.[126] Those improvements may also be applied 

to the selection of fragment follow-ups, which would benefit from better library filtering 

tools. 

Future challenges may also benefit from participants submitting the scores associated with 

different molecules and poses for virtual screening and binding pose prediction, respectively. 

This would allow the investigation of the energy surface, for example by plotting screening 

rank or RMSD against docking score. An additional method for scoring binding pose 

predictions could be to compare the protein-ligand interaction fingerprint of the docking 
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model with the experimentally determined ligand. This approach is often employed in 

assessments of protein-protein docking studies[127] and may be effective in identifying 

significant binding site interactions. The evaluation could be quantified through similarity 

calculations, such as the Tanimoto coefficient, comparing the modelled and experimental 

fingerprints. 

Overall, this work emphasises the need for more prospective evaluations and the 

development of improved computational workflows for computational fragment 

identification.  
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3.7. Methods 

3.7.1. Crystallographic screening 
Proteins were expressed, purified and crystalised as described in Chapter 2, Section 2.2.1. 

Crystallographic screening was also performed as described in Chapter 2, Section 2.2.2. The 

crystals were soaked for 2 hours at a final fragment concentration of 20 mM. The fragments 

used for screening were purchased from Enamine stored in ethylene glycol at a concentration 

of 100 mM.  Structural models and crystallographic statistics can be retrieved from the PDB 

deposition ID: G_1002162. 

3.7.2. Small molecule featurisation and distance calculations 
Small molecules SMILES strings were used as input in featurisation and fingerprinting after 

removal of salt and ion atoms. Standard RDKit fingerprints were generated as bit vectors using 

default setup.[128] RDKit was used to extract the number of hydrogen bond donor, hydrogen 

bond acceptors, rings and rotatable bonds. RDKit was also used to estimate topological 

surface areas, molecular weights, and octanol–water partition coefficients. Chemical 

similarity calculations of molecule pairs were performed using RDKit and were based on the 

Tanimoto coefficient between RDKit fingerprint bit vectors.[79] 

3.7.3. RMSD calculations 
Symmetry-corrected RMSD calculations for submitted binding pose prediction heavy atoms 

were performed with spyrmsd[129] against the experimentally resolved fragments. Predictions 

were considered successful if the RMSD was equal to or lower than 2 Å. 

3.7.4. Statistical analysis 
All statistical values were calculated with scikit-learn. Due to large class imbalance in 

favouring the negative (non-binding) class, the balanced accuracy was employed to evaluate 

virtual screening performances. The balanced accuracy is mean of the sensitivity and 

specificity which correspond to the true positive and true negatives rates (TPR & TNR) 

respectively. 

Sensitivity	 TPR =
TP

TP + FN Equation	3.1	
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Specificity	 TNR =
TN

TN + FP Equation	3.2	

Balanced	accuracy	 BA =
TPR + TNR

2  Equation	3.3	

Where TN, TP, FN and FP correspond to the number of true negatives (correctly classified 

negative cases), true positives (correctly classified positive cases), false negatives (incorrectly 

classified negative cases), and false positives recovered by the classifiers (correctly classified 

positive cases), respectively. Balanced accuracy values increase with model quality. 

3.8. Data availability 
All the experimental data, participant’s predictions, code for analysis and resulting output is 

available on GitHub. 

https://github.com/samplchallenges/SAMPL7/tree/master/protein_ligand 
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Chapter 4. High-throughput X-ray crystallography for 
rapid fragment growth from crude compound arrays by low-
cost robotics 

4.1.  Credits 
This chapter is the outcome of a multidisciplinary and collaborative endeavour. Harold 

Grosjean took responsibility for protein expression, purification, and crystallisation, as well as 

structure refinement, electron density analysis, and cheminformatic analysis. Furthermore, 

Harold Grosjean drafted the manuscript and assembled the figures. Follow-up synthesis, 

crude reaction mixtures preparation and crystallographic screening were conducted by Dr 

Anthony Aimon and Dr Storm Hassell-Hart under the supervision of Prof John Spencer and 

Prof Frank von Delft. Dr Tobias Krojer, Dr Anthony Aimon and Dr William Bradshaw helped 

with model building and refinement. Dr Warren Thompson developed and benchmarked the 

automated quality control analysis software. Dr Storm Hassell-Hart carried out estimations of 

solvent and time gains. The grating-coupled interferometry assay was carried out by Dr Lizbé 

Koekemoer and Dr Edward A. FitzGerald, while the Alpha-screening assay was performed by 

Dr James Bennett. Cameron Anderson contributed to the cheminformatic analysis. Prof Philip 

C. Biggin, Prof John Spencer and Prof Frank von Delft reviewed and provided guidance on the 

manuscript. All involved participated in the redaction of the manuscript. 

4.2. Preprint 
The research conducted in this chapter led to a preprint, which can be accessed using the 

following reference: 

Grosjean, H. et al. (2023) “High-throughput crystallography for rapid fragment growth from 

crude arrays by low-cost robotics,” ChemRxiv [Preprint]. 

Available at: https://doi.org/10.26434/chemrxiv-2023-6m2s0.  
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4.3. Introduction 
In Chapter 1, novel fragment binders were identified against PHIP(2) using X-ray 

crystallographic screening. It was also demonstrated that computational prediction of those 

fragment is a challenging task thus suggesting that efforts should instead be focused on 

generating follow-up compounds. Chemical synthesis is a costly and slow process presenting 

a bottleneck in fragment elaboration to potency.  

In this chapter, hundreds of follow-up compounds were synthesised by low-cost robotics and 

crude reaction mixtures  resolved by X-ray crystallographic and analytic techniques. This 

provides an optimised way of generating extensive structural Structure-Activity data 

bypassing small molecule purification requirements therefore saving the use of polluting 

solvent and time. Starting from a fragment, F709, resolved in Chapter 1, a collection of more 

than 1850 compounds was enumerated, and thousands of crude reaction mixtures were 

synthesised, at the success rate of about 60%, on one OpenTrons robotic liquid handler. 

Crystallographically, 969 usable X-ray diffraction datasets were acquired. This resolved 22 

unique reaction products binding to the protein, 19 with conserved poses relative to the 

original fragment and 3 with a new, unexpected binding pose with 1 structural hit also 

resolved in assays. Crystallographic and cheminformatic analysis showed that a single methyl 

addition at a chiral centre caused the change in binding pose. This Chapter address 

bottlenecks in fast follow-up generation and validation. 

Graphical introduction 4.1:  Array synthesis optimises follow-up generation by lower time and 
solvent requirement and yield information rich dataset. 
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4.4. Results 

4.4.1. Fragment F709 offers opportunities for robotic elaborations 
Previous X-ray crystallographic fragment screening efforts presented in chapter 3 yielded 

multiple hits against PHIP(2). These experiments were used in the assembly of the DSI-poised 

and FragLites fragment libraries[12,13], and the fragment hits used as the starting point for the 

SAMPL7 challenge and for this automated chemistry study.[130] One fragment, F709 (Fig. 4.1), 

displayed interesting characteristics including clear electron density at the binding site and 

expansion vectors displaying chemical moieties enabling parallel robotic chemistry. This 

would allow sampling of the chemical landscape around those vectors to potentially extract 

SAR from different elaboration series. Overall, these vectors enabled fragment growth around 

3 different regions of the binding site defined in Chapter 3: i) across the ZA-channel, ii) within 

the central hydrophobic cavity and iii) opposite the water cavity (Fig. 4.1).  

 

 

 

 

 

 

 

 

 

 

 

F709 interacts with the protein notably via H-bonds with the backbone oxygen of proline 1340 

and the side chain oxygen of serine 1392. The 5-membered furan ring is also positioned 

perpendicularly to tyrosine 1395 thus promoting a π-π interaction and the piperazine ring 

occupies the central hydrophobic cavity (Fig. 4.1). 

Figure 4.1: Crystallographic screening of PHIP(2) identified a fragment with good vectors for 
automated chemistry elaborations. Panel A shows the structure of PHIP(2) acetylated-lysine binding 
site with the bromodomain waters displayed in red spheres. Helices Z, A, B and C are shown in pink, 
yellow, cyan and teal, respectively. ZA (in fuchsia) and BC (in purple) indicate the connecting loops 
between the corresponding α-helices. ZA-C, WC and HV indicate the ZA-channel, water cavity and 
hydrophobic void, respectively. Panel B shows the F709-bound co-crystal structure (PDB ID: 5RKI) with 
elaboration vectors in orange. Panel C shows the chemical structure of F709 and elaboration vectors 
in orange. 
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4.4.2. Performing complex reactions robotically with minimal resources 
To determine feasibility, reactions were initially tested and developed (by Dr Anthony Aimon 

and Dr Storm Hassell-Hart) using standard bench chemistry with a specific focus on solvent 

selection and solubility. Dimethylacetamide (DMA) proved to be a general solvent and was 

used in all the chemistry developed and executed on the OpenTrons. Thereafter, the reaction 

conditions were translated to the OpenTrons as a liquid transfer-only process ( done by Dr 

Anthony Aimon and Dr Storm Hassell-Hart).  

The manual Quality Control (QC) analysis of targets required 3240 samples analysed, with a 

time of 7 minutes required per sample for LCMS analysis (Fig. 4.3). This manual process was 

a bottleneck in assessing  high-throughput synthesis success, so an open-source mass 

spectrum peak finding tool, MSCheck (developed by Dr Warren Thompson). Briefly, MSCheck 

searches for different parent ion matches, analyses mass spectrum patterns, and generates a 

report. MSCheck had an 82.9% recall when benchmarked against manual processing in the 

retrospective analysis of post-work-up runs. MSCheck took five days to complete (Fig. 4.3), 

but the time can be optimised to within a day.[131] 

To test the validity of using the OpenTrons for chemistry, three iterations (Iterations 1.0, 1.1 

and 2.0) of single and two-step chemistry for the formation of urea and amides were explored 

(Fig. 4.2) (done by Dr Anthony Aimon and Dr Storm Hassell-Hart). 180 single-step reactions 

were executed, with a combined success rate of 83%, as measured by the identification of the 

expected molecular ion peak by MSCheck. Iteration 1.1, exploring a “deletion” strategy, by 

effectively replacing the piperazine central core by a morpholine and removing the furan-2-

carbaldehyde, and Iteration 2.0, exploring an amide linkage against the urea in Iteration 1.0, 

yielded no structural hits (Fig. 4.2). 
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Figure 4.2: OpenTrons synthesis allows rapid and reliable chemistry for initial SAR scoping via 
fragment growth. Summary of the different synthetic routes (iterations, Iters) and are shown in each 
panel. The number of fragment growth targets, steps performed on the robot, total number of 
reactions performed for each step, success rates for those reactions and crystallographic hits are 
displayed at the top of each box. The success rates are defined by whether a product with expected 
mass can be detected by the quality control pipeline. The functional groups exploited at the various 
vectors are colour coded with labels bellow the figures and displayed with respect with the original 
fragment on the left. 
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Building on the single-step iteration, three follow-up iterations were achieved (done by Dr 

Anthony Aimon and Dr Storm Hassell-Hart) with a total of 1696 multi-step targets, via a 

combined total of 6592 reactions, and a combined success rate of 54.37% (Fig. 4.2). Iteration 

4.2 was the most complicated synthesis attempted on the OpenTrons with 160 attempts of 

two by two-step routes being combined towards the final product with an overall 78% success 

rate (Fig. 4.2). Iteration 4.2 showed that it is possible to use relatively complex multi-step 

chemistry to yield significant fragment elaborations. 

 
Table 4.1: The automated chemistry workflow reduces time and solvent usage compared to human 
operations. Comparison of the estimated time, columns/workups, and litres of solvent, between the 
automated and manual synthetic approaches to the target libraries. (Red = Manual synthesis, Green 
= Automated Synthesis).    

Iteration   
Number 

of 
targets   

Time per 
Analogue 

(days)   

Total 
Time 

(days)   

Manual 
Columns and 
workups per 

target   

Total 
columns 

and 
workups   

Solvent 
per 

Analogue   

Total 
Solvent 
Volume   

1   58   3   174  1   58   1 L   58 L   
1   58   -  3  -   1   5 mL   290 mL   

1.1   58   3   174  1   58   1 L 58 L   
1.1   58   -   3  -   1   5 mL    290 mL   
2   64   1   64  1   64   1 L  64 L   
2   64   -  2  -   1   5 mL   320 mL   
3   512   5   2560   2   1024   2.5 L 1280 L   
3   512   -   4   -   2   10 mL  5.12 L   

3.5   1024   5   5120  2   2048   2.5 L   2560 L  
3.5   1024   -   4  -   2   10 mL   10.28 L  
4.2   160   8   1280  3   480   4.5 L   720 L   
4.2   160   -  4  -   3   15 mL   2.40 L   

Total 
number 

of 
targets   

1880   
Total 

working 
years   

25.68/  
0.05   

Total 
columns and 

workups   

3732/  
10   

Total 
litres of 
solvent   

4740/  
18.70  

Total 
Saving  Time   25.63 

years   
Columns and 

workups   3722   Litres of 
Solvent   4721.3  

 
 

Based on the manual synthesis and purification of control compounds (done by Dr Storm 

Hassell-Hart), it was estimated that the human time required to manually prepare an 

analogue varies between 1-8 working days, depending on the number of synthetic steps and 
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purifications (Table 4.1). If the synthesis of the complete library was conducted in a linear 

fashion this would take about 25 working years to complete. 

The use of automated synthesis also avoids the requirement for large-scale aqueous workups 

and purifications. Synthesis of the library under classical conditions would require up to 3740 

chromatography stages, which when combined with the work-up stages results in a total 

solvent usage of 4740 L. In contrast, the automated protocol avoids the requirement for 

purification, with an estimated total solvent usage of 5-15 mL (Table 4.1) per analogue. This 

would require a total of 18.7 L of solvent, an over 250-fold reduction in costly and potentially 

polluting solvent usage.       

4.4.3. High-throughput X-ray crystallography of crude arrays 
High throughput X-ray crystallography requires that protein crystals must diffract at a good 

resolution and resist fracture during soaking.[97] Previous efforts demonstrated that crude 

reaction mixtures can be prepared and soaked onto protein crystals and that reaction 

products can be resolved.[132] Here, crude reaction mixture preparation was also included in 

the robotic framework (done by Dr Anthony Aimon and Dr Storm Hassell-Hart) where the 

products were concentrated in the organic phase and solvent exchanged. Due to the intrinsic 

affinity of bromodomains for dimethyl sulfoxide (DMSO) and/ or dimethylacetamide (DMA) 

these solvents were replaced with ethylene glycol (EG). 
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Reaction products were measured in 1077 out of 1876 syntheses by MSCheck, the in house 

quality control protocol,[131] representing a 57.41% success rate across all iterations. Crude 

reaction mixtures were soaked onto protein crystals (done by Dr Anthony Aimon and Dr Storm 

Hassell-Hart) at XChem (Fig. 4.3). This yielded 969 usable X-ray diffraction datasets for the 

crude reaction mixtures with successful syntheses, translating into a crystal deterioration rate 

upon soaking of crude reaction mixtures of only 8.73% (Fig. 4.3). The crystallographic 

experiments resolved a total of 29 unique bound structures, which included 7 starting 

materials and 22 reaction products (Table 4.2). A hit rate of 2.27% (22/969) was achieved 

when looking at target-bound reaction products from successful syntheses and usable X-ray 

diffraction data after soaking (Fig. 4.4). This is a lower hit rate than the previous 

Figure 4.3: Automated chemistry and quality control fits with the XChem workflow, reduces human 
labour. Each step of the process is represented in a box with a picture illustrating the dominant piece 
of infrastructure at this step. The molecular and reaction designs were made with the Python package 
RDKit; preparation of CRMs on an OpenTrons; CRM QC via LC-MS and analysed with MSCheck; the 
crystals were prepared and resolved at the XChem, the product hits were identified from electron 
density maps with Coot and PanDDa; and the hits were confirmed via GCI and an alpha-screening 
assay. The quality control step is parallel to the main workflow because crystals were soaked with all 
crude reaction mixtures while the LC-MS outcome determined the number of successful reactions, as 
indicated by the dotted arrow. The new and old timings are shown as arrow boxes with estimated 
values within them. New and old refer to the timings achieved by this protocol versus the estimated 
time it would take a human to process an equal number of compounds. The validation required 
ordering the pure compounds from Enamine. Success rates are shown bellow the arrow connecting 
the steps and are indicative of the number of successful outcomes for a given step over the number 
of successful outcomes of the step before. 
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crystallographic XChem fragment screening against this crystal form, which yielded a 6.51% 

hit rate with similar soaking conditions.[130]  

  

 
 
 
 
 
 
 

Table 4.4: Crystallographic hits have conserved scaffold. The 2D structure for all crystallographic hits 
are displayed with its unique identifier as legend. The first field of the compounds’ legend indicate the 
iterations from which the compound originated with subsequent identifiers for reaction products. 



 97 

4.4.4. Resolving the binding landscape through structural analysis 
All starting materials bind at the same location between helices B and C (Fig. 4.1) and display 

a conserved binding mode where they interact with the protein via 2 π-π stackings and 

hydrogen bonding (Fig. 4.1). All products bound maintain a 4-formylpiperazine-1-

carboxamide scaffold (Table 4.2), where the piperazine moiety occupies the central 

hydrophobic cavity. All products also retained the original furan, analogous thiophene or 

pyrrole rings, with some hits having either a 2-chlorine or 2-methyl furan. 

