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ABSTRACT

Clusters or communities can provide a coarse-grained description of complex systems at multiple scales, but their detection
remains challenging in practice. Community detection methods often define communities as dense subgraphs, or subgraphs
with few connections in-between, via concepts such as the cut, conductance, or modularity. Here we consider another
perspective built on the notion of local dominance, where low-degree nodes are assigned to the basin of influence of high-
degree nodes, and design an efficient algorithm based on local information. Local dominance gives rises to community
centers, and uncovers local hierarchies in the network. Community centers have a larger degree than their neighbors and are
sufficiently distant from other centers. The strength of our framework is demonstrated on synthesized and empirical networks
with ground-truth community labels. The notion of local dominance and the associated asymmetric relations between nodes
are not restricted to community detection, and can be utilised in clustering problems, as we illustrate on networks derived from
vector data.

INTRODUCTION
Many real-world datasets can be viewed as a collection of objects embedded into a global metric space, thereby providing
a vector representation1. Alternatively, networks have become another fundamental way to model complex systems with a
focus on direct pairwise interactions between constituents2–4. In the case of social systems, for instance, these complementary
representations may correspond to a set of socio-demographic variables for each individual, e.g., in a Blau space5, or to
a social network of interactions between individuals, e.g., via a mobile communication network6 or spatio-temporal co-
occurrence interactions7. In each representation, real-world systems tend to exhibit groups: regions of high density in the
spatial representation, known as clusters, or high density subgraphs in the network, known as communities. Such cluster
or community structure provides a coarse-grained representation of the underlying complex system8–11, often associated to
different functions and impacting its collective behaviours12–14, and their unsupervised detection is thus essential in different
areas of data science1, 10.

In the vector representation, the introduction of a dissimilarity function and ideally of a distance in a metric space, provides
a natural way to identify the centre of a cluster, e.g., the medoid in a general metric space15, 16, and a hierarchy would form
within a cluster between central and other more peripheral nodes, implying an asymmetric relationships between them. On
the other hand, in the case of asymmetric pairwise interactions, which can be associated to an implicit hierarchy17 and have
long been recognized18–22 in various network systems, community detection methods for networks place much less emphasis
on the concept of community center and hierarchy within communities. We can always use network centrality measures on
the subgraphs identified as communities to identify core and peripheral nodes a posteriori, but these roles are not central to
community detection23, 24, in stark contrast to clustering methods based on embedding the data in a metric space.

In this paper, we propose a community detection algorithm in networks, Local Search (LS), that explicitly uses the notion of
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local dominance and identifies community centres based on local information. In our method, every node is given at most one
parent node deemed to be higher up in a partial ranking. Nodes that have a dominant position in their immediate neighborhood18

or even beyond are identified as local leaders18. This defines a rooted tree that spans the network and gives rise to community
centers that are local leaders18 with both a larger degree than the nodes in their basin of attraction and a relatively long distance
to other local leaders higher up in the ranking. Our approach possesses several interesting properties. Firstly, it provides a
new perspective on community detection and delivers community centres and a hierarchy within the community and even a
hierarchy among communities as an explicit part of our algorithm, and so mimics advantageous features of the methods based
on embedding data in a metric space. Secondly, the identification of communities through local dominance is highly efficient,
as it uses purely local topological information and breadth-first search, and runs in linear time. The method does not require the
heuristic optimization of an objective function that relies on a global null model9, 25–29 or computationally costly spreading
dynamics30–32. Also, our method does not rely on a similarity measure for which there is an wide choice, with an associated
uncertainty and variability in results, such as is found in hierarchical clustering based methods8, 14, 33, 34. Finally, LS is not as
susceptible to noise as most methods10, 35, and is less therefore susceptible to finding spurious communities in random graph
model realisations36.

We demonstrate the strength of LS on several classical but challenging synthetic benchmarks and on standard empirical
networks with known ground-truth community labels. Our numerical evaluation also includes network representations derived
from vector data. As the LS method naturally provides community centres and local hierarchies, it creates an explicit analogy
with the notion of cluster centres and distances within clusters that are found in vector clustering methods. Moreover, we also
show that applying LS on discretised version of data cloud points outperforms classical unsupervised vector data clustering
methods on benchmarks16.

MATERIALS AND METHODS
The Local Search (LS) algorithm
Cluster analysis and community detection share many conceptual similarities, but often have a contrasting focus. Cluster
analysis puts emphasis on the centre of a cluster15, 16, while community boundaries often play a more predominant role in
community detection37. Community centres can be inferred from some community detection algorithm outputs, for example,
the nodes associated to the largest absolute weights of the leading eigenvector of the modularity matrix, or exhibiting a higher
density of connections inside the communities, are deemed to be community centers, core members or provincial hubs23, 38.
But centres are only a by-product of the algorithm, rather than at their core of methodologies.

The approach that we propose here is explicitly focusing on community centres to identify clusters, which is motivated by
the existence of underlying asymmetries between nodes19–21, the concept of local leaders18 in networks and borrows ideas from
density and distance based clustering algorithms on vector data16. We hypothesise that a community center is a local leader that
is comparatively of a larger degree than its neighbors, thus “dominating” them, and is of a relatively long shortest-path distance
to other local leaders.

Our algorithm consists of four steps that we now detail. We start with an undirected network with N nodes and E edges, for
example see Fig. 1A. For better clarity, nodes are also labeled and traversed in lexicographical order (see Fig. 1B).

Step 1 First, we calculate the degree ku of each node u (see digits in Fig. 1A), which is an operation of linear time complexity
O(E).

Step 2 Second, we traverse each node u and point u to any adjacent node v with kv ≥ ku and kv = max{kz|z ∈ V(u)} (i.e., v has
the largest degree in the neighborhood of u). For example, in Fig. 1B node g will point to f instead of p as k f > kp > kg;
and c points to both b and m as kb = km = max{kz|z ∈V(c)}> kc. Note that a node cannot point to its follower, and since
nodes are traversed in lexicographical order, when node b is traversed, it will point to m as km = max{kz|z ∈ V(b)} ≥ kb.
When m is traversed, it will not point to any of its followers (e.g., b). This process naturally avoids the creation of loops
and ensure we only obtain directed acyclic graphs (DAGs), see Fig. S1 and proof in Supplementary Text A.1.1 for more
details. If such a v does not exist, u will not have any outgoing edge and will be identified as a local leader (see dark grey
nodes f, p, and m in Fig. 1B). We denote the set of local leaders as C.

After traversing all nodes, for nodes with multiple out-going links, we randomly retain one (see only short dash arrows in
Fig. 1C for a possible mapping). Mathematically, we have obtained a forest of trees, where the root of each tree is a
local leader, and is also a potential community center. For most nodes, except local leaders, this process identifies a local
hierarchy (indicated by dash arrows), with an asymmetric leader-follower relation (see short-dash arrows in Fig. 1B).
This step is completed in O(E).

Step 3 Third, to identify the upper level for local leaders along the hierarchy, we use a local breadth-first search (BFS) starting
from each local leader u and stop the search when encountering the first local leader v with kv ≥ ku and assign the shortest
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Figure 1. Schematic illustration of the Local Search (LS) algorithm. (A) An example network where digits on nodes and
size of nodes indicate the degree. (B) The identification of local leaders based on local dominance by creating a forest of DAGs
as indicated by short dashed directed edges. For each node u, it points to any adjacent neighbor v with kv ≥ ku and
kv = max{kz|z ∈ V(u)}, where V(u) is the set of neighboring nodes. In this example, nodes are traversed by their
lexicographical order, when node b is traversed, it points to m as km = max{kz|z ∈V(b)} ≥ kb; later, when m is traversed, it has
no out-going link, and so m is identified as a local leader: it does not point to any of its followers and its remaining neighbors
all have smaller degrees. When there are more than one neighbor with the same largest degree, more than one directed edge is
temporarily added, e.g., node c points to both b and m as kb = km = max{kz|z ∈ V(c)} ≥ kc; nodes d and l also have more than
one outgoing link. The local leaders, which are potential community centers, are f , m, and p (indicated by dark grey color). (C)
Each node randomly retains just one out-going edge shown as a short dashed directed edge (e.g., c can point to b or m with an
equal probability, similarly for l and d). Then, for each local leader u, a local-BFS is performed to find its nearest local leader
with kv ≥ ku, and the shortest path length on network duv,∀v is designated by lu. Here, p→ f with lp = 2, and f → m with
l f = 4. In (C), short-dash arrows and long-dash arrows correspond to pure followers (whose lu = 1) and local leaders (whose
lu ≥ 2), respectively. Each node has at most one out-going link (u→ v), which can go beyond direct connections. The local
leader(s) with the maximal degree has no out-going link (here node m). (D) The corresponding tree structure formed by local
dominance. The scale on the left is a visual aid for calculating li between connected nodes in the DAG. (E) The scatter plot of
ki and li for all nodes. Community centers are of both a larger degree ki and a longer li. (F) The decision graph for
quantitatively determining community centers (indicated by triangles) based on the product of rescaled degree k̃i and rescaled
distance l̃i (see more details in Supplementary Text A.2). Community centers can be detected by a visual inspection for obvious
gaps or sophisticated automatic detection methods. Here, two centers, nodes m and f, are identified. The color of nodes in (C)
and (D) represents the community partition, and community centers are highlighted by a darker hue of the same color.
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path length on the original network duv to lu, which is the length of the out-going link of node u. Note that lu ≥ 2 for all
local leaders, and all pure followers have lu = 1. For example, node p is a local leader, in the second iteration of the BFS,
it encounters another local leader f with k f > kp. We stop the local-BFS and point p to f, and lp = dp f = 2. Similarly,
f → m and dm f = 4. The out-going link of local leaders goes beyond the direct connections in the original network (see
long-dash arrows in Fig. 1C).

When there are several local leaders that have a no smaller degree than the local leader u in the lth
u iteration, the largest

one is chosen; if multiple nodes have the same largest degree, one is picked at random uniformly. For local leader(s) with
the maximal degree in the whole network, denoted as M, a subset of C, there is no need to perform the BFS, and we
directly assign lx∈M = maxu∈C\M(lu).

Community centers can be easily identified as local leaders with both a large ku and a long lu (see Fig. 1E), and naturally
emerges from the rooted tree revealed by local dominance (see all dash arrows in Fig. 1C and the explicit tree structure in
Fig. 1D). We use the product of rescaled degree k̃i and rescaled distance l̃i to quantitatively measure the “centerness” of
each node (see more details and discussions in Supplementary Text A.2). Community centers can be determined via
visual inspection for obvious gaps or by automated detection methods (see Fig. 1F). For example, the community centers
identified by the LS method in Fig. 1 are nodes f and m. In the Zachary Karate Club network, the identified community
centers correspond to the president and the instructor, which is consistent with reality39 (see Fig. S6).

