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ABSTRACT 

This research investigates electrostatic nonlinearities in capacitively operated ring-based 

Coriolis vibrating gyroscopes (CVG’s). Large amplitude vibrations of the ring amplify the 

Coriolis force and are beneficial to achieving high-precision rate sensing. However, due to the 

miniature sizes of these devices and the narrow capacitive gaps, electrostatic nonlinearities 

manifest at relatively small ring displacements, thus resulting in the sensor output differing 

from what is expected of a standard linear device. As such, the current theory of operation 

commonly perceives electrostatic nonlinearities as an obstacle towards the development of 

high performance sensors.  

Electrostatic nonlinearities is the dominant source of nonlinearity in ring-based CVG’s. This 

work develops a mathematical model to analyse the influence of electrostatic nonlinearities 

on device performance. When the device operates using a basic electrostatic configuration 

incorporating only bias and drive voltages, it is found that the bias voltage induces single and 

mode-coupled cubic restoring forces, which are the main mechanisms through which 

electrostatic nonlinearities affect the ring dynamics and sensor output. These nonlinear 

restoring forces result in the amplitude-dependency of the drive and sense mode frequencies, 

and the presence of self-induced parametric excitation. These effects, in conjunction with the 

structural imperfections of the ring, degrade rate sensing performance by reducing the rate 

sensitivity and introducing bias rates and quadrature errors at larger drive amplitudes. A 

detailed theoretical analysis of the sense dynamics concludes that, depending on the 

interaction between the imperfections and the electrostatic nonlinearities, there are specific 

cases where the self-induced parametric excitation can enhance the rate sensitivity of the 

device. However, this enhancement cannot be achieved while retaining a trimmed sense 

response to keep the bias rate and quadrature error nullified. An analysis of the sense response 

and the modal forces shows that the imperfection-induced linear elastic coupling force and the 

nonlinear frequency imbalance are specifically responsible for the sensor output degradation. 

These nonlinear behaviours have also been validated against finite element results. 

The research also investigates the strategic use of electrostatic forces to counteract the effects 

of nonlinearity and enhance device performance. It is shown that through careful selection of 

the voltages applied to the electrodes, the form of the resulting electrostatic forces can be 

tailored to manipulate the sense mode dynamics for device performance enhancement. The 

presented work develops a general framework to achieve this direct electrostatic force 

manipulation by considering the variations of the capacitance, voltage and electrostatic 

potential energy from electrode to electrode, which then enables direct control of the form of 

the total electrostatic potential energy. Through the use of the framework, this research shows 
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that the electrostatic nonlinearities can be manipulated to replicate the sensor outputs of a 

linear, trimmed device at larger drive amplitudes, or achieving parametric amplification of the 

sense response to enhance rate sensitivity without inducing bias rates and quadrature errors. 

The proposed general framework is used to determine the electrostatic configurations capable 

of negating self-induced parametric excitation by generating a separate parametric excitation 

in antiphase with the self-induced parametric excitation. The proposed implementation has 

potential to reduce sensor output nonlinearity and is most effective in devices where the drive 

amplitude dependencies of the drive and sense modes are equal, thus resulting in amplitude-

insensitive frequency detuning in a manner similar to linear devices. This implementation can 

also be used in conjunction with a balancing voltage component to eliminate quadrature errors 

present in the sensor output caused by linear elastic coupling and nonlinear frequency 

imbalance. The combination of using parametric pumping and balancing voltage components 

trims the sensor output and have potential to suppress the sensor output nonlinearity further. 

The effectiveness of the chosen electrostatic configuration is validated against results from 

transient finite element studies. 

Rate measuring performance is enhanced further by parametrically exciting the sensor output 

to increase the quality factor of the device. To achieve enhanced performance the parametric 

excitation must be phase-tuneable and the proposed general framework is used to select 

electrostatic configurations capable of providing the required parametric excitation.  Two 

approaches to develop the required parametric excitation are investigated.  The first approach 

exploits linear electrostatic forces whilst the second approach uses quadratic electrostatic 

forces. Both approaches are shown to have potential to improve rate sensitivity through Q 

factor enhancing effects. However, the parametric excitation from the quadratic electrostatic 

forces is generally weaker unless compensated using larger parametric pumping voltages. On 

the other hand, it is found that the quadratic electrostatic forces promote nonlinear frequency 

balancing and so this approach is considered advantageous for achieving trimmed sensor 

output. 
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NOMENCLATURE 

𝑢, 𝑣 𝑚 Radial and tangential displacements at the ring mid-surface 

𝑟 𝑚 Radial position 

휃 𝑟𝑎𝑑 Angular position 

𝑡 𝑠 Elapsed time 

𝑋, 𝑌 𝑚 Drive and sense mode displacements 

̇ , ̈   Derivatives with respect to time, ̇ = 𝑑( ) 𝑑𝑡⁄ , ̈ =

𝑑2( ) 𝑑𝑡2⁄  

𝑥∗, 𝑦∗ 𝑚 Complex drive and sense amplitudes 

𝑥, 𝑦 𝑚 Drive and sense amplitudes 

𝜙𝑥 , 𝜙𝑦, 𝜙𝑦𝑥 𝑟𝑎𝑑 Drive and sense phases, and relative phase 𝜙𝑦𝑥 = 𝜙𝑦 − 𝜙𝑥 

�̅� 𝑚 Sense amplitude components vector 

𝑇∗  Complex transmissibility amplitude 

𝑇  Transmissibility amplitude 

𝜙𝑇  Transmissibility phase 

𝑛  Circumferential wave number 

𝑅 𝑚 Radius of ring mid-surface 

𝐵 𝑚 Out-of-plane height of ring 

ℎ 𝑚 Radial thickness of ring 

Ω 𝑟𝑎𝑑 𝑠⁄  Angular velocity 

𝜌 𝑘𝑔 𝑚3⁄  Mean ring material density 
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𝛿𝜌  Magnitude of 2𝑛휃 variation of density, normalised with the 

mean density 𝜌 

Θ𝜌 𝑟𝑎𝑑 Orientation of density 2𝑛휃  variation relative to the drive 

axis 

𝑚 𝑘𝑔 Ring mass 

𝐸 𝑃𝑎 Mean elastic modulus of ring material 

𝛿𝐸  Magnitude of 2𝑛휃 variation of elastic modulus, normalised 

with the mean elastic modulus 𝐸 

Θ𝐸 𝑟𝑎𝑑 Orientation of elastic modulus 2𝑛휃 variation relative to the 

drive axis 

𝐼 𝑚4 Second moment of area of ring cross section 

𝐹(휃, 𝑡) 𝑘𝑔𝑠−2 External radial force per unit arc length  

𝑊 𝑘𝑔𝑚2𝑠−2 Total work done by the external radial force 

𝐸𝑘 𝑘𝑔𝑚2𝑠−2 Ring kinetic energy 

𝐸𝑏,𝑅 , 𝐸𝑏,𝐾 𝑘𝑔𝑚2𝑠−2 Bending potential energy of ring and support beams 

𝑈 𝑘𝑔𝑚2𝑠−2 Total electrostatic potential energy 

�̅�, 𝑈𝐴𝐶  𝑘𝑔𝑚2𝑠−2 Bias and drive components of electrostatic potential energy 

𝐷 𝑘𝑔𝑚2𝑠−3 Dissipation function 

𝑔0 𝑚 Capacitive gap between electrode and undeflected ring 

𝛿 𝑟𝑎𝑑 Electrode span 

𝑗  Number of evenly distributed electrodes in the outer/inner 

electrode sets 
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휀0 𝐹 𝑚⁄  Permittivity of free space 

𝑉0 𝑉 Bias voltage 

𝑉𝐴𝐶 𝑉 Drive voltage amplitude 

𝑉𝜆 𝑉 Parametric pumping voltage amplitude 

𝑉Δ 𝑉 Balancing voltage amplitude 

𝑖Δ  Balancing voltage phase index 

𝑉4 𝑉 Drive alignment voltage 

𝑄0  Nominal quality factor 

Γ 𝑟𝑎𝑑 𝑠⁄  Linear modal damping coefficient 

𝐺Ω  Non-dimensional gyroscopic coupling coefficient 

𝜔0, 𝜔𝜆, 𝜔Δ 𝑟𝑎𝑑 𝑠⁄  Linear resonant frequency with electrostatic contributions 

from the bias, parametric pumping and balancing voltage 

components 

𝛾0, 𝛾𝜆, 𝛾Δ 
𝑟𝑎𝑑

1
2 𝑠

1
2⁄  

Modal-mass-normalised cubic single-mode stiffness 

coefficient contributions from the bias, parametric pumping 

and balancing voltage components 

𝜅0, 𝜅𝜆, 𝜅Δ 
𝑟𝑎𝑑

1
2 𝑠

1
2⁄  

Modal-mass-normalised cubic coupled-mode stiffness 

coefficient contributions from the bias, parametric pumping 

and balancing voltage components 

𝜒 𝑁 𝑘𝑔⁄  Modal-mass-normalised amplitude of harmonic drive force 

𝜔 𝑟𝑎𝑑 𝑠⁄  Harmonic drive force frequency 

Θ𝜒 𝑟𝑎𝑑 Drive axis orientation 
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𝜒Δ 𝑚𝑠−2 Modal-mass-normalised amplitude of direct sense force due 

to balancing voltage 

Δ𝜔  Structural imperfection magnitude 

Θ𝜔 𝑟𝑎𝑑 Structural imperfection orientation relative to drive axis, i.e. 

the location of the frequency principal axes 

Δ𝑏  Damping imperfection magnitude 

Θ𝑏 𝑟𝑎𝑑 Damping imperfection orientation relative to drive axis, i.e. 

the location of the damping principal axes 

휂  Dimensionless back coupling parameter 

Ω𝑐𝑟𝑖𝑡 𝑟𝑎𝑑 𝑠⁄  Critical angular rate 

𝑓Ω 𝑁 𝑘𝑔⁄  Modal-mass-normalised Coriolis force 

𝑓Δ 𝑁 𝑘𝑔⁄  Modal-mass-normalised linear elastic coupling force 

𝑆 𝑚 (𝑟𝑎𝑑 𝑠⁄ )⁄  Angular rate sensitivity 

Ω𝑧 𝑟𝑎𝑑 𝑠⁄  Bias rate 

𝑆𝑉 𝑉2 (𝑟𝑎𝑑 𝑠⁄ )⁄  Closed-loop rate sensitivity using balancing voltage 

Ω𝑧
𝑉 𝑟𝑎𝑑 𝑠⁄  Closed-loop bias rate using balancing voltage 

�̅�𝟏, �̅�𝟐, �̅�𝟑 𝑚,𝑚2,𝑚3 Linear, quadratic and cubic modal coordinates vector 

�̿�𝟏, �̿�𝟑 𝑟𝑎𝑑2 𝑠2⁄  Coefficient matrices of linear and cubic modal coordinates 

�̿�𝝌  Quadratic correction factor matrix of direct modal forces 

𝜔𝑋, 𝜔𝑌 𝑟𝑎𝑑 𝑠⁄  Drive and sense frequencies 

�̅�2 𝑟𝑎𝑑2 𝑠2⁄  Frequency detuning 
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𝜆1, 𝜆2 𝑟𝑎𝑑2 𝑠2⁄  Parametric excitation components at twice the drive phase 

and at ±𝜋 2⁄  phase shift relative to the drive phase. 𝜆1 

contains the self-induced parametric excitation 

𝜆1,𝑟, 𝜆2,𝑟 𝑟𝑎𝑑2 𝑠2⁄  𝜆1, 𝜆2 when the drive phase is 𝜙𝑥 = −𝜋 2⁄  

𝜆1,0, 𝜆1,𝜆, 𝜆1,Δ 𝑟𝑎𝑑2 𝑠2⁄  Components of 𝜆1,𝑟 stemming from the bias voltage (self-

induced), parametric pumping voltage and balancing 

voltage 

휃0 𝑟𝑎𝑑 Mean angular position of electrode 

𝑉+, 𝑉− 𝑉 Voltages applied to each outer and inner electrode 

𝑐+, 𝑐− 𝐹 Capacitance of each outer and inner electrode 

𝑈+, 𝑈− 𝑘𝑔𝑚2𝑠−2 Electrostatic potential energy of each outer and inner 

electrode 

𝑞  Polynomial order of electrostatic potential energy in the 

modal coordinates 𝑋, 𝑌 

𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

± , 

𝛼𝑞,2(2𝑝𝑐+1)
± , 

𝛽𝑞,2(2𝑝𝑐+1)
±

 

𝐹 Capacitance distribution coefficients 

𝑚𝑉  Order of voltage squared variation components from 

electrode to electrode 

𝜉𝑚𝑉

± , 휁𝑚𝑉

±  𝑉2 Voltage squared distribution components 

𝑓𝑚,𝑋, 𝑓𝑚,𝑌 𝑁 𝑘𝑔⁄  Modal-mass-normalised mechanical forces on the drive and 

sense modes 

𝑓𝑈,𝑋, 𝑓𝑈,𝑌 𝑁 𝑘𝑔⁄  Modal-mass-normalised electrostatic forces on the drive 

and sense modes 
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𝑓𝜆2 𝑁 𝑘𝑔⁄  Modal-mass-normalised balancing force amplitude 

𝑓0
𝑙 𝑁 𝑘𝑔⁄  𝑓𝜆2 when parametric excitation component 𝜆2,𝑟 = 0 

 

Other symbols are defined as they appear in the text. 
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1. RESEARCH BACKGROUND AND SCOPE  

1.1. Introduction to CVG’s 

Gyroscopes are a class of instruments used for measuring angular rates. They were originally 

devised and named by Léon Foucault in his experiment to measure rotation of the earth [1] 

and are now used in a wide range of aplications such as millitary and aerospace applications 

[2]. Traditional gyroscopes are mechanical devices composed of a spinning wheel or disc 

mounted in gimbal rings. As the disc spins, the precession of the spin axis is used to measure 

the rotation of the body to which the gyroscope it is attached [3]. The successful operation of 

these gyroscopes relies heavily on the disc and its rotation. The disc must be balanced to ensure 

a stable axis and high spin speeds are required to persist for a sufficiently long period.  

The reliance on spinning structures presents several challenges. High precision bearings are 

required to support the high spin speeds. These devices are also susceptible to bearing friction 

and wear. In addition, they are relatively large and expensive, thus limiting their range of 

applications [2, 4]. High performance, smaller gyroscopes are in high demand in military 

applications such as guided missiles and weapons navigation, along with many other emerging 

applications such as driverless vehicles. The predominant engineering problem lies in the lack 

of feasible fabrication methods to produce light, miniaturised versions of gimballed wheel 

gyroscopes without compromising performance. This is because the performances of these 

devices generally improve with larger angular momentums, thus necessitating larger and 

heavier spinning structures [4].  

These challenges motivated the search for alternatives towards rate sensing. Microfabrication 

technologies enable the manufacture of rate measuring devices which do not rely on spinning 

structures to exploit gyroscopic effects for rate sensing, at a miniature scale. The leading 

mechanical devices used for this purpose are Coriolis vibrating gyroscopes (CVG’s). As the 

name suggests, these devices rely on vibrating elements instead of spinning structures and the 

Coriolis effect is the core operating principle. The main advantage of this class of gyroscopes 

lies in its compatibility with state-of-the-art microfabrication techniques, which allow batch 

production of these devices as Microelectromechanical Systems (MEMS) [2]. In this 

implementation, the core vibrating element is built on a silicon chip, along with electrical and 

mechanical components integral for the gyroscope function in a manner similar to integrated 

circuits. The main functions of the electronic components include driving and regulating the 

vibration of the element and sensing the vibrational response. CVG’s are manufactured from 

silicon which has good material linearity as is perfectly brittle [2, 5], experiencing no plastic 

deformation. This leads to excellent mechanical stability and minimal hysteretic losses and 

https://en.wikipedia.org/wiki/L%C3%A9on_Foucault
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vibrational energy dissipation Also, the compatibility of silicon with batch microfabrication 

technology allows significant reductions in unit cost, size and weight. 

Due to the reduced cost, size and weight of CVG’s, these devices feature in a wide range of 

consumer electronics applications such as image stabilisation in cameras and virtual reality 

products. The applications of CVG’s also include inertial navigation systems (INS) for the 

aerospace, military and automotive industries [2]. State-of-the-art INS are known to be 

accurate for short duration usages, but accumulate errors over time [4]. The most accurate 

systems are typically only found in applications involving long navigation durations, such as 

submarines and long-range military aircraft. As such, to date, there is still a need to improve 

the performance of existing commercial CVG’s.  

CVG’s use a wide range of vibrating elements within the core of their constructions. Examples 

include axisymmetric structures [6-10] such as hemispheres, disks, cylinders, rings and bells, 

suspended proof masses [2], vibrating strings [4], single vibrating prismatic beams [10, 11] 

and tuning forks [12, 13]. The present work focuses on the class of gyroscopes of the former 

type, specifically using rings as the vibrating elements. Ring-based CVG’s are mainly 

classified as capacitive [10], piezoelectric [14] or inductive [15] depending on the operating 

principle of the device. This research focuses on capacitive CVG’s and an example of this 

device is shown in Figure 1.1, along with the main accompanying elements manufactured on 

the same chip.  

 

Figure 1.1: Capacitive ring-based CVG [16] 

The device consists of a ring supported by 8 semi-circular support beams. The hub anchors 

the vibrating ring to the device substrate through the support beams, which are also known to 

provide additional stiffening towards the ring vibration [17]. Evenly spaced electrodes 

surround the ring, with narrow gaps between the ring and electrodes. Figure 1.1 shows a device 

implementing 32 evenly-spaced electrodes. However, the use of 8 or 16 electrodes are also 

Electrodes 

Hub 

Ring 

Support beam 
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typical [6, 18]. This research mainly focuses on the case of 8 uniformly spaced electrodes. The 

implementation of 16 or 32 uniformly spaced electrodes is only investigated in specific cases. 

The electrodes surrounding the ring are an integral part of the operation of these devices. 

Within capacitive CVG’s, each electrode forms a capacitive pair with the ring, effectively 

storing charges similar to parallel-plate capacitors. The narrow gaps within each electrode-

ring pair are within the order of 0.1 − 10𝜇𝑚. In practice, voltages are applied to the electrodes 

depending on the function of each electrode. The electrodes are primarily used for biasing, 

driving the ring into vibration, and sensing the vibration [10, 19], where narrow capacitive 

gaps are desirable for higher ring vibration sensitivity [2]. The use of capacitive driving and 

sensing mechanisms has  significant advantages over other types of CVG’s, primarily due to 

its compatibility with most microfabrication processes [2]. Other reported advantages include 

good DC and noise responses, high sensitivity and low temperature sensitivity [20]. These 

advantages complement the advantages of using axisymmetric structures within CVG’s.   

Devices using axisymmetric structures like rings report improved robustness against 

environmental vibrations [17] and temperature insensitivities [9] as the vibration modes used 

in operation are equally affected. These advantages stem from the ‘balanced’ state of these 

structures during vibration owing to the non-moving mass centre. Specifically for rings, the 

planar construction is well suited to on-chip manufacturing [21]. The operation of ring-based 

CVG’s can be understood by considering the interaction between the ring vibration and the 

imposed rotation, which is the core operation principle of these devices, and is discussed next.  

1.2. Operation principle of CVG’s 

CVG’s fundamentally rely on the Coriolis effect for rate sensing. The Coriolis effect manifests 

as a fictitious force acting on a moving body within a non-inertial rotating reference frame. 

An apparent force is generated as a result of the interaction between the body motion (velocity) 

and the rotation of the frame if the velocity is non-parallel to the frame rotation axis. This 

force is known as the Coriolis force and is proportional to the in-frame velocity and angular 

velocity [22]. This is illustrated in Figure 1.2 below, where a mass 𝑚 moves with a velocity 

of �̇� within a rotating reference frame at angular velocity Ω, generating the Coriolis force 𝐹Ω. 

 

Figure 1.2: Relationship between the angular velocity, in-frame velocity and Coriolis force 

Ω 

𝐹Ω 

�̇� 

𝑚 
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The Coriolis force is given by: 

𝐹Ω = −2𝑚Ω�̇� (1.1) 

and acts in a direction perpendicular to the in-frame velocity �̇�, thus generating motion in this 

orthogonal direction. The coupling effect of the Coriolis force on mutually orthogonal 

velocities is an integral feature exploited for rate sensing in CVG’s. 

1.2.1. Coriolis effect in suspended proof mass CVG’s 

In CVG’s, the Coriolis force serves to couple otherwise orthogonal modes of vibration. The 

applicability of the Coriolis force in CVG’s can be understood by considering a simple CVG 

that uses a suspended proof mass as the vibrating element. The devices is mounted on a 

rotating body rotating with angular velocity Ω , and the mass element vibrates in two 

orthogonal directions within the plane of rotation. 

 

Figure 1.3: Schematic diagram of a CVG implementing a suspended proof mass vibrating element 

Figure 1.3 shows a schematic representation of the basic construction of these devices, where 

the flexible support beams are represented by springs having stiffnesses 𝑘𝑋, 𝑘𝑌. The support 

structures provide restoring forces and allow the mass element 𝑚 to oscillate along the 𝑋 and  

𝑌  directions. Viscous dashpots have are included to account for energy dissipation 

mechanisms within the devices and have damping coefficients 𝑐𝑋, 𝑐𝑌.  For an ideal device, it 

is advantageous to have 𝑘𝑋 = 𝑘𝑌  and 𝑐𝑋 = 𝑐𝑌 .  This is to ensure the Coriolis coupling is 

maximised and occurs naturally for axisymmetric structures, provided the material and 

geometry is uniform. However, in practice the presence of manufacturing defects and material 

𝑋 

𝑌 

Ω  

𝑐𝑋 2⁄  

𝑐𝑋 2⁄  

𝑐𝑌 2⁄  
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𝑘𝑋 2⁄  
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imperfections generally results in 𝑘𝑋 ≠ 𝑘𝑌 and 𝑐𝑋 ≠ 𝑐𝑌. The influence of imperfections on 

the performance of CVG’s will be discussed later. 

An external harmonic force 𝐹(𝑡) is applied to initiate vibration along the 𝑋  direction. In 

practice the excitation is chosen so the frequency causes resonance in the 𝑋  direction. 

Resonant operation is exploited to yield large amplitude drive vibration. In the presence of 

angular rate Ω, the resonant drive response generates a Coriolis force in the 𝑌 direction, which  

generates vibration along 𝑌. Throughout this work, 𝑋 is referred to as the drive mode while 𝑌 

is referred to as the sense mode, where the modal displacements are detected and used as a 

measure of the angular rate. In an ideal CVG the Coriolis effect is the only form of coupling 

between the drive and sense modes which are otherwise mutually orthogonal.  

1.2.2. Coriolis effect in ring-based CVG’s 

In rings, the drive and sense modes are a pair of planar flexural modes [10, 17], distinguished 

by the order of spatial periodicity or the circumferential wavenumber, which is defined by the 

number of radial nodes/antinodes 𝑛. These modes exhibit sinusoidally varying radial and 

tangential displacements around the circumference of the ring [23, 24]. Figure 1.4 shows the 

mode shapes of the 5 lowest order mode pairs (𝑛 = 2,3,4,5,6). 

 

Figure 1.4: Flexural mode shapes for 𝒏 = 𝟐, 𝟑, 𝟒, 𝟓, 𝟔 

The modes within each pair are similar. The modes have identical mode shapes and natural 

frequencies, meaning that the modes are degenerate. For a perfectly axisymmetric shell, the 

orientation of the mode shapes is indeterminate, that is, there is no preference for the angular 

positions of the nodes/antinodes. However, an angular separation of 𝜋 2𝑛⁄  defines the mutual 

orthogonality of the modes within each pair. In practice, the 𝑛 = 2 modes are typically used 

as the drive and sense modes as this mode pair yields the strongest gyroscopic coupling. 

𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6 

𝑋 𝑋 𝑋 𝑋 𝑋 

𝑌 𝑌 𝑌 𝑌 𝑌 
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The Coriolis effect in rings can be understood from an observation made by Bryan on the 

relationship between rotation and vibration of axisymmetric shells [25]. In this experiment, a 

hemispherical wine glass was struck to vibrate in one of the 𝑛 = 2 flexural modes (the drive 

mode). When the wine glass is rotated while vibrating, the nodes of the vibrating wine glass 

do not rotate in unison with the glass. Instead, the 4 nodes lag behind the rotation. The lag of 

the nodes relative to the rotation of the mass is a direct consequence of the Coriolis force, 

which causes the participation of the other 𝑛 = 2 mode (the sense mode) in the presence of 

rotation. The resulting vibration pattern is a superposition of the two 𝑛 = 2 flexural modes, 

giving rise to the observed lag. To illustrate this, Figure 1.5(a) shows the velocity vectors at 

the radial antinodes of the drive mode without rotation at the instant when the displacement is 

maximum. At this instant, the wine glass lip is returning to the undeformed state. Figure 1.5(b) 

shows the resulting Coriolis force vectors in the presence of rotation and Figure 1.5(c) shows 

the net velocity vectors. 

 

Figure 1.5: Deflection pattern of the wine glass lip at its drive mode (dashed line) showing the direction of 

the (a) antinodal velocity vectors due to the vibration, (b) rotation-and-vibration induced acceleration 

vectors, (c) net velocity vectors 

In Figure 1.5(a), the radial antinodes A and C move towards the centre, reducing the radial 

eccentricity. Due to the conservation of angular momentum, this increases the angular velocity 

at these points, thus inducing a tangential acceleration in the direction of the angular velocity 

Ω, as shown in Figure 1.5(b). The opposite occurs at B and D. The tangential acceleration in 

Figure 1.5(b) results in a change in the direction of the velocity vectors, and Figure 1.5(c) 

shows that the velocities at the antinodes A, B, C, D are no longer completely radial as in 
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Figure 1.5(a). Radial velocities now occur at points A’, B’, C’, D’, which are the new antinode 

positions, causing the observed vibration pattern lag. 

In ring-based CVG’s, the drive mode in Figure 1.5(a) is conventionally initiated by applying 

forces with a ‘push-pull’ distribution as shown in Figure 1.6. 

 

Figure 1.6: ‘Push-pull’ force distribution from drive electrodes 

In practice, harmonic voltages are applied to the drive electrodes and the voltages at electrodes 

A, C are in antiphase relative to those at B, D. This ensures that electrodes A, C and B, D 

generate opposite repulsive/attractive forces on the ring during each drive mode oscillation 

cycle. The drive mode is then regulated at resonance using the phase-locked-loop control [26], 

ensuring a phase of −90° relative to the voltages. When an angular rate is present, the sense 

mode responds, and owing to the degeneracy of these modes, both the drive and sense modes 

can be operated at resonance, in which case it can be shown that the sense mode amplitude 𝑦 

is [10]: 

𝑦 =
𝐺ΩQ𝑥

𝜔
Ω 

(1.2) 

where 𝑥 is the resonant drive mode amplitude, 𝜔 is the resonant frequency, Q is the quality 

factor, and 𝜔 𝑄⁄  is the modal bandwidth. 𝐺Ω is a gyroscopic coupling constant dictating the 

portion of the mass 𝑚 responding to the Coriolis force, and is determined by the geometry of 

the mass element. 𝐺Ω is given by: 

𝐺Ω =
4𝑛

𝑛2 + 1
 

(1.3) 

The 𝑛 = 2  flexural modes yield the highest 𝐺Ω  compared to the other flexural modes, 

resulting in a stronger gyroscopic coupling between the mode pair.  
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From (1.2), the sense mode amplitude is proportional to the angular rate Ω, providing a direct 

rate measurement. The direct measurement of the mechanical sense response to determine the 

angular rate measurement is known as open-loop sensing [10]. An alternative approach is to 

use closed-loop rate sensing, or force-to-rebalance (FTR) [10, 26], whereby an external force 

is directly applied to the sense mode to nullify the sense response. This force acts to ‘rebalance’ 

the sense mode by opposing the Coriolis force and the force amplitude required to achieve this 

is proportional to the angular rate, and so can be used to measure angular rate. Throughout 

this dissertation open-loop sensing is the focus and the potential to achieve closed-loop sensing 

is only investigated in specific cases. 

The ratio 𝑦 Ω⁄  defines the rate sensitivity, also known as the scale factor [27]. A high scale 

factor is generally desirable for high performance rate sensing, robustness against noise and 

the ability to detect small angular rates. From (1.2) it can be deduced that the conventional 

approaches to enhance rate sensitivity are to: 

 Increase the drive amplitude 

 Increase the Q factor (minimise the damping)  

The challenges associated with enhancing rate sensitivity in commercial devices are discussed 

next.  

1.3. Challenges in MEMS CVG’s 

MEMS CVG’s used in inertial sensors are classified based on performance level: inertial-

grade, tactical-grade and rate-grade devices [20]. Inertial-grade devices offer the highest 

performance level while rate-grade devices offer the lowest. With the current technological 

state, most micromachined vibrating structure gyroscopes, including ring-based CVG’s fall 

short of inertial grade performance [20]. The main reason for this is the small mass of the 

vibrating element in these micro-scale devices, resulting in small Coriolis forces, as well as 

the relatively low structural precision of these devices relative to their macro-scale 

counterparts [28]. This section discusses the main challenges to developing inertial-grade 

CVG’s and focus on damping and imperfections. 

1.3.1. Damping 

Damping defines the several mechanisms in which energy dissipates from the vibrating 

element. Linear damping is inversely proportional to the Q factor, which as shown in (1.1) is 

an important factor dictating the rate sensitivity. A high Q factor also eliminates the need for 

continuous power consumption of the device due to the suppressed energy dissipation rate [4]. 
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However, the attainable Q factor in CVG’s is often limited by a combination of several sources. 

The dominant sources of damping are structural and viscous damping [2].  

Viscous damping stems from ambient pressure. When the ring vibrates in a non-vacuum, the 

ring surface moves against the surrounding molecules of the vacuum, effectively transferring 

kinetic energy to the surrounding. This is particularly significant in miniaturised CVG’s due 

to the larger surface-to-volume ratio [29]. The viscous damping in capacitive CVG’s is of the 

squeeze-film type [30], which occurs when the fluid in the gap between the electrodes and the 

ring is compressed as the ring vibrates. In practice, vacuum packaging is often implemented 

to minimise viscous damping by suppressing leak rates [2], in conjunction with getters to 

counteract outgassing from within the device [31]. The implementation of getters prevents the 

degradation of vacuum over time through constant chemical sorption of active gases. As the 

pressure within the device is lowered to near vacuum-conditions, the Q factor generally 

increases until it asymptotically converges to a limiting value. A typical variation of the Q 

factor with pressure is shown in Figure 1.7. 

 

Figure 1.7: Q factor vs pressure plot for MEMS CVG’s [29] 

The limiting Q factor is determined by other damping mechanisms, mainly thermoelastic 

damping. It is desirable to evacuate the device sufficiently such that the Q factor of the device 

is operated within the flat region on the curve shown in Figure 1.7. This stabilises the response 

of the device by desensitising it to pressure fluctuations [2, 29]. 

The dominant form of structural damping in low viscous damping operations is thermoelastic 

damping which is an internal damping mechanism that occurs as a result of energy losses due 

to elastic deflections. It is in a sense, a form of internal friction that occurs when material 

particles move relative to each other to create alternating tensile and compressive strains [32, 

33]. Areas in tension experience decreased temperature while the opposite occurs for areas in 
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compression, generating a temperature gradient. This temperature gradient is relaxed through 

irreversible heat flow from the higher to lower temperature regions. Thermoelastic damping 

depends on the material and geometry of the structure, and has been reported to limit the Q 

factor of CVG’s to the order of 105 [2]. This form of damping is unavoidable as it is a natural 

result accompanying the flexural vibration of the drive and sense modes of the ring. Also, it 

has been shown in literature that when thin rings are used, typical of those implemented in 

MEMS CVG’s, thermoelastic damping is suppressed only at larger diameters [34]. As such, 

the default geometry of the rings typically used in highly miniaturised MEMS CVG’s is 

particularly susceptible to thermoelastic damping. 

Thermoelastic damping is minimised in practice through the use of high quality factor 

materials such as silicon, germanium or quartz [35] in the vibrating structures. The 

introduction of hollow slots into the cross-section of the vibrating structure has also shown 

potential to increase the Q factor by disrupting the heat flow [34]. This approach is most 

effective for lower Q factor systems. 

1.3.2. Imperfect rotational symmetry 

In perfectly axisymmetric rings, the modes are degenerate. This enables resonant operation to 

be achieved simultaneously by both the drive and sense modes, and ensures the sense 

amplitude is given by (1.1). However, in practice manufacturing and materials imperfections 

can break the rotational symmetry of the ring and significantly modify the drive and sense 

mode dynamics. These imperfections arise from surface irregularities, inhomogenous 

materials, geometric variations, material anisotropy, and manufacturing processes [36]. These 

effects result in inhomogeneous mass, damping and stiffness distributions.  

The mass and stiffness distributions around the ring directly affect the flexural mode pairs in 

two ways. Firstly, the modes in each pair are no longer degenerate, meaning the drive and 

sense mode natural frequencies are unequal and split [36-41]. Secondly, the orientation of the 

modes is no longer indeterminate [42]. Instead, the modes have ‘preferred’ orientations 

depending on the mass and stiffness distributions [40]. The angular orientation of the modes 

is known as the mode angle or the frequency principal axes, and the fixing of the mode angle 

generally results in misalignment between the antinodes of the modes and the drive axis [38, 

43]. Figure 1.8 shows the drive and sense modes for an imperfect resonator. For the perfect 

resonator the drive mode can be considered as being aligned with the drive electrode axis 

because the modes are degenerate.  However, for the imperfect case the drive and sense modes 

are fixed because they are determined by the mass and stiffness distribution asymmetries.  The 

+ and – symbols on the figure indicate the locations around the ring circumference, spaced 

𝜋 4⁄  apart, corresponding to axes of maximum and minimum stiffness-to-mass ratios 
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respectively. The antinodes of mode 𝑋′ align at the angular positions marked with the + 

symbols while those of mode 𝑌′ align at the angular positions marked with the – symbols.  

 

Figure 1.8: Orientation of the 𝒏 = 𝟐 modes (𝑿′,𝒀′) relative to the driven deflected shape 𝑿 in an imperfect 

ring 

In Figure 1.8, due to the ring modes being fixed the modes are generally misaligned from the 

drive deflection shape 𝑋 , where Θ𝜔  defines the misalignment angle. In this case, 𝑋 =

𝑋′ cos 2Θ𝜔 − 𝑌′ sin 2Θ𝜔 so the driven deflection includes contributions from both ring modes. 

This gives rise to an undesirable elastic coupling that interferes with the Coriolis force 

coupling. In ideal rings, the ring exhibits equal tendency to vibrate in all orientations, thus 

ensuring that this elastic coupling does not occur. The combined effects of the frequency split 

and drive misalignment are known to degrade rate sensing performance in three ways [26]. 

Firstly, the scale factor is reduced. Secondly, the sense amplitude does not nullify when 

angular rate is absent, but responds with a systematic offset known as bias or zero-rate error. 

Thirdly, the phase of the sense mode shifts giving rise to a quadrature error. 

A wide variety of techniques have been reported in the literature to compensate for these 

effects, and these mainly rely on the introduction of artificial imperfections to negate existing 

physical imperfections. One such method is electrostatic tuning of the modes, which takes 

advantage of the negative spring stiffness effect of an electrode [44, 45]. In these studies, 

appropriate activation of electrodes has been investigated to nullify the linear elastic coupling 

and generate unequal electrostatic restoring forces on the drive and sense modes, aimed at 

reducing or eliminating the frequency split. The electrostatic method is advantageous as it can 

be implemented post-fabrication, as it requires no structural modifications. Alternatively, 

mechanical trimming procedures have also been reported [46, 47] and involves using 

selectively-positioned mass removal on the neutral axis to increase one of the modal 
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frequencies. To achieve trimming, mass removal is targeted at an antinode of the low 

frequency mode. 

Damping asymmetry is another form of imperfection and is attributed to uneven energy 

dissipation around the ring, colloquially known as anisodamping. Viscous damping can 

contribute to anisodamping through hydrodynamic lift effects, also known as the surfboard 

effect [12]. The surfboard effect occurs when sliding motion along one direction over a viscous 

medium generates a hydrodynamic lift force in the orthogonal direction. In this way, the 

velocity of the drive mode exerts a force on the sense mode and vice versa. Damping 

asymmetries are known to interfere with angular rate measurements by generating forces in 

phase/antiphase with the Coriolis force [26]. As such, the contributions from the Coriolis 

effect and damping asymmetry cannot be distinguished. Trimming techniques to reduce or 

eliminate damping asymmetry have been reported in the literature. Reference [14] uses 

piezoelectric elements to trim the damping. Piezoelectric elements of different lengths are 

placed at multiple angular positions around the ring and used to modify the Q factors of the 

drive and sense modes unequally to nullify any Q factor difference between the drive and 

sense modes. 

Devices with high Q factors are known to be more susceptible to the performance degrading 

effects of imperfections [2] and for this reason it is essential to reduce the effects of 

imperfection as devices are developed with increasingly large Q factors.     

1.4. Electrostatic nonlinearities   

Nonlinear dynamics in ring-based CVG’s occur as a result of large amplitude oscillations of 

the ring [48, 49]. As such, conventional operation of these devices often involve sufficiently 

small, linear displacements about the equilibrium to avoid the potential effects of such 

nonlinearities on the system response. To enhance rate sensitivity, (1.1) indicates a large drive 

mode amplitude is advantageous, and so it is imperative to take nonlinearities into account 

when analysing sensing performance as drive amplitude increases. 

The sources of nonlinearities in CVG’s are vast, some of which are reported in [15]. Of these 

sources electrostatic nonlinearities are well known as being dominant [49] and for this reason 

electrostatic nonlinearity is the central focus of the present research. Electrostatic 

nonlinearities arise due to the nonlinear relationship between force and displacement in 

capacitive electrodes [2, 21]. The strength of electrostatic nonlinearities in ring-based CVG’s 

depends on the proximity of the ring to the electrode and increases significantly as the 

capacitive gaps reduce due to the increased capacitance. Since capacitive CVG’s are micro-

scale devices with very narrow capacitive gaps, electrostatic nonlinearities typically arise at 
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much lower amplitudes of vibration than other forms of nonlinearity. The presence of 

electrostatic nonlinearities provides a clear explanation of the deviation of the ring dynamics 

from linear behaviour even at relatively low amplitudes of flexural vibration, well below the 

ring radial thickness [15]. In one theoretical study on a practical device, the electrostatic 

nonlinearities have been shown to dominate the mechanical nonlinearities by an order of 104 

[49]. The electrostatic nonlinearity also strengthens when larger voltages are applied across 

the electrodes. 

Electrostatic nonlinearities introduces nonlinear coupling between the drive and sense modes, 

thus resulting in the drive mode affecting the sense response through other means asides from 

the Coriolis force even in perfect devices [49]. The dominant effect of the electrostatic-

induced nonlinear coupling is the ability of the ring to self-energise through self-induced 

parametric excitation [48-50]. This differs from external excitation as it does not arise from 

direct forcing of the mass. Instead, it appears as a time variation of one or more of the system 

parameters, typically the stiffness, at twice the drive frequency. Self-induced parametric 

excitation occurs when the drive mode is forced into sufficiently large vibrations, resulting in 

a nonlinear elastic coupling between the drive and sense modes. This form of parametric 

excitation is self-induced and passively relies on the drive mode displacement to modulate the 

sense mode stiffness. The presence of self-induced parametric excitation modifies the modal 

response to the Coriolis force, such that the scale factor does not increase linearly with the 

drive amplitude [48], unlike a linear device as shown in (1.1). 

Parametric amplification is the specific use of parametric excitation to amplify the mechanical 

response, hence the scale factor. The electrostatic forces in capacitive CVG’s can be used for 

this purpose [51, 52], achieved through the deliberate introduction of harmonic parametric 

pumping voltages to modulate the modal stiffness. In rings, parametric amplification is applied 

on the drive and sense modes to complement the harmonic drive force and Coriolis force 

respectively [28]. Parametric amplification has been reported as a Q factor enhancing method 

independent of bandwidth as it can suppress energy dissipation [53], thus offering rate 

sensitivity enhancement potential regardless of damping. The effect of parametric 

amplification is most significant when parametric instability is approached, where the 

damping-induced energy dissipation is near completely negated by the parametric excitation. 

Unstable vibrations are not the focus of this thesis so this is not discussed further. However, 

the instability threshold is of particular interest for maximising parametric amplification. 

Parametric amplification is known to be phase-sensitive and the application of parametric 

amplification in disk resonator gyroscopes [54] showed that phase conditions exist where 

parametric excitation can either amplify or attenuate the sense response. The phase is used to 

amplify the Coriolis force while attenuating the quadrature error. Another study on rings 
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achieved scale factor amplification by imposing a double-frequency voltage component on 

the sense electrodes [52]. In these studies and the majority of other studies investigating the 

deliberate use of parametric excitation for response amplification [18], the sense mode is 

generally treated as a linear system. Nonlinearities have been avoided by keeping oscillation 

amplitudes relatively small, with the main aim of using parametric amplification to reduce the 

drive voltage required to attain a particular amplitude. This limits the attainable linear 

amplification of the Coriolis force from large drive amplitude operations.  

Past studies involving investigating parametric amplification in the presence of nonlinearities 

mainly focus on restricted forms of nonlinearities, typically the Duffing nonlinearity. The 

study in [55] implements parametric amplification in a 2-DOF microgyroscope in the presence 

of Duffing nonlinearities to amplify mechanical displacements at non-resonant operations, 

thus improving the bandwidth. A study on a simple lumped-mass model [56] shows that the 

Duffing nonlinearity diminishes the attainable gain from parametric excitation compared to 

the case where the parametric excitation is applied to a linear system. Due to the limited scope 

of the nonlinearities investigated, there is still a need to address the effects of the general form 

of nonlinearities on parametric amplification and the potential for leveraging such 

nonlinearities for this purpose. The combination of parametric amplification of the sense 

response and linear amplification of the Coriolis force due to large, nonlinear amplitude 

vibrations is appealing for significant scale factor enhancement.   

Electrostatic nonlinearities are commonly perceived as a hindrance towards enhanced scale 

factor at larger vibration amplitudes for CVGs [15]. However in contrast to this the present 

research focuses on using electrostatic nonlinearities as a way to enhance rate sensing 

performance. 

1.5. Aims and objectives 

The research is motivated by the challenge to develop miniaturised high performance ring-

based CVG’s As devices are miniaturised, electrostatic nonlinearities becomes increasingly 

important and to enhance rate sensitivity there is a need to re-consider the notion of avoiding 

electrostatic nonlinearities at larger amplitude vibrations of the ring. The present research aims 

to provide useful insight into the potential exploitation of electrostatic nonlinearities to 

improve open-loop rate sensing performance of devices, thus addressing the common 

perception of treating electrostatic nonlinearities as an undesirable feature. The main 

investigation steps to achieve this aim are:     

 Develop a linear mathematical model describing the dynamics of a ring with mass, 

stiffness and damping imperfections. The analysis of the dynamics serves to introduce 
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the main concepts and is used to develop methods to identify ring imperfection 

parameters such as the mode angles. The effects of these identified imperfections on 

rate sensing performance in terms of the quadrature error, bias rate and rate sensitivity 

are of principal interest. 

 Extend the linear mathematical model to include nonlinear electrostatic effects. It is 

necessary for the model to encapsulate the capacitive forcing generated by the 

electrodes on the ring and the nonlinear relationship between the electrostatic forces 

and the ring displacement must be modelled accurately. It is essential that this is first 

modelled so as to understand the basic operation of these devices. 

 Determine the key features of electrostatic nonlinearity that affect rate sensing 

performance under basic operation and make comparisons against the expected 

behaviour of a corresponding linear, ideal device. To achieve this, a clear link must 

be established between the nonlinear electrostatic forces, the resulting fundamental 

effects such as self-induced parametric excitation, and the sense mode response. The 

nonlinear modifications on the rate sensitivity, bias rate and quadrature error will be 

of particular interest. 

 Address the key nonlinear electrostatic effects and investigate the strategic use of the 

voltages and electrodes to improve device performance in the areas of trimming, 

linearisation and parametric amplification. To achieve this, it is necessary to consider 

the specific interaction between the mechanical forces, especially the Coriolis force, 

and the linear and nonlinear electrostatic forces, and appropriate modifications of the 

electrostatic force to replicate the state of a standard linear and ideal device. Similarly, 

it is also of interest to replicate the force state of a high quality factor device. 

 Provide a general framework for goal-based selections of voltages and electrodes and 

make practical recommendations for the implementation of the electrostatics during 

device operation. 

Finite element (FE) results will also be used to validate key findings predicted by the 

mathematical models. 

1.6. Thesis outline 

The proceeding parts of this dissertation are organised into chapters as described below: 

 Chapter 2 provides an introduction to modelling the linear dynamics of ring-based 

CVG’s. A model is developed to analyse and predict the flexural vibration of a ring 

resonator in the presence of rotation and structural and damping imperfections. Linear 

equations of motion are developed for a harmonically forced, imperfect, rotating ring, 

which are used to investigate the linear modal dynamics. The linear dynamics without 
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rotation are first considered to investigate practical measurement methods for 

identifying the imperfection parameters. The effects of rotation are then included to 

quantify the rate sensing performance in terms of the rate sensitivity, bias rate and 

quadrature error. The effects of imperfections and back coupling on device operation 

and rate sensing performance are investigated and conditions where back coupling 

effects are negligible are identified. 

 Chapter 3 extends the linear model developed in chapter 2 to account for electrostatic 

nonlinearities. A basic electrostatic configuration involving 8 evenly spaced 

electrodes with bias and drive voltage components is considered. The electrostatic 

potential energy is derived to identify the resulting electrostatic forces contributing to 

the equations of motion. The effects of the electrostatic nonlinearities, such as self-

induced parametric excitation, on the rate sensitivity, bias rate and quadrature error 

are then identified for the cases of perfect and imperfect rings. The conditions where 

the electrostatic nonlinearities trim the sensor output or enhance the rate sensitivity 

are investigated.  

 Chapter 4 deals with the linearisation and trimming of the device output. This chapter 

is organised into two parts. The first part deals with negating the self-induced 

parametric excitation identified in Chapter 3. A modification of the voltage 

distribution between the electrodes is considered to counteract the self-induced 

parametric excitation. The equations of motion are developed for the updated 

electrostatic configuration. The resulting sense dynamics are analysed to identify the 

voltage conditions for negating the self-induced parametric excitation. The effects of 

negating the self-induced parametric excitation and the conditions for potential 

frequency matching of the drive and sense modes are then investigated. The second 

part of the chapter deals with restoring the output of a device which is both linear and 

trimmed in the presence of electrostatic nonlinearities. The electrostatic force arising 

from each electrode is generalised to provide a framework for the strategic selection 

of voltages and electrode number to tailor the electrostatic forces for specific aims, 

such as sensor output linearisation and trimming for this chapter. The balance of the 

forces on the sense mode is considered to identify the required form of the electrostatic 

forces to nullify the quadrature output and linearise and trim the rate output, based on 

which the proposed framework is used to identify a suitable electrostatic configuration. 

The effectiveness of the implementation of the updated electrostatic configuration to 

linearise and trim the sense response is assessed through comparisons with the case 

of without addressing the balance of the sense mode forces. The potential of using the 

chosen electrostatic configuration for closed-loop rate sensing is also investigated. 
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 Chapter 5 focuses on using electrostatic forces to yield parametric amplification 

effects on the rate output, while maintaining trimmed bias rates and quadrature errors. 

Approaches involving the use of linear and quadratic order electrostatic forces are 

considered for this purpose. Similar to Chapter 4, the balance of the forces on the 

sense mode is considered to identify suitable forms of the required electrostatic forces 

to achieve trimmed parametric amplification. Based on the identified form of the 

electrostatic forces required, the framework proposed in Chapter 4 is used to identify 

suitable voltage distributions and arrangement of electrodes to generate the required 

parametric excitation using linear or quadratic electrostatic forces. For both 

approaches, the equations of motion are developed to analyse the sense dynamics, 

based on which the conditions required to achieve rate output trimming and 

parametric amplification are identified. The use of linear and quadratic electrostatic 

forces are then compared and comments are made on the advantages and 

disadvantages of these approaches. 

 Chapter 6 summarises the present research, drawing on the main conclusions essential 

for enhancement of device performance. Based on the outcome of this research, 

remaining open research questions are used for future work suggestions. 
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2. LINEAR DYNAMICS OF RING-BASED 

RESONATORS IN CVG’S: CHARACTERISING 

MECHANICAL IMPERFECTIONS 

2.1. Introduction 

This chapter develops a basic linear model to describe the dynamic behaviour of an imperfect, 

unsupported rotating ring resonator used in CVG’s.  The model incorporates the presence of 

general structural and damping imperfections in the ring and is used to develop expressions 

for the drive and sense responses when the ring is subjected to harmonic excitation. The model 

is used as a basis for identifying and characterising the magnitude and spatial distribution of 

structural and damping imperfections, and quantifying the effects of these imperfections on 

angular rate sensing performance. 

The chapter is organised as follows: Section 2.2 describes the linear modelling approach used 

to describe the rotating ring dynamics and determines the equations of motions characterising 

the drive and sense responses when operated as a CVG. The mechanical energy expressions 

are derived for planar flexural vibrations of the ring, which are then used in Lagrange’s 

equations to develop the linear equations of motion. In the model structural and damping 

imperfections are included by considering inhomogeneities of the density, elastic modulus and 

damping distribution. In Section 2.3, the equations of motion developed in Section 2.2 are 

used to determine the ring response under harmonic excitation and develop practical methods 

for identifying and characterising imperfections, which are unknown in practice. The 

magnitudes and principal orientations of the structural and damping imperfections are 

identified using measurements of the modal frequency, bandwidth, amplitude and phase by 

considering variations of the harmonic excitation orientation. In Section 2.4, the effects of 

angular rate are analysed to quantify the effects of imperfection and back coupling in the 

context of angular rate measurements. These effects are investigated by assessing the rate 

sensing performance in terms of the rate sensitivity and bias rate, and compared between the 

cases of with and without back coupling. Section 2.5 provides a summary of the main 

contributions from the chapter. 

2.2. Linear mathematical model of the ring modal dynamics 

In this section, a simplified mathematical model is developed to describe and determine the 

equations of motion describing the flexural vibration response of an imperfect, unsupported 

rotating ring resonator. The model accounts for structural and damping imperfections by 

considering circumferential variations of the density, elastic modulus and damping 
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distributions. Based on this, mechanical energy expressions are developed for the ring to be 

incorporated into Lagrange’s equations to develop the linear equations of motion. 

2.2.1. Ring description and modes 

Figure 2.1 shows the displacement field (𝑢, 𝑣, 𝑤) characterising the kinematics of a ring 

having radius 𝑅 , radial thickness 𝐻  and axial length 𝐵 . 𝑢 , 𝑣  and 𝑤  are the displacement 

components of the ring within the 𝑂𝑒1𝑒2𝑒3 coordinate system, parallel to the 𝑂𝑒1, 𝑂𝑒2 and 

𝑂𝑒3 axes respectively. The 𝑂𝑒1𝑒2𝑒3 coordinate system is a non-inertial frame that rotating 

with the ring at angular velocity Ω. The ring rotates with angular velocity Ω about the out-of-

plane polar axis 𝑂𝑒3 is the polar axis of the ring. In the plane of the ring, (𝑟, 휃) is a pair of 

polar coordinates in the radial and circumferential directions, where 휃 = 0  is fixed to a 

reference position aligned with the ring drive axis. 

 

Figure 2.1: Dimensions and coordinate system of a ring rotating at angular velocity 𝛀 

The vibration of the ring is expressed in terms of displacements 𝑢, 𝑣 and 𝑤, and for a typical 

single axis CVG the in-plane vibration response (𝑤 = 0) used to measure angular velocity Ω 

is expressed in terms of the radial and tangential displacements 𝑢 and 𝑣 respectively.  

Due to the spatial periodicity of the ring, the radial and tangential displacements of the ring 

must satisfy the boundary condition 𝑢|𝜃=0 = 𝑢|𝜃=2𝜋 and 𝑣|𝜃=0 = 𝑣|𝜃=2𝜋. It can be shown 

that the radial and tangential displacements for a ring vibrating in its 𝑛휃  modes can be 

expressed as [24]: 

𝑢(휃, 𝑡) = 𝑋(𝑡) cos 𝑛휃 + 𝑌(𝑡) sin 𝑛휃 (2.1) 

𝑣(휃, 𝑡) =
𝑌(𝑡)

𝑛
cos 𝑛휃 −

𝑋(𝑡)

𝑛
sin𝑛휃 

(2.2) 

𝐵 

ℎ 

𝑢 

𝑣 𝑟, 𝑅 

𝑤 

휃 
𝑒1 

𝑒2 

𝑒3 휃 = 0 

𝑂

Ω 
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For a perfectly axisymmetric ring, the (𝑋, 𝑌) pair describe degenerate modes possessing the 

same natural frequencies and indeterminate mode shapes separated by 𝜋/2𝑛. For practical 

CVG’s the 𝑛 = 2 pair of modes is commonly employed but the notation 𝑛 will be maintained 

throughout this chapter, as such 𝑋 describes the radial displacement of the 𝑛휃 drive mode and 

𝑌 describes the radial displacement of the 𝑛휃 sense mode. 

The linear relationship between the displacement field (𝑢, 𝑣) and modal displacements (𝑋, 𝑌) 

is based on the assumption that the ring displacement is small. The ring is also radially thin 

such that the radial and tangential displacements only vary circumferentially. The radial and 

tangential displacements are related such that 𝑢 = −𝜕𝑣 𝜕휃⁄  as the ring mid-surface is 

regarded to be inextensional. Shear deformation and tangential inertia are also neglected. 

2.2.2. Mechanical energy expressions 

An energy-based approach is employed to derive the equations of motion of the vibrating ring. 

In this section, expressions for the kinetic and potential energies of the ring are derived, 

together with expressions for the dissipation function and external work done. The expressions 

developed include the effects of structural and damping imperfections which are included by 

modelling the material properties as being inhomogeneous. The resulting expressions are used 

in Lagrange’s equation [57] to obtain the equations of motion. 

Kinetic energy of imperfect rotating ring 

The kinetic energy of an imperfect rotating ring is given by: 

𝐸𝐾 =
1

2
𝐵ℎ ∫ 𝜌(휃) |

𝑑𝒓

𝑑𝑡
|
2

𝑅𝑑휃
2𝜋

0

 
(2.3) 

where 𝜌(휃) and 𝑑𝒓 𝑑𝑡⁄  are the material density and absolute velocity vector at location 휃 

respectively. 

The absolute velocity includes contributions from the rigid body rotation and vibration of the 

ring. Noting from Figure 2.1 that the position vector of a point on the ring in the non-inertial 

frame 𝑂𝑒1𝑒2𝑒3 is 𝒓 = (𝑟 + 𝑢, 𝑣, 0) where 𝑟 is a coordinate defining the radial position, and 

the ring and frame rotate with angular velocity vector 𝛀 = (0,0, Ω), the components of the 

absolute velocity can be expressed in vector notation as: 

𝑑𝒓

𝑑𝑡
=

𝜕𝒓

𝜕𝑡
+ 𝛀 × 𝒓 = (

�̇� − 𝑣Ω
�̇� + (𝑟 + 𝑢)Ω

0
) 

(2.4) 
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where the single overdot ( ̇ ) represents differentiation with respect to time. Using (2.1) and 

(2.2), the absolute velocity components can be expressed in terms of the modal displacements 

and velocities. The absolute velocity can then be expressed as the resultant of these 

components. 

The material density around the ring circumference is expressed as a Fourier series expansion: 

𝜌(휃) = 𝜌 [1 + ∑ 𝛿𝜌𝜎 cos 𝜎(휃 − Θ𝜌,𝜎)

∞

𝜎=1

] 
(2.5) 

where 𝛿𝜌𝜎 and Θ𝜌,𝜎 define the magnitude and orientation (relative to the drive axis) of the 

𝜎’th Fourier component. In the absence of imperfections, the density is invariant around the 

circumference and 𝛿𝜌𝜎 = 0. 

Using (2.4) and (2.5) in (2.3) it can be shown that the ring kinetic energy 𝐸𝑘 can be expressed 

as: 

𝐸𝑘 = ∫ Δ𝐸𝑘

2𝜋

0

= 𝐸𝑘1 + 𝐸𝑘2 + 𝐸𝑘3 

(2.6) 

𝐸𝑘1 =
𝑚

2
(
𝑛2 + 1

2𝑛2 ) [(1 +
𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 cos2𝑛Θ𝜌) �̇�2

+ (1 −
𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 cos 2𝑛Θ𝜌) �̇�2 +

𝑛2 − 1

𝑛2 + 1
𝛿𝜌 sin 2𝑛Θ𝜌 �̇��̇�] 

(2.7a) 

𝐸𝑘2 =
𝑚Ω

𝑛
(𝑋�̇� − �̇�𝑌 + 𝛿𝜌𝑛 cos𝑛Θ𝜌,𝑛

𝑅�̇�

2
− 𝛿𝜌𝑛 sin 𝑛Θ𝜌,𝑛

𝑅�̇�

2
) 

(2.7b) 

𝐸𝑘3 =
𝑚Ω2

2
{𝑅(𝑅 + 𝛿𝜌𝑛 cos 𝑛Θ𝜌,𝑛 𝑋 + 𝛿𝜌𝑛 sin𝑛Θ𝜌,𝑛 𝑌)

+
𝑛2 + 1

2𝑛2
[(1 +

𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 cos 2𝑛Θ𝜌)𝑋2

+ (1 −
𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 cos 2𝑛Θ𝜌)𝑌2 +

𝑛2 − 1

𝑛2 + 1
𝛿𝜌 sin2𝑛Θ𝜌 𝑋𝑌]} 

(2.7c) 

In these equations 𝑚 = 2𝜌𝜋𝑅ℎ𝐵 is the mass of the ring, and 𝛿𝜌 = 𝛿𝜌2𝑛 and Θ𝜌 = Θ𝜌,2𝑛 are 

the magnitude and orientation angle of the 2𝑛휃 circumferential variation of the density in (2.5). 

As will be shown, the 2𝑛휃 variation component is the dominant term in (2.5) contributing to 

the equations of motion. 
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𝐸𝑘1 represents the portion of the kinetic energy independent of angular rate. When the mass 

is homogeneous, the coefficients associated with �̇�2  and �̇�2  are equal and the coefficient 

associated with �̇��̇� vanishes. 

𝐸𝑘2 represents the portion of the kinetic energy contributing to the Coriolis force which is 

proportional to Ω. The magnitude of this term is inversely proportional to mode order 𝑛 

indicates that selecting a small 𝑛 value (e.g. 𝑛 = 2) maximises the Coriolis force. 

𝐸𝑘3 represents the portion of the kinetic energy contributing to the centripetal force which is 

proportional to Ω2. In practice, the angular rate to be measured is orders of magnitude lower 

than the natural frequency of the mode pair (a ratio of 10−4 is typical) and for this reason this 

contribution is often neglected. This simplification is used in the remainder of this study. 

It is clear from a physical perspective that circumferential density variations break the cyclic 

symmetry of the ring mass distribution for a perfect ring, and the equations indicate the 

dominant symmetry breaking effect is associated with the 2𝑛 ’th component of density 

variation.  This cyclic symmetry breaking is studied in detail in Appendix A. It is also 

interesting to note that the 𝑛’th component of density variation also contributes to the total 

kinetic energy through terms proportional to 𝛿𝜌𝑛 cos𝑛Θ𝜌,𝑛 and 𝛿𝜌𝑛 sin 𝑛Θ𝜌,𝑛, appearing in 

(2.7b) and (2.7c). However, it is shown in Appendix A that this component makes negligible 

contribution to the resulting equations of motion. 

Ring bending potential energy 

The bending potential energy of the ring is given by [24]: 

𝐸𝑏,𝑅 =
𝐼

2
∫ 𝐸(휃) (

𝜕2𝑢

𝑅2𝜕휃2
+

𝑢

𝑅2)

2

𝑅𝑑휃

2𝜋

0

 

(2.8) 

where 𝐸(휃) is the elastic modulus at location 휃.  Similar to the density variations considered 

earlier the elastic modulus around the ring circumference is expressed as a Fourier series 

expansion: 

𝐸(휃) = 𝐸 [1 + ∑ 𝛿𝐸𝜎 cos 𝜎(휃 − Θ𝐸.𝜎)

∞

𝜎=1

] 
(2.9) 

where 𝐸  is the mean elastic modulus, and 𝛿𝐸𝜎  and Θ𝐸,𝜎  define magnitude and orientation 

(relative to the drive axis) of the 𝜎’th Fourier component. In the absence of imperfections, the 

elastic modules is invariant around the circumference and 𝛿𝐸𝜎 = 0. 
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Using equations (2.1) and (2.9) in equation (2.8) it can be shown that the ring bending strain 

energy 𝐸𝑏,𝑅 can be expressed as: 

𝐸𝑏,𝑅 =
𝐸𝐼𝜋(𝑛2 − 1)2

2𝑅3 [(1 +
𝛿𝐸

2
cos 2𝑛Θ𝐸)𝑋2 + (1 −

𝛿𝐸

2
cos 2𝑛Θ𝐸)𝑌2

+ 𝛿𝐸 sin2𝑛Θ𝐸 𝑋𝑌] 

(2.10) 

where 𝐼 = 𝐵ℎ3 12⁄  is the second moment of area with respect to a principal axis parallel to 

the polar axis of the ring, and 𝛿𝐸 = 𝛿𝐸2𝑛 and Θ𝐸 = Θ𝐸,2𝑛 are the magnitude and orientation 

angle of the 2𝑛휃’th circumferential variation of the elastic modulus in (2.9).  Similar to the 

kinetic energy result earlier only the 2𝑛휃 variation participates in the bending potential energy. 

