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Abstract

Although graph representation learning has been studied extensively in static

graph settings, dynamic graphs are less investigated in this context. This pa-

per proposes a novel integrated variational framework called DYnamic mixture

Variational Graph Recurrent Neural Networks (DyVGRNN), which consists of

extra latent random variables in structural and temporal modelling. Our pro-

posed framework comprises an integration of Variational Graph Auto-Encoder

(VGAE) and Graph Recurrent Neural Network (GRNN) by exploiting a novel

attention mechanism. The Gaussian Mixture Model (GMM) and the VGAE

framework are combined in DyVGRNN to model the multimodal nature of

data, which enhances performance. To consider the significance of time steps,

our proposed method incorporates an attention-based module. The experimen-

tal results demonstrate that our method greatly outperforms state-of-the-art

dynamic graph representation learning methods in terms of link prediction and

clustering.1
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1. Introduction1

Many real and man-made systems can be represented as graph structures2

where individual entities are connected through links. Graph structures play a3

key role in many real-world applications. The recommendation in social net-4

works [1], traffic forecasting in transportation networks [2], and pattern recog-5

nition in biological networks [3] are some of these applications. Due to their6

complexity and high dimensions, these structures are difficult to study. To7

deal with this problem, representation learning approaches are used [4]. These8

methods aim to map high-dimensional vectors to low ones in latent space so9

that these latent vectors capture the structural information of the graph as well10

as each node’s features.11

Downstream machine learning tasks can then use these latent vectors as12

feature inputs [5, 6]. For example, COOL [7], and GHNN [8] employ graph13

representations in their classification task, Modularity-aware VGAE [9], and14

GCN-LP [10] in their link prediction tasks, and SOLI [11] in its clustering task.15

Although many real-world graphs, known as dynamic graphs, evolve over time,16

the bulk of existing graph representation learning algorithms concentrates on17

static graphs, in which the set of nodes and edges does not change over time.18

This work aims to capture the underlying dynamics of the network.19

Our proposed method, “DYnamic mixture Variational Graph Recurrent20

Neural Networks (DyVGRNN)”, integrates a variational framework with a Graph21

Recurrent Neural Network (GRNN) to simultaneously capture the evolution of22

the dynamic graph topology and node attributes. The DyVGRNN can model23

the addition/removal of nodes and edges in dynamic graphs and can be applied24

to simple or attributed networks. While conventional variational frameworks25

can capture hidden and hierarchical dependencies, they are tussling with mul-26

timodal data.27

Multimodality arises when in a dataset with an overall population and var-28

ious subpopulations, we are unable to dedicate each subpopulation to an indi-29
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Figure 1: Examining the effect of considering unknown subpopulations on modelling. Here,

if the green curve is utilised for modelling and the age of the population under investigation

is not considered, some specific information could be lost. On the other hand, a thorough

knowledge of the input data is given if the red curve is employed for modelling.

vidual observation. Mixture models such as Gaussian Mixture Models (GMM)30

are an absolute solution for these kinds of datasets. These models describe the31

probability distribution of observations in the whole population [12, 13, 14].32

Technically, mixture models are a principled modelling approach to handle such33

complex data and are a universal approximator of densities [15, 16].34

For more clarification, consider a study that examines how an advertisement35

impacts a sample group of people. Some important data, like the effect of age,36

may be lost if the study employs the population while omitting subpopulations37

and models the data using a unimodal distribution. More flexibility and a38

more in-depth understanding of the input data can be obtained by employing a39

mixture model. Figure 1 shows this affection on a synthetic dataset.40

In this paper, we employ GMM to model the prior and posterior distribution41

in the Graph Variational Auto-Encoder (GVAE). With this combination, it is42

possible to capture the distribution of the input data more effectively and to get43

a deeper knowledge of it. Furthermore, a module based on the attention mecha-44
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nism on graph snapshots is introduced in our proposed method to demonstrate45

the significance of time steps. Our experiments show DyVGRNN’s superior per-46

formance in dynamic link prediction tasks in several real-world dynamic graphs47

compared to the state-of-the-art methods. Our contributions to this work are48

as follows:49

• We propose a novel integrated variational framework consisting of extra50

latent random variables in structural and temporal modelling.51

• We combine variational inference based on GMM with the proposed frame-52

work to infer the multimodal nature of data and improve the comprehen-53

sion of the model.54

• We introduce a module according to the attention mechanism of graph55

snapshots to consider the importance of time steps.56

• Our experiments show the superior performance of the proposed DyV-57

GRNN in several real-world dynamic graphs compared to the state-of-58

the-art methods.59

2. Related Work60

To build a solid understanding of dynamic graph representation learning meth-61

ods, it is important to first delve into the foundational concepts of static meth-62

ods. Therefore, we will begin by exploring static methods before progressing to63

dynamic methods.64

2.1. Static Graph Representation Learning65

Shallow embedding methods, which are based on matrix factorisation and66

random walks, were the first attempts to learn graph representation on static67

graphs. Matrix factorisation methods such as Graph Factorisation (GF) [17],68

GraRep [18], and HOPE [19] are inspired by dimensionality reduction tech-69

niques. The key distinction among these three methods is the measure used to70

determine node similarity. On the other hand, in random walk methods [20, 21],71
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nodes have similar representations when they tend to occur together in short72

random walks on the graph. In contrast to matrix factorisation approaches that73

use deterministic node similarity measures, random walk methods use flexible74

stochastic node similarity measures.75

DeepWalk [20], and node2vec [21] fall into the random walks category, which76

optimise embeddings to encode random walk statistics instead of decoding de-77

terministic measures of node similarity. While shallow embedding methods have78

been quite popular in the last decade, they have significant drawbacks, including79

the inability to handle parameter sharing, difficulty with node attributes, and80

transductive behaviour [22]. To overcome the limitations of shallow embedding81

methods, Graph Neural Networks (GNNs) have been proposed as powerful deep82

embedding approaches [22, 6].83

GNNs are categorised into three types: those based on Graph Recurrent Neu-84

ral Networks (GRNN), those based on Graph Convolutional Networks (GCN),85

and those based on Graph Auto Encoders (GAE) [23]. The first structure86

presented in the context of GNNs is the GRNN. This structure received little87

attention prior to the advent of dynamic graphs. The primary assumption in88

the GRNN is that messages are exchanged between nodes and their neighbours89

until a stable equilibrium is reached.90

GCNs generalise the convolutions to graph-structured data [24], which plays91

a leading role in the construction of many other GNNs. The GCN-based ap-92

proaches extract high-level node representations by stacking multiple graph93

convolution layers [25]. Following GCNs, GAE-based methods are presented94

which include an encoder (mainly based on GCN) to learn representations and95

a decoder to reconstruct input data [24, 26]. Variational Graph Auto-Encoder96

(VGAE) is a variant of GAE comprising a probabilistic encoder and a proba-97

bilistic decoder to model the uncertainty of node representation for more gen-98

eralisation of inference [27].99
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2.2. Dynamic Graph Representation Learning100