Theoretically, this third step takes O
(
(|C|− |M|)〈k〉〈l〉C\M

)
=O((|C|− |M|)E), where 〈k〉 is the average degree of the

network, 〈l〉C\M = ∑u∈C\M lu/(|C|− |M|), and the size of the set of potential centers |C| is usually much smaller than N

(see Table S1). In practice, 〈k〉〈l〉C\M is bounded to be smaller than E as it mimics a local-BFS process. As indicated by
numerical results, even (|C|− |M|)〈k〉〈l〉C\M is usually smaller than E (see Table S1). In addition, the local-BFS process
can be simultaneously implemented for all local leaders in parallel to further speed up the algorithm in practice.

Step 4 Finally, for all identified community centers, we remove their out-going links, if any. Community labels are then assigned
along the reverse direction of directionality u← v from community centers. This step takes again a linear time O(N).

Taken together, the time complexity of our LS algorithm is linear: O
(

E +(|C|− |M|)〈k〉〈l〉C\M +N
)
= Θ(E), which is

among the fastest community detection algorithms. Our framework provides a new perspective on community detection
methods. It only relies on the notion of local dominance, which is identified solely from local information from the topology. It
does not need to iteratively optimize an objective function9, 26–29 based on a global randomized null model9, 23, 27 or resorting to
iterative spreading dynamics30, 31 as other state-of-the-art algorithms. It is important to emphasise that the communities that are
uncovered by LS are not necessarily associated to a high density of links, as in modularity optimisation, or specific patterns of
connectivity inside versus across groups, as in methods based on stochastic block models40–42, but are instead obtained as a
group of nodes that are dominated by the same leader.

RESULTS
In this section, we first test our method on a series of synthetic networks to benchmark its performance and its multiscale
community detection capacity, before analysing real-world networks. Finally, we show how it outperforms current state-of-
the-art unsupervised both clustering and community detection methods when applied to discretised vector data clouds. The
implementation of our algorithm was done in Python and we use the NetworkX package implementation of the Louvain
algorithm, our main point of comparison in this section, to obtain fair comparison of running time.

Synthetic networks
Here, we use well-known benchmark networks to illustrate how the LS method functions and in which situations it performs
well. We contrast the results obtained by the LS method to those obtained by the well-known Louvain method9 that optimises
modularity roughly in linear time in practice. We first look at a circular regular network, where all nodes are equivalent and thus
no community structure should be discovered. LS correctly identifies a single community (Fig. 2A), by contrast, modularity
forces community structure to exist and finds five communities (Fig. 2D). Let us look in detail at the reason why LS finds a
single community. First, each node will point to all its adjacent neighbors as they all have the same degree, and since node are
sequentially traversed and they will not point to their followers, loops cannot be formed, see Fig. S1C and Supplementary Text
A.1.1 for a proof. After all nodes have been considered, each node will only keep one outgoing link with an equal probability,
and eventually a tree structure will be formed. Because of the homogeneity of the graph, the tree only allows the identification
a single community centre and therefore of a single community. Because all nodes are equivalent, the labeling and thus order
in which they are visited, is irrelevant. We note that in the case of a clique, an extreme case of regular network, the mapping
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Figure 2. Community partitions by the LS and Louvain algorithms on synthesized networks with different strength
of heterogeneity. The heterogeneity increases from left to right. The color of nodes denotes the community membership. In a
strict homogeneous regular network (N = 36,〈k〉= 4), all nodes are identical, (A) only one community is detected by the LS
algorithm (see Fig. S1 for more details); (D) by contrast, the Louvain algorithm detects five communities by optimizing
modularity. In an Erdős-Rényi random network (N = 64,〈k〉= 4), there may exist some communities due to randomness36, (B)
the LS algorithm detects fewer communities compared to (E) the Louvain algorithm (see Fig. S2). In a Ravasz-Barabási
network43 which displays stronger heterogeneity, (C) the LS algorithm groups all first-level nodes and all sixteen second-level
peripheral clusters into one community, and four small communities emerge (see Fig. S4 for more details); (F) the Louvain
algorithm partitions each second-level branching as a separate community and misclassifies a first-level peripheral cluster into
its own community, a result of traversal order and modularity optimization process in the Louvain algorithm.

of local hierarchy can yield a range of structure from a chain to a star structure, see Fig. S1B for more details. In all cases,
only one centre is identified. By contrast, the Louvain method would partition a homogeneous regular network into several
communities by optimizing modularity (see Fig. 2D).

Our second application focuses on Erdős-Rényi (ER) random graphs. While in the limit of an infinite random graph no
community structure exists, in finite-size ER graphs, fluctuations may create spurious community structures11, 36. In this
example, the LS method detects fewer communities than the Louvain algorithm, see Fig. 2B and E. In ER random networks,
the degree distribution is relatively peaked around its average, but the system nonetheless exhibits fluctuations in the degrees.
Large degree nodes are more likely to connect to each other, as the connection probability between them, kik j/2E, are among
the highest ones. When two large nodes are connected, there will be a directed out-going link pointing from one node to the
other, making one of them a follower. Thus the LS method detects fewer communities. On the other hand, when we fix the
size of the network and increase the connection probability p, the number of communities detected by the Louvain algorithm
also decreases but it consistently finds more communities than the LS method (see Fig. S2). In addition, we are able to detect
isolated nodes as noise (see grey nodes in Fig. 2B), as these nodes are of a small degree but infinite li.

We also consider an extension of the ER random graph model, the stochastic block models shown in Fig. S3 and discussed
in Supplementary Text A.1.2. For random networks generated by stochastic block model40–42 with two blocks, when the
inter-connection probability is zero, cout = 0, the Louvain algorithm detects two communities that align with ground truth, but
also reflects the resolution limit44. By contrast, the LS algorithm still detects as many community centers as when looking at
each individual random network. This result can be understood by the local nature of the algorithm, where the structure of one
disconnected cluster does not affect the communities found in the other and thus LS algorithm does not suffer from resolution
limit. When we fix the intra-connection probability cin and gradually increase cout , the boundary of the two communities
becomes blurred. In this case the F1-score of the LS algorithm is relatively stable, though not too high (see Fig. S3), while the
performance of Louvain algorithm decreases quickly (see Fig. S3A) and the number of communities found by the Louvain
algorithm increases (see Fig. S3B).

Finally, we consider a hierarchical benchmark, the Ravasz-Barabási network model43 with two layers, which naturally
provides a model with a hierarchy between the center and peripheral nodes. The clustering proposed by LS method groups
explicitly reflects the hierarchical nature of the model by grouping first-level nodes and all sixteen second-level peripheral
clusters into one community centred at the original seed node, as it dominates their neighborhood. Four small communities
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emerge due to the existence of four centers, which hav a degree larger than their neighbours and a longer path length to the
original seed node, i.e., li > 1, see Fig. S4C for the decision graph. The Louvain algorithm offers an alternative partitioning that
ignores the hierarchical nature of the model and finds five communities of roughly equal size and one small community (see Fig.
2F). This example is interesting in that the clustering provided by Louvain here provides a reasonable, yet alternative, answer
that ignores one aspect of the data. This reminds us that different clustering methods rely on different underlying mechanisms
and, as often occurs when using unsupervised methods, the outputs are rarely strictly right or wrong. The outputs should
be understood not only in terms of the data, but of the methods as well. Still, it is worth noting that the Louvain algorithm
misclassifies a first-level peripheral cluster into another community (see the blue cluster in Fig. 2F), due to the traversal order
used by the algorithm and modularity optimization process (see Supplementary Text A.1.3 for more details). When we further
modify the network generated by the Ravasz-Barabási model by adding a third-level branching to one of the second-level
central cluster, and add noise in the connectivity to other second-level central clusters, the LS method still detects meaningful
hierarchical structure, see Fig. S4B and D.

Detection of multiscale community structure

As partially reflected in the decision graph of the LS algorithm for the Ravasz-Barabási network (Fig. S4C and D), the reliance
on local dominance of our method to identify local leaders naturally lends itself to detect multiscale community structure14, 34, 46.
To illustrate this point, we generate a multiscale network made of two levels: four top-level communities with 400 nodes
each and inter-connection probability p1 = 0.0002, each top level community contains four second-level communities with
100 nodes each and p2 = 0.03514, 34. Each second-level community is generated by the standard Barabási-Albert model45

with m = 7 that yields 〈k〉= 14 (see Fig. 3A). The LS method correctly identifies two levels of community structure with a
notable gap between first four top-level centers, which have similar k̃i× l̃i, and other potential centers, as shown in Fig. 3B.
Then taking the twelve subsequent centers, these sixteen centers together correspond to the sixteen second-level communities,
and their affiliation within each top-level communities are correct (see the tree structure for local leaders in Fig. 3C). As all
sixteen second-level communities are statistically equivalent, the directionality of community centers (Fig. 3C) is determined
by fluctuations in the network generating mechanism. The partition obtained by the LS method has an F1-score of 0.99 at
the top level and of F1 = 0.56 at the second level. Misclassifications at the second level mainly come from a relatively large
inter-connection probability p2, which blurs the boundary between communities. In comparison, the Louvain algorithm only
detects four large communities at the top-level but no further smaller communities due to the resolution limit44. The F1-score
of partitions by the Louvain algorithm equals 1 and 0.40 for the top-level and second-level evaluations, respectively. This
demonstrate the strength of the LS method on detecting smaller scale community structure.

One reason that LS works on detecting multiscale structure resides in the fact that the average path length between nodes is
governed by the connection probability47. The distance between nodes from different second-level communities within the
same top-level community is on average shorter than the distance between nodes from different top-level communities, and thus
the hierarchical structure is uncovered by the LS method. Another reason is the intrinsic heterogeneity in each second-level
community.