Ring dissipation function 

The ring dissipation function is based on viscous frictional forces summed over all particles 

of the system [57] and is expressed as follows: 

𝐷 = ∫ (
1

2
𝑐(휃)�̇�2 +

1

2
𝑐(휃)�̇�2)𝑅𝑑휃

2𝜋

0

 

(2.11) 

where 𝑐(휃)  is an arc-length-normalised damping coefficient applied in the radial and 

tangential directions.  It is used to define damping variations around the ring circumference, 

and similar to density and elastic modulus variations earlier, the damping coefficient is 

expressed as a Fourier series expansion, such that: 

𝑐(휃) = 𝑐 [1 + ∑ 𝛿𝑐𝜎 cos 𝜎(휃 − Θ𝑐,𝜎)

∞

𝜎=1

] 
(2.12) 

where 𝛿𝑐𝜎 and Θ𝑐,𝜎 define magnitude and orientation (relative to the drive axis) of the 𝜎’th 

Fourier component. In the absence of imperfections, the damping coefficient is invariant 

around the circumference and 𝛿𝑐𝜎 = 0. 

Using equations (2.1), (2.2) and (2.12) in equation (2.11) it can be shown that the ring 

dissipation function can be expressed as: 

𝐷 =
𝑐𝜋𝑅

2𝑛2
(𝑛2 + 1) [(1 +

𝛿𝑐

2
cos 2𝑛Θ𝑐) �̇�2 + 𝛿𝑐 sin 2𝑛Θ𝑐 �̇��̇�

+ (1 −
𝛿𝑐

2
cos 2𝑛Θ𝑐) �̇�2] 

(2.13) 
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where 
𝑐𝜋𝑅

𝑛2
(𝑛2 + 1) is the mean damping coefficient, and 𝛿𝑐 = 𝛿𝑐2𝑛 and Θ𝑐 = Θ𝑐,2𝑛 are the 

magnitude and orientation of the 2𝑛휃  circumferential variation of the damping in (2.12).  

Similar to the kinetic and ring bending potential energy results earlier only the 2𝑛휃 variation 

participates in the dissipation function. 

Work done due to external excitation 

To model the external drive force applied to the ring a distributed radial force (per unit arc 

length) is applied which has the same circumferential variation as the drive mode. i.e. 

𝐹(휃, 𝑡) = 𝑓(𝑡) cos 𝑛휃 

The work done by this radial force is given by: 

𝑊 = ∫ 𝐹(휃, 𝑡)𝑢𝑅𝑑휃

2𝜋

0

= 𝑓(𝑡)𝜋𝑅𝑋 

(2.14) 

In practice, 𝑓(𝑡)  is harmonic with a frequency regulated in the vicinity of the natural 

frequencies of the drive and sense mode pair to achieve resonant operation.  

2.2.3. Equations of motion 

Having determined the expressions for the kinetic energy from (2.6) – (2.7c), bending 

potential energy from (2.10), Rayleigh’s dissipation function from (2.13) and the work done 

by the electrostatic drive force from (2.14), the equations of motion describing the drive and 

sense mode dynamics are obtained using Lagrange’s equation. 

Lagrange’s equations for the drive and sense modes are given by: 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘

𝜕�̇�
) −

𝜕𝐸𝑘

𝜕𝑋
+

𝜕𝐸𝑏,𝑅

𝜕𝑋
=

𝜕𝑊

𝜕𝑋
−

𝜕𝐷

𝜕�̇�
 

(2.15a) 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘

𝜕�̇�
) −

𝜕𝐸𝑘

𝜕𝑌
+

𝜕𝐸𝑏,𝑅

𝜕𝑌
=

𝜕𝑊

𝜕𝑌
−

𝜕𝐷

𝜕�̇�
 

(2.15b) 

Substituting (2.6) – (2.7c), (2.10), (2.13) and (2.14) into (2.15a) and (2.15b) and neglecting 

centripetal effects from the kinetic energy yields the following: 

𝑀 [
1 + Δ𝑚1 Δ𝑚2

Δ𝑚2 1 − Δ𝑚1
] [�̈�

�̈�
] + (𝐶 [

1 + Δ𝑐1 Δ𝑐2

Δ𝑐2 1 − Δ𝑐1
] + 𝑀ΩΩ [

0 −1
1 0

]) [�̇�
�̇�
]

+ 𝐾 [
1 + Δ𝑘1 Δ𝑘2

Δ𝑘2 1 − Δ𝑘1
] [

𝑋
𝑌
] = [

𝑓(𝑡)𝜋𝑅
0

] 

(2.16) 
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where 𝑀, 𝐶, 𝐾 are the modal mass, damping and stiffness respectively while 𝑀Ω is the modal 

Coriolis mass, given by: 

𝑀 = 𝑚 (
𝑛2 + 1

2𝑛2 ) 

𝐶 =
𝑐𝜋𝑅

𝑛2
(𝑛2 + 1) 

𝐾 =
𝐸𝐼𝜋(𝑛2 − 1)2

𝑅3
 

𝑀Ω =
2𝑚

𝑛
 

and 

Δ𝑚1 =
𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 cos 2𝑛Θ𝜌 

Δ𝑚2 =
𝑛2 − 1

2𝑛2 + 2
𝛿𝜌 sin 2𝑛Θ𝜌 

Δ𝑐1 =
𝛿𝑐

2
cos2𝑛Θ𝑐 

Δ𝑐2 =
𝛿𝑐

2
sin2𝑛Θ𝑐 

Δ𝑘1 =
𝛿𝐸

2
cos 2𝑛Θ𝐸 

Δ𝑘2 =
𝛿𝐸

2
sin 2𝑛Θ𝐸 

Pre-multiplying these equations by the inverse mass matrix and retaining only first order terms 

involving the small imperfection coefficients gives: 

[�̈�
�̈�
] + (

𝜔0

𝑄0
[
1 + Δ𝑏1 Δ𝑏2

Δ𝑏2 1 − Δ𝑏1
] + 𝐺ΩΩ[

−ΔΩ2 −(1 − ΔΩ1)
1 + ΔΩ1 ΔΩ2

]) [�̇�
�̇�
]

+ 𝜔0
2 [

1 + Δ𝜔1 Δ𝜔2

Δ𝜔2 1 − Δ𝜔1
] [

𝑋
𝑌
] = [

𝜒𝑋

𝜒𝑌
] 

(2.17) 

where 

Δ𝑏1 = Δ𝑏 cos 2𝑛Θ𝑏 = Δ𝑐1 − Δ𝑚1 

Δ𝑏2 = Δ𝑏 sin2𝑛Θ𝑏 = Δ𝑐2 − Δ𝑚2 
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Δ𝜔1 = Δ𝜔 cos 2𝑛Θ𝜔 = Δ𝑘1 − Δ𝑚1 

Δ𝜔2 = Δ𝜔 sin 2𝑛Θ𝜔 = Δ𝑘2 − Δ𝑚2 

ΔΩ1 = Δ𝑚1 

ΔΩ2 = Δ𝑚2 

𝜔0 and 𝑄0 are the natural frequency and Q factor for the 𝑛th flexural mode pair of the perfectly 

axisymmetric ring without rotation. The natural frequency is given by:   

 𝜔0
2 =

𝑛2(𝑛2 − 1)2

𝑛2 + 1
(

𝐸ℎ2

12𝜌𝑅4) 

and the quantity 𝜔0 𝑄0⁄  defines the modal half-power bandwidth. In practice, high Q factors 

are often desirable to amplify the sensitivity of the angular rate measurement. 

In (2.17) 𝐺Ω is associated with the gyroscopic coupling matrix, which governs the operation 

of CVG’s in the absence of other coupling terms, and dictates the portion of the modal mass 

participating in the Coriolis forcing of the drive and sense modes. 𝐺Ω was given in (1.3): 

𝐺Ω =
4𝑛

𝑛2 + 1
 

Similar to the Q factor, a high 𝐺Ω maximises angular rate sensitivity and it is clear that the 

lowest order flexural mode pair (𝑛 = 2) results in the highest 𝐺Ω. 

𝜒𝑋 and 𝜒𝑌 are the modal-mass-normalised drive force components applied on the drive and 

sense modes respectively, and are given by: 

𝜒𝑋 =
𝑓(𝑡)

𝜌𝐵ℎ
(

𝑛2

𝑛2 + 1
) (1 − Δ𝑚1) 

𝜒𝑌 = −
𝑓(𝑡)

𝜌𝐵ℎ
(

𝑛2

𝑛2 + 1
)Δ𝑚2 

In the absence of density variations the drive force only excites the drive mode 𝑋. However, 

if sin2𝑛Θ𝜌 ≠ 0 the drive force directly excites the sense mode. This sense force is undesirable 

as it can be orders of magnitude larger than the Coriolis force and ‘leakage’ of even a small 

portion of this force into the sense mode can significantly mask the useful Coriolis force 

arising from the angular rate, thus contaminating the CVG output. 

Δ𝑏1,2 , Δ𝜔1,2  and ΔΩ1,2  are small imperfection parameters (values <<  1) relating to the 

bandwidth, natural frequency and Coriolis coupling.  These terms arise from 2𝑛휃 

circumferential variations in the density, elastic modulus and damping coefficients, and they 
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can have a significant impact on the dynamics of the resonator, particularly when imperfection 

generates coupling between the drive and sense modes, leading to zero-rate outputs in the 

sensor. Δ𝑏1,2 and Δ𝜔1,2 define the damping and structural imperfections respectively. 

Δ𝑏1 and Δ𝑏2 depend on damping and density variations and result in splitting of the bandwidth 

(causing the Q factors for the drive and sense modes to differ) and velocity coupling between 

the drive and sense modes. 

Δ𝜔1 and Δ𝜔2 depend on the density and elastic modulus variations and result in frequency 

splitting and elastic coupling between the drive and sense modes. 

ΔΩ1 and ΔΩ2 depend on the density variations and contribute to the gyroscopic matrix. In the 

absence of density variations the gyroscopic matrix couples the drive and sense modes. The 

inertial force coupling results in the gyroscopic forces partially self-exciting the drive and 

sense modes in a manner similar to conventional damping, as shown by the nonzero terms 

±∆Ω2 on the principal diagonal of the gyroscopic matrix, giving rise to terms proportional to 

the corresponding modal velocities. This gyroscopic self-excitation can be treated similarly to 

the ‘damping minus mass’ variation involving ±∆b1  on the principal diagonal of the 

coefficient matrix of 𝜔0 𝑄0⁄ , contributing to the splitting of the effective modal bandwidth. 

On the other hand, ΔΩ1 causes an asymmetric gyroscopic coupling strength between the drive 

and sense modes. 

In the following work and throughout the thesis the effects of ΔΩ1 and ΔΩ2 are neglected.  This 

assumption serves to simply the analysis and makes the theoretical results more tractable. This 

assumption ensures that ΔΩ1 = ΔΩ2 = 0 and 𝜒𝑌 = 0 but maintains non-zero values for Δ𝑏1, 

Δ𝑏2, Δ𝜔1, Δ𝜔2, thus only focusing on the damping and structural imperfections. 

In the following section, the above assumptions are used in the derived equations of motion 

(2.17) and the resulting equations are used to determine the drive and sense mode dynamics 

when a harmonic excitation is applied and characterise the damping and structural 

imperfection from frequency response measurements.       

2.3. Characterising damping and structural imperfection 

parameters from frequency response measurements 

It is well understood that the presence of imperfections negatively affects sensor output in 

CVG’s [2, 26]. Having knowledge of the nature of these imperfections is generally of practical 

interest, especially for trimming procedures. However, the nature of these imperfections is 

generally unknown. This section investigates methods to explicitly identify the structural and 

damping imperfection parameters based on frequency response measurements.  
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In the following investigation, the linear equations of motion developed in Section 2.2.3 are 

solved for the case of a variable-orientation harmonic drive force. The modal frequency 

response in the absence of rotation is then considered to determine the variation of the resonant 

frequency, phase and bandwidth with the drive force orientation. This variation is used to 

identify specific conditions of the resonant frequency, phase and bandwidth associated with 

the orientations of the structural and damping imperfections. Based on these results, 

measurement procedures using specific drive force orientations are proposed to identify the 

magnitudes and orientations of the structural and damping imperfections. Approaches using 

the resonant frequency and bandwidth, or the amplitude and phase are investigated. 

2.3.1. Linear, forced-response of drive and sense modes 

(2.17) describes the equations governing the linear dynamics of the drive and sense modes of 

a ring resonator. A harmonic forced response analysis can be performed by applying a 

harmonic force to excite the ring into vibration and determining the resulting response. In what 

follows, the imperfection coefficients Δ𝑏1,2 and Δ𝜔1,2 refer directly to damping and structural 

imperfections respectively. A commonly used assumption [2, 26, 58] is investigated whereby 

the back coupling from the sense mode to the drive mode can be neglected.  The validity of 

this assumption is normally based on the fact that the angular rates measured in practice are 

relatively low such that the sense mode oscillates with much smaller amplitude than the drive 

mode. This assumption is advantageous because it allows the drive mode to be treated as a 

single-degree-of-freedom system and the resulting drive mode displacements and velocities 

are treated as net forces acting on the sense mode.  However, the proposed analysis is 

amendable to the investigation of the general case involving mutual coupling between the 

drive and sense modes. This allows the investigation on the effects of sense-to-drive modal 

back coupling. 

Using the assumptions outlined previously, the governing equations of motion (2.17) can be 

simplified to:  

[�̈�
�̈�
] + (

𝜔0

𝑄0
[
1 + Δ𝑏1 휂Δ𝑏2

Δ𝑏2 1 − Δ𝑏1
] + [

0 −휂𝐺ΩΩ
𝐺ΩΩ 0

]) [�̇�
�̇�
]

+ 𝜔0
2 [

1 + Δ𝜔1 휂Δ𝜔2

Δ𝜔2 1 − Δ𝜔1
] [

𝑋
𝑌
] = [

𝜒(𝑡)
0

] 

(2.18) 

The dimensionless parameter 휂 has been introduced in the above equation to identify the 

forces governing the drive mode dynamics arising from back coupling from the sense mode. 

In practice 휂 = 1, but setting 휂 = 0 in later analysis enables results to be obtained for the case 

when the back coupling is neglected. 
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To analyse the harmonic forced responses it is necessary to set 𝜒(𝑡) = 𝜒𝑒𝑖𝜔𝑡 and 𝑋 = 𝑥∗𝑒𝑖𝜔𝑡, 

𝑌 = 𝑦∗𝑒𝑖𝜔𝑡, where 𝜒 is a real quantity defining the magnitude of the drive force (modal-mass-

normalised drive force) and 𝑥∗ and 𝑦∗ are the resulting complex amplitudes of the drive and 

sense mode response. Substituting these expressions into equation (2.18) yields: 

{−𝜔2 + 𝑖𝜔 (
𝜔0

𝑄0
[
1 + Δ𝑏1 휂Δ𝑏2

Δ𝑏2 1 − Δ𝑏1
] + [

0 −휂𝐺ΩΩ
𝐺ΩΩ 0

])

+ 𝜔0
2 [

1 + Δ𝜔1 휂Δ𝜔2

Δ𝜔2 1 − Δ𝜔1
]} [

𝑥∗

𝑦∗] = [
𝜒
0
] 

(2.19) 

and solving these equations it can be shown that 𝑥∗ and 𝑦∗ are given by: 

𝑥∗ = 𝑥𝑒𝑖𝜙𝑥 = 𝜒
−𝜔2 + 𝜔0

2(1 − Δ𝜔1) + 𝑖𝜔
𝜔0
𝑄0

(1 − Δ𝑏1)

𝑍∗
 

(2.20a) 

𝑦∗ = 𝑦𝑒𝑖𝜙𝑦 = 𝜒
−𝜔0

2Δ𝜔2 − 𝑖𝜔 (
𝜔0
𝑄0

Δ𝑏2 + 𝐺ΩΩ)

𝑍∗
 

(2.20b) 

where 

𝑍∗ = [−𝜔2 + 𝜔0
2(1 − Δ𝜔1) + 𝑖𝜔

𝜔0

𝑄0

(1 − Δ𝑏1)] [−𝜔2 + 𝜔0
2(1 + Δ𝜔1)

+ 𝑖𝜔
𝜔0

𝑄0

(1 + Δ𝑏1)] − 휂 (𝜔0
2Δ𝜔2 + 𝑖𝜔

𝜔0

𝑄0
Δ𝑏2)

2

− 휂𝜔2𝐺Ω
2Ω2 

(2.21) 

𝑥∗ and 𝑦∗ are the frequency response functions (FRF) governing the drive and sense mode 

harmonic responses. The real parts of 𝑥∗ and 𝑦∗ represent components of the drive and sense 

responses in phase/antiphase with the driving force, while the imaginary parts represent the 

amplitudes of the drive and sense response components in quadrature with the driving force. 

Using the real and imaginary parts of 𝑥∗ and 𝑦∗, the frequency response of the amplitudes 𝑥, 𝑦 

and phases 𝜙𝑥 , 𝜙𝑦 can be determined by converting the expressions in (2.20a) and (2.20b) to 

polar form. The expressions for 𝑥, 𝑦  and 𝜙𝑥 , 𝜙𝑦  are lengthy due to the presence of the 

imperfections, so the FRF as expressed in (2.20a) and (2.20b) will be used for the following 

analysis. 

The impact of the imperfection parameters Δ𝑏1 , Δ𝑏2 , Δ𝜔1 , Δ𝜔2  on the frequency response 

function is clear in (2.20a) and (2.20b). Expanding 𝑍∗ shows that the imperfection parameters 

appear only as second-order terms. As such, the dominant effects of the imperfection are 

described by the numerators in (2.20a) and (2.20b). 
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The FRF in (2.20a) and (2.20b) will be used in what follows to determine the resonant 

frequency, phase and bandwidth, and are used to identify the orientations of the structural and 

damping imperfections, also known as the principal axes. For this purpose, the half-power 

method is implemented, which involves identifying the frequencies yielding peak amplitudes 

𝑥, 𝑦 and identifying the frequencies at half-power relative to the peak amplitude to calculate 

the bandwidth, which can then be used to identify the Q factor. However, in the presence of 

imperfections, it is important to note that the FRF generally exhibits two distinct, but close 

amplitude peaks, resulting in difficulties to identify the resonant frequencies and Q factors. As 

such, approximate techniques or simplification of (2.20a) and (2.20b) are required. This is 

discussed next. 

2.3.2. Circumferential variation of frequency response functions 

To aid identification and characterisation of the structural and damping imperfection 

parameters, the following extends the FRF in (2.20a) and (2.20b) to consider the more general 

case when the drive and sense axes are rotated relative to the ring. The variation of this FRF 

with the orientation of these axes can then be used to describe how the phase and modal 

parameters such as the bandwidth and resonant frequency vary in this case. The complex 

amplitudes 𝑥∗ and 𝑦∗ are first treated individually to represent single point measurements at 

either the drive or sense points on the ring. This is then followed by analysing the ratio of 

these complex amplitudes 𝑦∗(𝜔) 𝑥∗(𝜔)⁄ , where measurements at the drive and sense points 

are simultaneously considered. 

To investigate the impact of moving the drive and sense axes relative to the ring it is necessary 

to redefine the imperfection parameters in terms of the new drive axis, such that: 

Δ𝑏1 = Δ𝑏 cos 2𝑛(Θ𝑏 − Θ𝜒) , Δ𝑏2 = Δ𝑏 sin2𝑛(Θ𝑏 − Θ𝜒), 

Δ𝜔1 = Δ𝜔 cos2𝑛(Θ𝜔 − Θ𝜒) , Δ𝜔2 = Δ𝜔 sin 2𝑛(Θ𝜔 − Θ𝜒) 

where Θ𝜒 defines the orientation of the drive axis as well as the drive mode relative to the 

above case when Θ𝜒 = 0.  As the drive and sense modes are separated by 𝜋 2𝑛⁄ , Θ𝜒 + 𝜋 2𝑛⁄  

defines the orientation of the sense axis as well as the sense mode. Figure 2.2 shows a 

diagrammatic representation of the drive and sense axes. 
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Figure 2.2: Schematic diagram of ring with superimposed structural and damping variations 

The 𝑋-axis defines the drive axis and the orientation of the drive force relative to Θ𝜒 = 0. 

Rotating the drive force relative to the body of the ring (effectively varying Θ𝜒) results in 

imperfection variations Δ𝑏1, Δ𝑏2, Δ𝜔1, Δ𝜔2 having a cyclic period of 𝜋/𝑛. In practice, it is 

worth noting that the drive and sense axes can be rotated by using a stepped rotation stage [14, 

43]. A direct consequence of this is that the drive and sense mode frequency response 

functions repeats every 𝜋/𝑛  and as such, the examples presented for the case studies 

considered later in this section will only display results for 0 < Θ𝜒 < 𝜋 𝑛⁄ . 

In Figure 2.2, the damping and structural imperfections are represented as dashpots and 

springs attached at specific angular locations of the ring, acting to modify the damping and 

stiffness at these angular locations. The ‘+’ symbols represent angular locations Θ𝜒 = Θ𝜔 and 

Θ𝜒 = Θ𝑏 associated with maximum positive perturbations of the 2𝑛휃 ‘stiffness minus mass’ 

and ‘damping minus mass’. The opposite interpretation applies for the ‘-’ symbols. The 

angular orientations at these positions define the structural and damping principal axes. In this 

manner, Figure 2.2 shows how the ‘damping minus mass’ and ‘stiffness minus mass’ vary 

from maximum to minimum values within a drive force rotation of 𝜋 2𝑛⁄ , returning to the 

maximum with a further rotation angle of 𝜋 2𝑛⁄ . This cyclic variation of the modal properties 

is a fundamental effect of non-uniformities in the ring due to imperfections and as such, can 

be used to identify the principal axes. Focusing only on these imperfections, in what follows, 

the FRF in (2.20a) and (2.20b) are considered without the angular rate (Ω = 0). 

𝑋 

𝑌 

Θ𝑏 Θ𝜔 Θ𝜒 𝜋 2𝑛⁄  

휃 
+ 

+ 

- 
- 

Θ𝜒 = 0 
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2.3.2.1. Single point measurements 

To distinguish the resulting complex drive and sense mode amplitudes from those with rate 

applied, the notations 𝑥Ω0
∗ ≔ 𝑥∗|Ω=0 and 𝑦Ω0

∗ ≔ 𝑦∗|Ω=0 are used. In principle the derived 

results can be used to determine expressions for the phase, bandwidth and resonant frequencies. 

However, as noted previously, the complexity of the drive and sense mode amplitude 

frequency responses associated with the imperfection-induced peak splitting [2] make this 

intractable, and for this reason it is necessary to simplify the frequency response functions 

expressions. This is achieved by using the approximations |Δ𝜔|𝑄0 ≪ 1 and |Δ𝑏| ≪ 1 which 

are conditions associated with small structural and damping imperfections of the ring 

respectively. These allow approximations of  𝑍∗ to be made, as it has been noted previously 

that the imperfection parameters only appear as second-order terms in (2.21). The scaling of 

|Δ𝜔| with the Q factor in this approximation serves to match the orders of magnitude of the 

forces arising from the structural and damping imperfections. This can be deduced from (2.18) 

by comparing the structural imperfection forces 𝜔0
2Δ𝜔1,2𝑋, 𝜔0

2Δ𝜔1,2𝑌 against the damping 

imperfection forces (𝜔0 𝑄0⁄ )Δ𝑏1,2�̇�, (𝜔0 𝑄0⁄ )Δ𝑏1,2�̇�.  

Using this simplification in (2.20a), the (zero-rate) complex drive amplitude response can be 

approximated as: 

𝑥𝑎,Ω0
∗ = |𝑥𝑎,Ω0

∗|𝑒𝑖𝜙𝑥,𝑎,Ω0 =
𝜒

−𝜔2 + 𝜔0
2(1 + Δ𝜔1) + 𝑖𝜔

𝜔0
𝑄0

(1 + Δ𝑏1)
 (2.22) 

The condition |Δ𝜔|𝑄0 ≪ 1 is equivalent to requiring the frequency split to be much smaller 

than the mean bandwidth, so the accuracy of (2.22) is limited to very small amounts of 

imperfection particularly when the Q factor is large. It can be shown easily that approximation 

(2.22) is equivalent to setting 휂 = 0 in (2.20a) and so is equivalent to neglecting the back 

coupling from the sense to the drive response.  This approximation may not be well suited to 

very high Q factor resonators required for high performance CVG’s. Provided the levels of 

imperfection are sufficiently small, the advantage of analysing the drive response using (2.22) 

is that the drive mode amplitude frequency response always exhibits a single peak, unlike the 

more general case, ensuring that the resonant peak and half-power bandwidth can be measured 

from frequency response measurements. This behaviour can be confirmed by identifying the 

excitation frequency 𝜔 at the stationary point of the drive response magnitude, i.e. by setting 

𝜕|𝑥𝑎,Ω0
∗| 𝜕𝜔⁄ = 0. When peak splitting occurs, this condition yields 3 possible frequencies: 

2 corresponding to amplitude maxima and 1 to a minimum. 
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Converting (2.22) to polar form, the following can be deduced for the approximated drive 

amplitude and phase and frequency responses: 

|𝑥𝑎,Ω0
∗| =

𝜒

√[−𝜔2 + 𝜔0
2(1 + Δ𝜔1)]

2 + [𝜔
𝜔0
𝑄0

(1 + Δ𝑏1)]
2
 (2.23a) 

𝜙𝑥,𝑎,Ω0 = tan−1 [
−𝜔

𝜔0
𝑄0

(1 + Δ𝑏1)

−𝜔2 + 𝜔0
2(1 + Δ𝜔1)

] 

(2.23b) 

The resonant frequency 𝜔𝑋 is such that 𝑅𝑒(𝑥𝑎,Ω0
∗) = 0, which approximates the peak of the 

drive amplitude |𝑥𝑎,Ω0
∗|. The drive bandwidth 𝑏𝑋  is the frequency range where the drive 

amplitude |𝑥𝑎,Ω0
∗| is at least 1 √2⁄  of its maximum, obtained using the half-power method. 

The peak drive amplitude is obtained by identifying the excitation frequency 𝜔  at the 

stationary point of the drive amplitude, i.e. by setting 𝜕|𝑥𝑎,Ω0
∗| 𝜕𝜔⁄ = 0, then substituting this 

frequency into (2.23a). These give the following results: 

 The drive response has an undamped frequency of 𝜔𝑋
2 = 𝜔0

2(1 + Δ𝜔1), yielding a 

drive phase of 𝜙𝑥,𝑎,Ω0 = −𝜋 2⁄ . 

 The half-power bandwidth is given by 𝑏𝑋 = 𝜔0 𝑄0⁄ (1 + Δ𝑏1). 

Due to the dependence of the measured drive response frequency 𝜔𝑋 and bandwidth 𝑏𝑋 on 

Δ𝜔1, Δ𝑏1, it is clear that 𝜔𝑋 and 𝑏𝑋 depend on the circumferential distribution of the structural 

and damping imperfections relative to the drive force distribution. Using frequency response 

measurements, by measuring the variation of 𝜔𝑋  and 𝑏𝑋  with the drive angle Θ𝜒 , the 

corresponding maxima and minima can be used to identify the structural and damping 

principal axes, Θ𝜔 and Θ𝑏. 

For the same magnitudes of imperfections as those for the drive mode, when |Δ𝜔|𝑄0 ≪ 1 and 

|Δ𝑏| ≪ 1, the complex amplitude of the sense mode can be approximated by neglecting all 

terms involving the imperfection parameters Δ𝑏1 , Δ𝑏2 , Δ𝜔1 , Δ𝜔2  in 𝑍∗ , since all of these 

coefficients appear only as second-order terms. The approximated complex sense mode 

amplitude is given by: 

𝑦𝑎,Ω0
∗ = |𝑦𝑎,Ω0

∗|𝑒𝑖𝜙𝑦,𝑎,Ω0 = 𝜒
−𝜔0

2Δ𝜔2 − 𝑖𝜔
𝜔0
𝑄0

Δ𝑏2

(−𝜔2 + 𝜔0
2 + 𝑖𝜔

𝜔0
𝑄0

)
2 

(2.24) 
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Similar to the approximated drive response described by (2.22), the terms involving 휂 do not 

appear in the approximated complex sense mode amplitude. Setting 𝜕|𝑦𝑎,Ω0
∗| 𝜕𝜔⁄ = 0 also 

shows that there is a single amplitude peak at 𝜔 ≈ 𝜔0. As such, the resonant peak can be 

similarly measured using frequency response measurements of the sense mode and the 

bandwidth can be similarly obtained using the half-power method. These give: 

 The sense response has an undamped frequency at 𝜔𝑌 = 𝜔0.  

 The half-power bandwidth is invariant with the drive angle Θ𝜒 , given by 𝑏𝑌 =

𝜔0 𝑄0⁄ (√2 − 1)
1 2⁄

, which is significantly smaller than the nominal bandwidth 

𝜔0 𝑄0⁄ .  

where 𝜔𝑌 and 𝑏𝑌 are independent of the imperfection parameters due to the absence of the 

imperfection parameters in the denominator of (2.24). As such, for small imperfections, 

measuring the resonant peak and the half-power bandwidth of the sense mode does not provide 

any insight into the circumferential distribution of the structural and damping imperfections. 

The approximated complex sense amplitude only exhibits circumferential variations with the 

drive force distribution through the terms in the numerator of (2.24). As such, for this purpose, 

the phase frequency response is used to identify specific phase conditions which apply when 

the drive force distribution aligns with the maximum or minimum principal axes of the 

structural and damping imperfections. When the sense mode is at resonance, i.e. 𝜔 = 𝜔0, 

these phase conditions are given by: 

 When Θ𝜒 = Θ𝜔 + 𝑖𝜋 2𝑛⁄  (𝑖 is an integer), Δ𝜔2 = 0 and 𝑦𝑎,Ω0
∗ is imaginary, yielding 

𝜙𝑦,𝑎,Ω0 = 𝜋 2⁄  when Δ𝑏2 > 0 and 𝜙𝑦,𝑎,Ω0 = −𝜋 2⁄  when Δ𝑏2 < 0 

 When Θ𝜒 = Θ𝑏 + 𝑖𝜋 2𝑛⁄  ( 𝑖  is an integer), Δ𝑏2 = 0  and 𝑦𝑎,Ω0
∗  is real, yielding 

𝜙𝑦,𝑎,Ω0 = 0 when Δ𝜔2 > 0 and 𝜙𝑦,𝑎,Ω0 = ±𝜋 when Δ𝜔2 < 0 

These phase conditions are then used to locate the orientations of the principal axes. 

Numerical examples for resonant frequency and phase and bandwidth measurements 

In what follows, the effects of varying the drive location on the measured resonant frequency, 

phase and bandwidth are investigated for the drive and sense modes. A device with nominal 

𝑛 = 2 frequency of 𝜔0 = 11.29 𝑘𝐻𝑧 and Q factor of 𝑄0 = 2.2𝑒4 is considered as the default 

parameters for this purpose and for the remainder of this chapter. The damping and structural 

imperfection magnitudes and principal axes orientations are Δ𝑏 = 0.11, Δ𝜔 = 1.8𝑒 − 6 and 

Θ𝑏 = 30° , Θ𝜔 = 22° , resulting in a frequency split of 20 𝑚𝐻𝑧  and bandwidth split of 

115 𝑚𝐻𝑧 . The harmonic force amplitude is 𝜒 = 0.16𝑚 𝑠2⁄ . Figure 2.3(a) shows the 

variations of the amplitude frequency response of the drive mode as the drive location is 
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changed. Drive locations over the range Θ𝜒 = 0° to 90° are considered, noting the spatially 

periodic nature of the 2𝑛휃 imperfection variation components. In Figure 2.3(b), the top pane 

shows the variation of the drive resonant frequency with drive location, obtained by 

identifying the frequency 𝜔 yielding peak drive amplitude in Figure 2.3(a) for each drive 

location considered. The middle pane shows the corresponding drive phase when 𝜔 is set at 

the drive frequencies in the top pane. The bottom pane shows the drive bandwidth variation, 

obtained using the half-power method. For all the results in Figure 2.3(b), the accuracy of the 

approximated results given by 𝑥𝑎,Ω0
∗  in (2.22) is shown through comparison with the 

corresponding results from the exact complex amplitudes 𝑥Ω0
∗. The exact results for the drive 

frequency using 𝑥Ω0
∗ in the top pane of Figure 2.3(b) are obtained by tracking the peak drive 

amplitudes as indicated by the light tones in Figure 2.3(a), and identifying the excitation 

frequency 𝜔 yielding the peak amplitude for each Θ𝜒. The exact results for the bandwidth in 

the bottom pane are calculated using the half-power method based on the peak-amplitude 

frequencies identified in the top pane. Figure 2.4(a) and (b) show the same results, but for the 

sense mode. 

 

Figure 2.3: (a) Amplitude-frequency response of the drive mode and (b) peak-amplitude frequency, phase 

and half-power bandwidth for a frequency split of 𝟐𝟎 𝒎𝑯𝒛 and bandwidth split of 𝟏𝟏𝟓 𝒎𝑯𝒛 

 

Figure 2.4: (a) Amplitude-frequency response of the sense mode and (b) peak-amplitude frequency, phase 

and half-power bandwidth for a frequency split of 𝟐𝟎 𝒎𝑯𝒛 and bandwidth split of 𝟏𝟏𝟓 𝒎𝑯𝒛 

(a) (b) 

(a) (b) 
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The results in Figure 2.3(a) show that the peak drive amplitude attained is relatively invariant 

with respect to the drive location. On the other hand, the peak sense amplitude in Figure 2.4(a) 

diminishes to small values near the damping principal axes at Θ𝜒 = 30° and 75°. This is 

because, unlike the drive mode, the sense mode is not directly forced by the harmonic 

excitation, and only responds due to the imperfection-induced damping and elastic coupling 

forces. As such, when the damping coupling vanishes at the damping principal axes, the sense 

response diminishes accordingly. These results also indicate that the structural imperfection 

magnitudes considered are significantly smaller than those of the damping imperfections, as 

the peak sense amplitude remains relatively unaffected when the elastic coupling is eliminated 

at the structural imperfection principal axes at Θ𝜒 = 22° and 67°. 

In Figure 2.3(b), the phase results show excellent agreement between the approximated and 

exact FRF’s. This agreement is also shown for the sense phase in Figure 2.4(b). When the 

sense mode is driven into resonance, the phase conditions 𝜙𝑦 = ±90° and 𝜙𝑦 = 0,±𝜋 occur 

at the structural and damping principal axes respectively, as was noted previously. This 

confirms the potential to use the sense phase to locate the principal axes orientations. 

Discussion 

In both Figure 2.3(b) and Figure 2.4(b), the results for the frequency and bandwidth exhibit 

discrepancies between the approximated and exact FRF’s. For the sense response, these 

discrepancies are relatively constant with drive location. For the drive mode, the discrepancies 

in the results for the frequency and bandwidth are negligible for drive locations near the 

structural and damping principal axes respectively, but are maximised at the midpoint of the 

corresponding principal axes. Generally, these discrepancies arise due to the assumptions 

associated with the approximated results, and the accuracy of the approximated result depends 

on how well the conditions |Δ𝜔|𝑄0 ≪ 1 and |Δ𝑏| ≪ 1 are satisfied. Since Δ𝑏 = 0.11, the 

condition |Δ𝑏| ≪ 1  is only marginally satisfied, thus predominantly contributing to the 

observed discrepancy compared to the condition |Δ𝜔|𝑄0 ≪ 1 . For the drive mode, the 

approximated result is equivalent to the assumption that back coupling has been neglected. As 

such, the effects of linear elastic and damping coupling forces are not accounted for, so the 

maximum discrepancy is observed in the measured bandwidth at drive locations where ∆𝑏2 is 

maximised, i.e. Θ𝜒 = 52.5° which is precisely midway between the principal axes of damping 

maximum and minimum. Similarly, the maximum discrepancy for the frequency results is 

observed at drive locations where ∆𝜔2. Despite these discrepancies, good accuracy is observed 

at the principal axes. As such, the principal axes of structural and damping imperfections can 

still be identified from the drive locations of maximum and minimum drive frequency and 

bandwidth respectively. The magnitudes of the structural and damping imperfections can be 
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calculated from the differences between the extreme and mean values of the frequency and 

bandwidth of the drive mode in Figure 2.3(b). 

The practicality of using the half-power method to obtain the results in Figure 2.3(b) and 

Figure 2.4(b) relies on the single-peak nature of the amplitude frequency response, which is 

achieved for the imperfections considered, as can be observed from the singular light tones in 

Figure 2.3(a) and Figure 2.4(a) at each drive location. However it is important to note that, as 

previously discussed, complexity arises when using the half-power method for systems with 

larger imperfections where the conditions |Δ𝜔|𝑄0 ≪ 1 and |Δ𝑏| ≪ 1 are less satisfied. 

Effects of larger structural imperfections on amplitude frequency response 

In the following, the amplitude frequency responses of the drive and sense modes for larger 

structural imperfection magnitudes are investigated, focusing on the possibility of amplitude 

peak bifurcation in the amplitude frequency responses which is typical of imperfect systems. 

From the complex drive and sense amplitudes in (2.20a) and (2.20b), by setting the gradients 

of the amplitude frequency responses 𝜕|𝑥Ω0
∗| 𝜕𝜔2⁄ = 0  and 𝜕|𝑦Ω0

∗| 𝜕𝜔2⁄ = 0  in the 

absence of angular rate and solving for the excitation frequencies 𝜔, three solutions can be 

obtained. For small structural imperfection magnitudes such as the system considered for the 

results in Figure 2.3(a) and Figure 2.4(a), two of these frequencies are complex, consequently 

yielding amplitude frequency responses with single peaks. As Δ𝜔  increases, there is a 

threshold Δ𝜔 where these frequencies become real-valued, thus leading to peak splitting. In 

Figure 2.5(a) and (b) below, the system considered for the results in Figure 2.3(a) and Figure 

2.4(a) is used, but with a larger Δ𝜔. The threshold Δ𝜔 is first calculated for the parameters 

used in the results in Figure 2.3(a) and Figure 2.4(a), and Δ𝜔 is selected such that it exceeds 

the peak-splitting threshold calculated. For this purpose, Δ𝜔  is increased to 8.9e-5, 

corresponding to a frequency split of 1 𝐻𝑧. 

 

Figure 2.5: Amplitude frequency response plots of the (a) drive and (b) sense modes with a frequency split 

of 𝟏 𝑯𝒛 and a bandwidth split of 𝟏𝟏𝟓 𝒎𝑯𝒛 

(a) (b) 
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In Figure 2.5(a) and Figure 2.5(b), the peak splitting is characterised by a low-frequency 

amplitude peak at 𝜔 = 11288.7 𝐻𝑧  and a high-frequency amplitude peak at 𝜔 =

11289.7 𝐻𝑧, and the mean of these frequencies is the nominal frequency 𝜔0. The amplitude 

frequency response of the sense mode in Figure 2.5(b) exhibits near-symmetric behaviour 

about 𝜔 = 𝜔0 . This is because the sense mode only arises due the damping and elastic 

coupling forces, shown in the terms (𝜔0 𝑄0⁄ )Δ𝑏2�̇� and 𝜔0
2Δ𝜔2𝑋 in (2.18), whose amplitudes 

are minimally affected by the excitation frequency 𝜔. On the other hand, for the drive mode,  

one of the amplitude peaks vanishes when the drive force aligns with one of the structural 

imperfection principal axes, as shown in Figure 2.5(a) when Θ𝜒 = 22° or 67°.  

Due to the peak bifurcation, the half-power method can result in erroneous interpretations of 

the bandwidth. For example, when examining the frequency range defining the half-power 

bandwidth of the sense mode in Figure 2.5(b), the half-power bandwidth of the two peaks 

overlap, where the overlapping frequencies of the two bandwidths range from 𝜔 =

11288.5 𝐻𝑧  corresponding to the low-frequency amplitude peak, to 𝜔 = 11289.7 𝐻𝑧 

corresponding to the high-frequency amplitude peak. This bandwidth overlap poses 

difficulties for measuring the drive and sense bandwidths separately.  

In practice, typical untrimmed CVG’s can exhibit frequency splits in the order of 101 −

102 𝐻𝑧 [44, 45, 59]. Depending on the Q factor of the device, frequency splits of such orders 

of magnitude can exhibit peak-bifurcated amplitude frequency responses, in which case the 

numerical half-power approach outlined here is incompatible for the aim of identifying the 

magnitude and principal axes of structural and damping imperfections. Having defined the 

limitations for using the individual drive and sense point response measurements to identify 

the structural and damping imperfections, in what follows, this challenge is addressed using 

an alternative approach. 

2.3.2.2. Dual point measurements 

In this section, the drive and sense point measurements are simultaneously considered to 

identify the structural and damping imperfection parameters. Noting that the complex drive 

and sense amplitudes in (2.20a) and (2.20b) share a common denominator 𝑍∗, the effects of 

𝑍∗ can be avoided by evaluating the ratio of these complex amplitudes. For this purpose, the 

complex transmissibility amplitude is introduced, defined as 𝑇∗ = 𝑦∗ 𝑥∗⁄ , giving: 

𝑇∗ =
−𝜔0

2Δ𝜔2 − 𝑖𝜔 (
𝜔0
𝑄0

Δ𝑏2 + 𝐺ΩΩ)

−𝜔2 + 𝜔0
2(1 − Δ𝜔1) + 𝑖𝜔

𝜔0
𝑄0

(1 − Δ𝑏1)
 

(2.25) 
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An advantage of using the complex transmissibility amplitude is that the result is exact, 

avoiding the approximations used to obtain the complex drive and sense amplitudes in (2.22) 

and (2.24). Secondly, setting 𝜕|𝑇∗| 𝜕𝜔2⁄ = 0 and solving for 𝜔  shows that the amplitude 

frequency response of the transmissibility always exhibits a single peak, regardless of the 

imperfection magnitudes Δ𝑏 and Δ𝜔. This avoids the complications associated with applying 

the half-power method in the presence of larger structural imperfections.  

Similar to single point measurements considered earlier, the transmissibility is investigated in 

the absence of angular rate, in which case the following conditions apply for the 

transmissibility frequency 𝜔𝑇 and bandwidth 𝑏𝑇: 

 In the absence of damping (𝑄0 → ∞), the undamped frequency is 𝜔𝑇 = 𝜔0√1 − Δ𝜔1. 

 The half-power bandwidth is 𝑏𝑇 = 𝜔0 𝑄0⁄ (1 − Δ𝑏1)  

Similar to the approximated drive FRF in (2.22), the drive locations of maximum and 

minimum frequency and bandwidth can be used to locate the principal axes of the structural 

and damping imperfections respectively.  

When 𝜔 = 𝜔𝑇, the phase angle is 𝜙𝑇 = ∠[−Δ𝑏2(𝜔0 𝑄0⁄ ) + 𝑖𝜔0Δ𝜔2] when |Δ𝜔| ≪ 1, giving 

the following conditions for the transmissibility phase: 

 When Θ𝜒 = Θ𝜔 + 𝑖𝜋 2𝑛⁄  (𝑖 is an integer), Δ𝜔2 = 0 and 𝑇∗ is real, yielding 𝜙𝑇 = ±𝜋 

when Δ𝑏2 > 0 and 𝜙𝑇 = 0 when Δ𝑏2 < 0 

 When Θ𝜒 = Θ𝑏 + 𝑖𝜋 2𝑛⁄  ( 𝑖  is an integer), Δ𝑏2 = 0  and 𝑇∗  is imaginary, yielding 

𝜙𝑇 = 𝜋 2⁄  when Δ𝜔2 > 0 and 𝜙𝑇 = −𝜋 2⁄  when Δ𝜔2 < 0 

Numerical example 

In the following, the effects of varying the drive location on the transmissibility frequency, 

phase and bandwidth is investigated. The system considered for this investigation is identical 

to that used for the results in Figure 2.5(a) and Figure 2.5(b), thus serving to show the 

applicability of the results in the presence of larger structural imperfection magnitudes. In 

Figure 2.6(a), the undamped frequency of the transmissibility is approximated by identifying 

the excitation frequency 𝜔  yielding peak transmissibility amplitude. In Figure 2.6(b), the 

resulting phase of the transmissibility is shown for the case when 𝜔 is fixed at the frequencies 

calculated in Figure 2.6(a). In Figure 2.6(c), the drive location dependency of the 

transmissibility bandwidth is shown, obtained using the half-power method implemented on 

the transmissibility amplitude frequency bandwidth.  
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Figure 2.6: Transmissibility response for the (a) frequency and (b) phase at amplitude peak and (c) the 

half-power bandwidth   

In Figure 2.6(a) and (c), the variations of the transmissibility frequency and bandwidth with 

the drive location can be used to identify the principal axes and the magnitudes of the structural 

and damping imperfections in a manner similar to the drive point measurements shown earlier 

in Figure 2.3(b). The drive locations of extreme values of the frequency and bandwidth are 

used to locate the principal axes while the differences between the mean and extreme values 

are used to calculate the imperfection magnitudes. In Figure 2.6(b), the phase can also be used 

to identify the principal axes, as 𝜙𝑇 = 0,±𝜋  and 𝜙𝑇 = ±𝜋 2⁄  at the principal axes of 

structural and damping imperfections respectively, as was previously noted. 

The exact nature of the results shown in Figure 2.6(a) – (c) indicates that using the drive and 

sense point measurements simultaneously provides a more accurate method for identifying 

the imperfection magnitudes and principal axes compared to using the drive and sense FRF’s 

individually. However, additional displacement measurement mechanisms are required to 

measure the FRF’s of both the drive and sense modes.  

2.3.3. Measurement procedures with finite driving points 

In Section 2.3.2, the drive location dependency of the bandwidth, frequency and phase are 

used to identify the structural and damping imperfection parameters. However, the approach 

investigated necessitates FRF measurements at many drive locations to obtain an accurate 

description of such variations, i.e. sufficiently fine resolution of Θ𝜒. In this section, practical 

measurement procedures are proposed to identify the structural and damping imperfection 

parameters based on the response of the ring when excited at only a few driving locations. The 

following measurement procedures are based on the transmissibility response due to the exact 

nature of these results. In what follows, identification of the imperfection parameters using 

(a) 

(b) 

(c) 
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the transmissibility frequency and bandwidth, and amplitude and phase measurement 

procedures are proposed. 

Identifying imperfection parameters with frequency and bandwidth measurements 

Recalling from Section 2.3.2, the transmissibility frequency and half-power bandwidth are: 

𝜔𝑇(Θ𝜒) = 𝜔0√1 − Δ𝜔 cos2𝑛(Θ𝜔 − Θ𝜒) 
(2.26) 

𝑏𝑇(Θ𝜒) =
𝜔0

𝑄0
[1 − Δ𝑏 cos 2𝑛(Θ𝑏 − Θ𝜒)] (2.27) 

where 𝜔𝑇 and 𝑏𝑇 have been expressed as functions of the driving orientation Θ𝜒. 

Considering transmissibility FRF measurements at drive locations Θ𝜒 = Θ𝜒0  and Θ𝜒 =

Θ𝜒0 + 𝜋 2𝑛⁄ , where Θ𝜒0 is arbitrary,  the nominal frequency 𝜔0 and bandwidth 𝜔0 𝑄0⁄  can 

be calculated from the measured transmissibility frequency and bandwidth in (2.26) and (2.27) 

at these drive locations. These are given by: 

𝜔0 = √
𝜔𝑇

2(Θ𝜒0) + 𝜔𝑇
2 (Θ𝜒0 +

𝜋
2𝑛)

2
 

(2.28) 

𝜔0

𝑄0
=

𝑏𝑇(Θ𝜒0) + 𝑏𝑇 (Θ𝜒0 +
𝜋
2𝑛)

2
 

(2.29) 

These results are equivalent to calculating the mean of the measured transmissibility frequency 

and bandwidth. Using the results in Figure 2.6(a) and (c) as examples, the mean of the 

measured frequency and bandwidth at any two drive locations spaced 45° apart are used to 

calculate the nominal frequency and bandwidth. If Θ𝜒0 coincides with either principal axes of 

the structural or damping imperfection, the maximum and minimum values of the 

transmissibility frequency and bandwidth are used. 

After calculating the nominal frequency and bandwidth, the imperfection magnitudes Δ𝜔, Δ𝑏 

and principal axes orientations Θ𝜔 , Θ𝑏  can be determined by considering the measured 

frequency and bandwidth at two additional drive locations, Θ𝜒 = Θ𝜒0 + 𝜋 4𝑛⁄  and Θ𝜒 =

Θ𝜒0 + 3𝜋 4𝑛⁄ . It can then be shown that the imperfection magnitudes and principal axes 

orientations can be identified using the following relationships: 
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Δ𝜔

=
√[𝜔𝑇

2 (Θ𝜒0 +
𝜋
2𝑛

) − 𝜔𝑇
2(Θ𝜒0)]

2
+ [𝜔𝑇

2 (Θ𝜒0 +
3𝜋
4𝑛

) − 𝜔𝑇
2 (Θ𝜒0 +

𝜋
4𝑛

)]
2

2𝜔0
2

 

(2.30) 

Θ𝜔 =

tan−1 [
𝜔𝑇

2 (Θ𝜒0 +
3𝜋
4𝑛) − 𝜔𝑇

2 (Θ𝜒0 +
𝜋
4𝑛)

𝜔𝑇
2 (Θ𝜒0 +

𝜋
2𝑛

) − 𝜔𝑇
2(Θ𝜒0)

]

2𝑛
+ Θ𝜒0 

(2.31) 

Δ𝑏 =
√[𝑏𝑇 (Θ𝜒0 +

𝜋
2𝑛

) − 𝑏𝑇(Θ𝜒0)]
2
+ [𝑏𝑇 (Θ𝜒0 +

3𝜋
4𝑛

) − 𝑏𝑇 (Θ𝜒0 +
𝜋
4𝑛

)]
2

2 (
𝜔0
𝑄0

)
 

(2.32) 

Θ𝑏 =

tan−1 [
𝑏𝑇 (Θ𝜒0 +

3𝜋
4𝑛

) − 𝑏𝑇 (Θ𝜒0 +
𝜋
4𝑛

)

𝑏𝑇 (Θ𝜒0 +
𝜋
2𝑛) − 𝑏𝑇(Θ𝜒0)

]

2𝑛
+ Θ𝜒0 

(2.33) 

The relationships in (2.30) - (2.33) show that the structural and damping imperfection 

parameters can be identified using the measured transmissibility frequency and bandwidth at 

only 4 arbitrary drive locations, spaced 𝜋 4𝑛⁄ . This avoids the need to obtain results such as 

those in Figure 2.6(a) and (c) where measurements at more drive locations are involved. 

Identifying imperfection parameters with amplitude and phase measurements 

From the complex transmissibility amplitude in (2.25), when 𝜔 = 𝜔𝑇  in the absence of 

angular rate, the transmissibility phase 𝜙𝑇 and amplitude 𝑇 are given by: 

𝜙𝑇(Θ𝜒) = ∠ [−
𝜔0

𝑄0
Δ𝑏 sin 2𝑛(Θ𝑏 − Θ𝜒) + 𝑖𝜔0Δ𝜔 sin2𝑛(Θ𝜔 − Θ𝜒)] 

(2.34) 

𝑇(Θ𝜒) =
√[𝜔0Δ𝜔 sin 2𝑛(Θ𝜔 − Θ𝜒)]

2
+ [

𝜔0
𝑄0

Δ𝑏 sin2𝑛(Θ𝑏 − Θ𝜒)]
2
(1 − Δ𝜔1)

𝜔0
𝑄0

[1 − Δ𝑏 cos2𝑛(Θ𝑏 − Θ𝜒)]√1 − Δ𝜔1

 

(2.35) 

where the transmissibility phase and amplitude have been expressed as functions of the driving 

orientation in a manner similar to the frequency and bandwidth in (2.26) and (2.27).  

The phase result in (2.34) shows that when the driving force aligns with either principal axes 

of the structural or damping imperfections such that Δ𝜔2 = 0  or Δ𝑏2 = 0 , the elastic or 

damping coupling nullifies such that the phase is only characterised by either the damping or 
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structural imperfection parameters. This subsequently simplifies the measurements needed to 

identify the remaining imperfection parameters. Using this information, in the following 

approach, the structural imperfection magnitude and principal axis orientations are first 

identified using measurements at 4 driving orientations spaced 𝜋 4𝑛⁄  apart, Θ𝜒 = Θ𝜒0, Θ𝜒0 +

𝜋 4𝑛⁄ , Θ𝜒0 + 𝜋 2𝑛⁄  and Θ𝜒0 + 3𝜋 4𝑛⁄ , similar to the approach used previously using the 

frequency and bandwidth measurements. 

The transmissibility phase measurements can be used to identify the structural imperfection 

magnitude and principal axis orientations using the following relationships: 

Δ𝜔 = √∑[
tan2 𝜙𝑇 (Θ𝜒0 +

𝑖𝜋
4𝑛

) − tan2 𝜙𝑇 (Θ𝜒0 +
(𝑖 + 2)𝜋

4𝑛
)

tan2 𝜙𝑇 (Θ𝜒0 +
𝑖𝜋
4𝑛

) + tan2 𝜙𝑇 (Θ𝜒0 +
(𝑖 + 2)𝜋

4𝑛
)
]

2
1

𝑖=0

 

(2.36) 

Θ𝜔 =

∏ [
tan2 𝜙𝑇 (Θ𝜒0 +

𝑖𝜋
4𝑛) + (−1)𝑖 tan2 𝜙𝑇 (Θ𝜒0 +

(𝑖 + 2)𝜋
4𝑛 )

tan2 𝜙𝑇 (Θ𝜒0 +
𝑖𝜋
4𝑛

) + (−1)𝑖+1 tan2 𝜙𝑇 (Θ𝜒0 +
(𝑖 + 2)𝜋

4𝑛
)
]1

𝑖=0

2𝑛
+ Θ𝜒0 

(2.37) 

(2.36) and (2.37) show that using only the phase results is sufficient to identify the structural 

imperfection parameters. 

After identifying the structural imperfection principal axes orientation Θ𝜔, the transmissibility 

amplitude in (2.35) can be used to identify the damping imperfection magnitude and principal 

axes orientations by aligning the drive force at the structural imperfection principal axis and 

measuring the transmissibility amplitude at drive locations Θ𝜒 = Θ𝜔 ,  Θ𝜔 + 𝜋 4𝑛⁄ , Θ𝜔 +

𝜋 2𝑛⁄  and Θ𝜔 + 3𝜋 4𝑛⁄ . (2.35) is first simplified by neglecting the terms involving Δ𝜔1 , 

noting that |Δ𝜔| ≪ 1. The damping imperfection magnitude and principal axis orientations 

are then identified using the following relationships: 

Δ𝑏 = √∑[
𝑇 (Θ𝜔 +

𝑖𝜋
4𝑛) − 𝑇 (Θ𝜔 +

(𝑖 + 2)𝜋
4𝑛 )

𝑇 (Θ𝜔 +
𝑖𝜋
4𝑛) + 𝑇 (Θ𝜔 +

(𝑖 + 2)𝜋
4𝑛 )

]

2
1

𝑖=0

 

(2.38) 
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Θ𝑏 =

tan−1 (∏ [
|𝑇 (Θ𝜔 +

𝑖𝜋
4𝑛

)| + (−1)𝑖 |𝑇 (Θ𝜔 +
(𝑖 + 2)𝜋

4𝑛
)|

|𝑇 (Θ𝜔 +
𝑖𝜋
4𝑛)| + (−1)𝑖+1 |𝑇 (Θ𝜔 +

(𝑖 + 2)𝜋
4𝑛 )|

]1
𝑖=0 )

2𝑛
+ Θ𝜔 

(2.39) 

Inspecting the relationships in (2.36) – (2.39), the transmissibility amplitude and phase 

measurements at 8 drive locations have been used to identify the structural and damping 

imperfection parameters, compared to using the frequency and bandwidth which only involves 

4 drive locations. However, in practice, amplitude and phase measurements can be directly 

measured from the amplitude and phase frequency responses, without requiring the 

implementation of the half-power method as required for bandwidth measurements.  

Having characterised the structural and damping imperfections, the next section includes the 

effects of angular rate to investigate the interaction between the angular rate and the 

imperfections identified using the analysis in this section. 

2.4. Effects of imperfections and back coupling on device operation 

and rate sensing performance 

In this section, the effects of angular rate on the drive and sense frequency responses are 

investigated to assess the rate sensing performance in the presence of structural and damping 

imperfections. The following study also investigates the effects of sense-to-drive back 

coupling which are often neglected in the literature in the analysis of linear dynamics in CVG’s, 

and the validity of this assumption is investigated. 

In what follows, the drive and sense frequency responses in (2.20a) and (2.20b) are considered 

for the cases where the structural or damping imperfections are present to determine the 

respective effects on the drive mode operation and rate sensing performance separately. For 

both cases, the effects of sense-to-drive back coupling are also included (휂 = 1 in (2.18)) and 

the resulting modal responses are compared with the case of neglected back coupling (휂 = 0). 

The sense response is then analysed to identify the dominant effects of each imperfection and 

back coupling on rate sensing performance in terms of rate sensitivity, bias rate and quadrature 

error. 

2.4.1. Gyroscopic coupling with damping imperfections 

Considering the drive and sense mode responses in the absence of structural imperfection 

(∆𝜔1= ∆𝜔2= 0), the complex drive and sense amplitudes in (2.20a) and (2.20b) simplify to: 
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𝑥𝑏
∗ = 𝑥𝑏𝑒

𝑖𝜙𝑥𝑏 = 𝜒
−𝜔2 + 𝜔0

2 + 𝑖𝜔
𝜔0
𝑄0

(1 − Δ𝑏1)

𝑍𝑏
∗  

(2.40a) 

𝑦𝑏
∗ = 𝑦𝑏𝑒

𝑖𝜙𝑦𝑏 = 𝜒
−𝑖𝜔 (

𝜔0
𝑄0

Δ𝑏2 + 𝐺ΩΩ)

𝑍𝑏
∗  

(2.40b) 

where 

𝑍𝑏
∗ = (−𝜔2 + 𝜔0

2)2 − 𝜔2 (
𝜔0

2

𝑄0
2 + 휂𝐺Ω

2Ω2) + 𝜔2
𝜔0

2

𝑄0
2 (Δ𝑏1

2 + 휂Δ𝑏2
2)

+ 2𝑖𝜔
𝜔0

𝑄0

(−𝜔2 + 𝜔0
2) 

(2.41) 

where 𝑥𝑏, 𝑦𝑏 are the amplitudes and 𝜙𝑥𝑏, 𝜙𝑦𝑏 are the phases of the drive and sense modes 

without the effects of structural imperfection. The back-coupling effects are explicitly 

identified as the terms in 𝑍𝑏
∗ involving 휂. The back coupling effects arise from gyroscopic 

and damping coupling forces. The ‘𝑏’ within the subscripts indicates that only damping 

imperfections are present. 

Effects of back coupling on drive mode operation 

In CVG’s, the PLL algorithms lock the device at resonance by ensuring the drive mode phase 

is fixed at 𝜙𝑥𝑏 = −𝜋 2⁄ , which is also the phase result 𝜙𝑥,𝑎,Ω0 for the approximated drive 

mode FRF in the absence of angular rate as shown in  Figure 2.3(b). For this to occur in the 

presence of angular rate, the forcing frequency 𝜔 must be tracked and adjusted until the real 

part of 𝑥𝑏
∗ in (2.40a) vanishes. This yields a cubic polynomial in 𝜔2 where the frequency 𝜔 

is solved for, giving three solutions for 𝜔. These frequencies are: 

𝜔 = [
𝜔𝑋,𝑏0

𝜔𝑋,𝑏±
] = [

𝜔0

√𝜔0
2 + (

𝛿𝜔𝑏

2
)
2

±
𝛿𝜔𝑏

2

] 

(2.42) 

where  

𝛿𝜔𝑏 = 2√휂 (
𝐺ΩΩ

2
)
2

− (
𝜔0

2𝑄0
)
2

[(1 − Δ𝑏1)
2 + 휂Δ𝑏2

2] 

(2.43) 

𝛿𝜔𝑏  is a rate-induced frequency split that increases with angular rate and dictates the 

difference between frequencies 𝜔𝑋,𝑏+  and 𝜔𝑋,𝑏− . 𝛿𝜔𝑏  differs from the structural 
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imperfections-induced frequency split described in Section 2.3.2 because 𝛿𝜔𝑏 is present even 

in ideal rings. When the angular rate is sufficiently low or there is sufficient damping in the 

system, i.e. low Q factors, 𝛿𝜔𝑏 can be minimised and nullified.  

When back coupling effects are neglected, i.e. 휂 = 0,  𝛿𝜔𝑏 is always imaginary, so the rate-

induced frequency split is not accounted for and only one frequency (𝜔 = 𝜔0) results in a 

drive phase of 𝜙𝑥𝑏 = −𝜋 2⁄ , in which case the drive and sense mode amplitude frequency 

responses also exhibit single peaks. However, when back coupling effects are accounted for 

and for a given bandwidth, there is a critical angular rate Ω𝑐𝑟𝑖𝑡  where 𝛿𝜔𝑏  becomes real-

valued. When Ω > Ω𝑐𝑟𝑖𝑡, 𝜔𝑋,𝑏± in (2.42) become real, resulting in three frequencies where 

the drive phase condition 𝜙𝑥𝑏 = −𝜋 2⁄  can be achieved. Ω𝑐𝑟𝑖𝑡 is obtained by setting 𝛿𝜔𝑏 =

0 and solving for Ω, giving: 

|𝐺ΩΩ𝑐𝑟𝑖𝑡| =
𝜔0

𝑄0

√(1 − Δ𝑏1)
2 + Δ𝑏2

2 
(2.44) 

This result indicates that high Q factor devices have lower critical angular rates and as such, 

are more susceptible to rotation-induced frequency splitting. The damping imperfection 

parameters have a small influence on the critical angular rate. As a consequence of this 

frequency split, the multiplicity of the frequencies in (2.42) yielding a drive phase of 𝜙𝑥𝑏 =

−𝜋 2⁄  can lead to the PLL fixing the driving frequency at 𝜔𝑋,𝑏± instead of 𝜔0, which can 

affect the sense response considerably, and hence the rate sensing performance. As such, this 

frequency split is of particular concern for high Q factor devices, especially if Ω𝑐𝑟𝑖𝑡  falls 

within the designated dynamic range of the device. 