19 unique products observed in crystals (Fig. 4.4) have the same binding mode defined by the 

starting fragment (Fig. 4.1). Iteration 1.0 and the exploration for the urea vector was the only 

single-step iteration to yield ten follow-up crystal hits on the XChem platform (Fig. 4.2). Three 

of the binding events were from overlapping compounds from iteration 1.0. The importance 

of the furan ring for binding was highlighted when no structural hits were found for Iteration 

1.1’s urea vector exploration (Fig. 4.2) where the furan ring was not included. Iteration 2.0 

(Fig. 4.2) highlighted the importance of retaining the urea group of the initial fragment as no 

hits were found unless the urea group from the original fragment was retained. Structurally, 

the urea group forms a hydrogen bond with the proline 1340 backbone oxygen (Fig. 4.4). 
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Figure 4.4: XChem screening of CRMs yielded reaction product-bound structures, with conserved 
and non-conserved binding poses, and starting materials. The first and second panels show 
structures of the laterally and diving bound products, respectively.  The third panel shows structures 
of the reaction starting material-bound proteins. Each panel is subdivided into 2 columns. The first 
(All) aggregates all bound structures while the second (representative) show a single binder that has 
a binding mode representative of the others. The representative binders were arbitrarily selected to 
illustrate the corresponding binding mode. 
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Unexpectedly, 3 products were resolved in an alternative pose relative to the original 

fragment F709 (Fig. 4.1) as shown in Figure 4.5, demonstrating the effect of modifying the 

piperazine ring in Iteration 3.5 (Fig. 4.2). Those products rotated by about 90° around the 

piperazine core (with respect with the original pose) and so that their 5-membered ring 

displaces waters 2 to 4 while the nearby amide displaces water 1 of the network (Fig. 4.1). 

There, the 5-membered rings seem to bind mostly via hydrophobic interactions with the 

amino acids comprising the water cavity. 

In addition, the cis conformation of the two amides was observed in the divers, while the 

lateral products displayed a trans conformation. A relatively large protein conformational 

change is paired with this novel diving binding pose. The ZA-loop adopts a generally more 

relaxed conformation, resulting in a more voluminous binding site that accommodates the 

flipped products, thus illustrating that some level of conformational motion is allowed by the 

C2 crystal system (Fig. 4.4). 

A striking feature of the diving products is that they all have methyl-substituted piperazine 

ring. When looking at their closest lateral neighbours based on chemical similarity distance, 

it seems that this alkyl substitution alone is required to change binding orientation (Fig. 4.5). 

The relatively low incidence of diving relative to lateral binders also indicates that a high 

number of experiments are needed to resolve this unexpected pose. 
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Figure 4.5: Unexpected diving binding pose appears to be triggered by the addition of a methyl to 
the core piperazine ring. A dendrogram showing the chemical fingerprint (Tanimoto) distance 
between bound reaction products is shown on top. The compounds are labelled by PDB accession 
IDs. Information related to starting fragment, lateral and diving compounds is highlighted in blue, 
black and red respectively. The 2D structures for the fragment, the divers' closest neighbour (laterals) 
and divers with a representative 3D structure are shown in the first, second and third columns, 
respectively. The number of synthetic steps required to obtain those compounds is shown under the 
columns for lateral and diving bound reaction products. 
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The synthesis of the 3 diving binder molecules made use of racemic building blocks (Fig. 4.2), 

resulting in crude reaction mixtures containing a mix of enantiomers and other by-products 

in unknown ratios. The quality control protocol, however, identified that products with the 

expected mass were present in the mixture. PanDDA event maps were used instead of 

traditional electron density maps to fit the compounds due to weak density in standard 

electron density maps.[133] The position of the methyl group around the piperazine ring was 

ambiguous and required further inspection (Fig. 4.6). Each compound has two stereo-

isomers, each having two possible location with one on each side of the piperazine. 

Figure 4.6: PanDDA event maps of racemate crude reaction mixtures suggest stereo-selectivity of 
the PHIP(2) binding for products containing an R-methylpiperazine moiety. The first three rows show 
the PanDDA event maps for the divers. The first, second, and third columns show the event density 
for the overall binding pose and the methylpiperazine moiety density viewed from the water cavity 
(WC) and the ZA-channel (ZA), respectively. For clarity, the point of views are indicated with arrows in 
the binding pose column. The last row shows the two possible chiralities, with the green arrow 
indicating which one was modelled in the binding site. 
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These maps showed a consistent protrusion at the same location, suggesting the presence of 

the additional methyl group (Fig. 4.6). Other possible locations do not have a similar 

protrusion and positioning the group there would result in a clash with the protein and/or the 

compound itself. At the identified position, the methyl group interact with the binding site 

through hydrophobic interactions (Fig. 4.4). Overall, these results indicate that the protein 

binding site defined by this crystal system is stereo-selective for the methyl group oriented in 

an "up" (R) fashion and located on the same side as the compounds’ cis-oriented amide group 

oxygens (Fig. 4.6). 

The interchangeability of chemical groups in crystallographic hits resulted from the 

combinatorial approach and maintained essential fragment features (Fig. 4.7). These features 

preserve pre-existing interactions with the binding site (Fig. 1), while more diverse changes 

at the R1 urea (Fig. 4.7) extending across the ZA-channel into the solvent, where no novel 

interactions are acquired (Fig. 4.4). Several modifications, including replacing the piperazine 

a with diazepane moiety or dimethyl-piperazine, replacing the furan with a 6-membered ring 

or tri-heterocyclic ring, and adding a sulphonamide to the furan, in Iteration 4.2 (Fig. 4.2), 

consistently resulted in non-binding events despite quality control confirming that their 

synthesis has been successful.  

 
 
 

Figure 4.7: Combinatorial R-groups leading to crystallographic binding and binding pose change. The 
different groups causing crystal binding for each pose are showed in the panels. The numbers next to 
the group for the amide and urea expansions highlight the observed combinations between those 
groups. 
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4.4.5. Structural hit exhibits assay binding 
The staring template fragment, F709, did not yield any detectable signal in solution assays 

and elaborating fragments aims at increasing the compound’s affinity for the target. Hence, 

once identified, crystallographic hits must be confirmed via orthogonal methods. For this 

purpose, the pure compounds were independently synthesised from Enamine Ltd. These 

were then evaluated with Amplified Luminescence Proximity Homogeneous Assay 

(AlphaScreen™)[134]  and grating-coupled interferometry analysis using the Creoptix repeated 

analyte pulses of increasing duration (waveRAPID)[68] instrument (done by Dr James Bennet 

and Dr Lizbé Koekemoer) thus testing biochemical and kinetics activities, respectively (Fig. 

4.8). 

 

Compound PHIP-AM1-20, product of Iteration 1 (Fig. 4.2), had a measurable effect in both 

assays with a Kd and a IC50 of 50.03 µM and 31.15 µM corresponding to ligand efficiencies of 

2.00 and 1.25 µM per heavy atom for the kinetic analysis and alpha-screen, respectively (Fig. 

4.8).   

Figure 4.8: Structural and assay binding of reaction product PHIP-AM1-20. Panels A and B show the 
chemical structure and crystallographic binding pose of PHIP-AM1-20, respectively. The PDB code of 
the bound complex is written above B. Panels C and D showing kinetic rate constants and affinities 
from the Grating-Coupled Interferometry (GCI) and AlphaScreen assays, respectively, with the raw 
data in black and fitted binding curve in purple. ka and kd are indicative of the association and 
dissociation rates with Kd, the dissociation constant, equalling to association over the dissociation 
rates. IC50 corresponds to the half maximal inhibitory concentration. 
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4.5. Discussion 
Optimising potency rapidly and cheaply is a long-standing medicinal chemistry goal although 

fragment-based drug discovery (FBDD) approaches often struggle to generate potent 

molecules from protein structure-derived hits.[135] In recent years, progress has been made in 

developing low-cost high-throughput platforms[136] for the synthesis, purification and analysis 

of compounds.[137–139] These are, however, rarely directly paired with downstream biophysical 

and biochemical assays. This is due to the need for high-purity compounds to ensure accurate 

and convincing assay readout, which increases overhead costs, for example, due to higher 

solvent consumption through extraction, purification, and analysis. In turn, extensive solvent 

use can have detrimental environmental effects due to their toxic, flammable, and volatile 

nature, as well as their potential to contribute to climate change through their greenhouse 

gas emissions.[140] 

The OpenTrons platform offers a convenient solution for automated synthesis paired with 

high-throughput validation by crystallography (Fig. 4.3). The platform's ability to complete 

the synthesis in a matter of weeks with just one trained chemist is a significant improvement 

over traditional synthetic approaches, which could take up years to complete (Table 4.1). 

Traditional synthetic approaches can also be fastened by the use of parallel synthesis and bulk 

preparation of common intermediates, as well as an increase in the number of chemists 

involved. 

Another advantage of the OpenTrons is its compact size. The unit can be easily contained 

within a single fume hood and automated protocols can be run for every stage of the 

synthesis, from stock solution preparation to final sample solution preparation and quality 

control sample preparation (Table 4.1). This contrasts with traditional synthetic approaches 

that require substantial amounts of equipment and space, as well as almost constant 

operation by the chemist or project team. The design of larger arrays would also be 

possible,[141] but the size of the iterations were limited to levels that are manageable for 

downstream processing at the XChem, which involves human interventions at certain steps, 

such as crystal fishing.[22] 

This integration of the automated synthesis workflow with the existing high-throughput 

crystallographic pipeline can generate a large volume of usable data quickly, while 

maintaining crystal integrity (Fig. 4.3). The quality control step also provides traceability of 
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reaction outcomes, allowing for the tracking of electron density maps that may contain bound 

reaction products.[131] In comparison to previous studies, such as the work of Baker et al., 

(2020),[132] the use of the OpenTrons leads a substantial increase in throughput at the XChem 

by generating thousands of crude reaction mixtures. In their study, 83 reaction mixtures were 

processed in triplicate, while only a single experiment was performed per compound, here. 

While the approach, assembled here, may have led to a lower hit rate, it prioritised data 

quantity over quality, resulting in a 22-fold gain in processing compounds or a 7-fold gain in 

performing experiments compared to the work of Baker et al., (2020).[132] 

The hit rate at the acetylated-lysine binding site from the screening of crude reaction mixtures 

(Fig. 4.4) was about 75% lower than the fragment screen presented in Chapter 3.[130] It is 

important to note that the low hit rate observed in this study may have also been due to 

inadequate compound designs, as the exercise was largely driven by the available chemistry 

surrounding the starting fragment. This also highlights the importance of maintaining 

interactions resolved in the original fragment (Fig. 4.1) as modifications that perturbs those 

led to the absence of crystallographic binding. It is also hard to manually process the copious 

amounts of non-binding data and it is expected that several false negatives may be hiding in 

the data. For example, simple rescreening of fragments in Chapter 3 led to identification of a 

relatively large number of hits, an operation that was not performed here. 

However, the thorough sampling of the chemical space (Fig. 4.5) identified changes in binding 

pose and small protein conformational changes (Fig. 4.4) that would not have been observed 

through commonly used docking methods. PanDDa event maps[133] were used to guide the 

ambiguous positioning of a single methyl at a stereo-centre (Fig. 4.6). The position of the 

methyl at the stereo-centre was however deduced from visual inspection of the PanDDA 

event maps and the electron density and/ or event may be resulting from overlapping 

crystallographic state.[132] The consistent protrusion corresponding to the R (up) isomer and 

binding site context guided the final choice. 

It is hard to explain the underlying energetics causative of such pose change but contributing 

factors may include entropic gain via water displacement.[142] Previous computational study 

of bromodomains’ water network stability has suggested that the PHIP(2) network is unstable 

with a positive Gibbs binding free energy.[143] This would imply that the water network does 

not make strong interactions with the neighbouring binding site and is easily displaceable, 
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potentially resulting in an entropic reward to Gibbs binding free energy of ligand binding. The 

change in binding pose may also be driven by acquisition of more favourable interactions in 

the new pose or steric clashes introduced by the chemical modification in the originating 

lateral pose.[144] The addition of the methyl may also change the ligand’s conformation 

associated with its overall  energy minima. In the diving pose, the two amides were resolved 

in a trans conformation which may be more stable than the cis conformation resolved in the 

lateral pose (Fig. 4.4). Previous observations of so called "magic methyls" have also 

highlighted the ability of such modification to drastically alter binding affinities.[145] 

The ability to perform such exploration highlights the importance of multi-step iterations 

which are more laborious but necessary (Figs. 4.2 and 4.5). It is anticipated that better follow-

up designs will result in increased hit rates. This may also extend to downstream hit validation 

in solution assays. In addition, all compounds except 1 (Fig. 4.8) did not yield readable signals 

in assays suggesting that these crystal binding events are weak and may not happen in 

solution.[146] The only assay binder (Fig. 4.8), however, exhibited a 2- to 3- fold increase in 

binding affinity when compared to the best binder obtained by Cox et al., (2016) that were 

elaborations around the first DSI-poised fragment binders identified against PHIP(2).[13] 

The method has proven to be effective at generating large amounts of crystallographic data 

but lacks equally automated means of validating those hits via assays. Purchase of pure 

compounds (Fig. 4.3), or resynthesis in house using conventional chemistry is still required for 

validation, but efforts have been made in measuring dissociation rates from crude reaction 

mixtures, which may combine efficiently with the novel pulsed injection schemes 

implemented for the time-resolved kinetic analysis using grating-coupled 

interferometry.[44,68] 

The strategy of prioritising data quantity over quality has pros and cons. On one hand, the 

upshot of this choice lies in the broad coverage of chemical space. This increases the 

knowledge and certainty of modifications leading to crystallographic binding (and non-

binding) as well as the chances of uncovering unexpected findings, such as alternative binding 

poses (Fig. 4.5). On the other hand, the downside of this approach is the potential 

compromise on data integrity. The large volume of data generated can present considerable 

challenges in terms of interpreting the information accurately. In addition, the adoption of 

high-throughput methodologies, especially soaking of crude reaction mixtures, is expected to 
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lead to false negatives due to inconsistencies in the quality control readout, varying 

concentrations, and binding affinities. 

4.6. Conclusion and future direction 
Overall, the conceptual fragment to drug-like molecule growth exercise (Fig. 4.1) has 

demonstrated that it is possible to save time, solvent usage, and many synthetic, extraction, 

work-up and purification bottlenecks (Table 4.1) by combining crude array synthesis and X-

ray crystallographic structural determination of the resulting molecules soaked onto PHIP(2) 

crystals (Fig. 4.3). The approach is also more environmentally friendly than traditional 

synthesis as it prevents the use of polluting solvent (Table 4.1).[147] 

The XChem screen, against PHIP(2), presented in Chapter 3, led to the piperazinyl hit F709 

(Fig. 4.1). Consequently, several thousand multi-step, robotic-driven reactions were designed 

reactions with minimum automated workups (Fig. 4.2). Crude reaction mixtures were 

submitted to XChem for X-ray analysis at high-throughput levels and without compromising 

crystal integrity thus, bypassing purification steps (Fig. 4.3). Furthermore, the quality control 

step (MSCheck) supplements the workflow by allowing rapid tractability of reaction outcomes 

thus enabling tracking of which electron density maps could have a bound product.[131] 

This resulted in the identification of crystal binders (Table 4.2 and Fig. 4.4) which enabled to 

map which vectors can be elaborated, with what type of chemical group and to what extent. 

Together these findings provide an estimate of the crystallographic SAR landscape around 

fragment F709 defined by the synthetic iterations (Fig. 4.7). In addition, a novel diving pose 

was recovered. 

Cheminformatic (Fig. 4.5) and electron density inspection (Fig. 4.6) highlighted its role and 

orientation, respectively. To confirm the position of the methyl, solutions containing pure R 

or S enantiomers could be soaked on the protein crystals and resolved by X-ray 

crystallography. The aim here was also to rapidly generating crystallographic information 

from crude reaction mixtures and thus, further experiments enantiomers were beyond the 

scope of this study. Time, budget an expertise constrains were further prohibitive of further 

analysis. 

Overall, this illustrates how features can rapidly be scoped and “fail quickly and cheaply” 

which could be used to quickly redefine synthetic strategies.[148] Even negative results, 
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obtained quickly, could have insightful impact in these labour-intensive processes (Fig. 4.2). 

The structural information acquired from this experiment such multiple bound structures, 

ligand conformations and flipped pose may be useful in future iteration design, for example 

by being leveraged in conjecture with constrained and/ or ensemble docking.[149] 

However, automated methods are also needed to systematically analyse and rationalise the 

data resulting from these increasingly large high-throughput crystallographic screenings. This 

is especially true for the non-binding data which is less tractable by visual inspection. A single 

crystallographic binder was also found to be active in biophysical and biochemical  assays (Fig. 

4.8) and of better potency than previously reported.[13] This demonstrates that at scale follow-

up potency can be achieved, starting from an undetectable fragment, using this protocol. 

Future work may also include mass dissociation rate screening using crude reaction mixtures 

by grating-coupled interferometry assay. This would remove resynthesis or purification needs 

to increase throughput and gain essential potency information. 

This case study serves as an exemplar on how to generate structural data quickly with minimal 

bottlenecks, caveated by the fact that improved binding interactions are not necessarily 

commensurate with increased activity nor are they a substitute for biological activity derived 

from an assay. Overall, this work minimised the risk of human errors and optimised resource 

usage whilst also highlighting important needs for downstream assays and data analysis tools.  
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4.7. Methods 

4.7.1. Protein expression, purification, and crystallisation  
Proteins were expressed, purified and crystalised as described in Chapter 2, Section 2.2.1. 