By contrast, when keeping the average degree and inter-connection probability (p1 and p2) the same, and replacing the
second-level communities by ER random networks with p = 0.14, which also yields 〈k〉= 14 (see Fig. 3D), the whole network
becomes more homogeneous (see Fig. S5). In this case, the LS method can still detect four top-level communities (see Fig. 3E)
but mis-identify some second-level communities (e.g., communities c2 and d1 are missing in this example, see Fig. 3F) and
detect more smaller communities (29 second-level communities are detected instead of 16). The mis-identification of some
second-level communities is due to the largest degree node u in those ground-truth communities being directly connected to a
node v in other communities with kv ≥ ku, and thus u is considered as followers. This is more common in such a random setting,
as there are more nodes with a relatively large degree beyond the reference value (i.e., the smallest degree of all of the largest
node in each ground-truth second-level communities, see Fig. S5 for more details). By contrast, in the scale-free case, there are
fewer nodes beyond the reference value. For example, in the random multiscale network in Fig. 3D, the reference value is 34,
and there are 60 nodes beyond it; in comparison, in the scale-free one, there are only 31 nodes beyond its reference value. The
homogeneity makes the detection of such communities harder, if this minimum value become only slightly smaller, there will
be much more nodes beyond the reference value in the random setting (see Fig. S5B). Mis-affiliation, i.e., one local leader in
community b3 follows the center of d4 instead of other centers in community d, is also partially due to a similar reason and
partially due to randomness. The discussion above also imply that the LS method would be vulnerable to targeted failure –
connecting two community centers would diminish one center as a follower and their corresponding communities merge as one
(see Fig. S27). In addition, due to randomness, two or more local leaders might emerge in the same second-level communities,
which will lead to split of the community (e.g., there are two local leaders in communities c2). These would constitute cases
where the LS method is not appropriate.
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Figure 3. Detection of multiscale community structure with different heterogeneity. Both networks (A and D) comprise
four top-level communities (labeled as a, b, c, and d) with 400 nodes each and an inter-connection probability p1 = 0.0002,
each of which further comprises four second-level communities with 100 nodes and p2 = 0.035 (e.g., community c comprises
c1, c2, c3, and c4). The second-level communities are generated by (A) the Barabási-Albert model45 with m = 7, (D) the
Erdős-Rényi random network with a connection probability p = 0.14 that both yield the same average degree 〈k〉= 14. (B) and
(E) show the decision graph for the LS method. For better clarity, only top sixteen nodes are labeled. (C) and (F) display the
tree structure formed by the local dominance between identified centers of each community. For better clarity, community
centers are named by the community label instead of the real index of the node, and we only show the tree structure of these
centers. The height difference indicates the li of the lower node. For the multiscale network in A, the LS method detects four
top-level communities with F1 = 0.99 and 16 second-level communities with F1 = 0.56. For the network in D, the LS method
detects four top-level communities with F1 = 0.89 and 29 second-level communities with F1 = 0.29. In both cases, the Louvain
algorithm only obtain four top-level communities with F1 equals 1 and 0.40 for evaluations at the first- and second-level,
respectively. Results shown here correspond to just one realization, in multiple realizations, as every first- and second-level
communities are equivalent, the label sequence in B and E and the tree structure in C and F may vary but have a consistent
structure.

7/34



Real-world benchmark networks
We now test the LS algorithm and demonstrate its strength on several empirical benchmark networks with known ground-truth
community labels, see Table 1. Our main point of comparison is again the Louvain method, as it is fast, scalable, the most
widely used community detection algorithm implemented in most network packages. LS is faster than Louvain for 7 of the 8
benchmarks. The speed advantage becomes more noticable as the networks get larger (see Table 1). For example, for the DBLP
network48 with 317,080 nodes and 1,049,866 edges, our LS method takes 45 seconds, while Louvain takes 256 seconds.

The LS method is not only faster, but also classifies better than the Louvain algorithm measured by the F1-score for 5 out of
7 examples with ground-truth community labels (see Fig. S9 and Supplementary Text B for more details and discussions on
the evaluation by F1-score). LS also performs well when compared against a broader range of popular community detection
algorithms, see Table S2. We note that the best performing algorithms are well distributed among the benchmarks, which
reflects that real networks have generally different generating mechanisms that are better captured by some algorithm than
others26, 27. It is, however, interesting that LS consistently ranks first or second in the same 5 benchmark network, and is
overall the best classifier, suggesting that the notions of local dominance, hierarchy and community centers are pervasive in real
networks. It is therefore instructive to understand why LS does not perform well on the Football network8, 49, 50. The Football
network is fairly homogeneous, and we have already explained why the LS method does not perform well in this situation, see
the subsection on multiscale community detection. There is also significant connectivity between the largest degree nodes in
the ground-truth communities, thus some of them become direct followers to others and their communities are merged. If a
portion of links between the largest degree nodes were removed, the partition given by the LS method would be much closer to
the ground truth.

Targeted link removal and addition can significantly change the structure of a network and the outcome of community
detection algorithms. The LS algorithm is not immune to that effect, as it relies on local leaders to separate communities,
therefore, intentional targeted link addition between two community centers would make one of them a follower and lead to
just a single community, which will dramatically reduce the performance of the classification. For example, if we connected the
president and instructor in the Zachary Karate Club network, then the LS method only yields a single community (Fig. S27),
which is the case before the split39. This also lends us a way to identify critical links for merging or splitting communities51.
The identification of local hierarchy is, on the other hand, more robust against links missing or adding at random, see Figs.
S25-S26.

In addition, the number of communities detected by LS is also closer to the ground truth, see Table 1. For example, for the
Zachary Karate Club network, Louvain detects four communities, while LS detects two, which is consistent with reality. As
usually more potential centers can be detected in real networks, see Fig. S6, and might correspond to meaningful multiscale
structure. As for the Polblogs network, where LS finds three instead of two communities, and there is debate whether three
groups should be considered as the ground truth (i.e., apart from liberal and conservative, there is a neutral community)52.
This partially explains why the LS does not work that well on this example. This also reflects the importance and difficulty of
obtaining ground-truth labels, if there are any27. Although the evaluation of the classification performance of an algorithm
with a ground truth is standard practice53, establishing the ground truth for community assignment usually require detailed
survey, which can be difficult for very large networks41, 53, and is usually regarded as distinct from metadata available27, 41.
The choice(s) of the ground truth(s) are crucial and there might be “alternative” ground truth that emerge from unsupervised
clustering analysis and are validated a posteriori. For example, in the well known Zachary Karate Club network39, the metadata
of nodes can also be their gender, age, major, ethnicity, however, most of which are irrelevant to the community structure when
interested in understanding the split of the club27, 41, but might be relevant to understand other type of community structure.

Applications to urban systems
Our final example of real-world networks is to uncover the structure of spatial interactions in cities. It also showcases the
capacity of LS to adapt to weighted networks, with node degree replaced by the node strength and the least weighted shortest
path, where the distance between two adjacent nodes is the reverse of the volume of mobility flow. Many cities have or will
evolve from a monocentric to a polycentric structure54, which can be inferred from the patterns induced in human mobility data.
We use human mobility flow networks derived from massive cellphone data at the cellphone tower resolution with careful noise
filtering and stay location detection55–57 for three cities in different continents: Dakar58, Abidjan7, 59, and Beijing60, 61 (see
references here and Supplementary Material of ref.7 for more details on obtaining the mobility flow network from cellphone
data). The LS algorithm can detect both communities with strong internal interactions and meaningful community centers, see
Fig. S7 for the decision graph. We find that for the smaller cities Dakar and Abidjan, communities are more spatially compact,
while in the larger city, Beijing, they are more spatially mixed, see Fig. 4. This indicates that in Beijing, interactions are less
constrained by geometric distance, which might be due to a more advanced transportation infrastructure and a superlinearly
stronger and diversified interactions tendency in larger cities7, 62, 63. In addition, the identified community centers correspond
to important interaction spaces in cities, see Fig. 4. For example, in Beijing, the top three centers are The China World
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N E Nc
Louvain LS

∆t (ms)
F1 Nc t (ms) F1 Nc t (ms)

Karate 34 78 2 0.63 4 8 0.83 2 6 2
Football 115 613 10 0.87 10 18 0.35 6 20 -2
Polbooks 105 441 3 0.70 5 13 0.80 2 8 5
Polblogs 1,490 19,090 2 0.85 9 328 0.69 3 212 116

Cora 2,708 5,429 7 0.32 28 380 0.33 7 139 241
Citeseers 3,264 9,072 6 0.27 35 384 0.45 7 131 253
PubMed 19,717 44,327 3 0.20 43 8,745 0.46 8 2,298 6,447
DBLP 317,080 1,049,866 – – 220 256,000 – 8; 1859 45,000 211,000

Table 1. Comparison between the LS and Louvain algorithms on networks with ground-truth community labels. Nc
denotes the number of ground-truth communities in the network or identified by different methods, and F1-score is a common
performance measure in machine learning between predictions and ground-truth labels (see more details in Supplementary Text
B), and t (ms) is the running time of the algorithm when implemented in Python. As there is no ground truth labels but only
meta data for DBLP48 (see Supplementary Text B for more discussions), we are unable to report F1-score. As LS is able to
detect multiscale structure, we report the number of communities detected with notable gaps: 8 large communities, 1859
smaller communities. Both the Louvain and LS algorithm are of linear complexity in time, and our LS method is faster. In
addition, the LS method performs better in most cases. The algorithm with a better performance is highlighted in bold.
Comparisons with a broader range of classical community detection algorithms are shown in Table S2.

A B C

Figure 4. The community structure detected by our LS algorithm on mobility flow networks in three diversified cities
across continents. (A) Dakar in Senegal, Africa. (B) Abidjan in Côte d’Ivoire, Africa. (C) Beijing in China, Asia. Each dot
represents a location, which corresponds to a region by Voronoi tessellation according to cellphone towers. Communities are
indicated by different colors, and their centers are marked as stars. The decision graphs are shown in Fig. S7.

Trade Center in Chaoyang District, the Zhongguancun Plaza Shopping Mall in Haidian District, and Beijing Economic and
Technological Development Zone in Daxing District. In Abidjan, LS detects the Digital Zone, local mosques, and markets as
centers. In Dakar, a university and some mosques are detected.

Clustering vector data via the LS algorithm
Community detection and vector data clustering share many similarities, but are often considered separately and having
contrasting focus. Our use of local leaders identified by local dominance was directly inspired by the concept of the center
of a cluster, which is characterised by a higher centrality measure in its vicinity/neighborhood (e.g., density or degree) and a
relatively long distance (i.e., a large li) to the nearest object with a large centrality. Local dominance concretely and explicitly
identifies fundamental asymmetric leader-follower relation between objects, which naturally give rises to centers. This creates a
direct link between the two viewpoints of network science and data science. It is therefore natural to ask whether LS would
perform well, or even better, than vector data clustering methods on a discretised version of a data cloud.