Dynamic graphs can be represented in two different ways: discretely and101

continuously. A discrete dynamic graph is represented as a set of static graphs102

taken at predetermined intervals, referred to as snapshots. Continuous graphs103

contain no summarisation and provide whole temporal information. Continu-104

ous methods cannot be utilised on discrete networks, whereas discrete methods105

can be applied on continuous networks. Therefore, discrete techniques are more106

flexible than continuous ones [28]. While the discrete representation learning107

approach is our focus, we also briefly touch on the continuous representation108

learning approaches.109

110

Continuous Methods. Continuous dynamic graph representation learning111

approaches are categorised into two groups: RNN-based and temporal point-112

based approaches. RNNs are used in the first category to continually maintain113

node embeddings. Every time an event or network change occurs, RNN-based114

approaches all update the embeddings of the interacting nodes. DyGNN [29]115

falls into this category, which consists of two components: an update component116

that updates the states of the nodes involved in an interaction and a propagation117

component that propagates the update to those nodes’ neighbours. JODIE [30]118

is another RNN-based approach designed for user-item interaction networks in119

recommender systems. This method uses one RNN for users and the other for120

items. JODIE updates the embeddings when an interaction happens between a121

user and an item.122

The utilisation of the Temporal Point Process (TPP), parametrised by neu-123

ral networks, is a recurring feature of temporal point-based techniques. For124

example, DyREP [28] uses a two-time scale TPP, which is parametrised by an125

RNN. This two-time scale TPP expresses the dynamics of the network (realised126

as topological evolution) as well as dynamics on the network (realised as node127

communication). Utilising temporal information, the attention coefficient for128

a structural edge between nodes is computed. Using these coefficients, the ag-129

gregate quantity required for embedding propagation is then determined. In130
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addition, the Latent Dynamic Graph (LDG) [31] extends DyREP using the131

Neural Relational Inference (NRI) [32] model.132

133

Discrete Methods. The most straightforward way for modelling discrete dy-134

namic graphs began with a single GNN in each snapshot [23]. The output of135

each GNN is subsequently sent into the time-series modelling module as input.136

For example, GCRNM1 [33] modelled structural features using the GCN varia-137

tion described in [34] and graph evolution using the peephole LSTM introduced138

in [35]. RgCNN [36] used PATCHY-SAN, a GCN-based approach for modelling139

structural properties, and stacked this with a standard LSTM for modelling140

temporal properties.141

DyGGNN [37] leveraged a Gated Graph Neural Network (GGNN) and a long142

short-term memory network (LSTM) in its framework to model the topology143

of dynamic graphs and temporal information among them. Waterfall Dynamic-144

GCN and Concatenated Dynamic-GCN [38] are two architectures exploiting a145

GCN and an LSTM in the stacked form by applying them to each node sepa-146

rately. The extra skip connection of the GCN in the Concatenated Dynamic-147

GCN distinguishes these designs. Also, DySAT [39] is another stacked architec-148

ture that uses self-attention blocks to capture structural and temporal proper-149

ties.150

The techniques mentioned earlier all offer a stacked architecture with a sep-151

arate GNN for processing each snapshot of the dynamic graph and a time series152

module for processing the outputs of these GNNs. By integrating structural153

and temporal modelling into a single layer and capturing both concurrently, dy-154

namic graphs can better capture growing relationships [23]. EvolveGCN [40] is155

an integrated framework consisting of a GCN and an RNN that GCN’s weights156

are updated with the RNN.157

Another integrated framework is GC-LSTM [41], which combines an LSTM158

with a GCN. The graph snapshots are fed into LSTM in this framework, and159

then a spectral graph convolution is performed on the hidden layer of LSTM.160

LRGCN [42] leverages an R-GCN to jointly address intra-time and inter-time161
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relationships and an LSTM to capture the time dependency between graph162

snapshots. Recurrent Event Network (RE-NET) [43] is an auto-regressive ar-163

chitecture for modelling dynamic knowledge graphs and integrating an R-GCN164

in several RNNs.165

Inspired by the success of the static GAE framework, dynamic GAE-based166

methods have emerged. The Dynamic Graph Embedding model (DynGEM) [44]167

modifies the static GAE to initialise it with the weights of the previous snapshot,168

and substantial modifications are not permitted from one snapshot to the next.169

Based on DynGEM, Dyngraph2vec [45] is introduced. This framework employs170

the l time window that defines the l most recent snapshots for encoding. Chen171

et al. [46] proposed Encoder-LSTM-Decoder (E-LSTM-D), which combines an172

LSTM with an encoder-decoder architecture. They stacked LSTM on GAE to173

learn graph evolution patterns.174

All the above dynamic graph representation learning techniques employ de-175

terministic vectors to represent each node in a low-dimensional space. These176

deterministic representations cannot reflect the uncertainty of the node repre-177

sentation. Although GAE-based methods perform effectively, they disregard178

data distribution and may lead to overfitting and poor representations [47, 48].179

The combination of the GAE framework and deep generative models has been180

introduced for this purpose. Deep generative models have the ability to repre-181

sent complex dependencies and interactions between input and output data by182

considering the distribution of data [49].183

GCN-GAN [50] is a generative adversarial-based method for applying GCN184

to examine the topological properties of each snapshot and an LSTM to charac-185

terise the evolution of the dynamic graph. This component is a generator, while186

a dense feed-forward network is a discriminator. SI-VGRNN [51] is a genera-187

tive approach that uses a VGAE in each snapshot. They consider a GRNN to188

model the temporal evolution of the graph. Our proposed framework contains189

an integration of VGAE and GRNN by exploiting a novel attention mechanism.190

Moreover, a natural assumption of multimodality of observed data is applied in191

our modelling [15, 16].192
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Earlier efforts modelled the uncertainty of the observed data using a uni-193

modal Gaussian distribution. Under this assumption, modelling complex data194

with properties like multimodality is inefficient. Although SI-VGRNN develops195

semi-implicit variational inference for greater modelling flexibility, they only re-196

