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Background: The right ventricle (RV) has complex geometry and function, with
motion along three separate axes—longitudinal, radial, and anteroposterior.
Quantitative assessment of RV function by two-dimension echocardiography
(2DE) has been limited as a consequence of this complexity, whereas newer
three dimensional (3D) analysis offers the potential for more comprehensive
assessment of the contributors to RV function. The aims of this study were to
quantify the longitudinal, radial and anteroposterior components of global RV
function using 3D echocardiography in a cohort of healthy children and to
examine maturational changes in these parameters.
Methods: Three-dimensional contours of the RV were generated from a cohort of
healthy pediatric patients with structurally normal hearts at two centers. Traditional
2D and 3D echo characteristics were recorded. Using offline analysis of 3D
datasets, RV motion was decomposed into three components, and ejection
fractions (EF) were calculated (longitudinal-LEF; radial-REF; and anteroposterior-
AEF). The individual decomposed EF values were indexed against the global
RVEF. Strain values were calculated as well.
Results: Data from 166 subjects were included in the analysis; median age was
13.5 years (range 0 to 17.4 years). Overall, AEF was greater than REF and LEF
(29.2 ± 6.2% vs. 25.1 ± 7.2% and 25.7 ± 6.0%, respectively; p < 0.001). This
remained true when indexed to overall EF (49.8 ± 8.7% vs. 43.3 ± 11.6% and
44.4 ± 10%, respectively; p < 0.001). Age-related differences were present for
global RVEF, REF, and all components of RV strain.
Conclusions: In healthy children, anteroposterior shortening is the dominant
component of RV contraction. Evaluation of 3D parameters of the RV in
children is feasible and enhances the overall understanding of RV function,
which may allow improvements in recognition of dysfunction and assessment of
treatment effects in the future.
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Abbreviations

2D, two-dimensional; 3D, three-dimensional; AEF, anteroposterior ejection fraction; BMI, body mass index;
BSA, body surface area; EF, ejection fraction; FAC, fractional area change; GAS, global area strain; GCS,
global circumferential strain; GLS, global longitudinal strain; ICC, intraclass correlation coefficient; LEF,
longitudinal ejection fraction; LV, left ventricle; REF, radial ejection fraction; RV, right ventricle; SD,
standard deviation; TAPSE, tricuspid annular plane systolic excursion.
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Introduction

Accurate assessment of RVmorphology and function are of critical

importance in cardiovascular disease in children and adolescents,

particularly in complex congenital heart disease involving systemic

RV physiology (1–3), obstructive right-sided heart disease (4, 5) and

pulmonary hypertension (6, 7). However, compared to the

established tools and techniques developed for assessment of the LV,

evaluation of the complex anatomy and contraction of the RV by

two-dimensional (2D) echocardiography remains significantly limited

in clinical practice. Recently, however, three-dimensional

echocardiography (3DE) has been shown to be able to produce

excellent quantification of RV volumes and has been validated

against gold-standard modalities such as cardiac magnetic resonance

imaging, even in childrenwith complex congenital heart disease (8–10).

The pattern of right ventricular (RV) contraction is dictated by its

complex structure on both gross andmicroscopic levels. In the normal

RV, two myofiber layers are present: a subendocardial layer that

consists primarily of longitudinally aligned fibers and a subepicardial

layer that consists primarily of circumferentially oriented fibers (11–

14). This arrangement results in three primary contributors to RV

ejection: (1) traction of the tricuspid annulus toward the apex

leading to longitudinal shortening; (2) a “bellows”-like inward

movement of the RV free wall leading to radial shortening; and (3)

traction of the RV free wall associated with left ventricular (LV)

deformation, leading to anteroposterior shortening (15, 16).