To cluster vector data with the LS method, we first need to discretise it into a network. Many methods exist to perform this
task, including ε-ball, k-nearest-neighbors (kNN) and its variants (such as mutual kNN, continuous kNN), relaxed maximum
spanning tree64, percolation or threshold related methods35, 65, and more sophisticated ones66. Here, we employ the commonly
used ε-ball method that sets a distance threshold ε and connects vectors, which become nodes, whose ε-balls overlap, see Fig.
5A and inset. This process can be accelerated by using R-trees and are implemented in a time complexity of O(N logN)63, 67
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(see Supplementary Text A.4). After traversing all nodes, a network encoding a geometric closeness within ε between nodes is
obtained, see Fig. 5B. The ε-ball method preserves spatially local information, e.g., the vector density in the metric space can
be interpreted as degree in the constructed network, and coarse-grains continuous distance between objects into discrete values.
This makes the determination of centers clearer (see Fig. 5C and D). The choice of ε influences greatly the structure of the
network obtained, here we chose ε to be near the network percolation value to ensure a minimally connected graph68–70, more
details on determining ε can be found in Supplementary Text C.1.

A B

C D

Figure 5. Conversion from vector data to a network via the ε-ball method and the analogy between the community
centers of networks and the cluster centers of vector data. (A) An example of data cloud and (B) its dicretised network
representation by (Inset) the ε-ball method. (C) The decision graph by the density and distance based (DDB) algorithm16. (D)
The decision graph by the LS method. Cluster centers are data points of both a higher density ρi than its neighbors and
relatively far from other points with a larger density (i.e., a large di)16. The density ρi of a data point i is simply the number of
nodes within a certain radius ε , and it is equivalent to the degree of node i in the corresponding network (i.e., ki = ρi). The
network constructing process is a coarse-graining and discretization process, where the absolute distance value is not preserved
(e.g., in the Inset, d32 > d34 for the original vector data, but l32 = l34 = 1 in the network). The Euclidean distance between any
data points is based on a global metric, but the topological path length between two nodes are based on a local metric. For
example, d24 is only slightly larger than d34, but in the network, l24 = 2 and l23 = 1 (see the Inset); though d21 ≈ 2d23
according to global metric, node 2 and node 1 are not reachable in the network based on the local metric. Cluster centers
identified by the DDB algorithm matches community centers identified by the LS method, which are all marked as stars.

Applying the LS algorithm on the constructed network for a series of well-known two dimensional benchmark data (Fig.
5A and E), yields the expected clusters (Fig. 5B and F, and Fig. S11 for more cases). By contrast, the Louvain algorithm
generally obtains more and smaller clusters in a relatively fragmented way (Fig. 5C and G, and Fig. S13 for more examples) on
the same networks. The reason is that the Louvain algorithm overlook the transitivity of local relations72. The state-of-the-art
unsupervised clustering algorithm density and distance based (DDB)16 applied to the original vector data yields expected
clusters in most cases, see Fig. 6D and Ref.16 for other examples. This confirms the universality of local hierarchy between
objects and the analogy between our community centers and cluster centers. However, the DDB algorithm fails in the test
case71 in Fig. 6H due to a mixture of local and global metrics in this associate rule71, which do not affect the LS method works
(see Fig. 6F). From a network perspective, certain dynamics can give rise to meaningful clusters with arbitrary shapes in metric
space (e.g., synchronization or spreading dynamics are usually only possible along the manifold via local interactions but not
through global ones). For example, different clusters in Fig. 6E or Fig. S11C,G,H might correspond to groups of fireflies that
are only able to synchronize within the group rather than between groups, as their interaction range is usually limited. In the
situations above, the distance measured by the local metric is more appropriate than the one measured by the global metric, see
a more in depth discussion in Supplementary Text C.2. The good performance of the LS algorithm on vector data resides in the
correct identification of the local dominance, i.e., finding the centres, from the local metric.

In addition, we show that the LS method is robust against noisy data in different scenarios, see Supplementary Text D.1 and
Figs. S23-S24. Though less common when considering vector data, targeted addition of edges in a network that connect two
cluster centers, explicitly brings two cluster centers closer to each other in the metric space and will distort the space, whereas,
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A B C D

E F G H

Figure 6. Comparisons on the clustering performance between the LS, Louvain, and DDB algorithms for two
dimensional benchmark vector data. (A) and (E) represent networks constructed from vector data using the ε-ball method
(see Supplementary Text C.1 and Fig. S10 for details on the network constructions). (B) and (F) show the result of the LS
method that correctly identify clusters that align with common consensus (see Fig. S11 for more cases). In addition, LS can
detect noisy points (marked in grey) that are of low degrees but long li. (C) and (E) show the partitions obtained from the
Louvain method which are more fragmented than the LS results (see Fig. S13 for more cases). (D and H) show the results
obtained from the DDB method which provides correct partitions to most benchmark data, see (D) and Ref.16 for other cases,
but fails in the test case in (E), where both a low density manifold and a high density cluster exist, due to its local association
rule71 being affected by a mixture of local and global metrics. LS and Louvain methods are performed on the constructed
networks shown in A and E, and the DDB algorithm is performed on the original vector data.

conversely, the removal of links increases the distances between two objects.

The advantage of building networks for high dimensional vector data
We now show that the combination of the ε-ball discretisation and LS community detection method also yields excellent results
on high-dimensional data sets. We again use very high dimensional well-known benchmark: the MNIST of hand written
digits73, and Olivetti of human faces74, and show that our simple framework outperforms the-state-of-the-art DDB clustering
algorithm16, see Table 2. Let us consider, for example, the Olivetti human face dataset, a challenging high dimensional
dataset with small sample size. Each cluster obtained by the LS algorithm only contain images from a single individual, see
Figs. S17-19, simply based on Euclidean distance between images and without resorting to using complex image similarity
measure. Moreover, it obtains a higher F1-score than the DDB method. We note that for MNIST and Olivetti datasets,
the Louvain algorithm has a higher F1-score than LS, but identifies an inappropriately large number of clusters. The better
performance of the Louvain algorithm lies in some subtle differences from clustering results obtained by the LS method (see
comparisons between Fig. S19A and Fig. S19B for the Olivetti dataset with 100 images. The Louvain algorithm detects all
images of the eighth person as one cluster, but the LS method classifies four images of the eighth person as another cluster).

We conjecture that the conversion from vector data to a network is not merely a translation of the data, but a fundamental
information filtering process that accentuates the prominence of local leaders and thus increases the strength of local hierarchy,
which in practice turns out to be of great advantage to our framework for handling vector data with high dimensions. Constructing
the network via ε-balls is similar to a coarse-graining process: as long as two objects are close enough, the small differences in
distances within ε are neglected. In addition, such a process also corresponds to subtracting irrelevant global information and
puts the focus on similarity based on a local metric. Though there will be some information loss during the conversion from
vector data to topological data, purely local information is enough to identify local dominance in the data. Not all information
embedded in the vector data needs be utilized64, sometimes too much information might complicate the process. Although
admitting asymmetric relations between objects would violate certain formal metric properties (distances are symmetric), it
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turns out to be an advantage for cluster analysis (see more discussions in Supplementary Text C).

D N Nc
LS DDB Louvain

F1 Nc F1 Nc F1 Nc
Iris 4 50 3 0.73 2 0.82 3 0.70 8
Wine 13 178 3 0.57 3 0.57 3 0.41 7
MNIST 784 1,000 10 0.32 21 0.26 (10) 0.45 247
Olivetti 10,304 100 10 0.74 14 0.64 (10) 0.78 32
Olivetti 10,304 400 40 0.59 64 0.49 (40) 0.68 112

Table 2. Comparisons on the clustering performance between the LS, Louvain, and DDB algorithms for high
dimensional vector data. D denotes the dimension of the dataset, N denotes the number of objects, and Nc denotes the
number of clusters from the ground-truth or identified from algorithms. The hand-written figures in MNIST is of dimension
28×28=784 pixels; and in Olivetti, the face image is of dimension 92×112=10,304 pixels. The Olivetti dataset with N=100
comprises the first 100 images of 10 people from the original data set. The original dataset comprises 400 images of 40
different people. Our LS algorithm outperforms DDB in all high-dimensional and large-scale data sets except in Iris, whose
dimension is quite low. Note that as the DDB algorithm does not have a clear recognition of the number of clusters (i.e., no
clear gaps between centres in the decision graph)16 for MNIST and Olivetti, the number of clusters identified by DDB are
putative based on the ground truth (i.e., selecting the top ten or forty nodes in the decision graph), which is marked in brackets.
Digits highlight in bold is the ones closest to the ground truth among all three algorithms.

DISCUSSION
Community detection and cluster analysis are analogous as both aim to group objects into categories based on some notion
of similarity. In this work, we develop a fast and scalable community detection method based on the notion of a community
center which echoes the commonly used concept of a cluster center. The identification of community and cluster structures
requires a heterogeneous system: uniformly distributed data points and strictly regular networks do not possess meaningful
mesoscopic cluster structure. Heterogeneity leads to the emergence of more important loci in a data space, or central nodes in a
network. The notion of centre is pervasive in cluster analysis, but underused in community detection. We define community
centres as local leaders that are both of a high degree, corresponding to a high density in cluster analysis, and relatively distant
from other local leaders, corresponding to cluster separability. The nodes belonging to each community defined by their
centre are identified by basins of attraction34 based on the dominance existing between nodes, which indicates the asymmetric
leader-follower relationship and defines a local hierarchy. While dominance is an explicit characteristic of edges in a directed
network, it can be seen as an intrinsic higher-order directionality between nodes in undirected networks. The resulting local
hierarchy reflects asymmetric interactions between objects inferred from the local connectivity of nodes that then naturally
defines leaders and community affiliations. In addition, local hierarchy can be treated as an intrinsic property of the network.

The local hierarchy structure is quite robust against random noise, and is based on local information. Moreover, in contrast
with most state-of-the-art clustering and community detection methods, the LS method does not rely on a global objective
function to optimise based on a null model nor is it dependent on dynamical processes. In cluster analysis, approximating
similarity relations between objects by a distance matrix actually assumes that every object are in a direct relation with all
others, which is also the case for modularity optimization algorithm that utilize a random null model, which also assumes
that each node has a probability to interact with every other node10. In addition, community detection methods also generally
assume a mutual relation between objects, which is an important formal metric property and an implicit feature of an undirected
connectivity matrix. Local hierarchy implicitly violates such an assumption, but it turns out that abandoning such a restriction
gives better flexibility to the clustering method (see Supplementary Text C for more details). Finally, our LS algorithm is fast
and scalable with a linear time complexity and also performs well on most benchmarks, except the ones that do not possess the
type of heterogeneity exploited by LS.