In the following, the effects of the angular rate on the drive mode phase in relation to the 

critical angular rate are investigated. The system considered for this investigation is subjected 

to the same damping imperfection parameters used for the results in Figure 2.5(a) and (b), but 

since the this section only includes the damping imperfections, the structural imperfection 

parameters are set to zero. The drive force is oriented at Θ𝜒 = 0°. Angular rates are imposed 

at 40%, 100%, 120% and 200% of the critical angular rate, which is Ω𝑐𝑟𝑖𝑡 = 121 ° 𝑠⁄  for the 

present system. Figure 2.7 shows the phase frequency response of the drive mode 𝜙𝑥𝑏 for the 

different angular rates considered. Markers have also been shown to show the multiple 

possible driving frequencies to fix the drive phase at 𝜙𝑥𝑏 = −𝜋 2⁄  for the angular rate cases 

Ω Ω𝑐𝑟𝑖𝑡⁄ = 1.2 and 2. 
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Figure 2.7: Phase frequency response of drive mode at various imposed angular rates 

In Figure 2.7, when the angular rate is below the critical angular rate, the drive phase 𝜙𝑥𝑏 =

−𝜋 2⁄  is only achieved at 𝜔 = 𝜔0 , similar to the case with back coupling neglected, 

indicating that back coupling has negligible impact on the operation of the PLL. The slope of 

the phase frequency response 𝜕𝜙𝑥𝑏 𝜕𝜔⁄  is monotonically negative. As the angular rate 

increases, the back coupling effects are increasingly significant. The phase slope 𝜕𝜙𝑥𝑏 𝜕𝜔⁄  at 

𝜔 = 𝜔0  increases, approaching zero as the critical angular rate Ω𝑐𝑟𝑖𝑡  is approached. 

Increasing the angular rate beyond Ω𝑐𝑟𝑖𝑡  reverses the polarity of the phase slope, thus 

introducing two additional frequencies at 𝜔𝑋,𝑏±  where the drive phase condition 𝜙𝑥𝑏 =

−𝜋 2⁄  is also achieved. To ensure the device continues responding in a manner similar to the 

case where back coupling is neglected at higher angular rates, it is important that the PLL fixes 

the driving frequency at 𝜔 = 𝜔0 at angular rates beyond Ω𝑐𝑟𝑖𝑡, instead of deviating to 𝜔 =

𝜔𝑋,𝑏±. 

When 𝜔 = 𝜔0, the complex drive amplitude in (2.40a) is: 

𝑥𝑏
∗(𝜔0) = 𝜒

𝑖𝜔0
𝜔0
𝑄0

(1 − Δ𝑏1)

−𝜔0
2 [

𝜔0
2

𝑄0
2 (1 − Δ𝑏1

2 − 휂Δ𝑏2
2) + 휂𝐺Ω

2Ω2]

 

(2.45) 

𝑥𝑏
∗(𝜔0) is purely imaginary and the imaginary part is negative, indicating a quadrature phase 

offset relative to the harmonic drive force as 𝜙𝑥𝑏 = −𝜋 2⁄ .  

When back coupling is neglected, setting 휂 = 0 in (2.45) shows that standard CVG operation 

requires a constant drive amplitude which is unaffected by angular rate changes to ensure 
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steady sensor output. However, when back coupling is taken into account, the gyroscopic back 

coupling term 휂𝐺Ω
2Ω2 reduces the drive amplitude attained. The validity of the neglected 

back coupling assumption is thus confined to the case when |𝐺ΩΩ| ≪ 𝜔0 𝑄0⁄ , indicating that 

high Q factor operations are susceptible to larger back coupling effects. To compensate for 

the back coupling effects, the automatic gain control (AGC) [26] must regulate the harmonic 

drive force amplitude 𝜒 such that it increases with the angular rate to ensure the net drive 

amplitude remains constant with angular rate changes. 

In the following, the effects of the gyroscopic back coupling on the operational drive 

amplitude are investigated. Figure 2.8(a) and (b) show the drive amplitude frequency 

responses in the presence of angular rates at Ω Ω𝑐𝑟𝑖𝑡⁄ = 0.4, 1 and 2 for the cases of constant 

and rate-variable driving force amplitudes 𝜒 respectively, where the rate-variable 𝜒 serves to 

compensate for the gyroscopic back coupling effects. Markers are also shown to indicate the 

operating point at 𝜔 = 𝜔0. The results in Figure 2.8(b) are obtained by varying the drive force 

amplitude such that 𝜒 = 0.19, 0.34 and 0.89 𝑁 𝑘𝑔⁄  for angular rates Ω Ω𝑐𝑟𝑖𝑡⁄ = 0.4, 1 and 2 

respectively. 

 

Figure 2.8: Drive mode amplitude frequency responses with (a) constant and (b) rate-variable drive force 

amplitudes 

In Figure 2.8(a), without varying the drive force amplitude to compensate for the gyroscopic 

back coupling, the angular rate affects the drive amplitude frequency response most 

significantly for frequencies near 𝜔 = 𝜔0, while these effects are negligible for off-resonant 

frequencies. For the frequencies near 𝜔 = 𝜔0 , the amplitudes reduce as the angular rate 

(a) 

(b) 
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increases and the amplitude attenuation is most significant at the chosen driving frequency 

𝜔 = 𝜔0. This is due to the rate-induced frequency split, which results in a change from an 

amplitude peak at 𝜔 = 𝜔0 to a local minimum as the angular rate increases. The peak splitting 

for the results corresponding to Ω Ω𝑐𝑟𝑖𝑡⁄ = 1 also shows that the angular rate threshold for 

peak splitting is lower than Ω𝑐𝑟𝑖𝑡. However, as this peak splitting threshold is approached, the 

peak is ‘flattened’ significantly, increasing the half-power bandwidth. 

In Figure 2.8(b), as 𝜒 is increased with angular rate, the net drive amplitude at 𝜔 = 𝜔0 is 

invariant with the angular rate, as required for standard CVG operation. The increase in drive 

force amplitude also results in a general increase of the drive amplitude at off-resonant 

frequencies. However, higher angular rates result in greater drive amplitude fluctuations when 

𝜔 deviates from 𝜔0, thus placing a greater necessity for the robustness of the phase-locked-

loop (PLL) to keep the frequency constant to ensure steady sensor output. 

Rate sensing performance 

When 𝜔 = 𝜔0, the complex sense amplitude in (2.40b) used for rate measurement is given by: 

𝑦𝑏
∗(𝜔0) = −𝑥𝑏

∗(𝜔0)
𝜔0 (

𝜔0
𝑄0

Δ𝑏2 + 𝐺ΩΩ)

𝜔0
𝜔0
𝑄0

(1 − Δ𝑏1)
 

(2.46) 

where 𝑦𝑏
∗(𝜔0) is purely imaginary, similar to the complex drive amplitude in (2.45).In the 

absence of imperfections (Δ𝑏1 = Δ𝑏2 = 0), the following phase relationships apply: 

 When Ω > 0, the imaginary parts of 𝑥𝑏
∗(𝜔0) and 𝑦𝑏

∗(𝜔0) are of opposite signs, the 

sense mode oscillates in antiphase with the drive mode 

 When Ω < 0, the imaginary parts of 𝑥𝑏
∗(𝜔0) and 𝑦𝑏

∗(𝜔0) are of identical signs, the 

sense mode oscillates in phase with the drive mode 

The presence of damping imperfection retains the in/antiphase relationship between the drive 

and sense mode oscillations, but the term involving Δ𝑏2  in (2.46), which stems from the 

damping coupling force, results in a systematic offset of the sense amplitude. This offset is 

commonly known as the bias as the sensor output does not nullify in the absence of angular 

rate. Using (2.46) for rate sensing, (2.46) can be expressed as: 

𝐼𝑚[𝑦𝑏
∗(𝜔0)|𝜒(Ω)] = −𝑆𝑏(Ω + Ω𝑧,𝑏) (2.47) 

 where 
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𝑆𝑏 = −𝑥𝑏(𝜔0)
𝐺Ω

𝜔0
𝑄0

(1 − Δ𝑏1)
 

(2.48) 

Ω𝑧,𝑏 =

𝜔0
𝑄0

Δ𝑏2

𝐺Ω
 

(2.49) 

𝑆𝑏 and Ω𝑧,𝑏 are the rate sensitivity and bias rate in the presence of damping imperfections. 

The rate sensitivity and bias rate are commonly known as the scale factor and zero-rate error, 

and are important parameters dictating rate sensing performance. In practice, a high rate 

sensitivity and nullified bias rate are desirable. From (2.49), the damping imperfections 

degrade rate sensing performance by introducing a bias rate, unless the drive force aligns with 

the damping principal axes such that Δ𝑏2 = 0 . For the rate sensitivity, the damping 

imperfection effects are dependent on the drive force orientation. Rate sensitivity increases 

when Δ𝑏1 > 0, and vice versa. However, since |Δ𝑏| ≪ 1, such effects are small. The damping 

imperfections mainly affect the rate sensing performance through bias rate rather than rate 

sensitivity. 

The following investigates the effects of angular rate on the sense amplitude in the presence 

of damping imperfections, as in the case for open-loop rate sensing. The systems considered 

are subjected to nominal Q factors of 𝑄0 = 1.1𝑒4, 2.2𝑒4  and 5.5𝑒4 , resulting in critical 

angular rates of Ω𝑐𝑟𝑖𝑡 = 243, 121 and 49 ° 𝑠⁄  respectively. The system with 𝑄0 = 2.2𝑒4 is 

identical to that used for the results in Figure 2.8(a) and (b). The driving frequency has been 

set at 𝜔 = 𝜔0 while the angular rate is varied. Based on these, Figure 2.9 below shows the 

variation of the sense amplitude 𝑦𝑏(𝜔0) with the angular rate for the different nominal Q 

factors considered, with and without back coupling. Markers are also shown where the sense 

amplitude nullifies, indicating the bias rate.  

 

Figure 2.9: Effect of nominal Q factor on the variation of the sense mode amplitude at 𝝎 = 𝝎𝟎 with the 

angular rate for the cases of with and without back coupling 
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When back coupling effects are taken into account (휂 = 1), the sense amplitude increases 

linearly with the angular rate for low angular rates. As the angular rate increases, this is 

followed by a nonlinear variation where the gradient of the sense amplitude reduces, until a 

turning point is reached, beyond which the sense amplitude decreases. This turning point 

occurs at the critical angular rate. The reduced sense amplitude gradient up to the critical 

angular rate results in a reduced rate sensitivity. This occurs because the angular rate has two 

competing effects on the net Coriolis force. Increasing the angular rate linearly amplifies the 

Coriolis force, which is responsible for the linear growth of the sense amplitude at low angular 

rates. Increasing the angular rate also amplifies the gyroscopic back coupling, thus reducing 

the drive amplitude in the manner shown in Figure 2.8(a), which then reduces the Coriolis 

force amplitude. Similar to the drive amplitude in Figure 2.8(b), the back coupling effects can 

be compensated by fixing the drive amplitude with angular rate changes using rate-variable 

drive force amplitudes, in which case the sense amplitude variation of the neglected back 

coupling case (휂 = 0) is reproduced. 

The results in Figure 2.9 also show that the nonlinearity occurs at lower angular rates for 

higher Q factor operations due to the reduced critical angular rate. As such, as the Q factor is 

increased, the sense amplitude and rate sensitivity diminishes more significantly due to the 

gyroscopic back coupling. At higher angular rates where |𝐺ΩΩ| ≫ 𝜔0 𝑄0⁄ , the sense 

amplitudes are desensitised to Q factor variations, unlike conventional CVG operations where 

Q factor enhancements generally amplify the sense amplitude. As such, the implementation 

of rate-varying drive force amplitudes is of greater importance for higher Q factor devices.  

Figure 2.9 shows that higher Q factors suppress the bias rate. At higher 𝑄0, the increased rate 

sensitivity results in the sense amplitude nullifying at smaller angular rates. This is clear from 

Figure 2.9 as increasing 𝑄0 from 1.1e4 to 5.5e4 reduces the bias rate from Ω𝑧,𝑏 = 22.4 ° 𝑠⁄  to 

4.8 ° 𝑠⁄ . This highlights the two ways high Q factor operations are advantageous for standard 

linear device operation, as both the rate sensitivity and bias rate performance are improved. 

In the following, the effects of the damping imperfection magnitude on the bias rate are 

investigated. Figure 2.10 below shows the variations of the bias rate with the drive force 

orientation for damping imperfection magnitudes of ∆𝑏= 0.0011, 0.022 and , 0.11. 
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Figure 2.10: Bias rate variation with drive location 𝚯𝝌 with different damping imperfection magnitudes 

In Figure 2.10, the bias rate nullifies at both damping principal axes, Θ𝜒 = 30° and 75°. This 

is due to the elimination of the modal damping coupling force, i.e. ∆𝑏2= 0. The alignment of 

the drive force with the principal axes is of increasing importance at larger damping 

imperfection magnitudes to minimise bias rate errors. On the other hand, for small damping 

imperfection magnitudes, the effect of the drive force orientation is insignificant as the bias 

rate is negligible in all cases. 

In practice, due to the cyclic symmetry of the ring, larger magnitudes of damping 

imperfections are untypical unless significant material anisotropies are present. ∆𝑏  values 

within the order of magnitude of 0.1 have been reported in literature for piezoelectric devices 

[14, 43], but these cases have not been widely reported for capacitive devices. As such, the 

effects of damping imperfections on rate sensing performance will not be considered for the 

remainder of this dissertation.  

2.4.2. Gyroscopic coupling with structural imperfections 

The complex drive and sense mode amplitudes in the absence of damping imperfections are 

obtained from (2.20a) and (2.20b) by setting ∆𝑏1= ∆𝑏2= 0, yielding: 

𝑥𝜔
∗ = 𝑥𝜔𝑒𝑖𝜙𝑥𝜔 =

𝜒 [−𝜔2 + 𝜔0
2(1 − Δ𝜔1) + 𝑖𝜔

𝜔0
𝑄0

]

𝑍𝜔
∗  

(2.50a) 

𝑦𝜔
∗ = 𝑦𝜔𝑒𝑖𝜙𝑦𝜔 =

𝜒(−𝜔0
2Δ𝜔2 − 𝑖𝜔𝐺ΩΩ)

𝑍𝜔
∗  

(2.50b) 

where 



59 

 

𝑍𝜔
∗ = (−𝜔2 + 𝜔0

2)2 − 𝜔2 (
𝜔0

2

𝑄0
2 + 휂𝐺Ω

2Ω2) − 𝜔0
4(Δ𝜔1

2 + 휂Δ𝜔2
2)

+ 2𝑖𝜔
𝜔0

𝑄0

(−𝜔2 + 𝜔0
2) 

(2.51) 

Here, the back coupling originates from the gyroscopic back coupling term 휂𝐺Ω
2Ω2 and linear 

elastic back coupling term 휂Δ𝜔2
2. 𝑥𝜔, 𝑦𝜔 are the amplitudes and 𝜙𝑥𝜔, 𝜙𝑦𝜔 are the phases of 

the drive and sense modes without damping imperfection. The ‘𝜔 ’ within the subscript 

indicates the present case where only structural imperfections are present. 

Effects of back coupling on drive mode operation 

As described in Section 2.4.1, the PLL sets the frequency 𝜔 to ensure drive mode resonance 

using the drive phase condition 𝜙𝑥𝜔 = −𝜋 2⁄ , which eliminates the real part of the complex 

drive amplitude in (2.50a). This yields a cubic equation in 𝜔2 which must be solved to identify 

the driving frequency 𝜔 applied in operation. This is given by: 

Α𝜔 = [−𝜔2 + 𝜔0
2(1 − Δ𝜔1)] [(−𝜔2 + 𝜔0

2)2 − 𝜔2 (
𝜔0

2

𝑄0
2 + 휂𝐺Ω

2Ω2)

− 𝜔0
4(Δ𝜔1

2 + 휂Δ𝜔2
2)] + 2𝜔2

𝜔0
2

𝑄0
2
(−𝜔2 + 𝜔0

2) = 0 

(2.52) 

When back coupling effects are neglected (휂 = 0), the real-valued solution of (2.52) is 𝜔 =

𝜔0√1 + Δ𝜔1, which is the undamped frequency in the absence of rotation identified in Section 

2.3.2.1. When back coupling effects are taken into account, exact solutions of (2.52) can be 

obtained using Cardano’s method [60], which results in lengthy expressions for 𝜔. As such, 

for this investigation, an approximate method will be implemented to solve (2.52).  

When Δ𝜔1 = 0, an exact real-valued solution of Α𝜔 = 0 in (2.52) is 𝜔 = 𝜔0, similar to the 

case without structural imperfections investigated in Section 2.4.1. This is because Δ𝜔1 = 0 

represents the case where the drive force orientation aligns precisely between the principal 

axes of maximum and minimum stiffnesses, i.e. the drive force aligns at positions of mean 

stiffness of the ring. Similar to the case of damping imperfections, two other driving 

frequencies having drive mode phase 𝜙𝑥𝜔 = −𝜋 2⁄  are possible, and are given by: 

𝜔 = 𝜔𝑋,𝜔± = √
𝜔0

2

2
(1 + √1 − 휂Δ𝜔2

2) + 휂 (
𝐺ΩΩ

2
)
2

− (
𝜔0

2𝑄0
)
2

±
𝛿𝜔𝜔

2
 

(2.53) 

where 
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𝛿𝜔𝜔 = 2√
𝜔0

2

2
(1 − √1 − 휂Δ𝜔2

2) + 휂 (
𝐺ΩΩ

2
)
2

− (
𝜔0

2𝑄0
)
2

 

(2.54) 

which gives the critical angular rate: 

|𝐺ΩΩ𝑐𝑟𝑖𝑡| = √(
𝜔0

𝑄0
)
2

− 2𝜔0
2 (1 − √1 − Δ𝜔2

2) 

(2.55) 

Similar to the case without structural imperfections investigated in Section 2.4.1, the 

frequencies giving 𝜙𝑥𝜔 = −𝜋 2⁄  depend on the frequency split 𝛿𝜔𝜔. When Ω > Ω𝑐𝑟𝑖𝑡, 𝛿𝜔𝜔 

is real, giving rise to the frequency multiplicity at 𝜙𝑥𝜔 = −𝜋 2⁄ . Comparing (2.55) against 

the critical angular rate without structural imperfections in (2.44), the structural imperfection 

lowers the critical angular rate through the elastic back coupling, and if Δ𝜔2 is sufficiently 

large, the frequency split can occur at zero angular rate, i.e. Ω𝑐𝑟𝑖𝑡 = 0. This shows that the 

angular rate and structural imperfections interact constructively, contributing to the frequency 

split. Since the effects of the critical angular rate have been discussed in Section 2.4.1, such 

investigation will not be repeated in this section. 

In what follows, (2.52) is solved using a perturbation method to obtain the driving frequency 

required for the drive phase condition 𝜙𝑥𝜔 = −𝜋 2⁄ , unrestricted to the case where Δ𝜔1 = 0. 

Using this method, the exact solution frequency 𝜔 = 𝜔0  when Δ𝜔1 = 0  is used as the 

unperturbed solution and Δ𝜔1 is used as the perturbation variable. With this implementation, 

the driving frequency is expressed as 𝜔2 = 𝜔0
2 + (𝜕𝜔2 𝜕Δ𝜔1⁄ )Δ𝜔1 + 𝑂(Δ𝜔1

2), where the 

derivative 𝜕𝜔2 𝜕Δ𝜔1⁄  is to be determined. Higher order expansions require calculations of 

higher order derivatives of 𝜔2  with respective to Δ𝜔1 . By differentiating (2.52) such that 

𝜕Α𝜔 𝜕Δ𝜔1⁄ = 0, the first derivative of the driving frequency 𝜕𝜔2 𝜕Δ𝜔1⁄  can be obtained, 

yielding the following result for the driving frequency up to first order in Δ𝜔1: 

𝜔2 = 𝜔𝑋,𝜔0
2 = 𝜔0

2

[
 
 
 
 

1 +

(

 
 

𝜔0
2

𝑄0
2 + 휂𝐺Ω

2Ω2 + 휂𝜔0
2Δ𝜔2

2

𝜔0
2

𝑄0
2 − 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

)

 
 

Δ𝜔1

]
 
 
 
 

+ 𝑂(Δ𝜔1
2) 

(2.56) 

The accuracy of the first-order expansion result in (2.56) is limited to small Δ𝜔1 , 

corresponding to the case where the structural imperfection magnitude is sufficiently small or 

larger structural imperfection magnitudes for drive locations near Θ𝜒 = Θ𝜔 ± 𝜋 4𝑛⁄ . As such, 

the following investigation is based on this assumption. The accuracy for cases involving 
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larger structural imperfection magnitudes or other drive locations can be improved by 

increasing the order of expansion in (2.56). 

Compared to the drive frequency for the neglected back coupling case 𝜔 = 𝜔0√1 + Δ𝜔1, the 

back coupling in (2.56) amplifies the deviation of the driving frequency from the nominal 

frequency 𝜔0. This effect is more significant as the critical angular rate is approached. 

The complex drive amplitude when 𝜔 = 𝜔𝑋,𝜔0 can similarly be obtained using a perturbation 

approach. (2.50a) is expanded as a Taylor series in Δ𝜔1, using 𝑥𝜔
∗(𝜔0) as the unperturbed, 

zero-order component such that: 

𝑥𝜔
∗(𝜔𝑋,𝜔0) = 𝑥𝜔

∗(𝜔0) + Δ𝜔1 (
𝜕𝑥𝜔

∗

𝜕Δ𝜔1
) |𝜔=𝜔0

+ 𝑂(Δ𝜔1
2)

= 𝜒
𝑖𝜔0

𝜔0
𝑄0

−𝜔0
2 (

𝜔0
2

𝑄0
2 + 휂𝜔0

2Δ𝜔2
2 + 휂𝐺Ω

2Ω2)
[
 
 
 
 

1

−

𝜔0
2

𝑄0
2 + 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

𝜔0
2

𝑄0
2 − 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

Δ𝜔1

2

]
 
 
 
 

+ 𝑂(Δ𝜔1
2) 

(2.57) 

where 

𝑥𝜔
∗(𝜔0) = 𝜒

𝑖𝜔0
𝜔0
𝑄0

−𝜔0
2 (

𝜔0
2

𝑄0
2 + 휂𝜔0

2Δ𝜔2
2 + 휂𝐺Ω

2Ω2)

 

(2.58) 

(
𝜕𝑥𝜔

∗

𝜕Δ𝜔1
) |𝜔=𝜔0

= 𝜒
𝑖𝜔0

𝜔0
𝑄0

−2𝜔0
2 (

𝜔0
2

𝑄0
2 + 휂𝜔0

2Δ𝜔2
2 + 휂𝐺Ω

2Ω2)
(

 
 

𝜔0
2

𝑄0
2 + 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

𝜔0
2

𝑄0
2 − 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

)

 
 

 

(2.59) 

Compared to the complex drive amplitude without structural imperfections in (2.45), the 

unperturbed complex drive amplitude in (2.58) is subjected to a larger attenuation as both the 

elastic and gyroscopic back coupling reduce the drive amplitude. As such, to achieve any drive 

amplitude and keep it constant across angular rate changes, the drive force amplitude 𝜒 must 

be increased to larger values compared to the case without structural imperfections as this 

increase must compensate for both the gyroscopic and elastic back coupling effects. This also 
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shows that the presence of the structural imperfections-induced elastic back coupling reduces 

the accuracy of the neglected back coupling assumption, where the validity of this assumption 

is restricted to sufficiently low nominal Q factors such that (𝜔0 𝑄0⁄ )2 ≫ 𝜔0
2Δ𝜔2

2 + 𝐺Ω
2Ω2. 

Rate sensing performance 

The complex sense amplitude is given by: 

𝑦𝜔
∗(𝜔𝑋,𝜔0) =

(𝑓Ω�̅�2 − 𝑓Δ𝜔𝑋,𝜔0
𝜔0
𝑄0

) + 𝑖 (𝑓Ω𝜔𝑋,𝜔0
𝜔0
𝑄0

+ 𝑓Δ�̅�2)

(�̅�2)2 + 𝜔𝑋,𝜔0
2 𝜔0

2

𝑄0
2

 

(2.60) 

where 

𝑓Ω = 𝐺ΩΩ𝜔𝑋,𝜔0[𝑥𝜔(𝜔𝑋,𝜔0)] (2.61) 

𝑓Δ = −𝜔0
2Δ𝜔2[𝑥𝜔(𝜔𝑋,𝜔0)] (2.62) 

�̅�2 = 𝜔𝑋,𝜔0
2 − 𝜔0

2(1 − Δ𝜔1) = 𝜔0
2Δ𝜔1

(

 
 

1 +

𝜔0
2

𝑄0
2 + 휂𝐺Ω

2Ω2 + 휂𝜔0
2Δ𝜔2

2

𝜔0
2

𝑄0
2 − 휂𝐺Ω

2Ω2 − 휂𝜔0
2Δ𝜔2

2

)

 
 

 

(2.63) 

𝑓Ω  and 𝑓Δ  are the amplitudes of the modal-mass-normalised Coriolis and linear elastic 

coupling forces respectively. Due to the proportionality of these forces to the drive amplitude 

𝑥𝜔(𝜔𝑋,𝜔0), as shown in (2.57), the amplitudes of these forces are reduced due the gyroscopic 

and elastic back coupling effects. �̅�2 is a frequency detuning parameter which, from (2.63), 

is amplified by the gyroscopic and elastic back coupling. Appearing in the denominator of 

(2.60), the frequency detuning diminishes both real and imaginary parts of the sense mode 

response. The gyroscopic back coupling results in the nonlinear rate dependence of the 

frequency detuning �̅�2. This leads to a nonlinear relationship between the complex sense 

amplitude in (2.60) and the angular rate Ω, particularly at higher angular rates unless the 

condition (𝜔0 𝑄0⁄ )2 ≫ 𝜔0
2Δ𝜔2

2 + 𝐺Ω
2Ω2 is sufficiently satisfied or Δ𝜔1 = 0. 

The structural imperfection parameters Δ𝜔1 and Δ𝜔2 have distinct effects. From (2.63), Δ𝜔1 

contributes to the frequency detuning and from (2.62), Δ𝜔2 contributes to the linear elastic 

coupling force. These are the main principles through which the structural imperfections 

deviate the sense response from that of the ideal case, hence the rate sensing performance. 

When Δ𝜔1 = 0, the frequency detuning �̅�2  nullifies. The real and imaginary parts of the 

complex sense amplitude in (2.60) are purely attributed to the linear elastic coupling and 
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Coriolis forces respectively, as the contributions of 𝑓Ω and 𝑓Δ decouple. On the other hand, 

Δ𝜔2 = 0 eliminates the linear elastic coupling force due to the alignment of the drive force 

with the principal axes. Unless the ring is ideal or trimmed, the conditions Δ𝜔1 = 0 and Δ𝜔2 =

0 are mutually exclusive as they correspond to different driving force orientations. 

The real and imaginary parts of the complex sense amplitude in (2.60) affect the sensor 

performance through distinct roles. For an ideal device or an imperfect device with only 

damping imperfections as discussed in Section 2.4.1, the complex sense amplitude is 

imaginary (see (2.46)), similar to the drive complex amplitude, as the sense mode oscillates 

in phase/antiphase with the drive mode. As such, the imaginary part in (2.60) is the useful rate 

output for measuring Ω. However, in the presence of structural imperfections, a nonzero real 

part appears in the complex sense amplitude. The real part is known as the quadrature output 

and is regarded as a measurement error, as the presence of the real part distorts the phase 

relationship between the drive and sense modes. As such, expressing the imaginary part as 

𝐼𝑚[𝑦𝜔
∗(𝜔𝑋,𝜔0)] = −𝑆𝜔(Ω + Ω𝑧,𝜔), the corresponding angular rate sensitivity and bias rate 

can be obtained, given by:  

𝑆𝜔(Ω) = −𝑥𝜔(𝜔𝑋,𝜔0)
𝐺Ω𝜔𝑋,𝜔0

2 𝜔0
𝑄0

(�̅�2)2 + 𝜔𝑋,𝜔0
2 𝜔0

2

𝑄0
2

 

(2.64) 

Ω𝑧,𝜔 = −
𝜔0

2Δ𝜔2(�̅�
2|Ω=0)

𝐺Ω𝜔𝑋,𝜔0
2 𝜔0
𝑄0

 
(2.65) 

Recalling that 𝐼𝑚[𝑦𝜔
∗(𝜔𝑋,𝜔0)] is nonlinear in Ω due to the rate-varying frequency detuning 

�̅�2 in (2.63), the rate sensitivity is rate-dependent, decreasing at higher angular rates due to 

the gyroscopic and elastic back coupling. This shows that the back coupling has performance 

degrading effects on rate sensing. A larger structural imperfection magnitude also amplifies 

the frequency detuning, thus similarly degrading the rate sensitivity. The bias rate is also 

dependent on the frequency detuning. However, since the bias rate corresponds to the sense 

response without rotation, the frequency detuning when Ω = 0 is used in (2.65). 

In (2.64), the presence of structural imperfections limits the rate sensitivity gain through the 

enhancement of the nominal Q factor as the frequency detuning �̅�2 in (2.64) is not nullified. 

The interaction between the frequency detuning and bandwidth terms in the denominator of 

(2.64) dictates the rate sensitivity, where the following interpretations apply: 
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i) When |�̅�2| ≫ 𝜔𝑋,𝜔0(𝜔0 𝑄0⁄ ), the rate sensitivity is inversely proportional to 𝑄0, so 

increasing the nominal Q factor reduces the rate sensitivity. The rate sensitivity 

decreases with larger frequency detuning. 

ii) When 𝜔𝑋,𝜔0(𝜔0 𝑄0⁄ ) ≫ |�̅�2|, the rate sensitivity is proportional to 𝑄0, so increasing 

the nominal Q factor increases the rate sensitivity. The rate sensitivity is insensitive 

to frequency detuning. 

As such, systems with higher 𝑄0 (case i)) are generally more susceptible to rate sensitivity 

degradation effects of the frequency detuning, thus necessitating a higher manufacturing 

precision to ensure �̅�2 = 0. High 𝑄0 also increases the magnitude of the bias rate, as (2.65) 

shows that Ω𝑧,𝜔 ∝ 𝑄0. This contrasts for the case with damping imperfections, Ω𝑧,𝑏 in (2.49) 

where Ω𝑧,𝑏 ∝ 𝑄0
−1.  

 Back coupling effects on rate dependency of rate output 

In the following, the effects of back coupling on the rate output in the presence of structural 

imperfections is investigated. A system with a structural imperfection magnitude of Δ𝜔 =

2.66𝑒 − 5  is considered, corresponding to a frequency split of 0.3 𝐻𝑧  in the absence of 

rotation. The damping imperfection magnitude Δ𝑏 is set at zero and the remaining parameters 

are identical to those used for the results in Figure 2.3(a), (b) and Figure 2.4(a), (b).  Using the 

system described, Figure 2.11 below shows a comparison of the variations of the rate output 

with the angular rate for the cases of with and without back coupling. The angular rate is 

ranged up to the critical angular rate Ω𝑐𝑟𝑖𝑡 = 92 ° 𝑠⁄  and the drive amplitude is fixed at 

0.39 𝜇𝑚 across the angular rates considered by varying the drive force amplitude 𝜒. 

 

Figure 2.11: Variation of the imaginary part of the complex sense amplitude with the angular rate, with 

and without back coupling 
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In Figure 2.11, for angular rates much lower than the critical angular rate, the rate output is 

linear with respect to the angular rate for both 휂 = 0 and 휂 = 1, indicating that the back 

coupling effects are insignificant as the condition (𝜔0 𝑄0⁄ )2 ≫ 𝜔0
2Δ𝜔2

2 + 𝐺Ω
2Ω2 is well 

satisfied. The nonlinearity of the variation increases in significance at higher angular rates, 

decreasing the rate output beyond a threshold angular rate at Ω = 82 ° 𝑠⁄ . This reduction of 

the rate output can be interpreted erroneously as a lower measured angular rate. This nonlinear 

variation is not eliminated despite the implementation of the rate-variable drive force 

amplitude to fix the drive amplitude across the range of angular rates considered. This an 

important distinction from the case without structural imperfections shown in Figure 2.9, 

indicating the structural imperfections pose a limitation on the device dynamic range. 

Effects of structural imperfection magnitude, back coupling and Q factor on rate sensing 

performance 

In the following, the effects of the structural imperfection magnitude, back coupling and the 

nominal Q factor on the bias rate and rate sensitivity are investigated. The structural 

imperfection magnitudes in the system are varied from ∆𝜔= 0 to 3.1𝑒 − 5, corresponding to 

rotation-free frequency splits up to 0.35 𝐻𝑧 . Nominal quality factors of 𝑄0 = 1.1𝑒4  and 

2.2𝑒4 are used. Figure 2.12(a) shows the variation of the bias rate with the rotation-free 

frequency split 𝜔0∆𝜔 for both the 𝑄0 considered, with and without back coupling. Figure 

2.12(b) shows the corresponding results for the rate sensitivity, normalised with respect to the 

rate sensitivity for the ideal/trimmed ring. These results are obtained by calculating the 

imaginary part of the complex sense amplitude for angular rates below the critical angular rate, 

i.e. (𝜔0 𝑄0⁄ )2 > 𝜔0
2Δ𝜔2

2 + 𝐺Ω
2Ω2. 

 

Figure 2.12: Effects of back coupling and Q factor on the (a) bias and (c) sensitivity variation with 

frequency split 

In Figure 2.12(a), the back coupling clearly degrades rate sensing performance by amplifying 

the bias error. This effect is negligible for smaller structural imperfection magnitudes, but 
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amplifies significantly as the imperfection magnitude increases. For a rotation-free frequency 

split of 0.35 𝐻𝑧 , the back coupling doubles the bias rate for the case with 𝑄0 = 2.2𝑒4. 

Reducing the Q factor significantly reduces the bias rate and suppresses the back coupling 

effects. This is because reducing the Q factor increases the bandwidth, which increases the 

critical angular rate. In Figure 2.12(b), the rate sensitivity degradation exhibits similar 

variations, where the back coupling significantly degrades the rate sensitivity more 

significantly for the case with 𝑄0 = 2.2𝑒4 compared to 𝑄0 = 1.1𝑒4.  

The effects of back coupling and structural imperfection on the angular rate sensing 

performance have been investigated. Such effects negatively affect the rate sensitivity and bias 

rate of the device, and devices with higher quality factors are more susceptible to this 

performance degradation. These are significant considerations when sensor performance 

enhancement based on quality factor amplification is pursued. 

2.5. Summary and conclusions 

In this chapter, a linear mathematical model has been developed to describe the linear 

dynamics of the vibrating rings subjected to damping and structural imperfections. The 

damping and structural imperfections are modelled as non-uniform material properties such 

as the Young’s modulus which varies with circumferential position on the ring, and 

measurement-based methods have been developed to identify the magnitudes and principal 

axis orientations of these imperfections. The effects of angular rate are also included in the 

mathematical model, based on which the effects of the sense-to-drive back coupling and 

imperfections on the rate sensing performance have been analysed in terms of the rate 

sensitivity, bias rate and quadrature error.  

The structural and damping imperfection magnitudes and principal axes can be identified 

using frequency response measurements of the drive and sense modes in the absence of 

rotation. Using this approach, single point measurements with either the drive or sense mode 

response, and dual point measurements involving both the drive and sense responses have 

been considered. The drive force orientation is varied around the ring, varying the drive and 

sense amplitude frequency responses with the drive force orientation. The varying amplitude 

frequency responses are used to obtain the variations of the modal bandwidth and resonant 

frequency with the drive force orientation. It is found that for the drive mode these quantities 

exhibit maximum and minimum values at the principal axes, thus enabling the orientations of 

these principal axes to be located. The phase frequency response of the sense mode can also 

be used for this purpose, where it is found that specific phase conditions apply when the drive 

force aligns with the principal axes. The identified variations of these quantities with the drive 
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location are then used to develop practical measurement procedures to identify the 

imperfection parameters using measurements at only 4 or 8 drive force orientations. 

When angular rate is imposed, the resulting sense response is analysed to represent open-loop 

rate measurements. The sense-to-drive back coupling, in conjunction with the structural and 

damping imperfections have different effects on the rate sensing performance. The back 

coupling is characterised by gyroscopic, elastic and damping back coupling. For the drive 

mode, the damping back coupling has small impact on achieving resonance. However, the 

gyroscopic and elastic back coupling result in the emergence of multiple frequencies achieving 

resonant drive phase condition when the angular rate exceeds a critical value, where this 

critical angular rate is dictated by the bandwidth (or Q factor). Systems with more damping, 

hence larger bandwidth, possess higher critical angular rates. The PLL must ensure the 

frequency remains fixed when the critical angular rate is exceeded to ensure proper device 

operation. The gyroscopic and elastic back coupling also reduce the drive amplitude at 

resonance, in which case the AGC must increase the drive force amplitude to compensate for 

these effects. The validity of the neglected back coupling assumption is restricted to the case 

where the angular rate is significantly below the critical angular rate, which requires a larger 

bandwidth relative to the gyroscopic and elastic back coupling. 

When the drive amplitude is fixed, the sense response is then analysed to assess rate sensing 

performance in terms of the bias rate, rate sensitivity and quadrature error. It is found that the 

damping imperfections mainly result in the introduction of bias rates while minimally 

affecting the rate sensitivity. The bias rate due to damping imperfections can be eliminated by 

aligning the drive force orientation with the damping principal axes, which have been 

identified from the preceding analysis in this chapter. The structural imperfection effects are 

more significant, impacting the bias rate, rate sensitivity and quadrature error negatively. The 

structural imperfection results in a frequency detuning which is amplified by the gyroscopic 

and elastic back coupling. This frequency detuning introduces a bias rate and quadrature error, 

thus distorting the phase of the sense oscillation. This frequency detuning also degrades the 

rate sensitivity. It is found that higher Q factor systems are more susceptible to the 

performance degrading effects of the structural imperfections, gyroscopic and elastic back 

coupling. 

The remainder of this thesis will focus on the nonlinear modelling of the ring and as such, 

detailed discussions of the imperfections will not be pursued further and it is assumed that the 

imperfection magnitudes and principal axes orientations have been identified. The following 

studies will also ensure that the neglected back coupling assumption is accurate by focusing 

on the cases where the critical angular rate is high. 
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3. ELECTROSTATIC NONLINEARITIES: 

GENERAL EFFECTS ON BASIC OPERATION 

3.1. Introduction 

In Chapter 2, the linear dynamics of a vibrating ring in the presence of angular rate was 

modelled and the sense response was investigated in the context of rate measurement. For a 

perfect, linear device the sense response is proportional to the applied angular rate and the rate 

sensitivity (scale factor) is proportional to the drive amplitude. Driving the resonator into large 

amplitude vibrations offers potential performance enhancements by amplifying the Coriolis 

force, which is small in MEMS vibrating gyroscopes due to the small mass [28]. However, in 

practice ring vibration is susceptible to nonlinearities at large ring displacements which cause 

the rate output to deviate compared to linear operation [48]. In capacitive CVG’s, significant 

nonlinear electrostatic forces can occur at relatively low displacement levels due to the narrow 

gaps between the ring and electrodes [48, 49].  

The purpose of this chapter is to extend the mathematical model developed in Chapter 2 to 

include electrostatic nonlinearity effects and investigate the effects of electrostatic 

nonlinearity on sensor performance. In this chapter and the remainder of this dissertation, the 

investigations on the electrostatic nonlinearities focus on the 𝑛 = 2  flexural mode pair 

typically used in the operation of these devices. The origin of the nonlinear electrostatic effects 

is studied in detail, followed by a development of the nonlinear equations of motion to 

investigate the sense dynamics pertinent to rate sensing. The sensor performance is 

investigated in terms of the rate sensitivity, bias rate and quadrature error for the cases of 

perfect and imperfect rings, based on which comparisons are made against the expected sensor 

performance of the corresponding linear device. The effects of key device parameters are also 

identified. For both perfect and imperfect cases, numerical results are shown based on the 

theoretical analysis and compared against FE results to validate the presence of the nonlinear 

electrostatic effects.  

Section 3.2 introduces the general arrangement of electrodes for capacitive ring-based CVG’s 

and introduces the model used to determine the electrostatic potential energy for a capacitor 

formed between the ring and a single electrode. In Section 3.3 this model is extended to a ring 

resonator having 8 uniformly spaced electrodes and the basic electrostatic configuration is 

introduced using a fundamental form of voltage distribution implemented in practice. The 

non-linear equations of motion governing the drive and sense modes are then determined.  In 

Section 3.5 averaged steady-state solutions are obtained for the drive and sense mode 

responses, and it is shown that the sense response involves self-induced parametric excitation. 
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Section 3.5.3 investigates the influence of electrostatic nonlinearity on the rate sensing 

performance of a CVG by considering the scale factor, zero-rate output and quadrature error.  

These are investigated for cases with and without the imperfections, and the effects of specific 

design parameters and operating conditions are identified. Comparisons are made against the 

rate sensitivity, bias rate and quadrature error for the corresponding linear device to identify 

conditions where the electrostatic nonlinearities can trim the sensor output or enhance rate 

sensitivity. FE results are also shown, serving to validate the theoretical results. 

3.2. Fundamentals of capacitive elements 

This section introduces the general arrangement of electrodes for capacitive ring-based CVG’s 

and introduces the model used to determine the electrostatic potential energy for a capacitor 

formed between the ring and a single electrode. 

3.2.1. Electrodes as capacitors 

Figure 3.1 shows a typical arrangement for a capacitive ring-based CVG where the electrodes 

are evenly spaced around the circumference of the ring. Each ring-electrode pair has an 

identical radial gap and for the case shown electrodes are located on both the inner and outer 

sides of the ring. The main dimensions of the ring are indicated in the figure. 𝛿 is the electrode 

angular span, 𝑔0 is the inner/outer capacitive gap for the undeflected ring and 𝐵𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 is the 

out-of-plane electrode thickness. 

 

Figure 3.1: Electrode placement around the ring, with definition of dimensional variables 

In practice capacitive gaps operate near vacuum and voltages are applied to the electrodes to 

elicit a potential difference between each electrode-ring pair. Due to this potential difference, 

there is a movement of electrons positively charging either the electrode or ring while 

negatively charging the other. In this manner, each electrode-ring pair holds a charge and acts 

as a capacitor. 
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The charge difference between the ring and electrode generates an electric field between the 

two conducting bodies, transferring electric flux from the positively charged conductor to the 

negatively charged conductor. If the conductors are sufficiently close, fringing effects from 

the electric field can be neglected and each electrode-ring pair approximates to a closed sector 

of a cylindrical capacitor. In this case, Gauss’s law is applicable and the capacitance of each 

ring-electrode pair can be expressed as: 

𝑐± = 휀0𝐵 ∫
𝑅

𝑔1
± 𝑑휃

𝜃0+
𝛿
2

𝜃0−
𝛿
2

 

(3.1) 

provided electrode thickness 𝐵𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  is greater than ring thickness 𝐵, where 

𝑔1
+ = 𝑅 ln(

𝑅 +
ℎ
2

+ 𝑔0

𝑅 +
ℎ
2 + 𝑢

) 

(3.2a) 

𝑔1
− = 𝑅 ln(

𝑅 −
ℎ
2

+ 𝑢

𝑅 −
ℎ
2

− 𝑔0

) 

(3.2b) 

In (3.1) 𝑐+  and 𝑐−  represent the capacitance for one of the electrodes, where ‘+’ and ‘-’ 

superscripts represent the outer and inner electrode sets respectively. 𝑔1
+  and 𝑔1

−  are the 

corresponding effective gaps. 휀0 is the permittivity of free space and 휃0 is the mean angular 

position of each electrode. It is important to note that the capacitance varies nonlinearly with 

radial displacement 𝑢. 

3.2.2. Electrostatic potential energy 

In practice, the ring is thin (ℎ ≪ 𝑅) and the nominal capacitive gap 𝑔0 is small (𝑔0 ≪ 𝑅) to 

maximise the capacitance effects. Since the radial displacements are confined within the 

capacitive gap (while avoiding pull-in [21, 61, 62]) 𝑢 ≪ 𝑅 as well. Under these conditions, 

expanding 𝑔1
+  and 𝑔1

−  as a Taylor series in 𝑔0  and 𝑢  about 𝑔0 = 0 and 𝑢 = 0 up to linear 

order in both terms gives: 

𝑔1
± ≈ 𝑔0 ∓ 𝑢 + 𝑂(𝑔0

2) + 𝑂(𝑢2) (3.3) 

Substituting (3.3) into (3.1) it can be shown that the capacitance of each electrode-ring pair 

approaches that of a parallel plate capacitor when 𝑢, 𝑔0 ≪ 𝑅 , where effects of the radial 

position difference between the inner and outer electrode sets have been neglected. The 
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validity of this parallel plate approximation has been demonstrated in literature [10, 49, 63]. 

For the case considered, the ring can be considered to be a moveable plate while the electrode 

is the fixed plate, as shown in Figure 3.2. The potential difference imposed between the ring 

and electrode is ∆𝑉, and +𝑄𝑐+ and −𝑄𝑐+ are the positive and negative charges accumulated 

in the outer electrode and ring due to the imbalance of electrons in the two conducting plates.  

 

Figure 3.2: Parallel plate representation of the capacitor formed between the ring and one outer electrode 

The positive and negative charges have a mutual attraction, but are separated by the non-

conducting vacuum between the ring and electrode (the dielectric). This stores electrostatic 

potential energy in each electrode-ring pair. This electrostatic potential energy can be obtained 

from the work done when pulling the plates apart from zero gap to the effective gap 𝑔1
± [21]. 

The differential work corresponding to an infinitesimal overlapping area 𝑑𝐴(=𝐵𝑅𝑑휃) for one 

electrode is: 

𝑊± = ∫
휀0𝑑𝐴

2𝑔1
±

(∆𝑉±)2
𝜃0+

𝛿
2

𝜃0−
𝛿
2

 

(3.4) 

The total capacitive work 𝑊+ + 𝑊−  can be substituted for 𝑊  on the right side of the 

Lagrange’s equations in (2.15a) and (2.15b) to obtain the electrostatic modal forces. 

Alternatively, this term can be shifted to the left side of (2.15a) and (2.15b) giving: 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘

𝜕�̇�
) −

𝜕𝐸𝑘
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+
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+
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= −

𝜕𝐷
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(3.5a) 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘

𝜕�̇�
) −

𝜕𝐸𝑘

𝜕𝑌
+

𝜕𝐸𝑏

𝜕𝑌
+

𝜕𝑈

𝜕𝑌
= −

𝜕𝐷

𝜕�̇�
 

(3.5b) 
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where 𝑈 = −𝑊 and 𝐸𝑏 = 𝐸𝑏,𝑅 + 𝐸𝑏,𝐾. 𝐸𝑏  is the total mechanical bending potential energy 

and 𝐸𝑏,𝐾  has been introduced here to account for the bending potential energy due to the 

support structures, which is known to have linear stiffening effects on the ring [63].  

The support structures used in the following investigation are composed of 8 flexible semi-

circular beams, attached at evenly distributed points around the ring (see Appendix B). These 

beams act as linear springs, providing radial and tangential restoring forces resulting in its 

bending potential energy contribution derived in (B-11): 

𝐸𝑏,𝐾 =
4𝑘𝑢𝑢 + 𝑘𝑣𝑣

2
(𝑋2 + 𝑌2) 

where 𝑘𝑢𝑢 and 𝑘𝑣𝑣 are the radial and tangential stiffnesses of each support beam.  

Comparing terms involving 𝑈 and 𝐸𝑏 in (3.5a) and (3.5b) shows that the electrostatic effects 

can be interpreted in the same manner as the total mechanical bending potential energy 𝐸𝑏, 

and the total potential energy is the sum of the electrostatic potential energy 𝑈 and mechanical 

bending potential energy 𝐸𝑏. 𝜕𝑈 𝜕𝑋⁄ , 𝜕𝑈 𝜕𝑌⁄  describe the resulting electrostatic modal forces, 

and these forces are the core principle through which capacitive CVG’s operate. 

The notion of quantifying electrostatic effects as a potential energy is useful for analysing 

effective stiffness-modifying effects reported in capacitive CVG’s [10]. Throughout the 

remainder of this dissertation, electrostatic potential energy is used to represent and discuss 

electrostatic effects.  

3.3. Equations of motion for a capacitive CVG 

In this section the model developed in Section 3.2 for a single capacitor formed between the 

ring and electrode is extended to include contributions from all electrodes for a ring resonator 

having 8 uniformly spaced electrodes, and determines the non-linear equations of motion 

governing the drive and sense modes. 

3.3.1. Basic electrostatic configuration 

As discussed in Chapter 2, ring-based CVG’s typically operate using the 𝑛 = 2 flexural mode 

pair possessing 2 nodal diameters as shown in Figure 1.4. Capacitive CVG’s typically 

implement 8, 16 or 32 electrodes evenly spaced around the ring [6, 10, 18, 45, 64]. The 

electrostatic configuration in MEMS CVG’s is dictated by two factors: i) the number of evenly 

spaced electrodes and ii) the distribution of voltage from electrode to electrode. 

The fundamental operation of a device involves applying harmonic voltages to the electrodes 

to excite the drive mode into vibration together with a bias voltage to avoid frequency doubling 
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of the drive force [6]. The analysis presented in this section is based on the 8 electrode design 

shown in Figure 3.3. 𝑉0 is the constant bias voltage applied to all electrodes while 𝑉𝐴𝐶 is the 

harmonic drive voltage at drive frequency 𝜔. In Figure 3.3 the deflections shown for the drive 

and sense modes, 𝑋 and 𝑌, are exaggerated.   

 

Figure 3.3: Basic electrostatic configuration incorporating bias and drive mechanisms 

In Figure 3.3, the electrodes with drive voltage 𝑉𝐴𝐶 cos𝜔𝑡  are referred to as the drive 

electrodes. The drive electrodes are positioned at the antinodes of the drive mode and the main 

purpose of the drive electrodes is to generate a ‘push-pull’ force to excite the drive mode into 

resonance. To generate the ‘push-pull’ force, the voltages applied to the drive electrodes with 

angular positions centred at 휃 = 0, 𝜋 are in antiphase with those applied to the drive electrodes 

at positions 휃 = 𝜋 2⁄ , 3𝜋 2⁄ . When the ring vibrates, the ring displaces towards one of the 

inner or outer drive electrodes while displacing by the same amount away from the other. The 

antiphase relationship between the inner and outer drive electrodes ensures a constructive 

interaction between the electrostatic potential energy generated by the inner and outer drive 

electrodes. 

The electrostatic configuration in Figure 3.3 can be described by voltages represented as a 

discrete Fourier series in the central angular position of the 𝑖th inner/outer electrode, 휃0(𝑖): 

𝑉±[휃0(𝑖)] = 𝑉0 ± 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) (3.6) 

where 𝑖 = 1,⋯ ,8 is an integer identifying the 𝑖th drive electrode of each of the inner and outer 

electrode sets. 𝑉±[휃0(𝑖)] describes the voltage applied to the 𝑖th inner/outer electrode. Due to 

the even distribution of the electrodes, the central angular position 휃0 of the 𝑖th electrode is 

given by: 

𝑋 

𝑌 

휃 

휃 = 0 
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휃0(𝑖) =
2𝑖𝜋

𝑗
 

where 𝑗 = 8 is the total number of inner or outer electrodes.  

When the ring is grounded, the potential difference ∆𝑉±  in (3.4) is equal to the voltages 

applied to the electrodes. Using (3.6) for ∆𝑉±[휃0(𝑖)] in (3.4) and noting that 𝑈 = −𝑊 gives 

the electrostatic potential energy arising from the 𝑖th inner and outer electrodes. Summing this 

expression over 𝑖  gives the total electrostatic potential energy for this electrostatic 

configuration. 

𝑈 = �̅� + 𝑈𝐴𝐶  (3.7) 

where 

�̅� = −
1

2
∑𝑉0

2𝑐++−[휃0(𝑖)]

𝑗

𝑖=1

 

(3.8) 

𝑈𝐴𝐶 = −
1

2
∑2𝑉0𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) 𝑐+−−[휃0(𝑖)]

𝑗

𝑖=1

 

(3.9) 

𝑐++−[휃0(𝑖)] and 𝑐+−−[휃0(𝑖)] are the summation and subtraction of the capacitance between 

the 𝑖 th inner and outer electrodes, such that 𝑐++−[휃0(𝑖)] ≔ 𝑐+[휃0(𝑖)] + 𝑐−[휃0(𝑖)]  and 

𝑐+−−[휃0(𝑖)] ≔ 𝑐+[휃0(𝑖)] − 𝑐−[휃0(𝑖)] respectively. 

�̅� and 𝑈𝐴𝐶  are the contributions of the bias and drive voltages to the total electrostatic potential 

energy respectively and terms proportional to 𝑉𝐴𝐶
2 have been discarded as the drive voltage 

is small in practice, 𝑉𝐴𝐶 ≪ 𝑉0. �̅� and 𝑈𝐴𝐶  have been expressed as a summation of the result 

of the product of the capacitance and voltage squared for each electrode-ring pair. 𝑐++−[휃0(𝑖)] 

and 𝑐+−−[휃0(𝑖)] are given by: 

𝑐++−[휃0(𝑖)] = 휀0𝐵𝑅 ∫ (
1

𝑔0 − 𝑢
+

1

𝑔0 + 𝑢
)𝑑휃

𝜃0(𝑖)+
𝛿
2

𝜃0(𝑖)−
𝛿
2

≈
2휀0𝐵𝑅

𝑔0
∫ [1 +

𝑢2

𝑔0
2
+

𝑢4

𝑔0
4
+ 𝑂 (

𝑢6

𝑔0
6)]𝑑휃

𝜃0(𝑖)+
𝛿
2

𝜃0(𝑖)−
𝛿
2

 

(3.10a) 
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𝑐+−−[휃0(𝑖)] = 휀0𝐵𝑅 ∫ (
1

𝑔0 − 𝑢
−

1

𝑔0 + 𝑢
)𝑑휃

𝜃0(𝑖)+
𝛿
2

𝜃0(𝑖)−
𝛿
2

≈
2휀0𝐵𝑅

𝑔0
∫ [

𝑢

𝑔0
+

𝑢3

𝑔0
5
+ 𝑂 (

𝑢5

𝑔0
5)]𝑑휃

𝜃0(𝑖)+
𝛿
2

𝜃0(𝑖)−
𝛿
2

 

(3.10b) 

The interaction between the voltage squared and capacitance is important as it directly dictates 

the result of the summations in (3.8) and (3.9), enabling the net effects of the bias and drive 

voltages to be explicitly identified. 𝑐++−[휃0(𝑖)] directly interacts with components of the 

square of the voltage distribution in (3.6) which are of the same polarity between the inner and 

outer electrode sets, which is the case for the bias voltage 𝑉0 since it is identically applied to 

the inner and outer electrodes. On the other hand, 𝑐+−−[휃0(𝑖)] interacts with components of 

the square of (3.6) which are of opposite polarities between the inner and outer electrode sets. 

This is the case for the drive voltage since it has an antiphase relationship between the inner 

and outer electrode sets, as shown in Figure 3.3. 

In (3.10a) and (3.10b), the terms in the bracket have been expanded as a Taylor series in radial 

displacement up to the 4th order. To model the linear dynamics of the system, a 2nd order 

expansion is sufficient. However, noting that larger amplitude vibrations are generally 

desirable for performance enhancement of these devices, the analysis presented in this chapter 

takes 3rd and 4th order terms into account. These terms are responsible for yielding the lowest-

order nonlinear effects on the system, deviating the vibrational response from what would be 

expected from the corresponding linear system. 

𝑐++−[휃0(𝑖)]  and 𝑐+−−[휃0(𝑖)]  contribute to even and odd-ordered terms in the total 

electrostatic potential energy respectively. As will be shown, even and odd-ordered terms in 

the electrostatic potential energy have distinct effects on the drive and sense modes. 

In Chapter 2 the radial ring displacement 𝑢 was expressed as: 

𝑢 = 𝑋 cos 𝑛휃 + 𝑌 sin 𝑛휃 (2.1) 

Substituting (2.1) into (3.10a) and (3.10b) it can be shown that the capacitance can be 

approximated as a discrete Fourier series in terms of electrode central angular position 휃0(𝑖), 

similar to the voltage distribution in (3.6). Substituting this result into (3.8) and (3.9) and 

summing across the electrodes from 𝑖 = 1 to 8 gives: 
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�̅� = −𝑗
휀0𝐵𝑅

2𝑔0
𝑉0

2 [2𝛿 + 𝛿
𝑋2 + 𝑌2

𝑔0
2

+ (
3

4
𝛿 +

sin4𝛿

16
)
𝑋4 + 𝑌4

𝑔0
4

+
3

4
(𝛿 −

sin4𝛿

4
)
2𝑋2𝑌2

𝑔0
4

] 

(3.11) 

𝑈𝐴𝐶 = −
𝑗

2

휀0𝐵𝑅 sin𝛿

𝑔0

(2𝑉0𝑉𝐴𝐶 cos𝜔𝑡) [
𝑋

𝑔0
+ (

5 + cos2𝛿

6
)

𝑋3

𝑔0
3
+ sin2 𝛿

𝑋𝑌2

𝑔0
3
] 

(3.12) 

�̅�  and 𝑈𝐴𝐶  depend on the voltage distribution (3.6) and dictate the resulting form of the 

electrostatic forces affecting the modal dynamics. As such, the chosen voltage distribution 

provides direct control of the device output and is a key feature in later chapters. 

�̅� is composed of even-ordered terms, similar to the ring bending potential energy 𝐸𝑏,𝑅 in 

(2.10) and contribute to the modal elastic properties. However, unlike 𝐸𝑏,𝑅, �̅� exhibits modal 

symmetry as �̅� is unchanged when the drive and sense displacements are exchanged, i.e. 𝑋 to 

𝑌 and vice versa. As such, the drive and sense modes are equally affected by the bias voltage 

𝑉0 and the elastic asymmetry between the drive and sense modes arises purely due to the 

mechanical imperfection. 

𝑈𝐴𝐶  is composed of only odd-ordered terms and is modal asymmetric, thus contributing 

unequally to the drive and sense modes. The linear term in (3.12) is proportional to 𝑋, ensuring 

only the drive mode is directly forced. 

3.3.2. Equations of motion with basic electrostatic configuration 

The linear and nonlinear electrostatic forces generated for the aforementioned basic 

electrostatic configuration can be obtained by substituting (3.11) and (3.12) into (3.7), and 

then substituting the resulting total electrostatic potential energy expression into Lagrange’s 

equations (3.5a) and (3.5b). As previously discussed, �̅� and 𝑈𝐴𝐶  contribute to the equations 

of motion in a manner similar to the bending potential energy 𝐸𝑏 and the direct work done on 

the drive mode, 𝑊 in Lagrange’s equations (eq (2.15a) and (2.15b)). However, the presence 

of 3rd and 4th order terms in the electrostatic potential energy give rise to additional nonlinear 

terms compared to the linear equations of motion in (2.18). Substituting the resulting 

expression for 𝑈 in conjunction with expressions for 𝐸𝑘 in (2.6) – (2.7c), 𝐸𝑏,𝑅 in (2.10), 𝐸𝑏,𝐾 

in (B-11) and 𝐷 in (2.13) with 𝑛 = 2 into the pair of Lagrange’s equations (3.5a) and (3.5b) 

gives the following nonlinear equations of motion for the drive and sense modes.  
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𝑀 [
1 + Δ𝑚1 Δ𝑚2

Δ𝑚2 1 − Δ𝑚1
] �̅̈�𝟏 + (𝐶 [

1 + Δ𝑐1 Δ𝑐2

Δ𝑐2 1 − Δ𝑐1
] + 𝑀ΩΩ [

0 −1
1 0

]) �̅̇�𝟏

+ 𝐾 [
1 + Δ𝑘1 Δ𝑘2

Δ𝑘2 1 − Δ𝑘1
] �̅�𝟏 + 𝑀�̿�𝟑

�̅�𝟑

𝑔0
2

= 𝑀𝜒 cos𝜔𝑡 ([
1
0
] + �̿�𝝌

�̅�𝟐

𝑔0
2
) 

(3.13) 

Modal-mass-normalising the resulting equations of motion in a manner similar to the 

procedure from (2.16) to (2.17) gives the following: 

�̅̈�𝟏 + 2Γ�̅̇�𝟏 + 𝜔0
2∆̿�̅�𝟏 + �̿�𝟑

�̅�𝟑

𝑔0
2

= Ω�̿�𝛀�̅̇�𝟏 + 𝜒 cos𝜔𝑡 ([
1
0
] + �̿�𝝌

�̅�𝟐

𝑔0
2
) 

(3.14) 

where the condition Δ𝑐1 − Δ𝑚1 = Δ𝑐2 − Δ𝑚2 = 0  has been imposed so only structural 

imperfections will be considered in the following investigation. 