Accordingly, the aim of this study was to use a novel 3DE-based

analysis technique to develop foundational data describing the

relative contributions of longitudinal, radial, and anteroposterior

motion components of global RV function in a cohort of healthy

children with structurally normal hearts. Specifically, we sought to

examine differences in the relative contributions of the 3

components of ejection fraction in children and to look for

changes in the contribution of these components as a function of age.
Methods

Healthy children age <18 years were included from two centers:

Boston Children’s Hospital, Boston, MA, USA; and the Heart and

Vascular Center of the Semmelweis University, Budapest, Hungary.

Subjects at the Boston site were identified retrospectively from an

existing database of 3DE images with accompanying clinical and

demographic information. Patients in this database had presented

to the outpatient clinic between 2014 and 2020 for evaluation of

a common cardiac condition (most frequently murmur, chest

pain, syncope, or family history of cardiac condition), were

judged to have a structurally and functionally normal heart, and

were discharged from further follow-up. Exclusion criteria

included structural abnormalities other than patent foramen

ovale or trivial branch pulmonary stenosis (maximum

instantaneous gradient < 15 mmHg within the first two years of

life); arrhythmia (other than rare atrial or ventricular premature

beats) including sinus bradycardia or tachycardia (heart rate

z-score <−2 or > + 2 for age), acquired heart disease

(cardiomyopathy, chemotherapy exposure, and Kawasaki disease),
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or co-morbidities with a potential impact on ventricular size and

function (i.e., hypertension, renal failure, anemia, history of

prematurity, chronic lung disease, pulmonary hypertension,

obstructive sleep apnea, and connective tissue disorder).

Healthy volunteers at the Semmelweis site were recruited from

local schools; no individuals were identified subsequently with

significant cardiac abnormalities revealed by echocardiography,

electrocardiography, blood pressure measurement, or review of

medical history. Study protocols were approved by both centers’

institutional review boards. Given the retrospective nature of

recruitment at Boston Children’s Hospital, informed consent was

waived at that site. At Semmelweiss University, families of all

participants provided written informed consent to participate in

the study.

Blood pressure, height, and weight were recorded for all

subjects. Body surface area (BSA) was calculated using the

Mosteller formula (17).
2D and 3d echocardiography

Echocardiographic acquisitions were performed using the Philips

(IE33 and Epiq, Philips, Cambridge, MA) and GE (E95, GE

Healthcare, Horten, Norway) ultrasound systems, in accordance with

the American Society of Echocardiography (ASE) standards for

performing a pediatric echocardiogram (18). Parameters recorded

from the 2D echo images included tricuspid annular plane systolic

excursion (TAPSE), RV length, fractional area change (FAC), and

qualitative assessment of the degree of tricuspid regurgitation. LV

volumes were calculated from the 5/6 × area × length formula and

presented in raw fashion, as well as being indexed to BSA.

In addition to the standard 2D echocardiographic protocol,

electrocardiographically gated full-volume 3D data sets

reconstructed from four or six cardiac cycles optimized for RV

views were obtained for offline analysis. At the Semmelweiss site,

images were obtained from the apical window using the 4Vc-D

transducer (GE Healthcare, Horten, Norway). At the Boston site,

images were obtained from the apical or subcostal window using

the X5 probe (Philips, Cambridge, MA) in a patient-specific

fashion (i.e., the window providing better image quality was used).

Image quality was verified at the bedside to minimize stitching

and dropout artifacts of the 3D data; breath-holding manuevers

were used as appropriate for the developmental age of the child.

3D datasets were analyzed off-line using dedicated software (4D

RV-Function; TomTec Imaging, Unterschleissheim, Germany). The

algorithm detects the endocardial surface of the RV and, following

manual correction, traces its motion throughout the cardiac cycle.

