
Vol.:(0123456789)

Automated Software Engineering (2023) 30:22
https://doi.org/10.1007/s10515-023-00389-7

1 3

A systematic decision‑making framework for tackling
quantum software engineering challenges

Muhammad Azeem Akbar1 · Arif Ali Khan2 · Saima Rafi3

Received: 12 April 2023 / Accepted: 23 June 2023
© The Author(s) 2023

Abstract
Quantum computing systems harness the power of quantum mechanics to execute
computationally demanding tasks more effectively than their classical counterparts.
This has led to the emergence of Quantum Software Engineering (QSE), which
focuses on unlocking the full potential of quantum computing systems. As QSE
gains prominence, it seeks to address the evolving challenges of quantum software
development by offering comprehensive concepts, principles, and guidelines. This
paper aims to identify, prioritize, and develop a systematic decision-making frame-
work of the challenging factors associated with QSE process execution. We con-
ducted a literature survey to identify the challenging factors associated with QSE
process and mapped them into 7 core categories. Additionally, we used a question-
naire survey to collect insights from practitioners regarding these challenges. To
examine the relationships between core categories of challenging factors, we applied
Interpretive Structure Modeling (ISM). Lastly, we applied fuzzy TOPSIS to rank
the identified challenging factors concerning to their criticality for QSE process.
We have identified 22 challenging factors of QSE process and mapped them to 7
core categories. The ISM results indicate that the ‘resources’ category has the most
decisive influence on the other six core categories of the identified challenging fac-
tors. Moreover, the fuzzy TOPSIS indicates that ‘complex programming’, ‘limited
software libraries’, ‘maintenance complexity’, ‘lack of training and workshops’, and
‘data encoding issues’ are the highest priority challenging factor for QSE process
execution. Organizations using QSE could consider the identified challenging fac-
tors and their prioritization to improve their QSE process.

Keywords Quantum computing · Quantum software engineering (QSE) ·
Challenging factors · Prioritization

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00389-7&domain=pdf

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 2 of 44

1 Introduction

Quantum computing (QC) has gained significant attention from industry and pol-
icymakers due to its potential to revolutionize various industrial areas. This is
evidenced by heavy investments from technology giants such as IBM, Google,
and Microsoft to implement QC as a service offering for complex computational
problems (Moguel et al. 2022; Qiskit 2021). However, developing QC applica-
tions is a challenging endeavor that requires a systematic engineering lifecycle
perspective to manage complexity effectively. This approach takes precedence
over ad-hoc implementation techniques and relying on individual development
skills, which can lead to errors and high maintenance costs (Azeem Akbar et al.
2022). To realize the full potential of QC, advanced software engineering meth-
ods are necessary (Piattini et al. 2021; Khan et al. 2022). This will ensure that QC
can live-up to its promising potential and provide the desired impact.

Quantum software engineering (QSE) is becoming increasingly important
as the field of quantum computing continues to grow and attract more interest
from both academia and industry. Quantum computing has the potential to revo-
lutionize many industries, from finance to healthcare, by solving complex prob-
lems that are beyond the capabilities of classical computers (Piattini et al. 2021;
Agarwal and Alam 2021). However, the development of quantum software is a
complex and challenging endeavor that requires specialized tools, techniques, and
expertise (Khan et al. 2022; Akbar et al. 2022a; Ali et al. 2022). Without proper
QSE practices, the development of quantum software can be error-prone, difficult
to maintain, and ultimately fail to achieve its full potential (Ali et al. 2022; Failed
2022). Luis et al. (Hevia et al. 2022) indicated that QSE practices can help to
address challenges such as scalability, debugging, testing, and integration with
classical systems, as well as help ensure the security and privacy of sensitive
information through quantum-safe encryption techniques.

Akbar et al. 2022; Failed 2022) and Khan et al. (Khan et al. 2023a) stated
that QSE deal with additional challenges to classic software engineering as it has
fundamental differences between classical and quantum computing. These chal-
lenges include limited scalability, lack of standardized tools and frameworks, lack
of software optimization techniques, and a shortage of skilled quantum software
engineers (Khan et al. 2023b, b ; Sarkar 2212). Debugging and testing quantum
software is also challenging, as it requires specialized tools and techniques that
are different from classical software engineering (Arias et al. 2023). Moreo-
ver, the development of quantum software requires specialized resources such
as quantum simulators and quantum compilers, which are not widely available
(Arias et al. 2023; Barrera et al. 2022a).

We found some research studies have been conducted to address the chal-
lenges in quantum software engineering (Cruz-Lemus and Serrano 2022). Cruz-
Lemus et al. (Cruz-Lemus and Serrano 2022) proposes the use of a high-level
quantum programming language called Q# to simplify the development and test-
ing of quantum software. Another study conducted by Mintz et al. (Mintz et al.
2020) focuses on the use of software design patterns to develop scalable and

1 3

Automated Software Engineering (2023) 30:22 Page 3 of 44 22

maintainable quantum software. In addition, Mitarai et al. (Mitarai et al. 2018)
proposes the use of machine learning techniques to optimize quantum circuits
and improve their performance. Similarly, Enrique et al. (Moguel et al. 2020)
discusses the need for new software development processes and methodologies
to effectively manage the complexity of quantum software development. Benja-
min et al. (Weder et al. 2022) also emphasizes the importance of developing a
standardized quantum software development environment to enable interoperabil-
ity and facilitate the exchange of knowledge and tools between researchers and
practitioners.

However, to the best of knowledge, no empirical study has been conducted to
explore the key challenging factors facing by QSE practitioners. Hence, we are moti-
vated to conduct a study that can help the software organization to focus on chal-
lenging factors that could have significant negative influence on successful execution
of QSE process. This study aim (1) to identify the QSE challenging factors reported
in existing literature, (2) to conduct questionnaire survey study with industry practi-
tioners to get their insight concerning to the criticality of the identified challenging
for QSE process, and (3) to develop a systematic decision-making framework by
applying fuzzy TOPSIS and ISM approaches. The results and analysis of this study
give a deep understanding about QSE challenging factors and their significance on
the success of QSE process. We believe that the findings of this study can help in
developing effective strategies for tackling problems associated with QSE process
which is significant to the success and progression of QSE process. In particular,
this study focuses on the following research questions (RQ):

RQ1 What are the most important challenging factors of QSE process reported in
literature?

RQ2 What would be the systematic decision-making framework of the QSE chal-
lenging factors?

The remainder of this paper is organized as follows: Sect. 2 discusses the back-
ground and motivation for the study. Section 3 describes the research used meth-
odology and Sect. 4 presents the results and analysis. The decision-making frame-
work and a summary of the results are provided in Sect. 5. Section 6 delves into the
study’s implications and potential threats to validity. Finally, Sect. 7 concludes the
paper and outlines future work related to this study.

2 Background and motivation

Quantum technology has emerged as a new field of science and technology, encom-
passing the principles of quantum mechanics to develop new technologies and
devices. The technology uses the peculiar properties of quantum mechanics, such
as superposition and entanglement, to create new devices that are faster and more
efficient than their classical counterparts (Moguel et al. 2022; Guzik et al. 2015).
The potential applications of quantum technology are numerous, including quantum
communication, quantum cryptography, quantum sensing, and quantum computing
(Orús et al. 2019). Quantum computing, in particular, is seen as a game-changer in
the field of computing, with the potential to solve complex problems that are beyond

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 4 of 44

the capabilities of classical computers (Poonia and Kalra 2016; Zidan et al. 2021).
As such, governments, private companies, and research institutions have invested
heavily in the development of quantum technology to drive innovation and advance
science (MacQuarrie et al. 2020).

The field of QSE has been gaining increasing attention in recent years, with sev-
eral research initiatives and academic programs dedicated to this area. The aim of
QSE is to provide a systematic approach to the development and maintenance of
quantum software, taking into account the unique characteristics of quantum com-
puting, such as superposition, entanglement, and interference (Zhao 2007; Serrano
et al. 2022).

There have been several research papers published in recent years that have con-
tributed to the development of quantum software engineering. For instance, (Hoo
Teo et al. 2021) conducted a study for developing software engineering framework
for quantum computing and to apply quantum in traffic simulation. Their proposed
framework integrates classical and quantum software components. Another study
conducted by Zhao 2007 develop a roadmap for quantum software engineering. The
developed roadmap provides the guidelines for the development of quantum-based
software by highlighting the major challenges and research directions in this field.

Other studies have focused on developing new programming languages and tools
for quantum software engineering. For example, Fingerhuth et al. (Fingerhuth et al.
2018) describes Qiskit, an open-source software framework for quantum comput-
ing that provides a high-level interface for programming quantum circuits. Similarly,
Mykhailova and Soeken (Mykhailova and Soeken 2021) describes a set of coding
exercises that teach quantum programming using the Microsoft Quantum Develop-
ment Kit.

In summary, QSE is a critical aspect of quantum computing, with significant
potential to enable the development of efficient and scalable quantum software.
The challenges faced by QSE are being addressed by ongoing research initiatives,
and there are several promising approaches that have been proposed to overcome
these challenges (Li et al. 2021). However, the development of quantum software
poses several challenges due to its inherited differences with classical computing
and immature QSE practices (Ali and Yue 2020). For instance, lack of standard-
ized tools and techniques, the need for specialized programming languages, limited
availability of skilled quantum software engineers, and the complexity of quantum
algorithms. Research in this area has focused on developing new programming lan-
guages, tools, and methodologies to address these challenges.

In recent years, the multicriteria decision making (MCDM) techniques have
emerged as a significant research area, with the aim of identifying critical features
and developing models that enable software organizations to effectively manage
complex development activities and mitigate risk factors on priority. Various exist-
ing studies using MCDM technique are using in software engineering research and
fuzzy TOPSIS is one of them.

Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
is a multi-criteria decision-making technique that has gained significant attention in
software engineering research. It can effectively handle imprecise and uncertain data
and provide a ranking of alternatives based on their proximity to the ideal solution.

1 3

Automated Software Engineering (2023) 30:22 Page 5 of 44 22

The technique has been applied to various problems in software engineering, includ-
ing team evaluation, agile assessment, outsourcing destination selection, testing
technique prioritization, technical debt evaluation, and open-source software project
assessment.

For instance, Huang and Tsai (Huang and Tsai 2021) proposed a fuzzy TOPSIS-
based framework for evaluating the quality of software development teams. Simi-
larly, Aksu and Ulucay (Aksu and Uluçay 2021) used fuzzy TOPSIS to evaluate the
agility of software development teams based on multiple criteria. In a study by Sun
et al. (Sun et al. 2020), fuzzy TOPSIS was used to select the best software develop-
ment outsourcing destination based on several criteria. Gao et al. (Gao et al. 2020)
used fuzzy TOPSIS to prioritize software testing techniques based on various cri-
teria. Pan et al. (Pan et al. 2020) applied fuzzy TOPSIS to evaluate the impact of
technical debt on software quality. Mohsin et al. (Mohsin et al. 2019) used fuzzy
TOPSIS to evaluate the quality of open-source software projects based on different
criteria. Singh et al. (Singh and Benyoucef 2011) used fuzzy TOPSIS to prioritize
software testing techniques based on multiple criteria.

Recent studies have also shown the effectiveness of fuzzy TOPSIS in address-
ing DevOps and DevSecOps challenges. Akbar et al. (Akbar et al. 2022b) used
fuzzy TOPSIS and ISM approach to determine the priority order and significance
level of the DevSecOps process improvement challenging factors. Rafi et al. (Rafi
et al. 2020) applied fuzzy TOPSIS and ISM approach for leveling and prioritizing
the DevOps data quality assessment challenges. To summarize, it is noted that the
application of fuzzy TOPSIS and ISM approach in software engineering research
has shown promising results and its potential in aiding decision-making processes in
this field (Rafi et al. 2022; Failed 2023a).

Despite the importance of QSE in recent years, there is a lack of research on
addressing the multicriteria decision making problem of QSE challenging factors.
To fill this gap, our study has developed a novel framework based on fuzzy TOP-
SIS and ISM approaches to prioritize QSE challenges. The proposed framework will
provide organizations with a tool to assess the impact of QSE related challenges on
the successful implementation of QSE practices and identify areas that require more
attention. By identifying the key challenging factors that significantly influence the
execution of QSE processes, our study contributes to the field by providing a unique
approach through a systematic decision-making framework. Hence, our proposed
framework is a valuable tool for organizations to understand the challenges they
face when implementing QSE practices and prioritize their efforts accordingly. This
approach can ultimately lead to successful and efficient execution of QSE process.

3 Methodology

The research methodology followed to achieve the research goals and to give the
answers to the research questions described in Sect. 1. The research has been divided
into three stages, and they have been briefly discussed in the following sections. The
Fig. 1 shows the roadmap of methodology.

Step–1 Identification of QSE challenging factors from existing literature.

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 6 of 44

Fig. 1 Proposed research setting

1 3

Automated Software Engineering (2023) 30:22 Page 7 of 44 22

Step–2 Conduct survey to collect data for ISM and fuzzy TOPSIS.
Step–3 Calculating the ranks of challenging factors and levels of the core

categories.
Step–4 Develop the final prioritization-based model.

3.1 Literature survey

To identify the challenging factors of quantum software engineering (QSE), we con-
ducted a literature survey by exploring journals articles, conference proceeding and
other relevant literature (Akbar et al. 2020b, 2021a, b; Shameem et al. 2020). We
used Google Scholar to search for literature studies, as it provides a user-friendly
interface to access scholarly articles from various digital libraries (e.g., Springer
Link, IEEE Xplore, ACM Digital Library). This comprehensive approach ensured
that no relevant digital library was overlooked. Relevant keywords were used to
identify appropriate published articles. Additionally, the snowballing data sam-
pling approach was used to collect potential literature related to the study objective,
involving examining reference sections of relevant publications (backward snowball-
ing) and studies citing the selected literature (forward snowballing) (Wohlin 2014).
This method led to an increasing sample size as more references and citations were
explored (Wohlin 2014).

The survey included literature studies discussing QSE process implementation
challenges. Additionally, studies that did not explicitly discuss challenging factors
were considered (Niazi 2012, 2015), provided they presented relevant QSE lessons
learned and experience reports. Extracting challenging factors from such reports
proved difficult and required thorough, in-depth reviews (Niazi 2015; Khan et al.
2021). The study selection process was primarily carried out by the first and second
authors, with disagreements resolved through discussion and input from all authors.
In total, 65 studies were shortlisted using forward and back snowballing.

These studies were used to structure this article and addressed the research ques-
tion (RQ1) discussed in Sect. 1. The first and second authors reviewed the selected
studies to identify key themes, concepts, and demotivators or challenges related
to QSE processes. The third and fourth authors subsequently conducted a second
review to refine the initial findings and report any missing information. Follow-
ing Kitchenham and Charters’ guidelines (Kitchenham and Charters 2007), we
employed a quantitative method to analyze the extracted data (themes and concepts).
We used a coding scheme (Hsieh and Shannon 2005) for quantitative analysis of
the extracted data. Applying the coding scheme steps (i.e., “code,” “sub-catego-
ries,” “categories and theory”), we mapped and rephrased the identified concepts to
develop the final list of QSE challenging factors. After completing the data extrac-
tion process, we rephrased the identified themes and concepts, resulting in a list of
22 challenges critical for the adoption and improvement of QSE processes.