Overall, the performance of the LS method is particularly good given its simplicity. On benchmark network models, it
outperforms the currently most widely used community detection method, the Louvain modularity optimisation algorithm.
The LS method consistently ranks higher than any other methods when the performance is averaged over several data sets, see
Table S2. We have also shown that the LS method is naturally able to detect multiscale structure of communities in complex
networks. This implies that while not necessarily identifying the partition defined by some existing ground truth, it finds a
good approximation of it and the output can then be used as starting point for other slower but more accurate and dedicated
community detection methods, offering a significant speed up.
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Given the similarity in spirit between LS and clustering methods, we applied LS to ε-ball discretised version of benchmark
vector data, both low and high dimensional. For low-dimensional data, we find it provides the expected clusters and outperforms
Louvain modularity optimisation algorithm ran on the discretised data, which generally yields too many communities. LS also
outperforms DDB, a state-of-the-art unsupervised clustering method, on some challenging cases in the presence of low-density
manifolds. For high-dimensional data, LS still outperforms DDB, but not Louvain, although on closer inspection, Louvain
obtains a better F1-score, but suffers again from providing too many communities, outbalancing the advantage in F1-score.

We hypothesise that the discretisation step of creating a network from vector data acts as a topological filter, which enhances
the key property of the data that makes cluster detection work: the existence of well defined cluster centers and a clearer
identification of local hierarchy. The performance of any community detection algorithm is going to be influenced by the
discretisation method used, and more work is needed to understand the relationship between topological denoising and the
performance of the community detection algorithms, as different community detection methods might respond differently to
different discretisation schemes.

Another area for future work is to adapt LS to find “halo” nodes residing at the boundary of two or more communities (e.g.,
node d in Fig. 1), detect overlapping communities13 potentially by producing line graphs75–77 or clique graphs49, and identify
critical link responsible for the merging or splitting dynamics of communities51. Another point that could be improved is when
two or more local leaders are equivalent on both degree and distance to a node. We currently assign it to a local leaders at
random but we could look at other options.

Finally, another possible direction for future research concerns the definition of dominance itself. In this article, it was built
on a specific network property, the degrees of the nodes. For a weighted network, it would be appropriate to use strength rather
than degree and we would retain all the benefits of the LS method. Dominance could also be based on other node centrality
measures but most of these require global network calculations which would slow the algorithm considerably. If Dominance
was based on non-structural properties, such as numerical attributes for nodes already defined in the data, then the LS approach
would still work well.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at
Supplementary Text
tables S1 - S2
figs. S1 - S27
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Supplementary Materials for
Local dominance unveils clusters in networks

Supplementary Text A
A.1 Identification of local leaders
As mentioned in the main text, when there are multiple nearest nodes of a larger or equal degree than the ego node i, then i will
first point to all of them. Then, after traversing all nodes, for each node we keep one out-going edge, chosen at random, which
destroys any loops (see Lemma 1 and Fig. S1C) and gives us a tree. Such a setting gives good partitions even for some extreme
cases (e.g., a lattice or clique).

A.1.1 Strictly homogeneous networks
When there is a complete subgraph in the neighborhood of a node (see Fig. S1A), the mapping of local dominance can vary (see
Fig. S1B) due to randomness, but the different mappings all have the same eventual partition. In a lattice network, following
the same process of the LS algorithm, the whole network will be classified into just one community.

Lemma 1 No formation of loops by the LS algorithm. The mapping in Fig. S1C is impossible.
Proof: If a→ b, b→ c, and c→ d, then it means that kd ≥ kc ≥ kb ≥ ka. Now, if d→ a, it indicates ka ≥ kd , then we have
ka = kb = kc = kd and Aad = 1. But if so, given Aad = 1 and ka = kd , then as a is first traversed, there will be a a→ d instead
of d→ a, and eventually, a will only keep one out-going link, thus no such loop shown in C will be formed. �

ba

d c

ba

d c

ba

d c

A B C

Fig. S1. The mapping of local dominance in a complete network. (A) The structure of a complete graph, and here we
assume that nodes will be traversed from a to d in order (any other orders for the nodes lead to the same result). (B) Node a
will first point to all three other nodes as k j ≥ ka, then node b will point to c and d but not a (as a is already a possible follower
of b), then c will point to d (but not a and b, as they are also possible followers of c), and d points to no one as there is no
remaining neighbor with k j ≥ kd . Then we randomly keep only one out-going link for each node. For example, b can either
point to c or d with an equal probability. The eventual mapping of local dominance can be either a chain or a star in two
extremes. For such a 4-clique, there are 6 possible mappings (see the Inset on the right), and all of them yield just one
community. (C) No such a loop will be formed, see proof of the Lemma 1.

A.1.2 Relatively homogeneous ER random networks
In relatively homogeneous networks (e.g., ER random networks), degree differences exist, and communities may emerge.
In such networks, large degree nodes often have a relatively higher probability connecting to each other, which will lead to
fewer local leaders and eventually fewer communities. In the thermodynamic limit, an ER network is regarded as having no
community structure (or the whole network should be classified into one community) due to a strong homogeneity. When
implementing the LS and Louvain algorithm on ER networks, the LS method obtains fewer communities, which is closer to the
common assumption (see Fig. S2).

For random networks generated by stochastic block model (SBM)40, 41 that comprise two communities, each of which are of
1,000 nodes (i.e., N = 2000) with intra-connection probability cin = 0.009, when the inter-connection probability cout = 0, the
LS algorithm detects 9 communities and the Louvain algorithm detects two communities. The result obtained by the Louvain
algorithm aligns with ground truth, but also reflects the resolution limit44, and in contrast, the LS algorithm still detects as
many as community centers as when looking at each individual ER network. When we fix cin and gradually increase cout , the
F1-score of the LS algorithm is roughly around 0.4, while the Louvain algorithm has a fast decrease, which is mainly influenced
by internal connections and the number of communities detected.
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Fig. S2. The number of communities detected by the Louvain and LS methods in ER random networks with
N = 1000. The LS method detects fewer communities than the Louvain algorithm. For ER random networks with 10,000
nodes and p equals 0.001, the LS method ends up with 15 communities and the Louvain with 22 communities.

A B

Fig. S3. The comparison between the Louvain algorithm and our LS method on synthesized networks by stochastic
block model (SBM). (A) The F1-score and (B) the number of communities Nc detected by the LS and Louvain algorithms. We
generate networks with two communities by SBM, each of which has 1,000 nodes. cin = 0.009 is the density of edges between
nodes the same group, and cout is the density of edges between nodes from different groups. We gradually increase cout until it
equals cin.
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A.1.3 Heterogeneous Ravasz-Barabási networks
In a classical Ravasz-Barabási networks (see Fig. S4A) that exhibits strong heterogeneity, we can easily identify local leaders
and followers. Nodes b, c, d, and e (with ki = 20, li = 2) are identified as local leaders by the LS algorithm (see Fig. S4C), as
they are of a larger degree than all their neighbors (other neighbors are of a degree ki ∈ [3,5]) and are relatively far away from a
larger node (here, only the central node a is of a larger degree (ka = 84) and is two steps away from them). For example, those
four nodes surrounding c are not connected to node a, thus they point to c, but other nodes in the four 2-level peripheral clusters
(e.g., those four clusters surrounding the cluster centered at c) are all also directly connected to the central node a, as ka > kc
and dia = dic = 1, thus those nodes all point to a and are eventually partitioned to the community centered at a. As for the
Louvain algorithm, the partition results strongly depend on the traversal sequence, and it maximizes modularity in a greedy
way if the modularity gain ∆Mcic j is positive.

∆Mcic j =
1
E

(
Ecic j −

kcikc j

2E

)
, (1)

where E is the number of edges in the network (E = 344 in the Ravasz-Barabási network in Fig. S4A), Ecic j is the number of
edges that connect nodes in community ci and community c j, and kci denotes the sum of degree of all nodes in community
i. For example, as shown in Fig. 2F in the main text, the small cluster (denote as c1) will not be merged to the purple one
(denote as c2), as Ec1c2 = 4, and kc1 = 4×5 = 20, kc2 = 84+3×4+4×5×3 = 156, in this case, ∆Mc1c2 < 0, and these two
communities will not be merged together.

When we further modify the network in Fig. S4A to add a 3-level branching to the top-right 2-level cluster centered at b
(see Fig. S4B), then the degree of node b become the same as the original central node a (i.e., ka = kb = 84). As all those four
2-level peripheral clusters surrounding node b are both connected to both a and b, thus, they will eventually point to one of
them at random (in this realization, there are seven nodes point to a and eventually colored as purple, and the remaining nodes
point to b and colored as blue). Again, due to the same reason as in Fig. S4A, four smaller new communities emerge, which
are centered at nodes f, g, h, and i, respectively (see Fig. S4D). As we remove 4 links from node d, and 8 links from node e,
thus kd = 16 and ke = 12, and this is why in the decision graph in Fig. S4D, nodes d and e drops a little bit each. In addition,
the decision graph can also make meaningful ranking for community centers (see Fig. S4D). The network can be partitioned
into nine communities at the finest resolution (see Fig. S4B), or into two big communities (small communities centered at c, d,
and e will follow a, and other four small communities follow b as a is more further away from them), which reswembles a
multiscale community structure.
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Fig. S4. The community partitions by the LS algorithm on Ravasz-Barabási networks. (A) A 2-level Ravasz-Barabási
network43, where four small communities identified by the LS method. The color correspond to community partitions. (B) A
modified Ravasz-Barabási with the top-right 2-level cluster with 3-level branching. For the bottom-left 2-level cluster, we
remove four links; and for the bottom-right 2-level cluster, we remove eight links. (C) The decision graph for the network in A
by the LS algorithm. (D) The decision graph for the network in B by the LS algorithm.

A.1.4 Multiscale community structure
To further verify the impacts of homogeneity on the LS method for detecting multiscale community structure, we obtain the
degree frequency distribution for the scale-free setting (see Fig. 3A in the main text and Fig. S5A for its degree distribution)
and the random setting (see Fig. 3B in the main text and Fig. S5B). Though the maximal degree in the random setting is smaller
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than in the scale-free setting, but there are more nodes beyond the reference value in the random setting (red line in the figure,
i.e., the smallest degree value among the largest nodes in each of sixteen communities). In the random setting (see Fig. S5B),
for a largest node in a ground-truth community that is of a degree near the reference value, there are more nodes with a larger
degree out there in the network, and it will have a relatively higher probability to connect to one of them. If this happens, this
largest degree node in the ground-truth community will be diminished as a follower, and the corresponding community cannot
be detected. In contrast, in the scale-free setting in Fig. S5A, there are fewer larger nodes and thus a smaller chance of direct
connections between them. In addition, in the random setting in Fig. S5B, a small decrease of the reference value will lead
to a large increase on the number of nodes beyond it. While in the scale-free setting (see Fig. S5A), small fluctuations to the
reference value would have a much milder influence. This explains that why the LS algorithm works better on the scale-free
setting on detecting multiscale community structure than in the random setting (see Fig. 3 in the main text).