End-diastolic volume, end-systolic volume, stroke volume, and free

wall longitudinal strain were recorded.
Analysis of 3D components of right
ventricular contraction

The 3D RV deformation analysis used has been previously

described in detail (19, 20). Briefly, the constructed 3D meshes
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were exported from TomTec 4D RV Function. Then, using the

ReVISION software (Argus Cognitive, Lebanon, New Hampshire),

the workflow consists of the following steps: (1) standardization of

the 3D mesh orientation, (2) movement decomposition, and (3)

calculation of volumes and strain values. Orientation adjustment

was performed by a rule-based, automated method to define

longitudinal, radial and anteroposterior directions as described in

tetail elsewere (20). Motion decomposition along the

aforementioned, orthogonal, anatomically relevant axes is

performed in a vertex-based manner. By the decomposition of the

model’s motion along the three anatomically relevant orthogonal

axes, the volume change of the RV attributable to each specific

direction was determined (Figure 1).

Therefore, we measured component EF values (longitudinal

EF—LEF, radial EF—REF, and anteroposterior EF—AEF). These

raw decomposed EF values were then indexed to global RVEF

(i.e., indexed AEF = AEF/global RVEF) to genertate the

longitudinal EF index (LEFi), radial EF index (REFi), and

anteroposterior EF index (AEFi). These measures quantify the

relative contribution of the given direction to global RV

performance. Note that the absolute volume change of the

chamber is generated by the aggregated contribution of the three

motion components. This composition is not additive, and

consequentially, the sum of the decomposed volume changes is

not equal to the global volume change; in other words, the

relative contribution of the motion components do not add up to

100%. Global and decomposed volumes are calculated using the

signed tetrahedron method (19).

To assess myocardial deformation, predefined longitudinally

and circumferentially-oriented contours were used, and 3D global

longitudinal strain (GLS) and global circumferential strain (GCS)

were computed as previously described (20). 3D global area
FIGURE 1

The three different components of right ventricular contraction from a
representative subject. In the figure the global motion of the right
ventricle is shown from anterior (A) and superior (B) views (blue mesh,
RV end-diastolic volume; blue surface, RV end-systolic volume). RV
end-systolic meshes can be generated by “locking” the RV motion in
two directions, permitting motion in only a single axis and thus
revealing the impact of decomposed contraction components. Thus,
the change in ventricular volume attributable to shortening along the
longitudinal (C, red surface), radial (D, orange surface) and
anteroposterior (E, purple surface) can be separately quantified.
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strain (GAS) was also calculated by the relative change of the

endocardial surface between end-diastole and end-systole.
Statistical analysis

Continuous data were presented as mean ± standard deviation

(SD) or median and interquartile range. Categorical data were

presented as counts and percentages (% of total population).

Outcomes were summarized according to age groups representing

different categories of patient body size: Infants: <1 year, Toddlers

>1–5 years, School-Aged: >5–10 years, (Pre)Teens > 10–18 years.

One-way ANOVA or the Kruskal Wallis H test was performed to

compare the distribution of parameters by age group as

appropriate. Wilcoxon signed-rank test was used to assess for

differences in the contribution of LEF, REF, and AEF within each

pre-specified age group, with Bonferroni correction applied (i.e.,

level of statistical significance set at p < 0.017). In order to assess

the impact of patient sex on the ejection fraction parameters, a

general linear model was used to compare EF means by sex with

adjustment for age to produce least-squares means.

To assess intercenter reproducibility, one operator from the

Boston site and one from the Semmelweis site each reviewed a

subset of 30 patients, blinded to the other’s results. The strength

of agreement was assessed by intraclass correlation coefficients

(ICC) along with the Bland Altman plot.

Data analyses were performed with SAS software (version 9.4,

SAS Institute Inc., Cary, North Carolina) and R 4.1.2 (2021 The

R Foundation for Statistical Computing Platform). P values <0.05

were used to indicate statistical significance.
Results

The study population included 166 subjects (Boston = 76;

Semmelweis = 90). Demographic and clinical characteristics of

the study population are summarized in Table 1. The median

age of subjects was 13.8 years (IQR 8.6 to 15.3), with a skewed

distribution towards the oldest age group (as a consequence of

the recruitment strategy at the Semmelweis site). The population

was majority male (n = 131, 79%), driven by a male-predominant

population recruited at the Semmelweiss site (n = 81, 90%).