Moreover, we mapped the identified challenging factors to their related core cate-
gories. The mapping process was carried out by three authors (author numbers 1, 2,
and 4), with the possibility of bias and uncertainty. To address this concern, author
number 3 randomly participated in the mapping process to check for bias and validate

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 8 of 44

the results. We also invited three external experts in empirical software engineering
research to confirm the validity of the mapping process (Akbar et al. 2022). These
experts randomly selected 15 concepts from the identified list and mapped them into
core categories of challenging factors. To ensure the reliability of the mapping results,
we performed an inter-rater reliability test to compare the mappings of the external
experts and study authors. We calculated a non-parametric Kendall’s coefficient of
concordance (W) (Akbar et al. 2022b), where W = 1 indicates perfect agreement, and
W = 0 indicates no agreement. The test outcomes for 15 randomly selected concepts
showed a W value of 0.93 (p = 0.004), indicating an acceptable level of agreement
between the mappings of study authors and external experts. This confirms that the
mapping process was unbiased and consistent. The detailed results of the test are pre-
sented in Table 1, and the used code is provided below.

“library(qseTools)
qse <- data.frame
(external_ex=c(3,3,3,4,3,4,2,3,3,2),
external_ex=(3,4,3,5,3,4,2,4,3,3),
external_ex3=(3,3,4,4,3,4,1,3,3,3)
authors_abc=(2,3,3,4,2,4,3,3,2,3)
)
KendallW(qse, TRUE)
KendallW(qse, TRUE, test=TRUE)
)
KendallW(t(d.att[, -1]), test = TRUE)
friedman.test(y=as.matrix(d.att[,-1]), groups = d.att$id)”

3.2 Industrial empirical study

The questionnaire survey approach effectively collects data from a large and targeted
population (Lenarduzzi and Taibi 2016; Akbar et al. 2020a). The following steps were
adopted to perform the empirical investigation.

3.2.1 Designing the questionnaire

To collect the training data, initially, we employed unstructured interviews with
5 experienced practitioners of software engineering and quantum computing.

Table 1 Kendall’s coefficient of concordance test

Data Set Kendall Chi‐Squared df Subjects Raters p-value W

QSE 33.316 13 15 3 0.004267 0.93212

1 3

Automated Software Engineering (2023) 30:22 Page 9 of 44 22

These interviews were conducted face-to-face via Google Meet and Zoom and
lasted approximately 30 min each (Akbar et al. 2022b, c). Based on the results
of the interviews and the challenging factors of QSE process mentioned in the
literature, we developed a closed-ended survey questionnaire to collect data
for applying fuzzy TOPSIS and ISM approaches. We chose this data collec-
tion approach as it is a standard method for collecting information from a large
and potential population. The questionnaire was divided into two categories:
the first category focused on demographic questions, while the second category
consisted of closed-ended questions related to project attributes. We utilized a
6-point linguistic scale, which included the following levels: just equal (JE),
equally important (EI), weakly important (WI), strongly more important (SMI),
very strongly more important (VSMI), and absolutely more important (AMI)
(Bozbura et al. 2007). The questionnaire survey method has been widely recog-
nized as an effective means for obtaining information that is difficult to gather
using observational techniques, as demonstrated in numerous studies (Ikart
2019; Sanchez 1992).

3.2.2 Pilot assessment of the questionnaire

To ensure the reliability and consistency of the survey instrument, a pilot evalua-
tion was conducted after designing the questionnaire. Pre-testing of the survey
was deemed significant in previous research, as it helps to enhance the quality of
the questionnaire and collect appropriate responses from the population (Khan
et al. 2021; Failed 2023b). Ten experts, including five from the previous unstruc-
tured interviews and four new ones, were asked to participate in the pilot testing.
The experts belonged from the Nanjing University of Aeronautics and Astronautics,
China and Griffith University, Australia, respectively, and three industrial experts
from Virtual Force, Pakistan; Integrio Systems, Canada; and Startup Develop-
ment House, Poland, respectively. After receiving experts’ suggestions, the ques-
tionnaire was finalized, which finally includes three sections: demographic details,
closed-ended queries on attributes, and fuzzy TOPSIS and ISM related information
for implementing specific attributes. The questionnaire items were paraphrased to
improve readability, and one expert suggested presenting survey questions in the
form of a table.

4 Analysis of the empirical data

We used the frequency analysis approach to analyze the data, which is suitable for
analyzing the descriptive types of data (Kitchenham and Pfleeger 2002). It compara-
tively analyzes the survey variables and computes the agreement level between the
survey participants based on the selected Likert scale. In this study, we used the
fuzzy TOPSIS and ISM approaches for ranking the challenges concerning to QSE
process (Niazi et al. 2016; Ali and Khan 2016; Akbar et al. 2018; Keshta et al. 2017;
Mahmood et al. 2017).

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 10 of 44

4.1 Phase 2: ISM approach

Sage (Sage 1977) defined Interpretive Structural Modeling (ISM) as a methodology
that brings structure and direction to the intricate relationships among factors and
systems, resulting in a comprehensive and systematic model. ISM is an interactive
learning technique that aids in organizing related factors, either directly or indirectly,
within a holistic model. This model provides a coherent and graphical representation
of the concept (Sage 1977; Ravi and Shankar 2005). By addressing complexities
surrounding the relationships among various factors, ISM enhances our understand-
ing of these relationships. Several studies have employed this approach to develop
conceptual models that illustrate the connections between factors (Kannan et al.
2009; Sharma and Gupta 1995; Agarwal and Vrat 2017).

However, ISM may be influenced by interpersonal bias in expert opinions, poten-
tially affecting the results. Furthermore, ISM does not assign weights for analyzing
the ranking of each factor at a level. To address these concerns, we employed the
fuzzy TOPSIS approach in subsequent steps, prioritizing QSE challenging factors
based on their relationships with the seven core categories of QSE challenging fac-
tors. The ISM approach was used to explore the interactions among core catego-
ries of QSE challenging factors (programming, standards, Technical, Resources,
Standardization, expertise, Responsiveness, and management). Figure 1 displays the
detailed steps followed to implement the ISM approach, drawing from the study by
Raj and Attri (Raj and Attri 2011).

4.2 Phase 3: fuzzy TOPSIS

In 1981, Hwang and Yoon (Yoon and Hwang 1985) introduced the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS), with the goal of iden-
tifying positive and negative ideal solutions. A positive ideal solution maximizes
beneficial criteria while minimizing costly ones, whereas a negative ideal solution
does the opposite, maximizing costs and minimizing benefits (Yoon and Hwang
1985). The most desirable solution is one that closely approximates the positive
ideal solution and is distant from the negative ideal solution.

To address the challenges of multi-criteria decision-making, Chen and Tsao
(Chen and Tsao 2008) developed Fuzzy TOPSIS, which incorporates expert opin-
ions on a specific topic. Decision-makers assign weights to each criterion using
linguistic variables, which are subsequently transformed into fuzzy triangular num-
bers (TNFs). TNFs effectively manage the inherent vagueness of linguistic terms
expressed by decision-makers (Rafi et al. 2020; Kannan et al. 2014; Krohling and
Campanharo 2011). The algorithms for Fuzzy TOPSIS, as applied to multi-criteria
decision-making, are outlined below.

Step 1. Consider a decision-making problem that involves m alternatives and n
evaluation criteria. This problem can be represented as a matrix, where A1, A2,…,
Am denote the alternatives, and E1, E2,…, En represent the evaluation criteria. The
performance rating of alternative Fi with respect to criterion Ej, denoted by Fij,

1 3

Automated Software Engineering (2023) 30:22 Page 11 of 44 22

is assessed by the decision-makers. Furthermore, each criterion Ej is assigned a
weight, represented by Wj.

Step 2. Revise the given alternatives and their associated weighted criteria based
on Eq. (1). Allocate ratings to each specific criterion and corresponding alterna-
tives utilizing Bozbura et al.’s (Bozbura et al. 2007) fuzzy triangular scale, which is
depicted in Table 2.

Step 3. Determine the aggregate fuzzy rating of K decision-makers for each crite-
rion by using Eqs. (2) and (3).

where Aij = (xij, yij, zij) and i = 1,2,3,…m, and j = 1,2,3…,n, and weight of each crite-
rion is calculated as Wj = (Wj1,Wj2,Wj3).

Step 4. Calculate the normalized decision matrix “R” using linear scale trans-
formation. After normalization, the resulting matrix will be represented as:

Equations (5) and (6), given below, are used to calculate each alternative’s cost
and benefit criteria.

E1, E2, …En

(1)D =
�
Fij

�
m∗n

=

A1

A2

⋮

Am

⎛⎜⎜⎜⎝

A11 A12 … A1n

A21 A22 … A2n

⋮ ⋮ ⋮ ⋮

Am1 Am2 … Amn

⎞⎟⎟⎟⎠

(2)Aij = Kmin
{
xijk

}
, b =

1

K

K∑
k=1

yijK , c = Kmax
{
zijK

}

(3)Wj1 = Kmin
{
xjK1

}
, b =

1

K

K∑
k=1

yjK2, c = Kmax
{
zjK3

}

(4)R∼ =
[
rij
]
m∗n

Table 2 Fuzzy triangular scale Linguistic terms Triangular fuzzy scale

Just Equal (JE) (1,1,1)
Equally Important (EI) (0.5,1,1.5)
Weakly Important (WI) (1,1.5,2)
Strongly More Important (SMI) (1.5,2,2.5)
Very Strongly More Important (VSMI) (2,2.5,3)
Absolutely more important (AMI) (2.5,3,3.5)

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 12 of 44

Step 5. Calculate the weighted normalized fuzzy decision matrix V ~ by multi-
plying the normalized fuzzy decision matrix values with the corresponding crite-
ria weights Wj.

where vij is calculated by using Eq. (8) and (7)

Step 6. In this stage, the fuzzy positive and negative ideal solutions are com-
puted as demonstrated in Eqs. (9) and (10).

The values of positive and negative ideal solutions range between [0.1].
Step 7. Determine the distance of each alternative from a positive and negative

ideal solution.

where D represents the distance between two fuzzy numbers.
Step 8. To compute the ranks of alternatives, the CCi value is calculated by con-

sidering a fuzzy positive and negative ideal solution.

Step 9. Provide a ranking of all alternatives based on their CCi value in order of
priority, where alternatives with higher CCi values receive a higher rank.

(5)rij =

(
xij

z+
j

,
yij

z+
j

,
zij

z+
j

)
and z+

j
= max

i
zij(benefit criteria)

(6)rij =

(x−
j

zij
,
x−
j

yij
,
x−
j

xij

)
and x−

j
= max

i
lij(cos t criteria)

(7)V ≅
[
Vij

]
m∗n

(8)vij = Aij ∗ Wj

(9)A+ =

[
v+
1,
v+
j,
… ..v+

m

]

(10)A− =

[
v−
1,
v−
j,
… ..v−

m

]

(11)D+

i
=

n∑
j=1

Dv

(
vij, v

+

j

)

(12)D−

i
=

n∑
j=1

Dv

(
vij, v

−

j

)

(13)CCi =
D−

i

D+

i
+ D−

i

1 3

Automated Software Engineering (2023) 30:22 Page 13 of 44 22

5 Results and discussions

In this section, we present the results and analysis of our study. The identified list of
QSE challenging factors is explained in Sect. 4.1. The results of the ISM and fuzzy
TOPSIS analyses are presented in Sect. 4.2. By examining these findings in-depth,
we aim to shed light on the key challenging factors that impact QSE success and
provide insights for practitioners and researchers alike.

5.1 Identified challenges of QSE

Quantum software engineering (QSE) is an emerging field that aims to develop
quantum-intensive software by leveraging the engineering processes, reference
architectures, patterns, tools, and frameworks of traditional software engineering.
QSE focuses on activities such as quantum domain engineering, quantum system
co-design, quantum algorithm design, and source coding and quantum information
simulation, and these activities facing several critical challenges. A list of most sig-
nificant QSE challenges is given in Table 3 and describe below.

Table 3 Identified list of QSE challenging factors

Categories Sr.# Challenges

Programming (C1) Ch1 Complex programming
Ch2 Limited simulation resources
Ch3 High error rates

Technical (C2) Ch4 Lack of debugging tools
Ch5 Limited software libraries
Ch6 Maintenance complexity

Resources (C3) Ch7 Complexity of quantum algorithms
Ch8 Data encoding issues
Ch9 Difficult to optimize quantum software

Standardization (C4) Ch10 Lack of standardization
Ch11 Lack of interoperability
Ch12 Lack of requirements engineering strategies

Expertise (C5) Ch13 Lack of expertise
Ch14 Integration with classical computing
Ch15 Lack of training and workshops

Responsiveness (C6) Ch16 Security issue in QSE
Ch17 Ethical issue in QSE

Management (C7) Ch18 Verification and validation issues
Ch19 QSE scalability issues
Ch20 Budget constraints
Ch21 Lack of commercial applications
Ch22 Project management issues

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 14 of 44

Ch1 (Complex programming): Quantum software engineering involves pro-
gramming for quantum computers that operate using quantum phenomena such as
superposition, entanglement, and interference (Nielsen and Chuang 2010). These
phenomena result in complex behavior that is different from classical computers,
requiring new techniques and algorithms for developing quantum software. For
example, quantum algorithms like Shor’s algorithm for factoring large numbers,
Grover’s algorithm for searching, and quantum error correction require under-
standing and utilizing quantum complexity (Botsinis et al. 2016). Developing
such algorithms and techniques remains an active area of research.

Ch2 (Limited simulation resources): Quantum computers are currently lim-
ited in terms of the number of qubits, gate fidelity, and coherence time, which
poses significant challenges for developing scalable and efficient quantum soft-
ware (Shi et al. 2020). As a result, simulations of quantum systems are used to
test and optimize quantum software, but these simulations also have limitations
in terms of the number of qubits they can simulate accurately (Shi et al. 2020).
Therefore, it is difficult to predict how quantum algorithms and software will
perform on larger systems without access to larger and more powerful quantum
computers.

Ch3 (High error rates) Quantum computers are susceptible to noise and errors
due to their inherent fragility, which makes it challenging to develop reliable quan-
tum software (Shi et al. 2020). The errors can arise from various sources, including
decoherence, environmental noise, and hardware imperfections, and can impact the
accuracy and efficiency of quantum algorithms (Shi et al. 2020; Devitt et al. 2013).
Error correction techniques are essential for reducing these errors, but they require
additional resources and overhead (Devitt et al. 2013).

Ch4 (Lack of debugging tools): Debugging quantum software is challenging
due to the lack of mature debugging tools and techniques (Nagori and Varadarajan
2023). Traditional debugging techniques for classical software are not always appli-
cable to quantum software, as the behavior of quantum systems is fundamentally
different from classical systems (Nagori and Varadarajan 2023). Moreover, the com-
plexity of quantum algorithms and the presence of quantum effects such as entangle-
ment and superposition make it difficult to trace and isolate errors (Moll et al. 2021).
There is a need for developing specialized debugging tools and techniques for quan-
tum software engineering (Moll et al. 2021).