A B

Fig. S5. The degree frequency distribution of multiscale networks. (A) The scale-free setting (i.e., each second level
community is a scale-free network). The whole network is still of a heterogeneous degree distribution. (B) The random setting
(i.e., each second level community is a ER random network). The degree distribution is relatively homogeneous. Networks in A
and B are of the same average degree. The red line indicates the smallest value of all of the largest node in each of all sixteen
ground-truth communities, and this value is what we called “reference value” in the main text. And the blue line indicates the
smallest value of centers of all identified communities. In A, these two lines overlap; while in B, the blue line is larger than the
reference value, which also indicates that some clusters are.

A.2 Identification of community centers
For better clarity and later use, we define C as the set of all local leaders (i.e., potential community centers), and M as a subset
of local leaders that are of the maximal degree in the network (i.e., M⊆ C). It is worth noting that not all nodes with the
maximal degree in the network will be in the set of M. For example, in Fig. 1C in the main text, nodes m, f, and p are in the set
C, and node m in the set M as it is of the maximal degree in the whole network and is a local leader. In contrast, though the
node b is also of the maximal degree in the whole network, it is not in M or C as it already follows node m and is not identified
as a local leader. In the Football network8, 49, 50, there are several nodes with the maximal degree are not in M (see those nodes
with a degree equal 12 at the right-bottom of Fig. S7A).

For each node i, finding a nearest node j with a largest degree and k j ≥ ki can give rise to a field of hidden directionality
(i→ j) 1 on networks as shown in Fig. 1C in the main text and Fig. S6A. We denote the length of the shortest-path from i
to j as li, and there will be at most one out-going link for each node. The degree ki and path length li can provide effective
information for determining community centers, which are nodes with both a larger ki and li (see Fig. 1E in the main text, Fig.
S6B, and Figs. S7-S8).

As most real networks are scale-free with a power-law distribution on degree, to reduce the impacts of extreme degree
values caused by hub nodes, we calculate a ranked degree

k∗i = rank(ki), (2)

where the rank() function returns the index of a value in the ascendingly sorted set. The node(s) with the smallest degree will
(all) have k∗i = 1 regardless of its specific degree value ki, and the node(s) with the largest degree will have k∗i = len(set(ki)),

1When referring to specific out-going links that signifies the local dominance, we also call it hidden directionality. While directionality is an explicit
characteristic of edges in a directed network, asymmetric relationship between nodes can be seen as an intrinsic higher-order directionality in undirected
networks. Asymmetric relationships are profound in networks, for example, two connected nodes with unequal degrees (e.g., ki > k j) might have different
influence over each other18, 19, 21, node i may receive only 1/ki influence from j which is smaller than the 1/k j influence received by j from i.
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Fig. S6. The community detection result by the LS algorithm on the Zachary Karate Club network. (A) The shape of
the node represents the ground-truth community label, where the circle represents one group and the square represents the other.
The color of the node represents the predicted labels by the LS algorithm. Zachary39 identifies two social groups, one led by
the instructor, node 0, and the other led by the club president, node 33 (the node index here is one less than that used in39).
These nodes are correctly identified as community centers by the LS method. Nodes 8, 13, and 19 are connected to both centers
and eventually classified to the community centered at the club president (node 33) due to a slight degree difference between
two centers (k33 = 17 > k0 = 16). Out-going links i→ j indicates that node j dominates node i. (B) The scatter plot of degree
ki and path length li for all nodes. Community centers are identified as the ones with both a larger ki and li. (Inset) The decision
graph for quantitatively determining community centers (indicated by triangles) based on the product of rescaled degree k̃i and
rescaled distance l̃i. Community centers can be determined by a visual inspection for a big gap or by more sophisticated
automatic detection methods.

where set(ki) returns all unique degree values of all nodes in the network, and len() is a function calculating the length of the
set. For example, for a network with degree values as (1,1,1,3,3,3,6), the corresponding k∗i will be [1,1,1,2,2,2,3]. So, in
this case, when ki = 6, k∗i = 3. Meanwhile, in order to ensure that the shortest-path length differences are more distinguishable,
we calculate a rescaled path length

l∗i = l2
i . (3)

Note that most networks generated from 2D benchmark vector data (see Fig. S12) are of a relatively narrow degree
distribution, in such cases, k∗i is quite comparable with ki, and li is also relatively more distinguishable (see Fig. S12). Thus, in
those cases, ki and li can already have a quite comparable performance as of k∗i and l∗i . One practical reason is that the density is
quite comparable across different clusters in most benchmark 2D vector data sets78–81. When the density is more heterogeneous
across clusters, the degree distribution might be closer to a power-law and then the operation of calculating k∗i will be necessary.

To make k∗i and l∗i more comparable on magnitudes, we do a min-max normalization for them.

k̃i =
k∗i −min(k∗i )

max(k∗i )−min(k∗i )
, l̃i =

l∗i −min(l∗i )
max(l∗i )−min(l∗i )

. (4)

The number of community centers can be easily identified according to the rank distribution of k̃i× l̃i, which is a composite
indicator on the centerness of a node. Generally, there will be a gap between community centers and other nodes (see Fig. S6B
and insets of Fig. S7), which can be better visually inspected in a log-log plot (see insets of Fig. S7D-F).
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Fig. S7. Identification of community centers of real networks. Scatter plots of ki and li for (A) Football8, 49, 50, (B)
Polbooks82, (C) Polblogs52, (D) Cora83, (E) Citeseers84, (F) Pubmed85, and (G) DBLP48. (Insets) Decision graph for
quantitatively determining community centers based on the product of k̃i and l̃i. Identified community centers are highlighted
by larger triangles.

A B C

Fig. S8. Identification of community centers of human mobility flow networks in three diversified cities. (A) Dakar in
Senegal, Africa. (B) Abidjan in Côte d’Ivoire, Africa. (C) Beijing in China, Asia. Identified cluster centers are highlighted by
larger triangles.
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A.3 Pseudo Code of our LS algorithm

Algorithm 1: The Local Search (LS) algorithm for community detection
Input: G = (V,E): undirected and unweighted graph, where V is the set of vertices, and E is the set of edges.
Output: Community partitions.

1 for node i in V do
2 j = node with the maximum degree in neighborhood of i;
3 if k j ≥ ki then
4 i→ j;
5 li = 1;
6 end
7 end
8 Build DAGs by directionality(i→ j), and obtain C and M;
9 #C is the set of nodes with no outgoing edges in DAGs;

10 #M is the set of node(s) with the maximum degree in C;
11 for node i in C\M do
12 m = 2;
13 Perform a local-BFS(G, i) to find m-order neighborhood of i;
14 j = node with the maximum degree in m-order neighborhood;
15 if k j ≥ ki then
16 i→ j;
17 li = di j;
18 continue;
19 else
20 m += 1;
21 go to line 13;
22 end
23 end
24 for node i in M do
25 li = max(lk), ∀k ∈V ;
26 end
27 for node i in C do
28 δi = l̃i× k̃i; # l̃i and k̃i are calculated according to Eq.(3).
29 end
30 Determine the community centers according to descendingly sorted δi;
31 Assign community labels from community centers to their neighbors along the reverse direction i← j of hidden

directionality (i→ j);
32 return partitioned sets of nodes according to community labels

A.4 Time Complexity
In the LS algorithm, for each local leader, we perform a local-BFS that will stop further searching when encountering a nearest
local leader that is of a larger or equal degree. Based on empirical analysis on real networks, the average number of searching
layers 〈l〉C\M is only slightly larger than 2 in most cases (see Table S1). For other follower nodes, they just need to traverse all
their first-order neighbors. In addition, such a local-BFS, which is theoretically approximated by 〈k〉〈l〉C\M , is bounded by the
number of edges E in the network, thus the maximal value of (|C|− |M|)〈k〉〈l〉C\M is (|C|− |M|)E, which is usually acceptable,
and is usually smaller than E (see the last column of Table S1). It is worth noting that not all nodes with the maximal degree in
the network will be in the set of M, only those identified as local leaders and are of the maximal degree are. For example, if
there are several nodes with the maximal degree and they are connected to each other (see Fig. S1A), then there will be only
one node identified as a local leader (see Fig. S1B).

For clustering vector data, before performing our LS algorithm, the network construction process takes O(N logb N) if
accelerated by R-tree63, 67, where b is the branching factor of the R-tree. If this process is not accelerated by R-tree, the time
complexity of this part would be O(N2), which calculates a full distance matrix. After the network is constructed, the remaining
process is the same, detected communities correspond to cluster partitions.
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N E |C| 〈k〉 〈l〉 〈l〉C\M (|C|− |M|)〈k〉〈l〉C\M
Karate39 34 78 2 4.59 1.058 2.00 21.05

Football8, 49, 50 115 613 6 10.66 1.069 – –
Polbooks82 105 441 2 8.40 1.057 4.00 4978.71 (441)
Polblogs52 1,222 16,717 3 27.36 1.002 2.00 1,497.15

Cora83 2,485 5,069 104 4.08 1.047 2.16 2,132.77
Citeseers84 2,110 3,668 106 3.48 1.080 2.76 3279.96
PubMed85 19,717 44,327 472 4.50 1.025 2.06 10,445.59

Table S1. Basic statistics on real networks with ground-truth community labels and intermediate results of the LS
algorithm. N is the number of nodes in the network, E is the number of edges, |C| is the size of the set of potential centers
(i.e., local leaders) identified by our LS algorithm, 〈k〉 is the average degree of the network, 〈l〉= ∑i li is the average number of
layers searched when a node finds a nearest node with a larger or equal degree than itself, 〈l〉C\M is the average number of
layers searched for all potential centers except the local leader(s) in M with the maximal degree in the whole network (i.e.,
i ∈ C\M), thus (|C|− |M|)〈k〉〈l〉C\M is the theoretical average number of links need to be traversed by the LS algorithm, which
is bounded by (|C|− |M|)E and is usually smaller than E. In most cases, there will be only one or very a few nodes in M. For
example, in Polbooks, there is one node in M, thus 〈l〉c\M reflects the length of shortest-path between the secondary potential
center and the first potential center. The shortest path length is 4 and the calculation based on (|C|− |M|)〈k〉〈l〉C\M is 4978.71,
however, it is at most 441 in practice to traverse all edges (which is indicated in parentheses). In the Football network, we
identify 6 potential centers, and they are all of the same maximal degree in the network, thus there is no need to perform
local-BFS for any of them, and they are identified as centers. Thus we did not report the values in the last two columns of the
Football network.