Conventional echocardiographic measures of RV and LV

function are presented in Table 2. Tricuspid annular plane

systolic excursion (TAPSE) increased significantly with age. Most

subjects had either no (92, 53%) or trivial (72, 42%) tricuspid

regurgitation. There were no differences between groups in terms

of RV FAC. Age-related variation in 2D free wall longitudinal

strain was present, with the largest absolute values seen in the

toddler and school-aged groups.

Table 3 presents 3D RV volumes and contraction patterns. RV

volumes, global RVEF, REF and REFi, longitudinal and

circumferential 3D strain parameters significantly differ by age

group. Age-related differences were present for global RVEF, REF

and REFi. Additionally, age-related differences were seen for all

components of RV strain. Supplementary Table S1 presents
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TABLE 1 Patient characteristics.

All (n = 166) Infants (n = 13) Toddlers (n = 11) School-Aged (n = 21) (Pre)Teens (n = 121) p-value
Age, year 13.8 (8.6, 15.3) 0.1 (0.05, 0.1) 3.6 (3.3, 4.1) 6.3 (5.2, 7.9) 14.4 (13.6,15.7) <0.001

Female [n (%)] 35 (21%) 7 (54%) 5 (45%) 7 (33%) 16 (13%)

Height, m 1.49 ± 0.38 0.53 ± 0.07 1.00 ± 0.08 1.21 ± 0.11 1.69 ± 0.14 <0.001

Weight, kg 47.7 ± 23.8 4.2 ± 2.0 16.6 ± 3.2 23.3 ± 5.9 59.4 ± 15.3 <0.001

BMI, kg/m2 19.1 ± 3.5 14.3 ± 2.0 16.3 ± 1.4 15.5 ± 1.5 20.5 ± 3.0 <0.001

BSA, m2 1.39 ± 0.54 0.25 ± 0.07 0.68 ± 0.09 0.88 ± 0.14 1.66 ± 0.29 <0.001

SBP, mm Hg 117 ± 19 92 ± 14 100 ± 10 100 ± 10 125 ± 16 <0.001

DBP, mm Hg 65 ± 12 53 ± 11 53 ± 6 56 ± 8 68 ± 10 <0.001

HR, beats/min 80 ± 20 130 ± 13 89 ± 12 84 ± 14 73 ± 12 <0.001

Continuous data are expressed as mean ±SD, with the exception of age which are presented as median (IQR).

BMI, body mass index; BSA, body surface area; DBP, diastolic blood pressure; HR, heart rate; SBP, systolic blood pressure.

TABLE 2 Conventional echocardiographic characteristics.

All (n = 166) Infants (n = 13) Toddlers (n = 11) School-Aged (n = 21) (Pre)Teens (n = 121) p-value
TAPSE, mm 21.8 (16.9, 26.1) 6.2 (4.5, 9.0) 14.3 (12.0, 19.7) 17.1 (15.3, 19.6) 23.7 (20.9, 27.8) <.001

RV FAC, % 48.8 (45.3, 52.4) 46.5 (42.9, 51.2) 51.3 (44.7, 54.2) 50.7 (48.7, 54.2) 48.5 (45.3, 52.2) 0.161

RV 2D FWLS, % −30.4 (−33.7, −26.2) −29.8 (−31.8, −23.2) −34.8 (−39.0, −28.4) −32.1 (−36.6, −30.9) −29.4 (−33.0, −26.2) 0.016

2D LVEDV, ml 113.9 (74.6, 145.6) 9.4 (7.7, 11.1) 48.6 (39.0, 55.9) 62.8 (55.7, 74.6) 135.0 (110.9, 154.6) <.001

2D LVEDVi, ml/m2 77.2 (67.1, 85.8) 42.7 (35.0, 43.5) 70.8 (60.9, 75.5) 70.4 (66.8, 79.3) 79.8 (73.0, 88.9) <.001