Ch5 (Limited software libraries): Developing complex applications for quan-
tum computing is challenging due to the limited availability of software libraries.
The current state of quantum software development is still in its early stages, and
there is a need for more comprehensive software libraries that can support a wide
range of applications (Veryazov et al. 2004). Although there are several open-source
quantum software development platforms available, the libraries they provide are
often limited in scope and functionality. The development of new software librar-
ies is crucial for advancing the field of quantum software engineering (Devitt et al.
2013).

Ch6 (Maintenance complexity): Maintaining quantum software is a challenging
task due to the fast-paced development of quantum hardware and software, as well
as the complexity of quantum algorithms (Moll et al. 2021). The rapid evolution

1 3

Automated Software Engineering (2023) 30:22 Page 15 of 44 22

of quantum hardware can lead to changes in the optimal software design and the
need for frequent updates (O’Riordan and Jerger 2019). Moreover, the complexity
of quantum algorithms and the lack of standardization can make it challenging to
maintain and update quantum software. Efforts are being made to develop best prac-
tices for quantum software maintenance, such as version control and testing frame-
works (O’Riordan and Jerger 2019).

Ch7 (Complexity of quantum algorithms): Quantum algorithms are fundamen-
tally different from classical algorithms, which makes it challenging for develop-
ers to understand and implement them. The development of quantum algorithms
requires expertise in both quantum mechanics and computer science (Moll et al.
2021). Moreover, quantum algorithms are highly dependent on the specific charac-
teristics of the quantum hardware, which adds an additional layer of complexity. To
address these challenges, efforts are being made to develop more intuitive and user-
friendly quantum programming languages and tools (Nielsen and Chuang 2010).

Ch8 (Data encoding issues): Quantum computers require data to be encoded
in quantum states, which can be challenging to implement in practice (Nielsen and
Chuang 2010). The choice of data encoding can significantly impact the perfor-
mance of quantum algorithms, and there is no one-size-fits-all approach (Coles et al.
2018). Moreover, the encoding process can be sensitive to noise and errors, which
can lead to a degradation in the performance of the quantum algorithm. Efforts are
being made to develop new data encoding techniques that are robust to noise and
errors (Coles et al. 2018).

Ch9 (Difficult to optimize quantum software): Optimizing the performance of
quantum software is challenging due to the complexity of quantum algorithms and
hardware. Quantum software needs to be optimized for the specific hardware archi-
tecture on which it will run, which can be difficult due to the rapid pace of hard-
ware development (Gambetta and Cross 2018). Techniques such as circuit optimiza-
tion, compiler optimization, and algorithmic improvements are being developed to
address these performance optimization challenges (Pednault et al. 2019).

Ch10 (Lack of standardization): Standardization refers to the process of defin-
ing common interfaces, protocols, and data formats that allow different systems to
work together seamlessly. In quantum software engineering, the lack of standardi-
zation creates challenges for developers in creating software that can work across
different quantum computing platforms (Fingerhuth et al. 2018). This makes it diffi-
cult to create interoperable software that can be easily used by other developers and
organizations (Gill et al. 2022). The absence of standardization also leads to higher
costs and longer development times as developers must create custom solutions for
each platform. Standardization efforts are currently underway in the quantum com-
puting industry to address this issue (Gill et al. 2022).

Ch11 (Lack of Interoperability): Interoperability between different quantum
hardware and software platforms is a major challenge in quantum software engineer-
ing. The lack of standardization in quantum computing makes it difficult to create
interoperable software (Helsen and Raedt 2020). Developers need to consider hard-
ware-specific details such as gate sets, noise models, and connectivity when design-
ing quantum software, which can limit interoperability (Coveney and Highfield

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 16 of 44

2019). Efforts are being made to develop standardization efforts to address these
interoperability issues (Coveney and Highfield 2019).

Ch12 (lack of requirements engineering strategies): Requirements engineer-
ing, and management are critical aspects of software development (Pandey et al.
2010). However, there is a lack of tools and techniques specific to quantum software
engineering, making it challenging for developers to gather and manage require-
ments effectively (Sodhi and Kapur 2021). The unique features of quantum com-
puting, such as entanglement and superposition, also require new approaches to
requirements engineering (Sodhi and Kapur 2021). Addressing these challenges is
crucial to ensure the development of reliable and effective quantum software.

Ch13 (Lack of expertise): Quantum computing is a relatively new and rapidly
evolving field, and there are limited experts available to guide and mentor devel-
opers in quantum software engineering (Moll et al. 2021). The field of quantum
software engineering requires expertise in both quantum mechanics and computer
science, making it challenging for developers to acquire the necessary skills and
knowledge (Shaydulin et al. 2020). Moreover, the current shortage of quantum com-
puting experts limits the availability of experienced mentors and educators (Shaydu-
lin et al. 2020). Efforts are being made to address this shortage, including training
programs, online courses, and academic research.

Ch14 (Integration with classical computing) Quantum software engineer-
ing requires seamless integration with classical computing systems, which adds
complexity to the software engineering process (Bravyi et al. 2022). The integra-
tion problem arises because quantum computers have different architectures and
programming paradigms than classical computers (Bravyi et al. 2022). Moreover,
hybrid quantum–classical algorithms, which are essential for solving practical prob-
lems, require efficient communication between the classical and quantum compo-
nents (Moll et al. 2021). Efforts are being made to address the integration problem,
including the development of quantum–classical interfaces and middleware (Moll
et al. 2021).

Ch15 (Lack of training and workshops) Quantum software engineering is an
emerging field that is rapidly developing with the advancement of quantum com-
puting. However, there is a lack of training and workshops available for individu-
als interested in pursuing a career in this field (Lanzagorta et al. 2020). This is due
to the novelty and complexity of the subject matter, as well as the limited number
of experts in the field. The lack of resources for training and workshops in quan-
tum software engineering is a significant challenge that needs to be addressed to
facilitate the growth of the field and to prepare a workforce for quantum software
engineering jobs (Lanzagorta et al. 2020; Cao and Romero 2018). To overcome this
challenge, organizations and academic institutions are developing training programs
and workshops to teach individuals how to develop quantum software.

Ch16 (Security issue in QSE): Quantum computers have the potential to break
many of the currently used cryptographic protocols, which poses a significant chal-
lenge for the development of secure quantum software (Bravyi et al. 2022). The
cryptographic protocols that are secure on classical computers may become vulner-
able to attacks on quantum computers due to their ability to perform certain math-
ematical operations exponentially faster (Veryazov et al. 2004). To develop secure

1 3

Automated Software Engineering (2023) 30:22 Page 17 of 44 22

quantum software, new cryptographic protocols and algorithms that are resistant to
quantum attacks need to be developed (Veryazov et al. 2004).

Ch17 (Ethical issue in QSE): The development of quantum software raises ethi-
cal considerations related to data privacy, security, and access. As quantum comput-
ing has the potential to break many of the currently used cryptographic protocols,
the development of quantum-resistant encryption algorithms is necessary to protect
sensitive information (Poczatek et al. xxxx). Additionally, the development of quan-
tum software for military applications raises concerns about the potential misuse of
quantum technology (Singh and Walia 2020).

Ch18 (Verification and validation issues): Verification and validation of quan-
tum software is challenging due to the complexity of quantum systems and the lack
of reliable simulation tools (Altman et al. 2021). In addition, quantum hardware is
susceptible to noise and errors, which further complicates the verification and vali-
dation process (Cross et al. 2018). Efforts are being made to develop new verifica-
tion and validation techniques specifically tailored for quantum software, such as
quantum circuit optimization and error correction (Altman et al. 2021).

Ch19 (QSE Scalability issues): Developing scalable quantum software is chal-
lenging due to the limitations of current quantum hardware. Quantum computers
are currently limited in terms of the number of qubits, gate fidelity, and coherence
time, which restricts the size and complexity of quantum algorithms that can be run
on them (Gambetta et al. 2017). Moreover, the lack of standardization and limited
expertise in quantum software engineering adds to the challenge of developing scal-
able quantum software. Efforts are being made to develop new hardware and soft-
ware solutions to improve the scalability of quantum computing (Moll et al. 2021).

Ch20 (Budget constraints): Quantum hardware and software development is
currently expensive, which makes it challenging for organizations to invest in quan-
tum technology (Bravyi et al. 2022). The high cost of quantum hardware and the
limited availability of quantum experts also contribute to the high cost of quantum
software engineering (Cross et al. 2018). However, efforts are being made to reduce
the cost of quantum technology, such as developing cloud-based quantum comput-
ing services and open-source quantum software libraries (Cross et al. 2018).

Ch21 (Lack of commercial applications): The lack of commercial applications
of quantum computing can be attributed to the current limitations of quantum hard-
ware and software, as well as the high costs involved in quantum research and devel-
opment (Cross et al. 2018). However, there are efforts underway to address these
challenges and bring quantum computing to industry. As more organizations invest
in quantum technology and new quantum applications are developed, the commer-
cial potential of quantum computing is expected to grow (Bova et al. 2021). Nev-
ertheless, the lack of commercial applications is still a challenge for developers in
terms of applying their skills and knowledge in real-world scenarios (Awschalom
et al. 2021).

Ch22 (Management issues): Quantum software engineering (QSE) is an emerg-
ing field that involves the development of software for quantum computers. How-
ever, managing QSE projects can be challenging due to the complexity and novelty
of the technology, as well as the lack of established best practices (Yigitbasioglu and
Kocaturk 2021). Some of the management problems in QSE include the difficulty of

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 18 of 44

estimating project timelines, the need for specialized expertise, and the challenge of
testing and debugging quantum software (Babbush et al. 2018). Effective manage-
ment strategies and tools are needed to address these issues and ensure the success-
ful development of quantum software (Chong et al. 2017).

5.2 Empirical analysis

In this section, we present the results and analysis of the questionnaire survey study.
Section 4.2.1 introduces the demographic information of the survey participants.
The step-by-step implementation of the Interpretive Structural Modeling (ISM)

Fig. 2 Survey Participants demographics

1 3

Automated Software Engineering (2023) 30:22 Page 19 of 44 22

approach is explored in Sect. 4.2.2. Lastly, the application of the fuzzy Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach is dis-
cussed in Sect. 4.2.3.

5.2.1 Demographics

Demographic information is crucial in questionnaire survey studies as it helps
to identify patterns and trends among different population groups, enabling
researchers to better understand and generalize their findings across diverse con-
texts (Saris and Gallhofer 2014; Alderman and Salem 2010). We performed a fre-
quency analysis to assess the descriptive data, an effective technique for analyz-
ing various types of variables, including both numeric and ordinal data. After
conducting the survey, we received 133 complete responses. However, the com-
putational complexity of the method increases with the size of the dataset. There-
fore, to handle large data set we have used excel. As depicted in Fig. 2a, the sur-
vey participants represented 19 different countries across 5 continents. Notably, a
majority of the participants (50%) were from Europe, suggesting that the region
is at the forefront of quantum technology adoption and implementation. This also
implies that Europe is an ideal location for sourcing quantum-related information,
research, and industry positions.

We categorized the roles of the survey participants into three groups: software
engineer, quantum system engineer, and project manager. Our analysis revealed that
51% of the participants were software engineers. The project types of the survey
participants were also analyzed, with 15 distinct projects mentioned (see Fig. 2c).
Additionally, we evaluated the organization sizes of the participants and found that
32% of their organizations had 10–49 employees (Fig. 2d).

Regarding the experience of the survey participants, we inquired about their gen-
eral experience in the software engineering field and their specific experience in
quantum applications. The results (Fig. 2e) showed that 40% of the participants had
3–5 years of general experience in software development organizations, while 32%
had experience in the quantum domain (Fig. 2e).

5.3 Results of ISM approach

The ISM approach has proved useful in analyzing the complex interactions among
the major categories of QSE challenging factors. Numerous studies have utilized
this approach to investigate the contextual interactions of different elements (Kan-
nan et al. 2009; Sharma and Gupta 1995; Agarwal and Vrat 2017). In order to estab-
lish a comprehensive understanding of how the criteria interact with each other, it is
crucial to develop a structural-self-interaction matrix (SSIM). The SSIM is a power-
ful tool for visualizing and evaluating the relationships between the criteria, and its
construction and application will be discussed in the following sections.

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 20 of 44

5.3.1 Structural‑self‑interaction matrix

We used the ISM approach to analyze the contextual relationships among key cat-
egories of QSE challenging factors, with input from industry and R&D experts. The
survey participants demographics are presented in Fig. 2. Using their input, we con-
structed the SSIM matrix. While we acknowledge that our sample size may limit
the generalizability of our findings, previous studies, such as Kannan et al. (Kannan
et al. 2009), Soni et al. (Soni 2015), and Attri et al. (Attri et al. 2013a), successfully
employed similar sample sizes of experts in their decision-making processes. Thus,
we deemed 133 experts sufficient for our ISM model. The direction of the relation-
ship between the QSE challenging factors (m and n) is indicated by the following
symbols.

• ‘V’ indicates the relationship from m enabler to n enabler.
• ‘O’ indicates the relationship from n enabler to m enabler.
• ‘X’ indicates when both enablers m and n reach each other.
• ‘O’ indicates a situation in which there is no relationship between enabler m and

enabler n.

Based on experts’ opinions, we developed the SSIM presented in Table 4.
Table 4 presenting the identified several core categories of challenging factors

that impact QSE process improvement. We analyzed the relationships between these
categories and represented them using symbols such as ‘V’, ‘X’, ‘O’, and ‘A’. For
example, we found that there was no relationship between C1 (Programming) and
C2 (Limited simulation resources), as their relationship is represented with an ‘O’.
Similarly, C2 (Limited simulation resources) has no relationship with C7 (Manage-
ment). However, we noted that C1 helps to improve C7 as they are in a ‘V’ type rela-
tionship. Furthermore, according to our results, C1 and C5 have an ‘X’ relationship,
which indicates that both categories can help to improve QSE process improvement.
Interestingly, we found no ‘A’ type relationships between the core categories of QSE
challenging factors, meaning that the relationships were clear and unambiguous.
Our findings suggest that addressing these challenging factors in a coordinated man-
ner can lead to significant improvements in QSE process improvement.

Table 4 SSIM matrix C7 C6 C5 C4 C3 C2 C1

C1 V O X V O O *
C2 O O O O O * *
C3 V O O O * * *
C4 V X X * * * *
C5 O V * * * * *
C6 O * * * * * *
C7 * * * * * * *

1 3

Automated Software Engineering (2023) 30:22 Page 21 of 44 22

5.3.2 Reachability matrix

To develop the reachability matrix, we converted the values of V, A, X, and O into
binary digits (0, 1), using the following rules:

• When m and n in the SSIM have a value of V, replace it with 1; otherwise, assign
a value of 0.

• When m and n in the SSIM have a value of A, replace it with 0; otherwise, assign
a value of 1.

• When m and n in the SSIM have a value of X, replace it with 1 and assign 1 to
both n and m entries.

• When m and n in the SSIM have a value of O, replace it with 0 and assign 0 to
both n and m entries.