gard this assumption on their posterior modelling and not their prior. Hence,197

the improvement in their results is marginal [51]. To capture multimodality in198

the input data, our proposed DyVGRNN leverages GMM to model prior and199

posterior.200

Furthermore, most previous works treat timed snapshots equally, despite201

the fact that assessing differences in snapshot significance may lead to more202

accurate results. SI-VGRNN assigns a fixed priority to different time series203

modelling snapshots, even though these snapshots may affect them differently.204

Here, we propose an attention-based module for examining the importance of205

snapshots. Unlike the traditional application of the attention mechanism in206

static graph representation learning, where the input is a matrix of nodes and207

the attention mechanism examines the importance of each node’s neighbouring208

nodes, the input in our module is a matrix of information for each time step,209

and the importance of time steps is examined.210

3. The Proposed Model211

3.1. Notation and Problem definition212

Let’s represent a dynamic graph G as G = {G(1), G(2), ..., G(T )}, where213

G(t) = (V (t), E(t)) denotes a graph at time step t. Here V (t) and E(t) rep-214

resent sets of nodes and edges, and T denotes the number of time steps. Since215

we intend to model a possible node or edge set change, the number of nodes216

and/or edges can change over time. Thus, (V (t), E(t)) and (V (t+1), E(t+1))217

can be completely different. The input of the proposed method is a sequence218

of variable-length adjacency matrices in the form of A = {A(1),A(2), ...,A(T )}219

where A(t) ∈ RNt×Nt and Nt denotes the number of nodes in this snapshot.220

Furthermore, there is a sequence of variable-length feature matrices in the form221
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of X = {X(1),X(2), ...,X(T )} as input, if the nodes have features. Here, each222

X(t) is a Nt × F matrix, where F denotes the number of features. We assume223

F is constant over time. Table 1 summarises the notations used in this paper.

Table 1: The notation summary. This table summarises the notations used in this paper and

provides a brief explanation for each.

Symbols Meaning

G Dynamic graph

T Total number of snapshots

G(t) A snapshot of G at time step t

V (t) Set of nodes in G(t)

E(t) Set of edges in G(t)

A(t) The adjacency matrix of G(t)

Nt Number of nodes in G(t)

X(t) The features matrix of G(t)

F Number of features in X(t)

Z,W,C The latent variables in GMM

ϕ The parameters of encoder neural networks

θ The parameters of decoder neural networks

β The parameters of the GNN related to each GMM component

ϕZ The parameters of the GNN related to Z

ϕW The parameters of the GNN related to W

H The dimension of the representation embedding size

224

3.2. DyVGRNN225

Figure 2 shows a high-level overview of our proposed method, DyVGRNN.226

The proposed method consists of three main modules described in this section.227

First, integrating GMM and VGAE used to model each graph snapshot is ex-228

amined. Following, the process of modelling the evolution is described. Finally,229

we discuss the attention-based module for considering the importance of each230
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Figure 2: A high-level overview of our method. A VGAE integrated with GMM performs on

each time step. The prior distribution of the VGAE is a function of the previous time step

and a GRNN structure with extra hidden variables of the prior time step acts as a backbone

of the entire framework. GRNN captures the dynamics of both graph topology and the node

features jointly. The hidden state of GRNN is also added to latent random variables of GM-

VGAE, making it capable of modelling variations in the topology or graph properties over

time. Moreover, an attention-based module measures the importance of each graph snapshot

in modelling evolution over time.

graph snapshot in modelling evolution over time.231

3.2.1. Integration of GMM and VGAE232

Our model defines three hidden variables Z, W, and C for integrating GMM233

and VGAE into a framework called Gaussian Mixture Variational Graph Auto234

Encoder (GM-VGAE). In this case, the inference model of standard VGAE for235

snapshot t, generalises and follows the process shown in the Equation (1)236

W(t) ∼ N (0, I)

C(t) ∼ Cat(π)

Z(t)|C(t),W(t) ∼
K∏

k=1

N (µ
c
(t)
k

(W(t);β),Σ
c
(t)
k

(W(t);β))c
(t)
k

(1)

Here, K is a hyperparameter of the model, which denotes the number of237

components in the mixture model. W(t) is one of the latent variables of snapshot238
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t that follows a Gaussian distribution with mean zero and covariance matrix239

I. C(t) is a one-hot vector denoting the mixing coefficients of the Gaussian240

mixture components of snapshot t. This vector is sampled from π (the mixing241

probability), which indicates one of the Gaussian mixture components.242

W(t) is fed to a GNN parametrised by β. The output of this neural network243

is a set of K (µ
(t)
ck ) and K (Σ(t)

ck
). Each µ

(t)
ck and Σ(t)

ck
in these sets are calculated244

by a GNN. An inner product between latent variables is used for reconstructing245

the adjacency matrix, as shown in Equation (2).246

p(A(t)|Z(t)) =

N∏
i=1

N∏
j=1

p(A
(t)
ij |z

(t)
i , z

(t)
j )

p(A
(t)
ij |z

(t)
i , z

(t)
j ) = Sigmoid(z

(t)T
i z

(t)
j )

(2)

Based on the mean-field variational family, the general form of posterior can be247

factorised as Equation (3).248

q(Z(t),W(t),C(t)|A(t)) =

Nt∏
i=1

qϕZ
(z

(t)
i |A(t)

i )qϕW
(w

(t)
i |A(t)

i )qβ(z
(t)
i |c(t)i ,w

(t)
i )

(3)

In this equation, ϕZ , ϕW , and β are the parameters of neural networks, and the249

output of these networks is the parameters of the variational distributions. The250

C-posterior is as follows,251

pβ(cj = 1|Z,W) =
p(cj = 1)p(Z|cj = 1,W)∑K
k=1 p(ck = 1)p(Z|cj = 1,W)

=
πjN (Z|µj(W;β), σj(W;β)∑K

k=1 πkN (Z|µk(W;β), σk(W;β)

(4)

3.2.2. Modelling the Evolution252

In contrast to standard VGAE that samples prior from a standard Gaussian253

distribution (N (0, I)), the proposed VGAE (GM-VGAE) has a new prior extrac-254

tion process that allows the parameter of the prior distribution to be modelled255

by a function of the previous time step. In other words, the prior distribution256

parameters are based on the information of the previous hidden state rather257
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than deterministic parameters. The construction of the prior distribution can258

be written as shown in Equation (5).259

{µ(t)
prior,Σ

(t)
prior} = 𭟋prior(ht−1)

W(t) ∼ N (µ
(t)
prior,Σ

(t)
prior)