Model building and refinement was also performed as detailed in Chapter 2, Section 2.2.2. 

Structural models and crystallographic statistics can be retrieved from the PDB deposition ID: 

G_1002190. 

4.7.2. Chemical similarity calculations and clustering 
Chemical similarity calculations for small molecule pairs were performed using RDKit and 

were based on the Tanimoto coefficient between molecular fingerprint bit vectors.[79] The 

Tanimoto distance for each pair yields a distance matrix enabling to perform hierarchical 

clustering using complete linkage method in Euclidean space using SciPy. 

4.8. Data availability 
The directory (curated by Dr Warren Thomson) was deposited on Zenodo, containing X-ray 

and LCMS results for the reactions executed on the OpenTrons, output reports and 

summaries from MSCheck (semi-automated LCMS analyzer tool) and the Python scripts used 

to execute single and multistep chemistry on the OpenTrons. 

The accession URL is https://zenodo.org/record/7586212#.ZCLC6ezMLn5 
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Chapter 5. Algorithmic recovery of fragment elaboration 
binding features from large scale crystallographic readouts 

5.1. Credits 
The research and manuscript presented in this chapter were conducted and authored by 

Harold Grosjean. Harold Grosjean conceived, coded, validated and benchmarked the method 

with input from Dr Ruben Sanchez-Garcia, Dr Rocco Meli, and Cameron Anderson. Harold 

Grosjean carried out protein expression, purification, and crystallisation, as well as 

crystallographic screening, structure refinement, electron density analysis, and grating-

coupled interferometry assays. Additionally, Harold Grosjean wrote the chapter and created 

the figures. Dr Charlie Tomlinson, Dr Lizbé Koekemoer, Dr Tobias Krojer, Dr William, Dr Daren 

Fearon, and Dr Edward A. FitzGerald contributed to experimental approaches and the 

processing of resultant data. Dr Ruben Sanchez-Garcia conducted the catalogue ligand- and 

structure-based screening. Prof Philip C. Biggin and Prof Frank von Delft reviewed and offered 

guidance on both the manuscript and the overall project. 
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5.2. Introduction 
Chapter 4 illustrated how robotic-assisted chemistry can be paired with X-ray crystallography 

at high-throughput levels to generate vast amounts of crystallographic structure-activity data. 

The understanding of such wealth of information remained however challenging due to the 

lack of data analysis methods and the expected degree of uncertainty associated with the use 

of combined high-throughput approaches. Indeed, the variable purity in the crude reaction 

mixtures paired with imperfect quality control tools may degrade data quality. Manual 

analysis of the non-binding data also identified several compounds recapitulating binding 

features suggesting false negatives. 

Thus, this chapter aimed to develop a data analysis approach that unbiasedly identifies 

molecular features associated with binding, or lack thereof, which are  then used to map false 

negatives and thus deconvoluting the binding landscape. Chemical connectivity fingerprints 

were calculated and molecular features associated with binding and non-binding events 

extracted. The rates of binding and non-binding features were combined into the positive and 

negative binding scores, respectively. Those metrics were used to identify potential false 

negatives from the chemical space defined by robotic synthesis, in Chapter 4, which were 

purchased in pure form and rescreened with X-ray crystallography. Overall, 23 and 3 false 

negatives were identified in the lateral and diving poses, respectively, thus doubling the initial 

hit rates. Enrichment analysis for the rescreening experiment showed the positive binding 

score to significantly enrich binders versus non-binders. The performance of the approach 

was compared with other commonly used ligand-based classifier including an optimised 

random forest. Features extraction also presented a natural opportunity in virtual screening. 

The binding scores were used to select follow-ups from a catalogue of commercially available 

compounds. Validation of those compounds revealed crystallographic binders with novel 

chemistry and enhanced affinity in assays. 

Altogether, this work demonstrates how binding and non-binding information can be 

recovered from a noisy crystallographic binding landscape and used in a prospective virtual 

screening effort. 
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Graphical introduction 5.1: Ligand features extraction from a noisy crystallographic dataset enables 
false negative identification and virtual screening of catalogue compounds. 
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5.3. Results 

5.3.1. A ligand-based method for analysing large scale crystallographic 
readouts 
Extracting meaningful information from large datasets often requires specialised 

computational analysis. In Chapter 4, a crystallographic screening of PHIP(2) robotic fragment 

elaborations generated a large dataset of binding and non-binding events (Fig. 5.1).[150] 

However, manual inspection revealed that some non-binding reaction products were 

structurally similar to previously resolved compounds, making it difficult to rationalise their 

lack of crystallographic binding. False negatives may explain this observation due to 

experimental factors such as defective quality control,[43] relative crystal tolerance to 

ligands,[151] compound solubility-concentration,[152] inaccurate dispensing,[21] as well as other 

crystal pathologies.[153] Some elaboration series systematically were never observed in 

crystals indicating that theses truly prevent follow-up binding. 

To recover information from this seemingly intractable data, a simple cheminformatic 

approach that’s extracts ligand features associated with binding and non-binding events was 

developed. A data subset of 957 crystallographic ligand binding readouts was curated from 

approximately 1850 entries based on (1) successful synthesis outcomes, as measured by 

automated by Liquid chromatography–Mass Spectrometry (LCMS) analysis of crude reaction 

mixtures, and (2) usable X-ray diffraction data.[150] A "hit" or “binder” was defined as a 

compound manually resolved in the electron density, while a "non-hit" or “non-binder” 

lacked crystallographic evidence of binding. 

This refined dataset was divided into three data subsets based to include pose information. 

The "lateral" and "diving" subsets correspond to hits that bind in the lateral and diving pose 

previously identified in chapter 4, respectively. The "all" data subset aggregates hits from both 

poses. (Fig. 5.1). 
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Figure 5.1: Chemical space defined by robotic elaboration showing  binders and non-binders 
identified from crystallographic screening of crude reaction mixture. The left column displays 
previously resolved reaction products-bound crystal structures. Data subsets of combined (All) and 
individual poses (Lateral and Diving) as showed on each row. The chemical landscapes-based t-
Distributed Stochastic Neighbourhood Embedding of underlying connectivity fingerprints folded it in 
two dimensions are showed on the right column. 
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For the extraction of important ligand features, it is essential to break down the related 

compounds into formats that machines can process. Connectivity fingerprints of ligands offer 

a convenient avenue as they encode molecular structures as fixed-length bit strings with each 

bit representing the presence (“activated-bit” or “on-bit”) or absence (“deactivated-bit” or 

“off-bit”) of a particular chemical feature.[76] Furthermore, these fingerprints can be used to 

visualise the chemical landscape defined by group of compounds. t-Distributed Stochastic 

Neighbourhood Embedding (t-SNE) was used to reduce the highly-dimensional molecular 

binary representations to a 2-dimensional space for visualisation.[80] Overall, the lateral 

binders are located together around the middle of the chemical space whereas the diving 

compounds are more distantly located from each other (Fig. 5.1). 

This scoring scheme developed here focuses first on information pertaining to hit compounds 

as these can be characterised with a higher degree of certainty compared to non-binding 

compounds. Two simple schemes (Fig. 5.2) were designed to extract binding and non-binding 

information from the high-throughput crystallographic screening of crude reaction mixtures. 

Figure 5.2: Identification of conserved ligand features and compound scoring for simple binding 
predictions amongst non-binders. This shows a simplified example of how non-binders can be 
predicted for binding using this method. Binding and non-binding features are identified with respect 
with binding hits and then mapped onto non-binders for prediction to likely or unlikely binders. 



 116 

Recognising the preserved features of both binding and non-binding compounds facilitates 

compound scoring (refer to the methods section 5.6.2 for details). The Bit Conservation Score 

(BCS) is calculated for individual bits and across hits. This enables to classify each bit into 

Conserved Binding-Bits (CBB) and Conserved Non-binding Bits (CNB) which correspond to 

features associated with crystallographic binding or lack thereof (Fig. 5.2), respectively. 

The Positive and Negative Binding Scores (PBS and NBS) are then calculated by counting the 

conserved binding and non-binding bits in non-hits. This allows predict for these non-hits 

weather they are likely or unlikely binders (Figs. 5.2 and 5.11). A positive and negative binding 

score of 1 indicates that a compound has features strongly and weakly associated with binding 

and non-binding, respectively (Suppl fig. 5.1). 

5.3.2. Feature identification rationalises crystallographic binding 
This scoring scheme was applied to all three data subsets (All, Lateral, and Diving Pose), with 

bit classification performed prior to scoring (Fig. 5.3). This enables visualisation of the 

conserved binding bits to further rational pose-specific binding. 

 

The comparison of overlapping and diverging bit classification between data subsets provides 

insights into underlying features responsible for binding and pose change. The presence of 

novel chemical features in the binders was associated with an increased and decreased 

number of unconservative and conserved non-binding bits, respectively (Suppl fig. 5.2). 

Despite a 6.3-fold difference in hit count between the lateral and diving poses, both exhibited 

Figure 5.3: Identification of conserved binding-bits enables comparison of pose-specific binding 
features. The conserved binding-bits for all, lateral and diving binders are compared highlighting pose-
specific binding features. The dotted line illustrate that the binding bits present in all binders are also 
shared with lateral and diving binders. 
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a similar number of conserved binding bits, suggesting that the accumulation of binders 

quickly reveals the scaffold required for pose-specific binding (Fig. 5.3). The number of 

conserved binding bits was manageable for visual inspection. This reinforced the association 

between the methylpiperazine modification and the diving pose, as this chemical group is 

present in 90% of the pose-specific conserved binding bits.[150]  

Identification of conserved binding and non-binding bits (Fig. 5.3) enabled the scoring of each 

compound based on positive and negative binding scores (Fig. 5.2), where higher values 

indicate the presence and absence of binding and non-binding features, respectively. 

Compounds with positive and negative binding scores of 1 or less than 1 were classified as 

likely or unlikely binders (Fig. 5.3). Positive and negative binding scores were calculated for 

each pose, resulting in a total of six landscapes, and each compound was classified accordingly 

based on its calculated scores (Suppl fig. 5.3). 

 

The number of underlying bits accounted for by the score affects the smoothness for the 

binding surface (Fig. 5.4), with the negative binding score showing less pronounced gradients 

due to the greater number of conserved non-binding bits (Suppl fig. 5.2). Overall, both 

landscapes were in good agreement with each other. However, some clusters can have 

Figure 5.4:  Positive and negative binding scores contextualise crystallographic binding landscapes 
in term of ligand features associated with binding or lack thereof. The top row displays the binding 
landscape colour-coded by positive or negative binding scores. The binders are showed on each 
landscape with black crosses. The bottom panel illustrates how these scores should be interpreted. 
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conflicting interpretation, such as the one around landscape coordinates of (Ligand features 

t-SNE 1) 30 and (Ligand features t-SNE 2) 0, have unfavourable positive binding scores and 

favourable negative binding scores, respectively. This due to the absence of the amide and 5-

membered ring essential for binding whilst not bearing any groups associated with non-

binding. Reversibly, compounds with a sulphonamide extension, which repeatedly led to non-

binding, exhibited a low negative binding score in the cluster around landscape coordinates 

of (Ligand features t-SNE 1) -30 and (Ligand features t-SNE 2) 0. For those compounds, the 

conserved binding features were maintained, resulting in large positive binding scores (Fig. 

5.4). 

Compounds that did not bind in the initial X-ray crystallographic experiment of crude reaction 

mixtures were subjected to predictive classification (Suppl fig. 5.3). Likely and unlikely binders 

were predicted based on positive and negative binding scores, respectively (Fig. 5.2). A total 

of 189 and 34 compounds were predicted to be likely binders for the lateral and diving pose, 

respectively, with the differential chemical series exploration sizes being the reason for the 

5.56-fold difference (Suppl fig. 5.4). The classification based on the negative binding score 

was more permissive, with 915 and 951 compounds classified as unlikely binders for the 

lateral and diving pose, respectively, due to the presence of at least one unobserved feature 

in the compound (Suppl fig. 5.4). Compounds with a negative binding score of 1 are a chimera 

of existing binders because all activated bits are either binding or unconservative, meaning 

that they were observed in at least one binder (Fig. 5.4). 

5.3.3. Identification of false negatives in rescreening experiment 
This study explored two hypotheses: (1) there are crystallographic false negatives among non-

binders, and (2) the scoring scheme presented above can predict crystallographic ligand 

binding. In order to determine whether the two hypotheses hold, an experiment was 

designed using the data presented in Chapter 4. 

The proposed scores were computed for all non-binders with the aim of selecting potential 

false negatives for experimental validation. To maximise chances of resolving false negatives, 

a logarithmic sampling strategy for compound selection was applied to both positive and 

negative binding scores with bin densities biased towards higher score values (Fig. 5.5). The 

cheapest compound was selected within each bin, and if compounds had the same price, the 
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one with the score closest to the average score for that bin was chosen. A total of 97 non-

binders were purchased from Enamine in pure form (Suppl. table 5.1), and these were tested 

with X-ray crystallography against the previously used PHIP(2) crystals in a C2 space group.[130] 

Triplicate 24-hour soaks were performed to increase the likelihood of identifying binding 

events.[43] 

Figure 5.5: Crystallographic rescreening of pure compounds covers binding landscape with the 
positive binding score significantly enriching false negatives identification. The chemical space 
sampled with associated positive and negative binding scores for each pose is shown in the first row 
(1). The second row presents the enrichment analysis, with True and False categories representing the 
pure crystallographic rescreening binding outcome on the x-axis (2). The spread for each class 
generated from the positive binding score is showed along the y axis. Purple dotted lines show the 
average positive binding scores for each class and the resulting difference (ΔPBS) between binders (B) 
and non-binders (NB). The p-value, calculated using a The Mann-Whitney U test, indicate the 
significance of the positive binding score in discriminating binders from non-binders. The associated 
negative binding score values are colour-coded for all datapoints. The lower row displays non-binders 
with a positive binding score of 1.  Each compound is labelled with features hypothesised to cause 
non-binding and negative binding scores, respectively. 
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The selection sampled well the chemical space with the positive binding score significantly 

identifying false negatives for all 3 datasets (Fig. 5.5). The chemical space was well covered 

by the rescreening strategy, except for the top right cluster. This region had low positive and 

negative binding scores due to the replacement of the essential 5-membered diheterocyclic 

ring with various groups . The compound selection was biased towards higher positive and 

negative binding score regions for the lateral pose. This implies that selected compounds 

recapitulated most conserved binding bits and lacked conserved non-binding bits for that 

pose (Fig. 5.2).  

Crystallographic rescreening of the pure compounds identified 26 novel binders, doubling the 

initial hit rates for both poses (Fig. 5.1). Enrichment analysis based on positive binding scores 

of binders versus non-binders proved to be significant in all three data subsets, with the 

lateral and diving datasets being more significant and better enriched than the "All" data 

subset. The difference in average positive binding score for binders versus non-binders was 

the largest in the diving pose. However, only 3 false negatives were recovered for this data 

subset and statistics may therefore suffer from a lack of sampling. 

The disparity in the number of recovered diving binders in comparison to lateral ones is due 

to the reduced number of rescreened compounds harbouring a methylpiperazine group(Fig. 

5.5). 65 contained a piperazine moiety, 11 contained a methylpiperazine, and 21 had neither 

of these functionalities (Suppl table 5.1). Considering the number of compounds binding in 

the lateral and diving conformations, there were 21 piperazine and 3 methylpiperazine 

variants, respectively (Fig. 5.6). As such, the resultant specific hit rates for these two groups 

are 32.31% and 27.27%. 

The experimental results demonstrated that the positive binding score significantly enriched 

binders over non-binders across all datasets and performs better than the negative binding 

score (Suppl fig. 5.6). However, there were 21 and 3 non-binders with maximal positive 

binding scores for the lateral and diving poses, respectively. Features such as 5-membered 

triheterocyclic rings, 6-membered rings, nitro and sulphonamide groups for the lateral pose, 

and trifluoromethyl for the diving pose, repeatedly led to non-binding events. Additionally, 9 

and 1 non-binders had no obvious features that could explain the lack of crystallographic 

binding for the lateral and diving poses, respectively (Fig. 5.5). 
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Figure 5.6: Rescreening of pure compounds resolves false negatives and reveals outliers poses and 
chemotypes. The top of each column shows lateral and diving false negatives. The left column shows 
the structures and associated PanDDa event maps for lateral false negative outliers bearing a 
methylpiperazine. The right column also shows structures and associated PanDDa event maps for all 
3 diving false negatives. 
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Structural and electron density inspection revealed interesting features for binding outliers. 

To fit binding events, visual inspection of the PanDDa event maps was required due to their 

weak natures (Fig. 5.6).[24] The screening of pure compounds revealed 23 lateral binders with 

a similar pose to the previous experiment presented in Chapter 4, where elaborations extend 

across the ZA-channel (Fig. 5.5).[150] However, two lateral binders (7FV7 and 7FVJ) had an 

unexpected single methyl addition to the conserved piperazine core, pointing towards the 

inside of the binding site (Fig. 5.6). 

All diving binders had a furan binding in the water cavity, which was not previously 

resolved.[150] These binders also exhibited structural differences compared to the initial 

screening of crude reaction mixtures presented in Chapter 4. In two cases (7FV3 and 7FVH), 

the methyl group was resolved on the other side of the piperazine's nitrogen-nitrogen axis, 

than previously resolved.[150] In one of these cases (7FV3), a furan-3-carbonyl was resolved 

instead of the furan-2-carbonyl found in the other two binders. One furan-2-carbonyl binder 

(7FVA) had a piperazine methyl in an R conformation similar to that of the previously resolved 

diving binders in Chapter 4. For this compound, its pose was shifted towards the ZA-channel 

which was paired with the re-insertion of a water-network molecule (Fig. 5.6). 