2D LVESV, ml 45.2 (26.3, 60.9) 3.7 (3.0, 3.9) 17.3 (12.5, 18.2) 21.3 (20.1, 26.3) 54.8 (42.5, 66.1) <.001

2D LVESVi, ml/m2 30.1 (24.9, 35.4) 14.6 (12.7, 16.5) 23.4 (21.1, 25.8) 25.3 (23.4, 26.8) 32.7 (28.1, 36.7) <.001

LV EF, % 60.4 (57.0, 63.9) 61.5 (59.0, 64.3) 65.9 (64.0, 67.9) 64.0 (62.6, 67.0) 58.9 (56.3, 62.0) <.001

Data are expressed as median (Q1, Q3).

2D, two-dimensional; EF, ejection fraction; FAC, fractional area change; FWLS, free wall longitudinal strain; LVEDVi, indexed left ventricular end-diastolic volume; LVESVi,

indexed left ventricular end-systolic volume; RV, right ventricular; TAPSE, tricuspid annulus plane systolic excursion.

TABLE 3 Three-dimensional echocardiographic analysis of right ventricular size and ejection fraction components.

All (n = 166) Infants (n = 13) Toddlers (n = 11) School-aged (n = 21) (Pre)Teens (n = 121) p-value
3D RVEDV, ml 115.3 (66.0, 149.6) 9.4 (8.0, 10.0) 43.5 (37.5, 47.7) 56.3 (52.4, 64.3) 133.4 (107.2, 157.0) <.001

3D RVEDVi, ml/m2 74.8 (64.4, 87.3) 40.7 (38.0, 43.1) 64.4 (59.4, 67.9) 66.4 (59.9, 73.8) 80.1 (71.0, 89.9) <.001

3D RVESV, ml 47.1 (25.6, 63.3) 3.9 (3.3, 4.9) 16.4 (15.2, 19.5) 22.4 (18.4, 25.6) 56.8 (43.0, 70.3) <.001

3D RVESVi, ml/m2 31.6 (24.6, 37.4) 16.0 (14.9, 18.8) 24.6 (22.2, 28.1) 25.8 (23.4, 27.4) 33.8 (28.8, 39.4) <.001

RV EF, % 58.1 (54.6, 61.4) 55.1 (52.7, 61.1) 59.3 (55.0, 65.0) 62.1 (58.4, 64.6) 57.3 (54.3, 61.0) 0.008

LEF, % 25.8 (22.1, 29.8) 23.0 (19.3, 27.2) 27.6 (22.7, 35.8) 28.0 (23.4, 29.8) 25.8 (21.3, 29.7) 0.345

REF, % 25.3 (20.3, 30.6) 28.7 (22.6, 32.2) 26.8 (22.3, 31.7) 28.2 (25.7, 32.2) 24.1 (19.5, 29.7) 0.020

AEF, % 28.8 (24.8, 32.9) 27.6 (24.1, 33.8) 31.2 (27.2, 37.5) 32.6 (25.1, 36.4) 28.3 (24.7, 32.2) 0.109

LEFi, % 43.8 (39.1, 50.2) 43.0 (33.7, 43.7) 43.7 (40.8, 57.5) 43.7 (42.1, 51.1) 44.9 (38.2, 49.9) 0.436

REFi, % 43.7 (35.3, 51.3) 48.2 (42.8, 53.6) 45.8 (33.8, 59.2) 48.0 (43.4, 50.8) 42.4 (34.0, 51.1) 0.055

AEFi, % 50.7 (43.1, 55.6) 52.2 (41.5, 54.4) 57.2 (46.6, 60.9) 53.0 (42.1, 58.2) 50.5 (43.5, 54.0) 0.353