Quantities with single and double overbars, ̅  and ̿  represent vector and matrix quantities 

respectively. Vectors �̅�𝟏 , �̅�𝟐  and �̅�𝟑  contain the linear, quadratic and cubic order modal 

coordinates respectively and are given by 

�̅�𝟏 = [
𝑋
𝑌
] (3.15) 

�̅�𝟐 = [
𝑋2

𝑋𝑌
𝑌2

] 
(3.16) 

�̅�𝟑 = [

𝑋3

𝑋2𝑌
𝑋𝑌2

𝑌3

] 

(3.17) 

Terms proportional to �̅�𝟏 and �̅�𝟑 give rise to linear and cubic-order restoring forces acting on 

the drive and sense modes respectively. In this manner, the effective elastic properties of the 

drive and sense modes depend on the linear resonant frequency 𝜔0 , but are subjected to 

nonlinear corrections from the cubic-order forces. 

The linear natural frequency 𝜔0 is given by: 

𝜔0
2 =

1

5𝜌
(
3𝐸ℎ2

𝑅4
+

4𝐾

ℎ𝜋𝐵𝑅
− 𝑗

4휀0𝑉0
2

ℎ𝜋𝑔0
3

𝛿) 
(3.18) 
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where 𝐾 is the effective total modal stiffness of the support beams, defined as 𝐾 = 4𝑘𝑢𝑢 +

𝑘𝑣𝑣. 

𝜔0 depends on the linear modal stiffnesses, which has mechanical and electrostatic origins.  

Mechanical contributions to the linear modal stiffnesses arise from the flexural stiffness of the 

ring, as well as the support structure (see Appendix B for details). The mechanical bending 

potential energy components 𝐸𝑏,𝑅 and 𝐸𝑏,𝐾 contribute to the first and second terms defining 

𝜔0
2 in (3.18) respectively. The mechanical bending potential energy has stiffening effects on 

the ring and as such, the first two terms in (3.18) are positive, increasing the linear resonant 

frequency of the drive and sense modes. The electrostatic contribution corresponds to the last 

term defining 𝜔0
2 in (3.18), and is only affected by the bias voltage. This term is always 

negative, showing that the bias voltage results in modal softening. 

The drive voltage contributes to the equation of motion through the harmonic force 𝜒 cos𝜔𝑡 

directly applied to the drive mode. The force amplitude 𝜒 is given by: 

 𝜒 = 𝑗
4휀0𝑉0𝑉𝐴𝐶 sin 𝛿

5𝜌ℎ𝜋𝑔0
2

 
(3.19) 

𝜒 is proportional to the drive voltage amplitude 𝑉𝐴𝐶 , and in practice the drive voltage is 

regulated to maintain a constant drive amplitude to ensure a steady sensor output. 

�̿�𝝌 and �̿�𝟑 define the nonlinear electrostatic effects and are given by: 

�̿�𝝌 = [
5 + cos 2𝛿

2
0

1 − cos 2𝛿

2
0 1 − cos 2𝛿 0

] 
(3.20) 

�̿�𝟑 = [
𝛾0 0 𝜅0 0
0 𝜅0 0 𝛾0

] 
(3.21) 

where 

𝛾0 = −𝑗
6휀0𝑉0

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 +

sin 4𝛿

12
) 

(3.22) 

𝜅0 = −𝑗
6휀0𝑉0

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 −

sin 4𝛿

4
) 

(3.23) 

�̿�𝝌 is a nonlinear correction matrix to the harmonic drive force 𝜒 cos𝜔𝑡. The elements of the 

first row modify the effective drive force amplitude slightly, while the element of the second 

row gives rise to a form of indirect excitation on the sense mode by the drive voltage. As will 
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be shown, this gives rise to a small parametric excitation of the sense mode. However, since 

𝑉𝐴𝐶 ≪ 𝑉0 in practice, the nonlinear effects arising from the quadratic-order electrostatic forces 

associated with �̿�𝝌 are negligible. 

�̿�𝟑 contains the cubic-order modal stiffnesses, which are responsible for the main electrostatic 

nonlinear effects arising from the implementation of the basic electrostatic configuration. 𝛾0 

is the single-mode stiffness (modal-mass-normalised). It appears exclusively in the first and 

last columns of �̿�𝟑. The modal electrostatic forces in the equations of motion associated with 

𝛾0 are proportional to 𝑋3 and 𝑌3 for the drive and sense modes respectively. As such, 𝛾0 is 

the modal Duffing coefficient. 𝜅0 is the coupled-mode stiffness. It gives rise to a form of 

nonlinear elastic coupling between the drive and sense modes, which is responsible for causing 

self-induced parametric excitation [48, 49]. This coupling is negligible for small electrode 

spans 𝛿 because 𝜅0 ≈ 0, causing the electrostatic nonlinearities between the drive and sense 

modes to approach uncoupled behaviour. Due to the electrostatic origin of both 𝛾0 and 𝜅0, 

these nonlinear stiffnesses are negative. Also, for this basic electrostatic configuration, |𝜅0| ≤

|𝛾0|, where the equality is only for the case when 𝛿 = 𝜋 4⁄ , i.e. the 8 electrodes form a 

continuous electrode. As will be shown, the relationship between 𝛾0 and 𝜅0 has an important 

effect on the resulting nonlinearities affecting the rate output of the device. 

Γ describes the linear damping coefficient and for the conventional, linear system, 2Γ =

𝜔0 𝑄0⁄ . 

The imperfection and gyroscopic matrices ∆̿ and �̿�𝛀 are defined via a direct comparison of 

(3.14) and (2.18). In (3.14), the structural imperfection parameters are described within ∆̿. 

3.4. Drive and sense mode responses 

In this section, the nonlinear equations of motion (3.14) are solved to derive the modal 

responses needed to determine the rate output. Conditions relevant to practical operation are 

considered to obtain a clear comparison of the nonlinear response against the corresponding 

linear device. 

Due to the nonlinearities, exact, closed-form solutions of (3.14) are analytically unobtainable. 

Also, unlike the linear system, the steady-state nonlinear response is only approximately 

harmonic depending on the strength of the nonlinearities. As such, the method implemented 

in Section 2.3.1 is not applicable, and alternative, approximate methods are needed to obtain 

the response, as discussed next. 
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3.4.1. Drive mode response 

In CVG’s, the drive mode oscillation generates a Coriolis force proportional to the drive mode 

amplitude and larger drive amplitudes are desirable to enhance rate sensitivity. The nonlinear 

electrostatic forces acting to excite the ring are important and the drive mode can be regarded 

as a nonlinear oscillator having a much larger amplitudes than the sense mode, i.e. 𝑦 𝑥⁄ ≪ 1. 

In the absence of rotation and neglecting the back coupling effects from the sense mode due 

to drive misalignment and the nonlinear coupled-mode stiffness, the drive mode equation of 

motion approaches that of a forced Duffing equation: 

�̈� + 2Γ�̇� + 𝜔0
2(1 + Δ𝜔 cos 4Θ𝜔)𝑋 + 𝛾0

𝑋3

𝑔0
2

= 𝜒 cos𝜔𝑡 [1 + 𝑐𝑋𝑋

𝑋2

𝑔0
2
] 

(3.24) 

where 𝑐𝑋𝑋 = (5 + cos2𝛿) 2⁄ . 

An approximate solution to (3.24) can be obtained using the averaging method [65, 66]. Using 

this method, the drive response remains periodic at the excitation frequency 𝜔 but exhibits 

slowly varying amplitude and phase, provided that the Duffing stiffness 𝛾0  is sufficiently 

small. This condition is applicable for capacitive devices since the feasible bias voltage 𝑉0 is 

restricted to avoid pull-in, thus limiting 𝛾0 . Here, the drive response is defined as 𝑋 =

𝑥(𝑡) cos[𝜔𝑡 + 𝜙𝑥(𝑡)]. Substituting this definition into (3.24) and assuming that the amplitude 

and phase exhibit negligible variation within each oscillation cycle, this gives: 

[−𝜔2 + 𝜔0
2(1 + Δ𝜔 cos 4Θ𝜔)]𝑥 +

3

4
𝛾0

𝑥3

𝑔0
2
− 2𝑥𝜔�̇�𝑥

= 𝜒 cos𝜙𝑥 [1 +
3

4
𝑐𝑋𝑋

𝑥2

𝑔0
2
] 

(3.25) 

−2(𝑥Γ + �̇�)𝜔 = 𝜒 sin𝜙𝑥 [1 +
1

4
𝑐𝑋𝑋

𝑥2

𝑔0
2
] 

(3.26) 

(3.25) and (3.26) can be used to assess the stability of the drive mode oscillatory response, but 

for the present purpose, only the steady-state response is of interest. At steady-state, the 

amplitude and phase rates, �̇� and �̇�𝑥 approach zero and (3.25) and (3.26) reduce to phase-

decomposed force balancing equations for forces acting in quadrature and in phase relative to 

damping respectively. Solving these equations simultaneously yields the following result for 

the phase-decomposed drive amplitudes: 
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[
𝑥 cos𝜙𝑥

𝑥 sin𝜙𝑥
] = −

[
𝜔2 − 𝜔𝑋

2 2Γ𝜔

2Γ𝜔 −𝜔2 + 𝜔𝑋
2] �̅�𝝌

(2Γ𝜔)2 + (−𝜔2 + 𝜔𝑋
2)2

 

(3.27) 

where  

�̅�𝝌 =

[
 
 
 
 𝜒 [1 + 𝑐𝑋𝑋

𝑥2

4𝑔0
2
(2 + cos2𝜙𝑥)]

−𝜒𝑐𝑋𝑋

𝑥2

4𝑔0
2
sin 2𝜙𝑥 ]

 
 
 
 

 

(3.28) 

𝜔𝑋
2 = 𝜔0

2(1 + Δ𝜔 cos 4Θ𝜔) +
3

4
𝛾0

𝑥2

𝑔0
2
 

(3.29) 

�̅�𝝌 contains the effective phase-decomposed components of the drive force amplitude. The 

quadratic-order nonlinearity results in a small dependence of these drive force amplitude 

components on the drive mode vibration amplitude and phase. As such, the effective phase of 

the drive force depends on the drive response. This is in contrast to the corresponding linear 

system where this dependence is not present (𝑐𝑋𝑋 = 0), causing the second row of �̅�𝝌 to be 

nullified and fixing the effective phase of the drive force. This phase fixation of the drive force 

can be reproduced in the presence of the quadratic nonlinearities if the drive mode is locked 

at resonance, i.e. 𝜙𝑥 = −𝜋 2⁄  which similarly nullifies the second row of �̅�𝝌. However, in 

this case, the effective drive force amplitude is increased as the drive mode oscillates at larger 

amplitudes. 

𝜔𝑋 is the effective resonant frequency of the drive mode, resulting in 𝜙𝑥 = −𝜋 2⁄ . When 

𝛾0 = 0, this frequency eliminates the real part of the complex drive amplitude 𝑥𝑎,Ω0
∗ in (2.22) 

and ensures resonance when angular rate is not present. 𝜔𝑋 is composed of an amplitude-

independent component described by the first two terms in (3.29) and a nonlinear, amplitude-

dependent component due to the modal Duffing coefficient 𝛾0. The amplitude-independent 

component of this frequency depends on the drive misalignment angle Θ𝜔, which dictates if 

this component is higher or lower than the ideal case, 𝜔0. As will be shown, this has important 

implications on the ability to trim the device response. When the drive response is harmonic 

at steady-state, i.e. 𝑋 = 𝑥 cos(𝜔𝑡 + 𝜙𝑥), the linear and cubic drive displacements, 𝑋 and 𝑋3 

share the same sign, and the linear restoring force reach maximum/minimum values at the 

same time as the cubic restoring force.  This allows the cubic restoring force to act in unison 

with the linear restoring force to dictate the effective stiffness of the drive mode. Since 𝛾0 <

0, 𝜔𝑋 decreases as the drive amplitude increases, confirming the nonlinear softening role of 
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the electrostatics on the drive mode. From (3.22) |𝛾0| increases with bias voltage and electrode 

angle, and the electrostatic nonlinearity strengthens, serving to increase the softening rate of 

the drive mode. 

From (3.27), it can be shown that when 𝜔 = 𝜔𝑋, the resulting resonant drive amplitude is: 

𝑥𝑟 = −
𝜒𝑟

′

2Γ𝜔𝑋
 

(3.30) 

where 𝜒𝑟
′ is the effective resonant drive force amplitude given by: 

𝜒𝑟
′ = 𝜒(1 +

1

4
𝑐𝑥𝑥

𝑥𝑟
2

𝑔0
2) 

(3.31) 

When resonance is achieved, the harmonic drive force amplitude 𝜒 can be tuned to fix the 

drive amplitude. When 𝜒 remains unchanged, the electrostatic nonlinearity acts to increase the 

resonant drive amplitude in two ways. First, the effective drive force amplitude 𝜒𝑟
′ increases 

due to the quadratic-ordered electrostatic forces. This is shown in the amplitude-dependency 

of 𝜒𝑟
′. Secondly, the drive frequency 𝜔𝑋 decreases due to the nonlinear softening of the drive 

mode. The electrostatic nonlinearity leads to the implicit nature of the expression for 𝑥𝑟 in 

(3.30). As such, unlike a linear drive oscillator, the drive force amplitude 𝜒 does not admit a 

linearly proportional relationship with the resonant amplitude 𝑥𝑟. For the remainder of this 

chapter, the presented study is strictly based on resonant operation. 

3.4.2. Sense mode response 

Considering the angular rate within the typical dynamic range of CVG’s, the maximum 

measurable angular rates are such that Ω 𝜔0⁄  is typically in the order of 10−4. As a result, the 

responding sense mode is in practice much smaller than the drive mode, and quadratic and 

cubic terms in 𝑌 can be neglected from sense equation of motion (3.14). This approximation 

has been used and validated in previous studies [49], and gives: 

�̈� + 2Γ�̇� + [𝜔0
2(1 − Δ𝜔 cos 4Θ𝜔) + 𝜅0

𝑋2

𝑔0
2
−

𝜒𝑐𝑋𝑌

𝑔0
cos𝜔𝑡

𝑋

𝑔0
] 𝑌

= −𝐺ΩΩ�̇� − 𝜔0
2Δ𝜔 sin4Θ𝜔 𝑋 

(3.32) 

where 𝑐𝑋𝑌 = 1 − cos 2𝛿. 

The sense mode approximates a linear forced oscillator, with the drive mode directly forcing 

the sense mode through the two terms on the right side of (3.32). The first term is the rate-
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sensitive Coriolis force, while the second term is an undesirable, imperfection-induced linear 

elastic coupling force due to the drive misalignment. The Coriolis and linear elastic coupling 

forces are proportional to the drive velocity and displacement respectively, and are in 

quadrature. In an ideal device, only the Coriolis force is present, so the phase of the sense 

mode forcing is fixed to be ±𝜋 2⁄  relative to the phase-regulated drive response. However, 

depending on the level of imperfection and misalignment, the linear elastic coupling force can 

be significant compared to the Coriolis force, acting to phase-shift the effective force acting 

on the sense mode. The phase-shift of the direct force has a significant impact on the nature 

of the sense response relevant to the rate-measuring performance of these devices. 

The sense mode is also subjected to parametric excitation due to the modulation of its elastic 

properties. This is shown in the coefficient of the sense displacement 𝑌 in (3.32). Noting that 

the steady-state sense response is harmonic, the quadratic and cubic electrostatic forces give 

rise to a double-frequency variation of the sense mode stiffness through terms involving the 

drive force amplitude 𝜒 and the nonlinear coupled-mode stiffness 𝜅0 respectively. This form 

of parametric excitation is self-induced as it naturally arises from sufficiently large-amplitude 

drive mode displacements, without requiring the implementation of time-varying pump 

voltages for this purpose, as in the approach implemented in [28, 52]. As will be shown, the 

parametric excitation affects how the sense mode responds to the direct Coriolis and linear 

elastic coupling forces. 

The steady-state sense response can be obtained using the method of averaging in a manner 

similar to the drive mode, provided that |𝜅0| is sufficiently small. Comparing (3.22) and (3.23), 

it is clear that |𝜅0| ≤ |𝛾0| so the applicability of the averaging method is also well-justified in 

this case. Using this method, since the direct forces acting on the sense mode stem from the 

drive response, it is convenient to define the sense response phase as an offset relative to the 

drive phase 𝜙𝑥 . For this purpose, the steady-state sense response is defined as 𝑌 =

𝑦 cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝑦𝑥), where 𝑦 is the sense amplitude and 𝜙𝑦𝑥  is the sense displacement 

phase relative to the drive displacement. Substituting this expression into (3.32) and 

performing the averaging procedure yields the following phase-decomposed components of 

the sense amplitude: 

[
𝑦 cos𝜙𝑦𝑥

𝑦 sin𝜙𝑦𝑥
] = −

�̿��̅�𝒀

𝑃1
2 − 𝑃2

+𝑃2
−

 
(3.33) 

where 
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�̿� = [
𝜔2 − 𝜔𝑌

2 + 𝜆1 2Γ𝜔 + 𝜆2

2Γ𝜔 − 𝜆2 −𝜔2 + 𝜔𝑌
2 + 𝜆1

] 
(3.34) 

�̅�𝒀 = [
𝑓Δ
𝑓Ω

] = [
−𝑥𝜔0

2Δ𝜔 sin4Θ𝜔

𝐺ΩΩ𝑥𝜔
] 

(3.35) 

𝑃1 = 2Γ𝜔 (3.36) 

𝑃2
± = (𝜆1

2 + 𝜆2
2)

1
2 ± (−𝜔2 + 𝜔𝑌

2) 
(3.37) 

and in �̿�: 

𝜔𝑌
2 = 𝜔0

2(1 − Δ𝜔 cos4Θ𝜔) + 𝜅0

𝑥2

2𝑔0
2
−

𝜒

2𝑔0
𝑐𝑋𝑌

𝑥

𝑔0
cos𝜙𝑥 

(3.38) 

𝜆1 = 𝜅0

𝑥2

4𝑔0
2
−

𝜒

4𝑔0
𝑐𝑋𝑌

𝑥

𝑔0
cos𝜙𝑥 

(3.39) 

𝜆2 = −
𝜒

4𝑔0
𝑐𝑋𝑌

𝑥

𝑔0
sin𝜙𝑥 (3.40) 

�̅�𝒀 contains the effective amplitudes of the direct force components acting on the sense mode. 

𝑓Δ  and 𝑓Ω  are the modal-mass-normalised amplitudes of the linear elastic coupling and 

Coriolis forces respectively. For the basic electrostatic configuration considered, these force 

amplitudes scale proportionally with drive amplitude. As such, for the Coriolis force, a large 

drive amplitude provides a rate-independent amplification even at low angular rates. This rate-

independent amplification of the Coriolis force is desirable for scale factor improvement. 

However, this also amplifies the linear elastic coupling force unless the ring is perfect 

(Δ𝜔 = 0) or there is no drive misalignment (sin 4Θ𝜔 = 0).  

�̿� distinguishes the contributions from the linear elastic coupling and Coriolis forces to the 

sense amplitude components 𝑦 cos𝜙𝑦𝑥  and 𝑦 sin𝜙𝑦𝑥 . The first and second columns of �̿� 

represent the ‘weights’ dictating the relative contributions of the linear elastic coupling and 

Coriolis forces respectively. As such, for an ideal or trimmed device, elements of the first 

column of �̿� are insignificant and the drive frequency 𝜔 can be selected to adjust the element 

�̿�𝟐𝟐 for phase tuning of the sense mode. 

𝜔𝑌 is the effective sense frequency, where 𝜔𝑌
2 is proportional to the mean stiffness of the 

sense mode. As such, 𝜔𝑌
2 is the coefficient of the sense displacement in (3.32), neglecting the 
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double-frequency variation. Similar to the drive frequency 𝜔𝑋 , 𝜔𝑌  is composed of an 

amplitude-independent and a nonlinear, amplitude-dependent component. The amplitude 

dependency is composed of linear and quadratic-ordered variations, arising from quadratic 

and cubic electrostatic forces respectively. These represent the last two terms in (3.38). The 

linear amplitude dependence, associated with the drive force amplitude 𝜒 is the result of the 

drive voltage 𝑉𝐴𝐶 , while the quadratic-ordered amplitude dependence stems from the 

nonlinear elastic coupling between the drive and sense modes due to the coupled-mode 

stiffness 𝜅0 , which depends on the bias voltage 𝑉0 . Since 𝑉𝐴𝐶 ≪ 𝑉0 , the linear amplitude 

dependence is negligible, and the nonlinear softening of the sense mode is predominantly 

dictated by the strength of the nonlinear elastic coupling between the drive and sense modes. 

𝜆1 and 𝜆2 dictate the phase-decomposed amplitudes of the self-induced parametric excitation. 

The definitions for 𝜆1 and 𝜆2 in (3.39) and (3.40) are derived from the amplitude of the 2𝜔 

variation in the coefficient of 𝑌 in (3.32). Since 𝑉𝐴𝐶 ≪ 𝑉0, 𝜆2 is negligible so the amplitude of 

the self-induced parametric excitation is predominantly dictated by 𝜆1. Comparing (3.38) and 

(3.39) shows that the nonlinear amplitude-dependence of the sense frequency 𝜔𝑌
2 is identical 

to 2𝜆1. As such, 𝜆1 is similarly dictated by the nonlinear elastic coupling between the drive 

and sense modes. A direct consequence of this is that increasing the strength of the self-

induced parametric excitation will also result in an increased softening rate of the sense 

frequency. Due to the amplitude dependence of 𝜆1  and 𝜆2 , the self-induced parametric 

excitation is a purely nonlinear effect. The self-induced parametric excitation amplitude 

depends on both the bias voltage and chosen drive amplitude, which can be tuned to 

manipulate the sense response. However, as previously noted, |𝜆2 𝜆1⁄ | ≪ 1 so the effects of 

𝜆2  will be neglected in the proceeding analysis associated with the basic electrostatic 

configuration. 

The denominator 𝑃1
2 − 𝑃2

+𝑃2
− in (3.33) quantifies the energy dissipation rate of the sense 

mode vibration for the corresponding free vibration case, i.e. when 𝑓Δ = 𝑓Ω = 0. From a free 

vibration analysis of (3.32), it can be shown that the effective time constant is given by 

2𝜔 (𝑃1 − √𝑃2
+𝑃2

−)⁄ , where √𝑃2
+𝑃2

−  < 𝑃1. 𝑃1 is associated with the damping, so 𝑃1 > 0 in all 

cases, indicating a positive contribution towards the energy dissipation rate. On the other hand, 

the product 𝑃2
+𝑃2

−  can be positive or negative depending on the opposing effects of the 

parametric excitation amplitude and the splitting between the drive and sense frequencies. The 

following cases apply. 

i. If |𝜆1
2 + 𝜆2

2| > |−𝜔2 + 𝜔𝑌
2|  then 𝑃2

+𝑃2
−  > 0 so √𝑃2

+𝑃2
−  is real. Q factor is 

increased by the parametric excitation. 
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ii. If |𝜆1
2 + 𝜆2

2| < |−𝜔2 + 𝜔𝑌
2| then 𝑃2

+𝑃2
− < 0 so √𝑃2

+𝑃2
− is imaginary. Parametric 

excitation does not increase Q factor. 

For the linear system, self-induced parametric excitation is not present so 𝜆1 = 𝜆2 = 0 and 

case ii always applies. The denominator of (3.33) increases due to the linear frequency split, 

thus attenuating the sense amplitude. When electrostatic nonlinearities are accounted for, 

𝑃2
+𝑃2

− > 0 when the parametric excitation amplitude is sufficiently large (case i). In this case, 

the parametric excitation acts to reduce the energy dissipation rate, lengthening the time 

constant. When 𝑃2
+𝑃2

−  approaches 𝑃1
2 , the time constant approaches infinite and the 

denominator of (3.33) approaches zero, significantly amplifying the sense response. This is 

highly desirable for scale factor enhancement of the device. However, the case where 𝑃1
2 =

𝑃2
+𝑃2

− results in parametric resonance, which elicits an unstable sense response where the 

vibration amplitude grows without bound. As will be shown, the product 𝑃2
+𝑃2

− has important 

effects when considering nonlinear electrostatic effects. 

3.5. Effects of electrostatic nonlinearity on rate sensing 

performance 

This section investigates the influence of electrostatic nonlinearity on rate sensing 

performance and compares the resulting rate sense performance to the linear and ideal device 

case considered in Chapter 2. The effects of the electrostatic nonlinearities are considered for 

both trimmed and untrimmed devices. The rate sensing performance is quantified in terms of 

the rate sensitivity, bias rate and quadrature error for those cases based on the sense response 

investigated in Section 3.4.2. The theoretical results of the investigation are then validated 

against FE results.  

For a conventionally-operated, linear and ideal device, the sense amplitude is proportional to 

angular rate (see (1.11)), and a fixed phase relationship also exists between the drive and sense 

modes. Results for this case can be obtained from (3.33) by neglecting all amplitude-

dependent terms in �̿� , 𝑃1 , 𝑃2
±  and setting 𝜔 = 𝜔𝑌  and 𝑓∆ = 0  due to the absence of 

imperfections. This gives the following standard sense response used as the rate output: 

[
𝑦0

𝑙 cos𝜙𝑦𝑥,0
𝑙

𝑦0
𝑙 sin𝜙𝑦𝑥,0

𝑙 ] = [𝑆0
𝑙Ω
0

] 
(3.41) 

where the ‘0’ notation in the subscript represents the ideal/trimmed case (Δ𝜔 = 0) while the 

‘l’ superscript represents the linear case. 𝑆0
𝑙  is the rate sensitivity, given by 𝑆0

𝑙 = −𝐺Ω𝑥 (2Γ)⁄ . 

Based on this standard sense response, the in/antiphase sense amplitude component 
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𝑦 cos𝜙𝑦𝑥,0
𝑙  is conventionally used as the rate output, while the quadrature sense amplitude 

component 𝑦0
𝑙 sin𝜙𝑦𝑥,0

𝑙  is regarded as the quadrature output dictating the quadrature error. It 

is clear that rate sensitivity (scale factor) is conventionally enhanced by minimising the 

damping Γ or operating at large amplitude drive responses. However, in practice devices are 

imperfect and operating at large drive amplitudes introduces electrostatic nonlinearities. 

In what follows, studies are performed to investigate the impact of imperfection and 

nonlinearity on rate measuring performance of devices. This is achieved by investigating rate 

measuring performance for: i) an imperfect ring device operating at small drive amplitude; ii) 

a perfect ring device operating at large drive amplitude; and iii) an imperfect ring device 

operating at large drive amplitude. In each case results are obtained for the rate sensitivity, 

bias rate and quadrature error and comparisons are made with the linear, ideal sense response 

in (3.41). 

3.5.1. Imperfect ring, small drive amplitude operation 

Small drive amplitudes relative to the gap guarantee near linear sense response, thus retaining 

the conditions relating to the standard sense response in (3.41) but with Δ𝜔 ≠ 0  when 

imperfection effects are considered. In this case, the linear drive and sense frequencies 

approximate the case when the drive amplitude ratio 𝑥 𝑔0⁄  approaches zero, and are given by: 

[
𝜔𝑋

𝑙 2

𝜔𝑌
𝑙 2] = lim

𝑥→0
[
𝜔𝑋

2

𝜔𝑌
2] = [

𝜔0
2(1 + Δ𝜔 cos4Θ𝜔)

𝜔0
2(1 − Δ𝜔 cos4Θ𝜔)

] 
(3.42) 

The imperfection results in splitting of the drive and sense frequencies about the ideal, linear 

resonant frequency 𝜔0 depending on the alignment of the modes. The frequency split is only 

nullified in the specific case when Θ𝜔 = (2𝑖 − 1)𝜋 8⁄ , where 𝑖 is an integer. This applies 

when the drive and sense modes align at circumferential positions of mean stiffness on the 

ring, causing the modal stiffnesses to coincide. Fixing the excitation frequency at the drive 

frequency such that 𝜔 = 𝜔𝑋
𝑙 , substituting 𝜔𝑌  for 𝜔𝑌

𝑙  and setting 𝜆1 = 𝜆2 = 0  in (3.34) - 

(3.37), and substituting the resulting expressions for �̿� , �̅�𝒀 , 𝑃1 , 𝑃2  in (3.33) gives the 

following sense amplitude components for the linear, imperfect case: 

[
𝑦𝑙 cos𝜙𝑦𝑥

𝑙

𝑦𝑙 sin𝜙𝑦𝑥
𝑙 ] = −

�̿�𝒍 [
𝑓Δ
𝑓Ω

]

4Γ2𝜔𝑋
𝑙 2

+ (�̅�𝑙2)
2 

(3.43) 

where 
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�̿�𝒍 = [
�̅�𝑙2 2Γ𝜔𝑋

𝑙

2Γ𝜔𝑋
𝑙 −�̅�𝑙2

] 
(3.44) 

�̅�𝑙2 = 2𝜔0
2Δ𝜔 cos4Θ𝜔 (3.45) 

�̅�𝑙2 = 𝜔𝑋
𝑙 2

− 𝜔𝑌
𝑙 2

 is a linear frequency detuning parameter, describing the imperfection-

induced linear frequency split between the drive and sense modes. �̅�𝑙2 is identical to the 

frequency detuning without back coupling (휂 = 0) in (2.63). The diagonal elements in �̿�𝒍 are 

not nullified in the presence of linear frequency detuning, resulting in a cross-contribution of 

the Coriolis and linear elastic coupling forces to both sense amplitude components. As such, 

unlike 𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙  for the ideal case, the sense amplitude component 𝑦𝑙 cos𝜙𝑦𝑥
𝑙  is not solely 

dictated by the Coriolis force, thus persisting when angular rate is absent due to the linear 

elastic coupling force amplitude 𝑓Δ . Also, the orthogonal sense amplitude component 

𝑦𝑙 sin𝜙𝑦𝑥
𝑙  does not nullify, thus deviating the relative phase 𝜙𝑦𝑥

𝑙  away from 0 or ±𝜋. These 

effects deviate the sense response from what is expected of a linear, ideal device, thus 

significantly impacting the resulting rate sensing performance of the device. In this manner, 

the rate output 𝑦𝑙 cos𝜙𝑦𝑥
𝑙  is no longer proportional to the angular rate and a quadrature output 

𝑦𝑙 sin𝜙𝑦𝑥
𝑙  is introduced.  

3.5.1.1. Rate sensitivity (scale factor) and bias rate 

To demonstrate rate-sensing, it is convenient to express the in/antiphase sense amplitude 

component as a linear relationship with angular rate, yielding: 

𝑦𝑙 cos𝜙𝑦𝑥
𝑙 = 𝑆𝑙(Ω + Ω𝑧

𝑙 ) (3.46) 

where  

|𝑆𝑙| =
𝐺Ω𝑥𝜔𝑋

𝑙 2
(2Γ)

4Γ2𝜔𝑋
𝑙 2

+ (�̅�𝑙2)
2 

(3.47) 

Ω𝑧
𝑙 = −

�̅�𝑙2𝜔0
2Δ𝜔 sin 4Θ𝜔

𝐺Ω𝜔𝑋
𝑙 2

(2Γ)
 

(3.48) 

𝑆𝑙 and Ω𝑧
𝑙  are the rate sensitivity and the bias rate (zero-rate error) respectively. The zero-rate 

error results in a systematic offset of the rate output, causing the device to respond in the 

absence of an applied angular rate, i.e. when Ω = 0. From (3.48), the zero-rate error only 
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manifests when both a linear frequency detuning and a drive misalignment are present. As for 

the sensitivity, the linear frequency detuning always acts to reduce |𝑆𝑙| compared to the linear, 

ideal form |𝑆0
𝑙 |, indicating an off-resonant operation of the sense mode. As shown from the 

denominator of (3.47), the presence of the linear frequency detuning �̅�𝑙  also limits the 

attainable amplification of the sense response when practical attempts at minimising the 

damping Γ  are pursued. 

3.5.1.2. Quadrature error 

The quadrature error can be expressed in terms of the relative phase to quantify the phase error 

due to the presence of the imperfection-induced quadrature sense amplitude component 

𝑦𝑙 sin𝜙𝑦𝑥
𝑙 . The relative phase for this linear case is directly derived from (3.43), giving: 

𝜙𝑦𝑥
𝑙 = tan−1

(2Γ𝜔𝑋
𝑙 )𝑓Δ − (�̅�𝑙2)𝑓Ω

(�̅�𝑙2)𝑓Δ + (2Γ𝜔𝑋
𝑙 )𝑓Ω

 

(3.49) 

The relative phase quantifies the ratio of the quadrature sense amplitude component to the 

in/antiphase sense amplitude component. It is highly sensitive to the imperfection parameter 

Δ𝜔 . When the imperfection is small such that |�̅�𝑙2 (2Γ𝜔𝑋
𝑙 )⁄ | ≪ 1 , the relative phase 

approximates the ratio between the linear elastic coupling and Coriolis forces such that 𝜙𝑦𝑥
𝑙 ≈

𝑓Δ 𝑓Ω⁄ . For example, for a lightly damped system such that 𝜔𝑋
𝑙 Γ⁄  = 240, a small frequency 

split of 400 𝑚𝐻𝑧 (Δ𝜔 = 4𝑒 − 5) within an ideal resonant frequency of 𝜔0 = 10 𝑘𝐻𝑧 results 

in a force amplitude ratio of 𝑓Δ 𝑓Ω⁄ = −0.6  when the drive force is slightly misaligned 

(Θ𝜔 = 1°) and an angular rate of Ω = 10°/s is applied. This force amplitude ratio amplifies 

further for larger misalignments, showing that even minimal imperfections can potentially 

elicit a linear elastic coupling force greater than the useful Coriolis force, thus generating 

significant phase errors.  

Since high rate-measuring performance of CVG’s depends on device outputs which are very 

sensitive to the applied angular rate with minimal zero-rate and quadrature errors, the 

aforementioned effects clearly degrade the performance of these devices in all cases. 

3.5.2. Perfect ring, large drive amplitude operation 

At larger drive amplitude operations, nonlinear electrostatic forces are dominant. As discussed 

in Section 3.4, the dominant effects of the electrostatic nonlinearities are the amplitude 

dependence of the drive and sense frequencies, as well as the presence of self-induced 

parametric excitation. 
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When electrostatic nonlinearities are considered in the absence of imperfections, the nonlinear 

sense response (3.33) with Δ𝜔 = 0 yields: 

[
𝑦0 cos𝜙𝑦𝑥,0

𝑦0 sin𝜙𝑦𝑥,0
] = −

[
2Γ𝜔𝑋,0

−�̅�0
2 + 𝜆1,𝑟

] 𝑓Ω

𝑃1,𝑟,0
2 − 𝑃2,𝑟,0

+ 𝑃2,𝑟,0
−

 

(3.50) 

where 

𝜔𝑋,0
2 = 𝜔0

2 +
3

4
𝛾0

𝑥2

𝑔0
2
 

(3.51) 

�̅�0
2 =

1

4
(3𝛾0 − 2𝜅0)

𝑥2

𝑔0
2
 

(3.52) 

𝜆1,𝑟 = 𝜅0

𝑥2

4𝑔0
2
 

(3.53) 

and 𝑃1,𝑟,0, 𝑃2,𝑟,0
+  and 𝑃2,𝑟,0

−  in the denominator are given by: 

𝑃1,𝑟,0 = 2Γ𝜔𝑋,0 (3.54) 

𝑃2,𝑟,0
± = 𝜆1,𝑟 ∓ �̅�0

2 = [𝜅0 ± (2𝜅0 − 3𝛾0)]
𝑥2

4𝑔0
2
 

(3.55) 

The linear elastic coupling force is absent, i.e. 𝑓Δ = 0  causing both the in/antiphase and 

quadrature sense amplitude components to amplify linearly with Coriolis force amplitude 𝑓Ω. 

As such, both sense amplitude components nullify in the absence of angular rate and energy 

transfer from the drive to the sense mode.  

𝜔𝑋,0 is the effective drive frequency for the perfect, nonlinear case, while �̅�0
2 is the nonlinear 

frequency detuning. In contrast to �̅�𝑙2  for the linear, imperfect case, �̅�0
2  is amplitude-

dependent because the drive and sense frequencies soften at different rates. Comparing (3.22) 

and (3.23) shows that |𝜅0| ≤ |𝛾0| at all amplitudes, indicating that the drive mode softens 

more significantly than the sense mode and  �̅�0
2 < 0. 

From the general nonlinear sense response in (3.33) to the perfect case in (3.50), the parametric 

excitation amplitude 𝜆2 has been discarded as it has been noted to be negligible. 𝜆1,𝑟 dictates 

the self-induced parametric excitation amplitude when the drive mode is operated at resonance, 

i.e. 𝜆1,𝑟 = 𝜆1  when 𝜙𝑥 = −𝜋 2⁄ . The self-induced parametric excitation amplitude can be 
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adjusted by varying the chosen drive amplitude. However, since 𝜆2 is negligible, the phase of 

the self-induced parametric excitation is fixed relative to the drive vibration phase when the 

basic electrostatic configuration is implemented.  

𝑃2,𝑟,0
+  and 𝑃2,𝑟,0

−  are the dominant parameters describing the effects of the electrostatic 

nonlinearities on both sense amplitude components. The frequency detuning �̅�0
2 interacts 

with the self-induced parametric excitation 𝜆1,𝑟 and significantly modifies the resulting sense 

response. Substituting (3.52) and (3.53) into (3.55) shows that the presence of 𝑃2,𝑟,0
+  and 𝑃2,𝑟,0

−  

is a purely nonlinear effect, as these are amplitude-dependent parameters stemming from the 

unequal softening rates of the drive and sense frequencies, and the presence of the self-induced 

parametric excitation, determined by 𝛾0  and 𝜅0 . The product 𝑃2,𝑟,0
+ 𝑃2,𝑟,0

−  depends on the 

relationship between 𝛾0 and 𝜅0. On the other hand, 𝑃1,𝑟,0 is directly associated to the linear 

damping coefficient Γ. The interaction between 𝑃1,𝑟,0, 𝑃2,𝑟,0
+  and 𝑃2,𝑟,0

−  dictates the resulting 

sense response amplitude components.  

In what follows, the effects of the linear damping (affecting 𝑃1,𝑟,0), drive amplitude and the 

relationship between 𝛾0 and 𝜅0 (affecting 𝑃2,𝑟,0
+  and 𝑃2,𝑟,0

− ) will be investigated to understand 

how they influence the quadrature response and the rate sensitivity. 

3.5.2.1. Rate sensitivity (scale factor) 

The influence of electrostatic nonlinearity on rate sensitivity is considered in this section. In a 

manner similar to the imperfect, linear case in Section 3.5.1, it is convenient to express the 

rate output in (3.50) as being proportional to the angular rate as follows: 

𝑦0 cos𝜙𝑦𝑥,0 = 𝑆0Ω (3.56) 

where the magnitude of the rate sensitivity 𝑆0 is given by: 

|𝑆0| =
𝐺Ω𝑥𝜔𝑋,0(𝑃1,0)

𝑃1,𝑟,0
2 − 𝑃2,𝑟,0

+ 𝑃2,𝑟,0
−

 
(3.57) 

Rate sensitivity (3.57) is enhanced by self-induced parametric excitation when 𝑃2,𝑟,0
+ 𝑃2,𝑟,0

−  > 0 

and Q factor enhancement and parametric resonance potentially occur as 𝑃1,𝑟,0
2 − 𝑃2,𝑟,0

+ 𝑃2,𝑟,0
−  

approaches zero. To understand (3.57) it necessary to investigate the values that product 

𝑃2,𝑟,0
+ 𝑃2,𝑟,0

−  can take. Noting that 𝜅0, 𝛾0 < 0  and |𝜅0| ≤ |𝛾0| it can be shown quite easily using 

(3.55) that 𝑃2,𝑟,0
− < 0 and 𝑃2,𝑟,0

+ ≥ 0. The condition 𝑃2,𝑟,0
+ = 0 applies when the electrode is 

continuous around the ring such that 𝜅0 = 𝛾0. This results in the coincidence of the frequency 

detuning and the self-induced parametric excitation amplitude, i.e. 𝜆1,𝑟 = �̅�0
2 and can be 
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regarded as a nonlinear frequency balancing condition, requiring balancing the inertial force 

amplitude against those of the restoring and parametric excitation forces on the sense mode.  

Comparing 𝑆0  against 𝑆0
𝑙  in (3.41), 𝑆0 = 𝑆0

𝑙  when 𝑃2,𝑟,0
+ = 0 . This condition is key to 

retaining a trimmed sense response at larger drive amplitudes where electrostatic 

nonlinearities are dominant. For all other cases 𝑃2,𝑟,0
+ > 0 and  𝑃2,𝑟,0

+ 𝑃2,𝑟,0
− < 0, reducing the 

rate sensitivity.  Using these results in (3.57) it can be concluded that in general self-induced 

parametric excitation does not result in parametric resonance and rate sensing performance is 

degraded unless 𝜅0 = 𝛾0  and nonlinear frequency balancing occurs.  

Electrode continuity/discontinuity 

In the following, the effects of the implementation of continuous and discontinuous electrode 

configurations on the linearity of the rate sensitivity are compared. This demonstrates the 

importance of the nonlinear frequency balancing condition, dictated by the conditions 𝛾0 =

𝜅0 or 𝛾0 ≠ 𝜅0. In Figure 3.4, the rate sensitivity is plotted against the gap-normalised drive 

amplitude for electrode spans of 𝛿 = 30° and 𝛿 = 45°, corresponding to 𝜅0 𝛾0⁄ = 0.52 and 

𝜅0 𝛾0⁄ = 1  (nonlinear frequency balanced) respectively. The bias voltages 𝑉0  for the 

continuous and discontinuous electrode cases are 2𝑉  and 2.3𝑉  respectively, so that 𝛾0 

remains constant. This avoids the electrostatic nonlinearity from weakening when the 

electrode span is reduced. Fixing 𝛾0 retains the softening rate of the drive mode. The drive 

amplitude is increased by increasing the drive voltage 𝑉𝐴𝐶. The linear damping coefficient Γ 

for these results is 48𝐻𝑧, corresponding to a nominal Q factor of 120 and a critical angular 

rate of Ω𝑐𝑟𝑖𝑡 = 2.16𝑒4 ° 𝑠⁄ . The device considered for these results and the remainder of this 

dissertation has default properties as listed in Table C.1. FE results are also shown, serving to 

validate the theoretical results. The FE results are obtained from a transient analysis of the 

ring radial displacement at steady-state. Details of the procedures taken to obtain the FE results 

are given in Appendix C.  

 

Figure 3.4: Rate sensitivity variation with gap-normalised drive amplitude for the cases of continuous 

(𝜸𝟎 = 𝜿𝟎) and discontinuous electrodes (𝜸𝟎 ≠ 𝜿𝟎) 
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The theoretical results are in good agreement with the FE results and validate the theoretical 

model. It is clear from Figure 3.4 that the continuous electrode case results in nonlinear 

frequency balancing, ensuring that rate sensitivity scales linearly with drive amplitude, similar 

to a linear, ideal device. The discontinuous electrode case does not satisfy nonlinear frequency 

balance and in this case the rate sensitivity deteriorates as the drive amplitude increases. This 

is because of a competing effect between the Coriolis force and the electrostatic nonlinearities. 

While increasing the drive amplitude amplifies the Coriolis force, the electrostatic 

nonlinearities acts in a manner similar to a frequency split to detune the sense response, 

resulting in an off-resonant operation. This potential degradation of the scale factor in an ideal 

device accentuates the importance of satisfying the 𝜅0 = 𝛾0  nonlinear frequency balance 

condition. 

Linear damping 

The merits of varying the linear damping coefficient Γ for rate sensitivity enhancement can be 

investigated using the derivative 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄ , given by: 

𝜕|𝑆0|

𝜕𝑃1,𝑟,0
= −𝐺Ω𝑥𝜔𝑋,0

𝑃1,𝑟,0
2 + 𝑃2,𝑟,0

+ 𝑃2,𝑟,0
−

(𝑃1,𝑟,0
2 − 𝑃2,𝑟,0

+ 𝑃2,𝑟,0
− )

2 
(3.58) 

Recalling that 𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− ≤ 0, the rate sensitivity gain as the linear damping is reduced is 

clearly maximised for the case of nonlinear frequency balance where 𝑃2,𝑟,0
+ 𝑃2,𝑟,0

−  = 0. In this 

case, 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄ < 0 and the rate sensitivity gain is such that |𝑆0| amplifies to infinite as 

the linear damping approaches zero in a manner similar to that of the corresponding linear, 

ideal/trimmed case |𝑆0
𝑙 |.  

Without nonlinear frequency balance, the rate sensitivity reduces compared to the 

corresponding standard ideal, linear operation, but 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄  < 0 is no longer strictly the 

case. As such, linear damping reduction does not generally guarantee rate sensitivity 

enhancement. In principle, the rate sensitivity variation with the linear damping can be 

distinguished into three stages: 

 For higher levels of damping such that |𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− | < 𝑃1,𝑟,0
2, 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄  < 0 so 

rate sensitivity increases as damping is reduced 

 For a critical level of damping such that |𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− | = 𝑃1,𝑟,0
2, 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄  = 0 so 

rate sensitivity is insensitive to damping variations 

 For low damping levels such that |𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− | > 𝑃1,𝑟,0
2, 𝜕|𝑆0| 𝜕𝑃1,𝑟,0⁄  > 0 so rate 

sensitivity degrades when damping is reduced 
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The effect of linear damping reduction on rate sensitivity and its viability for rate sensitivity 

enhancement is shown in Figure 3.5 for electrode spans of 10°, 30° and 45°, corresponding to 

𝜅0 𝛾0⁄  ratios of 0.06, 0.52 and 1 respectively. Similar to Figure 3.4, 𝛾0 is kept constant by 

varying the bias voltage between the different electrode span cases considered. The drive 

voltage is fixed to maintain a drive amplitude of 𝑥 𝑔0⁄ = 0.13. The critical linear damping 

thresholds are also shown for the electrode span cases of 10° and 30°, which are Γ = 43.5𝐻𝑧 

and 29.4𝐻𝑧  respectively, corresponding to Q factors of 136 and 197 in the absence of 

parametric excitation. 

 

Figure 3.5: Effect of linear damping on the rate sensitivity for varying electrode spans 

In Figure 3.5, unless the electrodes are continuous and nonlinear frequency balancing applies, 

the rate sensitivity exhibits the aforementioned variation stages with linear damping reduction. 

For large damping values, the nonlinearities are negligible compared to the damping, i.e. 

|𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− | ≪ 𝑃1,𝑟,0
2, so the mismatch between 𝛾0 and 𝜅0 has negligible effects on the rate 

sensitivity. However, when the linear damping reduces below the thresholds shown, the rate 

sensitivity degrades, in contrast with what is expected of a standard linear, trimmed device. 

This linear damping threshold increases while the maximum rate sensitivity attained decreases 

as the electrode span decreases, indicating the increased susceptibility of a smaller electrode 

span configurations to rate sensitivity degradation in an ideal device. 

3.5.2.2. Quadrature error 

From (3.50), similar to the rate sensitivity discussed previously, the relationship between 𝜅0 

and 𝛾0 dictates the quadrature sense amplitude component 𝑦0 sin𝜙𝑦𝑥,0, hence the quadrature 

error. Substituting (3.52) and (3.53) into (3.50) shows that 𝑦0 sin𝜙𝑦𝑥,0 is proportional to 𝛾0 −

𝜅0, indicating that quadrature response is nullified only when 𝜅0 and 𝛾0 are coincident. In 

other cases, the presence of the amplitude-dependent frequency detuning and the self-induced 



95 

 

parametric excitation generally results in the quadrature sense response component gaining a 

portion of the vibrational energy, in a manner similar to the effects of an imperfection-induced 

frequency split described in Section 3.5.1. 

Electrode continuity/discontinuity 

In what follows, the effects of the relationship between 𝜅0 and 𝛾0 on the quadrature error are 

investigated by manipulating the electrode span. Figure 3.6(a)-(c) shows the effects of cubic 

stiffness ratio 𝜅0 𝛾0⁄  on the variation of the relative sense phase with the gap-normalised drive 

amplitude. Figure 3.6(a) plots the relative phase of the sense (which dictates the quadrature 

error) against both the drive amplitude (gap-normalised) and the ratio between 𝜅0 and 𝛾0. 

Ratio 𝜅0 𝛾0⁄  is varied from 0.015 to 1 by varying the electrode span and bias voltage. A larger 

electrode span yields a higher 𝜅0 𝛾0⁄  ratio, with the minimum value of 0.015 corresponding to 

an electrode span of 𝛿 = 5° while the maximum value of 1 corresponding to a continuous 

electrode arrangement (𝛿 = 45°). 𝛾0 is kept constant by increasing the bias voltage 𝑉0 from 

2𝑉 to 5.2𝑉 as the electrode span decreases from 45° to 5°. Figure 3.6(b) and (c) represent 

specific sections of the result shown in Figure 3.6(a). Figure 3.6(b) shows the variation of the 

sense relative phase with the drive amplitude for the cases of a continuous electrode (𝛿 = 45°) 

and a discontinuous (𝛿 = 30°) electrode distributions, and are based on the same systems used 

for the results in Figure 3.4.  Figure 3.6(c) plots the relative sense phase against the electrode 

span when the drive amplitude is fixed at 8%, 12% and 20% of the electrode gap 𝑔0. 

 
(a) 
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Figure 3.6: (a) Relative sense phase variation with gap-normalised drive amplitude and cubic stiffness 

ratio, with (b) showing the drive amplitude effects for electrode spans of 30° and 45° and (c) showing the 

electrode span effects for drive amplitude ratios of 8%, 12% and 20%  

The result in Figure 3.6(a) show that the relative phase deviates significantly from −180° at 

large drive amplitudes and smaller cubic ratios, thus increasing the quadrature error. The effect 

of increasing the drive amplitude is similar to that of reducing the electrode span to increase 

the difference |𝛾0 − 𝜅0|, as both lead to an increase in the effective modal detuning.  

In Figure 3.6(b), the relative phase deviates at an increasing rate from −180° with drive 

amplitude for the discontinuous electrode case and remains relatively constant for the 

continuous electrode case. In both cases theoretical results are in good agreement with the FE 

results, serving to validate the mathematical model. For the discontinuous case, the relative 

phase variation is approximately quadratic, attributed to the quadratic-ordered amplitude 

dependence of the nonlinear frequency imbalance 𝑃2,𝑟,0
±  in (3.55). The magnitude of this 

nonlinear frequency imbalance increases monotonically with the drive amplitude because of 

the constructive interaction between the nonlinear frequency detuning �̅�0
2 and the parametric 

excitation 𝜆1,𝑟 . These results show the increasing importance of the nonlinear frequency 

balancing condition at larger drive amplitude operations. 

In Figure 3.6(c), the relative phase exhibits greater changes between the constant-amplitude 

results for smaller electrode spans. For example, as the drive amplitude increases from 8% to 

20% of the gap, the relative phase deviates by 46° for an electrode spans of 5°, while deviating 

by only 17° for an electrode span of 40°. This shows that using a larger electrode span 

desensitises the relative phase deviations to drive amplitude variations, corresponding to a 

reduced gradient of the relative phase variation in Figure 3.6(b). This is due to the suppressed 

amplitude dependence of the nonlinear frequency imbalance at larger electrode spans. 

 

(b) (c) 
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Linear damping 

From (3.50), the in/antiphase and quadrature sense response are differently affected by the 

linear damping. The following investigates the linear damping effects on the relative sense 

phase. Figure 3.7 shows how changing the linear damping parameter affects the relative phase 

variation with the drive amplitude. The results shown are for the discontinuous electrode 

configuration considered in Figure 3.6(b) with linear damping parameters Γ = 96, 48 and 

24 𝐻𝑧. In the absence of parametric excitation these values yield energy dissipation rates 

equivalent to Q factors of 60, 120 and 240 respectively. The case corresponding to Γ = 48𝐻𝑧 

is identical to the discontinuous electrode case in Figure 3.6(b) and the data points at 𝛿 = 30° 

in Figure 3.6(c).  

 

Figure 3.7: Effects of linear damping on the relative sense phase variation with gap-normalised drive 

amplitude for an electrode span of 𝜹 = 𝟑𝟎° 

Figure 3.7 shows that the relative sense phase deviates more significantly from −180° as the 

linear damping is reduced. This phase variation depends on the in/antiphase and quadrature 

sense response components, which are affected by linear damping in different ways. This 

behaviour is illustrated in Figure 3.8 when Ω = 250°/𝑠, which shows how the normalised 

sense amplitude components vary with linear damping for the case when the drive amplitude 

𝑥 𝑔0⁄ = 0.13 . The in/antiphase sense amplitude component in Figure 3.8 gives the rate 

sensitivity result in Figure 3.5 for 𝛿 = 30°. 
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Figure 3.8: Effect of linear damping on the absolute values of the sense amplitude components (drive 

amplitude normalised) 

For large linear damping parameter values the quad component is much smaller than the 

in/antiphase component, but as the linear damping reduces it can be seen that both the 

in/antiphase and quadrature sense amplitude components increase, with the quadrature sense 

amplitude amplifying more significantly than the in/antiphase sense amplitude.  At lower 

damping parameter values the in/antiphase and quadrature sense components have similar 

magnitudes which give rise to increased relative phase values.  

It is clear from Figure 3.8 that damping reduction techniques used in conventional linear 

devices can promote the growth of quadrature errors in an ideal or trimmed device operating 

at large, nonlinear drive amplitude operations.  The reason for this is that at lower damping 

levels, the case where |𝑃2,𝑟,0
+ 𝑃2,𝑟,0

− | ≫ 𝑃1,𝑟,0
2 applies. In this case, the nonlinear frequency 

imbalance arising from the mismatch between 𝛾0 and 𝜅0 limits the attainable amplification of 

both sense amplitude components, but only the in/antiphase sense amplitude component 

exhibits attenuation when the linear damping is reduced beyond a threshold, as shown from 

the growth of the in/antiphase component in Figure 3.8, which exhibits a turning point.  

3.5.2.3. Effect of number of electrodes on nonlinear frequency 

balancing condition for perfect rings 

This section has highlighted the importance of achieving nonlinear frequency balancing to 

avoid the rate output degradation and the introduction of quadrature output at large drive 

amplitudes where electrostatic nonlinearities are dominant. For the perfect ring case, the 𝛾0 =

𝜅0  continuous electrodes case guarantees that nonlinear frequency balancing is achieved 

regardless of drive and sense mode softening, maintaining sensor performance. As discussions 

so far have focused on the basic electrostatic configuration having 8 biasing electrodes, it is 
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of practical interest to identify conditions where nonlinear frequency balance is achieved when 

the distribution of electrodes is discontinuous. To identify such cases, the biasing electrostatic 

potential energy in (3.11) is revisited: 

�̅� = −𝑗
휀0𝐵𝑅

2𝑔0
𝑉0

2 [2𝛿 + 𝛿
𝑋2 + 𝑌2

𝑔0
2

+ (
3

4
𝛿 +

sin4𝛿

16
)
𝑋4 + 𝑌4

𝑔0
4

+
3

4
(𝛿 −

sin4𝛿

4
)
2𝑋2𝑌2

𝑔0
4

] 

(3.11) 

�̅� is the total biasing component of the electrostatic potential energy from all 8 electrodes and 

the 4th order terms govern the relationship between 𝜅0 and 𝛾0. Equality condition 𝛾0 = 𝜅0 

requires the 4th order terms to be proportional to (𝑋2 + 𝑌2)2, which requires sin4𝛿 = 0 and 

is achieved when  𝛿 = 𝜋 4⁄ . Conditions also exist to ensure 𝛾0 = 𝜅0 regardless of electrode 

span and these are discussed in Appendix D. It is shown in Appendix D that the condition 

𝛾0 = 𝜅0 is guaranteed if 16 or 32 electrodes are used, so for basic electrode configurations 

using 16 and 32 electrodes nonlinear frequency balancing is satisfied, the rate sensitivity scales 

linearly with drive amplitude and the quadrature response remains dormant in a manner similar 

to the linear, ideal device regardless of the electrode span. 

3.5.2.4. Summary 

In the absence of imperfections, the electrostatic nonlinearities generally do not offer rate 

sensing performance enhancement. Compared to a linear, ideal/trimmed device, the 

electrostatic nonlinearities either retain or degrade rate sensing performance, depending on the 

electrode span. This is because, in an ideal/trimmed device, the electrode span is the dominant 

factor dictating the nonlinear frequency balance. 

Using continuous electrodes guarantees nonlinear frequency balance, enabling the device to 

replicate linear, trimmed output in the presence of electrostatic nonlinearities. Electrode 

discontinuities, on the other hand, introduce quadrature errors and rate sensitivity degradation. 

The extents of these undesirable effects generally amplify as the electrode span reduces. When 

linear damping is minimised in an attempt to improve the performance of discontinuous-

electrode devices, the rate sensitivity can degrade, which is the opposite of what is expected 

of a linear device.  

3.5.3. Effects of electrostatic nonlinearity including imperfection 

This section deals with the rate sensing performance when mechanical imperfections and 

electrostatic nonlinearities are simultaneously considered. Similar to the previously discussed 

cases, the rate sensing performance is investigated in terms of the rate sensitivity, zero-rate 
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error and quadrature error. The conditions required for  rate sensitivity, zero-rate error and 

quadrature error trimming and potential rate sensitivity enhancement are identified.  

3.5.3.1. Rate sensitivity (scale factor) 

Similar to the rate sensitivity considered in Sections 3.5.1 and 3.5.2, the in/antiphase sense 

amplitude component in (3.33) is expressed as: 

𝑦 cos𝜙𝑦𝑥 = 𝑆(Ω + Ω𝑧) (3.59) 

where the magnitude of rate sensitivity 𝑆 is given by: 

|𝑆| =
𝐺Ω𝑥𝜔𝑋(2Γ𝜔𝑋)

𝑃1,𝑟
2 − 𝑃2,𝑟

+ 𝑃2,𝑟
−

 
(3.60) 

The amplitude-dependent drive frequency 𝜔𝑋  is given in (3.29). �̅�2, 𝑃1,𝑟 , 𝑃2,𝑟
+  and 𝑃2,𝑟

−  are 

given by: 

�̅�2 = 𝜔𝑋
2 − 𝜔𝑌

2 = �̅�𝑙2 + �̅�0
2 (3.61) 

𝑃1,𝑟 = 2Γ𝜔𝑋 (3.62) 

𝑃2,𝑟
± = 𝜆1,𝑟 ∓ �̅�2 = 𝜅0

𝑥2

4𝑔0
2
∓ [2𝜔0

2Δ𝜔 cos 4Θ𝜔 +
1

4
(3𝛾0 − 2𝜅0)

𝑥2

𝑔0
2
] 

(3.63) 

The total frequency detuning �̅�2 is a summation of the contributions from the mechanical 

imperfections and electrostatic nonlinear terms, represented by �̅�𝑙2 and �̅�0
2 respectively – 

see (3.45) and (3.52). As discussed in Section 3.5.2, for the imperfection-free case �̅�0
2 < 0.  

This is because the drive mode softens at a higher rate than the sense mode as the drive 

amplitude, and since the drive and sense frequencies are equal at small amplitude the drive 

frequency is always less than the sense frequency. When mechanical imperfection is present 

this behaviour is not guaranteed because the mechanical imperfection can cause the drive 

frequency to be greater than the sense frequency, depending on the location of the imperfection, 

even though the drive mode softens at a higher rate than the sense mode. 

It is clear from (3.60) that 𝑃2,𝑟
+  and 𝑃2,𝑟

−  modify the rate sensitivity and zero rate error and the 

sign of product 𝑃2,𝑟
+ 𝑃2,𝑟

−  in (3.60) is key to understanding the effect, as summarised in Table 

3.1. 
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Table 3.1: Effect of the product 𝑷𝟐,𝒓
+ 𝑷𝟐,𝒓

−  on the nonlinear rate sensitivity relative to the corresponding 

linear, ideal/trimmed form 

Case Effect 

𝑃2,𝑟
+ 𝑃2,𝑟

− < 0 Effective detuning is introduced, rate sensitivity decreases. |𝑆| < |𝑆0
𝑙 |. 

𝑃2,𝑟
+ 𝑃2,𝑟

− = 0 Rate sensitivity approaches linear, ideal/trimmed state. |𝑆| = |𝑆0
𝑙 |. 

𝑃2,𝑟
+ 𝑃2,𝑟

− > 0 Q factor is increased, rate sensitivity is enhanced. |𝑆| > |𝑆0
𝑙 |. 

For 𝑃2,𝑟
+ 𝑃2,𝑟

− < 0, the electrostatic nonlinearities act in a manner similar to a linear frequency 

split or a nonlinear frequency imbalance. The rate sensitivity decreases compared to the linear, 

trimmed case and the attainable rate sensitivity enhancement through conventional linear 

damping reduction methods is limited.  

For 𝑃2,𝑟
+ 𝑃2,𝑟

− = 0 , either 𝑃2,𝑟
− = 0  applies or nonlinear frequency balancing (𝑃2,𝑟

+ = 0)  is 

achieved. The rate sensitivity of a linear, trimmed device is reproduced at larger drive 

amplitudes despite the presence of electrostatic nonlinearities and mechanical imperfections. 

For 𝑃2,𝑟
+ 𝑃2,𝑟

− > 0 the energy dissipation rate is reduced by the parametric excitation, increasing 

the effective Q factor and enhancing the rate sensitivity.  This enhancement was not possible 

for the perfect ring case because the drive frequency is always lower than the sense frequency. 