5.3.4. Benchmarking binding scores against ligand-based approaches 
To test the performance of the positive and negative binding scores, these were benchmarked 

against other commonly used ligand-based approaches. A training set was created by 

excluding the 97 rescreened compounds from the initial 957 compound large dataset, thus 

totalling to 860 compounds and initial screening outcomes. The test set consisted only of 

those 97 compounds purchased in pure with new rescreening binding outcomes (Fig. 5.6). 

The conserved binding and non-binding bits were extracted from the training set only and 

used to score testing set compounds. 

The benchmark included a random forest classifier with hyperparameters optimised against 

the test set (Fig. 5.7). It is important to note that random forest hyperparameters were tuned 

on the test set to obtain the best possible results for comparison purposes, even though this 

may lead to overoptimistic results. Random forest classifiers are commonly used in ligand-

based predictions such as for bio-availability, bioactivity and toxicity.[154–156] Two Tanimoto 

chemical similarity distance-based scores were also included in the benchmark. The average 



 123 

Tanimoto coefficient value of a target compound against a set of experimental binders is 

commonly used in catalogue screening experiments[157–159]. The maximum Tanimoto 

coefficient of a target compound aginst a set of experimental binders is expected to efficiently 

identify false negatives, as it rewards compounds highly similar to known binders.[160] The 

precision recall are under the curve was selected as comparison metric as it focuses on 

positive data and better handles data imbalance.[161] 

 

 

The positive binding score was the second-best performing metric for the “all” and “lateral” 

datasets where it performed similarly to the random forest in the low to mid recall regions 

(Fig. 5.7). For the diving pose data subset, the positive binding score was the best classifier 

with other metrics, including the optimised random forest, performing poorly. Tanimoto-

based metrics and the negative binding score performed poorly across all data subsets (Fig. 

5.7). The optimised random forest had the best performance for the “all” and “lateral” data 

subsets despite some associated errors. Again, the random forest hyper-parameters were 

optimised against the task thus likely generating overoptimistic predictions over a blind 

scenario. 

 

Figure 5.7: Benchmarking ligand-based methods for reproducing crystallographic rescreening 
results. Tested methods include an optimised random forest classifier (oRFc), positive and negative 
binding scores (PBS and NBS), and mean and maximum Tanimoto coefficients (mean TC and max TC), 
shown in blue, orange, green, red, and purple, respectively. The baseline, shown as a dotted black 
horizontal line, represents the hit rate associated with each data subset. A PR-AUC equal to the hit 
rate indicates random prediction. The error plotted and recorded for the optimised random forest 
were related to precision and overall PR-AUC values, respectively. 
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5.3.5. Virtual screening identifies novel informative series 
The binding scores presented above were used to prospectively screen a catalogue of 

commercially available compounds to select further follow-up candidates (Fig. 5.8). 

Additionally, a constrained docking step was added, using Fragmenstein, to offer additional 

structure-based filtering opportunities based on affinity predictions.[109] The pipeline below 

was applied twice, once for the lateral and once for the diving pose data subsets. 

 

 

Initially, a 2D ligand-based virtual screening (done by Dr Ruben Sanchez-Garcia) on a fraction 

of the Enamine Real library, which totals to approximately 1.7 billion compounds (Fig. 5.8).[162] 

The catalogue was filtered to retrieve the top 45,000 compounds based on a positive binding 

score. Compounds with negative binding scores greater than or equal to the average, 

amongst those selected 45.000 compounds, were removed (Fig. 5.8). CoPriNet was used to 

removed compounds predicted as expensive, and a chemical diversity selection was applied 

to select for a more diverse pool of compounds.[163] This process resulted in the selection of 

10,000 compounds per pose for the ligand-based screening thus totalling to 20,000 

compounds. 

Figure5.8: Enamine Real subset virtual screening selects 50 compounds per pose for experimental 
validation. The crystallographic screening of crude reaction mixtures was used in two different scales 
for an integrative approach. The positive and negative binding scores were used to extract compounds 
from the ligand catalogue, and then binding predictions using bound structures were made using 
Fragmenstein. 50 compounds per pose were selected for further analysis based on energy scores. 
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Subsequently, Fragmenstein[86] was used to fit the selected compounds into product-bound 

crystal structures, therefore also utilising the structural information obtained from the initial 

crystallographic screening of crude reaction mixtures (Fig. 5.1).[150] Unphysical poses were 

eliminated using the ligand energy ratio, which accounted for approximately 26% of the fitted 

compounds. The top 3% scoring compounds based on the Rosetta All-Atom Energy 

Function[164] were then selected for a final chemical diversity filtering. 

The final selection included 47 (Suppl table 5.2) and 46 (Suppl table 5.3) compounds for the 

lateral and diving pose, respectively, totalling to 93 compounds for crystallographic validation 

at the XChem (Fig. 5.8). 

 

Crystallographic evaluation of pure catalogue compounds yielded 10 compounds, achieving a 

global hit rate of 10.75% (10/93) (Fig. 5.9). All bound compounds resulted from virtual 

screening applied to the lateral pose, implying pose-specific hit rates of 21.28% and 0.0% for 

the lateral and diving poses, respectively. Among the 6 binders with a conserved lateral pose, 

3 had a similar molecular structure to previously resolved compounds, while the other 3 

presented novel features: one had a 1,2-diformylhydrazine bond forming new hydrogen 

bonds (7FUW), another had an unobserved bicyclic thieno[3,2-b]thiophene ring system that 

made amplified hydrophobic contacts with neighbouring amino acids (7FVD), and the third 

had an anisole extension to the furane that bound in a previously unsampled vector (7FV6). 

Figure 5.9: Crystallographic validation of selected compounds reveals novel binding poses, 
chemistries, and elaboration vectors. The identification of 10 compounds resulted in 6 maintaining 
the initial lateral pose (left panel). Among the lateral binders, 3 displayed novel features, while 4 
exhibited modified binding (right panel) compared to the initial pose.  
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The remaining 4 binders exhibited modified conformations with respect to the lateral pose 

used for template fitting (Fig. 5.9), including a phenol ring that displaced water molecules 

with an unaltered piperazine ring occupying the central cavity (7FV8), 2 compounds that 

flipped and translated without displacing the water network and had long extensions towards 

the solvent (7FV8 and 7FUZ), and one instance where the follow-up was bound at a different 

site (7FVC) located between α-helices Z and C (Fig. 5.9). 

Additional, validation necessitates the evaluation the interacting strength between the 

follow-up and the target, PHIP(2). A grating-coupled interferometry (GCI) assay[165] was used 

to test the binding kinetics for the 194 compounds, thus including both the compounds 

purchased (Suppl table 5.1) for retrospective rescreening and prospective virtual screening 

(Suppl tables 5.2 and 5.3). This allowed for the evaluation of differential binding affinities 

between the two sets of compounds. 

Binding events were further considered if the ka and kd errors were lower than 25% and paired 

with an Rmax value greater than 10. Although no universally accepted hit-calling criteria exist, 

the thresholds mentioned above are relatively stringent and applied to potentially minimise 

the likelihood of false positives in comparison to more lenient values. 
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Figure 5.10: Selected GCI assay binders exhibit increased affinity against the initial robotic chemistry 
hit and chemotypes unresolved in crystal structures. kd and ka values are presented in the top panel, 
with associated errors, in second-1 and, molar-1 per second-1, respectively. The reference binder, 
resolved from crude reaction mixtures, is represented by a red dot and shaded regions indicating ka 
and kd values and errors. Hits resolved or unresolved in crystals are marked by points or crosses, 
respectively. 2D ligand structures for each GCI assay hit are shown on the bottom panel, with 
identifiers corresponding to the affinity scatterplot. Final Kd values, expressed in micromolar (μM), 
with upper and lower ranges calculated from ka and kd errors, are displayed below corresponding 2D 
structure. ka and kd are indicative of the association and dissociation rates with Kd, the dissociation 
constant, equalling to association over the dissociation rates. 
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GCI kinetic measurements identified 18 high-quality binding events, with 5 from the robot 

chemistry library and 13 from virtual screening. Four compounds showed an approximate 10-

fold increase in binding affinity compared to the assay binder, previously identified in Chapter 

5 (Fig. 5.10). Ten compounds contained a methylpiperazine ring, initially associated with the 

diving pose. Only two compounds were resolved in crystal structures: binder 2 was a 

crystallographic false negative (Fig. 5.6), and binder 6 was the virtual screening compound 

with the anisole vector extension (Fig. 5.9, 7FV6). 

Compounds with larger 6-membered rings or modified 5-membered rings contained a 

methylpiperazine. Binders 0, 10, 13, 14, and 16 had a benzene ring replacing the original 5-

membered ring (Fig. 5.10). Binders 1 and 7 exhibited high scoring positive and negative 

binding score values in the diving pose (Fig. 5.5), while binders 2, 5, and 15 had features 

associated with lateral binders (Fig. 5.3). Binder 4 was almost identical to a diving 

crystallographic binder but lacked the methyl on the piperazine. Binder 11 had a 

triheterocyclic ring that was systematically not resolved in crystals, although its positive 

binding score was high in the lateral pose. Binders 12 and 13 had long flexible extensions 

lacking a urea, and binders 8 and 17 lacked the conserved amide aromatic ring (Fig. 5.10). 
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5.4. Discussion 
The study initially aimed to rationalise the binding landscape of fragment F709 elaborations, 

designed against PHIP(2)[150], by extracting ligand features relevant for crystallographic 

binding and non-binding.  The initial chemical landscape was generated by a robotic synthesis 

and resolved using X-ray crystallography in Chapter 4 (Fig. 5.1). The congeneric nature of the 

elaboration and limited dataset size favoured the development of a simple heuristic (Fig. 5.2) 

over the use of machine learning, which is commonly used for feature extraction or 

classification.[166] Molecular features associated with binding and lack thereof were extracted 

and compared between each pose, highlighting the significant role of methyl in inducing the 

diving pose (Fig. 5.3). 

Aggregation of these features into the positive and negative binding scores (Fig. 5.2) allowed 

the identification chemical landscape regions associated with crystallographic follow-up 

binding and non-binding, respectively (Fig. 5.4). Certain chemical space regions exhibited 

conflicting scores due to follow-ups recapitulating binding features but also containing 

elaborations linked to non-binding events, such as sulphonamides. The binding scores guided 

the identification of experimental false negatives (Fig. 5.4), which was validated by 

crystallographic rescreening of pure compounds (Fig. 5.5). This led to the identification of 23 

and 3 false negatives for the lateral and diving pose, respectively (Fig. 5.6). 

The SAMPL7 challenge presented in Chapter 3 and Baker et al., (2020) also identified 

crystallographic false negatives through repeated screening, highlighting the occurrence of 

crystallographic false negatives.[43,130] However, studies experimentally addressing data 

misclassification in drug discovery are scarce, although false negatives exacerbate data 

imbalance, which can confound predictive technologies (Suppl fig. 5.7) or lead to poor 

generalisation performance.[167,168] 

Identifying outliers, such as the piperazine methyl in the lateral pose, with previously unseen 

features, expands the knowledge of pose-specific binding features (Fig. 5.6). This suggests 

that features may act cooperatively or destructively to drive pose-specific binding, 

highlighting the possibility of examining feature combinations for a better understanding of 

ligand crystallographic binding, rather than considering them as a static ensemble. A single 

modification, such as methyl addition, is unlikely to fully explain changes in binding pose. 

Instead, multiple factors should be considered. Malhorta et al., (2017) suggested that ligand 
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flexibility and other factors contribute to binding pose changes, with weak ligands being more 

susceptible to alterations.[169] Protein flexibility[170] and water dynamics[171] were also found 

to participate in ligand rearrangement, which may apply here given the dynamic[124] and 

hydration of bromodomain binding sites.[91] One diving compound showed some evidence of 

alternative lateral binding in the event map, but insufficient for proper fitting while another 

had a shifted pose with the re-insertion of a water molecule (Fig. 5.6). 

The piperazine ring's methyl position were resolved at different locations, suggesting that 

event maps may reflect a superposition of states (Fig. 5.6).[43] Virtual screening structural hits 

demonstrated further pose changes with one binding in the diving orientation, but lacking 

previously identified conserved diving features, while another changed the binding site (Fig. 

5.9). 

Increasing hit diversity reduces the non-binding bits ensemble (Suppl fig. 5.1), which is 

approximately 60 times more populated than the conserved binding bits in both pose-specific 

data subsets (Fig. 5.3). Benchmarking based on the negative binder score (Suppl fig. 5. 6) 

performed worse than the positive binding score. Categorising non-binding bits is challenging 

as they address an unobserved signal, which has proven to be noisy and can also be more 

influenced by data biases (Fig. 5.5). Non-binding events are however essential to consider as 

they are populated, here, the majority of crystallographic readouts (Fig. 5.1). Focusing solely 

on binders by disregarding non-binding events creates a case of survival bias that has proven 

to be detrimental in various fields[172] and may be relevant for virtual screening, where 

negative data is rarely included in follow-up selection. Recent research has shown that 

incorporating decoys into the training set improves predictions, emphasising the importance 

of considering non-binding events.[173] 

The detected associations and correlations between features and binding outcomes might 

stem from the original compound designs, adding a layer of complexity to the accurate 

feature identification process. Indeed, the different iterations did not systematically consider 

R group combinations. Consequently, there could be features that display correlation, in that 

they consistently appear together or are mutually absent, which results in their association 

with both binding and non-binding events. However, it is important to emphasise that the 

presence of correlation does not unequivocally infer causation. A single feature from a 

correlated set may be the actual driver for a binding or non-binding event. This underscores 



 131 

the importance of careful experimental design that aims to systematically consider feature 

combinations and diversity, thereby enhancing the efficacy of subsequent analyses and 

enabling credible causal inferences. 

Non-binding compounds with high positive and negative scores also raised questions about 

the reliability of crystallographic readouts (Fig. 5.5). In some cases, the reason for their lack 

of binding remained unexplained. Non-binders were either chimeras of existing binders or 

had seemingly suitable extensions that would extend across the ZA-channel, some previously 

resolved in SAMPL7 fragments such as F368 and F369 (PDB: 5RKW and 5RKJ, respectively).[130] 

Other modifications, such as replacing the diheterocyclic by a triheterocyclic ring or adding a 

sulphonamide/nitro group, led to non-binding and are more difficult to rationalise (Fig. 5.5). 

These modifications can increase compound volume, polarity or solubility at a hydrophobic 

location which may promote the ligand to go into solvent.[174] However, replacing a 5-

membered with a 6-membered ring modifies piperazine and linking amine conformation, 

disturbing the hydrogen bond with the nearby serine thus explaining non-binding (Fig. 5.5). 

The validation analysis of rescreening robotically generated compounds in pure form showed 

significant enrichment between binders and non-binders despite apparent irregularities in 

crystallographic readout (Fig. 5.5). Virtual screening non-binders align with the crude reaction 

mixture and validation results, as they exhibit recurring non-binding features, such as 6-

membered rings, tri-heterocyclic rings, and diazepane (Suppl tables 5.2 and 5.3). This 

underscores the significance of properly accounting for non-binding characteristics. The 

absence of virtual screening crystal binders, for the diving predictions, may also result from 

an incomplete categorisation of conserved bits due to the small number of initial binders. It 

is important to note that virtual screening was performed with no prior knowledge of the 

rescreening results of potential false negatives (Fig. 5.8). The validations by crystallography 

and GCI assays (Fig. 5.10) were simultaneous and identical for both compound sets, enabling 

comparison of the results. Thus, it expected that the results gathered, here, will improve 

future screening campaigns. 

Benchmarking against other ligand-based methods was encouraging for the positive binding 

score, outperforming negative binding score and other Tanimoto-based metrics (Fig. 5.7). The 

positive binding score performed better than the random forest for the diving pose, operating 

at unbalanced data regimes inappropriate for random forest classification. The random forest 
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classifier outperformed positive binding score for "all" and "lateral" data subsets but had 

similar performance between low and mid recall regions (Fig. 5.7). In resource-limited 

compound discovery, high precision is more important than high recall.[166] Thus, methods 

with similar behaviours at the beginning of the curve should be considered equally effective 

(Fig. 5.5). The random forest was also optimised against the test set and likely performs better 

than a blinded scenario. Validation and benchmarking were less conclusive for the “all” versus 

the “lateral,” showing that mixing pose information can confounds classification. 

The positive and negative binding scores were about 20-fold faster than the random forest 

(Suppl fig. 5.8), potentially enabling deeper catalogue search whilst incorporating target-

specific information. In comparison, Amendola et al. (2021)[175] developed a target-specific 

ligand screening approach which can process up to 272,000 compounds in 1 hour using 

multiple CPUs whereas scoring with both positive and negative binding scores can process 

about 145,000 compounds per hour on only a single CPU (Suppl fig. 5.8). 

Robotic and virtual compounds were evaluated for affinity using grating-coupled 

interferometry assays (GCI) which measured low micromolar binding events (Fig. 5.10). Four 

compounds had up to 10-fold increase in affinity and ligand efficiency compared to the 

previously identified ligand in Chapter 4.[150] These assay binders displayed various 

chemotypes, including the piperazine methyl ring (Fig. 5.10), which favours the diving pose in 

crystal structure. Non-systematic R-group substitution make simple structure-activity-

relationships deduction harder whereas the limited data points restricted the use of machine 

learning for quantitative structure-activity-relationships. 