We develop the reachability matrix (Table 5) by applying these protocols.
To obtain the final reachability matrix, we established transitivity as detailed in
Sect. 3.3. We employed the 1* value to incorporate transitivity, which helps to fill in
gaps in the data collected from experts during SSIM development. The integration
of the transitivity check is presented in Table 6.

Table 5 Reachability matrix C1 C2 C3 C4 C5 C6 C7

C1 1 0 0 1 1 0 1
C2 0 1 0 0 0 0 0
C3 0 0 1 0 0 0 1
C4 0 0 0 1 1 1 1
C5 1 0 0 1 1 1 0
C6 0 0 0 1 0 1 0
C7 0 0 0 0 0 0 1

Table 6 Transitivity check

*The identity of a specific challenging factor

C1 C2 C3 C4 C5 C6 C7 DIV RANK

C1 1 0 0 1 1 1* 1 5 4
C2 0 1 0 0 0 0 0 1 1
C3 0 0 1 0 0 0 1 2 2
C4 1* 0 0 1 1 1 1 5 4
C5 1 0 0 1 1 1 0 4 3
C6 1* 0 0 1 1* 1 1* 5 4
C7 0 0 0 0 0 0 1 1 1
DEP 4 1 1 4 4 4 5 23
RANK 2 1 1 2 2 2 3

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 22 of 44

Table 6 outlines the criteria for driving power, dependence power, and their cor-
responding ranks. Driving power represents the set of essential criteria required to
successfully address a specific category of QSE challenging factors. On the other
hand, dependence power refers to the criteria that may contribute to achieving these
objectives. Utilizing both driving and dependence power, we can conduct a cross-
impact matrix multiplication applied to classification (MICMAC) analysis. This
process allows us to categorize the criteria into four distinct clusters: autonomous,
dependent, linkage, and independent clusters.

5.3.3 Partitioning the reachability matrix

Warfield (Warfield 1974) stated that the reachability set comprises the element itself
and any other elements it may contribute to achieving. In contrast, the antecedent
set includes the element itself and any other elements that may facilitate its achieve-
ment. Subsequently, the intersection of these sets is calculated for all elements. Ele-
ments with identical reachability and intersection sets are positioned at the top level
of the ISM hierarchy. These top-level elements do not assist in achieving any other
elements above their level.

After identifying the top-level element, it is isolated from the remaining ele-
ments. The process is then repeated to ascertain the elements in the subsequent
level. This procedure continues until the level of each element is determined.
These levels aid in constructing the diagraph and the ISM model. In this study,
we examine 7 criteria (categories of QSE challenging factors) and present their
reachability set, antecedent set, intersection set, and levels in Table 7.

Table 7 Leveling of final reachability matrix

Level Partitions

Lteration One

Categories Reachability Set Antecedent Set Intersection Set Levels

C1 1,4,5,6,7 1,4,5,6 1,4,5,6
C2 2 2 2 Level 1
C3 3,7 3 3
C4 1,4,5,6,7 1,4,5,6 1,4,5,6
C5 1,4,5,6 1,4,5,6 1,4,5,6 Level 2
C6 1,4,5,6,7 1,4,5,6 1,4,5,6
C7 7 1,3,4,5,7 7 Level 3

Lteration Two
C3 3 3 3 Level 4

1 3

Automated Software Engineering (2023) 30:22 Page 23 of 44 22

5.3.4 Interpretation of the ISM model

The final ISM model was created based on the outcomes of the reachability
matrix analysis (Table 7). The interconnections between categories of QSE chal-
lenging factors are depicted using arrows that indicate the direction of influence
from one criterion to another. Transitivity analysis was conducted to eliminate
ambiguity in the data, which led to the transformation of the diagraph into the
ISM model (Fig. 3).

The C3 (Resources) category emerges as the most influential factor among the
identified QSE challenging factors, signifying that it is an independent category.
All other categories rely on C3. Notably, the C7 (Management) category depends
solely on C3 (Resources), while the remaining categories are influenced by C7
(Management). As shown in Fig. 3, C1(Programming), C4 (Standardization),
C5 (Expertise), and C6 (Responsiveness) belong to level-2 and are influenced by
both C3 and C7, exhibiting strong interrelationships. These categories (C1, C4,
C5, and C6) demonstrate a high degree of dependence and driving power for C2
(Technical), which is situated at level 1. C2 (Technical) has a strong dependence
on all other categories of QSE challenging factors but lacks any driving power.

In summary, C3 (Resources) possesses a potent driving force without any
dependence, while C2 (Technical) exhibits a strong dependency but lacks driv-
ing power. Practitioners should take these findings into account when developing
QSE process implementation strategies, considering the relationships among the
core categories of QSE challenging factors.

Fig. 3 Leveling of core categories of QSE challenging factors

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 24 of 44

5.3.5 MICMAC analysis

The MICMAC analysis is a useful tool for understanding the categories that drive
a system. Attri et al. (Attri et al. 2013a) define the MICMAC as an analysis that
examines the driving and dependence power of categories. By using this analysis,
the influencing factors of QSE can be classified into four clusters based on their
driving and dependence power. Overall, the MICMAC analysis can provide valu-
able insights into the categories that drive a system and their level of impact on
the overall system.

• Autonomous cluster: The first cluster is the autonomous cluster, which con-
sists of categories with weak driving and dependence power. These catego-
ries are largely disconnected from the system due to weak links, and therefore
have a minor impact on the overall system.

• Linkage cluster: The second cluster is the linkage cluster, which consists of
categories with strong driving and dependence power. These categories have
a significant impact on the system and affect other enablers due to their strong
linkage.

• Dependent cluster: The third cluster is the dependent cluster, which consists
of enablers with strong dependence power but weak driving power. These cat-
egories rely heavily on other enablers to function effectively.

• Independent cluster: The independent cluster consists of enablers with weak
dependence power but strong driving power, also known as “key enablers.”
These categories have a significant impact on the system and are crucial for its
success.

5.3.6 Development of conical matrix

The primary objective of developing a conical matrix is to conduct a MICMAC
analysis. The conical matrix, presented in Table 6, is created by analyzing the data
provided in Tables 7 and 8. To create the conical matrix, the categories are first
ordered based on their level number, as shown in Table 8. Then, the values of each
category are taken from Table 7. For example, the value of C2 (Technical) across

Table 8 Conical matrix after
clustering categories of QSE
challenging factors

C3 C7 C1 C4 C5 C6 C2 DIV

C3 1 1 0 0 0 0 0 2
C7 0 1 0 0 0 0 0 1
C1 0 1 1 1 1 1 0 5
C4 0 1 1 1 1 1 0 4
C5 0 0 1 1 1 1 0 4
C6 0 1 1 1 1 1 0 5
C2 0 0 0 0 0 0 1 1
DEP 1 5 4 4 4 4 1

1 3

Automated Software Engineering (2023) 30:22 Page 25 of 44 22

rows and columns of the transitivity matrix in Table 7 indicates that it has no rela-
tionship with any other criterion, except itself (C2), which has a value of “0.” Simi-
larly, the value of C7 indicates a relationship of “1” with C1, C3, C4, C6, and C7,
and a relationship of “0” with the rest of the criteria. This procedure is repeated
for all categories, and the resulting matrix is presented in Table 8. Therefore, the
conical matrix allows for a more comprehensive understanding of the relationships
between categories and their driving and dependence power in the system, which is
crucial for conducting a thorough MICMAC analysis.

To classify the categories of QSE challenging factors, we used the approach pro-
posed by (Kannan et al. 2009) and presented the MICMAC analysis results in Fig. 4.
The categories were classified into four clusters based on their driving and depend-
ence power: autonomous, dependent, and independent clusters, and key categories.
The first cluster includes autonomous categories, and C3 (Resources) was found to
be part of this cluster. This suggests that C3 is largely disconnected from the sys-
tem due to weak links with other categories of QSE challenging factors. The second
cluster includes dependent categories, and C7 (Management) belongs to this clus-
ter. This indicates that C7 has strong dependence power but weak driving power.
C4 (Standardization), C5 (Expertise), and C6 (Responsiveness) were found to have
strong driving and dependence power and were classified into the third and fourth
clusters. These categories have a significant impact on the system and affect other
categories of QSE challenging factors due to their strong linkage. C1 (Programming)
was classified as an independent cluster, indicating that it has weak dependence

Fig. 4 Graphical view of MICMAC analysis

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 26 of 44

power but strong driving power. This category is also considered a key category of
QSE challenging factors. Thus, this MICMAC analysis provides valuable insights
into the driving and dependence power of the categories of QSE challenging factors,
which can be used to develop effective strategies to address these challenges.

5.4 Application of fuzzy TOPSIS

While ISM is helpful in identifying key categories of QSE challenging factors, it
may not fully account for uncertainties and vagueness in decision-making. To
address this, we used the fuzzy TOPSIS approach to rank the challenging factors by
their priority in contributing to the success and progression of QSE processes. The
fuzzy TOPSIS approach is a well-established method used in various engineering
domains for tackling multicriteria decision-making problems (Rafi et al. 2020; Jun-
ior et al. 2014; Liao and Kao 2011; Zouggari and Benyoucef 2012).

To apply the fuzzy TOPSIS approach, we requested feedback from experts who
participated in the ISM analysis (see Fig. 2 for details). We designed a question-
naire (Appendix 1) that allowed each expert to rank the challenging factors based on
their own experience and understanding. To obtain more representative responses,
each participant was allowed to consult with colleagues while ranking the complex
factors. The fuzzy TOPSIS approach was then applied using the ranked challeng-
ing factors, and the resulting fuzzy TOPSIS results were computed. These results
give practitioners a ranking of the highest priority challenging factors for the success
and progression of QSE processes. Therefore, the fuzzy TOPSIS approach provides
a useful tool for addressing uncertainties and vagueness in decision-making when
considering QSE challenging factors. The opinions of experts are valuable in obtain-
ing a comprehensive understanding of the effectiveness of each challenging factor
and determining the highest priority factors for QSE success.

Steps 1 & 2: To get the insights of experts regarding the effectiveness of QSE
challenging factors, we used the fuzzy triangular scale, which yields linguistic
values (Table 2) (Kannan et al. 2009; Sharma and Gupta 1995; Agarwal and Vrat
2017).

Step 3: We calculated the combined decision matrix using Eq. (1) (Sect. 3.4).
The study involved a total of 22 challenging factors that are related to the seven
core categories of QSE challenging factors. The resulting combined decision matrix,
which includes the collective opinions of all the experts involved in decision-mak-
ing, is presented in Table 9.

Step 4: In this step, we calculated the normalized decision matrix by using
Eqs. (2) and (3) (Sect. 3.4). Normalizing the decision matrix is a crucial step in
the fuzzy TOPSIS approach as it enables us to compare the challenging fac-
tors with different units and scales. To normalize the decision matrix, we need to
consider cost and benefit criteria (Attri et al. 2013b). This is a systematic process
that allows us to measure the strengths and weaknesses of alternatives and iden-
tify the best options for achieving benefits while performing a specific task. In our
case, we used “resources” as the cost criterion, as it includes the challenging factors
related to “complexity of quantum algorithms, data encoding issues and difficult to