C(t) ∼ Cat(π)

Z(t)|C(t),W(t) ∼
K∏

k=1

N (µ
c
(t)
k

(W(t);β),Σ
c
(t)
k

(W(t);β))c
(t)
k

(5)

Here µ
(t)
prior and Σ

(t)
prior represent the parameters of the prior distribution. 𭟋prior

260

is a function that produces the parameters of prior distribution based on the261

previous hidden state. This function can be a neural network. The prior dis-262

tribution of the first step is assumed to be a standard multivariate Gaussian263

distribution as N (0, I). If node addition occurs at each snapshot, the prior264

distribution of the added node is defined as N (0, I). Eliminating a node can265

be conceived as removing all edges connected to the node. In this way, prior266

probabilities are unaffected.267

The GRNN structure acts as a chain in the whole framework to capture the268

dynamics of graph topology and features of the nodes. The GRNN update rule269

is defined as shown in Equation (6).270

ht = f(A(t),X(t),Z(t),ht−1) (6)

Here f can be one of the Recurrent Neural Network (RNN) frameworks,271

such as long short-term memory (LSTM) or gated recurrent units (GRU). In272

this paper, we use LSTM-Attention for this purpose. If node addition occurs at273

snapshot t, the hidden state of the node at snapshot t − 1 is considered being274

zero. The Z-posterior of the model is shown in Equation (7).275

q(Z(t)|A(t),X(t),ht−1) ∼
K∏

k=1

N(µ
c
(t)
k,enc

,Σ
c
(t)
k,enc

)c
(t)
k

µ(t)
enc = GNNµ(A(t), CONCAT (X(t),ht−1))

Σ(t)
enc = GNNΣ(A(t), CONCAT (X(t),ht−1))

(7)
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Figure 3: Graphical illustrations for Prior, Inference, Recurrence, and Generation of DyV-

GRNN. Arrows indicate the dependency of each component on the other component. The

drawn arrow for Prior suggests the source of prior parameters, which is the previous hidden

state of the model. The arrows of Inference and Recurrence indicate the resources needed to

infer the latent variables and update the hidden state, respectively. The arrow of generation

shows that the adjacency matrix can be reconstructed by having latent variables.

Here µ
(t)
enc and Σ

(t)
enc represent the parameters of the posterior distribution, re-276

spectively. GNNµ(.) and GNNΣ(.) can be any kind of GNN. We use a two-layer277

GCN for this purpose. The graphical illustrations for Prior, Inference, Recur-278

rence, and Generation of DyVGRNN are shown in Figure 3. To carry out the279

learning process, the standard ELBO formulation is generalised as Equation (8)280

[13].281

LELBO = Eq

[p(A(t),Z(t),W(t),C(t))

q(Z(t),W(t),C(t)|A(t))

]
(8)

in which,282

p(A(t),Z(t),W(t),C(t)) = p(W(t))p(C(t))p(Z(t)|W(t),C(t))p(A(t)|Z(t)) (9)

Based on the mean-field variational family, shown in Equation (3) and Equa-283

tion (9), the lower bound for each snapshot can be written as Equation (10).284

L
(t)
ELBO = Eq(Z|A,X)[log p(A(t)|Z(t))]−

Eq(W|A,X)p(C|Z,W)[DKL(qϕZ
(Z(t)|A(t),X(t))||pβ(Z(t)|W(t),C(t)))]−

DKL(qϕW
(W(t)|A(t),X(t))||p(W(t)))−

Eq(Z|A,X)q(W|A,X)[DKL(pβ(C(t)|Z(t),W(t))||p(C(t)))]

(10)
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This equation consists of four terms representing the reconstruction error term,285

prior conditional term, W-prior term, and C-prior term. The total loss function286

of the model is calculated as the sum of the loss functions of each snapshot.287

Thus, the loss function can be written as Equation (11).288

L
(total)
ELBO =

T∑
t=1

L
(t)
ELBO (11)

3.2.3. Attention Module289

The attention mechanism was first introduced by [52] in the field of Nat-290

ural Language Processing (NLP). This work became the basis for [53], which291

attracted much attention. Recent studies in NLP have emphasised that the use292

of the attention mechanism improves the efficiency and performance of models293

[54, 55, 56]. Other fields have also been positively influenced by the capabil-294

ity of this mechanism [57, 39], and we endeavour to use the potential of this295

mechanism.296

We add an attention module to the proposed model, which receives as input297

the hidden states and structural information of all time steps. The attention298

module’s output hidden state is considered the model’s final hidden state. Struc-299

tural information is then used to calculate the loss function like Equation (10)300

with the parameters gained by the attention mechanism. Then, backpropaga-301

tion of the gradients of the loss function leads to updating the weights. In this302

way, the importance of each snapshot is taken into consideration in the learning303

process.304

Here, the mean and standard deviation matrices are remarked as the struc-305

tural information of each snapshot. Thereupon, the received information is306

converted into a matrix, each row showing one snapshot’s information. This307

operation is fulfilled for both the mean and standard deviation matrices. The308

un-normalised attention scores between two snapshots are calculated according309

15



to Equation (12).310

eµi,j = LeakyReLU(a(CONCAT (µi,µj)))

eσi,j = LeakyReLU(a(CONCAT (σi,σj)))

ehi,j = LeakyReLU(a(CONCAT (hi,hj)))

(12)

Here a is a learnable weight vector. The normalised attention scores calculate by311

applying a Softmax to un-normalised attention scores as shown in Equation (13).312

Eventually, these α sets determine the importance of each time step.313

αµ
i,j =

exp eµi,j∑
k∈µ exp eµi,k

, µ = {µ(1),µ(2), ...,µ(T )}

ασ
i,j =

exp eσi,j∑
k∈σ exp eσi,k

, σ = {σ(1),σ(2), ...,σ(T )}

αh
i,j =

exp ehi,j∑
k∈h exp ehi,k

, h = {h(1),h(2), ...,h(T )}

(13)

Both DyREP [28] and DySAT [39] leverage the attention mechanism as314

part of their method. They employ node-based attention mechanisms in their315

framework. DyREP computes the attention coefficient and evaluates the im-316

portance of each node’s neighbours using temporal information. DySAT applies317

one attention layer to focus on each node’s immediate neighbours, and a sec-318

ond attention layer to focus on each node’s temporal history in each snapshot.319