Most GCI binders were not resolved by crystallography (Fig. 5.10), which presents a challenge 

in relating binding affinities to binding site context. The difficulty in resolving assay binders 

from soaked crystals is a known limitation that may result from the inability of the lattice to 

adapt to the conformation required for ligand binding.[27] These findings emphasise the 

difference between crystallographic and assay structure-activity-relationships, which are 

both essential to structure-based drug discovert efforts.  
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5.5. Conclusion and future direction 
A simple heuristic was developed to extract fragment follow-up binding and non-binding 

features from noisy datasets (Fig. 5.2), enabling crystallographic structure-activity 

rationalisation. The methyl's role in pose flipping was highlighted (Fig. 5.3), and the binding 

landscape was contextualised in terms of existing and missing molecular features in F709 

follow-up elaborations (Fig. 5.4). Future research could explore refining feature identification, 

using bit frequency thresholding or weighting,[176] and enriched by adding 3D context[177] 

using machine learning[178] or alchemical binding free energy calculations.[179]  Using 2D 

pharmacophoric fingerprints could increase feature generalisability across more chemically 

diverse ligand series.[180,181] 

The scoring schemes developed, here, were useful for identifying crystallographic false 

negatives, as rescreening revealed 26 binders, thus doubling the initial hit rate (Fig. 5.5).[150] 

Enrichment analysis based on positive binding scores was significant in all 3 data subsets, but 

some non-binders had high positive binding scores, thus questioning the reliability of 

crystallographic readouts (Fig. 5.5). 

Lateral outliers with methylpiperazine were also observed, suggesting combinatorial factors 

driving pose changes. The position of the methyl in the diving pose was different than 

previously observed (Fig. 5.6). To understand these dynamics, an integrative approach may 

be needed and may include room temperature crystallography or Nuclear Magnetic 

Resonance (NMR) spectroscopy.[182,183] Isothermal Titration Calorimetry (ITC) may help 

resolve the thermodynamics and entropic changes linked to water displacement.[184] Absolute 

binding free energies of different conformers may help identifying the lower energy stereo-

isomer and pose.[185] 

The positive binding score outperformed other Tanimoto-based metrics and the negative 

binding score  in benchmarking (Fig. 5.7). Notably, the positive binding score outperformed 

all other metrics for the diving pose, indicating that it can be applied to degraded datasets 

with few positives (Fig. 5.7). To further improve performance, a consensus approach 

combining positive and negative binding scores could be explored. 

The positive and negative binding score facilitated fast catalogue searches in prospective 

virtual screenings, thus incorporating site-specific information (Fig. 5.8). The virtual screening 
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identified 10 crystal binders with informative chemistry and elaboration vectors, and 

previously unresolved poses, including a case where a compound changed binding sites (Fig. 

5.9). GCI assays revealed hits with up to 10-fold increase in affinity and ligand efficiency than 

the hit previously identified in Chapter 5 (Fig. 5.10).[150] 

The wealth of acquired structural information could be combined with template docking of 

the assay binders, not resolved in crystals, and binding free energy calculations to rationalise 

the assay results from a structural perspective.[186] While crystallographic structure-activity 

relationships was the primary focus in the initial dataset, it is also important to account for 

differential binding between structural and assay-based methods. In addition to soaking, co-

crystallisation of assay binders may also provide bound structures and should be considered 

as an alternative approach.[27] 

Overall, this work presents a novel framework for interpreting noisy crystallographic binding 

landscape. This feature extracted from these can be used for incorporating target-specific 

information in virtual screening. This framework is expected to be transferable to different 

targets and fingerprints and will hopefully support the analysis of future robotically assisted 

fragment elaboration campaigns. Future research possibilities were also highlighted to 

potentially improve the performance of the method and rationalise the wealth of data 

generated from the computational, crystallographic, and kinetic experiments. 
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5.6. Methods 

5.6.1. Small molecule fingerprinting and dimensionality reduction. 
Feature-based invariant Morgan fingerprints were generated using a length of 2048 and a 

radius of 6 with RDKit and used as input for feature extraction (detailed bellow) and t-

Distributed Stochastic Neighbourhood Embedding using scikit-learn.[80] The fingerprint bit 

vectors were embedded in 2 dimensions allowing for visualisation using the Jaccard distance 

metric with a perplexity of 30. Chemical similarity calculations of molecule pairs were 

performed using RDKit.[79] 

5.6.2. Bit and compound scoring methodology 
The small molecules SMILES strings were first translated into bit vectors using Morgan 

fingerprints (as detailed in above) and partitioned into two subsets: hits and non-hits, 

corresponding to their crystallographic outcomes. Initially, the unsampled bits, which are 

never observed in either hits or non-hits, were eliminated from the array. Subsequently, the 

Bit Conservation Score (BCS) was computed for each bit, representing the activation rate of a 

specific bit across binders. 

Bit	Conservation	Score	 BCS =
∑bit1@
N5A%$

 Equation	5.1	

Where ∑biton is the sum of activated bits across crystallographic hits for single bit and Nhits is 

the number of crystallographic hits. Each bit must then be classified based on the conserved 

binding and non-binding bit thresholds which define the Bit Conservation Score at which a bit 

is classified, respectively. 

Conserved	binding	bit	 BCS ≥ θB33 ⟹ CBB Equation	5.2	

Conserved	non-binding	bit	 BCS ≤ θB43 ⟹ CNB Equation	5.3	

Where θCBB and θCNB are the Bit Conservation Score thresholds defining the conserved binding 

bit and conserved non-binding bit labels for individual bits. If those criterions are not met, 

then the bit is labelled unconservative. This enables calculating the positive and negative 

binding scores for individual compounds. The positive binding score is number of activated 

conserved binding bit across one compound over the total number of conserved binding bit 
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identified. The negative binding score is one minus the number of activated conserved non-

binding bit accross one compound over the total number of conserved non-binding bit 

identified. 

Positive	binding	score	 PBS =
∑CBB1@
NB33

 Equation	5.4	

Negative	binding	score	 NBS = 1 −
∑CNB1@
NB43

 Equation	5.5	

Where ∑CBBon and ∑CNBon are the sum of activated conserved binding and non-binding bits 

within a compound, respectively. NCBB and NCNB are the number of activated conserved 

binding and non-binding bits identified, respectively. Compounds are then predicted as likely 

(LB) or unlikely binders (UB) using the positive and negative binding score thresholds. 

Likely	binder	 PBS ≥ θ-3C ⟹ LB Equation	5.6	

Unlikely	binder	 NBS ≥ θ43C ⟹UB Equation	5.7	

Where θPBS and θNBS are the positive and negative binding score thresholds defining the score 

values at which a compound is labelled likely or unlikely binder, respectively.  

 

Figure 5.11:  Algorithmic workflow for feature extraction and compound scoring. Fingerprint bits are 
first processed by calculating the bit conservation score across binders. The conserved binding and 
non-binding bits define the positive and negative binding scores on non-binders, respectively. Those 
scores are then used to define whether a non-binding compound is a likely or unlikely binder. 
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5.6.3. Random forest hyper-parameters optimisation and classification 
The hyperparameters for the random forest model were optimised across all 3 data subsets 

employing the Optuna library and its Tree-structured Parzen Estimator algorithm.[187] The 

training set consisted of the initial 957 compound large dataset minus the 97 rescreened 

compounds from, thus totalling to 860 compounds. The test set consisted only of those 97 

compounds rescreened in pure form. For both Feature-based invariant Morgan fingerprints 

served as inputs and crystallographic outcomes as ground truth. 

The optimisation process comprised 1,000 initial trials followed by a total of 2,500 trials. Four 

hyperparameters were optimised: maximum tree depth, maximum number of features used 

at each split, class weight, and number of trees in the forest. The maximum depth was 

evaluated within a range of 1 to 40 units with a step size of 1, while the maximum features 

values were assessed between "None" and various options, including "sqrt", "log2", and float 

values from 0.6 to 1.0 with a step size of 0.1. The class weight was examined among four 

distinct options: None, "balanced", {0:1, 1:10}, and {0:1, 1:100}. Class 0 symbolises negatives 

or non-binders, and class 1 represents positives or binders. The number of trees in the forest 

was explored from 10 to 1,000 with a step size of 50. The objective criterion aimed to 

maximise the average precision-recall area under the curve across 20 repeats calculated with 

scikit-learn. 

Random forest classifications were applied to the same validation and test sets using scikit-

learn, employing the best-identified hyperparameters. The average precision-recall area 

under the curve across 200 repeats was recorded to evaluate performance. To compare 

model performances between raw and corrected datasets, leave-one-out cross-validations 

were executed in triplicate for all datasets and average precision-recall AUC recorded and 

utilised to assess performance. 

5.6.4. Statistical analysis 
The Mann-Whitney U test, implemented using the SciPy library, was chosen for testing how 

significantly the binding scores enrich the identification of binders over non-binder during the 

rescreening experiment.[188] Due to the limited sample size, independent nature of the data 

points (different ligands were screened) and the non-normal binding score distributions, a 
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non-parametric statistical test was employed. The test was conducted with a two-sided 

alternative hypothesis to assess the significance of differences between the two groups. 

The predictions generated by the different classifiers were ranked thus allowing for 

calculation of the precision-recall AUC. The precision-recall area under the curve accounts for 

class imbalance and is therefore superior to receiver operating characteristic curve.[161] The 

precision and recall correspond to the positive predictive value (PPV) and true positive rate, 

respectively. 

Precision	 PPV =
TP

TP + FP
 Equation	5.8	

Recall	 TPR =
TP

TP + FN
 Equation	5.9	

Where TP, FP and FN correspond to the number of true positives (correctly classified positive 

cases), false positives (incorrectly classified positive cases), and false negatives (incorrectly 

classified negative cases), respectively. The precision-recall area under the curve value can be 

estimated by calculating the precision and recall values across possible threshold values.  

Precision-recall	area	under	

the	curve	
PR	AUC = n PPV(TPR)dTPR

D

E
 Equation	5.10	

Where PPV(TPR) is the precision function at recall value TPR. This equation states that the PR-

AUC can be obtained by integrating the precision function with respect to recall over the 

entire range from 0 to 1. Here this value was estimated using the trapezoidal rule 

implemented in scikit-learn.  

5.6.5. Virtual screening 
The initial ligand-based screening of a subset of Enamine REAL 1.7 (done by Dr Ruben Sanchez-

Garcia). The database subset was assembled in April 2021 and was composed of about 1.7 

billion compounds with heavy atom counts ranging between 6 and 38. The top 45,000 

molecules were retrieved based on the positive binding score for the two-pose specific-

datasets. Then compounds of higher or equal negative binding score than the average 

negative binding score across all 45,000 molecules were removed. CoPriNet[163] was then used 

for price prediction and the 15,000 cheapest scoring compounds in both datasets were 
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selected for further processing. A diversity selection was performed to select the 10,000 most 

divers compounds, based on the tanimoto distance, for each datasets using the lazy MaxMin 

diversity picker implemented in RDKit. This resulted in a combined library of 20,000 

molecules. 

Prior to binding pose predictions, the crystalised ligands were separated from the protein and 

waters removed with MDAnalysis[189] providing template material for structure-based steps. 

Binding pose predictions for chosen follow-up compounds (done Dr Ruben Sanchez-Garcia) 

with Fragmenstein where the follow-up compounds were placed into the dehydrated co-

crystal structure of the most chemically similar reaction product based on the tanimoto 

distance,. The template reaction product crystallographic conformers employed to fit the 

follow-up were the three most chemically similar ones. Five fits were performed for each 

follow-up compound. Fitted follow-ups were not processed further if the minimum ligand 

energy ratio exceeded 5. Subsequently, the top 3% of compounds were chosen based on their 

affinity scores. An additional diversity pick was applied to this selection, resulting in the choice 

of 50 ligands. 

5.6.6. Crystallographic screening 
Proteins were expressed, purified and crystalised as described in Chapter 2, Section 2.2.1. 

Crystallographic screening was also performed as described in Chapter 2, Section 2.2.2. The 

crystals were soaked for 24 hours at a final compound concentration of 8 mM. The 

compounds used for screening were purchased from Enamine stored in ethylene glycol at a 

concentration of 40 mM.  Structural models and crystallographic statistics can be retrieved 

from the PDB deposition ID: G_1002265. 

5.6.7. Grating-coupled interferometry assay 
Pulsed single-concentration surface-based biophysical measurements of binding kinetics 

were performed as detailed in Chapter 2, section 2.2.3. Specifically, PHIP(2) was diluted to in 

to 5 μg/mL and immobilised to a final level of 6554 surface mass (pg/mm2) corresponding to 

an injection time of 420 s. The running buffer was composed of 20mM HEPES, pH 7.5, 50 mM 

NaCl, 0.5% (v/v) Tween-20, and 0.5% (v/v) ethylene glycol. 

The WaveRapid[68] GCI analysis method quantifies the error associated with both ka and kd 

values, expressing them as a percentage relative to the measured values. Consequently, these 
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must be manually propagating to estimate Kd error value to properly estimate the affinity 

range of a particular compound for the target. The errors were propagated using root-sum-

square method. 

Equilibrium	

constant	error	 K"#FF = K" × pq
k! × δG%
k!

s
H

+ q
k" × δG&
k"

s
H'

 Equation	5.11	

Where Kd and K"#FF are the equilibrium dissociation constant and associated error, 

respectively. ka and δka are the association rate and, associated error expressed in percent, 

respectively. kd and δkd are the dissociation rate and, associated error expressed in percent, 

respectively. 
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Chapter 6. Integrating structure-based methods for 
PHIP(2) fragment elaboration 

6.1. Credits 
The research and manuscript presented in this chapter were conducted and authored by 

Harold Grosjean. Harold Grosjean carried out hotspot mapping, virtual screening library 

generation, binding pose predictions and rescoring, molecular dynamic simulations, and free 

energy calculations with assistance from Dr Irfan Alibay, Dr William (Zhiyi) Wu, Dr Rocco Meli, 

and Dr Mihaela Smilova. Compound synthesis was kindly performed by Thomas Grimes under 

the supervision of Paul Brennan. Furthermore, Harold Grosjean performed co-crystallisation 

screening, crystallographic analysis, and grating-coupled interferometry assays with the help 

of Dr Lizbé Koekemoer and Dr William Bradshaw. Prof Philip C. Biggin reviewed and provided 

guidance on both the manuscript and the overall project. 
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6.2. Introduction 
In Chapter 5, a simple approach was developed to extract important ligand features from 

large and noisy crystallographic screening of crude reaction mixture. The approach 

retrospectively focused on one fragment, F709, and its robotically generated elaborations 

before prospectively identifying assay binders. However, these did not surpass low 

micromolar potencies. 

In this chapter, a larger gain in affinity was attempted by employing more conventional but 

intensive structure-based methods, applied to all 47 fragments resolved at the acetylated-

lysine binding site. The discovery of an anti-PHIP(2) inhibitor could provide a pathway to treat 

various lethal and previously untargetable cancers. Here, crystallographic fragments were 

used to query databases and construct a library of chemically accessible fragment 

elaborations. The follow-ups were subsequently docked into their originating co-crystal 

structures. The resulting docks were filtered based on overlays against the fragment pose, 

selecting more favourable docking poses that reproduce crystallographic features. Molecular 

dynamic simulations of the best follow-up poses enabled free energy scoring via Molecular 

Mechanics Generalised Born Surface Area and Interaction Entropy methods, leading to the 

selection of six compounds for experimental validation with Grating-Coupled Interferometry 

assay and co-crystallisation. Experimental evidence suggested two compounds binding 

weakly in the Grating-Coupled Interferometry assay but lacking crystallographic evidence. 

Overall, this chapter emphasises the complexity of early-stage drug discovery and 

underscores the importance of considering appropriate vector elaborations, ligand physico-

chemical characteristics, binding site interactions, and conformational dynamics, along with 

target-specific experimental validation constraints. 
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6.3. Results 

6.3.1. Investigating binding site interactions and dynamic fragment binding 
To gain an initial understanding of the binding site and available interactions within it, 

ensemble hotspot maps were generated (Fig. 6.1).[29] Ensemble maps are a clustering of 

individual hotspot maps, then are utilised to discern pharmacophoric trends and fluctuations 

across multiple structures. This method allows for the identification of recurrently occurring 

features and the combination of more widely scattered pharmacophoric points. However, it 

is important to note that ensemble maps may overlook infrequent interactions that could still 

hold relevance. All 47 co-crystals structures were included in those calculations thus 

accounting for the conformational heterogeneity captured by the initial crystallographic 

fragment screening experiment. 3 types of maps were calculated. Apolar, acceptor and donor 

maps measure the inclination of a binding site location to favourably interact with a 

hydrophobic, hydrogen bond donor and hydrogen bond acceptor probe, respectively.  

 

 

Figure 6.1: Ensemble hotspot mapping highlights primarily hydrophobic binding alongside polar 
interaction located around loop regions and a concealed water molecule at a donor site. The upper 
panel displays three distinct hotspot maps, with apolar, acceptor, and donor probes represented in 
beige, blue, and red, respectively. Apolar, acceptor, and donor correspond to probe types. The 
conserved bromodomain waters are depicted in red, while the hidden water at an acceptor site is 
illustrated in orange. The lower panel presents examples of fragment binding at hotspot regions. 
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The apolar map indicates a large density spanning the entire binding site and also engulfing 

the acceptor and donor points (Fig. 6.1). The acceptor hotspots (donor protein for acceptor 

ligand) were primarily located around α-helix B and the BC-loop, with some density also 

observed at the ZA-channel. The donor hotspots (acceptor protein for donor ligand) showed 

the opposite pattern, with greater opportunities at the ZA-channel, followed by the α-helix B 

and BC-loop regions. The fragment screening hits sampled the majority of the identified 

hotspots, except for one donor point corresponding to a water coordination site buried deep 

within the water cavity (Fig. 6.1). 