1 3

Automated Software Engineering (2023) 30:22 Page 27 of 44 22

Ta
bl

e
9

 C
om

bi
ne

d
de

ci
si

on
 m

at
rix

Sr
Pr

og
ra

m
m

in
g

Te
ch

ni
ca

l
Re

so
ur

se
s

St
an

da
rd

iz
at

io
n

Ex
pe

rti
es

Re
sp

on
si

vn
es

s
M

an
ag

em
en

t

W
ei

gh
ts

0,
5

1
2

1,
2

2,
5

3,
5

0,
5

1,
4

2,
5

1,
2

2,
5

3,
5

0,
5

1
1,

5
0,

5
1,

4
2,

5
0,

5
1,

2
2,

5

C
h1

0,
5

2
3

1,
5

2,
4

3,
5

1,
5

2,
4

3,
5

1
1,

2
2,

5
0,

5
1

1,
5

1,
5

2,
3

3
0,

5
1,

3
2,

5
C

h2
0,

5
1,

6
3

0,
5

2,
1

3
1,

5
2

3
0,

5
1,

3
3

0,
5

1,
4

3
1,

5
2,

3
3

1
1,

3
2

C
h3

0,
5

2
3

1
1,

2
2,

5
0,

5
1,

7
3

1,
5

1,
2

3
0,

5
1,

2
2,

5
1,

5
2,

4
3,

5
1

1,
3

2
C

h4
1,

5
2,

5
3

0,
5

2,
1

3
1,

5
2,

3
3,

5
0,

5
1,

2
2,

5
0,

5
1,

2
2,

5
0,

5
2,

1
3

1
1,

3
2

C
h5

0,
5

2
3

0,
5

2,
1

3
0,

5
1,

7
3

0,
5

1,
2

2,
5

0,
5

1
1,

5
0,

5
2,

1
3

0,
5

1,
3

2,
5

C
h6

0,
5

1,
4

3
0,

5
2,

1
3

1,
5

2,
3

3,
5

1,
5

2,
3

3
0,

5
1

1,
5

0,
5

2,
1

3
1,

5
2,

4
3,

5
C

h7
0,

5
1,

4
3

1,
5

2,
3

3
0,

5
2,

1
3,

5
0,

5
1,

3
3

0,
5

1
1,

5
1,

5
2,

4
3,

5
0,

5
1

1,
5

C
h8

0,
5

1,
4

3
1

2
3

0,
5

1,
7

3
1,

5
1,

2
3

1,
3

3
3,

5
1,

5
2,

5
3,

5
1

1,
3

2
C

h9
1,

5
2,

1
3

1
1,

4
2

0,
5

2,
1

3,
5

0,
5

1,
2

2,
5

0,
5

1,
2

2,
5

1,
5

2,
2

3,
5

0,
5

1
1,

5
C

h1
0

0,
5

2
3

0,
5

1,
4

2,
5

1,
5

2,
4

3,
5

1,
5

2,
3

3
0,

5
1

1,
5

1,
5

2,
4

3,
5

0,
5

1
2

C
h1

1
1,

5
2,

1
3

1
1,

4
2

0,
5

1,
7

3
0,

1
1,

8
3

0,
5

1,
2

2,
5

0,
5

2,
1

3
1

1,
3

2
C

h1
2

0,
5

1
1,

5
1

1,
4

2
1,

5
2,

3
3,

5
1,

5
2,

3
3

0,
5

1,
3

2
1,

5
2,

3
3

0,
5

1
1,

5
C

h1
3

0,
5

1
1,

5
0,

5
1,

4
2,

5
0,

5
2,

1
3,

5
0,

1
1,

8
3

0,
5

1
1,

5
0,

5
1

1,
5

0,
5

1,
7

3
C

h1
4

0,
5

2
3

1
1,

4
2

0,
5

2,
1

3,
5

0,
1

1,
8

2
0,

5
1

1,
5

0,
5

1,
7

3
0,

5
1,

7
3

C
h1

5
0,

5
2

3
0,

5
2,

1
3

1,
5

2,
4

3,
5

0,
1

1,
8

3
1,

3
3

3,
5

1,
5

2,
4

3,
5

1
1,

3
2

C
h1

6
0,

5
1,

4
3

1,
5

2,
3

3
1,

5
2,

4
3,

5
1

1,
4

2
0,

5
2

3
0,

5
2,

1
3

0,
5

1,
7

3
C

h1
7

0,
5

1,
4

3
0,

5
2,

1
3

0,
5

1,
7

3
0,

1
1,

8
3

0,
5

1
1,

5
0,

5
1,

7
3

0,
5

1
1,

5
C

h1
8

1,
5

2,
1

3
0,

5
2,

1
3

1,
5

2,
3

3,
5

1
1,

4
2

1,
3

3
3,

5
1,

5
2,

4
3,

5
1

1,
3

2
C

h1
9

0,
5

1
1,

5
0,

5
2,

1
3

0,
5

2,
1

3,
5

0,
1

1,
8

2
0,

5
1,

3
2

0,
5

1,
7

3
0,

5
1

1,
5

C
h2

0
1,

5
2,

5
3

1,
5

2,
3

3
0,

5
2,

1
3,

5
0,

1
1,

8
3

0,
5

1
1,

5
0,

5
2,

1
3

1
1,

3
2

C
h2

1
0,

5
2

3
1

1,
4

2
0,

5
2,

1
3,

5
1

1,
4

2
1,

3
3

3,
5

0,
5

1,
7

3
0,

5
1

1,
5

C
h2

2
0,

5
1,

4
3

0,
5

2,
1

3
0,

5
1,

7
3

0,
1

1,
8

3
0,

5
1

1,
5

0,
5

1,
7

3
0,

5
1

1,
5

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 28 of 44

Ta
bl

e
10

N

or
m

al
iz

ed
 d

ec
is

io
n

m
at

rix

Sr
Pr

og
ra

m
m

in
g

Te
ch

ni
ca

l
Re

so
ur

se
s

St
an

da
rd

iz
at

io
n

Ex
pe

rti
es

Re
sp

on
si

vn
es

s
M

an
ag

em
en

t

W
ei

gh
ts

0,
5

1
2

1,
2

2,
5

3,
5

0,
5

1,
4

2,
5

1,
2

2,
5

3,
5

0,
5

1
1,

5
0,

5
1,

4
2,

5
0,

5
1,

2
2,

5

C
h1

0,
17

0,
25

1,
00

0,
43

0,
69

1,
00

0,
43

0,
69

1,
00

0,
33

0,
40

0,
83

0,
14

0,
29

0,
43

0,
43

0,
66

0,
86

0,
14

0,
37

0,
71

C
h2

0,
17

0,
31

1,
00

0,
14

0,
60

0,
86

0,
43

0,
57

0,
86

0,
17

0,
43

1,
00

0,
14

0,
40

0,
86

0,
43

0,
66

0,
86

0,
29

0,
37

0,
57

C
h3

0,
17

0,
25

1,
00

0,
29

0,
34

0,
71

0,
14

0,
49

0,
86

0,
50

0,
40

1,
00

0,
14

0,
34

0,
71

0,
43

0,
69

1,
00

0,
29

0,
37

0,
57

C
h4

0,
17

0,
20

0,
33

0,
14

0,
60

0,
86

0,
43

0,
66

1,
00

0,
17

0,
40

0,
83

0,
14

0,
34

0,
71

0,
14

0,
60

0,
86

0,
29

0,
37

0,
57

C
h5

0,
17

0,
25

1,
00

0,
14

0,
60

0,
86

0,
14

0,
49

0,
86

0,
17

0,
40

0,
83

0,
14

0,
29

0,
43

0,
14

0,
60

0,
86

0,
14

0,
37

0,
71

C
h6

0,
17

0,
36

1,
00

0,
14

0,
60

0,
86

0,
43

0,
66

1,
00

0,
50

0,
77

1,
00

0,
14

0,
29

0,
43

0,
14

0,
60

0,
86

0,
43

0,
69

1,
00

C
h7

0,
17

0,
36

1,
00

0,
43

0,
66

0,
86

0,
14

0,
60

1,
00

0,
17

0,
43

1,
00

0,
14

0,
29

0,
43

0,
43

0,
69

1,
00

0,
14

0,
29

0,
43

C
h8

0,
17

0,
36

1,
00

0,
29

0,
57

0,
86

0,
14

0,
49

0,
86

0,
50

0,
40

1,
00

0,
37

0,
86

1,
00

0,
43

0,
71

1,
00

0,
29

0,
37

0,
57

C
h9

0,
17

0,
24

0,
33

0,
29

0,
40

0,
57

0,
14

0,
60

1,
00

0,
17

0,
40

0,
83

0,
14

0,
34

0,
71

0,
43

0,
63

1,
00

0,
14

0,
29

0,
43

C
h1

0
0,

17
0,

25
1,

00
0,

14
0,

40
0,

71
0,

43
0,

69
1,

00
0,

50
0,

77
1,

00
0,

14
0,

29
0,

43
0,

43
0,

69
1,

00
0,

14
0,

29
0,

57
C

h1
1

0,
17

0,
24

0,
33

0,
29

0,
40

0,
57

0,
14

0,
49

0,
86

0,
03

0,
60

1,
00

0,
14

0,
34

0,
71

0,
14

0,
60

0,
86

0,
29

0,
37

0,
57

C
h1

2
0,

33
0,

50
1,

00
0,

29
0,

40
0,

57
0,

43
0,

66
1,

00
0,

50
0,

77
1,

00
0,

14
0,

37
0,

57
0,

43
0,

66
0,

86
0,

14
0,

29
0,

43
C

h1
3

0,
33

0,
50

1,
00

0,
14

0,
40

0,
71

0,
14

0,
60

1,
00

0,
03

0,
60

1,
00

0,
14

0,
29

0,
43

0,
14

0,
29

0,
43

0,
14

0,
49

0,
86

C
h1

4
0,

17
0,

25
1,

00
0,

29
0,

40
0,

57
0,

14
0,

60
1,

00
0,

03
0,

60
0,

67
0,

14
0,

29
0,

43
0,

14
0,

49
0,

86
0,

14
0,

49
0,

86
C

h1
5

0,
17

0,
25

1,
00

0,
14

0,
60

0,
86

0,
43

0,
69

1,
00

0,
03

0,
60

1,
00

0,
37

0,
86

1,
00

0,
43

0,
69

1,
00

0,
29

0,
37

0,
57

C
h1

6
0,

17
0,

36
1,

00
0,

43
0,

66
0,

86
0,

43
0,

69
1,

00
0,

33
0,

47
0,

67
0,

14
0,

57
0,

86
0,

14
0,

60
0,

86
0,

14
0,

49
0,

86
C

h1
7

0,
17

0,
36

1,
00

0,
14

0,
60

0,
86

0,
14

0,
49

0,
86

0,
03

0,
60

1,
00

0,
14

0,
29

0,
43

0,
14

0,
49

0,
86

0,
14

0,
29

0,
43

C
h1

8
0,

17
0,

24
0,

33
0,

14
0,

60
0,

86
0,

43
0,

66
1,

00
0,

33
0,

47
0,

67
0,

37
0,

86
1,

00
0,

43
0,

69
1,

00
0,

29
0,

37
0,

57
C

h1
9

0,
33

0,
50

1,
00

0,
14

0,
60

0,
86

0,
14

0,
60

1,
00

0,
03

0,
60

0,
67

0,
14

0,
37

0,
57

0,
14

0,
49

0,
86

0,
14

0,
29

0,
43

C
h2

0
0,

17
0,

20
0,

33
0,

43
0,

66
0,

86
0,

14
0,

60
1,

00
0,

03
0,

60
1,

00
0,

14
0,

29
0,

43
0,

14
0,

60
0,

86
0,

29
0,

37
0,

57
C

h2
1

0,
17

0,
25

1,
00

0,
29

0,
40

0,
57

0,
14

0,
60

1,
00

0,
33

0,
47

0,
67

0,
37

0,
86

1,
00

0,
14

0,
49

0,
86

0,
14

0,
29

0,
43

C
h2

2
0,

17
0,

36
1,

00
0,

14
0,

60
0,

86
0,

14
0,

49
0,

86
0,

03
0,

60
1,

00
0,

14
0,

29
0,

43
0,

14
0,

49
0,

86
0,

14
0,

29
0,

43

1 3

Automated Software Engineering (2023) 30:22 Page 29 of 44 22

Ta
bl

e
11

W

ei
gh

te
d

no
rm

al
iz

ed
 d

ec
is

io
n

m
at

rix

Sr
Pr

og
ra

m
m

in
g

Te
ch

ni
ca

l
Re

so
ur

se
s

St
an

da
rd

iz
at

io
n

Ex
pe

rti
es

Re
sp

on
si

vn
es

s
M

an
ag

em
en

t

W
ei

gh
ts

0,
5

1
2

1,
2

2,
5

3,
5

0,
5

1,
4

2,
5

1,
2

2,
5

3,
5

0,
5

1
1,

5
0,

5
1,

4
2,

5
0,

5
1,

2
2,

5

C
h1

0,
08

0,
25

2,
00

0,
51

1,
71

3,
5

0,
21

0,
96

2,
50

0,
4

1,
00

2,
92

0,
07

0,
29

0,
64

0,
21

0,
92

7,
50

0,
07

0,
45

1,
79

C
h2

0,
08

0,
31

2,
00

0,
17

1,
50

3
0,

21
0,

8
2,

14
0,

2
1,

08
3,

50
0,

07
0,

40
1,

29
0,

21
0,

92
0,

00
0,

14
0,

45
1,

43
C

h3
0,

08
0,

25
2,

00
0,

34
0,

86
2,

5
0,

07
0,

68
2,

14
0,

6
1,

00
3,

50
0,

07
0,

34
1,

07
0,

21
0,

96
0,

00
0,

14
0,

45
1,

43
C

h4
0,

08
0,

20
0,

67
0,

17
1,

50
3

0,
21

0,
92

2,
50

0,
2

1,
00

2,
92

0,
07

0,
34

1,
07

0,
07

0,
84

0,
00

0,
14

0,
45

1,
43

C
h5

0,
08

0,
25

2,
00

0,
17

1,
50

3
0,

07
0,

68
2,

14
0,

2
1,

00
2,

92
0,

07
0,

29
0,

64
0,

07
0,

84
6,

25
0,

07
0,

45
1,

79
C

h6
0,

08
0,

36
2,

00
0,

17
1,

50
3

0,
21

0,
92

2,
50

0,
6

1,
92

3,
50

0,
07

0,
29

0,
64

0,
07

0,
84

2,
14

0,
21

0,
82

2,
50

C
h7

0,
08

0,
36

2,
00

0,
51

1,
64

3
0,

07
0,

84
2,

50
0,

2
1,

08
3,

50
0,

07
0,

29
0,

64
0,

21
0,

96
2,

14
0,

07
0,

34
1,

07
C

h8
0,

08
0,

36
2,

00
0,

34
1,

43
3

0,
07

0,
68

2,
14

0,
6

1,
00

3,
50

0,
19

0,
86

1,
50

0,
21

1
2,

50
0,

14
0,

45
1,

43
C

h9
0,

08
0,

24
0,

67
0,

34
1,

00
2

0,
07

0,
84

2,
50

0,
2

1,
00

2,
92

0,
07

0,
34

1,
07

0,
21

0,
88

2,
14

0,
07

0,
34

1,
07

C
h1

0
0,

08
0,

25
2,

00
0,

17
1,

00
2,

5
0,

21
0,

96
2,

50
0,

6
1,

92
3,

50
0,

07
0,

29
0,

64
0,

21
0,

96
2,

14
0,

07
0,

34
1,

43
C

h1
1

0,
08

0,
24

0,
67

0,
34

1,
00

2
0,

07
0,

68
2,

14
0,

04
1,

50
3,

50
0,

07
0,

34
1,

07
0,

07
0,

84
2,

14
0,

14
0,

45
1,

43
C

h1
2

0,
17

0,
50

2,
00

0,
34

1,
00

2
0,

21
0,

92
2,

50
0,

6
1,

92
3,

50
0,

07
0,

37
0,

86
0,

21
0,

92
2,

50
0,

07
0,

34
1,

07
C

h1
3

0,
17

0,
50

2,
00

0,
17

1,
00

2,
5

0,
07

0,
84

2,
50

0,
04

1,
50

3,
50

0,
07

0,
29

0,
64

0,
07

0,
4

2,
50

0,
07

0,
58

2,
14

C
h1

4
0,

08
0,

25
2,

00
0,

34
1,

00
2

0,
07

0,
84

2,
50

0,
04

1,
50

2,
33

0,
07

0,
29

0,
64

0,
07

0,
68

2,
50

0,
07

0,
58

2,
14

C
h1

5
0,

08
0,

25
2,

00
0,

17
1,

50
3

0,
21

0,
96

2,
50

0,
04

1,
50

3,
50

0,
19

0,
86

1,
50

0,
21

0,
96

2,
50

0,
14

0,
45

1,
43

C
h1

6
0,

08
0,

36
2,

00
0,

51
1,

64
3

0,
21

0,
96

2,
50

0,
4

1,
17

2,
33

0,
07

0,
57

1,
29

0,
07

0,
84

2,
14

0,
07

0,
58

2,
14

C
h1

7
0,

08
0,

36
2,

00
0,

17
1,

50
3

0,
07

0,
68

2,
14

0,
04

1,
50

3,
50

0,
07

0,
29

0,
64

0,
07

0,
68

2,
14

0,
07

0,
34

1,
07

C
h1

8
0,

08
0,

24
0,

67
0,

17
1,

50
3

0,
21

0,
92

2,
50

0,
4

1,
17

2,
33

0,
19

0,
86

1,
50

0,
21

0,
96

1,
07

0,
14

0,
45

1,
43

C
h1

9
0,

17
0,

50
2,

00
0,

17
1,

50
3

0,
07

0,
84

2,
50

0,
04

1,
50

2,
33

0,
07

0,
37

0,
86

0,
07

0,
68

2,
14

0,
07

0,
34

1,
07

C
h2

0
0,

08
0,

20
0,

67
0,

51
1,

64
3

0,
07

0,
84

2,
50

0,
04

1,
50

3,
50

0,
07

0,
29

0,
64

0,
07

0,
84

2,
50

0,
14

0,
45

1,
43

C
h2

1
0,

08
0,

25
2,

00
0,

34
1,

00
2

0,
07

0,
84

2,
50

0,
4

1,
17

2,
33

0,
19

0,
86

1,
50

0,
07

0,
68

2,
14

0,
07

0,
34

1,
07

C
h2

2
0,

08
0,

36
2,

00
0,

17
1,

50
3

0,
07

0,
68

2,
14

0,
04

1,
50

3,
50

0,
07

0,
29

0,
64

0,
07

0,
68

2,
14

0,
07

0,
34

1,
07

A
 +

0,

17
0,

50
2,

00
0,

51
1,

71
3,

50
0,

21
0,

96
2,

50
0,

60
1,

92
3,

50
0,

19
0,

86
1,

50
0,

21
1,

00
7,

50
0,

21
0,

82
2,

50
A

-
0,

08
0,

20
0,

67
0,

17
0,

86
2,

00
0,

07
0,

68
2,

14
0,

04
1,

00
2,

33
0,

07
0,

29
0,

64
0,

07
0,

40
0,

00
0,

07
0,

34
1,

07

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 30 of 44

optimize quantum software.” By normalizing the decision matrix, we were able to
assign equal weight to each criterion and rank the challenging factors based on their
overall performance. The results of the normalized decision matrix are presented in
Table 10.