While our attention module is based on graphs, these two methods use a node-320

based attention module. In fact, in their methods, the input would be a matrix321

of nodes and the attention mechanism examines the importance of the neigh-322

bouring nodes of each node. Whereas the input of our module is a matrix of323

information for each time step, and the importance of time steps is examined.324

4. Experimental Details325

In this section, the results of the experiments are presented. First, the datasets,326

the state-of-the-art methods, and the studied tasks and metrics are introduced.327

Then, the results of the experiments are described.328
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4.1. Datasets329

Our experiments are performed on five real-world graph datasets. Table 2330

presents a summary of the employed datasets.331

Facebook. This dataset contains information about Facebook posts. The Face-332

book dataset is collected by [58], and the procedure of cleaning and preparing333

the data is similar to the procedure in [59, 60]. This dataset has 663 nodes and334

1068 edges but does not contain node or edge attributes.335

LFB. This dataset is a larger-scale version of the Facebook dataset containing336

45435 nodes and 180011 edges. The procedure of cleaning and preparing the337

data in this version is also similar to the procedure in [59, 60]. 36 snapshots of338

the activations throughout the last three years are included in the dataset. In339

the LFB dataset, there are a large number of users but not many links between340

them.341

Enron emails (Enron). This dataset contains 500,000 emails exchanged be-342

tween Enron employees from 1998 to 2002 [61]. The nodes represent 184 employ-343

ees, and the edges represent the emails exchanged between pairs of employees344

in the graph created from this dataset. The steps of cleaning and producing345

the appropriate structure for applying the algorithm are done according to the346

procedure in [59, 60, 51]. This dataset has no node or edge attributes.347

Collaboration (Colab). There is information about co-authorship relation-348

ships between 315 authors in this dataset. Each node represents an author, and349

each edge demonstrates co-authorship relationships between a pair of authors350

Table 2: Summary of the employed datasets. “-” in “Number of Edge” column means the

number changes across different snapshots.

Dataset Number of Snapshots Number of Nodes Number of Edges Number of Node Attributes

Enron 11 184 115-266 -

Colab 10 315 165-308 -

Facebook 6 663 844-1068 -

UCI 7 537-1899 59835 -

Cora 6 500-2708 406-5429 1433

LFB 36 45435 180011 -

AS733 30 6628 13512 -
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from 2000 to 2009 [60]. This dataset has no node or edge attributes.351

UCI. This dataset was aggregated by the University of California, Irvine [61].352

In this dataset, message interaction information between students based on an353

online community has been collected. Nodes represent students, and edges rep-354

resent the sending of a message between two students. This information was355

collected over a 7-day period. Each day denotes one snapshot of the graph. This356

dynamic graph starts at 537 nodes, ends at 1899 nodes, has 59835 edges, and357

has no node properties.358

Cora. This dataset is a static citation graph in which the nodes represent359

the publications, and the edges denote the citation [62]. Cora consists of 2,708360

nodes with a 1,433-dimensional binary attribute vector. To make use of Cora361

dynamically, we preprocess the data in the same way as described in [63, 51].362

In the dynamic network, we added 500 nodes with their accompanying edges at363

each temporal snapshot (208 nodes for the last snapshot), using the indexes of364

the nodes as their arrival order, and six snapshots of the dynamic graph were365

taken, starting with 500 nodes and ending with 2708 nodes.366

AS733. This dataset is a communication network containing Autonomous Sys-367

tems (AS) and traffic flows between them that show who communicates with368

whom. AS733 was gathered from the Route Views Project at the University369

of Oregon, which contains 733 daily instances spanning 785 days between 1997370

and 2000 [64]. There are 6628 nodes and 13512 edges in this dataset.371

4.2. Baselines372

We compare DyVGRNN with the following baselines and state-of-the-art373

methods. We use the original implementation of the methods introduced in374

their paper. To ensure a fair comparison, the hyperparameters are adjusted375

based on the suggestion in their papers.376

4.3. Discrete Dynamic Graph Representation Learning Methods377

DynAE (Dynamic Auto-Encoder) [45]: This model is an auto-encoder com-378

posed of multiple fully connected layers as the encoder and decoder. These layers379

18



are used to capture nonlinear interactions between nodes at each snapshot and380

across multiple snapshots.381

DynRNN (Dynamic Recurrent Neural Network) [45]: This model con-382

sists of an LSTM encoder and an LSTM decoder. These encoder and decoder383

allow capturing the long-term dependencies in dynamic graphs.384

DynAERNN (Dynamic Auto-Encoder Recurrent Neural Network)385

[45]: This model includes a fully connected layer connected to an LSTM as386

the encoder. The fully connected layer generates initial low-dimensional hidden387

representations, which are then fed to LSTM. Here, the decoder is a fully con-388

nected network.389

SI-VGRNN (Variational Graph Recurrent Neural Networks) [51]:390

This method was the inspiration for this paper that is based on VGAE, which is391

combined with GRNN to capture topology and node feature changes in dynamic392

graphs. This paper suggested regarding and disregarding the semi-implicit part393

as an SI-VGRNN and VGRNN, respectively.394

DySAT (Dynamic Self-Attention Network) [39]: This method computes395

node representations through self-attention blocks that capture structural and396

temporal properties.397

HTGN (Hyperbolic Temporal Graph Network) [65]: This approach398

maps the dynamic graph in hyperbolic space and combines a hyperbolic GNN399

and a hyperbolic GRNN to capture network evolution while implicitly main-400

taining hierarchical information.401

4.4. Continuous Dynamic Graph Representation Learning Methods402

DyREP [28]: This model uses a two-time scale Temporal Point Process (TPP)403

model, which is parametrised by an RNN.404

JODIE [30]: This model uses RNNs to predict representations in the future.405

Since the method was originally proposed for bipartite graphs, we modified it406

for standard graphs in accordance with [66].407

TGAT [67]: This model is based on the self-attention mechanism and develops408

a functional time encoding technique based on the classical Bochner’s theorem.409
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Table 3: AP scores of link prediction on dynamic graphs. The best results are highlighted.

Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 76.00 64.02 56.04 58.90 91.12 57.11 74.23

DynRNN 85.61 78.95 75.88 75.28 89.21 80.75 87.53

DynAERNN 89.37 81.84 78.55 78.27 89.92 82.93 88.77

DySAT 93.06 90.40 80.39 80.39 85.01 87.73 96 .72

HTGN 94.31 91.91 83.80 83.80 86.72 90.12 98.41

VGRNN 93.29 87.77 89.04 81.40 91.83 93.32 96.69

SI-VGRNN 94.44 88.36 90.19 82.01 93.16 96.68 97.13

DyVGRNN 97.28 96.77 92.70 86.22 95.07 97.48 99.10

4.5. Tasks410

We perform the link prediction and clustering tasks in this study to evaluate411

our method. The link prediction task in dynamic graphs is defined differently412

than in static graphs. Given a dynamic graph G = {G(1), G(2), ...G(T )}, the link413

prediction is divided into two categories: 1) dynamic link prediction attempts414

to identify the unobserved links in G(T ), and 2) dynamic new link prediction415

tries to predict links in G(T+1) which does not exist in G(T ).416

4.6. Metrics417

We use the Average Precision (AP) and the Area Under the receiver oper-418

ating characteristic Curve (AUC) [27] metrics to compare our proposed method419

with state-of-the-art methods in link prediction and new link prediction tasks.420

To calculate these measures, all edges of GT are considered as actual links (pos-421

itive samples), and on the other hand, the pairs of nodes without an edge imply422

false links (negative samples). Furthermore, the silhouette criterion is applied423

for the evaluation of the clustering results to interpret and validate data consis-424

tency within clusters.425
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Table 4: AUC scores of link prediction on dynamic graphs. The best results are highlighted.

Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 74.22 63.14 56.06 57.18 91.89 57.13 73.84

DynRNN 86.41 75.7 73.18 73.98 89.27 80.10 86.11

DynAERNN 87.43 76.06 76.02 75.28 90.08 78.00 88.37

DySAT 93.06 87.25 76.88 76.88 86.73 85.3 95.06

HTGN 94.17 89.26 83.70 83.7 87.25 89.73 98.75

VGRNN 93.10 85.95 89.47 79.11 92.01 94.41 95.17

SI-VGRNN 93.93 85.45 90.94 80.27 93.5 97.17 96.37

DyVGRNN 96.59 95.80 93.17 86.73 95.15 98.74 99.19

4.7. Settings426

The proposed model uses the LSTM-attention with a single hidden layer of427

32 units for the GRNN. The GNNµ and GNNΣ are set to be two-layer GCN with428

32 and 16 units, respectively. Our model is initialised using Glorot initialisation429

[68]. The learning rate for training our model is set to be 0.01. Model training430

is done in 1000 epochs using the Adam SGD optimiser [69]. Moreover, we use431

a validation set for the early stopping. Therefore, the training will terminate if432

the validation accuracy does not improve in 10 consecutive stages. The mean of433

the evaluation metrics is reported based on 10 runs of the model under different434

random seeds.435

4.8. Results Analysis436

Dynamic Link Prediction. Tables 3 and 4 represent the comparison results437

in terms of AP and AUC on the link prediction task. The results of the dominant438

algorithm are highlighted. DyVGRNN shows significant improvement in results439

compared to the other methods. The enhancement of our method using the AP440

criterion compared to the first method is 21.28% in the Enron dataset, 32.75%441

in the Colab dataset, 36.66% in the Facebook dataset, and 40.37% in the Cora442

dataset. Large datasets like LFB and AS733 show improvements of 27.32%443

and 24.87%, respectively. Likewise, in the UCI dataset, where the first method444
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Table 5: AUC scores of new link prediction on dynamic graphs. The best results are high-

lighted.

Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 66.10 58.14 54.62 56.34 89.94 56.27 68.93

DynRNN 83.20 71.71 73.32 74.15 87.27 79.94 74.72

DynAERNN 83.77 71.99 76.35 76.55 88.29 77.36 76.63

DySAT 87.94 79.74 74.97 74.97 84.2 86.11 82.84

HTGN 91.26 81.74 82.21 82.21 84.98 87.85 96.62

VGRNN 88.43 77.09 87.20 76.33 89.93 94.94 81.86

SI-VGRNN 88.60 77.95 87.74 77.42 90.45 96.36 83.27

DyVGRNN 94.26 92.71 92.51 85.26 94.17 97.16 97.89

performed well, our proposed method boosts the result by 3.95%. If we compare445

the AUC criteria, the results are also significantly improved. For example, the446

results of a comparison with SI-VGRNN, which on average provided the best447

results among the previous methods, show that the proposed method leads to448

2.66% improvement in the Enron dataset, 10.35% in the Colab dataset, 2.23%449

in the Facebook dataset, 1.65% in the UCI dataset, and eventually 1.57% in the450

Cora dataset. Large datasets LFB and AS733 have improvements of 6.46.21%451

and 2.82%, respectively.452

Dynamic New Link Prediction. Tables 5 and 6 represent the results of453

comparisons regarding AUC and AP on the new link prediction task. The454

proposed method has achieved significant results in all datasets. A similar455

analysis for the link prediction task can be provided for the new link prediction456

task. In general, it can be noted that the proposed method can have a high457

potential for predicting the overall structure of the graph in the new snapshot.458

To point out some significant improvements, we can mention the progress of459

more than 40% in the Cora dataset or the increase of over 37% in the Facebook460

dataset in both criteria compared to DynAE. In addition, our method performed461

superior to SI-VGRNN, which indicates a positive effect of the assumption of462

GMM and the proposed attention module. A comparison of the proposed DyV-463
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Table 6: AP scores of new link prediction on dynamic graphs. The best results are highlighted.

Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 66.50 58.82 54.57 54.91 89.65 56.65 69.12

DynRNN 80.96 75.34 75.52 76.01 86.86 80.01 75.12

DynAERNN 85.16 77.68 78.70 78.27 88.15 82.34 76.87

DySAT 86.83 83.47 78.34 78.34 83.94 87.15 89.07

HTGN 90.62 84.06 81.70 81.7 84.26 89.83 95.52

VGRNN 87.57 79.63 86.30 79.61 89.48 93.21 88.59

SI-VGRNN 87.88 81.26 86.72 80.12 90.07 95.32 89.49

DyVGRNN 94.44 93.65 91.81 85.00 94.11 96.82 96.83

GRNN and VGRNN is presented in Appendix A in order to further analyse464

the effectiveness of the methods.465

Clustering. For further investigation, we provide a clustering comparison as466

well. The proposed approach is compared against SI-VGRNN, which achieves467

the highest result among various methods, and DySAT, which performs best468

among deterministic ones. To this end, the silhouette criterion is utilised for469

clustering the Cora dataset. This criterion is 0.32 for DySAT, 0.36 for SI-470

VGRNN, and 0.43 for our approach. Demonstrating a transparent view, we471

visualise the representations of these three methods in a two-dimensional space472

as shown in Figure 4. Compared to the raw features, the trained representa-473

tions in two-dimensional space for our method indicate well-separated clustering474