Supplementary Text B

A A B B B C C C

7 7 8 8 9 8 9 9

ground-truth labels:

predicted labels:

TP = 3

FP = 4

TN = 17

FN = 4

F1 = 0.43

7 7 8 8 8 9 9 9TP=7 FP =0    TN =21 FN=0 F1 = 1.0

7 7 8 8 9 9 9 9 F1 = 0.67TP=5 FP =3    TN =18 FN=2

7 7 7 7 7 7 7 7 F1 = 0.40TP=7 FP =21  TN =0 FN=0

TP=0 FP =0    TN =21 FN=7 1 2 3 4 5 6 7 8 F1 = 0.0

TP=1 FP =0    TN =21 FN=6 1 2 3 4 5 6 8 8 F1 = 0.25

TP=3 FP =0    TN =21 FN=4 1 2 3 4 5 8 8 8 F1 = 0.6

Fig. S9. The definition of TP, FP, TN and FN in evaluating grouping results. The objects within red boxes indicate that
their true labels belong to the same communities. The objects in green boxes have the same ground-truth labels and predicted
labels. The number of combinations of objects within each green box is the value of TP. The number of green arrows is FN,
which corresponds to combinations of objects that are of the different predicted labels but the same ground-truth label.
Likewise, the objects connected by red arrows have different ground-truth labels but the same predicted label, the number of
which is FP (indicated by red arrows). TN is the number of objects that their true labels and predicted labels both belong to
different communities. In the case of (7,7,8,8,9,8,9,9), T N = 2×3+2×3+2×2+1×1. Note that
T P+FP+T N +FN =C(n,2), where n is the number of objects and C(n,2) is the combination of choosing 2 out of n objects.
Thus when three of them are calculated, the other one can be calculated in this way, e.g., in the above example,
T N =C(8,2)−3−4−4 = 17. The formula of F1 is shown in Eq. (5). F1 is in the range of [0,1], when the difference between
the predicted labels and the ground-truth labels is smaller, the F1 score will be larger.
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The performance of both community detection and cluster analysis can be evaluated by F1-score that is defined as follows:

Precision =
TP

TP+FP
,

Recall =
TP

TP+FN
,

F1 =
2×Precision×Recall

Precision+Recall
.

(5)

TP is the number of combinations of nodes that are of the same predicted labels and the same ground-truth labels (see the
combinations in green rectangles in Fig. S9). FP is the number of combinations of nodes that are of the same predicted
labels but different ground-truth labels (see red curved arrows in Fig. S9). FN is the number of combinations of nodes that
are of different predicted labels but the same ground-truth labels (see green curved arrows in Fig. S9). TN is the number of
combinations of nodes that are of the different predicted labels and different ground-truth labels (see the calculation process in
Fig. S9). Precision is the ratio of TP to the sum of TP and FP, which measures the fraction of correct (or positive) results among
the predictions of the algorithm. The higher the precision, a larger fraction of combinations of nodes predicted in the same
community are really in the same community according to the ground-truth labels. Recall is the ratio of TP to the sum of TP
and FN, which measures the coverage of the positive predictions against the ground-truth positive set. The higher the Recall, a
larger ratio of positive (or correct) combinations of nodes in the predicted community according to the ground-truth labels to the
combinations of nodes in the same ground-truth community. However, Precision is strongly affected by the size of the predicted
positive set, which means that precision can easily reach a high score if you only predict a tiny set of positive items that are
highly probably positive, but then the coverage of positive items can be quite low. While, Recall can be one if you predict all
items are positive, as it only measures the coverage of positive items. To be more comprehensive on both sides, F1 takes the
weighted harmonic average of Precision and Recall as its value, where the weights of them are usually set to be 1. The weight
can be tuned by the different focus on either aspect. F1 is in the range of [0,1], a higher F1 score indicates a better partition. In
comparison, the normalized mutual information (NMI) is biased to smaller groups, i.e., when small communities are detected
correctly, the NMI will increase more. And modularity only seeks for maximizing the difference between the partition and a
global random null model44, it can be blind to other generating process of networks in reality27. In networks constructed from
vector data, some clusters may not corresponds to a high modularity value (e.g., networks constructed from some manifolds as
shown in Fig. 4C,G,H in the main text). In flow networks, evidence indicates that the optimizing modularity might not lead
to an optimal partition in some cases due to neglecting the structural regularity of interdependence characterized by flows26.
Sometimes, a partition with the largest modularity is highly probably not the actual division of communities in real networks44.

It is worth noting that although the evaluation of the classification performance of an algorithm with a ground truth is
standard practice, the choice of the ground truth(s) are crucial. The ground truth of community partitions usually require detailed
survey, which can be quite difficult for very large networks41, and usually cannot be regarded as the same as metadata27, 41.
For example, in the well known Zachary Karate Club network39, the metadata of nodes can also be their gender, age, major,
ethnicity, however, most of which are irrelevant to the community structure when interested in understanding the split of the
club27, 41. In the DBLP collaboration network48, where two authors are connected if they publish at least one paper together,
the meta data of papers is the publication venue (i.e., journal or conference) which forms the basis of identifying communities
in ref.48 (i.e., authors who published to a certain journal or conference form a community), but the meta data is different
from ground truth, if there is any. In some cases, meta data is related to community structure, but they two are not equivalent,
otherwise, there is no need to do community detection based on topology but just look at meta data27, 41. For the Football
network8, we also used the ground truth labeling2 given by Evans49, 50. We calculate the F1-score for all methods based on
both sets (see Table S1), and we find that results obtained by most methods better align with the ones in refs.49, 50, which is
indicated by higher F1-scores. As for the Polblogs network, there might be indeed three groups in it (i.e., apart from liberal and
conservative, there is a neutral community)52, which partially explains why the LS does not work that well on this example
when compared with other examples, as LS detects three communities (see Table 1 in the main text).

Supplementary Text C
There are a variety of ways to build a network from vector data, including ε-ball, kNN (k-nearest-neighbors) and its variants,
mutual kNN, continuous kNN, relaxed maximum spanning tree64, percolation or threshold related methods35, 65, and more

2The original Football network data8 (http://www-personal.umich.edu/~mejn/netdata) provided the games between American college
football teams from one season but the conference assignments (community labels) were from a different season. The data in49, 50 which is used here has the
same games as the original dataset but the conference assignments are for the same season as the games. The community labels change for about 10% of the
teams.
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〈rank〉 Karate Football8 Football50 Polbooks Polblogs Cora Citeseers Pubmed Time Complexity
GN8 4.9 0.59 0.60 0.84 0.80 0.74 0.32 0.23 0.18 O(N3)

Walktrap86 5.7 0.51 0.60 0.88 0.79 0.88 0.29 0.14 0.16 O(N2 logN)

Spectral23 4.3 0.62 0.49 0.54 0.70 0.89 0.32 0.25 0.46 O(N2 logN)

Spin glass87 4.9 0.61 0.60 0.92 0.62 0.88 0.33 0.22 0.21 NA
Fastgreedy25 3.3 0.75 0.55 0.56 0.78 0.89 0.39 0.28 0.32 O(N logN)

Infomap26 6.6 0.76 0.60 0.96 0.69 0.80 0.07 0.04 0.01 O(N logN)

LPA30 4.7 0.88 0.60 0.79 0.69 0.91 0.22 0.11 0.18 ∼ O(E)
Louvain9 4.1 0.63 0.61 0.87 0.70 0.85 0.32 0.27 0.20 ∼ O(E)

LS 3.6 0.83 0.35 0.35 0.80 0.69 0.33 0.45 0.46 O(E)

Table S2. Comparisons with classical community detection algorithms on real networks with ground-truth
community labels. The algorithm with the highest F1 score is highlighted in bold, and the second highest one is highlighted by
underline. Overall, our LS algorithm have a pretty good performance, which is ranked first or second in five out of all seven
networks. And algorithms are sorted by their time complexity (see last column). The average rank value 〈rank〉 of performance
of each method is the arithmetic mean for all dataset (the algorithm with the highest F1-score will be ranked as 1, the second
highest as 2, and so on). Here, we use the Football50 (i.e., fourth column) instead of Football8 to make the calculation for
〈rank〉.

sophisticated ones66. The main challenge is determining a value for the parameters of the chosen methods, e.g., a distance
threshold ε for ε-ball method or k for kNN types methods. When using kNN, each object is connected to its k closest neighbours.
However, it is difficult to determine the most appropriate value of k. When k is too small, the whole network may be too
disconnected, and if k is too large, the network will be too densely connected, both of which are likely not to reflect meaningful
local structures.

C.1 Finding ε in the ε-ball method

A

E F G H

B C D

Fig. S10. The phase diagram for constructing networks from 2D benchmark vector data. (A) The test case in Ref.71,
for which the DDB algorithm16 fails. (B) Flame78. (C) Spiral79. (D) Aggregation80.(E) R1581. (F) Blobs with 500 points. (G)
Circles with 300 points. (H) Moons with 300 points. (F)-(H) are generated by the standard scikit-learn 0.19.2 in Python
(https://pypi.org/project/scikit-learn/0.19.2/). The original spatial layout of vector data is shown in
Fig. S11. The largest giant connected component (GCC) represents the ratio of the size of the maximal connected sub-graph to
the size of the network, and SGCC represents the second-largest maximal connected graph. The shading area indicates the
optimal range of ε , during which the LS method can get the correct partition that align with the common consensus. (Insets)
Corresponding constructed networks.

In this paper, we use ε-ball method to construct networks from vector data. Its main advantage in our context is its ability to
separate local and global information with an appropriate value of ε . Classical clustering methods (e.g., k-means, which are
effective on spherical data) are typically unable to group vector data with arbitrary shape (see Fig. S11B-D,G,H), one of the
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reason is their inability to capture continuity in local information. For example, in Fig. S11H, based on the global metric, every
point is accessible to others, and the Euclidean distance between the two end nodes in the red group are farther than to some
points in the blue group; when based on the local metric, only points within ε-ball of the point are accessible, and the two end
nodes in the red group are reachable to each other but is not reachable to any point in the blue cluster when ε is not very large.

Building networks via the ε-ball method, which can be accelerated by R-tree data structure63, 67, with a proper distance
threshold ε can naturally help on separate local metrics from global ones.

However, determining ε used to be based on empirical experience and usually subject to arbitrariness71, with similar
problems existing in many clustering methods (e.g., DBSCAN88 or DDB16). When building networks using the ε-ball method,
the network will undergo a transition from isolated nodes or connected components to a fully connected complete graph as the
value of ε increases. A critical value for ε can be derived from percolation phase transition as the value for which the size of
the second largest connected component is maximal68–70.