Short molecular dynamic (MD) simulations were then conducted to evaluate the stability of 

the binding poses (Fig. 6.2) thus enhancing the static crystal structures information. A root 

mean square deviation (RMSD) cutoff of 2.5 Å was used to distinguish stable from unstable 

crystal poses, and a binding mode was considered stable if the median RMSD of the fragment 

heavy atoms over the trajectory was lower than the aforementioned cutoff. 

Out of the 47 binders, 22 fragments were found to have an unstable binding pose, as defined 

by the RMSD cutoff (Fig. 6.2). These fragments tended to be relatively small, more solvent-

exposed, and had their predominant moieties in the hydrophobic void, leading to fewer polar 

interactions with the binding site.  

25 fragments had a more stable binding mode and tended to make polar and/or more 

interactions with the binding site (Fig. 6.2). For instance, F558 and F709 spanned the entire 

binding site from the ZA-channel to the BC-loop. F421 was relatively small in size but had a 

polar 5-membered ring that interacted with the BC-loop. F584 and F618 displaced 4 and 1 

water molecules from the conserved network, respectively, with the former being the most 

stable and buried fragment. 
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Figure 6.2: Crystallographic fragment poses demonstrate varying stability in molecular dynamic 
simulations. The upper panel presents the median RMSD for fragment crystal poses sampled 
throughout molecular dynamic simulation trajectories. A pose is deemed stable if its median RMSD is 
below 2.5Å, denoted by the dotted red line. The lower panel displays the top 5 most stable fragment 
crystal poses, with the fragment ID and corresponding median RMSD value provided below each 
crystallographic pose. 
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Free energy calculations provide a means to estimate binding affinity, which is crucial for 

understanding the thermodynamics of fragment binding and interaction strength. Here the 

enthalpy and entropy were estimated via Molecular Mechanics Generalised Born Surface 

Area (MMBSA)[190] and Interaction Entropy (IE)[93] calculations from MD simulation 

trajectories leading to an estimate of the  Gibbs binding free energies for individual fragments 

(Fig. 6.3).  

All but 9 fragments had negative (favourable) predicted binding free energies (Fig. 6.3). The 

unfavourable compounds tended to bear charged groups near polar protein regions (Suppl 

fig. 6.1). More stable poses (Fig. 6.2) tended to have more favourable predicted binding free 

energies indicative of better interaction with the binding site (Suppl fig. 6.1). For favourable 

fragment poses, the free energy ranking was relatively smooth with no clear best binder(s) 

(Fig. 6.3). 

Inspection of top 5 predicted most favourable binders revealed a diversity of interactions and 

of chemical scaffold. F558 and F709 spanned the entire binding site from the ZA-channel to 

the BC-loop. F616, displaced a conserved water and interacted via a relatively rare (for this 

set of fragments) halogen bond α-helix B while F362 has a double hetrocyclic ring that 

interacts with nearby tyrosines (Fig. 6.3).  
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Figure 6.3: Crystallographic fragment poses exhibit a smooth predicted binding free energy 
landscape. The upper panel displays the predicted binding free energy terms for each fragment, with 
average enthalpy, entropy, and Gibbs binding free energy terms represented in blue, orange, and 
green, respectively. Enthalpy (ΔH) and entropy (-TΔS) are derived from MMGBSA and Interaction 
Entropy analysis of MD simulation trajectories, respectively. The Gibbs binding free energy (ΔG) is the 
sum of these two terms. The vertical black lines indicate errors associated with the calculations. The 
lower panel presents the fragment crystal poses with the most favourable predicted binding free 
energies. 
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6.3.2. Generating a library of synthetically accessible fragment elaborations 
To increase fragment affinity, larger follow-up compounds can be selected so that they 

engage with more available interactions within the binding site (Fig. 6.1). To achieve this, the 

fragment SMILES strings were used to create a library of follow-up compounds using three 

different search tools (Fig. 6.4). 

The substructure search is restricted to follow-up compounds that replicate the entire 

structure of the initial queried fragment. On the other hand, the similarity and fragment 

network[114] searches allow for some degree of variation of the starting fragment in the 

follow-up compounds. The follow-up compounds must also be chemically tractable to 

facilitate downstream synthesis and experimental validation compounds (Fig. 6.4).[191] 

 

 

The queries returned a total of 77,378 follow-up compounds. These compounds were then 

scored for chemical accessibility, and only those predicted to be accessible were retained for 

further analysis. This removed 23.11% of the initial library, leaving 59,507 follow-up 

Figure 6.4: Crystallographic fragments enable database searches to construct a library of follow-up 
elaborations deemed chemically accessible. Initially, fragments were resolved crystallographically 
and inputed as 2D structures in SMILES format to seed database searches. Fragment network, 
manifold similarity, and substructure searches are applied to all fragments, generating follow-up 
compounds. The pink overlay represents the maximum common substructure relative to the 
originating fragment. All follow-ups are assessed for synthetic accessibility, and those deemed 
inaccessible are rejected from the final library. 
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compounds selected for further filtering, averaging to 1,266.11 follow-ups per queried 

fragment. To better understand the variability associated with each query, the number of 

follow-up compounds obtained per method per fragment was plotted (Fig. 6.5A). To visualise 

the chemical landscape defined by the final virtual library, a two-dimensional representation 

was generated using t-Distributed Stochastic Neighbourhood Embedding[80] (t-SNE) using 

Feature-based invariant Morgan fingerprints as inputs (Fig. 6.5B).[76] 

Figure 6.5: Library building reveals fragment-to-fragment variability in follow-up numbers returned 
and small size of fragment network compounds. The upper panel illustrates (A) the number of 
chemically accessible follow-ups per fragment per query method, using a log Y scale to mitigate visual 
effects of variable follow-up numbers. The bottom (B) left panel presents a 2D representation of the 
chemical landscape defined by the final library with query fragments showed as black crosses. The 
bottom right panel displays distributions of follow-ups' heavy atom counts within all three query 
types, with the number of compounds returned for queries shown below the distributions. Manifold 
similarity (M-Si), manifold substructure (M-Su), and fragment network (FN) searches are depicted in 
blue, orange, and green, respectively. 



 150 

The three different types of fragment-based queries yielded varying numbers of follow-up 

compounds (Fig. 6.5A). The similarity search returned the highest number of compounds and 

showed little variation between fragment queries. In contrast, the substructure and fragment 

network searches were more variable and yielded the most extreme changes in the number 

of follow-up compounds returned between fragment queries. For instance, the fragment 

network search returned 0 and 7,703 follow-up compounds for fragments F503 and F616, 

respectively. The substructure search produced the fewest follow-up compounds, followed 

by the fragment network and similarity searches (Fig. 6.5B). 

The fragment network compounds covered a larger portion of the chemical space compared 

to the substructure and similarity searches, which tended to cluster closer to the original 

fragment queries. Furthermore, the fragment network compounds had a lower heavy atom 

count than the substructure and similarity searches (Fig. 6.5C).  

6.3.3. Binding pose prediction and filtering for fragment elaborations   
X-ray crystallographic screening produced high-resolution fragment-bound structures, in 

Chapter 3, that can support structure-based inhibitor development (Fig. 6.1).[130] To this end, 

the follow-up compounds, stored as linear SMILES strings, must undergo conformer 

generation and protonation.[99] The protein (receptor) structure must also be processed to 

remove cofactors, such as ligand or solvent molecules, and hydrogen atoms must be added 

(Fig. 6.6).[192] Here, the bromodomain waters were removed as they were found to be 

displaceable, and the additional water was also eliminated as targeting this portion of the 

binding site may result in high-quality interactions (Fig. 6.1). 

The follow-ups were then docked, using GNINA,[193] into PHIP(2)’s binding pocket which 

generated a variety of conformers each associated with a binding score (Fig. 6.6). This step is, 

however, agnostic of fragment crystal pose information and rescoring can used to select for 

overlapping docked poses[37] thus making use of both, protein and ligand crystal structure 

information (Fig. 6.6).  
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Follow-up compounds were docked back into the co-crystal structure initially bound to their 

originating fragment, generating 100 poses per follow-up (Fig. 6.6). The docked poses did not 

always replicate experimentally resolved fragment poses, considered here as ground truth.  

Consequently, SuCos[37] was employed to filter out docked poses that did not align with the 

crystallographic fragment pose. In brief, SuCos calculates volume and features overlap, such 

as hydrogen bond donor and acceptor, between docked and crystal poses; higher scores 

indicate more similar poses (Fig. 6.6). 

 

Figure 6.6: Docking workflow facilitates binding pose prediction, scoring, and filtering for follow-up 
compounds. First, the originating receptor protein structure is cleared of all waters and cofactors (1.1), 
and conformers are generated for follow-up compounds (1.2). Both receptor and follow-ups are 
protonated prior to binding pose prediction and scoring through docking (2). Resulting poses for each 
follow-up are filtered out if they don't overlap with the original fragment crystallographic pose (3). 
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Figure 6.7: SuCos effectively eliminates unfavourable docked poses not overlapping with the 
crystallographic fragment. The top panel displays docking score distributions for all follow-up poses 
within fragment queries. The docking score distributions for overlapping and non-overlapping follow-
up poses are shown in blue and orange, respectively. The percentage of poses removed by overlay 
filtering is indicated in red below the distributions for each fragment query. The top 5 scoring 
overlapping, and non-overlapping follow-up poses are presented in the middle and bottom panels, 
respectively. Light green and light blue ligands represent the crystallographic fragment and follow-up 
poses, respectively. 
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The docking procedure generated numerous poses with a score distribution for follow-ups 

derived from fragment-based queries (Fig. 6.7). Implementing SuCos for pose filtering 

eliminated the majority of docked poses, with removal rates varying from 81.22% to 99.89% 

for specific fragment queries and averaging 96.86% across all queries.  

Overlapping poses tended to exhibit more favourable docking scores than non-overlapping 

poses. Therefore, rescoring procedure generally extracted the upper, more favourable, tails 

of the docking score distributions, with some variation between fragment queries (Fig. 6.7).  

For instance, F217 follow-ups showed relatively good scores, while F393 follow-ups had poor 

scores in both overlapping and non-overlapping ensembles. In contrast, the rescoring 

procedure effectively selected the best-scoring docked poses for F11 follow-ups, while F96 

and F503 follow-ups exhibited similar score distributions between the two ensembles. 

It is important to note that top-scoring poses did not always recapitulate the crystallographic 

fragment poses (Fig. 6.7). For example, F217-Si-59, F603-Si-104, F274-Si-52, and F274-Su-54 

comprised the unfiltered top 5 scoring poses, while only F558-Su-143 appeared in both the 

unfiltered and filtered top 5s (Fig. 6.7). 
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6.3.4. Free energy ranking of docked poses for follow-up selection 
To better assess the energetics of the docking poses, MD simulation followed by free energy 

scoring by MMGBSA,[94] and Interaction Entropy[194] were applied (Fig. 6.8). This enables to 

account for protein and ligand dynamics and energetics of binding in the follow-up selection 

process. 

 

 

The best scoring pose for each individual follow-up was selected, and the top 15 best scoring 

follow-ups were chosen for each fragment, resulting in a total of 705 unique follow-ups 

selected for molecular dynamic simulation-based evaluation (Fig. 6.8). The coordinates of 

these 705 docked poses and receptors were used to initiate 15.2 nanosecond MD simulation 

trajectories in explicit solvent, resulting in a combined simulation time of 10.72 microseconds. 

Figure 6.8: Best-scoring docking poses for follow-ups initiate molecular dynamic simulations 
enabling free energy scoring via MMGBSA and Interaction Entropy. To prevent redundant follow-
ups, top-scoring poses are selected based on CNN affinity (CNNA). Follow-up bound structures seed 
molecular dynamic simulation trajectories in explicit solvent. Holo, apo, and ligand state trajectories 
are extracted from an initial MD trajectory and used for MMGBSA and Interaction Entropy 
calculations. 
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Figure 6.9: Free energy calculations uncover diverse chemotypes related to (un)favourable binding. 
The top panel displays average predicted Gibbs binding free energies for follow-ups within fragment 
queries, with the overall average shown by the dotted red line. The middle and lower panels present 
the top and worst non-query redundant follow-up poses, respectively. The docked follow-up poses 
are shown in pale green. 
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The average calculated binding free energy across all queries was -7.92 kcal/mol (Fig. 6.9). 

There was a considerable range in the predicted binding free energy distributions for the 

different fragment queries. Generally, local densities of similar predicted binding free 

energies within fragment queries correspond to chemically alike follow-ups adopting a 

comparable pose (Fig. 6.9).  

The outliers also tended to be in regions with high positive binding free energies. Some 

queries exhibited a bimodal distribution, such as F309 and F367, which represent two 

dominating chemotypes within those follow-up selections. When examining the top five free 

energy scoring follow-ups, these tended to interact with the BC-loop and possessed large 

apolar groups either in the central or water cavity. Interactions at the ZA-channel were 

sampled in a smaller proportion (Fig. 6.9).  

For follow-up poses predicted to be the least favourable, they all featured some degree of 

charged or highly polar groups (such as halogen atoms) and had more rotatable bonds than 

the top-scoring compounds. All follow-up compounds were subsequently ranked based on 

their predicted binding free energies (Fig. 6.10). 
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Figure 6.10: Free energy scoring ranks follow-up poses, enabling manual selection of top compounds 
for synthesis and experimental validation. The top panel (A) displays the ranked free energy profile 
accross all follow-ups, with the dotted red line indicating the predicted free energy value of the most 
favourable crystal fragment, F558. The bottom left of panel A shows the free energy ranking location 
of the follow-ups selected for validation using black arrows. The 2D chemical structures of selected 
follow-ups are displayed below (B), with the maximum common substructure relative to their 
originating fragment highlighted in pink. The 3D docked and final molecular dynamic simulation poses 
are shown in light green and beige, respectively, alongside initial and final protein conformations 
(extracted from MD trajectories) as pale green ribbons and coloured cartoons, respectively. 
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The analysis of the free energy profile for the follow-up compounds revealed that most poses 

were either similarly or less favourable than the most favourable fragment, F558 (Fig. 6.2). 

Specifically, out of the 705 selected follow-ups, 114 and 552 poses were predicted similarly 

or less favourable than F558 (Fig. 6.10A). In addition, 167 follow-up poses had a positive 

average predicted binding free energy implying that the bound state is estimated to be less 

stable than the apo state. 

Only 30 compounds were predicted to be significantly more energetically favourable than 

F558 (Suppl. table 6.1). A team consisting of biochemists, synthetic, medicinal, and 

computational chemists collaborated in the selection process of the follow-up compounds. 

The team inspected all 30 poses and manually selected 6 for synthesis of them based on 

specific criteria, including pose stability (with respect to the initial fragment and docked pose), 

synthetic feasibility, and quality of the interaction formed with the binding site. Those 6 

compounds were then synthetised by Thomas Grimes.  

Overall, the docked poses for selected compounds were stable over the course of the MD 

trajectories (Fig. 6.10B) and maintained the initial fragment and docked pose including 

interactions with the binding site (Fig. 6.1). F217-Su-461 was the selected compound that 

experienced the most important conformational change with its aliphatic ring initially located 

at the ZA-channel moving opposite to the water cavity therefore inducing a relaxation of the 

ZA-loop. The F618-Si-450 system also experience conformational motions of the ZA-loop in 

the MD trajectory (Fig. 6.10B).  

6.3.5. Validation identifies weak assay binders lacking crystal structure 
The selected compounds (Fig. 6.10B) were synthesised by Thomas Grimes (Suppl fig. 6.2) and 

the final products dissolved in Dimethyl sulfoxide (DMSO) which is a polar aprotic solvent 

commonly used to dissolve organic molecules.[195] The selected follow-up compounds were 

tested for affinity against PHIP(2) using a grating-coupled interferometry (GCI) assay (Table 

6.1).[137,165] 
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Table 6.1: Grating-coupled interferometry assay identifies two weakly binding follow-ups. The GCI 
sensograms for follow-up compounds are shown in purple, with fitted binding models in black. Kinetic 
values extracted from the models are displayed in the black box. The name and 2D structures of the 
tested follow-ups are presented alongside the sensograms. ka and kd are indicative of the association 
and dissociation rates with Kd, the dissociation constant, equalling to association over the dissociation  
rates. 
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The sensograms for follow-ups F740-Si-380, F205-Su-289, F309-Si-292, and F362-Si-569 did 

not provide conclusive results due to poor raw data. Therefore, the software was unable to 

fit the binding model and extract kinetic values. However, the last three follow-up compounds 

showed some weak signals of mass accumulating on the chip, which may be indicative of 

some level of binding. On the other hand, F618-Si-450 and F217-Su-461 exhibited weak 

binding signals with estimated Kd values of 374.87 and 95.06 μM, respectively (Table 6.1).  

Structural validation is an essential step in iterative structure-based drug discovery as it 

enables to understand how a compound binds to the target and this information can be used 

in future rounds of optimisation. In addition, co-crystallisation can be more effective at 

resolving larger compounds that induce protein conformational motions.[27] Thus all 6 

synthesised ligands were screened for co-crystallisation instead of the previously used crystal 

soaking protocol (Fig. 6.11).  