3D GAS, % −40.3 (−43.7, −37.3) −37.6 (−43.8, −34.4) −43.8 (−44.8, −37.7) −43.1 (−45.0, −39.0) −40.1 (−42.7, −37.0) 0.046

3D GLS, % −22.9 (−25.8, −20.5) −18.9 (−23.7, −17.5) −25.9 (−26.8, −22.7) −24.5 (−25.8, −21.1) −22.8 (−25.6, −20.9) 0.029

3D GCS, % −23.6 (−26.6, −19.9) −24.9 (−26.9, −20.9) −25.6 (−27.0, −17.1) −26.6 (−29.1, −22.5) −22.7 (−25.9, −19.7) 0.031

Data are expressed as median (Q1, Q3).

3D, three-dimensional; AEF, anteroposterior ejection fraction; EF, ejection fraction; GAS, global area strain; GCS, global circumferential strain; GLS, global longitudinal

strain; LEF, longitudinal ejection fraction; REF, radial ejection fraction; RVEDVi, indexed right ventricular end-diastolic volume; RVESVi, indexed right ventricular end-

systolic volume.

Bolded values are statistically significant (p < 0.05).

Valle et al. 10.3389/fcvm.2023.1141027
sex-specific age-adjusted mean values for the ejection fraction

parameters; no differences were identified between male and

female subgroups.

Figure 2 shows the ejection fraction components for the entire

cohort as well as broken down by age group. For the entire cohort,

the AEF was greater than the other two components; the same
Frontiers in Cardiovascular Medicine 04
pattern was observed for the oldest group. For the school-aged

cohort, the AEF was greater than the LEF. No significant

differences were observed among any components in the infants

and toddlers.

There was excellent inter-center reproducibility with intraclass

correlation coefficients of 0.97 (95% CI 0.94–0.98) for RV end-
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FIGURE 2

A comparison of the contributions of longitudinal, radial and anteroposterior contraction to global RV function. Individual and mean values of LEF, REF,
and AEF are shown in the entire population (leftmost column) as well as the different age categories, with statistical comparison among the three motion
components. **p < 0.01, ***p < 0.001.

Valle et al. 10.3389/fcvm.2023.1141027
diastolic volume and 0.94 (95% CI 0.89–0.97) for RV end-systolic

volume. Bland Altman plots are presented as Supplementary

Figure S1. As the ReVISION method is a fully automated

technique, it adds no further variability in addition to that

represented in these volume comparisons.
Discussion

The primary aim of this two-center study was to define the

specific contributions of longitudinal, radial and anteroposterior

contraction to global RV function in a cohort of healthy children

using 3D echocardiographic images and advanced analytical

software. As well, we sought to describe the maturational changes

that occur in each of the components of RV function, in

addition to the global value. Our major finding was that whereas

the contributions of the longitudinal and radial components were

similar, a predominance for AP contraction was present in the

overall cohort. Moreover, age-related differences were present for

global RVEF, REF, REFi, and all compenents fof RV strain.

There are three primary mechanisms of RV contraction:

longitudinal shortening with traction of the tricuspid valve

annulus toward the apex, inward (radial) movement of the free

wall, and anteroposterior directed motion of the RV wall related
Frontiers in Cardiovascular Medicine 05
to LV deformation (15, 21). In this study, we identified the

predominance of anteroposterior shortening in nearly every age

group. Typical 2D parameters of RV function have relied upon

simple, linear measurements which incompletely reflect the

complex mechanics of RV function. For example, TAPSE is a

measure of the longitudinal motion of the chamber, has been

shown to correlate with global RVEF, and has been described in

children with pulmonary hypertension with and without

congenital heart disease (22). FAC is a measurement of both the

radial contraction of the free wall as well as longitudinal traction

of the tricuspid annulus and has been associated with changes in

RV function in patients with Ebstein anomaly undergoing the

cone procedure (23). While these techniques offer some degree

of quantitative analysis of RV function, they are imperfect in that

they do not account for RV function in all axes, failing to fully

quantify the complex RV mechanics. Moreover, they do not

meaningfully assess the anteroposterior contraction, which

predominated in our study.