Experimental results indicate that setting ε near the critical value when building networks from vector data is usually a
good choice to balance local and global structures (see Fig. S10 and corresponding clustering results by the LS algorithm in
Fig. S11). In addition, the range of ε is not narrow in most cases (see Fig. S10), giving a notion of stability to the resulting
networks. With a similar idea, some works chose the value of ε such the network is fully connected65, but it may not be always
the optimal setting. After the critical point of the percolation phase transition, isolated nodes or small-sized groups of nodes can
be considered as noisy data that do not belong to any cluster (see grey nodes in Fig. S11B,F). We find that with the presence of
non-spherical data (see examples in Fig. S10A,C,G,H), the LS algorithm can have a better performance if ε is chosen before the
critical point; in other cases, a value higher than the critical point (see Fig. S10B,E,F). However, this is just a rough summary
from cases in this work, and the reason behind is not the focus of this paper and worth future closer investigations.

Applying the LS algorithm to the network built around the critical threshold value, we can obtain the partition results as
shown in Fig. 6 in the main text and Fig. S11 according to the decision graph (see Fig. S12). In contrast, on the same constructed
networks from the vector data, the Louvain algorithm cannot obtain partitions that align with the common consensus (see Fig.
S13), which tend to have more smaller clusters in a more segmented way.

B C DA

E F G H

Fig. S11. The original spatial layout of 2D benchmark vector data and clustering results obtained by the LS
algorithm on networks constructed from them. (A)-(H) corresponds to clustering results obtained from networks in the
optimal range in Fig. S10. Node color indicates clustering partitions. Grey nodes corresponds to identified noisy data. The
index of identified cluster centers are labeled in the figure.
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A B C D

E F G H

Fig. S12. Identification of cluster centers for 2D benchmark vector data by the LS algorithm. (A)-(H) corresponds to
networks in Fig. S10, whose original spatial layout is shown in Fig. S11. (Insets) Decision graphs. Identified cluster centers are
highlighted by larger triangles.

A B C D

E F G H

Fig. S13. Clustering results obtained by the Louvain algorithm on networks constructed from vector data. The
Louvain algorithm works on the same network constructed from vector data as of the LS method. Node color indicates
clustering partitions.
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C.1.1 The advantage of building networks for clustering high dimensional vector data
Apart from 2-dimensional benchmark vector data, datasets with very high dimensions are very common in practice. We further
apply our LS algorithm to several high dimensional datasets, including Iris89 (see Fig. S14), Wine90 (see Fig. S15), MNIST73

(see Fig. S16), Olivetti74 (see Fig. S17 and Fig. S18).

• The Iris flower data set is 4-dimensional and contains 50 samples of 3 species (Iris setosa, Iris virginica, and Iris
versicolor). Each sample has four features: the length and width of both sepals and petals.

• The Wine data set is of 13-dimension that contains 178 samples of 3 cultivars. The 13 features are the quantities of 13
constituents by the chemical analysis of the 3 cultivars, including alcohol, malic acid, ash, alcalinity of ash, magnesium,
total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, OD280/OD315 of diluted wines
and proline.

• The MNIST handwritten digit dataset is obtained from the National Institute of Standards and Technology, which is
widely used in machine learning. It is of 784 (28×28)-dimension and contains 60,000 samples of 10 classes, each of
which corresponds to 0-9, respectively. We randomly sample 1,000 figures of 10 digits, and each digit has 100 samples.

• The Olivetti database of human face is widely used in machine learning. It is of 10,304 (92×112)-dimension and contains
400 samples of 10 classes, each of which is consisted of the 40 photos of a person, respectively. The positions of the
faces in the photos are the same.

For these high dimensional vector data, the phase transition diagrams and corresponding decision graphs are shown in
Figs. S14-S18. The networks we choose to perform the LS algorithm are highlighted by the red dot in Figs. S14-S18, and
they are near the critical point of the percolation phase transition. Though degree can be regarded as an analogy to density,
and path length as an analogy to Euclidean distance from an object to a nearest larger object, the LS algorithm can have a
better performance than the DDB algorithm16 on datasets with relatively high dimensions. Possible reasons behind the good
performance of the LS algorithm might reside in the network construction, which can be regarded as a coarse-graining process
and noise filtering, and this also helps on better identifying asymmetric relation between objects.

For the Olivetti dataset, which is a typical example of a challenging high dimensional dataset with small sample size (each
person only has ten images, each of which is of 10,304 pixels), we still calculate the Euclidean distance between objects
(instead of a more complicated “complex wavelet structural similarity (CW-SSIM)” image similarity measure16, 91), and we do
not perform a stricter association criterion as in ref.16. The LS algorithm clearly identifies 9 and 33 clusters for the Olivetti
dataset with 100 images and all 400 images, respectively. In contrast, the DDB algorithm does not identify the correct number
of clusters (note that in Table 2 in the main text, we report the result when we manually set the number of clusters as 10 and 40
for DDB, respectively). Besides, we can recognise more images of each individual than the DDB method (see Fig. 4D in ref.16

and Fig. S19B for comparisons), as reflected by a higher F1 score. And each cluster only comprise images of the same object.
In more complex situations with more objects and clusters, the phase diagram also can be more complex with stronger

fluctuations. Compared to the Olivetti dataset with the first 100 images, whose phase transition diagram is quite clear (see Fig.
S17), when we analyze the Olivetti dataset with all 400 images for 40 persons, its phase diagram become more complex with
stronger fluctuations (see Fig. S18), which is also the cases for MNIST dataset (see Fig. S16).

A B

Fig. S14. The phase transition diagram and decision graph for Iris data set. (A) The distribution of GCC and SGCC on
Iris data set. (B) The decision graph for Iris data set. ε=9% diameter of the original vector data, where the diameter equals the
longest distance between any two objects. Three cluster centers are highlighted by larger triangles.
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A B

Fig. S15. The phase transition diagram and decision graph for Wine data set. (A) The distribution of GCC and SGCC
on Wine data set. (B) The decision graph for Wine data set. ε=6% diameter of the original vector data, where the diameter
equals the longest distance between any two objects. Two cluster centers are highlighted by larger triangles.

A B

Fig. S16. The phase transition diagram and decision graph for MNIST data set.(A) The phase transition diagram and
(B) decision graph for 1000 sampling data from MNIST handwritten digits database. There are 10 classes in total and every
class has 100 grayscale image with a size of 28×28 pixels. ε=36% diameter of the original vector data, where the diameter
equals the longest distance between any two objects. Nine cluster centers are highlighted by larger triangles.

A B

Fig. S17. The phase transition diagram and decision graph for Olivetti sample database. (A) The phase transition
diagram and (B) decision graph for the first 100 images of Olivetti database, the number of clusters is 10, with 10 image for
each cluster in 92×112 dimensions. ε=22% diameter of the original vector data, where the diameter equals the longest distance
between any two objects. Nine cluster centers are highlighted by larger triangles.
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A B

Fig. S18. The phase transition diagram and decision graph for Olivetti database. (A) The phase transition diagram and
(B) decision graph for the whole Olivetti database, the number of clusters is 40, with 10 images for each clusters in 92×112
dimensions. ε=26% diameter of the original vector data, where the diameter equals the longest distance between any two
objects. Thirty-three cluster centers are highlighted by larger triangles.

A B

Fig. S19. The clustering result by Louvain and our LS algorithm on the Olivetti data set84 with its first 100
images.(A) Louvain and (B) Ls algorithm, Each identified category is indicated by the color of rectangle border of the figure,
and the black color corresponds to noisy objects identified by our method. See the phase transition diagram and decision graph
in Fig. S17. This example further demonstrates the strength of our framework on high-dimensional vector data (see
comparisons on F1 scores between our LS method and the DDB algorithm16 in Table 2 in the main text.
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Supplementary Text D
D.1 Robustness tests on vector data
We first test our LS algorithm on the Clusterable-data dataset (https://www.kaggle.com/lvk110395/clusterable-datanpy)
that contains many noisy points (see Fig. S20). The result obtained by the LS algorithm (see Fig. S20) is quite comparable to
results by the HDBSCAN method92. For the S-sets dataset that comprises 15 Gaussian clusters, with the increase of degree of
cluster overlapping (see Fig. S21A-D), the clustering results obtained by our LS algorithm remain relatively robust with the
F1-score equals 0.99, 0.94, 0.74, 0.62, respectively.

5

499

742

997

1540

1835

Fig. S20. Clustering result obtained by the LS algorithm on the Clusterable-data dataset. Grey points are identified as
noise or can be regarded as cluster halos. Different clusters are indicated by different colors, and the index of cluster centers are
labeled.

A B

C D

Fig. S21. Clustering results on S-sets dataset by the LS algorithm. S-sets dataset comprises 15 Gaussian clusters with
different degree of cluster overlap and standard deviations. Along with the increase of the degree of cluster overlapping from
(A)-(D). F1 scores are 0.99, 0.94, 0.74, 0.62 for (A)-(D), respectively. Grey points are identified noisy data.
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D.2 Robustness tests on networks
In networks, we first test on two common scenarios: randomly removing from or adding edges to the original networks. Our LS
algorithm is generally more robust in most networks against random noises in both cases than the Louvain algorithm (see Fig.
S22 and Fig. S23). Due to the nature of our method, the LS algorithm is quite vulnerable to targeted failures that connects
largest nodes (i.e., we sequentially add edges between the largest node to the remaining forty-nine largest nodes if they were
disconnected, see results in Fig. S24). For example, when two local leaders are connected, one will be diminished as a follower,
and its community will not be correctly detected. Very occasionally, when the whole network is dominated by a few large
communities, adding edges between large nodes make the LS algorithm detect fewer communities and have a higher F1-score
(see Fig. S24F). Results shown in Figs. S22-S23 are average of ten realizations, and results in Fig. S24 is just one realization,
as the network structure is definite.

A

D E F

B C

Fig. S22. The comparison between our LS algorithm and Louvian method on F1 scores along with randomly
removing edges in six networks with ground-truth community labels. (A) Zachary Karate Club39, (B) Polbooks82, (C)
Polblogs52, (D) Cora83, (E) Citeseers84, and (F) Pubmed85. Our LS algorithm is generally more robust against missing links in
most networks, which is indicated by higher F1-scores and a flatter decreasing.

A

D E F

B C

Fig. S23. The comparison between our LS algorithm and Louvian method on F1 scores along with randomly adding
edges in six networks with ground-truth community labels. (A)-(F) correspond to the same networks in Fig. S22. Our LS
algorithm is generally more robust against added noisy links in most networks, which is indicated by higher F1-scores.
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A B C

D E F

Fig. S24. The targeted failure that adding edges between largest nodes. (A)-(F) correspond to the same networks in Fig.
S22. For such targeted failures, it usually diminish one previous community center as a follower, and in this case, the number
of communities detected by the LS algorithm will decrease.
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