Figure 6.11: Dimethyl sulfoxide degrades PHIP(2) crystal morphology compared to ethylene glycol 
and binds to the acetylated lysine binding site. The top panel displays crystal drops with identical 
composition, co-crystallised with ligands dissolved in either ethylene glycol or dimethyl sulfoxide. The 
corresponding solvent 2D structures are shown in the bottom right. The bottom panel presents typical 
electron density for the PHIP(2) acetylated lysine binding site when bound to either ethylene glycol or 
dimethyl sulfoxide. 
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Unfortunately, no crystals suitable for x-ray diffraction experiments were obtained for F740-

Si-380 and F205-Su-298. However, F309-Si-292 produced three crystals that yielded electron 

diffraction data, while F217-Su-461, F362-Si-569, and F618-Si-450 produced usable electron 

diffraction data from one, two, and two crystals, respectively (Suppl. table 6.2). Interestingly, 

all the usable crystals were formed under conditions that included some levels of ethylene 

glycol (Suppl. table 6.2). Furthermore, co-crystallisation with ligand in DMSO appeared to 

degrade crystal morphology compared to ethylene glycol (Fig. 6.11). Notably, electron density 

analysis showed the presence of DMSO in the binding site for each crystal.  

6.4. Discussion 
A virtual library of 59,507 follow-up compounds (Fig. 6.5), scored chemically accessible,[191] 

was assembled using the fragment network,[114] similarity, and substructure searches[25] using 

individual acetylated-lysing binding site fragments as seeds (Fig. 6.4). The fragment network 

produced the second-highest number of follow-ups, but with significantly lower heavy atom 

counts than the other methods (Fig. 6.5). Their fragment-like sizes resulting in low docking 

scores[196] implied none being selected for evaluation via MD-based free energy scoring (Fig. 

6.10B). The number of follow-ups retrieved varied between fragment queries, implying that 

certain that scaffolds are better at seeding searches than others (Fig. 6.5A). However, this 

isn't always associated with chemical expansion at appropriate vectors.[197] For instance, 

F584, the most stable and water displacing fragment (Fig. 6.2),[198] retrieved follow-ups 

expanding at vectors causing clashes with the binding site or breaking its stabilising 7-

membered lactam ring. Similarly, F616, the second most favourable fragment, had 

elaborations extending towards the solvent, leading to less favourable docking scores (Fig. 

6.7). 

Overall, the elaborations tended not to capture the variety of available interactions within 

the binding site (Fig. 6.1), suggesting single-fragment queries may limit interactions recovery 

from collective crystallographic fragment hits. Indeed, fragment growing (Fig. 6.4), employed 

here, only considers one scaffold during elaboration therefore reducing the use of 

experimental information compared to linking or merging.[199] 5 follow-ups were synthesised 

and 1 ordered from catalogues (Suppl fig. 6.2). In some cases, their synthesis was non-trivial 

and required multiple steps, highlighting that synthetic accessibility scores can be misleading 

(Suppl fig. 6.2).  
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The follow-ups were docked in their originating co-crystal structures, generating various 

poses (Fig. 6.6). These poses were then selected based on their overlay with the 

crystallographic fragment binding pose (Fig. 6.6), therefore making use of experimental 

information[37] before more computationally expansive MD-based free energy calculations.[94] 

The initial filtering step successfully extracted more favourable poses based on docking scores 

for fragment queries (Fig. 6.7). The workflow ensured equal numbers of follow-ups for each 

fragment query in the final selection for evaluation (Fig. 6.8). However, some fragment 

queries, such as F96 or F393, scored worse on average, indicating relatively unfavourable 

docked poses (Fig. 6.7). Follow-ups from these queries never achieved more favourable 

binding free energies than the best fragment, F558. 

Large errors in, or unfavourable predicted free energies were observed for F96 and F393 

queries (Fig. 6.9). Thus, considering all fragment queries equally before more intensive 

calculations may detrimentally impact the overall outcome, as computational resources are 

allocated to undesirable poses. Additionally, 36.64% of follow-ups selected for MD 

simulations had a predicted binding free energy significantly greater than 0 (Fig. 6.10A), 

caused by large entropic penalties, suggesting unfavourable poses. In general, such cases had 

many rotatable bonds and, to a lesser extent, highly polar groups (Fig. 6.9). While the 

Interaction Entropy method filters out most flexible compounds, it also unnecessarily 

penalised charged compounds[194] potentially forming favourable interactions (Suppl Fig. 6.1), 

an issue also observed for some fragments (Fig. 6.3). 

Six follow-up compounds were chosen for synthesis and experimental validation (Fig. 6.10B). 

Interestingly, these follow-ups recovered features from other fragments. For example, F740-

Si-380 and F618-Si-450 had aliphatic rings in the central binding cavity similar to F709 and 

F362-Si-569 had a 7-membered ring like water-displacing fragment F584 (Fig. 6.10). This 

implies that those top scoring follow-ups are coincidental fragment merges. 

Some follow-ups were highly hydrophobic, necessitating DMSO over ethylene glycol as 

solvent.[195] This negatively affected validation crystallographic efforts, degrading crystal 

morphology and binding to the target site with higher affinity than ethylene glycol (Fig. 

6.11).[200] Only F217-Su-461 and F618-Si-450 had low and medium micromolar binding 

affinities, respectively (Table 6.1). The use of DMSO was however, also found to interfere with 

bromodomain biosensor readouts.[201] 
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Comprehending the target binding site is vital for rationalising ligand binding. Key 

characteristics in protein-ligand interactions include water stabilities ,[121] pharmacophoric 

features ,[202] and protein motions .[203] All waters were removed here (Fig. 6.6), even the one 

deeply buried in the water cavity (Fig. 6.1). The energetics of this previously undisplaced 

water is unknown, and is potentially being highly stable and therefore undisplaceable.[124] 

F217-Su-461 and F309-Si-292 were initially docked at this location but later in the trajectory 

moved, allowing the buried water back (Fig. 6.10B). Retaining this water during docking could 

alter the docking free energy landscape and therefore, alter follow-up selection.[204] 

Polar interactions were located around more flexible loop regions, and identified by docking 

and maintained in MD simulations (Fig. 6.1). However, trajectories might not be long enough 

to sample representative loop conformations in the solution state, possibly differing from 

crystal and short simulations.[91] This effect could be relevant as selected follow-ups 

originated from BC-loop fragment binding (Fig. 6.10B).[205] Targeting flexible regions may 

reduce, or even prohibit, follow-up binding due to an high binding entropic barrier associated 

with the loss of protein conformational motions.[206] Intriguingly, the two follow-up GCI 

binding events were paired with ZA-loop relaxation compared to original crystal conformation 

(Fig. 6.10B). This loop conformation may better represent global and energetically favourable 

binding site minima. However, no structural information was recovered to validate this. 

A trade-off exists between running longer simulations for better system characterisation and 

increased MMGBSA errors, sometimes hindering predictions.[207] Optimising the dielectric 

constant for a specific binding site or ligand set may improve performance, but the absence 

of known actives prohibited prior optimisation.[207] Interaction Entropy correction's inclusion, 

although computationally inexpensive, can also adversely affect some predictions and 

requires prior knowledge of ligand binding for benchmarking purposes.[208] The virtual 

screening here was guided by a prior study of bromodomain inhibitors, which informed the 

parameters used, including simulation time, dielectric constant value, and Interaction Entropy 

correction.[209] 
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6.5. Conclusion and future direction 
This study aimed to enhance the potency of crystallographic fragments against the cancer 

target PHIP(2)[210] using computational methods. Insights into binding site interactions and 

fragment stabilities were acquired through hotspot mapping (Fig. 6.1),[29] MD simulations 

(Fig. 6.2), and free energy calculations[94] of co-crystal structures (Fig. 6.3). 

The initial library building, using Fragment Network, similarity, and substructure searches, 

resulted in 77,378 follow-up compounds, later reduced to 59,507 through chemical 

accessibility scoring (Fig. 6.4). The Fragment Network exhibited the most variation in 

compounds returned, all small in size (Fig. 6.5A).[114] These follow-ups were docked[193] into 

co-crystals, and SuCos overlay[37] was employed to filter 96.86% of poses (Fig. 6.6). This 

approach extracted poses with better docking scores and overlap with the experimentally 

resolved pose (Fig. 6.7). 

The top 15 scoring non-redundant follow-up docks per fragment query, amounting to 705 

compounds, were chosen for molecular dynamic simulations and free energy calculations 

using MMGBSA[190] and Interaction Entropy (Fig. 6.8).[194] A total of 30 compounds 

demonstrated more favourable predicted binding affinities than the most favourable 

crystallographic fragment, F558 (Fig. 6.11 and Suppl. table 6.1). Out of these, six were chosen 

for synthesis (Fig. 6.10). 

Some compounds required complex multistep chemistry for material generation. 

Experimental validation using crystallography (Suppl. table 6.2) and GCI assay[137] (Table 6.1) 

proved challenging; no crystallographic evidence for binding was found (Fig. 6.11). However, 

two weak binding events out of six tested compounds were identified via GCI assay (Table 

6.1), both associated with loop motions in MD trajectories (Fig. 6.10B), potentially indicating 

the significance of accounting for protein motions. 

Several areas for potential improvement were highlighted. These include focusing on 

fragment selection by opting for fragments with suitable and chemically accessible 

elaboration vectors,[197] stable binding poses, and energetics to maximise efficient 

computational resource usage. The elaboration process could be enhanced by conducting 

additional iteration cycles of the Fragment Network to obtain larger compounds, or by aiming 

for direct fragment merges or linkers to optimise the use of crystallographic information.[211]  
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It is also crucial to consider certain physico-chemical characteristics, such as rotatable bonds 

or lipophilicity, in advance of expansive calculations and experimental validation. Docking and 

rescoring optimisation could involve implementing ensemble docking against MD-generated 

structures of fragment-bound conformations to account for conformational motions.[203] 

Including water molecules during binding pose predictions may also help improving the 

results.[209] However, selecting appropriate waters before docking is not a straight forward 

problem. 

Applying diversity selection of best poses across all fragment queries to improve coverage of 

the chemical landscape may be more judicious than selecting a constant number of 

compounds per fragment query. Increasing MD and MMGBSA sampling by extending 

simulations to eliminate unstable poses and performing free energy scoring only for stable 

ones also seems advisable. More rigorous alchemical binding free energy calculations may 

also improve the predictions,[209] but their use was impractical, here, due to limited access to 

computational resources. Understanding binding site conformational motions may enable 

the reprioritisation of interaction hotspots compared to the crystal structure. Finally, 

addressing the experimental validation challenges entails investigating ways to counteract 

the detrimental effects of DMSO on the target, repeating and optimising experimental 

validation steps. 

This attempt was a prospective endeavour, as no prior information about active compounds 

related to the C2 crystal form was available. This hindered optimisation and calibration of 

computational methods, illustrating the challenges of identifying potent compounds without 

assay actives. Overall, this study highlights the complexity of early-stage drug discovery, 

emphasising the need to account for appropriate vector elaborations, ligand physico-

chemical characteristics, binding site interactions, and conformational dynamics while 

considering target-specific experimental validation constraints.  
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6.6. Methods 

6.6.1. Hotspot mapping 
Ensemble hotspot maps[29] were generated using all 47 acetylated-lysine binding site 

fragment bound structures after NPT minimisation (see section 6.6.2). Protein hydrogens 

were removed prior to calculations. Individual maps were first generated using with standard 

donor, acceptor, apolar, positive, and negative probes with 6000 rotations each for sampling 

step. For ensemble map calculation, the apolar and polar frequency threshold were set to 

None and 10, respectively and maps were combined based on median values. 

6.6.2. Molecular dynamic simulations 
Crystallographically resolved conformers and water molecules were extracted from PDB files 

with MDAnalaysis.[189] Fragment and follow-up conformer protonation states were assigned 

with Quacpac Toolkit (OpenEye).[99] For all fragment-bound co-crystal structures used, 

missing protein termini were added with Modeller[212] assuming a static conformation for 

atoms present in the initial PDB structure. Missing heavy atoms and hydrogens were added 

with PDB2PQR[213] using PARSE as force field, PROPKA[192] for protonation an assuming 

physiological pH of 7.4. 

Ligands were parametrised with GAFF2[214] using AM1-BCC charges.[215] Ligand parameters 

were converted to Gromacs format with ParmEd.[216]  Protein residues were parametrised 

with the AMBER99SB-ILDN force field.[89] All protein-ligand complexes were solvated with 

TIP3P waters in dodecahedral box with periodic boundary conditions. The minimum distance 

between the edge and the closest atom of the complex was set to 12 Å. Water molecules 

were replaced with Na+ and Cl- ions to reach a concentration of 150 mM and a neutral charge 

with the simulation box. The systems were energy minimised using the steepest descent 

method with target energy of 1000 kJ/mol/nm. 500 ps equilibrations in the canonical (NVT) 

ensemble were achieved at 298.15 K using a Berendsen thermostat[217] with temperature 

coupling within protein and non-protein atoms. 1 ns NPT equilibration were carried out at 1 

bar with a Berendsen barostat. 

For all system, 15.2 ns production runs were started upon removal of the position restraints 

on the heavy atoms of the proteins and ligand. Van der Waals and short-range electrostatic 

interactions distance cut-off were set to 1.2 Å while long-range electrostatics were computed 
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with the particle mesh Ewald method.[218] Hydrogens to heavy atom bonds were constrained 

with the LINCS allowing a 2 fs time step using.[219]  The stochastic leap-frog integrator was 

used for numerical integration with periodic boundary conditions and Parrinello-Rahman 

barostat. Trajectory frames were saved every 2 ps. To allow for further processing steps, the 

protein was centred in the protein in the simulation box, rotation and translation of the 

protein C-alpha atoms removed, and the first frame of the aligned trajectory extracted. All 

minimisation, trajectories and fittings were generated using Gromacs 2020.[220] 

6.6.3. RMSD calculations 
Ligand RMSD calculation for heavy atoms compared the first frame of the production run 

against all subsequent frames with MDanalysis[189] without additional centring or 

superposition. The median RMSD was then reported. 

6.6.4. Free energy calculations 
MMGBSA and Interaction Entropy for fragment and follow-up trajectories were calculated 

with the gmx_MMPBSA suite.[190] The whole trajectories were process with an interval of 30 

frames corresponding to 60 ps of simulation timesteps for both MMGBSA and Interaction 

Entropy. The OBC1 model was used for Generalised Born estimations along with an implicit 

salt concentration of 150 mM.  The values reported were the average MMGBSA energies and 

interaction entropies along with standard deviations. Binding enthalpy and entropy were 

estimated from MMGBSA and Interaction Entropy, respectively and summed thus providing 

an estimate of Gibbs binding free energy. 

Gibbs	free	energy	

estimation	
ΔG#$% = ΔH&&'($! − TΔS)* Equation	6.1	

In order to estimate for errors around the average Gibbs binding free energy values 

calculated, both binding enthalpy and entropy standard deviations were also propagated 

using the root-sum-square method. 

Gibbs	binding	free	energy	

standard	deviation	
∆G$%" =	 t∆H$%"H + ∆S$%"H

'
 Equation	6.2	

Where ∆Hstd and ∆Sstd correspond to binding enthalpy and entropy standard deviations 

calculated from MMBSA and Interaction Entropy analysis of the MD trajectories, respectively. 
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6.6.5. Library construction  
The library was built using the Fragment network and Manifold similarity and substructure 

searches using fragment hit SMILES strings to seed the searches. Fragment network follow-

up compounds were enumerated via the graph-network made available through the 

fragalysis API.[221] The Manifold similarity and substructure searches were performed by 

requesting corresponding services to https://postera.ai/ via HTTP posting.[222] On occasion, 

multiple molecules were returned within one SMILES string. Only the larger molecules were 

retained for those cases. Each follow-up was then scored for chemical accessibility by 

querying to Postera for Synthetic Accessibility / Fast Score and retained for further processing 

if their Fast Score was none or low. All queries to Postera were made around the 13st of June 

2021. 

6.6.6. Follow-up fingerprinting and dimensionality reduction 
Feature-based invariant Morgan fingerprints were generated using a length of 2048 and a 

radius of 6 with RDKit and used as input for and t-Distributed Stochastic Neighbourhood 

Embedding using scikit-learn.[80] The fingerprint bit vectors were embedded in 2 dimensions 

allowing for visualisation using the Jaccard distance metric with a perplexity of 50. 

6.6.7. Docking and pose filtering 
Follow-up conformers were generated with RDKit.[128] First, all hydrogens were added before 

attempting a maximum of 15.000 embeddings with enforced chirality. For unsuccessful 

embeddings, minimisation of the hydrogenated molecule was performed instead using the 

MMFF94 force field.[223] Follow-up conformer protonation states were then assigned with 

Quacpac Toolkit (OpenEye).[99] 

Protonated follow-up conformers were docked with GNINA[84] back into their original 

fragment-bound co-crystal structures refined from NPT minimisation (see section 6.6.2). A 

docking search box with dimensions of 18, 19, and 16 for X, Y, and Z, respectively, was defined, 

encompassing the entire binding site. For each follow-up compound, 100 conformers were 

generated using 200 Monte Carlo steps, an RMSD filter of 0.25 Å, and an exhaustiveness of 

118. Resulting poses were excluded if their SuCos[37] score against the experimentally resolved 

fragment was less than or equal to 0.55. The top 15 non-redundant poses for each follow-up 

were then chosen for further analysis using molecular dynamic simulations. 
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6.6.8. Co-crystallisation screening 
Proteins were expressed and purified as described in Chapter 2, Section 2.2.1. The 6 selected 

follow-up compounds were kindly synthesised or purchased by Thomas Grimes, under the 

supervision of Prof Paul Brennan, and stored in dimethyl sulfoxide at a concentration of 40 

mM. Co-crystallisation condition screening for each of the follow-up compounds were then 

conducted. First, protein aliquots were incubated with the dissolved compound at a final 

concentration of 199 μM on ice for 1 hour. 