𝑃2,𝑟
+ 𝑃2,𝑟

− > 0 is satisfied when 𝑃2,𝑟,0
+ < �̅�𝑙2 < −𝑃2,𝑟,0

− , where �̅�𝑙2 is the imperfection-induced 

component of the frequency detuning. The rate sensitivity is maximised when 𝑃2,𝑟
+ 𝑃2,𝑟

−  is 

maximised and this occurs when the total frequency detuning �̅�2 = 0, i.e. 𝜔𝑋 = 𝜔𝑌. As such, 

despite the presence of imperfections, matching the drive and sense frequencies results in an 

increased rate sensitivity beyond the corresponding linear, ideal/trimmed case. To match the 

drive and sense frequencies the different softening rates of the drive and sense modes can be 

used to ensure 𝜔𝑋 = 𝜔𝑌  at a particular drive amplitude. Comparing (3.29) and (3.38) the 

linear stiffening effects for the drive and sense modes differ due to the imperfection-induced 

frequency split, such that: 

 If cos 4Θ𝜔 < 0 the drive frequency is less than the sense frequency (𝜔𝑋
𝑙 2

< 𝜔𝑌
𝑙 2

) 

 If cos 4Θ𝜔 > 0 the drive frequency is greater than the sense frequency (𝜔𝑋
𝑙 2

> 𝜔𝑌
𝑙 2

) 

Noting that the drive mode always softens at a higher rate than the sense mode (|𝜅0| ≤ |𝛾0|) 

the drive and sense frequencies cannot be matched when cos 4Θ𝜔 < 0 .  However, it is 

possible to use drive amplitude to match the frequencies when cos 4Θ𝜔 > 0.   
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Enhanced rate sensitivity can be obtained from the condition 𝑃2,𝑟,0
+ < �̅�𝑙2 < −𝑃2,𝑟,0

−  and it can 

be shown that the range of drive amplitudes with enhanced rate sensitivity is given by: 

√
8𝜔0

2Δ𝜔 cos 4Θ𝜔

𝜅0 − 3𝛾0
<

𝑥

𝑔0
< √

8𝜔0
2Δ𝜔 cos 4Θ𝜔

3(𝜅0 − 𝛾0)
 

(3.64) 

where the lower and upper bounds of this drive amplitude range correspond to the conditions 

𝑃2,𝑟
− = 0  and 𝑃2,𝑟

+ = 0  (nonlinear frequency balancing) respectively, resulting in rate 

sensitivity trimming. When the drive amplitude does not lie within the amplification range the 

rate sensitivity is reduced compared to the linear, ideal/trimmed state. 

Within this amplification range, the nonlinear amplification of the rate sensitivity peaks when 

𝑃2,𝑟
+ 𝑃2,𝑟

−  is maximum. The maximum value of 𝑃2,𝑟
+ 𝑃2,𝑟

−  is: 

𝑃2,𝑟
+ 𝑃2,𝑟

− |𝑚𝑎𝑥 = (2𝜔0
2Δ𝜔 cos 4Θ𝜔)2

𝜅0
2

(𝜅0 − 3𝛾0)(3𝜅0 − 3𝛾0)
 

(3.65) 

The nonlinear amplification of the rate sensitivity is greatest for large electrode spans where 

𝜅0 ≈ 𝛾0 . When the electrodes are continuous, 𝑃2,𝑟
+ 𝑃2,𝑟

− |𝑚𝑎𝑥  approaches large values, along 

with the upper bound of the drive amplitude range in (3.64). 𝑃2,𝑟
+ 𝑃2,𝑟

− |𝑚𝑎𝑥  can also be 

amplified when the magnitude of the coupled-mode stiffness 𝜅0 increases. 

On the other hand, when rate sensitivity trimming is considered, small values of 𝑃2,𝑟
+ 𝑃2,𝑟

− |𝑚𝑎𝑥 

are desirable. When 𝑃2,𝑟
+ 𝑃2,𝑟

− |𝑚𝑎𝑥 ≈ 0 , 𝑆 ≈ 𝑆0
𝑙  across the whole drive amplitude range in 

(3.64), thus improving the robustness of the rate sensitivity trimming. This can be achieved if  

𝜅0 ≈ 0, in which case the lower and upper bounds in (3.64) approach each other. 

Electrode continuity/discontinuity and bias voltage 

From (3.64) and (3.65), the coupled-mode stiffness 𝜅0  is a key parameter dictating the 

amplification range and the maximum attainable nonlinear amplification of the rate sensitivity. 

From (3.23), the bias voltage and electrode span are important parameters dictating the 

magnitude of 𝜅0. In what follows, the effects of the bias voltage and electrode span on the 

conditions required for rate sensitivity trimming and enhancement are demonstrated. 

Figures 3.9(a) and (b) show numerical results obtained for the rate sensitivity as the drive 

amplitude is increased. The rate sensitivity has been normalised with respect to the 

corresponding linear form, 𝑆𝑙 and compared against the linear, ideal/trimmed form 𝑆0
𝑙 . This 

normalisation eliminates the linear amplification effects of the drive amplitude on the rate 
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sensitivity, thus showing only the nonlinear variation of the rate sensitivity. The normalised 

rate sensitivity 𝑆 𝑆𝑙⁄  describes the role of the electrostatic nonlinearities to either amplify or 

diminish the rate sensitivity, depending on whether 𝑆 𝑆𝑙⁄ > 1 or 𝑆 𝑆𝑙⁄ < 1. The range of drive 

amplitudes where the rate sensitivity 𝑆 exceeds the corresponding linear, ideal/trimmed form 

is indicated by the shaded regions on these plots. Figure 3.9(a) presents results for the 

continuous electrode case, while Figure 3.9(b) presents the discontinuous electrode case with 

𝛿 = 38°  ( 𝜅0 𝛾0⁄ = 0.78 ). Similar to Figure 3.6(a)-(c), the strength of the electrostatic 

nonlinearity is retained by keeping 𝛾0 constant between the cases shown in Figure 3.9(a) and 

(b). To achieve this, the bias voltages implemented in the examples shown in Figure 3.9(a) 

and (b) are 2𝑉 and 2.1𝑉 respectively. The imperfect ring considered in both cases possesses 

a 4휃 circumferential variation component of the Young’s modulus in (2.9) of magnitude 𝛿𝐸 =

𝛿𝐸4 = 1.1𝑒 − 3 while the density does not contain a 4휃 variation, i.e. 𝛿𝜌 = 𝛿𝜌4 = 0 in (2.5). 

This corresponds to Δ𝜔 = 8𝑒 − 4 and a frequency split of 9 𝐻𝑧. The linear elastic coupling 

force is generated by introducing a drive misalignment of Θ𝜔 = 1°. The imperfection results 

in a 3.6% decrease of the linear rate sensitivity. FE results are also shown in Figure 3.9(a) and 

(b), serving to validate the theoretical results. 

 

Figure 3.9: Variation of the rate sensitivity normalised to the corresponding linear form against the drive 

amplitude for the cases of (a) 𝜹 = 𝟒𝟓° and (b) 𝜹 = 𝟑𝟖° 

The FE results are in good agreement with the theoretical results, confirming the nonlinear 

dependence of the rate sensitivity on the drive amplitude and the possibility of rate sensitivity 

amplification in the imperfect ring.  

In Figure 3.9(a), 𝑆 𝑆𝑙⁄ > 1  for all drive amplitudes. This shows that the electrostatic 

nonlinearities always amplify the rate sensitivity beyond its linear form when a continuous 

electrode distribution is implemented. Also, the drive amplitude corresponding to the upper 

bound of the rate sensitivity amplification range is not present as the rate sensitivity exhibits 

a monotonically increasing trend as the drive amplitude increases. The required drive 
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amplitude for rate sensitivity trimming in this case is 𝑥 𝑔0⁄ = 6.9%, and when this is exceeded, 

the total frequency detuning and self-induced parametric excitation interact such that the Q 

factor is increasingly enhanced as the electrostatic nonlinearity gains significance. This result 

highlights how large drive amplitude operations amplifies rate sensitivity for the continuous 

electrode case, enabling the imperfect device to perform at significantly higher rate 

sensitivities than what is expected of a conventional linear, ideal/trimmed device. However, 

the rate sensitivity is increasingly sensitive to drive amplitude variations as the drive amplitude 

increases, as indicated by the increasing gradient of the nonlinear rate sensitivity in Figure 

3.9(a). As such, in practical operation it would be important to keep the drive amplitude 

constant to ensure a steady rate output and scale factor. While the monotonically increasing 

trend of the rate sensitivity appears desirable, it is important to note that in practice, higher 

order electrostatic nonlinearities play an increasingly important role as the drive amplitude 

increases and the range of feasible drive amplitude in operation is limited to avoid pull-in. 

Figure 3.9(b) shows that electrode discontinuity significantly reduces the drive amplitude 

range of rate sensitivity amplification. With an electrode span reduction of 16%, the range of 

drive amplitudes enabling rate sensitivity amplification diminishes compared to the 

continuous electrode case (Figure 3.9(a)) and amplification only occurs for drive amplitudes 

in the range 6.6-12% of the gap. Within this range, the rate sensitivity amplification is 

maximum when the drive amplitude is 9.7% of the gap. The maximum rate sensitivity 

amplification depends on the self-induced parametric excitation amplitude and is relatively 

insensitive to drive amplitude fluctuations, resulting in a more stable rate output and scale 

factor.  This is based on the gradient of the normalised rate sensitivity variation at this peak 

point. This drive amplitude insensitivity of the normalised rate sensitivity is also evident at 

small drive amplitudes, which is directly indicative of a linear behaviour. When increasing the 

drive amplitude from this linear regime, the electrostatic nonlinearities act to reduce the 

effective frequency split, thus increasing the rate sensitivity beyond the corresponding linear, 

imperfect form until it is nullified and rate sensitivity trimming is achieved at 𝑥 𝑔0⁄ = 6.6%. 

Beyond 𝑥 𝑔0⁄ = 12%, the electrostatic nonlinearities increase the effective frequency split, 

thus reducing the normalised rate sensitivity up to a drive amplitude of 𝑥 𝑔0⁄ = 13.8%, at 

which point the effective frequency split is identical to the imperfection-induced frequency 

split. Increasing the drive amplitude beyond this point significantly degrades the rate 

sensitivity compared to the corresponding linear case. As such, in contrast with the continuous 

electrode case, large drive amplitudes are not generally desirable for rate sensitivity 

enhancement. 

Figure 3.10(a) shows the effects of the bias voltage and the electrode span on the peak 

normalised rate sensitivity 𝑆 𝑆𝑙⁄ . The bias voltage is used to manipulate the Duffing 
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coefficient 𝛾0. For each of the iso-𝛾0 plots, the bias voltage is increased when the electrode 

span decreases to keep 𝛾0  constant, thus retaining the strength of the electrostatic 

nonlinearities and drive mode softening rate. On the other hand, 𝜅0 diminishes to small values 

at small electrode spans and approaches 𝛾0 at larger electrode spans. For the cases of 𝛾0 =

−132,−85  and −48 𝑘𝐻𝑧2 , the corresponding bias voltage ranges are 2.5 −  6.5𝑉, 2 −

 5.2𝑉  and 1.5 –  3.9𝑉  respectively. The peak normalised rate sensitivity is obtained by 

calculating 𝑆 𝑆𝑙⁄  across a range of drive amplitudes in a manner similar to the results in Figure 

3.9(a) and (b), up to 𝑥 𝑔0⁄ = 0.2 and identifying the stationary point within this range. The 

imperfections considered in all 3 cases are such that the drive misalignment angle Θ𝜔 and the 

elastic modulus variation magnitude 𝛿𝐸 are identical to the systems considered in Figure 3.9(a) 

and (b). 

Figure 3.10(b) plots the normalised rate sensitivity against drive amplitude for the 𝛿 = 38° 

case. The bias voltages for the cases 𝛾0 = −132,−85 and −48 𝑘𝐻𝑧2 are 2.6, 2.1 and 1.6 𝑉 

respectively and the 𝛾0 = −85 𝑘𝐻𝑧2 plot is the same as the example shown in Figure 3.9(b). 

The dot markers show the rate sensitivity trimming points and the shaded regions between 

these points indicate the range of drive amplitudes yielding enhanced rate sensitivity beyond 

the linear, ideal/trimmed form as 𝑃2,𝑟
+ 𝑃2,𝑟

−  > 0. 

Figure 3.10(c) plots the normalised rate sensitivity against drive amplitude with electrode 

spans of 𝛿 = 10°, 38°  and 40°  corresponding to the plot for 𝛾0 = −85 𝑘𝐻𝑧2  in Figure 

3.10(a), as indicated by the markers along this plot. Similar to Figure 3.10(b), the dot markers 

and shaded region indicate the drive amplitude range where 𝑆 > 𝑆0
𝑙 . 

 



106 

 

 

Figure 3.10: Effects of modal Duffing coefficient on (a) the variation of the maximum normalised rate 

sensitivity 𝑺 𝑺𝒍⁄  with the electrode span and (b) the corresponding normalised rate sensitivity variation 

with the drive amplitude for 𝜹 = 𝟑𝟖° 

In Figure 3.10(a), the maximum normalised rate sensitivity approaches large values when 𝛿 

approaches 45°. This is because the upper bound of the drive amplitude range yielding rate 

sensitivity amplification diverges to large values when the electrodes approach continuity and 

the rate sensitivity increases monotonically with drive amplitude without exhibiting a turning 

point, as confirmed in Figure 3.9(a).  

As the electrode span is reduced to small values such that |𝜅0 𝛾0⁄ | ≪ 1 , the maximum 

normalised rate sensitivity asymptotically approaches a fixed value. For the example in Figure 

3.10(a), the maximum normalised rate sensitivities approach 1.036, 1.03 and 1.026 for cases 

𝛾0 = −132,−85 and −48 𝑘𝐻𝑧2 respectively, which are the calculated values of 𝑆0
𝑙 𝑆𝑙⁄ . This 

indicates that the maximum normalised rate sensitivity approaches that of the linear, 

ideal/trimmed form. This is also shown in Figure 3.10(c), where 𝑆 𝑆𝑙⁄  peaks at decreasing 

values as the electrode span decreases. The result for 𝛿 = 10° shows that 𝑆 𝑆𝑙⁄  peaks at 

approximately 𝑆0
𝑙 𝑆𝑙⁄ , offering negligible amplification beyond its linear, trimmed form. The 

two drive amplitudes at the amplification boundaries also approach each other, allowing the 

linear, trimmed rate sensitivity to be achieved across a range of drive amplitudes. This is the 

case when setting 𝜅0 at very small values in (3.64). The self-induced parametric excitation is 

responsible for the nonlinear amplification of the rate sensitivity within this amplification 

range, which is diminished at small electrode spans due to the negligible coupled-mode 

stiffness 𝜅0. Based on this result, smaller electrode spans provide rate sensitivity trimming of 

higher robustness due to the wider range of drive amplitudes yielding linear, trimmed rate 

sensitivities. 

In Figure 3.10(b) the rate sensitivity trimming points indicated by the dot markers show that 

the same level of imperfection results in an increasing degradation of linear rate sensitivity as 

|𝛾0| increases due to the increased bias voltage. The linear rate sensitivity reductions are 4.6%, 

3.5% and 3% for 𝛾0 = −132,−85 and −48 𝑘𝐻𝑧2  respectively. This is because the drive 

frequency reduces when the bias voltage increases, thus decreasing the modal velocity and the 
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resulting damping force amplitude. This increases the susceptibility of the rate sensitivity to 

the degradation effects of the frequency split. When the bias voltage is increased to increase 

|𝛾0|, the electrostatic nonlinearity strengthens, allowing trimming to be achieved at lower 

drive amplitudes. The decreasing drive amplitude at the 𝑆 𝑆𝑙⁄  peaks and the increased bias 

voltage |𝜅0|  have competing effects on the resulting self-induced parametric excitation 

amplitude dictating the maximum attainable 𝑆 𝑆𝑙⁄ . However, the maximum normalised rate 

sensitivity exhibits a net increase as |𝛾0| increases, indicating that the increased coupled mode 

stiffness |𝜅0| has a more significant impact on the rate sensitivity amplification. This result 

indicates the desirability of a having a larger bias voltage for achieving amplification of the 

rate sensitivity. On the other hand, when |𝛾0| is reduced, the rate sensitivity amplification 

reduces and the drive amplitude range defining this amplification is wider, indicating that a 

smaller bias voltage is better suited for rate sensitivity trimming purposes. 

3.5.3.2. Bias rate 

In this section the zero-rate (bias) error arising from interactions between the nonlinear 

electrostatic forces and the linear elastic coupling force is investigated. Similar to the linear, 

imperfect case investigated in Section 3.5.1, the bias error is introduced as a rate-equivalent 

systematic offset of the sensor output, as described in (3.59), where Ω𝑧 is the rate-equivalent 

bias given by: 

Ω𝑧 = −(
𝑃2,𝑟

−

2Γ𝜔𝑋
)
𝜔0

2Δ𝜔 sin 4Θ𝜔

𝐺Ω𝜔𝑋
 

(3.66) 

Ω𝑧 varies nonlinearly with drive amplitude due to term 𝑃2,𝑟
− , where the self-induced parametric 

excitation amplitude 𝜆1,𝑟  interacts with the total detuning �̅�2  to dictate the resulting bias 

output. This is in direct contrast with the corresponding linear form, Ω𝑧
𝑙  in (3.48), which is 

independent of drive amplitude.  

𝑃2,𝑟
− = 0 is the condition required for bias rate trimming, which is also one of the conditions 

for rate sensitivity trimming as indicated by the lower bound of the amplification range in 

(3.64). Inspection of (3.45), (3.55) and (3.63) shows that 𝑃2,𝑟
−  is related to its ideal/trimmed 

form 𝑃2,𝑟,0
−  by the relationship 𝑃2,𝑟

− = �̅�𝑙2 + 𝑃2,𝑟,0
− . As such, the possibility for bias rate 

trimming is dictated by the drive misalignment. Noting from (3.55) that 𝑃2,𝑟,0
− < 0 because 

|𝜅0| < |3𝛾0|, the following interpretation apply: 

 cos 4Θ𝜔 > 0, �̅�𝑙2 > 0: The electrostatic nonlinearities and linear detuning interact 

destructively. 
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 cos 4Θ𝜔 = 0, �̅�𝑙2 = 0 : The electrostatic nonlinearities introduce a bias rate 

independent of the linear frequency split. 

 cos 4Θ𝜔 < 0, �̅�𝑙2 < 0 : The electrostatic nonlinearities and the linear detuning 

interact constructively. 

The latter two cases are undesirable as these represent the cases where the electrostatic 

nonlinearities amplify the magnitude of the bias rate. Of these two cases, the case where 

cos 4Θ𝜔 = 0 leads to larger bias rates because the drive misalignment is such that the linear 

elastic coupling force is maximised, i.e. |sin4Θ𝜔| = 1. The first case represents the only 

possibility for nonlinear bias rate trimming. 

Electrode continuity/discontinuity 

The following investigates the effects of the electrode span on the bias rate nonlinearity, where 

this nonlinearity is a key feature for bias rate trimming. Figure 3.11 plots the nonlinear bias 

rate trimming for the systems considered in Figure 3.9(a) and (b). FE results are also shown 

for the corresponding cases. 

 

Figure 3.11: Effect of drive amplitude variation on bias rate for continuous and discontinuous electrodes 

Figure 3.11 shows that with a drive misalignment of Θ𝜔 = 1°, nonlinear bias rate trimming is 

possible for both continuous and discontinuous electrode configurations. The FE results are 

in good agreement with the theoretical results across the range of drive amplitudes considered, 

particularly near the nonlinear bias rate trimming points. The bias rate trimming points are 

𝑥 𝑔0⁄ = 6.9% and 6.6% for the results corresponding to electrode spans of 𝛿 = 45° and 𝛿 =

38° respectively, which are also the lower boundaries of the rate sensitivity amplification 

range shown in Figure 3.9(a) and (b) for the corresponding electrode spans. 

The electrostatic nonlinearities are negligible for lower drive amplitudes, so the nonlinear bias 

rate Ω𝑧  approaches its linear, trimmed form Ω𝑧
𝑙 = −27°/𝑠, dictated predominantly by the 

imperfection-induced linear frequency split. As the drive amplitude increases, the electrostatic 
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nonlinearities counteract the linear frequency split, reducing the bias rate until the nonlinear 

bias rate trimming point. When the drive amplitude increases beyond this point, the 

electrostatic nonlinearities dominate, reversing the bias rate polarity. The bias rate variation is 

nonlinear, exhibiting in an increased amplitude sensitivity at higher drive amplitudes. As such, 

larger drive amplitude operations necessitate a stable drive amplitude to ensure a steady rate 

output. 

The bias rate varies less nonlinearly when larger electrode spans are implemented. As such, 

the nonlinear bias rate trimming occurs at a larger drive amplitude for the results in Figure 

3.11 corresponding to the continuous electrode configuration. This is desirable as achieving 

nonlinear bias rate trimming at a larger drive amplitude also results in a higher, trimmed rate 

sensitivity. 

Bias voltage 

The bias rate nonlinearity is also associated with the strength of the electrostatic nonlinearity, 

dictated by the bias voltage. The following investigates these nonlinear effects of the bias 

voltage. Figure 3.12 shows the effects of the bias voltage on bias rate variation with the drive 

amplitude. The plots correspond to the systems giving the rate sensitivity results in Figure 

3.10(b). The result for the case of 𝑉0 = 2.1𝑉 is identical to the result for the electrode span of 

𝛿 = 38° in Figure 3.11.  

 

Figure 3.12: Effect of bias voltage on the nonlinear bias rate variation against the gap-normalised drive 

amplitude  

In Figure 3.12, as observed for low drive amplitudes, the same level of imperfection results in 

increasing linear bias rate magnitudes when the bias voltage is increased. This is because a 
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larger bias voltage reduces the drive frequency 𝜔𝑋, which reduces the modal velocity and 

Coriolis force. This can be confirmed from (3.66). 

Increasing the bias voltage increases the magnitude of the Duffing coefficient 𝛾0 , thus 

strengthening the electrostatic nonlinearity and the amplitude sensitivity of the bias rate. As 

such, similar to the rate sensitivity results in Figure 3.10(b), larger bias voltages are 

undesirable for nonlinear bias rate trimming due to the increased drive amplitude precision 

required to minimise bias rate.  

3.5.3.3. Quadrature error 

Similar to the perfect ring case in Section 3.5.2, the presence of a quadrature output is indicated 

by a deviation of the relative sense phase from 𝜙𝑦𝑥 = ±𝜋 (Ω > 0) or 𝜙𝑦𝑥 = 0 (Ω < 0). In 

the presence of imperfections, the relative sense phase is derived from (3.33), giving: 

𝜙𝑦𝑥 = tan−1
𝑃1,𝑟𝑓Δ + 𝑃2,𝑟

+ 𝑓Ω
𝑃2,𝑟

− 𝑓Δ + 𝑃1,𝑟𝑓Ω
 

(3.67) 

Unlike the perfect ring case where the linear elastic coupling force 𝑓Δ is absent, the nonlinear 

frequency balancing condition (𝑃2,𝑟
+ = 0) does not generally guarantee a nullified quadrature 

error. In this case, nullifying the quadrature error imposes a condition for the linear elastic 

coupling force, 𝑓Δ = 𝑓Δ,𝜙=𝑛𝜋 where 𝑓Δ,𝜙=𝑛𝜋 is given by: 

𝑓Δ,𝜙=𝑛𝜋 = −
𝑃2,𝑟

+

𝑃1,𝑟
𝑓Ω = −(𝜆1,𝑟 − �̅�2)

𝐺ΩΩ𝑥

2Γ
 

(3.68) 

where the bracketed terms represent the nonlinear frequency imbalance 𝑃2,𝑟
+ . 

The condition in (3.68) can be satisfied in several ways: 

 Ensuring nonlinear frequency balancing by nullifying the parametric excitation 

(𝜆1,𝑟 = 0) and matching the drive and sense frequencies (�̅�2 = 0), while aligning 

the drive electrodes (𝑓Δ = 0) 

 Ensuring nonlinear frequency balancing such that 𝜆1,𝑟 = �̅�2  without specifically 

𝜆1,𝑟 = 0 and �̅�2 = 0, while aligning the drive electrodes (𝑓Δ = 0) 

 𝑓Δ,𝜙=𝑛𝜋 ∝ Ω without nonlinear frequency balancing condition. 

where the latter case requires the linear elastic coupling force amplitude to vary proportionally 

with the angular rate, which cannot be realised with the present basic electrostatic 

configuration. 
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In the absence of linear elastic coupling force (one of the former two cases), the effects of the 

nonlinear frequency imbalance on the relative phase is shown Figure 3.13(b), where the 

relative phase are plotted for drive amplitudes corresponding to the markers in the rate 

sensitivity plot in Figure 3.13(a). In a manner similar to Figure 3.10(b) and (c), the shaded 

region defines the amplification range where 𝑆 > 𝑆0
𝑙 . The results in Figure 3.13(a) and (b) 

correspond to the same system for the results in Figure 3.9(b), but without drive misalignment 

(Θ𝜔 = 0°). 

 

Figure 3.13: (a) Variation of the rate sensitivity normalised to the corresponding linear form against the 

drive amplitude and (b) the corresponding relative phase against the angular rate for 𝒙 𝒈𝟎⁄ =
𝟎. 𝟏, 𝟎. 𝟏𝟐, 𝟎. 𝟏𝟒  

In Figure 3.13(a), the dot markers are selected at various separations from the upper bound of 

the amplification range where nonlinear frequency balancing occurs. The magnitude of the 

nonlinear frequency imbalance is the smallest at 𝑥 𝑔0⁄ = 0.1, yielding relative phase values 

at 𝜙𝑦𝑥 ≈ 0°  for Ω < 0  and 𝜙𝑦𝑥 ≈ −180°  for Ω > 0  in Figure 3.13(b). Larger deviations 

from the nonlinear frequency balancing point in Figure 3.13(a) increases the relative phase 

error due to the presence of the quadrature sense response. The drive amplitudes 𝑥 𝑔0⁄ =

10%, 12%  and 14%   yield nonlinear frequency imbalances of 𝑃2,𝑟
+ = −6.2𝑒4, 5.3  and 

7.3𝑒4 𝐻𝑧2 respectively, and the corresponding relative phase errors are −3.3°, 2.8𝑒 − 4° and 

3.9° respectively. 

From the results shown in Figure 3.13(b), nonlinear trimming can be simultaneously achieved 

for bias rate, rate sensitivity and quadrature error with the implementation of the basic 

electrostatic configuration at increased drive amplitudes, but only with drive alignment and 

nonlinear frequency balancing.  
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3.5.3.4. Summary 

In the presence of imperfections, drive amplitude conditions exist where rate sensitivity 

trimming and enhancements can be achieved. However, these conditions are generally 

incompatible. The cubic coupled-mode stiffness dictated by the bias voltage and electrode 

span is a key parameter dictating the attainable rate sensitivity enhancement or the robustness 

of the trimming. Larger bias voltages and electrode spans promote rate sensitivity 

enhancement while smaller bias voltages and electrode spans are more desirable for robust 

rate sensitivity trimming. 

Nonlinear trimming can be simultaneously achieved for the bias rate and rate sensitivity. 

However, this cannot be simultaneously achieved with quadrature error trimming unless there 

are no drive misalignments, in which case the nonlinear frequency balancing condition must 

be satisfied. This signifies the main limitation of the basic electrostatic configuration to 

replicate the output of a linear, ideal/trimmed device. 

3.6. Summary and conclusions 

A mathematical model has been developed to investigate the influence of electrostatic 

nonlinearity on the rate measuring performance of a capacitive ring based CVG having 8 

evenly spaced electrodes inside and outside the ring resonator, where each electrode is 

subjected to bias and drive voltage components. The electrostatic nonlinearities stem from the 

nonlinear capacitance-displacement relationship for each electrode and it was found that the 

primary nonlinear effects arise from the bias voltage applied to all electrodes which generate 

cubic-ordered restoring forces. These forces are characterised by single and coupled-mode 

restoring forces and cause the drive and sense modes to exhibit the following non-linear 

behaviour as the drive amplitudes increases: 

 amplitude-dependency of the drive and sense mode resonant frequencies 

 the presence of self-induced parametric excitation 

The influence of electrostatic nonlinearity on the rate measuring performance was investigated 

by investigating the rate sensitivity, bias rate and quadrature error as the drive amplitude 

increases and the main findings were:  

 sense response does not scale linearly with drive amplitude.    

 direct rate sensitivity cannot be enhanced without inducing quadrature and bias errors. 

The sense response deviates from its expected standard behaviour, with or without 

ring imperfections. 
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The nonlinear frequency balancing condition has been established as a nonlinear extension of 

the mode-matched condition in linear operation, involving a balance between drive frequency 

against the sense frequency and self-induced parametric excitation amplitude. The nonlinear 

frequency balancing condition, in conjunction with drive force alignment, are the key 

requirements to achieve nonlinear trimming of the sense response at increased drive 

amplitudes. When these conditions are not satisfied, the sense response cannot generally be 

simultaneously trimmed for the rate sensitivity, bias rate and quadrature error, which are 

important characteristics to replicate the expected rate output of a linear, trimmed device. Due 

to the drive amplitude dependency of the drive frequency, sense frequency and self-induced 

parametric excitation amplitude, specific conditions exist to achieve nonlinear trimming in the 

absence or presence of imperfections. 

For the ideal/trimmed device, the absence of imperfections eliminates the possibility of drive 

misalignment so only the nonlinear frequency balancing condition is required to achieve 

trimmed sense response. It is found that implementing a continuous electrode distribution 

guarantees nonlinear frequency balancing. Smaller electrode spans introduce nonlinear 

frequency imbalances, which result in the introduction of quadrature errors and rate sensitivity 

reductions. Nonlinear frequency balancing can be achieved regardless of electrode 

discontinuities if 16 or 32 electrodes are implemented. 

In the presence of imperfections, nonlinear frequency balancing is no longer guaranteed with 

electrode continuity, and is only achieved at specific drive amplitudes. When this is not 

achieved, it is found that the resulting nonlinear frequency imbalance in the presence of 

imperfections enables the possibility of rate sensitivity enhancement beyond that expected of 

the corresponding linear, ideal/trimmed device. This enhancement is more significant for 

larger electrode spans, but not without the introduction of quadrature errors and bias rates. On 

the other hand, minimising this enhancement improves the robustness of the trimming, in 

which case smaller electrode spans are desirable.  

The restricted possibilities where nonlinear trimming can be achieved (with or without 

imperfections) necessitate strategic approaches to replicate linear, ideal/trimmed rate output. 

This is addressed in the next chapter.    
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4. LINEARISING AND TRIMMING SENSOR 

OUTPUT WITH ELECTROSTATIC 

NONLINEARITIES 

4.1. Introduction 

Chapter 3 details the effects of electrostatic nonlinearities on the rate sensing performance of 

CVG’s as implemented under conventional operating conditions, where the electrostatic 

configuration is composed of biasing and driving mechanisms. It was shown that the rate 

output (dictating rate sensitivity and bias rate) and quadrature output (dictating quadrature 

error) deviate from what is expected of a standard, linear device as the drive amplitude 

increases. Under certain circumstances the rate sensitivity can be enhanced but this generally 

cannot be achieved without the introduction of zero rate bias and quadrature errors. These 

effects ultimately degrade device performance under large amplitude operation. 

This chapter addresses the effects of these electrostatic nonlinearities, with the aim of 

developing practical methods to suppress these undesirable effects at increased drive 

amplitudes. The methods investigated are based on manipulating the electrostatic 

configuration by modifying the voltages applied to each electrode. This can be achieved in 

two stages: 

1) Nullify the net parametric excitation. 

2) Trim the device and nullify the quadrature output. 

Section 4.2 re-considers the sense response from Chapter 3 and considers the dominant 

parameters responsible for sensor output nonlinearity. Section 4.3 investigates the potential to 

negate the self-induced parametric excitation by considering a modification of the basic 

electrostatic configuration. The advantage of negating the self-induced parametric excitation 

is demonstrated by comparing the bias rate, rate sensitivity and quadrature error for devices 

where the self-induced parametric excitation has been nullified against that corresponding to 

the basic electrostatic configuration. The conditions that lead to frequency matching are also 

considered as well as the effect of using different electrode spans. Section 4.4 investigates the 

potential to manipulate the net modal electrostatic force, and aims to develop a general 

framework to tailor the electrostatic force to nullify the self-induced parametric excitation and 

simultaneously trim the frequencies at a selected drive amplitude and eliminate the quadrature 

output1. In Section 4.5, the results in Section 4.3 are addressed to replicate the rate and 

                                                      
1 This framework is also used in Chapter 5 for parametric amplification of the rate output. 



115 

 

quadrature outputs of a standard device which is both linear and trimmed when the net 

parametric excitation is nullified. For this purpose, the electrostatic configuration developed 

in Section 4.3 is modified further, using the framework proposed in Section 4.4. For the chosen 

electrostatic configuration, the equations of motions for the drive and sense modes are derived 

and used to determine the resulting sense mode dynamics. Conditions are then determined 

where the chosen voltage components can be used to nullify the net parametric excitation, 

linearise and trim the rate output, and nullify the quadrature output. To evaluate the 

effectiveness of the linearisation and trimming achieved, comparisons of the rate and 

quadrature outputs are made with those without addressing the force imbalances, as in the case 

investigated in Section 4.3. The potential of using the chosen electrostatic configuration for 

closed-loop rate sensing is also investigated, and conditions are identified where the closed-

loop rate sensing performance are improved. The versatility of the implementation of the 

chosen electrostatic configuration to linearise and trim the sense response without negating 

the self-induced parametric excitation is also discussed by considering cases with and without 

nonlinear frequency balancing. 

4.2. Sense response for the basic electrostatic configuration 

In Section 3.4.2, the sense equation in (3.32) takes on the following general form: 

�̈� + 2Γ�̇� + [𝜔𝑌
2 + 2𝜆1,𝑟 cos2(𝜔𝑡 + 𝜙𝑥)]𝑌

= 𝑓Ω sin(𝜔𝑡 + 𝜙𝑥) + 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) 

(4.1) 

where the averaged drive response is 𝑋 = 𝑥 cos(𝜔𝑡 + 𝜙𝑥)  and 𝜙𝑥 = −𝜋 2⁄  so the drive 

mode is excited at resonance. 

In this equation the coefficient associated with the sense displacement 𝑌 has been expressed 

to highlight the constant and double-frequency components. The constant component 𝜔𝑌
2 

characterises the amplitude-dependent effective sense frequency while the amplitude of the 

double-frequency component, 2𝜆1,𝑟  is the self-induced parametric excitation amplitude 

characterising the stiffness modulation of the sense mode. This parametric excitation is phase-

locked at twice the drive displacement phase. The rate output (𝑦 cos𝜙𝑦𝑥) and quadrature 

output (𝑦 sin𝜙𝑦𝑥) as described in (3.33) - (3.40) with 𝜆2 neglected are given by: 

[
𝑦 cos𝜙𝑦𝑥

𝑦 sin𝜙𝑦𝑥
] = −

�̿��̅�𝒀

𝑃1,𝑟
2 − 𝑃2,𝑟

+ 𝑃2,𝑟
−

= −
�̿��̅�𝒀

(2Γ𝜔𝑋)2 + (−𝜔𝑋
2 + 𝜔𝑌

2)2 − 𝜆1,𝑟
2 

(4.2) 

where 



116 

 

�̿� = [
𝜔𝑋

2 − 𝜔𝑌
2 + 𝜆1,𝑟 2Γ𝜔𝑋

2Γ𝜔𝑋 −𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟
] 

(4.3) 

�̅�𝒀 = [
𝑓Δ
𝑓Ω

] 
(4.4) 

In these equations 𝜔𝑋, 𝜔𝑌 and 𝜆1,𝑟 are given in (3.29), (3.38) and (3.53) respectively, while 

the dissipation rate parameters 𝑃1,𝑟, 𝑃2,𝑟
±  are defined in (3.62) and (3.63) respectively.  

For the linear, imperfect case, the rate output (𝑦𝑙 cos𝜙𝑦𝑥
𝑙 ) and quadrature output (𝑦𝑙 sin𝜙𝑦𝑥

𝑙 ) 

are (see (3.43)): 

[
𝑦𝑙 cos𝜙𝑦𝑥

𝑙

𝑦𝑙 sin𝜙𝑦𝑥
𝑙 ] = −

[
𝜔𝑋

𝑙 2
− 𝜔𝑌

𝑙 2
2Γ𝜔𝑋

𝑙

2Γ𝜔𝑋
𝑙 −𝜔𝑋

𝑙 2
+ 𝜔𝑌

𝑙 2] [
𝑓Δ
𝑓Ω

]

4Γ2𝜔𝑋
𝑙 2

+ (𝜔𝑋
𝑙 2

− 𝜔𝑌
𝑙 2

)
2  

(4.5) 

(4.2) and (4.5) can be used to compare the sense response components for the nonlinear and 

linear cases. For large amplitude responses it can be shown that: 

 If 𝜆1,𝑟 = 0, 𝜔𝑋 ≠ 𝜔𝑌, 𝑓Δ ≠ 0, the rate and quadrature outputs contain errors. 

 If 𝜆1,𝑟 = 0, 𝜔𝑋 = 𝜔𝑌, 𝑓Δ ≠ 0, the rate output is the same as a linear trimmed device,  

but the quadrature output is non-zero.  

 If 𝜆1,𝑟 = 0, 𝜔𝑋 = 𝜔𝑌  and 𝑓Δ = 0, the rate output is the same as a linear trimmed 

device and the quadrature output is zero. 

These conditions determine the different stages to achieve linearisation and trimming of the 

sense response, where 𝜆1,𝑟 = 0, 𝜔𝑋 = 𝜔𝑌 and 𝑓Δ = 0 ensures the nonlinear sense amplitude 

components in (4.2) approach 𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙  and 𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙  in (3.41). The different stages are: 

i) nullify the self-induced parametric excitation; ii) frequency match the drive and sense modes; 

iii) eliminate the drive/sense mode linear elastic coupling. The next section investigates how 

nullifying the net parametric excitation can be achieved, and the conditions for possible 

frequency matching.  

4.3. Nullifying net parametric excitation 

To nullify the net parametric excitation, the net electrostatic forces are changed by 

manipulating the voltages applied to the electrodes. Feasible modifications of the basic 

electrostatic configuration described in Section 3.3.1 are investigated to achieve this aim. The 

resulting equations of motion for the updated electrostatic configuration are developed, based 
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on which the drive and sense dynamics are similarly analysed to identify the voltage 

conditions where the self-induced parametric excitation is negated. The resulting rate output 

is then assessed in terms of the rate sensitivity and bias rate, and compared against that 

resulting from the basic electrostatic configuration. The conditions where the drive and sense 

frequencies are matched, thus trimming the rate output, are also investigated. 

4.3.1. General description of voltage distribution 

𝑉±[휃0(𝑖)] in (3.6) describes how the voltages are applied to each electrode for the basic 

electrostatic configuration. This electrostatic configuration can be modified by manipulating 

the voltages applied to each electrode. Before pursuing such modifications, it is useful to 

express the voltage squared distribution for the 𝑖 ’th electrode for the basic electrostatic 

configuration as: 

𝑉±[휃0(𝑖)]
2 = 𝜉0

± + 𝜉2
± cos 2휃0(𝑖) (4.6) 

The coefficient 𝜉0
± represents the component of voltage squared applied to all electrodes while 

𝜉2
±  represents the cos2휃0(𝑖)  variation component of the voltage squared necessary to 

generate the ‘push-pull’ drive force to excite the drive mode into vibration. By comparing (4.6) 

against (D-1), 𝜉0
± = 𝑉0

2 and 𝜉2
± = ±2𝑉0𝑉𝐴𝐶 cos𝜔𝑡, where terms involving 𝑉𝐴𝐶

2 have been 

neglected because the drive voltage is small in practice. 𝜉0
±  and 𝜉2

±  contribute to the 

electrostatic potential energy components �̅� and 𝑈𝐴𝐶  in (3.11) and (3.12) and contribute to the 

modal restoring force and the harmonic drive force respectively. Using (4.6) it can be shown 

that �̅� and 𝑈𝐴𝐶  in (3.11) and (3.12) can be reformulated as: 

�̅� = −𝑗
휀0𝐵𝑅

4𝑔0

(𝜉0
+ + 𝜉0

−) [2𝛿 + 𝛿
𝑋2 + 𝑌2

𝑔0
2

+ (
3

4
𝛿 +

sin 4𝛿

16
)
𝑋4 + 𝑌4

𝑔0
4

+
3

4
(𝛿 −

sin 4𝛿

4
)
2𝑋2𝑌2

𝑔0
4

] 

(4.7) 

𝑈𝐴𝐶 = −
𝑗

4

휀0𝐵𝑅 sin𝛿

𝑔0

(𝜉2
+ − 𝜉2

−) [
𝑋

𝑔0
+ (

5 + cos 2𝛿

6
)

𝑋3

𝑔0
3
+ sin2 𝛿

𝑋𝑌2

𝑔0
3
] 

(4.8) 

These equations indicate how 𝜉0
± and 𝜉2

± in (4.6) can be used to manipulate the form of �̅� and 

𝑈𝐴𝐶  and the resulting equations of motion when these electrostatic potential energy 

components are incorporated into Lagrange’s equations. 

In what follows, the forms for 𝜉0
±  and 𝜉2

±  are determined and used to select the voltage 

distribution 𝑉±[휃0(𝑖)] necessary to negate the self-induced parametric excitation. This is 
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achieved by considering the elastic and drive components of the electrostatic potential energy, 

and then determining conditions to select the required voltage distribution. 

Elastic component of electrostatic potential energy 

The most direct approach to negate the self-induced parametric excitation is to apply a separate 

parametric excitation, acting in direct antiphase with the self-induced parametric excitation. 

For the basic electrostatic configuration presented in Section 3.3.1 where the existing 

parametric excitation is self-induced, the double-frequency variation of the stiffness term in 

(4.1) is the result of the harmonic drive displacement due to the cubic coupled-mode restoring 

force when the bias voltage 𝑉0 is constant. This double-frequency stiffness variation can be 

achieved by directly modulating either the linear or cubic-order stiffnesses by manipulating 

the voltages. This is in contrast to self-induced parametric excitation where the double-

frequency variation arises via the harmonic drive displacement instead of the voltages. 

The electrostatic contributions to the linear and cubic stiffnesses contribute to the sense 

equation in (3.14) via the coefficients associated with the linear and cubic terms, i.e. 

𝜔0
2, 𝛾0, 𝜅0, which arise from the electrostatic potential energy component �̅� in (3.11) or (4.7). 

For the basic electrostatic configuration (see Section 3.3.1), 𝜉0
± = 𝑉0

2 and 𝜉0
+ + 𝜉0

− are time 

invariant and for this case, the linear modal stiffness is constant. However if the bias voltage 

𝑉0  is replaced by a harmonic voltage, coefficients 𝜉0
±  can be modified so that 𝜉0

+ + 𝜉0
− 

appearing in (4.7) includes a double-frequency variation and the desired stiffness variation 

can be achieved. In essence a separate parametric excitation is generated by varying the 

voltage, and the targeted form of 𝜉0
+ + 𝜉0

− for this purpose is: 

𝜉0
+ + 𝜉0

− = (𝜉0,0
+ + 𝜉0,0

− ) + (𝜉0,2
+ + 𝜉0,2

− ) cos 2(𝜔𝑡 + 𝜙𝑥) (4.9) 

Coefficients 𝜉0,0
±  and 𝜉0,2

±  distinguish the constant and 2𝜔  components, where the second 

subscript number determines the integral multiple of the frequency 𝜔 variation component.  

Provided that 𝜉0,2
+ + 𝜉0,2

− ≠ 0, these coefficients generate the necessary 2𝜔 variation of the 

linear stiffness, which must be designed to interact destructively with the self-induced 

parametric excitation. To ensure an antiphase relationship between the generated parametric 

excitation and the self-induced parametric excitation it is necessary to ensure 𝜉0,2
+ + 𝜉0,2

− < 0. 

Driving component of electrostatic potential energy 

To generate a harmonic drive force at frequency 𝜔 to excite the drive mode, it is necessary to 

apply squared voltages to the inner and outer electrodes such that 𝜉2
+ − 𝜉2

− has the following 

targeted form: 
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𝜉2
+ − 𝜉2

− = (𝜉2,1
+ − 𝜉2,1

− ) cos𝜔𝑡 (4.10) 

Noting that 𝜉2
± = ±2𝑉0𝑉𝐴𝐶 cos𝜔𝑡 for the basic electrostatic configuration, the targeted form 

is achieved easily in this case. However, as will be shown, introducing a harmonic variation 

in 𝜉0
± to satisfy (4.9) can lead to other harmonic terms appearing in (4.10), leading to multi-

frequency drive mode excitation. This outcome must be avoided to minimise any potential 

excitation of other modes of vibration. Also it is worth noting that if 𝜉2
+ = 𝜉2

−, the electrostatic 

drive forces arising from the inner and outer electrode sets cancel each other out, generating 

zero net drive force amplitude, and so should be avoided. 

Voltage selection 

The chosen voltage distribution must nullify the self-induced parametric excitation and excite 

the drive mode by satisfying both (4.9) and (4.10) respectively.  The simplest approach to 

satisfy (4.9) and (4.10) is to use the same voltages described in (3.6), involving only spatially 

constant and cos2휃0(𝑖) variation components, but also vary the spatially constant component 

with time. For this purpose, the voltage applied to the i’th electrode is reformulated as: 

𝑉±[휃0(𝑖)] = 𝑎𝑉,0
± 𝑉0 + 𝑎𝑉,𝜆

± 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) + 𝑎𝑉,𝐴𝐶
± 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) (4.11) 

where 𝑎𝑉,0
± , 𝑎𝑉,𝜆

± , 𝑎𝐴𝐶,0
±  are constants that dictate the relative magnitudes of the voltage 

components between the inner and outer electrode sets, and need to be determined. 

In contrast to (3.6), an additional harmonic voltage 𝑎𝑉,𝜆
± 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) is applied to all 

electrodes to generate the necessary double-frequency parametric excitation to satisfy (4.9). 

This is a parametric pumping voltage component applied in quadrature with the drive 

displacement. Squaring (4.11) and comparing with (4.6), it can be shown that coefficients 𝜉0
± 

and 𝜉2
± are given by: 

𝜉0
± = 𝑎𝑉,0

± 2
𝑉0

2 +
𝑎𝑉,𝜆

± 2
𝑉𝜆

2

2
+ 2𝑎𝑉,0

± 𝑎𝑉,𝜆
± 𝑉0𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥)

−
𝑎𝑉,𝜆

± 2
𝑉𝜆

2

2
cos2(𝜔𝑡 + 𝜙𝑥) 

(4.12) 

𝜉2
± = 𝑎𝑉,𝐴𝐶

± [𝑎𝑉,𝜆
± 𝑉𝜆𝑉𝐴𝐶 sin𝜙𝑥 + 2𝑎𝑉,0

± 𝑉0𝑉𝐴𝐶 cos𝜔𝑡 + 𝑎𝑉,𝜆
± 𝑉𝜆𝑉𝐴𝐶 sin(2𝜔𝑡 + 𝜙𝑥)] (4.13) 

where terms proportional to 𝑉𝐴𝐶
2  have been discarded because they are assumed to be 

negligible. 
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Recalling from (4.7) that 𝜉0
± govern the linear and nonlinear modal elastic properties and 𝜉2

± 

contributes to the drive force it can be deduced that: 

 𝜉0
± has a constant component and harmonic components at frequencies 𝜔 and 2𝜔. 

The 2𝜔  variation ensures the required parametric excitation is generated and 

contributes to 𝜉0,2
+ + 𝜉0,2

−  in (4.9). However the 𝜔 variation leads to an undesirable 

isochronous parametric resonance which must be nullified when designing the 

electrode configuration. 

 𝜉2
± contains a constant component and harmonic components at frequencies 𝜔 and 

2𝜔 . The 𝜔  variation generates the desired drive force component but the 2𝜔 

component must be nullified to avoid undesirable excitation. 

Using (4.12) and (4.13) and comparing with targeted forms (4.9) and (4.10), the conditions 

needed to obtain 𝑎𝑉,0
± , 𝑎𝑉,𝜆

± , 𝑎𝐴𝐶,0
±  can be determined. Table 4.1 summarises the conditions to 

be satisfied. 

Table 4.1: Description of the conditions for the constants 𝐚𝐕,𝟎
± , 𝐚𝐕,𝛌

± , 𝐚𝐕,𝐀𝐂
±  in the voltage distribution in 

(4.11) 

Condition Aim 

𝑎𝑉,𝜆
+ 𝑎𝑉,𝐴𝐶

+ = 𝑎𝑉,𝜆
− 𝑎𝑉,𝐴𝐶

−  Eliminate constant and 2𝜔 variation components in 𝜉2
+ − 𝜉2

− 

𝑎𝑉,0
+ 𝑎𝑉,𝐴𝐶

+ ≠ 𝑎𝑉,0
− 𝑎𝑉,𝐴𝐶

−  Ensure 𝜉2
+ − 𝜉2

− contains a harmonic component at frequency 

𝜔, i.e. 𝜉2,1
+ − 𝜉2,1

− ≠ 0 in (4.10) 

𝑎𝑉,0
+ 𝑎𝑉,𝜆

+ = −𝑎𝑉,0
− 𝑎𝑉,𝜆

−  Eliminate 𝜔 variation component in 𝜉0
+ + 𝜉0

− 

𝑎𝑉,𝜆
± ≠ 0 Ensure 𝜉0

+ + 𝜉0
− contains a double-frequency component, i.e. 

𝜉0,2
+ + 𝜉0,2

− ≠ 0 in (4.9) 

Table 4.1 can be used to determine a suitable voltage distribution and hence voltages applied 

to the 𝑖‘th electrode based on (4.11). These voltages can then be used to derive the electrostatic 

potential energy and equations of motion. This is considered in the next section. 

4.3.2. Modal dynamics 

In this section, equations of motion are developed based on applying a voltage distribution 

that satisfies the conditions in Table 4.1. The equations of motion are then used to investigate 

the sense mode dynamics when the self-induced parametric excitation has been negated. 

Equations of motion 

Based on the constraints outlined in the previous section, the equations of motion are 

developed using Lagrange’s equation similar to that used for the basic electrostatic 
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configuration in (3.14), but with a modification to the electrostatic potential energy 

components �̅� and 𝑈𝐴𝐶 . In what follows, the investigation is based on the specific voltage 

distribution with 𝑎𝑉,0
+ = 𝑎𝑉,𝜆

+ = 𝑎𝑉,𝐴𝐶
+ = 𝑎𝑉,0

− = 1 and 𝑎𝑉,𝐴𝐶
− = 𝑎𝑉,𝜆

− = −1, which satisfy all 

conditions in Table 4.1. Substituting these coefficient values into (4.12) and (4.13) and then 

substituting the resulting expressions for 𝜉0
± and 𝜉2

± into (4.7) and (4.8) yields expressions for 

the electrostatic potential energy components �̅�  and 𝑈𝐴𝐶 . The total electrostatic potential 

energy 𝑈 = �̅� + 𝑈𝐴𝐶  is then substituted into Lagrange’s equations in (3.5a) and (3.5b) to yield 

the resulting electrostatic modal forces represented by the derivatives 𝜕𝑈 𝜕𝑋⁄  and 𝜕𝑈 𝜕𝑌⁄ . 

The other elements of Lagrange’s equations, i.e. the kinetic energy 𝐸𝑘 , bending potential 

energy 𝐸𝑏  and dissipation function 𝐷 , have mechanical origins and are unaffected by the 

modification of the voltage distribution introduced. The resulting equations of motion are: 

�̅̈�𝟏 + 2Γ�̅̇�𝟏 + �̿�𝟏(𝑡)�̅�𝟏 + �̿�𝟑(𝑡)
�̅�𝟑

𝑔0
2

= Ω�̿�𝛀�̅̇�𝟏 + 𝜒 cos𝜔𝑡 ([
1
0
] + �̿�𝝌

�̅�𝟐

𝑔0
2
) 

(4.14) 

Compared to (3.14), additional terms appear in (4.14) due to the parametric pumping voltage 

component 𝑎𝑉,𝜆
± 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) applied to all electrodes. (4.14) is distinguishable from (3.14) 

through the time-varying linear and cubic stiffness matrices �̿�𝟏(𝑡) and �̿�𝟑(𝑡), which replace 

the constant stiffness matrices 𝜔0
2∆̿ and �̿�𝟑 in (3.14) respectively. �̿�𝟏(𝑡) and �̿�𝟑(𝑡) are given 

by: 

�̿�𝟏(𝑡) = [
𝜔0,𝜆

2 0

0 𝜔0,𝜆
2] + 𝜔0

2∆̿∆ + [
𝜔𝜆

2 0

0 𝜔𝜆
2] cos2(𝜔𝑡 + 𝜙𝑥) 

(4.15) 

�̿�𝟑(𝑡) = [
𝛾0,𝜆 0 𝜅0,𝜆 0

0 𝜅0,𝜆 0 𝛾0,𝜆
] − [

𝛾𝜆 0 𝜅𝜆 0
0 𝜅𝜆 0 𝛾𝜆

] cos2(𝜔𝑡 + 𝜙𝑥) 
(4.16) 

where 

𝜔0.𝜆
2 = 𝜔0

2 − 𝜔𝜆
2 (4.17) 

𝛾0,𝜆 = 𝛾0 + 𝛾𝜆 (4.18) 

𝜅0,𝜆 = 𝜅0 + 𝜅𝜆 (4.19) 

and the imperfection matrix ∆̿∆ is: 
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∆̿∆= �̿� − �̿� = [
Δ𝜔 cos4Θ𝜔 Δ𝜔 sin4Θ𝜔

Δ𝜔 sin4Θ𝜔 −Δ𝜔 cos 4Θ𝜔
] 

(4.20) 

𝜔0.𝜆
2 , 𝛾0,𝜆  and 𝜅0,𝜆  are the effective linear resonant frequency, single and coupled-mode 

cubic stiffnesses (modal mass normalised) respectively, arising from contributions associated 

with the bias and parametric pumping voltages. The definitions in (4.17) – (4.19) decompose 

the contributions of these voltages in terms of 𝜔0
2, 𝛾0, 𝜅0 and 𝜔𝜆

2, 𝛾𝜆 and 𝜅𝜆.  𝜔0
2, 𝛾0 and 

𝜅0 are defined in (3.18), (3.22) and (3.23) and are associated with the bias voltage 𝑉0 which 

is present in both the voltage distributions of the basic electrostatic configuration in (3.6) and 

the present scheme in (4.11). 𝜔𝜆
2 , 𝛾𝜆  and 𝜅𝜆  arise purely from the parametric pumping 

voltage amplitude 𝑉𝜆  in (4.11), resulting in constant and double frequency components in 

�̿�𝟏(𝑡) and �̿�𝟑(𝑡), as a result of squaring the second term in (4.11). The constant components 

contribute to 𝜔0.𝜆
2, 𝛾0,𝜆 and 𝜅0,𝜆 in (4.17) – (4.19), while the double frequency components, 

as will be shown, can be used to negate the self-induced parametric excitation. 𝜔𝜆
2, 𝛾𝜆 and 𝜅𝜆 

are given by: 

𝜔𝜆
2 = 𝑗

2휀0𝑉𝜆
2

5𝜌ℎ𝜋𝑔0
3
𝛿 

(4.21) 

𝛾𝜆 = −𝑗
3휀0𝑉𝜆

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 +

sin4𝛿

12
) 

(4.22) 

𝜅𝜆 = −𝑗
3휀0𝑉𝜆

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 −

sin 4𝛿

4
) 

(4.23) 

In the absence of any parametric pumping voltage, 𝜔𝜆
2 = 𝛾𝜆 = 𝜅𝜆 = 0 and the linear and 

cubic stiffness matrices in (4.15) and (4.16) are constant, and the equations of motion in (4.14) 

revert to those of the basic electrostatic configuration in (3.14). 

When nonlinear terms are neglected, i.e. setting �̅�𝟐 = �̅�𝟑 = 0  in (4.14), �̿�𝟏(𝑡)  retains its 

double frequency variation, modulating the linear modal stiffness due to the terms involving 

𝜔𝜆
2 . This indicates that the additional parametric pumping voltage generates a linear 

parametric excitation independent of the drive amplitude, in direct opposition to the self-

induced parametric excitation. This linear parametric excitation is the direct result of 

satisfying (4.9), which is used to counteract the self-induced parametric excitation. 

When 𝑉𝜆
2 in (4.21) – (4.23) is replaced by 2𝑉0

2, (4.21) is identical to the last term defining 

𝜔0
2 in (3.18), while (4.22) and (4.23) are identical to the definitions of 𝛾0 and 𝜅0 in (3.22) 

and (3.23) respectively. This similarity is because, as shown in (4.11), the bias and parametric 



123 

 

pumping voltage components possess identical spatial variations. They are both identically 

applied across all electrodes. As such, 𝛾𝜆 and 𝜅𝜆 exhibit a similar relationship as 𝛾0 and 𝜅0, 

where 𝛾𝜆 and 𝜅𝜆 are only coincident if 𝛿 = 45°. Also, 𝛾𝜆, 𝜅𝜆 < 0 and |𝛾𝜆| ≥ |𝜅𝜆|, indicating 

a stronger effect of the parametric pumping voltage 𝑉𝜆  on the single-mode cubic stiffness 

compared to its effect on the nonlinear modal elastic coupling. The discussion in Section 3.5.2 

on the effect of the number of electrodes 𝑗 also applies. If 16 or 32 electrodes are used, the 

terms involving sin4𝛿 do not appear in (4.22) and (4.23) due to the nature of the electrostatic 

potential energy summation (see the detailed discussion in Appendix D), so 𝛾𝜆 = 𝜅𝜆 

regardless of electrode discontinuities in this case.  The following investigation will highlight 

the significance of 𝛾𝜆 and 𝜅𝜆, and the coincidence of these cubic stiffnesses. 

The equations of motion developed in (4.14) are used to determine the resulting drive and 

sense mode dynamics and used to investigate rate sensing performance. In what follows, the 

assumptions, conditions and analysis implemented are similar to those applied in Sections 

3.4.1 and 3.4.2. 

Drive mode dynamics 

Applying a similar single-degree-or-freedom approximation to the drive equation of motion 

in (4.14) as for (3.24) the drive equation of motion can be approximated as: 

�̈� + 2Γ�̇� + [𝜔0,𝜆
2 + 𝜔0

2Δ𝜔 cos 4Θ𝜔 + 𝜔𝜆
2 cos 2(𝜔𝑡 + 𝜙𝑥)]𝑋

+ [𝛾0,𝜆 − 𝛾𝜆 cos 2(𝜔𝑡 + 𝜙𝑥)]
𝑋3

𝑔0
2

= 𝜒 cos𝜔𝑡 [1 + 𝑐𝑋𝑋

𝑋2

𝑔0
2
] 

(4.24) 

Similarly, applying the averaging procedure on (4.24), the effective drive frequency can be 

derived. The drive frequency is: 

𝜔𝑋
2 = 𝜔𝑋

𝑙 2
− 𝜔𝑋

𝑐 2
− 𝜔𝑋,𝜆

𝑙 2
− 𝜔𝑋,𝜆

𝑐 2
 (4.25) 

where 

[
 
 
 𝜔𝑋

𝑐 2

𝜔𝑋,𝜆
𝑙 2

𝜔𝑋,𝜆
𝑐 2

]
 
 
 
=

[
 
 
 
 
 
 −

3

4
𝛾0

𝑥2

𝑔0
2

𝜔𝜆
2

2

−𝛾𝜆

𝑥2

4𝑔0
2 ]
 
 
 
 
 
 

 

(4.26) 

and 𝜔𝑋
𝑙 2

 is defined in (3.42) in the analysis of the linear, imperfect ring. 
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In (4.25), the effective drive frequency depends on the drive amplitude and the contributing 

voltage components. The frequency components with the ‘𝑙’ and ‘𝑐’ superscripts stem from 

linear and cubic restoring forces respectively. As such the ‘𝑙’ superscript frequency terms is 

amplitude-independent while the ‘𝑐’ superscript frequency has quadratic-ordered amplitude 

dependence.  

Comparing with the drive frequency for the basic electrostatic configuration in (3.29), the 

parametric pumping voltage only contributes to the drive frequency through the frequency 

terms 𝜔𝑋,𝜆
𝑙 2

 and 𝜔𝑋,𝜆
𝑐 2

 in (4.25). As such, the parametric pumping voltage affects both the 

effective linear and cubic drive stiffnesses. Noting that 𝛾0  and 𝛾𝜆  are both negative, the 

parametric pumping voltage amplitude 𝑉𝜆 has an additional softening effect on the drive mode, 

acting in conjunction with the bias voltage to increase the softening rate of the drive mode. 

Sense mode dynamics 

Implementing a similar approximation to the sense equation of motion in (4.14) as for (3.32), 

the approximated sense equation of motion when 𝜔 = 𝜔𝑋 is given by: 

�̈� + 2Γ�̇� + [𝜔0,𝜆
2 − 𝜔0

2Δ𝜔 cos 4Θ𝜔 + (𝜔𝜆
2 − 𝜅𝜆

𝑋2

𝑔0
2) cos 2(𝜔𝑡 + 𝜙𝑥)

+ 𝜅0,𝜆

𝑋2

𝑔0
2
−

𝜒𝑐𝑋𝑌

𝑔0
cos𝜔𝑡

𝑋

𝑔0
] 𝑌 = −𝐺ΩΩ�̇� − 𝜔0

2Δ𝜔 sin 4Θ𝜔 𝑋 

(4.27) 

The averaged sense amplitude components are: 

[
𝑦 cos𝜙𝑦𝑥

𝑦 sin𝜙𝑦𝑥
] = −

�̿��̅�𝒀

𝑃1,𝑟
2 − 𝑃2,𝑟

+ 𝑃2,𝑟
−

 
(4.28) 

where 

�̿� = [
�̅�2 + 𝜆1,𝑟 2Γ𝜔𝑋

2Γ𝜔𝑋 −�̅�2 + 𝜆1,𝑟
] 

(4.29) 

𝑃1,𝑟 = 2Γ𝜔𝑋 (4.30) 

𝑃2,𝑟
± = 𝜆1,𝑟 ∓ �̅�2 (4.31) 

and the force vector �̅�𝒀 is defined in (3.35). �̅�2 and 𝜆1,𝑟 describe the total frequency detuning 

and effective parametric excitation amplitude respectively and are given by: 
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�̅�2 = 𝜔𝑋
2 − 𝜔𝑌

2 = �̅�𝑙2 − �̅�𝑐2
+ �̅�𝜆

𝑙 2
− �̅�𝜆

𝑐2
 (4.32) 

𝜆1,𝑟 = 𝜆1,0 + 𝜆1,𝜆 (4.33) 

where the definitions of 𝜆1,𝑟 and �̅�2 have been modified from those of the basic electrostatic 

configuration in (3.53) and (3.61) due to the presence of the parametric pumping voltage. 