Prior groups have used 2D echocardiography to show that the

contraction pattern of the RV in children changes over the first

year of life as children transition from fetal circulation in which

the RV faces a high afterload to post-natal circulation in which

the pulmonary vascular resistance gradually declines over the

first few months of life. One group used measurements of
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TAPSE and a surrogate marker of radial contraction to

demonstrate a clear transition from predominantly radial

contraction to more longitudinal contraction around 4 months of

age (24). While likely underpowered to detect significant

differences between the contribution of radial contraction in

neonates (i.e., under 1 month of age) and older children, we did

find differences in the contribution of radial shortening with

increasing age. Others have used 2D speckle-tracking strain

analysis to demonstrate that longitudinal contraction increases in

this first year of life in premature infants (24), whereas our study

suggests that pattern of longitudinal shortening may be complex,

with an early increase in magnitude followed by a later return to

baseline values. Moreover, we are the first to describe

anteroposterior contraction patterns in children. The

anteroposterior contraction is determined in large part by the

circumferential shortening of the LV mid-layer myofibers, which

draw the RV free-wall insertion lines towards each other. It has

been shown previously that AEF is strongly associated with

LVEF in both healthy volunteers and those with congenital heart

disease resulting in a systemic RV (25, 26).

The maturational differences in directional contraction of the

RV identified in this work emphasize the importance of using

advanced techniques to assess RV contraction patterns in

children with simple and complex congenital heart disease. Prior

studies have demonstrated the prognostic value of global RV

function in children with congenital heart disease (27, 28). Even

in the face of preserved global RV function, important variations

in the relative contributions of the three main components can

be seen, as in the case of adults undergoing mitral valve surgery

as well as those with either volume-loading or pressure-loading

lesions on the right side of the heart (25, 29, 30). Understanding

and quantifying the relative contribution of each component of

RV contraction could have potential applications across multiple

subsets of RV pathology by providing insights into the long-term

effects of (1) pressure-load on the RV in children with chronic

RV outflow tract obstruction (i.e., children with tetralogy of

Fallot, congenital pulmonic stenosis, idiopathic pHTN), (2)

volume-load in children with long-standing left-right shunt (i.e.,

partial anomalous pulmonary venous connections, atrial septal

defects), (3) primary RV myopathy (i.e., arrhythmogenic

cardiomyopathy) and finally (4) complex anatomy leading to the

use of the right ventricle as the systemic ventricle in either a

single ventricle circulation (i.e., hypoplastic left heart syndrome)

or a biventricular circulation (i.e., “congenitally corrected”

transposition of the great arteries). A more refined understanding

of the evolution and progression of changes in RV contraction

could help providers identify the effects of medical therapy and

better define the optimal timing for procedural interventions.
Limitations

Our study group was limited by smaller number of subjects in

the younger age groups, which is of particular importance in

considering the significant hemodynamic changes to which the

RV is subjected in the first weeks to months of life. Moreover,
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the differing recruitment methods contributed to a predominance

of males in the oldest age group, with all but 9 subjects at the

Semmelweiss site being male. As a consequence, our exploratory

analysis intended to identify sex-specific differences in ejection

fraction parameters among various age groups was likely

underpowered. Apart from the limitations to the study

population itself, there is no “gold standard” for comparison of

our specific results because there is, at present, no reference

method for assessing the relative components of RV motion.
Conclusions

In healthy children, analysis of the components of right

ventricular contraction is feasible and reliable. In this pediatric

cohort, the anteroposterior component of RV contraction was

greater than the radial and longitudinal contributions.

Additionally, there were age-related differences for both global

RVEF and the radial component of RV contraction. Future 3DE-

based study of the contraction patterns of the pediatric right

ventricle, especially in children with congenital heart disease,

may facilitate enhanced recognition of dysfunction and

assessment of treatment effects.
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