Subsequently, vapor diffusion experiments were set up using sitting drop plates and a Ligand 

Friendly Screen (Molecular Dimensions)[26] for each compound. Drops of 100 nL of mother 

liquor were combined with 100, 75, or 50 nL of protein solution and 30 nL of seed stock 

derived from the C2 crystal form.[198] The plates were incubated at 4°C for one week prior to 

crystal harvesting. 

All harvested crystals were subjected to X-ray diffraction analysis at the i04-1 beamline 

located at the Diamond Light Source (Harwell, UK). Suitable MTZ files were extracted from 

ISPyB[224] and then combined and truncated with AIMLESS.[225] Molecular replacement was 

performed using PHASER-MR[226] with the crystal structure of 7AV9 as the search model and 

a sequence conservation value of 0.7. 

6.6.9. Grating-coupled interferometry assay 
Pulsed single-concentration surface-based biophysical measurements of binding kinetics 

were performed as detailed in Chatper 2, section 2.2.3. Specifically, PHIP(2) was diluted to 15 

μg/mL and immobilised to a final level of 15951 surface mass (pg/mm2) corresponding to an 

injection time of 600 s. The running buffer was composed of 20mM HEPES, pH 7.5, 50 mM 

NaCl, 0.5% (v/v) Tween-20, and 0.5% (v/v) DMSO. 
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Chapter 7. Lessons and outlooks 

7.1. Lessons 
This work examined various aspects of fragment-based drug discovery, encompassing both 

experimental and computational methods for an integrative approach. The study focused on 

fragments identified crystallographically against the pharmacologically relevant Second 

Bromodomain of the Pleckstrin-Homology Domain Interacting Protein (PHIP(2)). An initial 

XChem crystallographic fragment screening, presented in Chapter 3, laid the groundwork for 

this research. Particular attention was given to fragment F709 and its follow-up derivatives in 

Chapters 4 and 5, while all acetylated-lysine binding site fragments were examined in 

Chapters 3 and 6. 

Chapter 3 assessed the capability of computational methods to recover fragment binding and 

crystallographic poses through a community-led exercise, as well as evaluating participants' 

ability to enumerate sensible follow-ups. Overall, performances across all three stages were  

modest, likely due to a variety of factors. For instance, predictions not applied to the provided 

apo structure in the C2 space group fared poorly for binding pose predictions. Other factors 

contributing to poor predictions may be more difficult to untangle, such as a potential lack of 

affinity of the fragments against PHIP(2) in solution. 

These findings underscore the challenges in applying computational methods to replicate 

crystallographic screening of small molecule fragments. The study therefore implies that 

concentrating computational resources on fragment predictions might be suboptimal, 

recommending instead that efforts focus on designing follow-up compounds to "escape" the 

low potency fragment space, a task that also proved to be difficult. The poor predictions also 

highlight that experimental approaches remain required to reliably identify fragments against 

a protein target. 

Chapter 4 organised the data obtained from a large crystallographic screening of robotically 

generated crude reaction mixtures, carried out by collaborators. This chapter's primary 

feature was the multidisciplinary, collaborative, and extensive nature of the project, which 

necessitated a comprehensive understanding of all methods involved to collate the data 

productively. In total, nearly 2,000 follow-up compounds were enumerated, with over half 

successfully synthesised robotically. Soaking crude reaction mixtures without causing 



 171 

significant crystal deterioration allowed for the acquisition of nearly 1000 diffraction datasets. 

Crystallographic analysis revealed 22 reaction product binders, with three exhibiting a non-

conserved pose due to methyl insertion and one showing affinity in assays. 

The findings demonstrated how high-throughput chemistry can be coupled with X-ray 

crystallographic screening of crude reaction mixtures, bypassing small molecule purification, 

thus reducing time, solvent, and hardware requirements. Therefore, this showcases how 

follow-up compounds can be synthetised and validated in faster, cheaper, and more 

environmentally friendly fashion. The study also highlighted the need for improved design 

and analysis methods to increase hit rates and extract meaningful information from large 

crystallographic dataset. Finally, this chapter also indicates that numerous compounds and 

experiments are needed to explore synthetically accessible chemical landscapes and identify 

binders and binding pose changes. 

Chapter 5 developed an algorithmic approach aimed at extracting features associated with 

crystallographic binding or the lack thereof, using the data generated in Chapter 4. Binding 

and non-binding features were initially extracted, then aggregated into positive and negative 

binding scores. This method further emphasised the importance of methyl addition in altering 

the binding pose. Crystallographic rescreening of selected follow-ups in pure form revealed 

26 false negatives, effectively doubling the initial hit rate, with respect with the experiment 

performed in Chapter 4, where the positive binding score significantly enriched the 

identification of binders over non-binders. The positive and negative binding scores were then 

employed prospectively in a virtual screening exercise, incorporating both ligand- and 

structure-based information. This revealed a collection of crystallographic binders displaying 

novel chemical groups, vectors, and poses. A series of assay binders with low micromolar 

potencies were also identified. 

Overall, this work demonstrated how features relevant to binding or the lack thereof can be 

extracted to enhance the understanding of large crystallographic screening data for 

congeneric follow-up elaboration series. Crucially, these features can be exploited in 

subsequent designs to integrate site- and elaboration-specific binding and non-binding 

information. 

In Chapter 6, more traditional and computationally intensive methods were combined to 

develop the acetylated-lysine binding site fragments into more potent follow-up compounds 
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via a structure-based virtual screening. An initial virtual library of follow-up compounds 

deemed chemically accessible was generated, using the original fragments to seed database 

searches. Library follow-up compounds were subsequently docked back into their originating 

co-crystal structures. Docked poses not overlapping with their native crystallographic 

fragment conformations were removed, leading to the selection of a relatively small number 

of high-scoring follow-up poses. Molecular dynamic simulation trajectories were generated 

for the best-scoring non-redundant poses, from which binding free energy rankings were 

performed using Molecular Mechanics Generalised Born Surface Area with Interaction 

Entropy methods. Six follow-ups from the top 30 were chosen for experimental validation. X-

ray crystallography did not resolve any binders, while grating-coupled interferometry kinetic 

assay identified two weak binding events. Both weak binding events were associated with 

binding site motions in molecular dynamic simulations. 

Overall, this work emphasised the complexity of elaborating  fragments to sub-micromolar 

potencies and highlights how existing methodologies can be limiting. Thus, better method 

integration is required for more efficient design. This work underscored the importance of 

library construction and efficient allocation of computational resources to worthwhile series. 

Additionally, it implied the importance of establishing early and cheap 

structure-activity-relationship for follow-up series and the potential significance of 

accounting for protein and water dynamics, while the absence of active data was prohibitive 

in benchmarking computational methods. 

7.2. Outlooks 
Numerous lessons and perspectives can be drawn from the work undertaken in this thesis. 

Effective virtual library design and compound selection are crucial prior to utilising more 

extensive structure-based approaches. Furthermore, fragment growing may be chemically 

more tractable, but suboptimal compared to linking and merging strategies. Recent machine 

learning-based generative approaches holds promising potential for initial follow-up 

enumeration. These generative algorithms could be constrained to chemically or robotically 

accessible chemical space for reduced lead time whilst intensive physics-based methods could 

be used for more robust compounds selection. 
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Although some challenges may be specific to PHIP(2), lessons learned here may apply to other 

protein families. Protein and ligand dynamics are integral aspects of their interactions, but 

often neglected in high-throughput efforts. Consequently, successful elaborations depend on 

the target binding site representing a low-energy conformer in solution, which may differ 

from crystal structures. This is particularly relevant in areas with flexibility that might be 

artificially stabilised by crystal packing effects. Therefore, comparing experimental 

temperature factors with binding site motions extracted from molecular dynamic simulations 

may inform on whether ligand binding is artifactually stabilised by lattice effects. 

Molecular dynamics simulations may also be useful in identifying low-energy protein 

conformations from crystal structures, and therefore help choosing crystal systems when 

different options are available. Before conducting crystallographic screening, space group 

selection criteria could be adopted to identify a conformation resembling the low-energy 

conformer generated through molecular dynamics simulations. However, practical 

considerations such as crystal reproducibility, solvent resistance, and binding site resolution 

may remain crucial decision drivers. 

Crystallographic and assay structure-activity relationships do not necessarily corroborate. 

Therefore, ligands resolved in crystal structures may not bind in assays and vice versa. This 

discrepancy might also result from differences in crystal and solution conformational state(s). 

Therefore, establishing an early, tractable structure-activity relationship for elaboration series 

that can be rationalised structurally is essential. Selecting elaboration series should also be 

guided by the ability of the fragment to be modified into compounds that bind in both crystals 

and assays. 

The acquisition of negative data may be informative for the elaboration process, but such 

information tends to be less accessible due to factors such as initial misclassification or the 

impossibility to obtain structural data for these compounds. One approach to consider may 

be to weight chemical fingerprint bit elements to account for the frequency at which they 

were observed in non-binding events thus refining the initial approach outlined in Chapter 5.  

Crystallographic analysis of robotically generated crude reaction mixtures soaked onto 

protein crystals can rapidly and inexpensively map the binding landscape, demonstrating 

potential for informing early structure-activity relationships across multiple compounds. This 

process could benefit from better compound design and diversity to enhance the chances of 
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identifying more potent elaborations. A major limitation in rapidly acquiring structure-activity 

relationships data is that assays are performed using pure compounds, meaning robotic 

compounds must be independently resynthesised or purified. This can be prohibitive for 

reasons related to time, reagent, hardware, or finances. Using crude reaction mixtures might 

be applicable to high-throughput dissociation rate screening with grating-coupled 

interferometry. However, the resulting data is expected to be highly noisy, and control 

measurements of pure starting materials will be required to deconvolute the signal. 

Molecular dynamics simulations may also supplement the analysis by simulating ligand 

residence time within the binding site, which can then be compared with experimentally 

measured dissociation rates, potentially enabling the removal of outliers thus generating a 

cleaner dataset. 

PHIP and its second bromodomain, PHIP(2), remain undrugged targets despite significant 

efforts. Inhibiting this bromodomain may offer a potential avenue for treating lethal cancers. 

The design of proteolysis targeting chimeras (PROTAC) may represent a suitable alternative, 

where lower potency but specific binders can be used. In the context of PHIP overexpression 

in cancerous cells, this strategy may be particularly interesting. Multidomain targeting may 

also be a viable alternative, potentially achieved by dual inhibition of PHIP(1) and PHIP(2) with 

separate warheads against each bromodomain, connected by a linker region. Additionally, 

the identification of potent compounds may help uncover PHIP's elusive biology via chemical 

biology methods. 

In summary, this research showcases the application, integration, and limitations of 

contemporary fragment-based drug discovery techniques. Key lessons and insights related to 

fragment identification, follow-up design, synthesis, and validation have been emphasised. 

Moreover, the insights and materials produced in this research may contribute to future 

structure- and fragment-based efforts aimed to develop a novel anti-PHIP(2) inhibitor with 

potential applications in treating lethal cancers. 
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Supplementary information 

Supplementary information to Chapter 5 

 

Supplementary figure 5.1: Binding bit conservation score thresholding and resulting effect on the 
binding scores and binding labels. The binding and non-binding bit conservation thresholds values 
were sampled between 0 and 1, and effect on the number of conserved bits, average positive and 
negative binding scores, and, prediction of likely and unlikely binders showed for each pose. 



 185 

 
 

Supplementary figure 5.2: Bit ensemble comparison for different poses. 2D Venn diagrams 
comparing poses within each bit classification label: conserved binding, conserved non-binding, and 
unconservative bits. Each Venn diagram is separated into 5 rows and 4 columns, showing the number 
of sub-ensembles the bits are present in, the total number of bits composing the intersection, and the 
bit ensemble for and intersections between the different poses. The first 3 columns relate to the 
different ensembles and subsequent overlaps, while the last column shows the total number of bits 
for a given pose. The condition defining the classification is showed above each Venn diagram. 

Supplementary figure 5.3: Pose specific binding landscapes. The top and bottom rows show pose-
specific positive and negative binding score across all follow-up compounds, respectively. Initial 
binders resolved from the crystallographic screening of crude reaction mixtures are showed with black 
crosses. 
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Supplementary figure 5.5: Available chemical space regions for rescreening of pure robotic 
compounds. The compounds initially enumerate from the automated chemistry experiments were 
enquired to Enamine for purchase in pure form. The available and unavailable compounds are 
showed in purple and pink, respectively.  

Supplementary figure 5.4: Compound binding predictions comparison for different poses. 2D Venn 
diagrams comparing poses within each compound classification label: likely and unlikely binders. Each 
Venn diagram is separated into 5 rows and 4 columns, showing the number of sub-ensembles the 
compounds are present in, the total number of compounds composing the intersection, and the 
compounds ensemble for and intersections between the different poses. The first 3 columns relate to 
the different ensembles and subsequent overlaps, while the last column shows the total number of 
compounds for a given pose. The condition defining the classification is showed above each Venn 
diagram. 
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Supplementary table 5.1: 2D structures of robotic compounds purchased and rescreened in pure 
form. 97 robotically enumerated and screened compounds were purchased in pure form and 
rescreened at the by X-ray crystallography and by GCI assay. 
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Supplementary figure 5.7: Leave-one-out validation of random forest classifier performance before 
and after rescreening experiment and correction of experimental false negative labels. A leave-one-
out validation of the random forest classifier was applied to the dataset coming out of the 
crystallographic screening of crude reaction mixtures (in red) and the same dataset where binding 
labels of the 26 false negatives are updated. The operation was done once for each dataset. The errors 
showed are related to the precision and the ones reported to the overall PR-AUC. 

Supplementary figure 5.6: Rescreening analysis based on the negative binding score. This shows the 
enrichment analysis, with True and False categories representing the pure crystallographic 
rescreening binding outcome on the x-axis and the distribution for each class generated from the 
positive binding score. Purple dotted lines show the average positive binding scores for each class and 
the resulting difference (ΔPBS) between binders (B) and non-binders (NB). p-value, calculated from a 
Mann-Whitney U test, indicate the significance of the metric in discriminating binders from non-
binders. The associated positive binding score values are colour-coded for all datapoints. 
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Supplementary figure 5.8: Features-based scoring is faster than random forest classification and is 
hit-rate independent. A speed benchmark was carried out to assess which method performs faster 
ligand-based virtual screening. The random forest was slower than retrieving both positive and 
negative binding scores for screened molecule.  The mean Tanimoto coefficient was slower than the 
feature method for the “All” and “Lateral” data subsets as it is dependent on the number of positive. 
It was faster than the feature method for the “Dive” dataset has it only contains 3 binders.  
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Supplementary table 5.2: Virtual screening compounds for the diving pose purchased and screened. 
A total of 46 compounds were purchased following the virtual screening workflow applied to the 
diving binders. 
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Supplementary table 5.3: Virtual screening compounds for the lateral pose purchased and screened. 
A total of 47 compounds were purchased following the virtual screening workflow applied to the 
lateral binders. 
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 Supplementary table 5.4: GCI binding curves for selected binders. This table presents the binding 
curves obtained from GCI assays, with the black line representing the raw data and the fitted model 
shown in purple. The kinetic parameters, including association rate (ka), dissociation rate (kd), and 
equilibrium dissociation constant (Kd), were deduced from the fitted model, and are displayed in a 
separate box. The table also includes 2D molecule structures to illustrate the chemical structures of 
the molecules assayed. ka and kd are indicative of the association and dissociation rates with Kd, the 
dissociation constant, equalling to association over the dissociation rates. 
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Supplementary information to Chapter 6 

Supplementary figure 6.1: MMGBSA with Interaction Entropy free energy calculations correlated 
with pose stability and creates outliers in compounds with charged groups. The top panel show the 
median RMSD for fragment molecular dynamic simulations against corresponding calculated binding 
free energies. The lower panel shows the crystal structures for outliers with high Interaction entropy 
values. 
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Supplementary table 6.1: 2D structures of follow-up compounds with significantly better binding 
free energy scores than F558. The maximum common substructure relative to the originating 
fragment is highlighted in pink. 
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Supplementary figure 6.2: Synthetic routes for selected follow-up compounds. Molecular structures 
for building block and synthetic intermediates are showed along with reaction condition and yields. 
The synthesis and figure were made by Thomas Grimes under the supervision of Prof Paul Brennan 
and are showed here for the record. F309-Si-202 was directly purchased from catalogue.  
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Supplementary table 6.2: Co-crystallisation drop conditions for selected follow-up compounds. The 
chosen follow-ups were screened for co-crystallisation conditions, and all mountable crystals 
underwent X-ray diffraction experiments. The best diffracting crystals were analysed using molecular 
replacement. No ligand binding was observed; instead, DMSO occupied the binding site. The table 
below records selected co-crystal conditions yielding suitable electron densities. A red cross indicates 
no suitable crystals were identified or resolved for specific ligands. 