𝜔𝑌 in (4.32) is the effective sense frequency given by: 

𝜔𝑌
2 = 𝜔𝑌

𝑙 2
− 𝜔𝑌

𝑐2
− 𝜔𝑌,𝜆

𝑙 2
− 𝜔𝑌,𝜆

𝑐 2
 (4.34) 

where the contributions from the resulting linear and cubic electrostatic forces arising from 

bias voltage 𝑉0 and parametric pumping voltage amplitude 𝑉𝜆 have been decomposed in a 

manner similar to the drive frequency in (4.25). 𝜔𝑌
𝑙  is defined in (3.42), and the remaining 

contributions to the sense frequency in (4.34) are given by: 

[
 
 
 𝜔𝑌

𝑐2

𝜔𝑌,𝜆
𝑙 2

𝜔𝑌,𝜆
𝑐 2

]
 
 
 
=

[
 
 
 
 
 −𝜅0

𝑥2

2𝑔0
2

𝜔𝜆
2

−𝜅𝜆

𝑥2

4𝑔0
2]
 
 
 
 
 

 

(4.35) 

Using (4.26) and (4.35) the softening behaviour of the drive and sense modes can be obtained 

and compared.  The linear electrostatic forces associated with the parametric pumping voltage 

are such that   𝜔𝑌,𝜆
𝑙 2

= 2𝜔𝑋,𝜆
𝑙 2

. This shows that the linear electrostatic forces generate a 

greater softening effect on the sense mode than the drive mode. This is in contrast to the effects 

of the cubic electrostatic forces which always yield greater softening effects on the drive mode 

than the sense mode because 𝜔𝑋
𝑐 2

> 𝜔𝑌
𝑐2

, in the presence of self-induced parametric 

excitation.  

�̅�2  and 𝜆1,𝑟  in (4.32) and (4.33) have been expressed in a manner to show the explicit 

contribution of the parametric pumping voltage, through the terms involving ‘𝜆’ subscripts in 

a manner similar to (4.15), (4.16), (4.25) and (4.34). The amplitude-independent, 

imperfection-induced frequency detuning �̅�𝑙2  is defined in (3.45). The remaining terms 

defining �̅�2 and 𝜆1,𝑟 are given by: 
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[

�̅�𝑐2

�̅�𝜆
𝑙 2

�̅�𝜆
𝑐2

] =

[
 
 
 
 
 
 (2𝜅0 − 3𝛾0)

𝑥2

4𝑔0
2

𝜔𝜆
2

2

(𝜅𝜆 − 𝛾𝜆)
𝑥2

4𝑔0
2 ]

 
 
 
 
 
 

 

(4.36) 

[
𝜆1,0

𝜆1,𝜆
] =

[
 
 
 
 𝜅0

𝑥2

4𝑔0
2

𝜔𝜆
2

2 ]
 
 
 
 

 

(4.37) 

As can be deduced from (4.32), in all cases, the drive mode exhibits a higher nonlinear 

softening rate than the sense mode because �̅�𝑐2
 and �̅�𝜆

𝑐2
 lower the total frequency detuning. 

In general the cubic restoring force associated with the parametric pumping voltage increases 

the softening rate difference between the drive and sense modes compared to that of the basic 

electrostatic configuration case, i.e. when �̅�𝜆
𝑐2

= 0. However, an exception to this is when a 

continuous electrode distribution is implemented or the number of electrodes is increased to 

16 or 32 such that 𝜅𝜆 = 𝛾𝜆.  In this case �̅�𝜆
𝑐2

= 0 regardless of the presence of the parametric 

pumping voltage, so the relative nonlinear softening rate between the drive and sense modes 

is unaffected by the parametric pumping voltage. However, when considering the contribution 

of the parametric pumping voltage to the linear restoring force,  �̅�𝜆
𝑙 2

 in (4.32) reduces the 

softening difference between the drive and sense modes due to the aforementioned 

relationship 𝜔𝑌,𝜆
𝑙 2

= 2𝜔𝑋,𝜆
𝑙 2

. The opposing effects of the linear and cubic electrostatic forces 

on the effective frequency detuning is important and will be exploited for frequency matching 

purposes later in this chapter.  

The sense amplitude components in (4.28) differ from those of the basic electrostatic 

configuration case in (3.33) due to the slightly reduced drive frequency (compare (4.25) 

against (3.29)) and the presence of the additional terms in the sense equation (4.27) due to the 

parametric pumping voltage. The slight reduction of the drive frequency 𝜔𝑋 slightly lowers 

the amplitudes of the Coriolis and damping forces, thus decreasing 𝑃1,𝑟 and 𝑓Ω. However, the 

dominant effects of the parametric pumping voltage are on the total frequency detuning and 

effective parametric excitation amplitude described in (4.32) and (4.33). As discussed 

previously, the total frequency detuning and effective parametric excitation amplitude are 

generally amplitude-dependent and as such, they are important parameters dictating the 

strength of the nonlinearity of the rate and quadrature outputs. 
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4.3.3. Conditions for nullifying net parametric excitation 

In the following, the sense dynamics in Section 4.3.2 are investigated to understand the impact 

of eliminating the net parametric excitation. The results are then assessed by comparing the 

rate output to that of a linear device, trimmed or untrimmed. 

The effective parametric amplification amplitude described by 𝜆1,𝑟 in (4.33) is the result of 

the interaction between the linear parametric excitation and the amplitude-dependent self-

induced parametric excitation, represented by the terms 𝜆1,𝜆  and 𝜆1,0  respectively, where 

𝜆1,𝜆 > 0 and 𝜆1,0 < 0 and the opposite signs are due to the antiphase relationship between the 

self-induced parametric excitation and the linear parametric excitation. As such, these 

parametric excitation components interact destructively, allowing the net parametric 

excitation amplitude to be nullified. Setting 𝜆1,𝑟 = 0 an expression for the required parametric 

pumping voltage amplitude 𝑉𝜆 to nullify the net parametric excitation can be obtained. Using 

(4.33) and (4.37) the linear resonant frequency contribution 𝜔𝜆
2 after nullification is given by: 

𝜔𝜆
2|𝜆1,𝑟=0 = −𝜅0

𝑥2

2𝑔0
2
 

(4.38) 

Recalling from (4.21) and (3.23) that 𝜔𝜆
2 ∝ 𝑉𝜆

2 and 𝜅0 ∝ 𝑉0
2, the condition for nullifying 

the net parametric excitation in (4.38) imposes a proportional relationship between the 

parametric pumping voltage amplitude 𝑉𝜆, and the bias voltage and drive amplitude.  

In the following, condition (4.38) is used to illustrate the effects of bias voltage and drive 

amplitude on the parametric pumping voltage 𝑉𝜆  required to negate the self-induced 

parametric excitation for a particular device having 8 evenly-spaced electrodes (inner and 

outer) with electrode span 𝛿 = 38°, subjected to a linear damping of Γ = 56.5 𝐻𝑧. Figure 

4.1(a) shows a plot of the required parametric pumping voltage amplitude against the bias 

voltage and drive amplitude. The drive voltage amplitude 𝑉𝐴𝐶 is tuned to yield varying drive 

amplitudes up to 𝑥 𝑔0⁄ = 0.2 . Figure 4.1(b) shows the corresponding variation of the 

parametric pumping voltage amplitude with the drive amplitude for the constant bias voltage 

planes 𝑉0 = 1, 2.1 and 3 𝑉 in Figure 4.1(a).  
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Figure 4.1: (a) Effects of drive amplitude and bias voltage on the required parametric pumping voltage to 

negate the self-induced parametric excitation and (b) the corresponding variation of this parametric 

pumping voltage with drive amplitude for bias voltages 𝑽𝟎 = 𝟏, 𝟐. 𝟏, 𝟑 V 

Figure 4.1(a) shows that increasing the drive amplitude or the bias voltage necessitates a larger 

parametric pumping voltage to nullify the net parametric excitation amplitude. This is because, 

as previously noted, the self-induced parametric excitation is amplitude-dependant. Increasing 

the bias voltage strengthens the electrostatic nonlinearity, hence the nonlinear elastic coupling, 

which has a similar effect of increasing the self-induced parametric excitation amplitude. The 

increase in the self-induced parametric excitation amplitude must be compensated for by 

increasing the linear parametric excitation amplitude to yield a nullified net parametric 

excitation. As shown in Figure 4.1(b), the parametric pumping voltage amplitude required to 

nullify the net parametric excitation is proportional to the drive amplitude, where a larger bias 

voltage increases the amplitude-sensitivity of this voltage amplitude. 

4.3.4. Rate measuring performance with nullified net parametric 

excitation 

When the net parametric excitation is nullified, the sense mode reverts back to being a simple 

harmonic oscillator, driven only directly by the Coriolis and linear elastic coupling forces. To 

assess the resulting performance of the device, it is useful to consider the resulting rate 

sensitivity and bias rate based on the rate and quadrature outputs in (4.28). 

Recalling the rate sensitivity and bias rate for a linear device in (3.47) and (3.48), the rate 

output for a device that is not necessarily trimmed is characterised by: 

 a rate sensitivity which scales proportionally with drive amplitude  

 a bias rate which is invariant with drive amplitude 

For the specific case of a device which is both linear and trimmed, the rate sensitivity is 

proportional to the drive amplitude and the bias rate is zero regardless of drive amplitude.  
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The effects of the parametric pumping voltage on the rate sensitivity and bias rate are 

investigated to identify conditions where the aforementioned linear rate output characteristics 

can be replicated. For this purpose, the in/antiphase sense amplitude component in (4.28) is 

expressed in the form 𝑦 cos𝜙𝑦𝑥 = 𝑆(Ω + Ω𝑧). The rate sensitivity and bias rate when the net 

parametric excitation is nullified (i.e. (4.38) is satisfied) are given respectively by: 

𝑆|𝜆1,𝑟=0 = −𝑥
𝐺Ω𝜔𝑋(2Γ𝜔𝑋)

(2Γ𝜔𝑋)2 + (�̅�2|𝜆1,𝑟=0)
2 

(4.39) 

Ω𝑧|𝜆1,𝑟=0 = −(
�̅�2|𝜆1,𝑟=0

2Γ𝜔𝑋
)

𝜔0
2Δ𝜔 sin 4Θ𝜔

𝐺Ω𝜔𝑋
 

(4.40) 

and the relative phase quantifying the quadrature error is: 

𝜙𝑦𝑥|𝜆1,𝑟=0 = tan−1 [
−(2Γ𝜔𝑋)𝑓Δ + (�̅�2|𝜆1,𝑟=0)𝑓Ω

−(�̅�2|𝜆1,𝑟=0)𝑓Δ − (2Γ𝜔𝑋)𝑓Ω
] 

(4.41) 

 where �̅�2|𝜆1,𝑟=0 and 𝜔𝑋 = 𝜔𝑋|𝜆1,𝑟=0 are the total frequency detuning and drive frequency 

under the condition that the parametric pumping voltage amplitude 𝑉𝜆  has been tuned to 

nullify the net parametric excitation amplitude, i.e. satisfying (4.38). This condition fixes the 

amplitude of the linear electrostatic forces arising from the parametric pumping voltage, and 

so fixes the softening difference between the drive and sense modes. This can be shown by 

substituting (4.38) into 𝜔𝑋,𝜆
𝑙 2

 and 𝜔𝑌,𝜆
𝑙 2

 in (4.26) and (4.35), followed by substituting the 

results into the expressions for the drive and sense frequencies in (4.25) and (4.34). 

Substituting (4.38) into the general frequency detuning �̅�2  in (4.32) gives the following 

expression for the constrained frequency detuning �̅�2|𝜆1,𝑟=0  when the net parametric 

excitation is nullified: 

�̅�2|𝜆1,𝑟=0 = 2𝜔0
2Δ𝜔 cos 4Θ𝜔 − 3(𝜅0 − 𝛾0)

𝑥2

4𝑔0
2
− (𝜅𝜆 − 𝛾𝜆)

𝑥2

4𝑔0
2
 

(4.42) 

The amplitude of the linear parametric excitation arising from the parametric pumping voltage 

has been matched to the self-induced parametric excitation amplitude, so 𝜔𝜆
2  has been 

replaced with the nonlinear term representing the self-induced parametric excitation using 

(4.38). As such, the only amplitude-independent term in (4.42) arises from ring imperfection.  

(4.39) and (4.40) are similar to the corresponding linear, imperfect forms of 𝑆𝑙 and Ω𝑧
𝑙  in (3.47) 

and (3.48), but with amplitude-dependent frequency detuning and drive frequency, �̅�2|𝜆1,𝑟=0 
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and 𝜔𝑋|𝜆1,𝑟=0 respectively. As such, if the frequency detuning �̅�2|𝜆1,𝑟=0 is independent of the 

drive amplitude in a manner similar to �̅�𝑙2, 𝑆|𝜆1,𝑟=0 is approximately proportional to the drive 

amplitude and Ω𝑧|𝜆1,𝑟=0 is desensitised to drive amplitude variations, thus yielding the rate 

output of a linear, imperfect device. In this case, the quadrature output is also linearised. Due 

to the linearity of both the rate and quadrature outputs, the relative phase in (4.41) is insensitive 

to drive amplitude variations as 𝑓Ω ∝ 𝑥 and 𝑓∆ ∝ 𝑥. 

When the frequency detuning is both amplitude-insensitive and nullified, i.e. frequency 

matched, the device reproduces the rate output of a device which is both linear and trimmed, 

in which case the rate sensitivity 𝑆|𝜆1,𝑟=0  is identical to 𝑆0
𝑙  in (3.41) while the bias rate 

Ω𝑧|𝜆1,𝑟=0 nullifies. However, the quadrature output does not generally nullify as the relative 

phase in (4.41) reduces to 𝜙𝑦𝑥|𝜆1,𝑟=0 = tan−1(𝑓Δ 𝑓Ω⁄ ) in this case. As such, in addition to 

frequency matching, nullification of the linear elastic coupling force (𝑓Δ = 0) is also required 

to eliminate the quadrature error.  

Frequency matching can be achieved when the amplitude-dependent component in (4.42) 

interacts destructively with the contribution of the imperfection, enabling the frequency 

detuning to be nullified at a specific drive amplitude. �̅�2|𝜆1,𝑟=0 = 0  for a general drive 

amplitude only if the drive misalignment is such that cos4Θ𝜔 = 0, and 𝜅0 = 𝛾0 and 𝜅𝜆 = 𝛾𝜆. 

This condition is discussed next. 

The frequency detuning dictates the linearity of the rate and quadrature outputs as the drive 

amplitude increases. As shown in (4.42), �̅�2|𝜆1,𝑟=0 has a quadratic-ordered drive amplitude 

dependence, so linear rate and quadrature outputs are not generally guaranteed when the net 

parametric excitation is nullified. An exception to this is when a continuous electrode 

distribution is implemented, or the number of electrodes is increased to 16 or 32, in which 

case the conditions 𝜅0 = 𝛾0  and 𝜅𝜆 = 𝛾𝜆  apply and the frequency detuning is amplitude 

independent. Thus for larger electrode spans the coupled and single-mode stiffnesses 

approximate each other, and nullifying the net parametric excitation leads to amplitude 

independent frequency detuning and linear rate and quadrature outputs.  

Effects of electrode continuity/discontinuity on rate sensitivity, bias rate and quadrature 

error with negated self-induced parametric excitation 

The following investigates the influence of electrode span on the rate sensitivity, bias rate and 

quadrature error for a device in which the net parametric excitation is nullified, and compares 

against the case when the self-induced parametric excitation is present. In this investigation 

and throughout the remainder of this chapter, two defaults systems are used as the controls to 
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represent continuous and discontinuous electrode distributions, with parameters listed in Table 

4.2, in addition to the parameters listed Table C.1.  

Table 4.2: Parameters of control sets of systems 

 System 1 System 2 

Parameters Values 

𝑗 8 8 

𝑉0 (𝑉) 2.1 2 

𝛿 (°) 38 45 

Γ (𝐻𝑧) 56.5 56.5 

𝛿𝐸 0.0011 0.0011 

Θ𝜔 (°)  1 1 

In Table 4.2, the bias voltage is increased as the electrode span reduces to keep the modal 

Duffing coefficient 𝛾0 constant, thus fixing the strength of the electrostatic nonlinearity. In 

this investigation, an additional system is also considered, with electrode span 𝛿 = 15°, bias 

voltage 𝑉0 = 3.1𝑉  and identical remaining parameters to those listed in Table 4.2. The 

electrode span cases of 𝛿 = 15°, 38° and 45° correspond to cubic stiffness ratios of 𝜅0 𝛾0⁄ =

𝜅𝜆 𝛾𝜆⁄  of 0.14, 0.78 and 1 respectively. 

The rate sensitivity and bias rate variations with drive amplitude for these systems are shown 

in Figure 4.2(a) and (b) respectively, and are compared against the corresponding rate 

sensitivity and bias rate when self-induced parametric excitation is present. The solid plots 

represent the results where self-induced parametric excitation is negated by the parametric 

pumping voltage where the amplitude 𝑉𝜆 is set at the values calculated using (4.38) for the 

drive amplitude range considered, and the dashed plots represent the results where the 

parametric pumping voltage is absent (𝑉𝜆 = 0). In Figure 4.2(a), the imperfection considered 

results in a linear rate sensitivity reduction of 2.5% from 𝑆0
𝑙  to 𝑆𝑙. In Figure 4.2(b), the linear 

bias rate is Ω𝑧
𝑙 = −23°/𝑠. FE results are also shown for the set of results corresponding to 

system 1 in Table 4.2. Figure 4.3 shows the corresponding relative phase for the same systems 

in Figure 4.2(a) and Figure 4.2(b) for one angular rate case at Ω = 250 ° 𝑠⁄ . 
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Figure 4.2: Effect of drive amplitude variation on the (a) normalised rate sensitivity and (b) bias rate with 

and without the parametric pumping voltage for various electrode spans 

 

Figure 4.3: Drive amplitude dependency of relative phase for the cases of with and without the parametric 

pumping voltage for various electrode spans 
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In Figure 4.2(a), the rate sensitivity exhibits improved linearity when the net parametric 

excitation is nullified. Comparing the dashed and solid lines in Figure 4.2(a) for all the 

electrode span cases, it is clear that negating the self-induced parametric excitation suppresses 

the nonlinear behaviour, with the maximum effectiveness achieved when the electrodes are 

continuous. This is because, when the parametric pumping voltage is set to counteract the self-

induced parametric excitation, the required amplitude 𝑉𝜆  also reduces the softening rate 

difference between the drive and sense modes. Consequently, the drive amplitude dependency 

of the frequency detuning is suppressed. For the discontinuous electrode cases, this nonlinear 

suppression is advantageous as the rate sensitivity degradation at larger drive amplitudes is 

reduced. 

In Figure 4.2(a), nullifying the net parametric excitation also eliminates the possibility of the 

nonlinear rate sensitivity 𝑆|𝜆1,𝑟=0  increasing beyond 𝑆0
𝑙 . This is because, as discussed in 

Section 3.5.3, the special case of rate sensitivity amplification beyond what is expected of a 

linear, trimmed device is only achievable through the Q factor increasing the effects of 

parametric excitation. However, for the discontinuous electrode configuration with 𝛿 = 38°, 

𝑆|𝜆1,𝑟=0 is slightly higher than 𝑆0
𝑙  when 𝑥 𝑔0⁄  is between 10.2% and 14.1%, indicating that 

the aforementioned amplification is still present. This indicates that the net parametric 

excitation is not completely nullified. The present scheme is only targeted at negating the self-

induced parametric excitation stemming predominantly from the nonlinear elastic coupling 

due to the bias voltage, so the residual parametric excitation stems from the drive voltage as 

discussed in Section 3.4.2, which has been neglected in the present analysis. Despite this, the 

peak of 𝑆|𝜆1,𝑟=0 𝑆𝑙⁄  is much lower than that in the presence of the self-induced parametric 

excitation and the amplification of 𝑆|𝜆1,𝑟=0 beyond 𝑆0
𝑙  is insignificant, thus confirming the 

dominance of the bias voltage for the self-induced parametric excitation. 

In Figure 4.2(b), the bias rate nonlinearity is also reduced when the self-induced parametric 

excitation is negated. The bias rate approaches the corresponding linear case, unaffected by 

drive amplitude variations when the parametric pumping voltage is applied with a continuous 

electrode distribution. The reduced amplitude sensitivity of the bias rate in the presence of the 

parametric pumping voltage is the result of both the nullified net parametric excitation and the 

reduced relative softening rate between the drive and sense modes. 

In Figure 4.3, the effects of nullifying the net parametric excitation on the relative phase are 

similar to those for the rate sensitivity and bias rate in Figure 4.2(a) and Figure 4.2(b). 

Nullifying the net parametric excitation ensures that the quadrature output amplifies linearly 

with the drive amplitude in a manner similar to the rate output, resulting in an amplitude-

insensitive relative phase. The effects of the negation of the self-induced parametric excitation 
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are less significant for smaller electrode spans. The nonlinear variation of the relative phase 

for the discontinuous electrode cases enables nullification of the quadrature error at specific 

drive amplitudes. However, it is important to note that this is not a general case of quadrature 

error nullification as in the case for linear, perfect devices. This is because the result in Figure 

4.3 only corresponds to a specific angular rate. 

The results in Figure 4.2(a) and (b) and Figure 4.3 conclude that nullifying the net parametric 

excitation can suppress the nonlinear drive amplitude dependence of the rate sensitivity, bias 

rate and quadrature error, and linearity is achieved for continuous electrode distributions. 

However, trimming of the rate and quadrature outputs at an arbitrarily chosen drive amplitude 

is not guaranteed.  

Effects of number of discontinuous electrodes on rate sensitivity and bias rate with 

negated self-induced parametric excitation 

The results for the rate sensitivity 𝑆|𝜆1,𝑟=0, bias rate Ω𝑧|𝜆1,𝑟=0 and relative phase 𝜙𝑦𝑥|𝜆1,𝑟=0 

conclude that nullifying the net parametric excitation improves the linearity of the rate output, 

and is most effective when a continuous electrode distribution is implemented, thus signifying 

the importance of ensuring 𝛾0 = 𝜅0  and 𝛾𝜆 = 𝜅𝜆  conditions. As noted previously, these 

conditions can also be met with discontinuous electrode configurations if the number of 

electrodes is increased to 𝑗 = 16 or 32.  

The following investigates the effectiveness of nullifying the parametric excitation for rate 

output linearisation in devices implementing a different number of discontinuous electrodes 𝑗. 

Devices implementing 𝑗 = 8 and 16 discontinuous electrodes with electrode span 𝛿 = 15° 

are considered for this investigation, with bias voltages of 𝑉0 = 3.1 𝑉 and 2.4 𝑉 respectively. 

Figure 4.4(a) and (b) compare the drive amplitude dependencies of the normalised rate 

sensitivity 𝑆 𝑆𝑙⁄  and bias rate Ω𝑧 with and without the net parametric excitation being nullified. 

The system corresponding to the results for 𝑗 = 8 is identical to that of the results in Figure 

4.2(a) and (b) corresponding to the 𝛿 = 15° case. 
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Figure 4.4: Variation of (a) normalised rate sensitivity 𝑺 𝑺𝒍⁄  and (b) bias rate with the gap-normalised 

drive amplitude for electrode distributions with 8 and 16 electrodes within the inner and outer sets 

In Figure 4.4(a) it can be seen that nullifying the net parametric excitation is significantly more 

effective for linearising the rate sensitivity when 16 electrodes are implemented, compared to 

the minimal linearisation effects on the rate sensitivity with 8 electrodes. Comparing Figure 

4.2(a) and Figure 4.4(a), the rate sensitivity of the discontinuous electrode system with 𝑗 = 16 

electrodes is similar to that of a continuous electrode system with 𝑗 = 8, for both cases of with 

and without nullifying the net parametric excitation. 

In Figure 4.4(b), the bias rate variation similarly exhibits improved linearisation when the 

electrode number is increased from 8 to 16. Comparing Figure 4.2(b) and Figure 4.4(b), 

similar to the rate sensitivity, the bias rate variations with and without nullifying the net 

parametric excitation are similar between the results corresponding to 16 discontinuous 

electrodes and 8 continuous electrodes. 

The results in Figure 4.4(a) and (b) show that the rate output of a continuous electrode 

distribution with 8 electrodes can be replicated in devices implementing discontinuous 

electrode distributions when the number of electrodes is increased to 16. Since the results in 

Figure 4.2(a) and (b) show diminished linearisation effectiveness as the electrode span reduces, 

it is advantageous to use 16 electrodes for devices implementing smaller electrode spans. Due 

to the similarity between the rate outputs for devices with 8 continuous electrodes and 16 

discontinuous electrodes, the proceeding investigations will only focus on the 8 electrode 

design.  

4.3.5. Frequency matching 

In Section 4.2, it was shown that a combination of a nullified net parametric excitation 

amplitude and the coincidence of the effective drive and sense frequencies reproduces a linear 

and trimmed rate output, and the quadrature output is similarly linearised, but not generally 

nullified. When total frequency detuning is nullified such that �̅�2|𝜆1,𝑟=0 = 0 , the rate 
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sensitivity and bias rate in (4.39) and (4.40) are such that Ω𝑧|𝜆1,𝑟=0 = 0 and 𝑆|𝜆1,𝑟=0 = 𝑆0
𝑙  

while the relative phase 𝜙𝑦𝑥|𝜆1,𝑟=0 is insensitive to drive amplitude variations. If �̅�2|𝜆1,𝑟=0 =

0 and there is no linear elastic coupling force (𝑓Δ = 0), the quadrature output nullifies and 

𝜙𝑦𝑥|𝜆1,𝑟=0 = 𝜙𝑦𝑥,0
𝑙 . 

Frequency matching generally requires the condition �̅�2 = 0  in (4.32). The parametric 

pumping voltage amplitude can be generally tuned to adjust the corresponding linear 

frequency detuning component �̅�𝜆
𝑙 2

 such that the drive and sense frequencies are matched. 

However, the parametric pumping voltage amplitude is constrained to nullify the net 

parametric excitation condition by satisfying (4.38). In this case, the general frequency 

detuning �̅�2  approaches its constrained form, �̅�2|𝜆1,𝑟=0  in (4.42). To investigate the 

possibility of simultaneously nullifying net parametric excitation and achieving frequency 

matching, frequency detuning expression (4.42) is revisited: 

�̅�2|𝜆1,𝑟=0 = 2𝜔0
2Δ𝜔 cos 4Θ𝜔 − 3(𝜅0 − 𝛾0)

𝑥2

4𝑔0
2
− (𝜅𝜆 − 𝛾𝜆)

𝑥2

4𝑔0
2
 

(4.42) 

To ensure frequency matching, condition �̅�2|𝜆1,𝑟=0 = 0 imposes a condition on the chosen 

drive amplitude. For this purpose, the drive amplitude must be such that the imperfection-

induced frequency split is negated by the nonlinear softening rate difference between the drive 

and sense modes. The softening rates of the drive and sense modes must differ for this purpose. 

For a continuous electrode distribution, 𝜅0 = 𝛾0 and 𝜅𝜆 = 𝛾𝜆 and the drive and sense modes 

exhibit equal softening rates, negating the nonlinear terms in (4.42). As such, in this case, the 

total frequency detuning �̅�2|𝜆1,𝑟=0 is only dependent on the imperfection-induced frequency 

split and frequency matching cannot be achieved unless the drive misalignment is such that 

Δ𝜔 cos 4Θ𝜔 = 0. In this case frequency matching is achieved regardless of drive amplitude. 

However, it is important to note that nullifying the linear elastic coupling force 𝑓Δ requires 

Δ𝜔 sin 4Θ𝜔 = 0, which is incompatible with the drive misalignment condition Δ𝜔 cos 4Θ𝜔 =

0 is imperfections are present (Δ𝜔 ≠ 0). As such, an important consideration when using a 

continuous electrode distribution is that rate output trimming and quadrature output 

nullification cannot be simultaneously achieved unless there are no imperfections, i.e. Δ𝜔 =

0. 

For a discontinuous electrode distribution, it can be deduced from (4.42) that frequency 

matching can only be achieved at specific drive amplitudes, under the following conditions: 

 If Δ𝜔 cos 4Θ𝜔 > 0, 3𝛾0 + 𝛾𝜆 < 3𝜅0 + 𝜅𝜆 must be satisfied 
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 If Δ𝜔 cos 4Θ𝜔 < 0, 3𝛾0 + 𝛾𝜆 > 3𝜅0 + 𝜅𝜆 must be satisfied 

Recalling that 𝛾0, 𝜅0, 𝛾𝜆, 𝜅𝜆 < 0  and |𝛾𝜆| ≥ |𝜅𝜆| , |𝛾0| ≥ |𝜅0| , only the former case is 

achievable. In contrast to the case for the continuous electrode distribution, this drive 

misalignment condition is compatible with the nullification of the linear elastic coupling force 

with Δ𝜔 sin4Θ𝜔 = 0  in the presence of imperfections. As such, when there is no drive 

misalignment, i.e. Θ𝜔 = 0, rate output trimming and quadrature output nullification can be 

simultaneously achieved. To ensure Δ𝜔 cos4Θ𝜔 > 0, the linear drive frequency must be 

higher than the linear sense frequency. As the drive amplitude increases, the drive frequency 

decreases at a higher rate than the sense frequency, allowing frequency matching to be 

achieved at a particular drive amplitude. As the electrodes approximate continuity, this 

nonlinear softening rate inequality diminishes as 𝛾0 ≈ 𝜅0 and 𝛾𝜆 ≈ 𝜅𝜆, so the drive amplitude 

required to achieve frequency matching increases without bound. The drive amplitude where 

frequency matching occurs also increases when the magnitude of the imperfection-induced 

component of the frequency detuning, i.e. the first term in (4.42) increases. As such, to ensure 

that frequency matching is achieved at a practical drive amplitude, the imperfection magnitude 

must be sufficiently small or the drive location must be sufficiently close to the midpoint of 

the frequency axes (cos4Θ𝜔 ≈ 0), and the electrodes must be sufficiently discontinuous. 

These conditions are the main restrictions to achieving trimmed rate output through 

simultaneous frequency matching and negating the self-induced parametric excitation.  

The restrictions for frequency matching are demonstrated in Figure 4.5, Figure 4.6, Figure 

4.7(a), (b) and (c) for the case where the self-induced parametric excitation has been nullified. 

System 1 in Table 4.2 is considered in these plots. In these results, the drive and sense 

frequencies are plot against the gap-normalised drive amplitude to compare the softening rates 

of the drive and sense modes. Figure 4.5 shows the effects of varying the drive misalignment 

angle at Θ𝜔 = 1°  and 44°  to represent the cases of cos 4Θ𝜔 > 0  and cos 4Θ𝜔 < 0 

respectively. Figure 4.6 shows the effects of varying the stiffness modulus variation amplitude 

for the cases of 𝛿𝐸 = 1.1𝑒 − 3, 2.2𝑒 − 3 and 3.3𝑒 − 3, corresponding to linear frequency 

splits of 9, 18 and 27 𝐻𝑧 respectively. Figure 4.7(a), (b) and (c) show the effects of varying 

the electrode span for the cases of 𝛿 = 15°, 38° and 44° respectively, corresponding to cubic 

stiffness ratios of 𝜅0 𝛾0⁄ = 𝜅𝜆 𝛾𝜆⁄ = 0.14, 0.78 and 0.97. 
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Figure 4.5: Effects of drive misalignment on the drive amplitude dependencies of the drive and sense 

frequencies with the net parametric excitation nullified 

 

Figure 4.6: Effects of imperfection magnitude on the drive amplitude dependencies of the drive and sense 

frequencies with the net parametric excitation nullified 

 

Figure 4.7: Drive amplitude dependencies of the drive and sense frequencies for various electrode spans 
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In Figure 4.5, noting that the absolute value of cos 4Θ𝜔 is identical for Θ𝜔 = 1° and 44°, the 

linear drive and sense frequencies at low drive amplitudes are simply interchanged between 

these drive misalignment cases. However, the drive mode softens more significantly than the 

sense mode, so frequency matching can only be achieved when the linear drive frequency is 

higher than the linear sense frequency as for the case Θ𝜔 = 1° . For Θ𝜔 = 44° , since 

cos 4Θ𝜔 < 0, the linear sense frequency is higher and the difference between the drive and 

sense frequencies increase as the drive amplitude increases, thus amplifying the frequency 

detuning. 

In Figure 4.6, the softening rates of the drive and sense modes are relatively unaffected by the 

imperfection magnitude. Due to the unaltered softening rate difference between the drive and 

sense modes, it is clear that increasing the imperfection magnitude also increases the drive 

amplitude required to achieve frequency matching, where the systems with 𝛿𝐸 = 1.1𝑒 − 3 

and 2.2𝑒 − 3 achieve frequency matching at 𝑥 𝑔0⁄ = 12% and 16.9% respectively, while the 

system with 𝛿𝐸 = 3.3𝑒 − 3 achieves frequency matching at 𝑥 𝑔0⁄ > 20%. 

In Figure 4.7(a), (b) and (c), unlike the effects of varying the imperfection magnitude in Figure 

4.6, the electrode span varies the difference of the softening rates between the drive and sense 

modes, thus impacting the drive amplitude required for frequency matching. As shown in 

Figure 4.7(a), smaller electrode spans result in a larger difference between 𝜅0 and 𝛾0 (or 𝜅𝜆 

and 𝛾𝜆 ) which ensures a larger modal softening rate difference, thus enabling frequency 

matching to be achieved at a lower drive amplitude. On the other hand, when the electrodes 

approach continuity as for the case shown in Figure 4.7(c), the softening rate difference 

between the drive and sense modes is near negligible, thus increasing the drive amplitude 

required for frequency matching significantly. 

Based on the preceding discussions and results, the relationship between frequency detuning 

and the conditions for frequency matching with the net parametric excitation nullified is 

summarised in Table 4.3 for the effects on linearisation and trimming of the rate output and 

nullifying the quadrature output. The shaded rows represent mutually exclusive cases. 
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Table 4.3: Conditions for frequency matching in conjunction with nullifying the net parametric excitation 

and effects on the rate output linearisation and trimming and quadrature output nullification 

Rate output 

Electrode 

span 

Effective 

frequency 

detuning 

Linearisation 

feasibility 

Trimming 

feasibility 

Drive 

amplitude 

condition 

Other 

conditions 

𝛿 = 45° 
Constant 

 

  All Δ𝜔cos4Θ𝜔 ≠ 0 

  All Δ𝜔cos4Θ𝜔 = 0 

𝛿 < 45° 

Varies 

nonlinearly 

with drive 

amplitude 

 

 

  
Low 

amplitudes 
Δ𝜔cos4Θ𝜔 ≠ 0 

  Specific 

Δ𝜔 cos 4Θ𝜔 >

0, small Δ𝜔, 

𝛿 ≉ 45°  

 

All other 

drive 

amplitudes 

None 

Quadrature output 

Electrode 

span 

Effective 

frequency 

detuning 

Linearisation 

feasibility 

Nullification 

feasibility 

Drive 

amplitude 

condition 

Other 

conditions 

𝛿 = 45° 
Constant 

 

  All Δ𝜔 ≠ 0 

  All Δ𝜔 = 0 

𝛿 < 45° 

Varies 

nonlinearly 

with drive 

amplitude 

  
Low 

amplitudes 
Δ𝜔 ≠ 0 

  Specific 
Δ𝜔 cos4Θ𝜔 > 0, 

Δ𝜔 sin4Θ𝜔 = 0 
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All other 

drive 

amplitudes 

None 

These results conclude that the nullification of the net parametric excitation does not reproduce 

the output of a device which is both linear and trimmed for a range of drive amplitudes unless 

the ring is perfect. In the presence of imperfections, linearisation and trimming of the rate 

output and nullification of the quadrature output can only be simultaneously achieved at 

specific drive amplitudes. 

Effects of electrode continuity/discontinuity on frequency matching 

In what follows, the effect of nullifying the net parametric excitation on frequency matching 

is investigated in systems with continuous and discontinuous electrode distributions. Systems 

1 and 2 in Table 4.2 are considered for this investigation. Figure 4.8(a) and (b) show a 

comparison of the softening rates of the drive and sense modes for systems 2 and 1 

respectively, with and without nullifying the net parametric excitation. 

 

Figure 4.8: Drive and sense frequency variations with the gap-normalised drive amplitude with and 

without nullifying the net parametric excitation for electrode spans of (a) 𝟒𝟓° and (b) 𝟑𝟖° 

Figure 4.8(a) and (b) show that in the absence of the parametric pumping voltage, the self-

induced parametric excitation ensures that the sense mode softening rate is lower than that of 

the drive mode regardless of the electrode span. However, increasing the electrode span 

reduces the softening rate difference between the drive and sense modes, thus increasing the 

drive amplitude where the frequencies coincide from 𝑥 𝑔0⁄ = 8.2% to 10% as the electrode 

span is increased from 38° to 45°.  

When the parametric pumping voltage is introduced to negate the self-induced parametric 

excitation, the softening rates of both drive and sense modes increase. However, the softening 
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rate difference between the drive and sense modes is significantly reduced by the parametric 

pumping voltage. The parametric pumping voltage softens the sense mode more significantly 

than the drive mode, thus reducing the net softening rate difference between the drive and 

sense modes. The softening effect of the parametric pumping voltage on the sense mode is 

most significant when the electrodes are continuous, thus allowing the sense mode softening 

rate to match that of the drive mode, as shown in Figure 4.8(a), resulting in an amplitude-

independent frequency detuning. As the parametric pumping voltage reduces the softening 

rate difference, the drive amplitude required to achieve frequency matching is increased 

compared to the case with self-induced parametric excitation and is not achievable for the 

continuous electrode case. 

Effects of electrode span on drive amplitude for frequency matching 

The following investigates the effects of the electrode span on the required drive amplitude to 

achieve frequency matching when the net parametric excitation is nullified. For this 

investigation, the electrode span cases in Figure 4.7(a), (b) and (c) are generalised to show the 

drive amplitude required to ensure 𝜔𝑋|𝜆1,𝑟=0 = 𝜔𝑌|𝜆1,𝑟=0 (hence trimming the rate output) at 

various electrode spans. Figure 4.9 shows the required drive amplitude for electrode spans 

ranging from 𝛿 = 1°  to 43° , which corresponds to cubic stiffness ratios 𝜅0 𝛾0
⁄ = 𝜅𝜆 𝛾𝜆

⁄  

ranging from 6𝑒 − 4 to 0.97. A marker has also been shown to indicate the coincidence of 

𝜔𝑋|𝜆1,𝑟=0 and 𝜔𝑌|𝜆1,𝑟=0 for system 1, which corresponds to the frequency matching point for 

the nullified parametric excitation case in Figure 4.8(b). When varying the electrode span in 

Figure 4.9, the bias voltage 𝑉0 is adjusted to keep the Duffing stiffness 𝛾0 constant, hence 

fixing the strength of the electrostatic nonlinearity as has been implemented for the results in 

Figure 4.2(a) and (b). 

 

Figure 4.9: Effect of electrode span on the required drive amplitude for frequency matching when the 

parametric pumping voltage is tuned to nullify the net parametric excitation 
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Figure 4.9 shows that the drive amplitude to achieve frequency matching increases with 

increasing electrode span and is increasingly sensitive to electrode span when electrode 

continuity is approached. This is because frequency matching relies on the difference between 

the drive and sense mode softening rates, which is dictated by the difference between the 

coupled-mode stiffnesses 𝜅0, 𝜅𝜆 and single-mode stiffnesses 𝛾0, 𝛾𝜆. Smaller electrode spans 

result in weaker nonlinear elastic coupling between the drive and sense modes, resulting in 

negligible coupled-mode stiffnesses which maximise the softening rate difference between the 

drive and sense modes and allowing frequency matching to be achieved at lower drive 

amplitudes. This softening rate difference diminishes as 𝜅0  and 𝜅𝜆  approach 𝛾0  and 𝛾𝜆  as 

electrode continuity is approached. In this case, using larger electrode spans is advantageous 

as trimmed rate output can be achieved at higher drive amplitudes where the Coriolis force 

amplitudes and rate sensitivities are larger.  

4.3.6. Summary 

For an imperfect device with a basic electrostatic configuration, frequency splitting and self-

induced parametric excitation induce non-zero bias and nonlinear rate sensitivity effects. It 

has been shown that the self-induced parametric excitation can be nullified by applying a 

harmonic parametric pumping voltage to all electrodes to generate a separate parametric 

excitation which is in anti-phase with the self-induced parametric excitation.  

When the net parametric excitation is nullified, the linearity of the rate and quadrature outputs 

is dictated by the frequency detuning between the drive and sense modes. It is found that the 

parametric pumping voltage serves to suppress the amplitude dependency of the frequency 

detuning by reducing the difference between the softening rates of the drive and sense modes. 

For the case of 8 evenly distributed electrodes, rate and quadrature output linearity is improved 

by using larger electrode spans because frequency tuning is amplitude-insensitive in this case. 

(Similar behaviour is also found in devices with discontinuous electrodes if the number of 

electrodes used is increased to 16 or 32.)  

Frequency matching can also occur when the net parametric excitation is nullified under 

specific conditions. In this case, the rate output of a device which is both linear and trimmed 

is reproduced, while the quadrature output is linearised but not generally nullified. The 

parametric pumping voltage increases the drive amplitude at which frequency-matching 

occurs and this increase is more significant in devices with larger electrode spans.  An 

investigation into frequency matching indicates that the drive amplitude at which matching 

occurs also depends on the imperfection (magnitude and orientation) and electrode span, as 

well as the applied parametric pumping voltages.  A consequence of this is that the drive 

amplitude at which rate trimming occurs may be too large or too small for practical 
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implementation. Ideally it would be preferable to match the frequencies over a range of drive 

amplitudes.  However, this only occurs under special conditions (e.g. continuous electrode). 

To ensure the quadrature output is also nullified over a range of drive amplitudes, the drive 

misalignment-induced linear elastic coupling must also be eliminated, in addition to the 

frequency matching. It is found that these can only be simultaneously achieved in perfect 

devices. 

In what follows a general framework is presented for manipulating the electrostatic forces to 

nullify the self-induced parametric excitation and achieve trimming at a selected drive 

amplitude using discontinuous electrodes. 

4.4. General framework for manipulation of electrostatic forces 

using electrostatic configuration selection 

In Section 4.3.1, the parametric pumping voltage component in (4.11) is used to modify the 

electrostatic forces and nullify the net parametric excitation. The resulting rate output is linear 

with drive amplitude for a continuous electrode but becomes increasingly nonlinear as the 

electrode span decreases. In addition, the drive amplitude at which frequency matching and 

rate output trimming occurs is dependent on the imperfections present. In what follows the 

aim is to linearise and trim the rate output at a selected drive amplitude regardless of the level 

of imperfection and electrode span while nullifying the quadrature output, and this is achieved 

by applying additional modifications to the electrostatic configuration in (4.11). 

This section investigates manipulating the electrostatic forces using a strategic, goal-based 

selection of the electrostatic configuration.  The aim is to develop a general framework for 

selecting the voltage distribution and electrode number based on the desired form of 

electrostatic force. For this investigation, the form of electrostatic forces is generalised to 

consider a general voltage distribution and electrode number. The voltage and capacitance 

distributions and resulting electrostatic potential energy are modelled to take account of how 

these quantities vary from electrode to electrode. The interaction between the capacitance and 

voltage distributions is used to derive a general form for the total electrostatic potential energy 

in terms of the voltages. When incorporating the electrostatic potential energy into Lagrange’s 

equation, an explicit relationship between the resulting electrostatic forces and the voltages is 

derived, which enables specific tailoring of the electrostatic forces based on the voltages 

applied and number of electrodes chosen.  

4.4.1. General representation of modal electrostatic forces 

The equations of motion as developed using Lagrange’s equation can be represented as 

follows when the mechanical and electrostatic contributions are separated: 
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𝑓𝑚,𝑋(�̈�, �̇�, �̇�, 𝑋, 𝑌) + 𝑓𝑈,𝑋(𝑋, 𝑌) = 0 (4.43a) 

𝑓𝑚,𝑌(�̈�, �̇�, �̇�, 𝑋, 𝑌) + 𝑓𝑈,𝑌(𝑋, 𝑌) = 0 (4.43b) 

where 

[
𝑓𝑚,𝑋

𝑓𝑚,𝑌
] = �̅̈�𝟏 + [

2Γ −𝐺ΩΩ
𝐺ΩΩ 2Γ

] �̅̇�𝟏 + 𝜔𝑚
2∆̿𝑚�̅�𝟏 

(4.44) 

𝑓𝑈,𝑋 =
𝜕𝑈(𝑋, 𝑌)

𝑀𝜕𝑋
= ∑ [∑(𝐴

𝑋𝑞−𝑝−1𝑌𝑝
𝑓𝑋

𝑋𝑞−𝑝−1𝑌𝑝)

𝑞−1

𝑝=0

]

4

𝑞=1

 

(4.45a) 

𝑓𝑈,𝑌 =
𝜕𝑈(𝑋, 𝑌)

𝑀𝜕𝑌
= ∑ [∑(𝐴

𝑋𝑞−𝑝−1𝑌𝑝
𝑓𝑌

𝑋𝑞−𝑝−1𝑌𝑝)

𝑞−1

𝑝=0

]

4

𝑞=1

 

(4.45b) 

𝑓𝑚,𝑋  and 𝑓𝑚,𝑌  are the modal-mass-normalised mechanical forces for the drive and sense 

equations respectively, where the contributions from the kinetic energy and bending potential 

energy of the ring and support structures have been combined. These forces are linear in terms 

of the modal displacement, velocity and acceleration. In (4.44), 𝜔𝑚
2  is the mechanical 

component of the linear resonant frequency, defined in (3.18) with the final term discarded, 

i.e. 𝜔𝑚
2 = 𝜔0

2|𝑉0=0. ∆̿𝑚 is the scaled structural imperfection matrix given by: 

∆̿𝑚= [
1 + ∆𝑚 cos 4Θ𝜔 ∆𝑚 sin4Θ𝜔

∆𝑚 sin 4Θ𝜔 1 − ∆𝑚 cos4Θ𝜔
] 

(4.46) 

where ∆𝑚  is the scaled imperfection parameter such that 𝜔𝑚
2∆𝑚= 𝜔0

2∆𝜔 . |∆𝑚| < |∆𝜔| 

because 𝜔𝑚 > 𝜔0 with the electrostatic softening effects excluded from 𝜔𝑚. This form of 

distinction allows the imperfection effects to be represented as a mechanical effect. 

𝑓𝑈,𝑋 and 𝑓𝑈,𝑌 are the modal-mass-normalised electrostatic forces, and are directly dependent 

on the electrostatic potential energy 𝑈 . These forces can be expressed as a polynomial 

expansion in terms proportional to 𝑋, 𝑌, 𝑋2, 𝑋𝑌, 𝑌2, etc. due to the Taylor series expansion of 

the capacitance when deriving the electrostatic potential energy, as described in (3.1) – (3.3), 

(3.10a) and (3.10b). 𝑞 represents the order of the Taylor series expansion of the capacitance 

in the radial displacement. The electrostatic forces associated with each 𝑞 can be interpreted 

as follows: 
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 𝑞 ≥ 3  represents nonlinear electrostatic forces, where 𝑞 = 3  and 4  correspond to 

quadratic and cubic forces respectively.  

 𝑞 = 2 represents the linear electrostatic restoring forces responsible for the linear 

modal softening, causing 𝜔0 < 𝜔𝑚. 

 𝑞 = 1 represents the zero-order electrostatic forces, as these forces are independent 

of the modal coordinates. As such, these forces can be regarded as the direct, non-

conservative forces when shifted to the right side of the equations of motion in (4.43a) 

and (4.43b). An example of the zero-order electrostatic force is the harmonic drive 

force 𝜒 cos𝜔𝑡 in (3.14) and (4.14). 

The magnitudes of the nonlinear electrostatic forces diminish significantly as 𝑞 increases. As 

such, 𝑞 has been capped at 𝑞 = 4 in (4.45a) and (4.45b), limiting the nonlinear electrostatic 

forces to cubic order, similar to the approximation used to derive the equations of motion in 

(3.14) and (4.14), as well as in previous studies [48, 49]. 

A desired form of the electrostatic forces 𝑓𝑈,𝑋 and 𝑓𝑈,𝑌 can be determined to achieve specific 

features of the sense dynamics targeted at enhancing rate sensing performance, such as 

trimming and linearising the rate output while retaining nullified quadrature output, as will be 

investigated later in this chapter. Based on the desired form of 𝑓𝑈,𝑋 and 𝑓𝑈,𝑌, the required form 

of the electrostatic potential energy 𝑈 can be determined by integrating (4.45a) and (4.45b) 

with respect to the corresponding modal coordinates. 

4.4.2. Electrostatic potential energy distribution 

The total electrostatic potential energy 𝑈 is obtained from the summation of the electrostatic 

potential energy of each electrode as given in (3.4), noting that 𝑈 = −𝑊. Using (3.1) and (3.4) 

while grounding the ring such that the potential difference is identical to the voltage applied 

to each electrode, i.e. ∆𝑉± = 𝑉±[휃0(𝑖)], the electrostatic potential energy for the 𝑖th electrode 

(outer/inner) is given by the interaction between the capacitance and voltage of the electrode 

as governed by the following relationship: 

𝑈±[휃0(𝑖)] = −
𝑐±[휃0(𝑖)]𝑉

±[휃0(𝑖)]
2

2
 

(4.47) 

where 휃0(𝑖) is given by 휃0(𝑖) = 2𝑖𝜋 𝑗⁄ . The total number of electrodes 𝑗  in each of the 

inner/outer sets is generalised in this investigation and so is not restricted to the 𝑗 = 8 case 

considered previously.  

The voltage distribution 𝑉±[휃0(𝑖)] , the capacitance 𝑐±[휃0(𝑖)]  and electrostatic potential 

energy 𝑈±[휃0(𝑖)] are expressed as functions of the central angular position 휃0(𝑖) to facilitate 
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the proceeding analysis. An example of this representation for the capacitance, voltage and 

electrostatic potential energy of each electrode is illustrated in Figure 4.10 for an electrostatic 

configuration implementing inner and outer electrode sets with 𝑗 = 16 electrodes within each 

set. However, the following analysis will be developed for a generic number of electrodes, 

unrestricted to the case of 𝑗 = 16. 

 

Figure 4.10: Representation of the capacitance, voltage and electrostatic potential energy for electrodes 𝒊 =
𝟏, 𝟔 of the inner and outer electrode sets, and the corresponding central angular positions 

With the electrostatic potential energy arising from each electrode described in (4.47), the 

summation of 𝑈±[휃0(𝑖)]  across all electrodes determines the resulting form of the total 

electrostatic potential energy 𝑈 and the electrostatic forces 𝑓𝑈,𝑋 and 𝑓𝑈,𝑌. As shown in (4.47), 

𝑈±[휃0(𝑖)] is determined by the voltage and capacitance distributions, and this is discussed 

next. 

4.4.3. Capacitance distribution 

To facilitate the analysis of the capacitance of each electrode in the context of its interaction 

with the voltage distribution in (4.47), it is convenient to express the capacitance in the same 

form as the voltage distribution. For this purpose, this section aims to represent the capacitance 

𝑐±[휃0(𝑖)] as a discrete Fourier series in terms of the central angular position 휃0(𝑖), in a 

manner similar to the voltage distribution cases in (3.6) and (4.11). 

휃0(1) 휃0(6) 

𝑐+[휃0(6)], 𝑉+[휃0(6)],𝑈+[휃0(6)] 

𝑐−[휃0(6)], 𝑉−[휃0(6)], 

𝑈−[휃0(6)] 𝑐+[휃0(1)], 𝑉+[휃0(1)], 

𝑈+[휃0(1)] 

𝑐−[휃0(1)], 𝑉−[휃0(1)], 

𝑈−[휃0(1)] 
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Substituting (3.3) into (3.1) and implementing a Taylor’s series expansion in the radial 

displacement 𝑢 up to the 4th order gives the following expressions for the capacitance for the 

𝑖th electrode of the inner/outer electrode set:  

𝑐±[휃0(𝑖)] = ∑ 𝑐𝑞
±[휃0(𝑖)]

4

𝑞=0

 
(4.48) 

where 𝑐𝑞
±[휃0(𝑖)] represents the capacitance component of the 𝑖th electrode with order 𝑞, given 

by: 

𝑐𝑞
±[휃0(𝑖)] =

휀0𝐵𝑅

𝑔0
∫ (±

𝑢

𝑔0
)
𝑞

𝑑휃

𝜃0(𝑖)+
𝛿
2

𝜃0(𝑖)−
𝛿
2

 

(4.49) 

The order of the Taylor series expansion of the capacitance, 𝑞 here directly corresponds to the 

order of the electrostatic forces in (4.45a) and (4.45b). The summation in (4.48) decomposes 

the different-ordered terms in the capacitance, thus allowing the origins of the different 

ordered electrostatic forces in (4.45a) and (4.45b) to be distinguished.  

Substituting the expression for the radial displacement 𝑢 in (4.49) and evaluating the integral 

over the electrode span allows each 𝑞-ordered capacitance component to be expressed as finite, 

discrete Fourier series in the central angular position 휃0(𝑖).  This gives the following results 

for odd and even 𝑞: 

𝑐𝑞
±[휃0(𝑖)] = 𝑐2𝑞𝑐+1

± [휃0(𝑖)]

= ∑ [𝛼𝑞,2(2𝑝𝑐+1)
± cos 2(2𝑝𝑐 + 1)휃0(𝑖)

𝑞𝑐

𝑝𝑐=0

+ 𝛽𝑞,2(2𝑝𝑐+1)
± sin2(2𝑝𝑐 + 1)휃0(𝑖)] 

(4.50a) 

𝑐𝑞
±[휃0(𝑖)] = 𝑐2𝑞𝑐

± [휃0(𝑖)] = ∑ [𝛼𝑞,4𝑝𝑐

± cos 4𝑝𝑐휃0(𝑖) + 𝛽𝑞,4𝑝𝑐

± sin 4𝑝𝑐휃0(𝑖)]

𝑞𝑐

𝑝𝑐=0

 

(4.50b) 

where 𝑞𝑐  is a non-negative integer, capped at 𝑞𝑐 = 1  and 𝑞𝑐 = 2  for odd and even 𝑞 

respectively. The distribution components of the capacitance in (4.50a) and (4.50b) have 

distinct contributions to the electrostatic forces. The cos0휃0(𝑖)  capacitance distribution 

component in (4.50b) contributes to the equal linear softening of the drive and sense modes, 

and is associated with the bias voltage for the basic electrostatic configuration. The cos 2휃0(𝑖) 
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and sin 2휃0(𝑖)  capacitance distributions component in (4.50a) contribute to direct 

electrostatic forces on the drive and sense modes respectively. 

The coefficients 𝛼𝑞,2(2𝑝𝑐+1)
±

, 𝛽𝑞,2(2𝑝𝑐+1)
±

, 𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

±  are polynomials in terms of modal 

coordinates, where the order of the polynomial corresponds to 𝑞. For example, when 𝑞 = 3, 

in (4.50a), the coefficients 𝛼3,2
± , 𝛽3,2

± , 𝛼3,6
± , 𝛽3,6

±  are 3rd order polynomials in the modal 

coordinates, containing terms proportional to 𝑋3, 𝑋2𝑌, 𝑋𝑌3, 𝑌3. 

The 𝑞 = 0 capacitance component corresponds to the capacitance of the undeflected ring. 

Setting 𝑞 = 0  gives 𝑞𝑐 = 0  and 𝑝𝑐 = 0  in (4.50b) and the following expression for 

capacitance component 𝑐0
±: 

𝑐0
± = 𝛼0,0

± =
휀0𝐵𝑅

𝑔0
 

(4.51) 

This capacitance component is the cos 0휃0(𝑖) variation component in (4.50b) and as such, is 

identical for all electrodes. Also, as expected, 𝑐0
±  is a polynomial of zero-order and is 

independent of the modal coordinates. As such, 𝑐0
± is insignificant as it has no net effect on 

the resulting electrostatic forces when the derivatives in (4.45a) and (4.45b) are evaluated. 

For 𝑞 ≥ 1, the capacitance expressions can be quite complicated. However, the definitions of 

the coefficients 𝛼𝑞,2(2𝑝𝑐+1)
±

, 𝛽𝑞,2(2𝑝𝑐+1)
±

 can be obtained from Table 4.4 for odd orders 𝑞 =

1,3, while the coefficients 𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

±  can be obtained from Table 4.5 for even orders 𝑞 =

2,4. In all cases, the entries in Table 4.4 and Table 4.5 must be multiplied by 휀0𝐵𝑅 𝑔0
𝑞+1⁄  to 

obtain the definitions of these coefficients. 

Table 4.4: Coefficients for capacitance components of odd orders 𝒒 = 𝟏, 𝟑 

 cos 2휃0(𝑖) sin2휃0(𝑖) cos 6휃0(𝑖) sin6휃0(𝑖) 

 𝛼1,2
±  𝛽1,2

±    

𝑞 = 1 

𝑋 ±sin𝛿 0 0 0 

𝑌 0 ±sin𝛿 0 0 

  𝛼3,2
±  𝛽3,2

±  𝛼3,6
±  𝛽3,6

±  
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𝑞 = 3 

𝑋3 ±
3

4
sin𝛿 0 ±

sin 3𝛿

12
 0 

3𝑋2𝑌 0 ±
sin𝛿

4
 0 ±

sin 3𝛿

12
 

3𝑋𝑌2 ±
sin𝛿

4
 0 ∓

sin 3𝛿

12
 0 

𝑌3 0 ±
3

4
sin𝛿 0 ∓

sin 3𝛿

12
 

 

Table 4.5: Coefficients for capacitance components of even orders 𝒒 = 𝟐, 𝟒 

  

cos 0휃0(𝑖) cos 4휃0(𝑖) sin4휃0(𝑖) cos 8휃0(𝑖) sin8휃0(𝑖) 

𝛼2,0
±  𝛼2,4

±  𝛽2,4
±    

𝑞 = 2 

𝑋2 
𝛿

2
 

sin2𝛿

4
 0 0 0 

2𝑋𝑌 0 0 
sin2𝛿

4
 0 0 

𝑌2 
𝛿

2
 −

sin 2𝛿

4
 0 0 0 

  𝛼4,0
±  𝛼4,4

±  𝛽4,4
±  𝛼4,8

±  𝛽4,8
±  

𝑞 = 4 

𝑋4 
3𝛿

8
 

sin2𝛿

4
 0 

sin4𝛿

32
 0 

4𝑋3𝑌 0 0 
sin2𝛿

8
 0 

sin4𝛿

32
 

6𝑋2𝑌2 
𝛿

8
 0 0 −

sin 4𝛿

32
 0 

4𝑋𝑌3 0 0 
sin2𝛿

8
 0 −

sin 4𝛿

32
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𝑌4 
3𝛿

8
 −

sin 2𝛿

4
 0 

sin4𝛿

32
 0 

In Table 4.4, the coefficients corresponding to the inner and outer electrode capacitance 

components have opposite signs (hence the ‘±’ and ‘∓’ signs) while those in Table 4.5 have 

identical signs. This is because, from (4.48), 𝑐𝑞
+[휃0(𝑖)] = −𝑐𝑞

−[휃0(𝑖)]  and 𝑐𝑞
+[휃0(𝑖)] =

−𝑐𝑞
−[휃0(𝑖)] for odd and even 𝑞 respectively. 

The entries in the columns corresponding to coefficients 𝛼𝑞,2(2𝑝𝑐+1)
±

, 𝛽𝑞,2(2𝑝𝑐+1)
±

, 𝛼𝑞,4𝑝𝑐

± , 

𝛽𝑞,4𝑝𝑐

±  must be multiplied by the modal coordinate terms in the second columns of Table 4.4 

and Table 4.5. The result is then summed for all the modal coordinate terms involved before 

multiplying by 휀0𝐵𝑅 𝑔0
𝑞+1⁄  to obtain the definitions of the coefficients 𝛼𝑞,2(2𝑝𝑐+1)

±
, 

𝛽𝑞,2(2𝑝𝑐+1)
±

, 𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

± . For example, to identify the coefficient of  sin4휃0(𝑖) in the 𝑞 = 4 

capacitance component 𝑐4
±[휃0(𝑖)] in (4.50b), which is 𝛽4,4

± , the column corresponding to 

sin4휃0(𝑖) and 𝛽4,4
±  in Table 4.5 shows nonzero entries for the modal coordinate terms 4𝑋3𝑌 

and 4𝑋𝑌3, giving the following definition for 𝛽4,4
± : 

𝛽4,4
± =

휀0𝐵𝑅

𝑔0
5

(4
sin2𝛿

8
𝑋3𝑌 + 4

sin2𝛿

8
𝑋𝑌3) 

All the other coefficients 𝛼𝑞,2(2𝑝𝑐+1)
±

, 𝛽𝑞,2(2𝑝𝑐+1)
±

, 𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

±  can be determined in this 

manner and substituted into (4.50a) and (4.50b) to determine the polynomial representation of 

the different ordered capacitance components in terms of the modal coordinates. The resulting 

expressions for capacitance components along with the 𝑞 = 0 order capacitance component 

in (4.51) are then summed in (4.48) to obtain the capacitance of the 𝑖 th inner and outer 

electrodes, 𝑐±[휃0(𝑖)]. This is then substituted into (4.47) to evaluate the electrostatic potential 

energy for the corresponding electrode once the voltage distribution 𝑉±[휃0(𝑖)] is known. 