compared to SI-VGRNN. In addition, modelling uncertainty in SI-VGRNN and475

DyVGRNN yields superior clustering outcomes compared to DySAT, which is476

a deterministic-based method. We also provide a classification comparison in477

Appendix C.478

Comparison with Continuous Methods. We compare our model to state-479

of-the-art methods in the category of continuous dynamic graph representation480

learning in terms of dynamic link prediction. The results of this comparison are481

shown in Figure 5. As demonstrated in the Figure 5, our proposed method out-482
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performs other continuous methods. DyRep has the best performance among483

existing continuous approaches, which our method enhances.484

4.9. Complexity and Running Time485

To compute the time complexity of our method, the analysis of [70] is fol-486

lowed. For this purpose, the proposed DyVGRNN can be divided into three487

main parts. 1) modelling node temporal attributes by LSTM which the time488

complexity is O(T |V |H2). 2) modelling node structural properties by VGAE,489

which consists of GCN structure in its encoder and an inner product decoder.490

Time complexity of GCN is O(|V |H2 + (|V | + |E|)H). Since H and |V | are491

(a) Raw Features (b) DyVGRNN

(c) SI-VGRNN (d) DySAT

Figure 4: Cluster visualisation for embeddings of Cora dataset in 2D space. a) Raw feature

cluster visualisation demonstrates the inability to differentiate between clusters. b) Cluster

visualisation of DyVGRNN embeddings showing distinct clusters. c) Cluster visualisation

of SI-VGRNN embeddings indicates more indiscernible clusters compared to DyVGRNN. d)

Cluster visualisation of DySAT embedding also reveals more undetectable clusters compared

to the two other methods.
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(a) AUC (b) AP

Figure 5: The comparison of the proposed DyVGRNN and continuous methods for the task of

dynamic link prediction. As shown in the charts below, different methods are represented by

different colours. These results are performed on UCI and Enron. Each chart shows the results

for UCI and Enron in the left and right groups, respectively. a) The results of comparing in

terms of AUC score. b) The results of comparing in terms of AP score.

relatively small w.r.t. to |E|, the time cost is indeed O(|E|).492

Moreover, the time complexity of the inner product decoder is O(|E|). As493

a result, the time complexity of VGAE is O(|E|). 3) Considering the attention494

mechanism which has an order of O(EH2). Eventually, the time complexity of495

our proposed method is O(T |V |H2)+O(EH2). Table 7 lists the time complexity496

of some methods evaluated in our work on LFB dataset. In addition, Figure 6497

contrasts the running times of SI-VGRNN, DySAT, and DyVGRNN. As seen,498

our approach runs faster than DySAT but lower than SI-VGRNN. Although499

compared to VGRNN, this is seen as a shortcoming for our model, accuracy at500

Table 7: Time Complexity of different methods.

Method Time Complexity

DynAE O(T (|E| + |V |)

DynRNN O(T |V |H2)

DynAERNN O(T |V |H2 + T (|E| + |V |))

HTGN O(T |V |H2 + |E|H2)

DySAT O(T |V |H2 + |E|H2)

VGRNN O(T |V |H2) + O(|E|)

DyVGRNN O(T |V |H2) + O(|E|H2)
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Figure 6: Comparison of running times of different methods on the LFB dataset. The colours

represent various methods in the colour scheme.

inference time is more important in many cases.501

Figure 7: The effect of GMM on proposed DyVGRNN. The outcomes of running our model

in two modes with and without GMM are shown in this figure. Two tasks, dynamic link

prediction, and new dynamic link prediction are performed on Enron, Colab, and Facebook

with the results. The various criteria for these two tasks are represented by the colours in

accordance with the colour scheme.
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Table 8: Effect of parameter K on the DyVGRNN outcome. The results of dynamic link

prediction and dynamic new link prediction by adjusting K to different values are given in

this table. “Mean of AUCs” in each dataset category show the mean of AUC of link prediction

and AUC of link prediction for different K.

Dataset Metric K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Enron

AUC of link prediction 95.80 96.59 95.70 96.60 95.92 95.82

AP of link prediction 96.77 97.28 96.34 97.10 96.73 96.64

AUC of new link prediction 92.71 94.26 93.10 93.58 93.64 92.98

AP of new link prediction 93.65 94.44 93.36 93.38 94.25 93.57

Mean of AUCs 94.25 95.42 94.4 95.09 94.78 94.4

Mean of APs 95.21 95.86 94.85 95.24 95.49 95.10

Facebook

AUC of link prediction 93.17 90.20 92.55 91.37 92.61 93.02

AP of link prediction 92.70 88.67 92.17 90.66 92.18 92.47

AUC of new link prediction 92.51 89.79 91.95 90.70 91.93 92.55

AP of new link prediction 91.81 88.11 91.67 89.81 91.17 92.04

Mean of AUCs 92.84 89.99 92.25 91.03 92.27 92.78

Mean of APs 92.25 88.39 91.92 90.23 91.67 92.25

Colab

AUC of link prediction 95.80 90.20 92.55 91.37 92.61 93.02

AP of link prediction 96.77 88.67 92.17 90.66 92.18 92.47

AUC of new link prediction 92.71 89.79 91.95 90.70 91.93 92.55

AP of new link prediction 93.65 88.11 91.67 89.81 91.17 92.04

Mean of AUCs 92.84 89.99 92.25 91.03 92.27 92.78

Mean of APs 92.25 88.39 91.92 90.23 91.67 92.25

4.10. Ablation Study502

In this section, we conduct ablation studies to verify the effectiveness of the key503

components of the proposed model.504

Selection of K505

Since each dataset has various properties, we need to select the hyperparameter506

K according to the unique properties of each dataset. To this end, this study507

compares the results by examining the various values of K and selecting the508

best value. Table 8 shows the results of these comparisons. The best value of509

K for Enron, UCI, Cora, and AS733 datasets was 3, and for Facebook, Colab,510

and LFB datasets were 2. The first column of these tables shows the situation511

where the GMM does not affect the results. As can be seen, at K = 2, i.e.512
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(a) Colab Dataset (b) Facebook Dataset

(c) Enron Dataset

Figure 8: Impact of the attention module on DyVGRNN. In this figure, the results of running

our model in two different modes with and without the attention module are depicted. To

achieve this, two tasks—dynamic link prediction and new dynamic link prediction—are carried

out. The colours, in accordance with the colour scheme, represent the various criteria for these

two tasks. The results of the comparison on the a) Colab, b) Facebook, c) Enron datasets.