Step 5: In this step, we computed the weighted decision matrix by multiplying
the weights assigned by the group of experts for each criterion with their respective
alternative (i.e., challenging factors), using Eq. (4). The resulting weighted decision
matrix is presented in Table 11.

Step 6: In this step, we executed Eqs. (5) and (6) and calculated the fuzzy ideal
solutions (positive and negative). The fuzzy positive and negative solutions are
given in Tables 12 and 13.

Step 7: In this step, we determined the distance Di* and Di- for each QSE chal-
lenging factor for the criteria (Eq. 7, and 8), and the results are given in Tables 13
and 14.

Step 8: Using Eq. (9), the closeness coefficient was calculated; the results are
given in Table 14.

Step 9: The ranks for each challenging factor were determined based on their
closeness coefficient (CCi) values, with higher CCi values indicating a higher rank-
ing (Table 14). The priority ranks were determined to assess the significance of the
challenging factors within their specified category (local ranks) and in comparison,
to all 22 identified challenging factors (global ranks), as presented in Table 14.

For example, Ch1 (Complex programming, with a CCi value of 0.95) was iden-
tified as the most significant challenging factor within its category (C1, program-
ming) and ranked highest in the global ranks. Additionally, Ch5 (Limited software
libraries, with a CCi value of 0.89) was ranked as the 1st priority challenging factor
within its category (C2, Technical) and 2nd in the global ranks. The local and global
ranks for all factors were determined using the same process, and the results are pre-
sented in Table 14.

6 Systematic decision‑making framework of QSE challenging factors

Finally, we developed a systematic decision-making framework of the identified
QSE challenging factors using the ISM and fuzzy TOPSIS approaches. The devel-
oped framework (Fig. 5) indicates the global ranking (GR) and local ranking (LR) of
each of the identified challenging factors. The local ranks were calculated to check
the priority of a challenging factor within its specific core category and the global
ranking (GR) presents the priority order of challenging factors for overall QSE
process.

According to the developed framework, the C3 (Resources) category is entirely
independent, as it stands out at level four in the ISM analysis. The MICMAC analy-
sis showed that C3 belongs to an autonomous cluster, implying that resources have
a weak dependency on other core QSE categories. This indicates that resources may
have a more self-sufficient role in addressing QSE challenges. According to Heng
et al. (Li et al. 2021), prioritizing the challenges of the resources category could

1 3

Automated Software Engineering (2023) 30:22 Page 31 of 44 22

be a more straightforward approach to QSE management. The prioritization-based
ranking of C3 challenges shows that Ch8 (Data encoding issues), Ch7 (Complex-
ity of quantum algorithms), and Ch9 (Difficulty optimizing quantum software) rank
5th, 8th, and 17th globally, suggesting that C3 (Resources) is independent but its
related challenging factors are not ranked as the top significant challenging factors
for QSE process. The results reveal that the C1 (Programming) category depends on
C3 and C7, yet its challenge Ch1 (Complex programming) ranks as the most signifi-
cant challenging factor locally and globally. In summary, the ISM-based leveling of
core categories does not directly influence the priority of related challenging factors;
instead, it indicates the dependency, interdependency, driving force, and dependence
power of each category on other categories.

As depicted in Fig. 5, C7 (Management) is only dependent on C3 (Resources),
while all other QSE challenging factors categories rely on it. Furthermore, C2
(Technical) is a fully dependent category, situated at level 1, indicating that all other
QSE challenging factors categories can significantly impact the implementation of
C2 challenging factors. Despite its complete dependency, Ch5 (Limited software

Table 12 Fuzzy positive ideal solution

Sr Program-
ming

Technical Resources Standardiza-
tion

Experties Responsive-
ness

Manage-
ment

DI*

Ch1 0.15 0.00 0.00 0.64 0.60 0.05 0.47 1.91
Ch2 0.12 0.37 0,23 0.53 0.30 4.33 0.66 6.54
Ch3 0.15 0.77 0.27 0.53 0.39 4.33 0.66 7.10
Ch4 0.79 0.37 0.02 0.67 0.39 4.33 0.66 7.23
Ch5 0.15 0.37 0.27 0.67 0.60 0.73 0.47 3.27
Ch6 0.10 0.37 0.02 0.00 0.60 3.10 0.00 4.18
Ch7 0.10 0.29 0.11 0.53 0.60 3.09 0.87 5.59
Ch8 0.10 0.35 0.27 0.53 0.00 2.89 0.66 4.79
Ch9 0.79 0.96 0.11 0.67 0.39 3.09 0.87 6.89
Ch10 0.15 0.74 0.00 0.00 0.60 3.09 0.68 5.26
Ch11 0.79 0.96 0.27 0.40 0.39 3.10 0.66 6.57
Ch12 0.00 0.96 0.02 0.00 0.47 2.89 0.87 5.22
Ch13 0.00 0.74 0.11 0.40 0.60 2.91 0.26 5.02
Ch14 0.15 0.96 0.11 0.78 0.60 2.89 0.26 5.76
Ch15 0.15 0.37 0.00 0.40 0.00 2.89 0.66 4.47
Ch16 0.10 0.29 0.00 0.81 0.22 3.10 0.26 4.77
Ch17 0.10 0.37 0.27 0.40 0.60 3.10 0.87 5.72
Ch18 0.79 0.37 0.02 0.81 0.00 3.71 0.66 6.36
Ch19 0.00 0.37 0.11 0.78 0.47 3.10 0.87 5.71
Ch20 0.79 0.29 0.11 0.40 0.60 2.89 0.66 5.74
Ch21 0.15 0.96 0.11 0.81 0.00 3.10 0.87 6.01
Ch22 0.10 0.37 0.27 0.40 0.60 3.10 0.87 5.72

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 32 of 44

libraries) is identified as the second most important challenging factor for imple-
menting the QSE process.

The development framework (Fig. 5) highlights that Ch1 (Complex program-
ming) is the top-ranked challenging factor within its category and for the overall
QSE process. Similarly,—Bettina et al. (Heim et al. 2020) state that quantum soft-
ware programming complexity arises from the need to understand quantum mechan-
ics principles like superposition and entanglement, which differ significantly from
classical computing. Higher error rates in quantum computing necessitate robust
error correction methods. Developing efficient quantum algorithms is challeng-
ing, as they often require inventive approaches to leverage quantum properties. The
lack of mature quantum programming languages and libraries further complicates
the process. Alexander et al. (McCaskey et al. 2018) also emphasize that the rapid
evolution of quantum hardware demands continuous adaptation and optimization to
fully harness its potential.

Ch5 (Limited software libraries) is ranked as 1st within their category and
2nd most important challenging for overall QSE process. This is also evident
from the literature as indicted by Maria et al. (Belkhir et al. 2022) as the limited

Table 13 Fuzzy negative ideal solution

Sr Program-
ming

Technical Resources Standardiza-
tion

Experties Responsive-
ness

Manage-
ment

DI-

Ch1 1.03 1.52 1.36 0.15 0.20 3.64 0.30 3.19
Ch2 1.03 1.26 0.60 0.02 0.79 0.17 0.08 3.96
Ch3 1.03 1.04 0.14 0.18 0.79 0.19 0.08 3.46
Ch4 0.00 0.24 0.62 0.09 0.20 0.11 0.08 1.34
Ch5 1.03 1.26 0.58 0.01 0.20 2.66 0.30 2.05
Ch6 1.04 1.26 0.62 0.74 0.79 2.76 1.32 8.54
Ch7 1.04 1.45 0.59 0.09 0.79 2.84 0.00 6.81
Ch8 1.04 1.23 0.58 0.18 0.98 3.83 0.08 7.92
Ch9 0.00 0.03 0.01 0.09 0.20 2.80 0.00 3.13
Ch10 1.03 1.04 0.20 0.74 0.79 2.84 0.07 6.71
Ch11 0.00 0.03 0.00 0.14 0.79 2.76 0.08 3.81
Ch12 1.08 1.06 0.05 0.74 0.79 3.78 0.00 7.49
Ch13 1.08 1.04 0.16 0.22 0.79 3.61 0.70 7.59
Ch14 1.03 1.06 0.01 0.22 0.00 3.65 0.70 6.67
Ch15 1,.03 1.26 0.63 0.22 0.98 3.80 0.08 8.01
Ch16 1.04 1.45 0.63 0.16 0.05 2.76 0.70 6.80
Ch17 1.04 1.26 0.58 0.14 0.79 2.70 0.00 6.51
Ch18 0.00 0.24 0.62 0.16 0.20 0.86 0.08 2.16
Ch19 1.08 1.26 0.59 0.22 0.00 2.70 0.00 5.86
Ch20 0.00 0.42 0.59 0.22 0.79 3.72 0.08 5.82
Ch21 1.03 1.06 0.01 0.16 0.20 2.70 0.00 5.15
Ch22 1.04 1.26 0.58 0.14 0.79 2.70 0.00 6.51

1 3

Automated Software Engineering (2023) 30:22 Page 33 of 44 22

software libraries in quantum computing hinder the availability of pre-built tools
and resources for developers. This scarcity forces quantum software engineers to
create custom solutions, which can be both time-consuming and error prone. Stefano
et al. (Stefano et al. 2022) also underlined the lack of standardized libraries hampers
collaboration and interoperability between different quantum platforms. As a result,
the overall progress and adoption of quantum software engineering face significant
obstacles.

Ch6 (Maintenance complexity) within C2 is ranked as the 2nd most significant
challenge locally, and it holds the position of the 3rd most significant challenging
factor in the global ranking. According to Zhao et al. (Zhao 2007) maintenance is
complex in quantum software engineering due to the rapidly evolving landscape
of quantum hardware, necessitating frequent updates and optimizations. Quantum
error rates and susceptibility to environmental noise require ongoing improvements
in error correction techniques (Azeem Akbar et al. 2022). The scarcity of experi-
enced quantum software engineers contributes to the challenge of maintaining and
enhancing quantum applications. Additionally, as new quantum algorithms emerge,

Table 14 Closeness coefficient values and ranks

Categories Sr Challenging factors CCi Local ranks Global ranks

Programming (C1) Ch1 Complex programming 0.95 1 1
Ch2 Limited simulation resources 0.38 2 14
Ch3 High error rates 0.33 3 16

Technical (C2) Ch4 Lack of debugging tools 0.16 3 19
Ch5 Limited software libraries 0.89 1 2
Ch6 Maintenance complexity 0.67 2 3

Resources (C3) Ch7 Complexity of quantum algorithms 0.55 2 8
Ch8 Data encoding issues 0.62 1 5
Ch9 Difficult to optimize quantum soft-

ware
0.31 3 17

Standardization (C4) Ch10 Lack of standardization 0.56 2 7
Ch11 Lack of interoperability 0.37 3 15
Ch12 Lack of requirements engineering

strategies
0.59 1 7

Experties (C5) Ch13 Lack of expertise 0.60 2 6
Ch14 Integration with classical computing 0.54 3 9
Ch15 Lack of training and workshops 0.64 1 4

Responsiveness (C6) Ch16 Security issue in QSE 0.59 1 7
Ch17 Ethical issue in QSE 0.53 2 10

Management (C7) Ch18 Verification and validation issues 0.25 4 18
Ch19 QSE scalability issues 0.51 1 11
Ch20 Budget constraints 0.50 2 12
Ch21 Lack of commercial applications 0.46 3 13
Ch22 Project management issues 0.16 5 19

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 34 of 44

Fi
g.

 5

Sy
ste

m
at

ic
 d

ec
is

io
n-

m
ak

in
g

fr
am

ew
or

k
of

 Q
SE

 c
ha

lle
ng

in
g

fa
ct

or
s

1 3

Automated Software Engineering (2023) 30:22 Page 35 of 44 22

integrating them into existing systems can be intricate. Lastly, the lack of standard-
ized practices and protocols in this nascent field complicates the maintenance pro-
cess and hinders long-term stability (Pérez-Castillo et al. 2021).

Moreover, Ch15 (Lack of training and workshops), and Ch 8 (Data encoding
issues) are ranked as 4th and 5th most important challenging factors for QSE process
execution. Lastly, Ch4 (Lack of debugging tools) within C2 (Technical) and Ch22
(Project management issues) in C7 (Management) both rank at 19th and declared as
the least significant challenging factors for successful QSE process implementation.

The proposed systematic decision-making framework assists QSE practitioners
in revising or developing new, effective strategies for successful QSE process execu-
tion by taking into account the dependencies and driving forces of the core catego-
ries of QSE challenges. Additionally, practitioners should consider the critical levels
of QSE challenges, as presented in Fig. 5. Researchers should also focus on the most
important challenging factors of the QSE process in their future studies.

7 Study implications and threats to validity

Study implications and threats to validity are two essential aspects of this research
study. The implications of a study are its potential real-world applications and con-
sequences. Threats to validity, on the other hand, are expected limitation or bias that
can undermine the accuracy and reliability of research findings. The potential impli-
cation of our research work and threats to validity are given in Sect. 6.1 and 6.2
respectively.

7.1 Implications

For researchers: This study offers a comprehensive overview of the challenging
factors that are critical to the successful adoption and execution of QSE process.
By conducting a thorough review of existing literature, this study identifies the 22
challenging factors that can negatively impact the implementation, execution, and
improvement of QSE processes. This list of identified challenging factors serve as
a knowledge base to provide valuable insights to researchers to inform their future
strategies. Moreover, this study develops a systematic decision-making framework
to assess the criticality of the identified challenging factors to the adoption of QSE
processes. This framework can serve as a valuable guide to researchers in selecting
the most critical challenges that need to be addressed first.

Additionally, this study examines the interrelationships and dependencies among
the core categories of the identified challenging factors. By doing so, it provides a
more nuanced understanding of how these factors can impact the QSE process.

In summary, the systematic decision-making framework developed in this
study can provide researchers with useful guidelines to improve the adoption and
implementation of QSE processes in their future work. This study’s findings can
also enhance researcher’s understanding of the factors that influence QSE process

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 36 of 44

adoption, and this will facilitate the researcher to the development of more effective
strategies and roadmap for the success and progression of QSE process.

For practitioners: The results of our study can be valuable for practitioners in
various ways. Firstly, practitioners can use the list of identified challenging factors
as a knowledge base to guide their QSE process. This can help to keep focusing on
the most critical areas to make their QSE process effective.

Secondly, organizations can use the identified list of challenging factors to
improve their project management capabilities by developing training opportunities
targeted at areas where further skill development is needed. This can enhance the
overall expertise of their team, leading to more successful QSE process.

Thirdly, practitioners can benefit from focusing on the highest priority challeng-
ing factors of each category, as this can help them better plan for the improvements
of QSE process. This approach can lead to better outcomes and more efficient pro-
ject management.

Organizations can also use the list of challenging factors as a basis for hiring
software engineers with specific skills, as a risk mitigation strategy for QSE pro-
jects. This can help ensure that the right people with the right skills are involved in
the project, addressing the critical challenging areas, and improving the chances of
success.