4.4.4. Voltage distribution 

The voltage distribution 𝑉±[휃0(𝑖)] such as those in (3.6) and (4.11) is expressed in terms of 

the central angular position, which is a function of the electrode number 𝑖. As such, the voltage 

only varies from electrode to electrode, but is constant across the angular span of each 

electrode. This voltage model is typical in capacitive devices where the voltages for each 

electrode correspond to the particular role of the electrode, such as drive, parametric pumping 

or bias. 

To use (4.47), the distribution of the voltage squared is of interest. A discrete Fourier series 

representation of the voltage squared distribution is given by: 
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𝑉±[휃0(𝑖)]
2 = ∑ [𝜉𝑚𝑉

± cos𝑚𝑉휃0(𝑖) + 휁𝑚𝑉

± sin𝑚𝑉휃0(𝑖)]

𝑗

𝑚𝑉=0

 

(4.52) 

where coefficients 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  depend on the voltages applied to each electrode. (4.6) is a 

basic example of the voltage squared distribution, where only constant and cos2휃0(𝑖) 

variation components are present, i.e. all coefficients in (4.52) except 𝜉0
± and 𝜉2

± are zero. As 

(4.52) describes the square of the voltage applied to each electrode and a bias voltage is always 

applied in practice, then 𝜉0
+ > 0 and 𝜉0

− > 0 for any chosen voltage distribution. Using (4.52) 

and recalling that the central angular position is 휃0(𝑖) = 2𝑖𝜋 𝑗⁄ , the voltage applied to the 𝑖th 

inner/outer electrode can be obtained by substituting the corresponding electrode index 

number 𝑖 into (4.52). 

The different variation components of the voltage squared distribution in (4.52) have distinct 

contributions to the net electrostatic force, in a manner similar to the capacitance distribution 

described in (4.50a) and (4.50b). 𝜉0
± cos 0휃0(𝑖) affects the modal linear electrostatic forces 

evenly, thus contributing to equal linear softening of the drive and sense modes. 𝜉2
± cos 2휃0(𝑖) 

and 휁2
± sin 2휃0(𝑖) contribute to direct forces on the drive and sense modes. 𝜉4

± cos 4휃0(𝑖) 

affects the linear electrostatic forces unevenly, thus resulting in electrostatic-induced 

frequency splits. 

In practice coefficients 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  are important parameters that must be carefully chosen 

when designing a suitable voltage distribution to achieve specific targeted forms of 

electrostatic forces in (4.45a) and (4.45b). 

4.4.5. Relationship between voltage and electrostatic force distributions 

With the voltage squared distribution defined by (4.52) and the capacitance components 

defined by (4.50a) and (4.50b), electrostatic potential energy (4.47) can be represented in a 

similar form. To aid the selection of the voltage distribution, this section investigates the 

effects of spatial variation 𝑚𝑉 in (4.52). 

To achieve this, it is convenient to decompose the electrostatic potential energy in (4.47) 

according to order 𝑞 to give: 

𝑈±[휃0(𝑖)] = ∑ 𝑈𝑞
±[휃0(𝑖)]

4

𝑞=0

 
(4.53) 

where 
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𝑈𝑞
±[휃0(𝑖)] = −

𝑐𝑞
±[휃0(𝑖)]𝑉

±[휃0(𝑖)]
2

2
 

(4.54) 

This form helps to identify the capacitance component 𝑐𝑞
±[휃0(𝑖)] contributing to the various 

ordered electrostatic forces, thus providing useful insight into how the different ordered 

capacitance components interact with the voltage squared distribution 𝑉±[휃0(𝑖)]
2. The total 

electrostatic force for each 𝑞 is then given by: 

𝑓𝑈,𝑋|𝑞 =
𝜕𝑈𝑞

𝑀𝜕𝑋
=

𝜕

𝑀𝜕𝑋
∑[𝑈𝑞

+[휃0(𝑖)] + 𝑈𝑞
−[휃0(𝑖)]]

𝑗

𝑖=1

 

(4.55a) 

𝑓𝑈,𝑌|𝑞 =
𝜕𝑈𝑞

𝑀𝜕𝑌
=

𝜕

𝑀𝜕𝑌
∑[𝑈𝑞

+[휃0(𝑖)] + 𝑈𝑞
−[휃0(𝑖)]]

𝑗

𝑖=1

 

(4.55b) 

(4.55a) and (4.55b) are used to obtain the total electrostatic forces described in (4.45a) and 

(4.45b), where 𝑓𝑈,𝑋 = ∑ 𝑓𝑈,𝑋|𝑞
4
𝑞=1  and 𝑓𝑈,𝑌 = ∑ 𝑓𝑈,𝑌|𝑞

4
𝑞=1 . In practice, many of the terms in 

𝑈𝑞
±[휃0(𝑖)] vanish after evaluating the summation in (4.55a) and (4.55b). The nature of this 

summation dictates the resulting form of the electrostatic forces for each order. 

Substituting the expressions for the capacitance components in (4.50a) or (4.50b) and the 

voltage squared components in (4.52) into (4.54) gives the following discrete Fourier series 

representation of [𝑈𝑞
+[휃0(𝑖)] + 𝑈𝑞

−[휃0(𝑖)]]in (4.55a) and (4.55b) for odd (𝑞 = 2𝑞𝑐 + 1) and 

even (𝑞 = 2𝑞𝑐) orders: 

𝑈𝑞
+[휃0(𝑖)] + 𝑈𝑞

−[휃0(𝑖)] = 𝑈2𝑞𝑐+1
+ [휃0(𝑖)] + 𝑈2𝑞𝑐+1

− [휃0(𝑖)]

= −
1

2
∑ ∑ {

𝛼𝑞,2(2𝑝𝑐+1)
+ (𝜉𝑚𝑉

+ − 𝜉𝑚𝑉
− ) − 𝛽𝑞,2(2𝑝𝑐+1)

+ (휁𝑚𝑉
+ − 휁𝑚𝑉

− )

2
cos(4𝑝𝑐

𝑗

𝑚𝑉=0

𝑞𝑐

𝑝𝑐=0

+ 2 + 𝑚𝑉)휃0(𝑖)

+
𝛼𝑞,2(2𝑝𝑐+1)

+ (휁𝑚𝑉
+ − 휁𝑚𝑉

− ) + 𝛽𝑞,2(2𝑝𝑐+1)
+ (𝜉𝑚𝑉

+ − 𝜉𝑚𝑉
− )

2
sin(4𝑝𝑐 + 2 + 𝑚𝑉)휃0(𝑖)

+
𝛼𝑞,2(2𝑝𝑐+1)

+ (𝜉𝑚𝑉
+ − 𝜉𝑚𝑉

− ) + 𝛽𝑞,2(2𝑝𝑐+1)
+ (휁𝑚𝑉

+ − 휁𝑚𝑉
− )

2
cos(4𝑝𝑐 + 2 − 𝑚𝑉)휃0(𝑖)

−
𝛼𝑞,2(2𝑝𝑐+1)

+ (휁𝑚𝑉
+ − 휁𝑚𝑉

− ) − 𝛽𝑞,2(2𝑝𝑐+1)
+ (𝜉𝑚𝑉

+ − 𝜉𝑚𝑉
− )

2
sin(4𝑝𝑐 + 2

− 𝑚𝑉)휃0(𝑖)} 

(4.56a) 
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𝑈𝑞
+[휃0(𝑖)] + 𝑈𝑞

−[휃0(𝑖)] = 𝑈2𝑞𝑐

+ [휃0(𝑖)] + 𝑈2𝑞𝑐

− [휃0(𝑖)]

= −
1

2
∑ ∑ {

𝛼𝑞,4𝑝𝑐

+ (𝜉𝑚𝑉
+ + 𝜉𝑚𝑉

− ) − 𝛽𝑞,4𝑝𝑐

+ (휁𝑚𝑉
+ + 휁𝑚𝑉

− )

2
cos(4𝑝𝑐

𝑗

𝑚𝑉=0

𝑞𝑐

𝑝𝑐=0

+ 𝑚𝑉)휃0(𝑖) +
𝛼𝑞,4𝑝𝑐

+ (휁𝑚𝑉
+ + 휁𝑚𝑉

− ) + 𝛽𝑞,4𝑝𝑐

+ (𝜉𝑚𝑉
+ + 𝜉𝑚𝑉

− )

2
sin(4𝑝𝑐 + 𝑚𝑉)휃0(𝑖)

+
𝛼𝑞,4𝑝𝑐

+ (𝜉𝑚𝑉
+ + 𝜉𝑚𝑉

− ) + 𝛽𝑞,4𝑝𝑐

+ (휁𝑚𝑉
+ + 휁𝑚𝑉

− )

2
cos(4𝑝𝑐 − 𝑚𝑉)휃0(𝑖)

−
𝛼𝑞,4𝑝𝑐

+ (휁𝑚𝑉
+ + 휁𝑚𝑉

− ) − 𝛽𝑞,4𝑝𝑐

+ (𝜉𝑚𝑉
+ + 𝜉𝑚𝑉

− )

2
sin(4𝑝𝑐 − 𝑚𝑉)휃0(𝑖)} 

(4.56b) 

where trigonometric multiplication identities have been applied. Substituting (4.56a) or (4.56b) 

into (4.55a) and (4.55b) and evaluating the summation across all electrodes gives an 

expression of the 𝑞 − 1 ordered electrostatic force components in terms of the voltage squared 

components 𝜉𝑚𝑉

±  and 휁𝑚𝑉

± . The resulting expression enables direct control of the form of the 

electrostatic force using a chosen voltage distribution, by determining specific conditions for  

𝜉𝑚𝑉

±  and 휁𝑚𝑉

± .  

Using the summation results in (D-6a) and (D-6b), many of the terms in (4.56a) and (4.56b) 

vanish after evaluating the summation in (4.55a) and (4.55b). Noting that electrode numbers 

of 𝑗 = 8 , 16  or 32  are typical in practice, the following interpretations apply for the 

summation of (4.56a) and (4.56b): 

i. All the sine terms vanish. 

ii. Cosine terms involving 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  with odd 𝑚𝑉  always vanish, so these 

coefficients can be set nonzero without affecting the total electrostatic force. 

iii. Cosine terms involving 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  with even 𝑚𝑉 , but not a multiple of 4, only 

contribute to the electrostatic force components with odd 𝑞. 

iv. Cosine terms involving 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  with even 𝑚𝑉 which is also a multiple of 4 only 

contribute to the electrostatic force components with even 𝑞. 

Conditions i and ii significantly simplify the electrostatic potential energy expression after the 

summations in (4.55a) and (4.55b) are evaluated, while conditions iii and iv allow the 

contributions of the voltage components to be distinguished. Using the voltage distribution of 

the basic electrostatic configuration in (3.6) as an example, the biasing electrostatic potential 

energy component �̅� in (4.7) is composed of modal coordinate terms with orders 𝑞 = 0,2,4, 

originating from the voltage squared coefficients 𝜉𝑚𝑉

±  with 𝑚𝑉 = 0 , corresponding to 

condition iv. The drive electrostatic potential energy component 𝑈𝐴𝐶  in (4.8) is composed of 
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modal coordinate terms with orders 𝑞 = 1,3, originating from the voltage squared coefficients 

𝜉𝑚𝑉

±  with 𝑚𝑉 = 2, corresponding to condition iii. The roles of the bias and drive voltages are 

distinct because there are no cross-contributions between 𝜉0
± and 𝜉2

± towards �̅� and 𝑈𝐴𝐶 . 

Using these interpretations, constraints for 𝜉𝑚𝑉

±  and 휁𝑚𝑉

±  can be determined based on targeted 

forms of 𝑓𝑈,𝑋|𝑞  and 𝑓𝑈,𝑌|𝑞, which then allows one to select a suitable voltage distribution 

𝑉±[휃0(𝑖)]. This goal-based selection is discussed next. 

4.4.6. General procedures for voltage distribution selection 

To improve rate sensing performance in the presence of imperfections while accounting for 

electrostatic nonlinearities, the sense dynamics must be manipulated. The electrostatic forces 

acting on the sense mode, 𝑓𝑈,𝑌 in (4.45b) can be manipulated for this purpose, such as to negate 

the performance degrading effects of the ring imperfections or generate a parametric excitation 

to negate the self-induced parametric excitation such as the approach outlined in Section 4.3. 

Based on specific sensor performance aims, the desired form of sense electrostatic force 𝑓𝑈,𝑌 

can be determined. Based on this desired form, the analysis presented earlier can be used to 

identify a suitable voltage squared distribution, 𝑉±[휃0(𝑖)]
2 in (4.52), which determines the 

voltages that must be applied to each electrode to generate the appropriate form of 𝑓𝑈,𝑌.  

The procedure to determine the voltage distribution is outlined in Table 4.6 below, where the 

shaded cells describe an example of the implementation at each step for the 𝑗 = 8 case. Table 

4.6 can similarly be used for any identified aims associated with the drive electrostatic force 

𝑓𝑈,𝑋. 

Table 4.6: Goal-based selection procedure of voltage squared distribution 𝑽±[𝜽𝟎(𝒊)]
𝟐 with example  

 Steps 

1 Determine the desired or undesired terms in 𝑓𝑈,𝑌  and the nature (if applicable) in 

(4.45b) based on sense dynamics aims and the corresponding order, 𝑞. 

A term proportional to 𝑋𝑌 must appear in 𝑓𝑈,𝑌, with a harmonic coefficient at frequency 𝜔 

and phase matching the drive phase 𝜙𝑥. This is a quadratic electrostatic force, with 𝑞 = 3. 

The force coefficient of interest, 𝐴
𝑋1𝑌1
𝑓𝑌

 is proportional to cos(𝜔𝑡 + 𝜙𝑥). 

2 Integrate (4.55b) with respect to 𝑌 to determine the corresponding terms in 𝑈𝑞. 
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𝑈3 must contain a term proportional to 𝐴
𝑋1𝑌1
𝑓𝑌

𝑋𝑌2. 

3 Use Table 4.4 (odd 𝑞) or Table 4.5 (even 𝑞) to identify the capacitance coefficients 

𝛼𝑞,2(2𝑝𝑐+1)
±

, 𝛽𝑞,2(2𝑝𝑐+1)
±

 or 𝛼𝑞,4𝑝𝑐

± , 𝛽𝑞,4𝑝𝑐

±  containing the desired terms. 

Table 4.4 shows that capacitance coefficients 𝛼3,2
±  and 𝛼3,6

±  contain terms proportional to 

𝑋𝑌2. 

4 Identify 𝑝𝑐 for the capacitance coefficients of interest. 

𝛼3,2
±  and 𝛼3,6

±  correspond to 𝑝𝑐 = 0 and 𝑝𝑐 = 1 respectively. 

5 Check which (𝑝𝑐 , 𝑚𝑉) combinations result in integer values of (4𝑝𝑐 + 2 ± 𝑚𝑉) 𝑗⁄  

for odd 𝑞, or (4𝑝𝑐 ± 𝑚𝑉) 𝑗⁄  for even 𝑞. This determines the 𝑚𝑉 values of interest, 

i.e. the cos𝑚𝑉휃0(𝑖) and sin𝑚𝑉휃0(𝑖) variation components of the voltage squared in 

(4.52). 

The combinations are (𝑝𝑐 , 𝑚𝑉) = (0,2), (0,6), (1,2), (1,6) . 𝑚𝑉 = 2,6  are of interest., 

corresponding to cos2휃0(𝑖), sin 2휃0(𝑖), cos 6휃0(𝑖), sin 6휃0(𝑖) variation components of 

the voltage squared in (4.52). 

6 Disregard all the sine terms in (4.56a) for odd 𝑞 or (4.56b) for even 𝑞 and retain only 

cosine terms associated with the (𝑝𝑐 , 𝑚𝑉) combinations identified in Step 5.  

Retaining only the terms in (4.56a) involving the combinations (𝛼𝑞,2(2𝑝𝑐+1)
+ ,𝑚𝑉) =

(𝛼3,2
+ , 2), (𝛼3,2

+ , 6), (𝛼3,6
+ , 2), (𝛼3,6

+ , 6) simplifies (4.56a) to: 

−
1

2
{
𝛼3,2

+ (𝜉2
+ − 𝜉2

−)

2
+

𝛼3,6
+ (𝜉6

+ − 𝜉6
−)

2

+ [
𝛼3,2

+ (𝜉6
+ − 𝜉6

− + 𝜉2
+ − 𝜉2

−)

2
+

𝛼3,6
+ (𝜉2

+ − 𝜉2
−)

2
] cos 4휃0(𝑖)

+ [
𝛼3,2

+ (𝜉6
+ − 𝜉6

−)

2
+

𝛼3,6
+ (𝜉2

+ − 𝜉2
−)

2
] cos8휃0(𝑖)

+
𝛼3,6

+ (𝜉6
+ − 𝜉6

−)

2
cos 12휃0(𝑖)} 
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7 Substitute the simplified expression for (4.56a) or (4.56b) in Step 6 into (4.55b) and 

evaluate the summation from 𝑖 = 1 to 𝑗. This evaluates the portion of the electrostatic 

force only from the (𝑝𝑐 , 𝑚𝑉) combinations identified. 

Substituting the simplified result of (4.56a) into (4.55b) gives the following terms of interest 

in 𝑓𝑈,𝑌|𝑞: 

−
𝑗

4𝑀

𝜕

𝜕𝑌
[(𝛼3,2

+ + 𝛼3,6
+ )(𝜉2

+ − 𝜉2
− + 𝜉6

+ − 𝜉6
−)] 

8 Use Table 4.4 or Table 4.5 to identify the definitions of the capacitance coefficients 

involved and substitute these definitions into the terms of interest in 𝑓𝑈,𝑌|𝑞 identified 

in Step 7. 

From Table 4.4, 

𝛼3,2
+ =

휀0𝐵𝑅

𝑔0
4 [

3

4
sin 𝛿 (𝑋3 + 𝑋𝑌2)] , 𝛼3,6

+ =
휀0𝐵𝑅

𝑔0
4 [

sin 3𝛿

12
(𝑋3 − 3𝑋𝑌2)] 

the resulting terms in electrostatic force 𝑓𝑈,𝑌|3 are: 

−
2휀0

5𝜌ℎ𝜋𝑔0
4
𝑗(𝜉2

+ − 𝜉2
− + 𝜉6

+ − 𝜉6
−) (

3

4
sin𝛿 −

sin3𝛿

4
)𝑋𝑌 

9 Deduce constraint for the 𝜉𝑚𝑉

±  involved based on the goal for 𝑓𝑈,𝑌 in Step 1. 

𝜉2
+ − 𝜉2

− + 𝜉6
+ − 𝜉6

− ∝ cos(𝜔𝑡 + 𝜙𝑥) with a nonzero amplitude. 

The outcome of Step 9 imposes a condition on the voltage squared distribution 𝑉±[휃0(𝑖)]
2 in 

(4.52), which must be satisfied to achieve the aim in Step 1. This can then be used to identify 

a suitable voltage distribution 𝑉±[휃0(𝑖)] for this purpose. In the case where multiple aims are 

established based on a desired form of the sense electrostatic force 𝑓𝑈,𝑌, the steps outlined in 

Table 4.6 can be performed for all of the identified aims. Each aim will result in a different 

condition for voltage squared coefficients 𝜉𝑚𝑉

± , 휁𝑚𝑉

± . The selection criteria is then based on 

selecting the simplest form of voltage squared distribution 𝑉±[휃0(𝑖)]
2 in (4.52) satisfying all 

the identified conditions. (4.9) and (4.10) are examples of such conditions, where (4.9) 

imposes a condition on 𝜉0
+ + 𝜉0

− to enable negation of the self-induced parametric excitation, 

and (4.10) imposes a condition on 𝜉2
+ − 𝜉2

− to avoid multi-frequency drive excitation. 
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4.5. Linearising and trimming sensor output 

The results in Section 4.3.4 indicated that rate output linearisation can only be achieved for a 

wide range of drive amplitudes for a continuous electrode configuration with the net 

parametric excitation nullified, and Table 4.3 showed that to achieve linearisation and 

trimming of the rate output, frequency matching must also be achieved. The quadrature output 

is also not nullified after the self-induced parametric excitation is negated, indicating that the 

device performance has not achieved linear, trimmed state. This section addresses these issues 

in detail and aims to replicate the rate and quadrature outputs of a standard linear, trimmed 

device when the net parametric amplification is nullified for the general case when the 

frequencies are not matched. This study extends the results obtained in Section 4.3 to the 

general case by modifying the electrostatic forces using the framework proposed in Section 

4.4.  

The interaction and balance of forces dictating the sense response is analysed first to identify 

the force conditions required to ensure a linear, trimmed rate output and nullified quadrature 

output. These force conditions are used to obtain a target form of the electrostatic forces to 

replicate the force conditions in a linear, ideal/trimmed device. To achieve the targeted form 

of electrostatic force, a suitable voltage distribution is developed based on the selection 

procedures outlined in Table 4.6. The governing equations of motion are then derived based 

on the selected electrostatic configuration and the drive and sense dynamics are analysed. 

Based on the sense dynamics, the electrostatic forces generated using the selected electrostatic 

configuration are then used to nullify the net parametric excitation, linearise and trim the rate 

output, and eliminate the quadrature output. The effectiveness of the implementation is 

assessed by comparing the resulting rate and quadrature outputs against that for the case of 

nullified net parametric excitation but without addressing the force conditions, as investigated 

in Section 4.3.  The potential of using the chosen electrostatic configuration for closed-loop 

rate sensing is also investigated, and the closed-loop rate sensing performance is assessed in 

terms of the rate sensitivity and bias rate. Alternative methods to use the proposed electrostatic 

configuration to linearise and trim the rate output while nullifying the quadrature output 

without nullifying the net parametric excitation are also discussed. The cases with and without 

nonlinear frequency balancing will be considered. 

4.5.1. Balance of averaged forces of sense mode 

The interaction between the sense mode forces can be manipulated to achieve a linear, 

trimmed sense response. In the following investigation, the framework of conditions to 

achieve this is discussed.  
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When the sense response is steady-state harmonic, the sense equation of motion can be used 

to obtain the in/antiphase and quadrature amplitudes. Averaging the sense equation of motion 

in (4.1) without solving for the sense amplitude components 𝑦 cos𝜙𝑦𝑥 and 𝑦 sin𝜙𝑦𝑥, gives: 

[
−𝜔𝑋

2 + 𝜔𝑌
2 + 𝜆1,𝑟 −2Γ𝜔𝑋

−2Γ𝜔𝑋 𝜔𝑋
2 − 𝜔𝑌

2 + 𝜆1,𝑟
] �̅� = [

𝑓∆
𝑓Ω

] 
(4.57) 

where �̅� is the sense amplitude components vector: 

�̅� = [
𝑦 cos𝜙𝑦𝑥

𝑦 sin𝜙𝑦𝑥
] 

(4.58) 

(4.57) describes the balance between the various averaged force terms in the sense equation 

of motion in (4.1), and replicates two coupled force balance problems distinguished by the 

phase of these forces. The first row in (4.57) represents the interaction of the force components 

in phase/antiphase with the linear elastic coupling force, characterised by the force 

components exhibiting harmonic variations proportional to cos(𝜔𝑡 + 𝜙𝑥), while the second 

row represents the interaction of the force components in phase/antiphase with the Coriolis 

force, where these force components are proportional to sin(𝜔𝑡 + 𝜙𝑥). 

Revisiting (3.41), the targeted sense response of a linear, trimmed device is: 

�̅�𝟎
𝒍 = [

𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙

𝑦0
𝑙 sin𝜙𝑦𝑥,0

𝑙 ] = [−
𝑓Ω

2Γ𝜔𝑋

0

] 
(3.41) 

Replacing �̅� in (4.57) with its targeted form �̅�𝟎
𝒍 , it can be shown that force balance in (4.57) is 

only satisfied at this targeted sense amplitude under the following condition: 

(−𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟)𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙 = 𝑓∆ (4.59) 

which is equivalent to nullifying the quadrature output for the basic electrostatic configuration 

using the condition in (3.68). 

Recalling from Section 3.5.3 that that nonlinear frequency balancing requires 𝜆1,𝑟 = 𝜔𝑋
2 −

𝜔𝑌
2, the term on the left side stems from the nonlinear frequency imbalance. The magnitudes 

of the forces stemming from the nonlinear frequency imbalance and the linear elastic coupling 

𝑓∆  must balance to satisfy (4.59) for the forces in (4.57) to be in balance when �̅� = �̅�𝟎
𝒍 . 

Otherwise, a nonzero quadrature response 𝑦 sin𝜙𝑦𝑥 will appear in �̅� to compensate for the 
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mismatch between (−𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟)𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙  and 𝑓∆ in (4.59) and restore the force 

balance in (4.57), thus deviating �̅� from its targeted form �̅�𝟎
𝒍 .  

To ensure that the resulting sense response satisfies �̅� = �̅�𝟎
𝒍  in all cases, the force balance in 

(4.57) must be modified. This can be achieved by manipulating the net force vector on the 

right side of (4.57). For this purpose, replacing �̅� in (4.57) with �̅�𝟎
𝒍  and imposing an additional 

force vector �̅�𝟎
𝒍  on the right side of (4.57), (4.57) is modified to: 

[
−𝜔𝑋

2 + 𝜔𝑌
2 + 𝜆1,𝑟 −2Γ𝜔𝑋

−2Γ𝜔𝑋 𝜔𝑋
2 − 𝜔𝑌

2 + 𝜆1,𝑟
] �̅�𝟎

𝒍 = [
𝑓∆
𝑓Ω

] + �̅�𝟎
𝒍  

(4.60) 

To ensure �̅� = �̅�𝟎
𝒍 , �̅�𝟎

𝒍  is defined as: 

�̅�𝟎
𝒍 = [𝑓0

𝑙

0
] = [−𝑓∆ +

𝜔𝑋
2 − 𝜔𝑌

2 − 𝜆1,𝑟

2Γ𝜔𝑋
𝑓Ω

0

] 

(4.61) 

Substituting (4.61) into (4.60) and comparing the result against the original force balancing 

case in (4.57) shows that this implementation is simply superposing a balancing force with 

amplitude 𝑓0
𝑙, in phase/antiphase with the linear elastic coupling force. (4.61) can be obtained 

by adding 𝑓0
𝑙 to the right side of (4.59) and solving for 𝑓0

𝑙. This additional balancing force acts 

to negate the residual force resulting from the mismatch between the magnitudes of the forces 

stemming from the nonlinear frequency imbalance and the linear elastic coupling in (4.59).  

Noting that (4.57) is the averaged result of the sense equation of motion in (4.1), the modified 

sense equation of motion in the presence of the additional force 𝑓0
𝑙  corresponding to the 

corrected force balance in (4.60) can be deduced. This gives: 

�̈� + 2Γ�̇� + [𝜔𝑌
2 + 2𝜆1,𝑟 cos 2(𝜔𝑡 + 𝜙𝑥)]𝑌

= 𝑓Ω sin(𝜔𝑡 + 𝜙𝑥) + 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) + 𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥) 

(4.62) 

where (4.60) is the averaged result of (4.62).  

Since the drive mode is forced into resonance, 𝜙𝑥 = −90° , so the balancing force 

𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥) is set at a 90° phase lag relative to the drive excitation. It is worth noting 

that 𝑓0
𝑙, as shown in (4.61), is rate-dependent unless nonlinear frequency balancing applies, 

meaning that the force amplitude must be tuned with angular rate changes. In practice, the 

balancing force amplitude 𝑓0
𝑙 must be tuned until the quadrature output nullifies to achieve the 
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targeted amplitude in (4.61). 𝑓0
𝑙  is linearly related to the angular rate and if 𝑓∆ = 0 , the 

balancing force is proportional to the angular rate in a manner similar to FTR mode operation. 

4.5.2. Selection of voltage distribution 

The targeted form of sense equation of motion to guarantee linear, trimmed sense response is 

given by (4.62) and in what follows, the analysis presented in Section 4.4 is used to generate 

the appropriate form of electrostatic forces to achieve this aim. 

Substituting (4.44) and (4.45a) into (4.43a), and (4.44) and (4.45b) into (4.43b) general forms 

for the drive and sense equations of motion can be expressed as: 

�̈� + 2Γ�̇� + 𝜔𝑚
2(1 + ∆𝑚 cos 4Θ𝜔)𝑋 + 𝑓𝑈,𝑋(𝑋, 𝑌) = 𝑓𝑋𝑌(𝑡) (4.63a) 

�̈� + 2Γ�̇� + 𝜔𝑚
2(1 − ∆𝑚 cos 4Θ𝜔)𝑌 + 𝑓𝑈,𝑌(𝑋, 𝑌) = 𝑓𝑌𝑋(𝑡) (4.63b) 

where 

𝑓𝑋𝑌(𝑡) = 𝐺ΩΩ�̇� − 𝜔𝑚
2Δ𝑚 sin4Θ𝜔 𝑌 (4.64a) 

𝑓𝑌𝑋(𝑡) = −𝐺ΩΩ�̇� − 𝜔𝑚
2Δ𝑚 sin 4Θ𝜔 𝑋 (4.64b) 

𝑓𝑋𝑌(𝑡) and 𝑓𝑌𝑋(𝑡) represent the intermodal forcing between the drive and sense modes, and 

can be treated as direct forces acting on the drive and sense modes respectively. 

To ensure (4.63b) achieves the targeted form of sense equation of motion in (4.62) while 

maintaining proper operation of the drive and sense modes, the electrostatic force coefficients, 

𝐴
𝑋𝑞−𝑝−1𝑌𝑝
𝑓𝑋

 and 𝐴
𝑋𝑞−𝑝−1𝑌𝑝
𝑓𝑌

 in (4.45a) and (4.45b) must satisfy the conditions outlined below: 

i) 𝐴
𝑋0𝑌0
𝑓𝑌

∝ cos(𝜔𝑡 + 𝜙𝑥) with tunable amplitude 

ii)  ∫ 𝐴
𝑋0𝑌1
𝑓𝑌

cos𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

≠ 0 only for 𝑛 = 0,2 

iii) ∫ 𝐴
𝑋0𝑌1
𝑓𝑌

sin 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

= 0 for all integer values of 𝑛 

iv) 𝐴
𝑋0𝑌1
𝑓𝑌

= 𝐴
𝑋1𝑌0
𝑓𝑋

 

v) 𝐴
𝑋0𝑌0
𝑓𝑋

∝ cos𝜔𝑡 with tunable amplitude 

The first condition, 𝐴
𝑋0𝑌0
𝑓𝑌

∝ cos(𝜔𝑡 + 𝜙𝑥)  is the main condition necessary to generate 

electrostatic force 𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥)  in (4.62) to linearise and trim the rate output, and 

eliminate the quadrature output. This is a direct electrostatic force of order 𝑞 = 1 which is 

independent of modal coordinates acting on the sense mode. 
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The second and third conditions are constraints for the nature of the net parametric excitation 

of the sense mode. The introduction of any voltage to achieve the first condition 𝐴
𝑋0𝑌0
𝑓𝑌

∝

cos(𝜔𝑡 + 𝜙𝑥) must not simultaneously introduce parametric excitation to the sense mode at 

any frequency other than 2𝜔. The phase of the parametric excitation must also be twice the 

drive mode oscillation phase, indicated by the cos2(𝜔𝑡 + 𝜙𝑥) variation of the sense stiffness 

in (4.62). Coefficient 𝐴
𝑋0𝑌1
𝑓𝑌

 corresponds to a linear sense electrostatic force of order 𝑞 = 2, 

proportional to the sense displacement 𝑌, thus affecting the constant and varying components 

of the linear sense stiffness. 

The fourth condition 𝐴
𝑋0𝑌1
𝑓𝑌

= 𝐴
𝑋1𝑌0
𝑓𝑋

 ensures that the linear electrostatic softening is identical 

for both drive and sense modes, i.e. the modal symmetry described in Section 3.3.1. When 

manipulating 𝐴
𝑋0𝑌1
𝑓𝑌

 to satisfy the second and third conditions, the linear modal symmetry is 

retained to ensure that the linear frequency split is purely attributed to the mechanical 

imperfections. 

The fifth condition 𝐴
𝑋0𝑌0
𝑓𝑋

∝ cos𝜔𝑡 is a constraint on the harmonic drive force. Satisfying the 

first condition must not shift the phase of this force away from that of the drive voltage, or 

introduce harmonic drive forces at other frequencies to avoid multi-frequency excitation. 

𝐴
𝑋0𝑌0
𝑓𝑋

 corresponds to a direct drive force of order 𝑞 = 1, independent of modal coordinates. 

These conditions can be used to identify the corresponding conditions for the voltage squared 

coefficients 𝜉𝑚𝑉

± , 휁𝑚𝑉

±   in (4.52) using the procedures outlined in Table 4.6. This enables a 

suitable voltage distribution to be identified, in addition to the default conditions 𝜉0
+ > 0 and 

𝜉0
− > 0 . The result of the analysis of the aforementioned conditions using Table 4.6 is 

summarised in Table 4.7 below for the case when there are 8 electrodes (𝑗 = 8).  

Table 4.7: Constraints for the coefficients of the voltage squared distribution, 𝝃𝒎𝑽

± , 𝜻𝒎𝑽

±  based on conditions 

to linearise and trim the sense response for the case of 8 inner/outer electrodes 

 Electrostatic force conditions Voltage squared distribution constraints 

1 𝐴
𝑋0𝑌0
𝑓𝑌

∝ cos(𝜔𝑡 + 𝜙𝑥) 휁2
+ − 휁2

− − 휁6
+ + 휁6

− ∝ cos(𝜔𝑡 + 𝜙𝑥) 

2 
∫ 𝐴

𝑋0𝑌1
𝑓𝑌

cos𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

≠ 0 

only for 𝑛 = 0,2 

∫ (𝜉0
+ + 𝜉0

− + 𝜉4
+ + 𝜉4

− + 𝜉8
+ +

2𝜋

𝜔
0

𝜉8
−) cos 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡 ≠ 0 only for 𝑛 = 0,2 
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3 
∫ 𝐴

𝑋0𝑌1
𝑓𝑌

sin 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

= 0 

for all 𝑛 ∈ ℤ 

∫ (𝜉0
+ + 𝜉0

− + 𝜉4
+ + 𝜉4

− + 𝜉8
+ + 𝜉8

−) sin𝑛(𝜔𝑡 +
2𝜋

𝜔
0

𝜙𝑥) 𝑑𝑡 = 0 for all 𝑛 ∈ ℤ 

4 𝐴
𝑋0𝑌1
𝑓𝑌

= 𝐴
𝑋1𝑌0
𝑓𝑋

 𝜉4
+ + 𝜉4

− = 0 

5 𝐴
𝑋0𝑌0
𝑓𝑋

∝ cos𝜔𝑡 𝜉2
+ − 𝜉2

− + 𝜉6
+ − 𝜉6

− ∝ cos𝜔𝑡 

In general, multiple voltage distributions are compatible with the constraints listed in Table 

4.7. However, it is of practical interest to select the simplest possible voltage distribution 

relative to that of the basic electrostatic configuration in (3.6). One example of such a voltage 

distribution is: 

𝑉+[휃0(𝑖)] = 𝑉0 + 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) + 𝑉∆ cos (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos 휃0(𝑖)

+ 𝑉∆ cos (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) sin 휃0(𝑖) + 𝑉𝐴𝐶 cos𝜔𝑡 cos2휃0(𝑖) 

(4.65a) 

𝑉−[휃0(𝑖)] = 𝑉0 − 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) + 𝑉∆ sin (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos 휃0(𝑖)

+ 𝑉∆ sin (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) sin 휃0(𝑖) − 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) 

(4.65b) 

This voltage distribution is similar to (4.11), but with additional balancing voltage components 

involving amplitude 𝑉∆ to satisfy condition 1 in Table 4.7. The balancing voltage phase index 

number 𝑖Δ is an integer. As will be shown, the balancing amplitude 𝑉∆ is tuned to eliminate 

the sense quadrature response to achieve the aim of the balancing force established in Section 

4.5.1.  

The spatial variation involved in this voltage distribution is maximised at 2휃0(𝑖), ensuring the 

resulting voltage squared coefficients 𝜉𝑚𝑉

± , 휁𝑚𝑉

± = 0 for all 𝑚𝑉 > 4. Squaring (4.65a) and 

(4.65b) and comparing the result with (4.52), the nonzero voltage squared coefficients are 

given by: 
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𝜉0
± = 𝑉0

2 +
𝑉𝜆

2

2
+

𝑉∆
2

2
+

𝑉𝐴𝐶
2

4

± [2𝑉0𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) +
𝑉∆

2

2
cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)]

−
𝑉𝜆

2

2
cos 2(𝜔𝑡 + 𝜙𝑥) +

𝑉𝐴𝐶
2

4
cos 2𝜔𝑡 

(4.66a) 

𝜉1
+ = 2𝑉∆ cos (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 + 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) +

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(4.66b) 

휁1
+ = 2𝑉∆ cos (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 + 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) −

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(4.66c) 

𝜉1
− = 2𝑉∆ sin (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 − 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) −

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(4.66d) 

휁1
− = 2𝑉∆ sin (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 − 𝑉𝜆 sin(𝜔𝑡 + 𝜙𝑥) +

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(4.66e) 

𝜉2
± = ±2𝑉0𝑉𝐴𝐶 cos𝜔𝑡 + 𝑉𝜆𝑉𝐴𝐶[sin(2𝜔𝑡 + 𝜙𝑥) + sin𝜙𝑥] (4.66f) 

휁2
± =

𝑉∆
2

2
[1 ± cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)] 

(4.66g) 

𝜉3
+ = 휁3

+ = 𝑉Δ𝑉𝐴𝐶 cos (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos𝜔𝑡 

(4.66h) 

𝜉3
− = 휁3

− = −𝑉Δ𝑉𝐴𝐶 sin (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos𝜔𝑡 

(4.66i) 

𝜉4
± =

𝑉𝐴𝐶
2

4
(1 + cos 2𝜔𝑡) 

(4.66j) 

The definitions in (4.66a) - (4.66j) show that the resulting voltage squared distribution is 

composed of constant, 1휃0(𝑖), 2휃0(𝑖), 3휃0(𝑖) and 4휃0(𝑖) variation components.  

The constant component determines the linear electrostatic force, thus contributing to the 

linear softening of the drive and sense modes. As shown in (4.66a), when terms involving 

𝑉𝐴𝐶
2 are neglected, the sum 𝜉0

+ + 𝜉0
− is composed of a constant component and a double-

frequency component. The parametric pumping voltage contributes to the double-frequency 

component and is responsible for generating the linear parametric excitation to counteract the 

self-induced parametric excitation.  
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The 2휃0(𝑖) variation component generates the direct forces acting on the drive and sense 

modes. From (4.52), coefficients 𝜉2
± and 휁2

± are associated with the cos2휃0(𝑖) and sin2휃0(𝑖) 

variation components respectively. As such, 𝜉2
± results in the direct electrostatic forcing of the 

drive mode while 휁2
± acts on the sense mode. From (4.66f), 𝜉2

+ − 𝜉2
− is proportional to 𝑉0𝑉𝐴𝐶 

and is responsible for generating the harmonic drive force to initiate the drive mode vibration. 

From (4.66g), 휁2
+ − 휁2

− is proportional to 𝑉∆
2, serving to generate the sense mode balancing 

force 𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥) in (4.62) to eliminate the quadrature output. 

In principle, the 4휃0(𝑖) variation component contributes to linear frequency splits. However, 

since 𝜉4
± is proportional to 𝑉𝐴𝐶

2, 𝜉4
± is negligible and this frequency split is insignificant. 

The 1휃0(𝑖) and 3휃0(𝑖) variation components will not contribute to the total electrostatic force, 

as these correspond to odd 𝑚𝑉  (see the discussion in Section 4.4.5). As such, the voltage 

squared coefficients 𝜉1
±, 휁1

±, 𝜉3
±, 휁3

± in (4.66b), (4.66c), (4.66d), (4.66e), (4.66h) and (4.66i) 

can be disregarded.  

Using (4.66a), (4.66f), (4.66g) and (4.66j), it can be confirmed that the conditions in Table 4.7 

are all satisfied except for condition 4 requiring 𝜉4
+ + 𝜉4

− = 0 . However, since the drive 

voltage is small, this will have negligible impact on the resulting modal dynamics. Similar to 

previous analyses, terms involving 𝑉𝐴𝐶
2 are neglected in the subsequent investigation. To 

distinguish the roles of the bias, drive, parametric pumping and balancing voltage components 

in (4.65a) and (4.65b), the coefficients in (4.66a) – (4.66j) will be used to define the various 

electrostatic force terms appearing in the equations of motion.  This is discussed next. 

4.5.3. Modal dynamics for linearisation and trimming conditions 

In what follows equations of motions are developed based on the voltage distribution selected 

in (4.65a) and (4.65b). The resulting equations of motion are then analysed by applying the 

same techniques implemented on (3.14) and (4.14) to derive the resulting drive and sense 

dynamics. The conditions for linearising and trimming the sensor output will then be identified 

for the case of nullified net parametric excitation. 

Equations of motion 

Using Table 4.4 and Table 4.5 to obtain the full expressions of the capacitance components 

𝑐𝑞
±[휃0(𝑖)] and substituting the result into (4.54) along with the expression for the chosen 

voltage distribution in (4.65a) and (4.65b), an expression for 𝑈𝑞
±[휃0(𝑖)] can be determined for 

𝑞 = 1,2,3,4. Substituting these results into (4.55a) and (4.55b) then gives the 𝑞 − 1 ordered 
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electrostatic forces. Using summations 𝑓𝑈,𝑋 = ∑ 𝑓𝑈,𝑋|𝑞
4
𝑞=1  and 𝑓𝑈,𝑌 = ∑ 𝑓𝑈,𝑌|𝑞

4
𝑞=1  gives the 

following total electrostatic forces: 

[
𝑓𝑈,𝑋

𝑓𝑈,𝑌
] = �̅�𝟎 + �̿�𝟏�̅�𝟏 + �̿�𝟐�̅�𝟐 + �̿�𝟑�̅�𝟑 

(4.67) 

The vector �̅�𝟎 and the matrices �̿�𝟏, �̿�𝟐, �̿�𝟑 are the results of the participation of the various 

voltage squared distribution coefficients in (4.66a) – (4.66j) and are given by: 

�̅�𝟎 = −
휀0

5𝜌𝜋ℎ𝑔0
2
𝑗 sin 𝛿 [

𝜉2
+ − 𝜉2

−

휁2
+ − 휁2

−] 
(4.68a) 

�̿�𝟏 = −
2휀0

5𝜌𝜋ℎ𝑔0
3
𝑗𝛿 [

𝜉0
+ + 𝜉0

− 0

0 𝜉0
+ + 𝜉0

−] 
(4.68b) 

�̿�𝟐 = −
휀0

20𝜌𝜋ℎ𝑔0
4
𝑗 {(9 sin 𝛿 + sin 3𝛿) [

𝜉2
+ − 𝜉2

− 0 0

0 0 휁2
+ − 휁2

−]

+ (3 sin 𝛿 − sin3𝛿) [
0 2(휁2

+ − 휁2
−) 𝜉2

+ − 𝜉2
−

휁2
+ − 휁2

− 2(𝜉2
+ − 𝜉2

−) 0
]} 

(4.68c) 

�̿�𝟑 = −
휀0

20𝜌𝜋ℎ𝑔0
5
𝑗 {(12 sin 𝛿 + sin 4𝛿) [

𝜉0
+ + 𝜉0

− 0 0 0

0 0 0 𝜉0
+ + 𝜉0

−]

+ (12 sin 𝛿 − 3 sin4𝛿) [
0 0 𝜉0

+ + 𝜉0
− 0

0 𝜉0
+ + 𝜉0

− 0 0
]} 

(4.68d) 

where the coefficients with odd 𝑚𝑉 , i.e. 𝜉1
± , 휁1

± , 𝜉3
± , 휁3

±  have no contributions to the net 

electrostatic force after summing the electrostatic potential energy for all electrodes.  

Noting that the mechanical component of the equations of motion is unaffected by the applied 

voltage distribution, (4.43a) and (4.43b) can be used directly to obtain the modal-mass 

normalised equations of motion. Substituting the electrostatic forces in (4.67) and the 

mechanical forces in (4.44) into (4.43a) and (4.43b) gives the following equations of motion: 

�̅̈�𝟏 + 2Γ�̅̇�𝟏 + �̿�𝟏(𝑡)�̅�𝟏 + �̿�𝟑(𝑡)
�̅�𝟑

𝑔0
2

= Ω�̿�𝛀�̅̇�𝟏 + �̅�(𝑡)

+ [𝜒 cos𝜔𝑡 �̿�𝝌 + 𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋) �̿�𝝌𝚫]
�̅�𝟐

𝑔0
2
 

(4.69) 
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Due to the presence of the balancing voltage in (4.65a) and (4.65b), (4.69) differs from (4.14) 

through the terms in the matrices �̿�𝟏(𝑡), �̿�𝟑(𝑡), and the newly introduced vector �̅�(𝑡) and 

matrix �̿�𝝌𝚫. 

�̅�(𝑡)  and �̿�𝝌𝚫  are arranged on the right side of (4.69) as they stem from the voltage 

components giving rise to the direct forces acting on the drive and sense modes. �̅�(𝑡) is the 

direct force vector of order 𝑞 = 1 and �̿�𝝌𝚫 is a matrix characterising the quadratic correction 

of the harmonic force 𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋). The bracketed terms on the right side of (4.69) 

have been arranged to show the similarities of quadratic correction roles of �̿�𝝌𝚫 and �̿�𝝌. �̅�(𝑡) 

and �̿�𝝌𝚫 are given by: 

�̅�(𝑡) = −�̅�𝟎 = [
𝜒 cos𝜔𝑡

𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)] 
(4.70) 

�̿�𝝌𝚫 = [
0 1 − cos2𝛿 0

1 − cos2𝛿

2
0

5 + cos2𝛿

2

] 
(4.71) 

where 

𝜒Δ = 𝑗
휀0 sin𝛿

5𝜌ℎ𝜋𝑔0
2
𝑉∆

2 
(4.72) 

𝜒Δ defines the modal-mass-normalised amplitude of the force directly applied on the sense 

mode, in a manner similar to the harmonic drive force amplitude 𝜒  defined in (3.19). 

Comparing (4.70) and (4.68a), the role of the voltage squared coefficients 휁2
± for direct forcing 

of the sense mode is clear. 𝜒Δ ∝ 휁2
+ − 휁2

−, which is the result of satisfying the first condition 

in Table 4.7. This direct sense force is used as the balancing force 𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥) in the 

targeted sense equation of motion in (4.62). 

Matrices �̿�𝟏(𝑡), �̿�𝟑(𝑡) are associated with the linear (�̿�𝟏�̅�𝟏) and cubic (�̿�𝟑�̅�𝟑) electrostatic 

forces in (4.67) respectively, so they only depend on the voltage squared coefficients 𝜉0
±. 

�̿�𝟏(𝑡) and �̿�𝟑(𝑡) are given by: 

�̿�𝟏(𝑡) = [
𝜔0,𝜆,Δ

2 0

0 𝜔0,𝜆,Δ
2] + 𝜔𝑚

2 [
Δ𝑚 cos 4Θ𝜔 Δ𝑚 sin4Θ𝜔

Δ𝑚 sin 4Θ𝜔 −Δ𝑚 cos 4Θ𝜔
]

+ [
𝜔𝜆

2 0

0 𝜔𝜆
2] cos2(𝜔𝑡 + 𝜙𝑥) 

(4.73) 
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�̿�𝟑(𝑡) = [
𝛾0,𝜆,Δ 0 𝜅0,𝜆,Δ 0

0 𝜅0,𝜆,Δ 0 𝛾0,𝜆,Δ
] − [

𝛾𝜆 0 𝜅𝜆 0
0 𝜅𝜆 0 𝛾𝜆

] cos 2(𝜔𝑡 + 𝜙𝑥) 
(4.74) 

where 

𝜔0,𝜆,Δ
2 = 𝜔0

2 − 𝜔𝜆
2 − 𝜔Δ

2 (4.75) 

𝛾0,𝜆,Δ = 𝛾0 + 𝛾𝜆 + 𝛾Δ (4.76) 

𝜅0,𝜆,Δ = 𝜅0 + 𝜅𝜆 + 𝜅Δ (4.77) 

In these equations 𝜔0,𝜆,Δ
2, 𝛾0,𝜆,Δ and 𝜅0,𝜆,Δ represent the linear resonant frequency, single and 

couple-mode cubic stiffnesses (modal-mass-normalised) respectively, and the ‘ 0, 𝜆, Δ ’ 

subscripts indicate contributions from the bias voltage 𝑉0, and the amplitudes of the parametric 

pumping voltage 𝑉𝜆 and the balancing voltage 𝑉Δ to these quantities. (4.73) and (4.74) only 

differ from (4.15) and (4.16) through these terms. Comparing the definitions of these terms in 

(4.75), (4.76) and (4.77) against those of 𝜔0,𝜆
2 , 𝛾0,𝜆  and 𝜅0,𝜆  in (4.17), (4.18) and (4.19), 

additional terms with the subscript ‘Δ’ are present to highlight the contribution from the 

balancing voltage. 𝜔Δ
2, 𝛾Δ and 𝜅Δ are given by: 

𝜔Δ
2 = 𝑗

2휀0𝑉Δ
2

5𝜌ℎ𝜋𝑔0
3
𝛿 

(4.78) 

𝛾Δ = −𝑗
3휀0𝑉Δ

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 +

sin 4𝛿

12
) 

(4.79) 

𝜅Δ = −𝑗
3휀0𝑉Δ

2

5𝜌ℎ𝜋𝑔0
3
(𝛿 −

sin 4𝛿

4
) 

(4.80) 

Comparing 𝜔Δ
2 , 𝛾Δ  and 𝜅Δ  against 𝜔λ

2 , 𝛾λ  and 𝜅λ  in (4.21), (4.22) and (4.23), clear 

similarities can be observed. The corresponding definitions simply involve an interchange 

between the voltage amplitudes 𝑉Δ and 𝑉λ. This similarity is because of the similarity of the 

contributions of these voltage components to the coefficient sum 𝜉0
+ + 𝜉0

− defined in (4.66a). 

As such, 𝛾Δ = 𝜅Δ only for the case of a continuous electrode distribution when 𝑗 = 8 in a 

manner similar to the relationship between 𝛾λ and 𝜅λ, and when 𝑗 = 16 or 32, 𝛾Δ = 𝜅Δ for all 

electrode spans as the terms involving sin 4𝛿 in (4.79) and (4.80) vanish after the summation 

of the electrostatic potential energy.  
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The parametric pumping voltage and balancing voltage are harmonic voltages, they interact 

constructively to strengthen both the linear and nonlinear electrostatic softening effects, i.e. 

𝜔0,𝜆,Δ
2 < 𝜔0,𝜆

2 < 𝜔0
2, |𝛾0,𝜆,Δ| >  |𝛾0,𝜆| >  |𝛾0|  and |𝜅0,𝜆,Δ| >  |𝜅0,𝜆| >  |𝜅0| . The latter, 

where the coupled-mode stiffness is increased indicates a stronger nonlinear elastic coupling, 

thus increasing the amplitude of the resulting self-induced parametric excitation. 

With the definitions described, it can be shown by setting the balancing voltage amplitude 𝑉Δ 

to zero equations of motion in (4.69) revert to (4.14). Also if the parametric pumping voltage 

amplitude 𝑉λ is zero, (4.69) is identical to the equations of motion for the basic electrostatic 

configuration in (3.14). 

Drive dynamics 

Applying the same assumptions as those relevant to (3.24) and (4.24), the drive equation of 

motion in (4.69) can be simplified to: 

�̈� + 2Γ�̇� + [𝜔0,𝜆,Δ
2 + 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔 + 𝜔𝜆
2 cos 2(𝜔𝑡 + 𝜙𝑥)]𝑋

+ [𝛾0,𝜆,Δ − 𝛾𝜆 cos2(𝜔𝑡 + 𝜙𝑥)]
𝑋3

𝑔0
2

= 𝜒 cos𝜔𝑡 (1 + 𝑐𝑋𝑋

𝑋2

𝑔0
2) 

(4.81) 

which yields the averaged drive frequency: 

𝜔𝑋
2 = 𝜔0,𝜆,Δ

2 + 𝜔𝑚
2Δ𝑚 cos4Θ𝜔 +

𝜔𝜆
2

2
+ (

3

4
𝛾0,𝜆,Δ −

1

2
𝛾𝜆)

𝑥2

𝑔0
2
 

(4.82) 

where the additional linear and nonlinear softening due to the balancing voltage is clear, as 

shown in the terms involving 𝜔0,𝜆,Δ
2 and 𝛾0,𝜆,Δ respectively. 

Sense dynamics 

The approximated sense equation of motion is similarly obtained from (4.69). This gives: 

�̈� + 2Γ�̇� + {𝜔0,𝜆,Δ
2 − 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔 + (𝜔𝜆
2 − 𝜅𝜆

𝑋2

𝑔0
2) cos 2(𝜔𝑡 + 𝜙𝑥)

+ 𝜅0,𝜆,Δ

𝑋2

𝑔0
2
−

𝜒𝑐𝑋𝑌

𝑔0
cos𝜔𝑡

𝑋

𝑔0
}𝑌

= −𝐺ΩΩ�̇� − 𝜔𝑚
2Δ𝑚 sin 4Θ𝜔 𝑋

+ 𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)(1 + 𝑐Δ,𝑋𝑋

𝑋2

𝑔0
2) 

(4.83) 

where 𝑐Δ,𝑋𝑋 = sin2 𝛿 and 𝜔 = 𝜔𝑋. 
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(4.83) yields an averaged force balance case similar to (4.60), giving the following result when 

𝜔 = 𝜔𝑋: 

[
−�̅�2 + 𝜆1,𝑟 −2Γ𝜔𝑋

−2Γ𝜔𝑋 �̅�2 + 𝜆1,𝑟
] �̅� = [

𝑓∆ + 𝑓0
𝑙

𝑓Ω
] 

(4.84) 

In this equation 𝑓0
𝑙 is the balancing force imposed on the sense mode to nullify the quadrature 

output and ensure that �̅� = �̅�𝟎
𝒍 , and is given by: 

𝑓0
𝑙 = 𝜒Δ cos 𝑖Δ𝜋 (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2) 

(4.85) 

Recalling from (4.72) that 𝜒Δ > 0, the phase index number 𝑖Δ is required to allow for negative 

values of 𝑓0
𝑙. This is important because as shown in (4.61), the required 𝑓0

𝑙 can be negative 

depending on the angular rate, nonlinear frequency imbalance and the linear elastic coupling 

force. Noting from (4.61) that the required 𝑓0
𝑙 is linearly related to the angular rate and that 

𝜒Δ ∝ 𝑉∆
2 from the definition in (4.72), equating (4.61) and (4.85) shows that 𝑉∆

2 is linearly 

related to the angular rate. If there is no linear elastic coupling force (𝑓Δ = 0 ), 𝑉∆
2  is 

proportional to the angular rate, similar to FTR mode operation [26]. The potential of using 

the balancing voltage for rate sensing will be considered later. 

In (4.84) �̅�2 and 𝜆1,𝑟 are the effective frequency detuning parameter and parametric excitation 

amplitude respectively and are given by: 

�̅�2 = 𝜔𝑋
2 − 𝜔𝑌

2 = �̅�𝑙2 − �̅�𝑐2(𝑥) (4.86) 

𝜆1,𝑟 = 𝜆1,0(𝑥) + 𝜆1,Δ(𝑥) + 𝜆1,𝜆 (4.87) 

where the amplitude-dependent terms in (4.86) and (4.87) have been defined as functions of  

the drive amplitude. 

The frequency detuning terms in (4.86) have been decomposed according to the order of the 

originating forces, linear or cubic. The frequency detuning components are given by: 

�̅�𝑙2 = 2𝜔𝑚
2Δ𝑚 cos 4Θ𝜔 +

𝜔𝜆
2

2
 

(4.88) 

�̅�𝑐2(𝑥) = − [
1

4
(3𝛾0 − 2𝜅0) +

1

4
(𝛾𝜆 − 𝜅𝜆) +

1

4
(3𝛾Δ − 2𝜅Δ)]

𝑥2

𝑔0
2
 

(4.89) 
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where the contributions from the bias, parametric pumping and balancing voltages have been 

decomposed. 

The balancing voltage only affects the cubic force contribution towards the total frequency 

detuning, i.e. �̅�𝑐2(𝑥) . Noting the definitions of 𝛾0 ,  𝜅0 ,  𝛾𝜆 , 𝜅𝜆 , 𝛾Δ , 𝜅Δ , �̅�𝑐2(𝑥) > 0 

indicating that that the cubic restoring forces exhibit greater softening effects on the drive 

mode than the sense mode in a manner similar to the previous cases. The balancing voltage 

increases the softening rate difference between the drive and sense modes. However, the 

parametric pumping voltage can be used to tune the corresponding frequency component 𝜔𝜆
2 

in (4.88) to adjust the total frequency detuning. Since �̅�𝑐2(𝑥) is scaled by the square of the 

drive amplitude ratio 𝑥 𝑔0⁄ , �̅�𝑙2 is typically orders of magnitude larger than �̅�𝑐2(𝑥) unless 

the imperfection is small. As such, it is more effective to adjust the total frequency detuning 

by regulating its linear contribution �̅�𝑙2, as using �̅�𝑐2(𝑥) for this purpose will require larger 

voltages. 

In (4.87) the net parametric excitation amplitude is composed of the self-induced parametric 

excitation 𝜆1,0(𝑥) defined in (4.37), the linear amplitude-independent parametric excitation 

𝜆1,𝜆 also defined in (4.37) and an additional parametric excitation arising from the balancing 

voltage, defined as: 

𝜆1,Δ(𝑥) = 𝜅Δ

𝑥2

4𝑔0
2
 

(4.90) 

𝜆1,Δ(𝑥) and the self-induced parametric excitation arise due to modulation of the sense mode 

stiffness by large oscillatory drive displacements, resulting in the drive amplitude 

dependencies of these parametric excitation components. This is in contrast to the linear 

parametric excitation 𝜆1,𝜆 which directly stems from pump voltage modulation. As such, one 

has direct control of the linear parametric excitation 𝜆1,𝜆 by tuning the parametric pumping 

voltage. The significance of 𝜆1,𝜆 is demonstrated in the following. 

4.5.4. Linearisation and trimming of sense response with nullified net 

parametric excitation 

In this section, the conditions to use the balancing voltage to nullify the quadrature output and 

replicate linear, trimmed sense response with the net parametric excitation nullified is 

investigated, and the potential of using the balancing voltage for rate sensing is considered. 

The effects of nullifying the net parametric excitation in the presence of the balancing voltage 

is investigated to assess the resulting rate sensing performance using the balancing voltage.  
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Similar to the sense displacement based open-loop rate sensing, the rate sensing performance 

using the balancing voltage is assessed in terms of the rate sensitivity and bias rate. 

Rate sensing using balancing voltage with linearised and trimmed sense response 

To linearise and trim the rate output and nullify the quadrature output, using (4.61), the 

balancing force amplitude in (4.85) must be adjusted such that: 

𝜒Δ (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2) cos 𝑖Δ𝜋 = 𝜒Δ,Δ + 𝜒Δ,Ω(Ω) 

(4.91) 

𝜒Δ,Δ  and 𝜒Δ,Ω(Ω)  represent the rate-independent and rate-dependent components of the 

balancing force amplitude respectively, given by: 

𝜒Δ,Δ = 𝑗
휀0 sin 𝛿

5𝜌ℎ𝜋𝑔0
2
𝑉∆,Δ

2 cos 𝑖Δ,Δ𝜋 = −𝑓∆ 
(4.92a) 

𝜒Δ,Ω(Ω) = 𝑗
휀0 sin 𝛿

5𝜌ℎ𝜋𝑔0
2
𝑉∆,Ω

2 cos 𝑖Δ,Ω𝜋 =
�̅�2 − 𝜆1,𝑟

2Γ𝜔𝑋
𝑓Ω 

(4.92b) 

Using the definition of 𝜒Δ in (4.72), the definitions in (4.92a) and (4.92b) are such that: 

𝑉∆′
2 cos 𝑖Δ𝜋 = 𝑉∆,Δ

2 cos 𝑖Δ,Δ𝜋 + 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 (4.93) 

where 𝑉∆,Δ, 𝑉∆,Ω are the rate-independent and rate-dependent components of the balancing 

voltage amplitude respectively, and 𝑖Δ,Δ , 𝑖Δ,Ω  are integers representing the corresponding 

phase index numbers. 𝑉∆′ is the nonlinear-corrected balancing voltage amplitude, given by: 

𝑉∆
′ = 𝑉∆√1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2
 

Using (4.92a) and (4.92b) in (4.93) shows that 𝑉∆
2 cos 𝑖Δ𝜋 is linearly related to the Coriolis 

force and angular rate through its rate-dependent component 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋. From (4.93), the 

required 𝑉∆
2 cos 𝑖Δ𝜋 is the sum of two distinct parts:  

 A rate-independent component 𝑉∆,Δ
2 cos 𝑖Δ,Δ𝜋  to counteract the linear elastic 

coupling force 𝑓∆. 𝑉∆,Δ
2 is proportional to the drive amplitude as 𝑓∆ ∝ 𝑥. 

 A rate-dependent part 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 , proportional to the angular rate serving to 

counteract the nonlinear frequency imbalance �̅�2 − 𝜆1,𝑟. 𝑉∆,Ω
2 is generally nonlinear 
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in the drive amplitude unless the nonlinear frequency imbalance �̅�2 − 𝜆1,𝑟 is invariant 

with the drive amplitude. 