applying the GMM, a significant improvement in the results is achieved. This513

improvement demonstrates the validity of our claim that the use of GMM pos-514

itively affects outcomes.515

Impact of the GMM516

The effects of utilising a GMM to handle multimodality are examined in this517

section. This is accomplished by considering the proposed DyVGRNN in two518

different scenarios: first, without using GMM, and second, using GMM. Fig-519

ure 7 shows the result of comparisons in these two modes. As seen in this figure,520

GMM leads to improving the results.521

Impact of the Attention Module522

To assess the effectiveness of the attention module, we have divided the proposed523

model into two modes: with and without using it. To emphasise the attention524

module, we investigated the proposed method without considering GMM. Fig-525
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ure 8 shows the result of comparisons in these two modes.526

Impact of Features527

A noteworthy point in examining the results is the effect of the node features on528

the results. Figure 9 shows the performance of DyVGRNN in the Cora in two529

modes: with and without features. The performance is significantly improved530

with the presence of node features, which indicates our proposed method can531

capture long-term dependencies in both the topological evolution and dynamics532

of node features.

(a) AUC (b) AP

Figure 9: The results of comparing the proposed method on Cora with and without using

features. Dynamic link prediction is used to accomplish this. a) The result of comparison

in terms of AUC. Results are enhanced by the presence of node features. b) The result of

comparison in terms of AP. Results are improved when node features are present.

533

5. Conclusion and Future Works534

We proposed DyVGRNN, an integrated variational GRNN for learning node535

representations of dynamic graphs. DyVGRNN has additional random latent536

variables in the GRNN framework for capturing the evolution of graph struc-537

tures and node attributes. We have shown that the combination of variational538

inference based on GMM and the proposed framework leads to a high level of539

validity and knowledge of the model. We also introduced an attention module540

to consider each snapshot’s importance, leading to improved performance. The541

experiments’ results showed our model’s superiority over baseline and state-of-542

the-art methods. In the future, we are looking to apply a probabilistic decoder543
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to the VGAE structure than a simple inner product decoder. In our proposed544

method, VGAEs reconstruct the adjacency matrix, but not the features matrix.545

Therefore, considering the reconstruction of the feature matrix and adjacency546

matrix would lead to a raise in accuracy. We believe it is a worthwhile area to547

explore more. In addition, it would intrigue to study the impact of other GNN548

frameworks, such as GAT, GraphSAGE, and GIN, with different layer numbers549

for the encoder and perhaps the decoder.550
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Appendix A. Visualisation the Results of Comparison784

In order to more thoroughly assess the performance of the proposed method,785

DyVGRNN and VGRNN are compared in Figure A.10. It is evident that786

DyVRNN performs better over time in practically all epochs. Despite hav-787

ing close competition in the early epochs, DyVGRNN quickly passes VGRNN788

and establishes its superiority.789

(a) AUC on Colab (b) AUC on Enron (c) AUC on Facebook

(d) AP on Colab (e) AP on Eneon (f) AP on Facebook

Figure A.10: Comparing the proposed method with VGRNN on different datasets in terms of

AUC and AP. The colours reflect the various criteria for dynamic link prediction and dynamic

new link prediction under the colour scheme. a) The comparison of two methods in terms

of AUC on Colab. The early epochs are closely contested, but after epoch 300, DyVGRNN

soon overtakes VGRNN. b) The comparison of two methods in terms of AP on Colab. The

superiority of DyVGRNN is significant after epoch 300. c) The comparison of two methods

in terms of AUC on Enron. After epoch 300, DyVGRNN’s dominance becomes considerable.

d) The comparison of two methods in terms of AP on Enron. Again, in the 300th period,

DyVGRNN’s advantage becomes substantial. e) The comparison of two methods in terms

of AUC on Facebook. Even in the early epochs, DyVGRNN’s supremacy was noticeable.

f) The comparison of two methods in terms of AP on Facebook. From the very beginning,

DyVGRNN’s dominance is significant.
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Appendix B. Qualitative Analysis790

Figure B.11 displays a visualisation of the learnt embeddings over time to791

show how effectively the embeddings are encoded. To do so, we use the clustering792

task and the silhouette metric on synthetic data and visualised the learnt embed-793

dings in a two-dimensional space throughout our training. The clusters become794

more well-separated with time, as can be observed.795

(a) Epoch 0 (b) Epoch 50

(c) Epoch 200 (d) Epoch 400

Figure B.11: Visualisation of the learnt embeddings of DyVGRNN over time. In this figure,

each colour corresponds to a cluster. a) Visualisation of embedding on epoch 0 of the running.

The clusters are confused. b) Visualisation of embedding on epoch 50 of the running. Clus-

ters are hardly distinguishable. c) Visualisation of embedding on epoch 200 of the running.

Clusters show themselves, but they are still intertwined. d) Visualisation of embedding on

epoch 400 of the running. Clusters are almost easily distinguishable.
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Appendix C. Node Classification Task796

We compare our model to three baseline methods in order to assess its perfor-797

mance on the classification task. Two of these methods, GCN [24] and Graph-798

SAGE [71], are supervised techniques that relied solely on static graph struc-799

tures and node attributes, ignoring temporal information. Another method,800

RNNGCN [72], utilised a two-layer GCN with a decay weight as a learnable801

parameter. This decay weight has applied to information from each timestep,802

gradually decreasing over time. The resulting linear combination of information803

over time is then used for classification purposes.

Figure C.12: The results of comparing the classification performance of the proposed method

on DBLP-3 and DBLP-5 datasets with other baselines in terms of AUC. The colours, in

accordance with the colour scheme, represent the various methods.

804

The datasets used in this task has obtained from DBLP2, a comprehen-805

sive database of academic papers in various subfields of computer science. The806

authors of these papers are represented as nodes in a graph, with connections be-807

tween nodes indicating co-authorship. Analysing the authorship of papers pub-808

lished between 2005 and 2018 resulted in the dynamic graph in these datasets,809

treating each year as a snapshot. DBLP-5 has 6606 nodes, 42815 edges, and 10810

snapshots, while DBLP-3 has 4257 nodes, 23540 edges, and 10 snapshots. These811

datasets included node attributes extracted by word2vec [73] from authors’ pa-812

2https://dblp.org/
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per titles and abstracts. They both have 100 attributes. These datasets are813

further clustered into three and five classes, respectively, based on the research814

area of the authors. These classes remained static over time. Figure C.12 shows815

the results of our comparison in terms of the AUC. As seen, our proposed DyV-816

GRNN outperforms other methods in both datasets.817
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