The study findings can also be used to measure an organization’s weak point to
the adoption of QSE process. The developed systematic decision-making framework
provides software practitioners with the ability to understand their current QSE
related weaknesses within their organization.

Ultimately, the developed systematic decision-making framework software devel-
opment organizations in a better position to adopt QSE process by preliminary
addressing the important areas of QSE and this will lead to better outcomes and
more efficient project management.

7.2 Threats to validity

There are several potential threats to the validity of this study. One of these
threats is the study is the data extraction process from the existing literature and
may have resulted in some relevant process areas being missed using informal
literature review approach. However, it should be noted that the same literature
review approach has been used in other studies for factor identification and clas-
sification and is not a systematic omission (Khan et al. 2019; Shameem et al.
2018). In future, we will consider a more systematic approach to ensure all rel-
evant process areas are captured.

One possible threat is the limited time and resources available to conduct the
empirical study with blockchain based software development experts, which
may affect the validity of the reported process areas and their mapping. Addi-
tionally, the sample size of the survey questionnaire (n = 133) may not be suffi-
cient to fully support the validity of the reported process areas, though it is rep-
resentative data sample based on existing studies (Khan et al. 2019; Shameem
et al. 2018; Akbar et al. 2019).

1 3

Automated Software Engineering (2023) 30:22 Page 37 of 44 22

Another possible threat to this study findings is the potential differences in
participants’ understanding of the survey instruments. To address this threat, we
followed Kitchenham and Pfleeger’s guidelines for conducting surveys (Kitchen-
ham et al. 2002) and piloted instrument to ensure their understandability. While
our survey questionnaire was in English, we encountered some participants dur-
ing the data collection process who found it challenging to convey their answers
in English.

Another potential limitation of this study is the predominantly of Asian
respondent pool, but data from other continents was also collected to increase
representativeness. Similarly, a potential threat to the validity of this study is
related to the survey conducted with QSE practitioners, which could be subject
to response bias and may not accurately represent the actual population distribu-
tion. However, the study used a snowball sampling approach to locate experi-
enced practitioners using web-based survey instruments. While it was not fea-
sible to directly verify participants’ experience, the study attempted to mitigate
this limitation by targeting practitioners with at least two years of experience in
QSE practices. Nonetheless, the participants’ opinions may still be subject to
inaccuracies regarding project outcomes. Future studies could consider alterna-
tive methods for verifying participants’ experience and mitigating response bias.

Lastly, one of the potential threats of conclusion validity in this study is that
the conclusions may be based solely on the understanding and experience of a
single author, and conflicts between authors regarding the conclusions may not
have been fully discussed or resolved. To address this threat, we took a collab-
orative approach. The first author extracted and analyzed the study data from
the survey, and all other authors reviewed the data thoroughly through multiple
meetings. Any conflicts on data analysis results were resolved through mutual
discussions and brainstorming among all authors.

8 Conclusion and future work

Quantum software engineering (QSE) is a rapidly evolving field that involves the
development, design, and implementation of software tailored for quantum comput-
ing systems. QSE is more challenging than classical software engineering due to
the unique features of quantum computing and the lack of mature quantum develop-
ment tools. In this study, we identify the 22 critical challenging factors of QSE by
conducting a literature survey and mapped them into 7 core categories. Using the
ISM approach, we obtained practitioners’ views on the interrelationships between
these core categories and found that the ‘Resources’ category has the highest driv-
ing power, while the ‘Technical’ category is fully dependent on the other six cat-
egories and has no drawing power. Finally, using the fuzzy-TOPSIS approach, we
determined that ‘complex programming,’ ‘limited software libraries,’ ‘maintenance
complexity,’ ‘lack of training and workshops,’ and ‘data encoding issues’ are the
most critical challenging factors for the QSE process execution.

In the future, we plan to extend this study by empirically exploring additional
challenging factors with QSE practitioners. Additionally, we aim to conduct a

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 38 of 44

comprehensive study to identify success factors, barriers, and best practices for each
phase of the software development process from requirement engineering to imple-
mentation. Ultimately, we aim to develop a readiness model to help software devel-
opment organizations assess their readiness for adopting and improving the QSE
process.

Appendix 1

Sample of Used Questionnaire for Fuzzy-TOPSIS (https:// tinyu rl. com/ 3xxy9 w2v).

Author’s contribution Methodology, formal analysis and project administration done by MAA; data cura-
tion done by SR, and final revision and English polishing done by AAK. All authors have read and agreed
to the published version of the manuscript.

Funding Open Access funding provided by University of Oulu including Oulu University Hospital.

Data availability The codes and data are available under request from the authors.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Agarwal P. and Alam M., “Exploring quantum computing to revolutionize big data analytics for various
industrial sectors,” in Big Data Analytics, ed: Auerbach Publications, 2021, pp. 113–130.

Agarwal, A., Vrat, P.: Modeling attributes of human body organization using ISM and AHP. Jindal J.
Bus. Res. 6, 44–62 (2017)

Akbar M. A., Rafi S., and Khan A. A. J. A. P. A., “Classical to quantum software migration journey
begins: a conceptual readiness model,” 2022.

Akbar, M.A., Khan, A.A., Khan, A.W., Mahmood, S.: Process Requirement change management chal-
lenges in GSD: An analytical hierarchy process approach. J. Softw. Evol. Proc. 32, e2246 (2020a)

Akbar, M.A., Khan, A.A., Mahmood, S., Alsanad, A., Gumaei, A.: A robust framework for cloud-based
software development outsourcing factors using analytical hierarchy process. J. Softw. Evolut. Pro-
cess 33, e2275 (2021b)

https://tinyurl.com/3xxy9w2v
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Automated Software Engineering (2023) 30:22 Page 39 of 44 22

Akbar, M.A., Khan, A.A., Mahmood, S., Mishra, A.: SRCMIMM: the software requirements change
management and implementation maturity model in the domain of global software development
industry. Inform. Technol. Manag. (2022c). https:// doi. org/ 10. 1007/ s10799- 022- 00364- ws

Akbar, M.A., Naveed, W., Alsanad, A.A., Alsuwaidan, L., Alsanad, A., Gumaei, A., et al.: Requirements
change management challenges of global software development: an empirical investigation. IEEE
Access. 8, 203070–203085 (2020b)

Akbar, M.A., Sang, J., Khan, A.A., Amin, F.-E., Hussain, S., Sohail, M.K., et al.: Statistical analysis
of the effects of heavyweight and lightweight methodologies on the six-pointed star model. IEEE
Access 6, 8066–8079 (2018)

Akbar, M.A., Sang, J., Khan, A.A., Mahmood, S., Qadri, S.F., Hu, H., et al.: Success factors influencing
requirements change management process in global software development. J. Comput. Lang. 51,
112–130 (2019)

Akbar, M.A., Shameem, M., Khan, A.A., Nadeem, M., Alsanad, A., Gumaei, A.: A fuzzy analytical hier-
archy process to prioritize the success factors of requirement change management in global soft-
ware development. J. Softw. Evolut. Process 33, e2292 (2021a)

Akbar, M.A., Smolander, K., Mahmood, S., Alsanad, A.: Toward successful DevSecOps in software
development organizations: a decision-making framework. Inf. Softw. Technol. 147, 106894
(2022b)

Aksu, M., Uluçay, O.: An integrated fuzzy AHP-TOPSIS approach for agile assessment in software
development teams. Appl. Soft Comput. 201, 103944 (2021)

Alderman, A.K., Salem, B.: Survey research. Plast. Reconstr. Surg. 126, 1381–1389 (2010)
Ali S. and Yue T. “Modeling quantum programs: Challenges, initial results, and research directions,” in

Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms
for Engineering Quantum Software, 2020, pp. 14–21.

Ali, S., Khan, S.U.: Software outsourcing partnership model: an evaluation framework for vendor organi-
zations. J. Syst. Softw. 117, 402–425 (2016)

Ali, S., Yue, T., Abreu, R.: When software engineering meets quantum computing. Commun. ACM 65,
84–88 (2022)

Akbar M. A., Rafi S., and Khan A. A., “Classical to quantum software migration journey begins: a con-
ceptual readiness model,” in product-focused software process improvement: 23rd international
conference, PROFES 2022, Jyväskylä, Finland, November 21–23, 2022, Proceedings, 2022a, pp.
563–573.

Altman, E., Brown, K.R., Carleo, G., Carr, L.D., Demler, E., Chin, C., et al.: Quantum simulators: archi-
tectures and opportunities. PRX Quant. 2, 017003 (2021)

Arias, D., Rodríguez, I.G., de Guzmán, M., Rodríguez, E.B., Terres, B.S., Gaviria, J., de la Puerta, I.,
Pastor, A.Z., Bringas, P.G.: Let’s do it right the first time: survey on security concerns in the way
to quantum software engineering. Neurocomputing 538, 126199 (2023). https:// doi. org/ 10. 1016/j.
neucom. 2023. 03. 060

Attri, R., Dev, N., Sharma, V.: Interpretive structural modelling (ISM) approach: an overview. Res. J.
Manag. Sci. 2319, 1171 (2013b)

Attri, R., Grover, S., Dev, N., Kumar, D.: Analysis of barriers of total productive maintenance (TPM). Int.
J. Syst. Assur. Eng. Manag. 4, 365–377 (2013a)

Awschalom, D., Berggren, K.K., Bernien, H., Bhave, S., Carr, L.D., Davids, P., et al.: Development of
quantum interconnects (quics) for next-generation information technologies. PRX Quantum 2,
017002 (2021)

Azeem Akbar M., Khan A. A., Mahmood S., and Rafi S., “Quantum software engineering: a new genre
of computing,” arXiv e-prints, p. arXiv: 2211.13990, 2022.

Babbush R., Wiebe, N., & McClean, J. (2018). Resource estimation for quantum circuit compilation.
arXiv preprint arXiv: 1804. 11085.

Belkhir, M., Benkaouha, H., Benkhelifa, E.: Quantum programming taxonomy. Ninth Int. Conf. Softw.
Defin. Syst. (SDS) 2022, 1–7 (2022)

Botsinis, P., Babar, Z., Alanis, D., Chandra, D., Nguyen, H., Ng, S.X., et al.: Quantum error correction
protects quantum search algorithms against decoherence. Sci. Rep. 6, 38095 (2016)

Bova, F., Goldfarb, A., Melko, R.G.: Commercial applications of quantum computing. EPJ Quant. Tech-
nol. 8, 2 (2021)

Bozbura, F.T., Beskese, A., Kahraman, C.: Prioritization of human capital measurement indicators using
fuzzy AHP. Expert Syst. Appl. 32, 1100–1112 (2007)

https://doi.org/10.1007/s10799-022-00364-ws
https://doi.org/10.1016/j.neucom.2023.03.060
https://doi.org/10.1016/j.neucom.2023.03.060
http://arxiv.org/abs/1804.11085

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 40 of 44

Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with super-
conducting qubits. J. Appl. Phys. 132, 160902 (2022)

Cao Y., & Romero, J. (2018). Quantum software development: An overview. arXiv preprint arXiv:
1806. 06871. [3] Quantum Computing Education (QCE). (2021). Quantum Computing Education
Resource Guide.

Chen, T.-Y., Tsao, C.-Y.: The interval-valued fuzzy TOPSIS method and experimental analysis. Fuzzy
Sets Syst. 159, 1410–1428 (2008)

Chong F. T., Frank, M. D., & Ross, N. J. (2017). A quantum software engineering manifesto. arXiv pre-
print arXiv: 1709. 03489.

Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications.
Rev. Mod. Phys. 90(1), 015002 (2018)

Coveney, P.V., Highfield, R.R.: Quantum computing: a primer. CRC Press, Boca Raton (2019)
Cross A. W., Bishop, L. S., Smolin, J. A., & Gambetta, J. M. (2018). Open Quantum Assembly Lan-

guage. arXiv preprint arXiv: 1707. 03429.
Cruz-Lemus J. A. and Serrano M. A., Quantum software tools overview,” in quantum software engineer-

ing, ed: Springer, 2022, pp. 229–250.
De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., De Lucia, A.: Software engineering for quantum

programming: how far are we? J. Syst. Softw. 190, 111326 (2022)
Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7),

076001 (2013)
de la Barrera A. G., de Guzmán I. G.-R.,Polo M., and Cruz-Lemus J. A., “Quantum software testing:

current trends and emerging proposals,” in quantum software engineering, ed: Springer, 2022, pp.
167–191.

Fingerhuth, M., Babej, T., Wittek, P.: Open source software in quantum computing. PLoS ONE 13,
e0208561 (2018)

Gambetta J. M., Chow J. M., and Steffen M., Building logical qubits in a superconducting quantum com-
puting system. npj Quantum Information. 3: 2, (2017)

Gambetta, J.M., Cross, A.W.: Building logical qubits in a superconducting quantum computing system.
npj Quant. Inform. 4, 1–8 (2018)

Gao, Q., Song, Q., Jiang, W.: Prioritizing software testing techniques based on fuzzy TOPSIS method. J.
Ambient. Intell. Humaniz. Comput. 11(8), 3391–3401 (2020)

Gill, S.S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., et al.: Quantum computing: a tax-
onomy, systematic review and future directions. Softw. Pract. Exp. 52, 66–114 (2022)

Guzik V., Gushanskiy S., Polenov M., and Potapov V., Models of a quantum computer, their characteris-
tics and analysis,” in 2015 9th International Conference on Application of Information and Com-
munication Technologies (AICT), 2015, pp. 583–587.

Heim, B., Soeken, M., Marshall, S., Granade, C., Roetteler, M., Geller, A., et al.: Quantum programming
languages. Nature Rev. Phys. 2, 709–722 (2020)

Helsen, J., De Raedt, H.: Interoperability of quantum software: state of the art and outlook. Quantum 4,
306 (2020)

Hevia, J.L., Peterssen, G., Piattini, M.: Quantum path: a quantum software development platform. Softw.
Pract. Exp. 52, 1517–1530 (2022)

Hoo Teo, K., Zhang, Y., Chowdhury, N., Rakheja, S., Ma, R., Xie, Q., et al.: Emerging GaN technolo-
gies for power, RF, digital, and quantum computing applications: recent advances and prospects. J.
Appl. Phys. 130, 160902 (2021)

Hsieh, H.-F., Shannon, S.E.: Three approaches to qualitative content analysis. Qual. Health Res. 15,
1277–1288 (2005)

Huang, C.W., Tsai, M.F.: Developing a fuzzy TOPSIS-based framework for evaluating the quality of soft-
ware development teams. J. Syst. Softw. 173, 110956 (2021)

Ikart, E.M.: Survey questionnaire survey pretesting method: an evaluation of survey questionnaire via
expert reviews technique. Asian J. Soc. Sci. Stud. 4, 1 (2019)

Junior, F.R.L., Osiro, L., Carpinetti, L.C.R.: A comparison between Fuzzy AHP and Fuzzy TOPSIS
methods to supplier selection. Appl. Soft Comput. 21, 194–209 (2014)

Kannan, D., de Sousa Jabbour, A.B.L., Jabbour, C.J.C.: Selecting green suppliers based on GSCM prac-
tices: Using fuzzy TOPSIS applied to a Brazilian electronics company. Europ. J. Operat. Res. 233,
432–447 (2014)

Kannan, G., Pokharel, S., Kumar, P.S.: A hybrid approach using ISM and fuzzy TOPSIS for the selection
of reverse logistics provider. Resour. Conserv. Recycl. 54, 28–36 (2009)

http://arxiv.org/abs/1806.06871
http://arxiv.org/abs/1806.06871
http://arxiv.org/abs/1709.03489
http://arxiv.org/abs/1707.03429

1 3

Automated Software Engineering (2023) 30:22 Page 41 of 44 22

Keshta, I., Niazi, M., Alshayeb, M.: Towards implementation of requirements management specific prac-
tices (SP1. 3 and SP1. 4) for Saudi Arabian small and medium sized software development organi-
zations. IEEE Access 5, 24162–24183 (2017)

Khan A. A., Ahmad A., Waseem M., Liang P., Fahmideh M., Mikkonen T., et al., “Software architecture
for quantum computing systems-a systematic review,” (2022)

Khan R. A., Akbar M. A., Rafi S., Almagrabi A. O., and Alzahrani M., “Evaluation of requirement engi-
neering best practices for secure software development in GSD: an ISM analysis,” Authorea Pre-
prints, 2023a.

Khan, A.A., Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Mikkonen, T., et al.: Software architec-
ture for quantum computing systems-a systematic review. J. Syst. Softw. 201, 111682 (2023b)

Khan, A.A., Akbar, M.A., Fahmideh, M., Liang, P., Waseem, M., Ahmad, A., Niazi, M., Abrahamsson,
P.: AI ethics: an empirical study on the views of practitioners and lawmakers. IEEE Trans. Compu-
tat. Soc. Syst. (2023c). https:// doi. org/ 10. 1109/ TCSS. 2023. 32517 29

Khan, A.A., Shameem, M., Kumar, R.R., Hussain, S., Yan, X.: Fuzzy AHP based prioritization and tax-
onomy of software process improvement success factors in global software development. Appl.
Soft Comput. 83, 105648 (2019)

Khan, A.A., Shameem, M., Nadeem, M., Akbar, M.A.: Agile trends in Chinese global software develop-
ment industry: fuzzy AHP based conceptual mapping. Appl. Soft Comput. 102, 107090 (2021)

Kitchenham B. and Charters S., Guidelines for performing systematic literature reviews in software engi-
neering,” ed: UK, 2007.

Kitchenham, B., Pfleeger, S.L.: Principles of survey research: part 5: populations and samples. ACM
SIGSOFT Softw. Eng. Notes 27, 17–20 (2002)

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K., et al.: Pre-
liminary guidelines for empirical research in software engineering. IEEE Trans. Software Eng. 28,
721–734 (2002)

Krohling, R.A., Campanharo, V.C.: Fuzzy TOPSIS for group decision making: a case study for accidents
with oil spill in the sea. Expert Syst. Appl. 38, 4190–4197 (2011)

Lanzagorta M., Uhlmann, J., & Aspuru-Guzik, A. (2020). Quantum computing for the determined. MIT
Press. .

Lenarduzzi V. and Taibi D., “MVP explained: A systematic mapping study on the definitions of mini-
mal viable product,” in 2016 42th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), 2016, pp. 112–119.

Li, H., Khomh, F., Openja, M.: “Understanding quantum software engineering challenges an empirical
study on stack exchange forums and Github issues. IEEE Int. Conf. Softw. Maint. Evolut. (ICSME)
2021, 343–354 (2021)

Liao, C.-N., Kao, H.-P.: An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply
chain management. Expert Syst. Appl. 38, 10803–10811 (2011)

MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: The emerging commercial landscape of quantum
computing. Nature Rev. Phys. 2, 596–598 (2020)

Mahmood, S., Anwer, S., Niazi, M., Alshayeb, M., Richardson, I.: Key factors that influence task alloca-
tion in global software development. Inf. Softw. Technol. 91, 102–122 (2017)

McCaskey, A., Dumitrescu, E., Liakh, D., Humble, T.: Hybrid programming for near-term quantum com-
puting systems. IEEE Int. Conf. Reboot. Comput. (ICRC) 2018, 1–12 (2018)

Mintz, T.M., Mccaskey, A.J., Dumitrescu, E.F., Moore, S.V., Powers, S., Lougovski, P.: Qcor: a language
extension specification for the heterogeneous quantum-classical model of computation. ACM J.
Emerg. Technol. Comput. Syst. (JETC) 16, 1–17 (2020)

Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309
(2018)

Moguel E., Berrocal J., García-Alonso J., and Murillo J. M., A Roadmap for Quantum Software Engi-
neering: Applying the Lessons Learned from the Classics,” in Q-SET@ QCE, 5–13 (2020)

Moguel, E., Rojo, J., Valencia, D., Berrocal, J., Garcia-Alonso, J., Murillo, J.M.: Quantum service-ori-
ented computing: current landscape and challenges. Software Qual. J. 30, 983–1002 (2022)

Mohsin, M., Zhang, J., Saidur, R., Sun, H., Sait, S.M.: Economic assessment and ranking of wind power
potential using fuzzy-TOPSIS approach. Environ. Sci. Pollut. Res. 26, 22494–22511 (2019)

Moll N., Barkoutsos P.K., Benjamin S.C. (2021) Quantum development beyond Qiskit. npj Quant.
Inform. 7(1): 1–7

Mykhailova M. and Soeken M., Testing Quantum Programs using Q# and Microsoft Quantum Develop-
ment Kit, in Q-SET@ QCE, 2021, pp. 81–88.

https://doi.org/10.1109/TCSS.2023.3251729

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 42 of 44

Nagori, V., Varadarajan, V.: Quantum computing posing a challenge to the businesses. Int. J. Res. Eng.
Sci. Manag. 6, 52–55 (2023)

Niazi, M.: An exploratory study of software process improvement implementation risks. J. Softw. Evolut.
Process 24, 877–894 (2012)

Niazi, M.: Do systematic literature reviews outperform informal literature reviews in the software engi-
neering domain? An initial case study. Arab. J. Sci. Eng. 40, 845–855 (2015)

Niazi, M., Mahmood, S., Alshayeb, M., Qureshi, A.M., Faisal, K., Cerpa, N.: Toward successful project
management in global software development. Int. J. Project Manage. 34, 1553–1567 (2016)

Nielsen M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge
University Press. .

O’Riordan, D., Jerger, N.: Quantum software development: An emerging discipline. IEEE Softw. 36(3),
15–20 (2019)

Orús, R., Mugel, S., Lizaso, E.: Quantum computing for finance: overview and prospects. Rev. Phys. 4,
100028 (2019)

Pan, J., Shang, Y., Xu, J.: Evaluating the impact of technical debt on software quality: a fuzzy TOPSIS
approach. Inf. Softw. Technol. 126, 106349 (2020)

Pandey, D., Suman, U., Ramani, A.K.: An effective requirement engineering process model for software
development and requirements management. Int. Conf. Adv. Rec. Technol. Commun. Comput.
2010, 287–291 (2010)

Pednault E., Gunnels, J., Nannicini, G., Horesh, L., Johnson, M. W., Romero, J., ... & Chuang, I. (2019).
Leveraging secondary storage to simulate deep 54-qubit Sycamore circuits. arXiv preprint arXiv:
1910. 06156.

Pérez-Castillo, R., Serrano, M.A., Piattini, M.: Software modernization to embrace quantum technology.
Adv. Eng. Softw. 151, 102933 (2021)

Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: a new software engineering golden
age. ACM SIGSOFT Softw. Eng. Notes 45, 12–14 (2021)

Poczatek A., Gariazzo C., Martinson S., Broomfield C., and Farley D., Quantum information science and
its implications for international safeguards (xxxx)

Poonia, R.C., Kalra, M.: Bridging approaches to reduce the gap between classical and quantum comput-
ing. J. Inf. Optim. Sci. 37, 279–283 (2016)

Qiskit, Qiskit global summer school on quantum machine learning, (2021)
Rafi, S., Akbar, M.A., Mahmood, S., Alsanad, A., Alothaim, A.: Selection of DevOps best test prac-

tices: a hybrid approach using ISM and fuzzy TOPSIS analysis. J. Softw. Evolut. Process 34, e2448
(2022)

Rafi, S., Yu, W., Akbar, M.A., Alsanad, A., Gumaei, A.: Multicriteria based decision making of DevOps
data quality assessment challenges using fuzzy TOPSIS. IEEE Access 8, 46958–46980 (2020)

Raj, T., Attri, R.: Identification and modelling of barriers in the implementation of TQM. Int. J. Product.
Qual. Manag. 8, 153–179 (2011)

Ravi, V., Shankar, R.: Analysis of interactions among the barriers of reverse logistics. Technol. Forecast.
Soc. Chang. 72, 1011–1029 (2005)

Sage A. P., Methodology for large-scale systems, (1977)
Sanchez, M.E.: Effects of questionnaire design on the quality of survey data. Public Opin. q. 56, 206–217

(1992)
Saris, W.E., Gallhofer, I.N.: Design, evaluation, and analysis of questionnaires for survey research. Wiley,

New Jersey (2014)
Sarkar A., “Automated Quantum Software Engineering: why? what? how?,” arXiv preprint arXiv: 2212.

00619, 2022.
Serrano, M.A., Cruz-Lemus, J.A., Perez-Castillo, R., Piattini, M.: Quantum software components and

platforms: overview and quality assessment. ACM Comput. Surv. 55, 1–31 (2022)
Shameem, M., Khan, A.A., Hasan, M.G., Akbar, M.A.: Analytic hierarchy process based prioritisation

and taxonomy of success factors for scaling agile methods in global software development. IET
Software 14, 389–401 (2020)

Shameem, M., Kumar, R.R., Kumar, C., Chandra, B., Khan, A.A.: Prioritizing challenges of agile process
in distributed software development environment using analytic hierarchy process. J. Softw. Evo-
lut. Process 30, e1979 (2018)

Sharma, H., Gupta, A.: The objectives of waste management in India: a futures inquiry. Technol. Fore-
cast. Soc. Chang. 48, 285–309 (1995)

http://arxiv.org/abs/1910.06156
http://arxiv.org/abs/1910.06156
http://arxiv.org/abs/2212.00619
http://arxiv.org/abs/2212.00619

1 3

Automated Software Engineering (2023) 30:22 Page 43 of 44 22

Shaydulin R., Thomas C., and Rodeghero P., Making quantum computing open: Lessons from open
source projects, in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 451–455.

Shi, Y., Gokhale, P., Murali, P., Baker, J.M., Duckering, C., Ding, Y., et al.: Resource-efficient quantum
computing by breaking abstractions. Proc. IEEE 108, 1353–1370 (2020)

Singh, R.K., Benyoucef, L.: A fuzzy TOPSIS based approach for e-sourcing. Eng. Appl. Artif. Intell. 24,
437–448 (2011)

Singh, R., Walia, R.S.: Security challenges and ethical considerations in quantum computing. Int. J.
Netw. Sec. 22(6), 1046–1052 (2020)

Sodhi B., Kapur R., “Quantum computing platforms: assessing the impact on quality attributes and sdlc
activities,” in 2021 IEEE 18th International Conference on Software Architecture (ICSA), 2021,
pp. 80–91.

Soni, M.: End to end automation on cloud with build pipeline: the case for DevOps in insurance industry,
continuous integration, continuous testing, and continuous delivery. IEEE Int. Conf. Cloud Com-
put. Emerg. Markets (CCEM) 2015, 85–89 (2015)

Sun, J., Zhao, S., Zhao, Y., Xie, X.: A fuzzy TOPSIS-based method for selecting software development
outsourcing destinations. J. Ambient. Intell. Humaniz. Comput. 11(12), 5279–5289 (2020)

Veryazov, V., Widmark, P.O., Serrano-Andrés, L., Lindh, R., Roos, B.O.: 2MOLCAS as a development
platform for quantum chemistry software. Int. J. Quantum Chem. 100, 626–635 (2004)

Warfield J. N., “Developing interconnection matrices in structural modeling,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, pp. 81–87, 1974.

Weder B., Barzen J., Leymann F., and Vietz D., Quantum software development lifecycle,” in Quantum
Software Engineering, ed: Springer, 2022, pp. 61–83.

Wohlin C., “Guidelines for snowballing in systematic literature studies and a replication in software engi-
neering,” in Proceedings of the 18th international conference on evaluation and assessment in soft-
ware engineering, 2014, pp. 1–10.

Yigitbasioglu, O.M., Kocaturk, T.: Management problems in quantum software engineering. IEEE Softw.
38(1), 100–105 (2021)

Yoon, K., Hwang, C.-L.: Manufacturing plant location analysis by multiple attribute decision making:
Part I—single-plant strategy. Int. J. Prod. Res. 23, 345–359 (1985)

Zhao J., “Quantum software engineering: Landscapes and horizons,” arXiv preprint arXiv: 2007. 07047,
2020.

Zidan, M., Eleuch, H., Abdel-Aty, M.: Non-classical computing problems: toward novel type of quantum
computing problems. Results Phys. 21, 103536 (2021)

Zouggari, A., Benyoucef, L.: Simulation based fuzzy TOPSIS approach for group multi-criteria supplier
selection problem. Eng. Appl. Artif. Intell. 25, 507–519 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Muhammad Azeem Akbar1 · Arif Ali Khan2 · Saima Rafi3

 * Arif Ali Khan
 arif.khan@oulu.fi

 Muhammad Azeem Akbar
 azeem.akbar@lut.fi

1 Software Engineering Department, Lappeenranta-Lahti University of Technology,
53851 Lappeenranta, Finland

2 M3S Empirical Software Engineering Research Unit, University of Oulu, 90014 Oulu, Finland

http://arxiv.org/abs/2007.07047

 Automated Software Engineering (2023) 30:22

1 3

 22 Page 44 of 44

3 School of Computing and Engineering and The Built Environment, Edinburgh Napier
University, Edinburgh, UK

	A systematic decision-making framework for tackling quantum software engineering challenges
	Abstract
	1 Introduction
	2 Background and motivation
	3 Methodology
	3.1 Literature survey
	3.2 Industrial empirical study
	3.2.1 Designing the questionnaire
	3.2.2 Pilot assessment of the questionnaire

	4 Analysis of the empirical data
	4.1 Phase 2: ISM approach
	4.2 Phase 3: fuzzy TOPSIS

	5 Results and discussions
	5.1 Identified challenges of QSE
	5.2 Empirical analysis
	5.2.1 Demographics

	5.3 Results of ISM approach
	5.3.1 Structural-self-interaction matrix
	5.3.2 Reachability matrix
	5.3.3 Partitioning the reachability matrix
	5.3.4 Interpretation of the ISM model
	5.3.5 MICMAC analysis
	5.3.6 Development of conical matrix

	5.4 Application of fuzzy TOPSIS

	6 Systematic decision-making framework of QSE challenging factors
	7 Study implications and threats to validity
	7.1 Implications
	7.2 Threats to validity

	8 Conclusion and future work
	Appendix 1
	References