When 𝑓∆ = 0 as in the case of drive alignment, 𝑉∆,Δ = 0 as the balancing voltage only serves 

to counteract the nonlinear frequency imbalance, so 𝑉∆
2 cos 𝑖Δ𝜋 ∝ Ω. This linear relationship 

demonstrates the potential for rate sensing using the balancing voltage amplitude. In this 

dissertation, the usage of the balancing voltage for rate sensing is referred as closed-loop rate 

sensing, owing to similarities with standard FTR operation. In this manner, the nullification 

of the sense quadrature response allows dual operation of the device: in open-loop using the 

trimmed, linearised sense amplitude, or in closed-loop using the square of the balancing 

voltage amplitude required for nullifying the sense quadrature response amplitude. 

Nullifying net parametric excitation in the presence of balancing voltage 

The potential to use the linear parametric excitation 𝜆1,𝜆  to counteract the self-induced 

parametric excitation 𝜆1,0(𝑥)  was investigated in Section 4.3. Using a similar approach 

involving setting 𝜆1,𝑟  in (4.87) to zero, the parametric pumping voltage amplitude 𝑉𝜆  is 

adjusted such that the linear parametric excitation 𝜆1,𝜆 counteracts the amplitude-dependent 

parametric excitation components 𝜆1,0(𝑥), 𝜆1,Δ(𝑥) . This parametric pumping voltage 

amplitude adjustment fixes its linear resonant frequency contribution at:  

𝜔𝜆
2|𝜆1,𝑟=0 = −(𝜅Δ + 𝜅0)

𝑥2

2𝑔0
2
 

(4.94) 

The effective nonlinear elastic coupling is strengthened due to the balancing voltage. As such, 

the required parametric pumping voltage to achieve net parametric excitation negation is 

increased, as can be observed by comparing (4.94) against (4.38).  

(4.94) constrains 𝜔𝜆
2 and when substituted into the linear frequency detuning component in 

(4.88), results in the amplitude-dependency of �̅�𝑙2 . Substituting the resulting amplitude-

dependent expression for �̅�𝑙2  and (4.89) into (4.86) gives the following result for the 

constrained frequency detuning: 

�̅�2|𝜆1,𝑟=0 = �̅�𝑙2(𝑥)|𝜆1,𝑟=0 + �̅�𝑐2(𝑥) (4.95) 

where �̅�𝑙2(𝑥)|𝜆1,𝑟=0 is the result of substituting (4.94) into (4.88), given by: 
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�̅�𝑙2(𝑥)|𝜆1,𝑟=0 = 2𝜔𝑚
2Δ𝑚 cos4Θ𝜔 − 𝜅0

𝑥2

4𝑔0
2
− 𝜅Δ

𝑥2

4𝑔0
2
 

(4.96) 

As discussed in Section 4.3, without implementing the balancing voltage, the amplitude 

dependency of the constrained frequency detuning dictates the linearity of the rate and 

quadrature outputs. Since the amplitude dependencies of �̅�𝑙2(𝑥)|𝜆1,𝑟=0 and �̅�𝑐2(𝑥) are both 

quadratic, the amplitude dependency of the constrained frequency detuning in (4.95) is given 

by the following derivative: 

𝜕�̅�2|𝜆1,𝑟=0

𝜕(𝑥′)2
=

1

4
[3(𝛾0 − 𝜅0) + (𝛾𝜆 − 𝜅𝜆) + 3(𝛾Δ − 𝜅Δ)] 

(4.97) 

where 𝑥′ = 𝑥 𝑔0⁄ . The amplitude dependency of the frequency detuning is dictated by the 

relative softening rates between the drive and sense modes, and the effects of the bias, 

parametric excitation and balancing voltages are clear in (4.97).  

Comparing the amplitude dependencies of the frequency detuning in (4.86) and its constrained 

form in (4.95), it is clear that setting the parametric pumping voltage to negate the self-induced 

parametric excitation also reduces the softening rate difference between the drive and sense 

modes, similar to the case without the balancing voltage investigated in Section 4.3.4. 

However, the softening rate of the sense mode does not exceed that of the drive mode, as 

𝜕�̅�2|𝜆1,𝑟=0 𝜕(𝑥′)2⁄ ≤ 0. This effect is maximised when a continuous electrode distribution is 

implemented (𝛾0 = 𝜅0, 𝛾𝜆 = 𝜅𝜆, 𝛾Δ = 𝜅Δ), as the nonlinear softening rates of the drive and 

sense modes are equalised. However, when the electrodes are discontinuous, the drive mode 

softens at a more significant rate than the sense mode. Similarly, the effects of the electrode 

discontinuities can be avoided by increasing the number of electrodes to 16 or 32. However, 

the investigation on the balance of the forces on the sense mode in Section 4.5.1 shows that 

the introduction of the balancing force stemming from the balancing voltage can be used to 

address the force imbalances due to the nonlinear frequency imbalance associated with 

electrode discontinuities in the 8 electrode design.  

The role of the balancing voltage to address the nonlinear frequency imbalance is 

demonstrated in the following investigation by considering the influence of the frequency 

detuning on the balancing voltage amplitude. Systems 1 and 2 in Table 4.2 are considered for 

this investigation, subjected to an angular of Ω = 250 ° 𝑠⁄ . The balancing voltage amplitude 

𝑉∆ is calculated using (4.91) and the phase index 𝑖Δ is set at 0 or 1 depending on the sign of 

the right side of (4.91). The required parametric pumping voltage amplitude 𝑉𝜆 to nullify the 

net parametric excitation is then calculated using (4.94). Figure 4.11(a) and (b) show 
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comparisons of the drive amplitude dependency of the drive and sense frequencies for the 

basic electrostatic configuration case with self-induced parametric excitation present (𝑉𝜆 =

𝑉Δ = 0) against the case of nullified net parametric excitation in the presence of the balancing 

voltage for systems 2 and 1 respectively. Figure 4.12(a) and (b) show the corresponding 

variations of 𝑉∆
2 cos 𝑖Δ𝜋  with the gap-normalised drive amplitude, along with the rate-

dependent and independent components, 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋  and 𝑉∆,Δ

2 cos 𝑖Δ,Δ𝜋 . The rate-

independent component 𝑉∆,Δ
2 cos 𝑖Δ,Δ𝜋 is calculated using (4.91) in the absence of angular 

rate. The rate-dependent component 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 is obtained by subtracting 𝑉∆,Δ

2 cos 𝑖Δ,Δ𝜋 

from 𝑉∆
2 cos 𝑖Δ𝜋 using the relationship in (4.93). 

 

Figure 4.11: Drive and sense frequency variations with the gap-normalised drive amplitude for the cases of  

with the self-induced parametric excitation present and nullified net parametric excitation in the presence 

of balancing voltage for electrode spans of (a) 𝟒𝟓° and (b) 𝟑𝟖° 

 

Figure 4.12: Variations of the square of the balancing voltage amplitude components with the gap-

normalised drive amplitude for electrode spans of (a) 𝟒𝟓° and (b) 𝟑𝟖°   
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In Figure 4.11(a) and (b), nullifying the net parametric excitation significantly reduces the 

softening rate difference between the drive and sense modes compared to the case where self-

induced parametric excitation is not nullified. However, as noted previously, the sense mode 

softens less significantly than the drive mode unless the electrodes are continuous. Comparing 

Figure 4.11(a) and (b) with the results without the balancing voltage in Figure 4.8(a) and (b), 

the drive and sense frequencies are very similar between these sets of results. This is because 

the calculated balancing voltage amplitude is relatively small, not exceeding (𝑉Δ 𝑉0⁄ )2 =

1.4𝑒 − 4. However, in practice the required amplitude 𝑉Δ can be orders of magnitude larger 

if the damping is low (see (4.92b)). From the results in Figure 4.11(a) and (b), the nullification 

of the net parametric excitation only results in amplitude-insensitive frequency detuning for 

the continuous electrode case, owing to the equal softening rates of the drive and sense modes. 

In Figure 4.12(a) and (b), the rate-independent component 𝑉∆,Δ
2 cos 𝑖Δ,Δ𝜋 is proportional to 

the drive amplitude in both cases, indicating the linearity of the linear elastic coupling force. 

However, 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 is only linear with respect to the drive amplitude for the continuous 

electrode case. This is because, as noted previously, the linearity of 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 depends 

on the frequency detuning. The nonlinear drive amplitude dependency of 𝑉∆,Ω
2 cos 𝑖Δ,Ω𝜋 in 

Figure 4.12(b) is the direct result of the frequency detuning in Figure 4.11(b) varying with the 

drive amplitude. At 𝑥 𝑔0⁄ = 0.12 , Figure 4.12(b) shows that 𝑉∆,Ω = 0  and 𝑉∆ = 𝑉∆,Δ , 

indicating that the balancing voltage is purely used to negate the linear elastic coupling force. 

This occurs because as shown in Figure 4.11(b), frequency matching occurs at this drive 

amplitude. Consequently, the balancing voltage amplitude does not vary with the angular rate 

if this drive amplitude is chosen in operation.  

Closed-loop rate sensing performance with nullified net parametric excitation 

When the balancing voltage is adjusted to satisfy (4.91), the rate and quadrature output 

components of the sense response are linearised because the nonlinear amplitude dependence 

of the frequency detuning has been balanced by 𝜒Δ,Ω(Ω) , effectively ‘transferring’ the 

nonlinear drive amplitude dependency of the sense response to the balancing voltage as shown 

in Figure 4.12(b). Setting 𝜆1,𝑟 = 0 due to nullifying the net parametric excitation using the 

condition in (4.94), and substituting the resulting expression for the constrained frequency 

detuning in (4.95) into (4.91) gives the following expression for the required balancing force 

amplitude and phase to counteract the force mismatch between the frequency detuning and 

linear elastic coupling, thus linearising and trimming the rate output while nullifying the 

quadrature output: 
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𝜒Δ′ cos 𝑖Δ𝜋 = −𝑓∆ + (�̅�2|𝜆1,𝑟=0)
𝑓Ω

2Γ𝜔𝑋
 

(4.98) 

where the frequency detuning �̅�2|𝜆1,𝑟=0 dictates the rate-dependence of the balancing voltage 

and the linearity with respect to the drive amplitude. 

Recalling that 𝜒Δ′ ∝ 𝑉∆
2 , the closed-loop rate sensing is described using the relationship 

𝑉∆
2 cos 𝑖Δ𝜋 = 𝑆𝑉(Ω + Ω𝑧

𝑉), where 𝑆𝑉 and Ω𝑧
𝑉 are the corresponding rate sensitivity and bias 

rate respectively, given by: 

𝑆𝑉 = 𝑆𝑉|𝜆1,𝑟=0 =

𝐺Ω𝑥
2Γ (�̅�2|𝜆1,𝑟=0)

𝑗
휀0

5𝜌ℎ𝜋𝑔0
2 sin 𝛿 (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2)

 

(4.99) 

Ω𝑧
𝑉 = Ω𝑧

𝑉|𝜆1,𝑟=0 =
𝜔𝑚

2Δ𝜔 sin4Θ𝜔

𝐺Ω
2Γ (�̅�2|𝜆1,𝑟=0)

 
(4.100) 

In contrast to open-loop rate sensing, a larger frequency detuning �̅�2|𝜆1,𝑟=0  beneficially 

affects the closed-loop rate sensing, by increasing the closed-loop rate sensitivity while 

suppressing the corresponding bias rate. On the other hand, if �̅�2|𝜆1,𝑟=0 = 0 due to frequency 

matching, 𝑆𝑉 = 0 as the balancing voltage amplitude 𝑉∆ is invariant with the angular rate, in 

which case the balancing voltage cannot be used for rate sensing. The closed-loop rate 

sensitivity 𝑆𝑉 is drive amplitude dependent, characterised by two factors: 

 a linear scaling because 𝑓Ω ∝ 𝑥 

 a nonlinear variation because the constrained frequency detuning �̅�2|𝜆1,𝑟=0  has 

quadratic-ordered amplitude dependency, unless 𝜕�̅�2|𝜆1,𝑟=0 𝜕(𝑥′)2⁄ = 0 for the case 

of 𝛾0 = 𝜅0, 𝛾𝜆 = 𝜅𝜆, 𝛾Δ = 𝜅Δ. 

Effects of balancing voltage on open-loop rate sensitivity with continuous/discontinuous 

electrodes 

The effectiveness of applying the balancing voltage to linearise and trim the rate output is 

investigated by assessing the open-loop rate sensitivity. For this investigation, systems 1 and 

2 in Table 4.2 are considered. Balancing voltages are applied on these systems, where the 

balancing voltage phase index number 𝑖Δ is set at 0 or 1 depending on the calculated values 

of the right side of (4.91). The balancing voltage amplitude 𝑉Δ is tuned iteratively until the 

quadrature sense response nullifies. The parametric pumping voltage is applied with an 

amplitude 𝑉𝜆 as calculated in (4.94) to nullify the net parametric excitation. In practice, it is 
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necessary to incorporate a control system to achieve this with sufficient precision. Due to the 

manual adjustment of 𝑉Δ in this investigation, the tolerance is such that the resulting relative 

phase is within 0.5° of the linear, ideal case of 𝜙𝑦𝑥,0
𝑙 = ±𝜋. Figure 4.13(a) shows the variation 

of the normalised rate sensitivity 𝑆 𝑆𝑙⁄  with the drive amplitude when the net parametric 

excitation has been nullified and the balancing voltage has been applied to nullify the 

quadrature sense response in system 2. The results in Figure 4.2(a) for the cases of without the 

balancing voltage, with and without negating the self-induced parametric excitation are also 

included for comparison. Figure 4.13(b) shows similar sets of results for system 1. The 

normalised linear, trimmed rate sensitivity 𝑆0
𝑙 𝑆𝑙⁄  is also shown. FE results have also been 

included, where the required values of 𝑉Δ, 𝑖Δ and 𝑉𝜆 are obtained using the aforementioned 

methods.  

Figure 4.14(a) and (b) show the corresponding results for the relative phase variation with the 

drive amplitude for Ω = 250 ° 𝑠⁄ . The results for the case without the balancing voltage are 

identical to those shown in Figure 4.3 for the corresponding electrode spans. 

 

Figure 4.13: Comparison of the normalised rate sensitivities for the cases of with the self-induced 

parametric excitation and nullified net parametric excitation, with and without the balancing voltage 

applied for electrode spans of (a) 𝟒𝟓° and (b) 𝟑𝟖° 



179 

 

 

Figure 4.14: Variation of relative phase with drive amplitude for the cases of with the self-induced 

parametric excitation and nullified net parametric excitation, with and without the balancing voltage 

applied for electrode spans of (a) 𝟒𝟓° and (b) 𝟑𝟖° 

In Figure 4.13(a), when the electrodes are continuous, the rate sensitivity approximates linear 

behaviour even without the balancing voltage due to the drive amplitude insensitivity of the 

frequency detuning (see (4.97)). The balancing voltage only acts to rectify the effects of this 

constant frequency detuning to achieve rate sensitivity trimming, as the rate sensitivity is 

increased to the perfect case 𝑆0
𝑙 . Similar to the results in Figure 4.2(a), the slight increase of 

the rate sensitivity at higher drive amplitudes is attributed to residual parametric excitation 

due to the drive voltage as discussed in Section 3.4.2. Except for the data point at 𝑥 𝑔0⁄ ≈

0.15, the FE results exhibit excellent agreement with the theoretical results, confirming the 

linearisation and trimming of the rate output. 

The role of the balancing voltage is more significant when the electrodes are discontinuous. 

In Figure 4.13(b), comparison of the rate sensitivities with and without the balancing voltage 

shows that the balancing voltage exhibits both linearisation and trimming effects for rate 

sensitivity. Compared to the two cases without the balancing voltage, the low amplitude rate 
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sensitivity is increased to the perfect case 𝑆0
𝑙 , and the nonlinear variation of the rate sensitivity 

is suppressed further. This shows that the elimination of the quadrature sense response is 

increasingly useful at larger drive amplitudes, where the increased frequency detuning 

magnitude must be compensated by the balancing voltage to avoid the rate sensitivity 

degrading at larger drive amplitudes as observed for the case without balancing voltage. The 

FE results with the balancing voltage included shows good agreement with the theoretical 

results for small drive amplitudes but shows rate sensitivity degradation at larger drive 

amplitudes, albeit less significantly compared to the other two cases without the balancing 

voltage. A possible explanation for this discrepancy is fringing effects at the electrodes, which 

is absent when the electrodes are continuous. Another possible explanation is the precision of 

the achieved nullification of the quadrature response, which can be observed from the relative 

phase results in Figure 4.14(a) and (b). 

Figure 4.14(a) and (b) show that the relative phase in the presence of the balancing voltage is 

approximately 180° across the range of drive amplitudes considered, confirming the ability 

of the balancing voltage to eliminate the quadrature response. The nonlinear drive amplitude 

dependency of the relative phase is also significantly reduced for both electrode spans, 

indicating that the balancing voltage also has linearisation effects on the sense response. The 

FE results exhibit better agreement with the theoretical results for this case compared to the 

other two cases without the balancing voltage, where systematic offsets of approximately 1° 

are evident between the relative phases obtained theoretically and using FE. When comparing 

the results with the balancing voltage in Figure 4.14(a) and (b), the nullification of the 

quadrature response is less precisely achieved for the discontinuous electrode case. This is a 

possible explanation for the difference between the corresponding theoretical and FE results 

in Figure 4.13(b). 

Effects of frequency detuning on closed-loop rate sensitivity 

The effects of frequency detuning on the closed-loop rate sensitivity are investigated for 

devices implementing continuous and discontinuous electrode distributions. Similarly, 

systems 1 and 2 in Table 4.2 are considered for this investigation, and the following results 

are based on the same voltage conditions to generate the results in Figure 4.13(a) and (b) for 

the case involving the balancing voltage. Figure 4.15(a) shows the frequency backbone curves 

for the drive and sense frequencies as the drive amplitude increases when the net parametric 

excitation is nullified and the balancing voltage is applied to nullify the quadrature response, 

and is a combination of the plots in Figure 4.11(a) and (b) since these are based on the same 

systems. Figure 4.15(b) shows the corresponding closed-loop rate sensitivities, obtained based 

on the balancing voltage amplitudes used to linearise and trim the rate sensitivity shown in 
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Figure 4.13(a) and (b). The corresponding FE results are also included. A marker has also 

been shown in Figure 4.15(a) and (b) to indicate the amplitude and frequency when frequency 

matching occurs. 

 

Figure 4.15: (a) Drive amplitude dependency of the resulting drive and sense frequencies when the net 

parametric excitation is nullified and the balancing voltage is applied to nullify the quadrature response 

and (b) the corresponding closed-loop rate sensitivity  

Figure 4.15(b) shows that the closed-loop rate sensitivity varies nonlinearly with drive 

amplitude at larger drive amplitudes for the discontinuous electrode configuration. As 

discussed previously, the observed variation is the net effect of the interaction between linear 

scaling due to the Coriolis force, and the nonlinear drive amplitude dependency of the 

aforementioned frequency detuning. Linear scaling is dominant at smaller amplitudes, but the 

nonlinear frequency detuning results in a nonlinear decrease of the closed-loop rate sensitivity 

as drive amplitude increases. At 𝑥 𝑔0⁄ = 0.12 , the closed-loop rate sensitivity nullifies, 

indicating that the balancing voltage is insensitive to angular rate variations, in which case the 

balancing voltage cannot be used for rate sensing. At this drive amplitude, as shown in Figure 

4.15(a), frequency matching occurs so the rate-dependent component of the balancing voltage 

is nullified (see (4.92b) with 𝜆1,𝑟 = 0), in which case the balancing voltage is purely used to 

counteract the linear elastic coupling force. In this manner, closed-loop rate sensing is best 

implemented when the frequency detuning is large at larger drive amplitudes, where the 

closed-loop rate sensitivity is linearly amplified by the Coriolis force, and nonlinearly 

amplified by the frequency detuning.  

The nonlinearity drive amplitude dependency of the closed-loop rate sensitivity is absent for 

the case of a continuous electrode distribution because, as confirmed in Figure 4.15(a), the 

constrained frequency detuning is invariant with drive amplitude as the drive and sense modes 

soften at equal rates. As such, the corresponding closed-loop rate sensitivity in Figure 4.15(b) 

only exhibits linear scaling with drive amplitude due to the linear amplification of the Coriolis 

force. The FE results exhibit excellent agreement with the theoretical results for the range of 
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drive amplitudes considered, thus confirming the significance of the amplitude dependence of 

the frequency detuning on closed-loop rate sensitivity. 

Effects of drive misalignment on closed-loop bias rate 

The following investigates the effects of the drive misalignment on closed-loop bias rate when 

the imperfection magnitude is kept constant. System 1 in Table 4.2 is considered for this 

investigation, and two other systems of identical parameters except for the drive misalignment. 

Drive misalignments of Θ𝜔 = 0° and 0.5° are considered, asides from the Θ𝜔 = 1° case for 

system 1. Figure 4.16 plots the closed-loop bias rate Ω𝑧
𝑉 against drive amplitude for these drive 

misalignment cases. 

 

Figure 4.16: Effect of drive misalignment angle on closed-loop bias rate 

Figure 4.16 shows that the closed-loop bias rate stems from the linear elastic coupling force, 

similar to the open-loop sense response. As such, this bias rate nullifies when the drive 

electrodes are aligned, i.e. Θ𝜔 = 0°. When drive misalignments are present, the bias rate 

increases with misalignment.  

With small drive misalignments, large bias rates in the order of 100°/𝑠 are introduced at small 

drive amplitudes. This is because of the relatively large damping associated with the systems 

considered, which corresponds to a low Q factor of 120 without parametric excitation, and 

promotes larger bias rates (see (4.100)). However, the bias rate reduces at larger drive 

amplitudes, exhibiting nonlinear amplitude dependency. This nonlinearity is attributed to the 

drive amplitude dependency of the frequency detuning obtained from Figure 4.15(a). At drive 

amplitudes where the frequency detuning magnitude increases, the magnitude of the closed-

loop bias rate diminishes. On the other hand, frequency matching occurs at 𝑥 𝑔0⁄ = 0.12, 

significantly increasing the bias rate as the balancing voltage is invariant with angular rate.  
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4.5.5. Alternatives for linearisation and trimming of sense response 

In this section, alternative implementations of the chosen electrostatic configuration in (4.65a) 

and (4.65b) are proposed and discussed to similarly linearise and trim the rate output and 

nullify the quadrature outputs, but without negating the self-induced parametric excitation. 

Only the theoretical basis of these alternative implementations will be discussed, as the 

targeted sense response is identical to that investigated previously for the case of nullified net 

parametric excitation. 

As discussed in Section 4.5.3, the balancing voltage in (4.65a) and (4.65b) generates a direct 

electrostatic force acting on the sense mode, which as discussed in Section 4.5.1 serves to 

balance the mismatch between the amplitudes of the forces stemming from the imperfection-

induced linear elastic coupling and the nonlinear frequency imbalance, thus reproducing the 

force balance in a linear, ideal/trimmed device. This implementation involves tuning the 

balancing voltage amplitude 𝑉∆ until the quadrature sense amplitude nullifies, in which case 

(4.91) is satisfied. Revisiting (4.91) with the definitions of 𝜒Δ,∆ and  𝜒Δ,Ω in (4.92a) and (4.92b) 

substituted: 

𝜒Δ′ cos 𝑖Δ𝜋 = −𝑓∆ +
�̅�2 − 𝜆1,𝑟

2Γ𝜔𝑋
𝑓Ω 

(4.91) 

where 

𝜒Δ
′ = 𝜒Δ (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2) 

The previous case specifically deals with the case when 𝜆1,𝑟 = 0 and as such, setting the 

balancing voltage to satisfy (4.91) involves counteracting the effects of the linear elastic 

coupling and the constrained frequency detuning �̅�2|𝜆1,𝑟=0. However, (4.91) shows that there 

are alternatives to linearise and trim the sense response without nullifying the net parametric 

excitation. These are discussed in what follows. 

Nonlinear frequency balancing using parametric pumping voltage 

Instead of tuning the parametric pumping voltage to nullify the net parametric excitation using 

the condition in (4.94), 𝑉𝜆  can be tuned to achieve nonlinear frequency balancing. As 

discussed in Section 3.5.3, this condition requires matching the parametric excitation 

amplitude and the frequency detuning, i.e. setting  �̅�2 = 𝜆1,𝑟. This simplifies the condition in 

(4.91) such that 𝜒Δ′ cos 𝑖Δ𝜋 = −𝑓∆, as the balancing voltage only serves to negate the linear 

elastic coupling due to drive misalignment. In this case, the balancing voltage is independent 
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of the Coriolis force and as such, closed-loop rate sensing is not applicable. The case where 

the net parametric excitation is nullified (𝜆1,𝑟 = 0) in conjunction with frequency matching 

(�̅�2 = 0)  as investigated in Section 4.3.5 is one way nonlinear frequency balancing is 

achieved. The nonlinear frequency imbalance is defined as: 

𝜆1,𝑟 − �̅�2 = −2𝜔𝑚
2Δ𝑚 cos 4Θ𝜔

−
1

4
[3(𝛾0 − 𝜅0) + (𝛾𝜆 − 𝜅𝜆) + 3(𝛾Δ − 𝜅Δ)]

𝑥2

𝑔0
2
 

(4.101) 

Comparing this against the constrained frequency detuning �̅�2|𝜆1,𝑟=0 in (4.95) shows that the 

nonlinear frequency imbalance is defined in an identical manner as −�̅�2|𝜆1,𝑟=0. However, 

without nullifying the net parametric excitation, the parametric pumping voltage amplitude 𝑉𝜆 

is not constrained. The parametric pumping voltage can be tuned to nullify the nonlinear 

frequency imbalance in (4.101).  

To ensure 𝜆1,𝑟 − �̅�2 = 0, 𝑉𝜆 must be adjusted to tune the nonlinear stiffness coefficients 𝛾𝜆 

and 𝜅𝜆  in (4.101) to achieve nonlinear frequency balancing at a selected drive amplitude. 

However, from (4.101) it is clear this implementation is subjected to several restrictions, as 

certain conditions can lead to drive amplitudes which are too large or small for practical 

implementation, similar to the case for frequency matching without involving the balancing 

voltage as investigation in Section 4.3.4. The conditions for practical nonlinear frequency 

balancing are the same as those identified in Table 4.3, which are: 

 Since 𝛾0 ≤ 𝜅0, 𝛾𝜆 ≤ 𝜅𝜆, 𝛾Δ ≤ 𝜅Δ , 𝜆1,𝑟 − �̅�2 = 0  is only possible for drive 

misalignments such that cos 4Θ𝜔 > 0 

 Δ𝑚 or cos 4Θ𝜔 must be sufficiently small 

 The electrodes are sufficiently discontinuous to allow for different drive amplitude 

dependencies of the frequencies 𝜔𝑋
2 and 𝜔𝑌

2 + 𝜆1,𝑟, thus enabling these frequencies 

to coincide and achieve nonlinear frequency balancing at a specific drive amplitude. 

As exception to this is when Δ𝑚 cos 4Θ𝜔 = 0, where electrode continuity allows 

nonlinear frequency balancing for a wide range of drive amplitudes. 

Direct application without parametric pumping voltage 

The present approach can also be implemented in the absence of parametric pumping voltage, 

in which case the condition in (4.91) reduces to: 
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𝜒Δ
′ cos 𝑖Δ𝜋 = −𝑓∆ −

(𝜆1,𝑟 − �̅�2)|𝑉𝜆=0

2Γ𝜔𝑋
𝑓Ω 

(4.102) 

where (𝜆1,𝑟 − �̅�2)|𝑉𝜆=0 is the nonlinear frequency imbalance in the absence of the parametric 

pumping voltage, equivalent to (4.101) when 𝛾𝜆 = 𝜅𝜆 = 0. 

In contrast to the previous case where nonlinear frequency balancing is achieved, the presence 

of the nonlinear frequency imbalance in (4.102) ensures that the balancing voltage is rate-

dependent and can be used for closed-loop rate sensing. Similar to the case with nullified 

parametric excitation in (4.98), the closed-loop rate sensitivity amplifies as the magnitude of 

the nonlinear frequency imbalance (𝜆1,𝑟 − �̅�2)|𝑉𝜆=0 increases.  

This implementation offers a simplified voltage distribution while avoiding the restrictions 

associated with using the parametric pumping voltage for nonlinear frequency balancing.  

4.6. Summary and conclusions 

This chapter considers an approach to enhance the rate sensing behaviour of ring based CVGs 

with basic electrostatic configuration as discussed in Chapter 3. The main aim is to replicate 

the sensor output for a linear, ideal/trimmed device and the approach used involves: i) 

modifying the electrostatic configuration to nullify the net parametric excitation; ii) linearising 

and trimming the rate output; and iii) eliminating the quadrature output. 

To nullify the net parametric excitation, the voltage distribution for the basic electrostatic 

configuration is updated to include a harmonic parametric pumping voltage component, which 

generates a linear parametric excitation in antiphase with the self-induced parametric 

excitation. In addition to negating the self-induced parametric excitation, the parametric 

pumping voltage reduces the difference in the softening rates between the drive and sense 

modes as the drive amplitude increases. The main advantage is that the nonlinear drive 

amplitude dependence of the rate sensitivity and bias rate is suppressed compared to the basic 

electrostatic configuration. This suppression is most significant in devices implementing 8 

continuous electrodes, or 16 or 32 discontinuous electrodes because the frequency detuning is 

insensitive to drive amplitude.  To trim the rate output, frequency matching of the drive and 

sense modes must also be achieved. For the 8 electrode configuration, it is found that unless 

the electrodes are continuous, frequency matching and rate output trimming can only be 

achieved at specific drive amplitudes determined by the magnitude of the imperfection, drive 

misalignment and electrode span. Depending on the interactions between these quantities the 

drive amplitudes to achieve frequency matching can be too small or large for practical 

implementation. To ensure that the quadrature output is also nullified, the linear elastic 
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coupling force must be nullified, in addition to frequency matching and nullifying the net 

parametric excitation. These conditions cannot be simultaneously achieved for a continuous 

electrode distribution unless the device is perfect. To address these restrictions, the 

electrostatic forces are modified by updating the electrostatic configuration. 

A key contribution of this chapter is the development of a general framework to tailor the form 

of the electrostatic forces using strategic selections of voltage distributions and electrode 

number. This framework is used to linearise and trim the rate output while nullifying the 

quadrature sense output at a selected drive amplitude, regardless of the magnitude and location 

of imperfections and electrode span. This framework considers the capacitance and voltage 

contributions from electrode to electrode and identifies expressions for the electrostatic forces 

in terms of the voltage components. This representation of the electrostatic forces allows the 

resulting form of electrostatic force to be controlled by selecting the voltages applied to each 

electrode. By identifying the desired form of electrostatic force to ensure trimmed rate and 

quadrature outputs, the framework provides useful insight into the voltage distributions that 

achieve this aim. 

To replicate the rate and quadrature outputs of a linear, ideal/trimmed device, the balance of 

forces for the sense mode is analysed, with the aim of identifying electrostatic force conditions 

which can be applied to address any undesirable force imbalances. It is found that the forces 

stemming from the linear elastic coupling and the nonlinear frequency imbalance cause the 

sense response to deviate from that of a linear, ideal/trimmed device. To ensure the forces 

acting on the sense mode are balanced and the sensor output is trimmed, electrostatic forces 

are applied directly to the sense mode. Harmonic balancing force components are imposed on 

the electrostatic configuration to generate direct sense forces that are in phase or antiphase 

with the linear elastic coupling force, in addition to the parametric pumping voltage used to 

negate the self-induced parametric excitation. By adjusting the balancing voltage amplitude 

to counteract the linear elastic coupling and nonlinear frequency imbalance, the quadrature 

response is eliminated while restoring the linearity and trimmed state of the rate output. In this 

implementation, it is found that the square of the required balancing voltage amplitude is 

proportional to the angular rate, thus enabling closed-loop rate sensing. It is also found that 

the closed loop rate sensitivity and bias rate performances significantly improve with larger 

frequency detuning, in direct contrast to the open loop rate sensing without balancing voltage. 

The effects of the implementation of the balancing voltage were also demonstrated by 

comparing the open loop rate sensitivity with and without the balancing voltage when net 

parametric excitation is nullified. The results show that the balancing voltage trims the rate 

sensitivity and significantly improves the linearity of the rate sensitivity. It has also been 

shown that the applicability of the balancing voltage is not restricted to the case where net 
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parametric excitation is nullified. The balancing voltage can also be used to restore the sense 

response in a linear, ideal/trimmed device for cases of with and without nonlinear frequency 

balancing. 
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5. PARAMETRIC AMPLIFICATION FOR RATE 

SENSING PERFORMANCE ENHANCEMENT 

5.1. Introduction 

Chapter 3 shows the potential of parametric excitation for enhancing the rate sensitivity 

enhancement beyond what is expected of a linear, trimmed device. This is a purely nonlinear 

effect as the maximum attainable rate sensitivity enhancement depends on the self-induced 

parametric excitation. However, this form of rate sensitivity enhancement is accompanied by 

the presence of quadrature errors and bias rates. On the other hand, Chapter 4 investigates 

practical approaches where the sense dynamics can replicate linear, trimmed behaviour at 

increased drive amplitudes, but the rate sensitivity enhancement described in Chapter 3 is not 

attained in this case. As such, it is clear that the parametric excitation is key to rate sensitivity 

enhancement and it is of practical interest to identify cases and approaches where rate output 

enhancement can be achieved while retaining nonlinear trimming of the rate and quadrature 

outputs. 

This chapter aims to investigate the potential of using electrostatic forces to amplify the rate 

sensitivity beyond that of the linear, trimmed case while avoiding the introduction of 

quadrature errors and bias rates using key results identified in Chapter 4. The phase generality 

of the parametric excitation and its effects on the rate output amplification are considered, 

based on which the linear and quadratic electrostatic forces are exploited to generate the phase 

tuneable parametric excitation. 

Section 5.2 discusses the general form of the sense dynamics subjected to phase-variable 

parametric excitation. Accounting for the phase variability of the parametric excitation, the 

balance of the various sense mode forces is investigated in a manner similar to the case without 

this phase variability in Section 4.5.1. Force conditions are identified where the parametric 

excitation can give rise to rate output amplification, hence rate sensitivity enhancement, while 

retaining trimmed sense response. Based on the force conditions identified, Sections 5.3 and 

5.4 investigate feasible electrostatic configurations to achieve the targeted form of the 

electrostatic forces using the general framework developed in Section 4.4. Section 5.3 is based 

on using linear electrostatic forces to generate the required parametric excitation in a manner 

similar to Chapter 4, but with a tuneable phase. The trimming approach implemented is similar 

to that investigated in Section 4.5, involving the use of rate-dependent balancing voltage. 

Section 5.4 is based on using quadratic electrostatic forces for this purpose, and an alternative 

trimming approach involving aligning the drive forces and nonlinear frequency balancing is 

investigated. For both approaches, equations of motion are developed for the corresponding 
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electrostatic configurations chosen, based on which the drive and sense mode dynamics are 

analysed to identify the voltage conditions required to trim and amplify the rate output and 

nullify the quadrature output. Results obtained using FE methods are also included to validate 

the effectiveness of the approaches. The advantages and disadvantages of these approaches 

are then discussed and compared. 

5.2. Effects of parametric excitation phase on sense dynamics 

This section investigates an extension of the mathematical formulation of the parametric 

excitation on the sense mode in Section 4.2 to include phase-tuneable parametric excitation. 

The resulting sense dynamics from this phase variation is then investigated. Based on the sense 

dynamics, the balance of the sense mode forces is considered to identify the required force 

conditions to achieve amplified rate output, while retaining nullified quadrature output.   

5.2.1. General sense response with phase-tuneable parametric excitation 

The general form of the sense mode subjected to parametric excitation has been shown in (4.1), 

revisited here: 

�̈� + 2Γ�̇� + [𝜔𝑌
2 + 2𝜆1,𝑟 cos2(𝜔𝑡 + 𝜙𝑥)]𝑌

= 𝑓Ω sin(𝜔𝑡 + 𝜙𝑥) + 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) 

(4.1) 

Noting that 𝑋 = 𝑥 cos(𝜔𝑡 + 𝜙𝑥), the parametric excitation phase is twice the drive mode 

oscillation phase. Since this form of parametric excitation is self-induced and the contributing 

bias voltage is constant, this phase relationship between the drive displacement and the 

parametric excitation is fixed.  

The phase of the parametric excitation has been shown to have significant impacts on the sense 

response [50]. To demonstrate the applicability of phase-tuneable parametric excitation on the 

sense mode, the parametric excitation term in (4.1) is modified, giving the following form of 

the sense equation of motion: 

�̈� + 2Γ�̇� + [𝜔𝑌
2 + 2𝜆1,𝑟 cos 2(𝜔𝑡 + 𝜙𝑥) + 2𝜆2,𝑟 sin2(𝜔𝑡 + 𝜙𝑥)]𝑌

= 𝑓Ω sin(𝜔𝑡 + 𝜙𝑥) + 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) 

(5.1) 

where an additional parametric excitation component with amplitude 2𝜆2,𝑟  has been 

introduced within the sense stiffness modulation. This parametric excitation component acts 

in quadrature relative to the self-induced parametric excitation, serving to enable phase-tuning 

of the net parametric excitation when the amplitude 2𝜆2,𝑟 is adjusted. 
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In principle, the form of phase-tuneable parametric excitation shown in (5.1) is already 

imposed on the sense mode for the basic electrostatic configuration case, where (3.33) is the 

result for the averaged sense response of (5.1) when 𝜆1 = 𝜆1,𝑟 and 𝜆2 = 𝜆2,𝑟 due to resonant 

operation. However in this case, as is shown from (3.40), due to the proportionality of 𝜆2 to 

𝜒, 𝜆2 is associated with the drive voltage so it is negligible compared to the self-induced 

parametric excitation. On the other hand, setting large values of the drive voltage amplitude 

𝑉𝐴𝐶 to tune 𝜆2,𝑟 is impractical as this can result in significantly increased drive amplitudes, 

thus risking pull-in. 

Using the averaging method on (5.1) gives the following averaged force balance: 

[
−𝜔𝑋

2 + 𝜔𝑌
2 + 𝜆1,𝑟 −2Γ𝜔𝑋 − 𝜆2,𝑟

−2Γ𝜔𝑋 + 𝜆2,𝑟 𝜔𝑋
2 − 𝜔𝑌

2 + 𝜆1,𝑟
] �̅� = [

𝑓∆
𝑓Ω

] 
(5.2) 

 with the averaged sense amplitude components 

�̅� = −

[
𝜔𝑋

2 − 𝜔𝑌
2 + 𝜆1,𝑟 2Γ𝜔𝑋 + 𝜆2,𝑟

2Γ𝜔𝑋 − 𝜆2,𝑟 −𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟

] [
𝑓∆
𝑓Ω

]

𝑃1,𝑟
2 − 𝑃2,𝑟

+ 𝑃2,𝑟
−

 

(5.3) 

where 𝑃2,𝑟
+ 𝑃2,𝑟

− < 𝑃1,𝑟
2 and 𝑃2,𝑟

±  are: 

𝑃2,𝑟
± = (𝜆1,𝑟

2 + 𝜆2,𝑟
2)

1
2 ± (−𝜔𝑋

2 + 𝜔𝑌
2) 

(5.4) 

and 𝑃1,𝑟 has been defined in (3.62), given by 𝑃1,𝑟 = 2Γ𝜔𝑋. 

From (5.2) and (5.3), it is clear that the parametric excitation amplitude components 𝜆1,𝑟 and 

𝜆2,𝑟  have distinct effects. The parametric excitation component 𝜆1,𝑟  interacts with the 

frequency detuning while 𝜆2,𝑟  interacts with the linear damping. From (5.4), 𝜆2,𝑟  also 

increases the product 𝑃2,𝑟
+ 𝑃2,𝑟

−  compared to the purely self-induced parametric excitation case, 

thus promoting parametric resonance. These suggest that the 𝜆2,𝑟  parametric excitation 

component can be used modify the effective damping and Q factor, thus amplifying the sense 

amplitude. 

For the case where the self-induced parametric excitation is negated, i.e. 𝜆1,𝑟 = 0 and the drive 

and sense frequencies are matched, (5.3) simplifies to: 
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�̅�|𝜔𝑋=𝜔𝑌,𝜆1,𝑟=0 = −

[
 
 
 
 

𝑓Ω
2Γ𝜔𝑋 − 𝜆2,𝑟

𝑓∆
2Γ𝜔𝑋 + 𝜆2,𝑟]

 
 
 
 

 

(5.5) 

The contributions of the Coriolis and linear elastic coupling forces to the rate and quadrature 

outputs are decoupled in this case. Also, when 𝜆2,𝑟 > 0, the rate output amplifies (limited by 

|𝜆2,𝑟| < 2Γ𝜔𝑋 ) beyond its linear, trimmed form 𝑦0
𝑙 cos𝜙𝑦𝑥,0

𝑙  (see (3.41)), while the 

quadrature output attenuates. The opposite is the case when 𝜆2,𝑟 < 0 and is undesirable. Being 

the result of parametric excitation, these behaviours are known as parametric amplification 

and attenuation [51].  

The parametric amplification and attenuation of the sense amplitude components are shown 

in Figure 5.1 for a system where 𝜆1,𝑟 = 0, 𝜔𝑋 = 𝜔𝑌 = 11.3 𝑘𝐻𝑧 , Γ = 56.5 𝐻𝑧 and 𝑓Ω =

64 𝑚𝑚 𝑠⁄ . The variations of the rate output (𝑦 cos𝜙𝑦𝑥) and quadrature output (𝑦 sin𝜙𝑦𝑥) 

against the normalised parametric excitation amplitude 𝜆2,𝑟 (2Γ𝜔𝑋)⁄  are shown for linear 

elastic coupling force amplitudes of 𝑓∆ 𝑓Ω⁄ = 0.2, 0.5 and 1. 

 

Figure 5.1: Effect of parametric excitation amplitude component 𝝀𝟐,𝒓 on the rate and quadrature outputs 

for the case of frequency matching and negated self-induced parametric excitation 

The opposite effects of the parametric excitation amplitude component 𝜆2,𝑟 on the rate and 

quadrature outputs in Figure 5.1 is clear, where 𝜆2,𝑟 > 0 is desirable for quadrature output 

suppression and rate output and rate sensitivity enhancement. When 𝜆2,𝑟 < 0, the quadrature 

output growth is suppressed for smaller linear elastic coupling force amplitudes, which can be 

achieved with improved drive electrode alignment. Based on these results, it can be concluded 

that a large, positive 𝜆2,𝑟 in conjunction with a small (or nullified) linear elastic coupling force 

amplitude |𝑓Δ| is most desirable.  
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5.2.2. Balance of averaged forces on sense mode for parametric 

amplification of rate output 

Based on (5.5) and the results shown in Figure 5.1, the targeted form of the sense amplitude 

components is: 

�̅�𝝀𝟐 = [
−

𝑓Ω
2Γ𝜔𝑋 − 𝜆2,𝑟

0

] 

(5.6) 

yielding a rate sensitivity of: 

𝑆 = −
𝐺Ω𝑥𝜔𝑋

2Γ𝜔𝑋 − 𝜆2,𝑟
 

(5.7) 

To ensure that the averaged force balance in (5.2) is satisfied at �̅� = �̅�𝝀𝟐 , an additional 

balancing force component can be incorporated into the right side of (5.2). Including this 

balancing force in (5.2) and replacing �̅� with �̅�𝝀𝟐 gives the following modified averaged force 

balance: 

[
−𝜔𝑋

2 + 𝜔𝑌
2 + 𝜆1,𝑟 −2Γ𝜔𝑋 − 𝜆2,𝑟

−2Γ𝜔𝑋 + 𝜆2,𝑟 𝜔𝑋
2 − 𝜔𝑌

2 + 𝜆1,𝑟
] �̅�𝝀𝟐 = [

𝑓∆
𝑓Ω

] + �̅�𝝀𝟐 
(5.8) 

where �̅�𝝀𝟐  is a force vector representing the balancing force components which must be 

applied to the sense mode to fix the sense amplitude components at �̅� = �̅�𝝀𝟐. �̅�𝝀𝟐 is then 

solved for in (5.8), in a manner similar to �̅�𝟎
𝒍  in (4.60). This gives the following: 

�̅�𝝀𝟐 = [
𝑓𝜆2

0
] = [−𝑓∆ +

𝜔𝑋
2 − 𝜔𝑌

2 − 𝜆1,𝑟

2Γ𝜔𝑋 − 𝜆2,𝑟
𝑓Ω

0

] 

(5.9) 

Substituting (5.9) into (5.8) then shows that the corrected force balance in (5.8) is the averaged 

result of:  

�̈� + 2Γ�̇� + [𝜔𝑌
2 + 2𝜆1,𝑟 cos 2(𝜔𝑡 + 𝜙𝑥) + 2𝜆2,𝑟 sin2(𝜔𝑡 + 𝜙𝑥)]𝑌

= 𝑓Ω sin(𝜔𝑡 + 𝜙𝑥) + 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) + 𝑓𝜆2 cos(𝜔𝑡 + 𝜙𝑥) 

(5.10) 

This is the targeted form of the sense equation of motion for rate sensitivity enhancement 

while retaining nullified bias rate and quadrature error. 
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𝑓0
𝑙 in (4.61) is a specific case of 𝑓𝜆2 when 𝜆2,𝑟 = 0, in which case (5.10) is of similar form as 

the targeted form of the sense equation of motion in (4.62). These similarities show that the 

presence of the quadrature parametric excitation amplitude component 𝜆2,𝑟 does not alter the 

phase of the balancing force required to balance the sense mode. Comparing (5.10) and (4.62), 

the balancing forces 𝑓𝜆2 cos(𝜔𝑡 + 𝜙𝑥) and 𝑓0
𝑙 cos(𝜔𝑡 + 𝜙𝑥) have identical phases, acting in 

phase/antiphase with the linear elastic coupling force. Through the use of control loops, the 

balancing force amplitude 𝑓𝜆2  can be similarly tuned to eliminate the quadrature output. 

However, the required balancing force amplitude is modified by the parametric excitation 

component 𝜆2,𝑟. 

Similar to 𝑓0
𝑙, 𝑓𝜆2 is also composed of two distinct parts: i) a rate-independent component to 

counteract the linear elastic coupling force 𝑓Δ ; and ii) a rate-dependent component to 

counteract the nonlinear frequency imbalance 𝜔𝑋
2 − 𝜔𝑌

2 − 𝜆1,𝑟. As such, the balancing force 

amplitude 𝑓𝜆2 can be similarly used for closed-loop rate sensing. An exception to this is when 

nonlinear frequency balancing applies (𝜆1,𝑟 = 𝜔𝑋
2 − 𝜔𝑌

2), in which case the balancing force 

only serves to negate the linear elastic coupling force. 

5.3. Linear parametric amplification 

In this section, the use of the linear electrostatic forces for phase-tuneable parametric 

excitation is investigated. Using the general framework developed in Section 4.4, a suitable 

voltage distribution is identified to generate the required electrostatic forces and achieve the 

targeted form of the sense equation of motion identified in Section 5.2.2. Based on the chosen 

voltage distribution, the resulting equations of motion are developed and the modal dynamics 

are analysed to identify the necessary voltage conditions to enhance rate sensitivity, while 

retaining trimmed rate output and nullified quadrature output. The potential of using the 

chosen electrostatic configuration for rate sensing is investigated for the cases of dual mode 

rate sensing with both open-loop and closed-loop operations, and single mode rate sensing 

without the closed-loop operation. For the case without involving closed-loop rate sensing, 

the conditions to ensure only single-mode rate sensing in open loop are investigated. For the 

case involving closed-loop rate sensing, the closed-loop rate sensing performance is assessed 

in terms of the rate sensitivity and bias rate, and the effects of the phase-tuneable parametric 

excitation on the closed-loop and open-loop rate sensing performance are investigated. FE 

results are also included to validate the theoretical results and the effectiveness of the proposed 

approach to amplify rate output. 
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5.3.1. Selection of voltage distribution 

Linear parametric excitation has been achieved in the equations of motion (4.69) for 

linearisation and trimming of the rate output. The linear parametric excitation appears in the 

coefficient matrix of the linear modal coordinates vector, �̿�𝟏(𝑡). The definition of �̿�𝟏(𝑡) in 

(4.73) is revisited here: 

�̿�𝟏(𝑡) = [
𝜔0,𝜆,Δ

2 0

0 𝜔0,𝜆,Δ
2] + 𝜔𝑚

2 [
Δ𝑚 cos 4Θ𝜔 Δ𝑚 sin4Θ𝜔

Δ𝑚 sin 4Θ𝜔 −Δ𝑚 cos 4Θ𝜔
]

+ [
𝜔𝜆

2 0

0 𝜔𝜆
2] cos2(𝜔𝑡 + 𝜙𝑥) 

(4.73) 

where the linear parametric excitation phase is locked at twice the drive mode oscillation phase. 

The phase of the parametric excitation can be tuned by introducing a sin 2(𝜔𝑡 + 𝜙𝑥) variation 

component in �̿�𝟏(𝑡). Based on this aim, it follows that a simple modification to the conditions 

in Table 4.7 involving the linear electrostatic force coefficient 𝐴
𝑋0𝑌1
𝑓𝑌

 in (4.45b) is required. 

The modified conditions for the required voltage distribution for this purpose are shown in 

Table 5.1. Similar to Section 4.5, the following considers the case of 8 evenly distributed 

electrodes. 

Table 5.1: Constraints for the coefficients of the voltage squared distribution, 𝝃𝒎𝑽

± , 𝜻𝒎𝑽

±  based on conditions 

to trim and amplify the rate output for the case of 8 inner/outer electrodes 

 Electrostatic force conditions Voltage squared distribution constraints 

1 𝐴
𝑋0𝑌0
𝑓𝑌

∝ cos(𝜔𝑡 + 𝜙𝑥) 휁2
+ − 휁2

− − 휁6
+ + 휁6

− ∝ cos(𝜔𝑡 + 𝜙𝑥) 

2 
∫ 𝐴

𝑋0𝑌1
𝑓𝑌

cos𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

≠ 0 

only for 𝑛 = 0,2 

∫ (𝜉0
+ + 𝜉0

− + 𝜉4
+ + 𝜉4

− + 𝜉8
+ +

2𝜋

𝜔
0

𝜉8
−) cos 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡 ≠ 0 only for 𝑛 = 0,2 

3 
∫ 𝐴

𝑋0𝑌1
𝑓𝑌

sin 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡
2𝜋

𝜔
0

≠ 0 

only for 𝑛 = 2 

∫ (𝜉0
+ + 𝜉0

− + 𝜉4
+ + 𝜉4

− + 𝜉8
+ +

2𝜋

𝜔
0

𝜉8
−) sin 𝑛(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡 ≠ 0 only for 𝑛 = 2 

4 𝐴
𝑋0𝑌1
𝑓𝑌

= 𝐴
𝑋1𝑌0
𝑓𝑋

 𝜉4
+ + 𝜉4

− = 0 

5 𝐴
𝑋0𝑌0
𝑓𝑋

∝ cos𝜔𝑡 𝜉2
+ − 𝜉2

− + 𝜉6
+ − 𝜉6

− ∝ cos𝜔𝑡 

Compared to Table 4.7, only the third condition has been modified to include the 

aforementioned sin2(𝜔𝑡 + 𝜙𝑥)  variation component in �̿�𝟏(𝑡) . As such, a simple 
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modification to the voltage distribution in (4.65a) and (4.65b) is sufficient to satisfy all the 

conditions in Table 5.1. This gives the following chosen voltage distribution: 

𝑉+[휃0(𝑖)] = 𝑉0 + 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +
𝜙𝜆

2
) + 𝑉∆ cos (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos 휃0(𝑖)

+ 𝑉∆ cos (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) sin 휃0(𝑖) + 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) 

(5.11a) 

𝑉−[휃0(𝑖)] = 𝑉0 − 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +
𝜙𝜆

2
) + 𝑉∆ sin (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos휃0(𝑖)

+ 𝑉∆ sin (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) sin휃0(𝑖) − 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) 

(5.11b) 

where 𝜙𝜆 is the linear parametric excitation phase. The voltage distribution in (4.65a) and 

(4.65b) is a specific case of (5.11a) and (5.11b) where 𝜙𝜆 = −𝜋. Similar to the previous case, 

𝑉∆ and 𝑖Δ are the balancing voltage amplitude and phase index which are tuned to nullify the 

quadrature output. However, in the present scheme, the parametric pumping voltage amplitude 

𝑉𝜆 is not set to negate the self-induced parametric excitation. Instead, in conjunction with the 

phase 𝜙𝜆, it is tuned to adjust the parametric excitation force amplitude. 

Based on (5.11a) and (5.11b), the nonzero voltage squared distribution coefficients in (4.52) 

are given by: 

𝜉0
± = 𝑉0

2 +
𝑉𝜆

2

2
+

𝑉∆
2

2
+

𝑉𝐴𝐶
2

4

± [2𝑉0𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +
𝜙𝜆

2
) +

𝑉∆
2

2
cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)]

+
𝑉𝜆

2

2
cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆] +

𝑉𝐴𝐶
2

4
cos 2𝜔𝑡 

(5.12a) 

𝜉1
+ = 2𝑉∆ cos (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 + 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +

𝜙𝜆

2
) +

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(5.12b) 

휁1
+ = 2𝑉∆ cos (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 + 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +

𝜙𝜆

2
) −

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(5.12c) 

𝜉1
− = 2𝑉∆ sin (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 − 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +

𝜙𝜆

2
) −

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(5.12d) 

휁1
− = 2𝑉∆ sin (

𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) [𝑉0 − 𝑉𝜆 cos (𝜔𝑡 + 𝜙𝑥 +

𝜙𝜆

2
) +

𝑉𝐴𝐶

2
cos𝜔𝑡] 

(5.12e) 
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𝜉2
± = ±2𝑉0𝑉𝐴𝐶 cos𝜔𝑡 + 𝑉𝜆𝑉𝐴𝐶 [cos (2𝜔𝑡 + 𝜙𝑥 +

𝜙𝜆

2
) + cos (𝜙𝑥 +

𝜙𝜆

2
)] 

(5.12f) 

휁2
± =

𝑉∆
2

2
[1 ± cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)] 

(5.12g) 

𝜉3
+ = 휁3

+ = 𝑉Δ𝑉𝐴𝐶 cos (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos𝜔𝑡 

(5.12h) 

𝜉3
− = 휁3

− = −𝑉Δ𝑉𝐴𝐶 sin (
𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋

2
) cos𝜔𝑡 

(5.12i) 

𝜉4
± =

𝑉𝐴𝐶
2

4
(1 + cos 2𝜔𝑡) 

(5.12j) 

The roles of these voltage squared distribution coefficients in the total electrostatic forces are 

identical to those in (4.66a) – (4.66j), except for 𝜉0
± in (5.12a). The phase of the 2𝜔 variation 

term in 𝜉0
+ + 𝜉0

− can be tuned using 𝜙𝜆, and is the result of satisfying the third condition in 

Table 5.1. The coefficients 𝜉0
±  are key to generate the targeted phase-tuneable parametric 

excitation. 

5.3.2. Modal dynamics 

In the following, equations of motions are developed based on the voltage distribution selected 

in (5.11a) and (5.11b). Using the same techniques, conditions and approximations on (3.14), 

(4.14) and (4.69), the resulting equations of motion are analysed to derive the resulting drive 

and sense dynamics. 

Equations of motion 

Following the same procedures outlined in Section 4.5.3, the total electrostatic forces 

stemming from the voltage distribution in (5.11a) and (5.11b) are given by: 

[
𝑓𝑈,𝑋

𝑓𝑈,𝑌
] = �̅�𝟎 + �̿�𝟏�̅�𝟏 + �̿�𝟐�̅�𝟐 + �̿�𝟑�̅�𝟑 

(5.13) 

where the vector �̅�𝟎 and the matrices �̿�𝟏, �̿�𝟐, �̿�𝟑 are given by: 

�̅�𝟎 = −
휀0

5𝜌𝜋ℎ𝑔0
2
𝑗 sin 𝛿 [

𝜉2
+ − 𝜉2

−

휁2
+ − 휁2

−] 
(5.14a) 
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�̿�𝟏 = −
2휀0

5𝜌𝜋ℎ𝑔0
3
𝑗𝛿 [

𝜉0
+ + 𝜉0

− 0

0 𝜉0
+ + 𝜉0

−] 
(5.14b) 

�̿�𝟐 = −
휀0

20𝜌𝜋ℎ𝑔0
4
𝑗 {(9 sin 𝛿 + sin 3𝛿) [

𝜉2
+ − 𝜉2

− 0 0

0 0 휁2
+ − 휁2

−]

+ (3 sin 𝛿 − sin3𝛿) [
0 2(휁2

+ − 휁2
−) 𝜉2

+ − 𝜉2
−

휁2
+ − 휁2

− 2(𝜉2
+ − 𝜉2

−) 0
]} 

(5.14c) 

�̿�𝟑 = −
휀0

20𝜌𝜋ℎ𝑔0
5
𝑗 {(12 sin 𝛿 + sin 4𝛿) [

𝜉0
+ + 𝜉0

− 0 0 0

0 0 0 𝜉0
+ + 𝜉0

−]

+ (12 sin 𝛿 − 3 sin4𝛿) [
0 0 𝜉0

+ + 𝜉0
− 0

0 𝜉0
+ + 𝜉0

− 0 0
]} 

(5.14d) 

The coefficients 𝜉0
± dictate the linear electrostatic force coefficient �̿�𝟏, confirming that the 2𝜔 

variation of the linear modal stiffness can be phase-tuned using the parametric pumping 

voltage phase 𝜙𝜆 (see 5.12(a)), as required.  

Incorporating the drive and sense electrostatic forces in (5.13) and the mechanical forces in 

(4.44) into (4.43a) and (4.43b) gives the following equations of motion: 

�̅̈�𝟏 + 2Γ�̅̇�𝟏 + �̿�𝟏(𝑡)�̅�𝟏 + �̿�𝟑(𝑡)
�̅�𝟑

𝑔0
2

= Ω�̿�𝛀�̅̇�𝟏 + �̅�(𝑡)

+ [𝜒 cos𝜔𝑡 �̿�𝝌 + 𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋) �̿�𝝌𝚫]
�̅�𝟐

𝑔0
2
 

(5.15) 

(5.15) is identical to the equations of motion in (4.69), owing to the similarity of the 

corresponding voltage distributions. However, due to phase 𝜙𝜆 within the parametric pumping 

voltage components in (5.11a) and (5.11b), the modified definition for 𝜉0
± affects �̿�𝟏 in (5.14b) 

and �̿�𝟑 in (5.14d), hence the linear and cubic restoring forces associated with the parametric 

pumping voltage are phase-modified such that �̿�𝟏(𝑡) and �̿�𝟑(𝑡) are modified to: 

�̿�𝟏(𝑡) = [
𝜔0,𝜆,Δ

2 0

0 𝜔0,𝜆,Δ
2] + 𝜔𝑚

2 [
Δ𝑚 cos 4Θ𝜔 Δ𝑚 sin4Θ𝜔

Δ𝑚 sin 4Θ𝜔 −Δ𝑚 cos 4Θ𝜔
]

− [
𝜔𝜆

2 0

0 𝜔𝜆
2] cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆] 

(5.16) 



198 

 

�̿�𝟑(𝑡) = [
𝛾0,𝜆,Δ 0 𝜅0,𝜆,Δ 0

0 𝜅0,𝜆,Δ 0 𝛾0,𝜆,Δ
]

+ [
𝛾𝜆 0 𝜅𝜆 0
0 𝜅𝜆 0 𝛾𝜆

] cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆] 

(5.17) 

The phase 𝜙𝜆 also affects �̿�𝟑(𝑡), indicating that the nonlinear parametric excitation due to the 

cubic restoring forces is also affected by this phase. 

The remaining terms in (5.15) have been defined in Sections 3.3.2, 4.3.2 and 4.5.3. 

Drive dynamics 

From (5.15), the single degree-of-freedom approximation of the drive equation of motion is 

given by: 

�̈� + 2Γ�̇� + {𝜔0,𝜆,Δ
2 + 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔 − 𝜔𝜆
2 cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆]}𝑋

+ {𝛾0,𝜆,Δ + 𝛾𝜆 cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆]}
𝑋3

𝑔0
2

= 𝜒 cos𝜔𝑡 (1 + 𝑐𝑋𝑋

𝑋2

𝑔0
2) 

(5.18) 

Applying the averaging method on (5.18) gives the following results for the drive resonant 

frequency and the corresponding drive amplitude: 

𝜔𝑋
2 = 𝜔0,𝜆,Δ

2 + 𝜔𝑚
2Δ𝑚 cos 4Θ𝜔 −

𝜔𝜆
2

2
cos𝜙𝜆 + (

3

4
𝛾0,𝜆,Δ +

1

2
𝛾𝜆 cos𝜙𝜆)

𝑥2

𝑔0
2
 

(5.19) 

𝑥𝑟 =
𝜒(1 + 𝑐𝑋𝑋

𝑥𝑟
2

4𝑔0
2)

2Γ𝑋𝜔𝑋
 

(5.20) 

where Γ𝑋 is the effective drive damping coefficient, given by: 

Γ𝑋 = Γ −

𝜔𝜆
2

2 sin𝜙𝜆 − 𝛾𝜆 sin𝜙𝜆
𝑥2

4𝑔0
2

2𝜔𝑋
 

(5.21) 

The drive frequency in (5.19) shows that the linear and nonlinear softening of the drive mode 

depend on the parametric pumping voltage phase 𝜙𝜆 . When cos𝜙𝜆 > 0, both linear and 

nonlinear softening of the drive mode are strengthened as the drive frequency 𝜔𝑋 decreases. 

The opposite applies when cos𝜙𝜆 < 0. 
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The resonant drive amplitude 𝑥𝑟 in (5.20), unlike the previous cases, is subjected to a variable 

effective damping Γ𝑋 , which also varies the resulting Q factor. Γ𝑋  can be tuned using the 

parametric pumping voltage, provided that sin𝜙𝜆 ≠ 0. This damping variability does not 

occur for the previous electrostatic configurations because 𝜙𝜆  is set at – 𝜋  resulting in 

sin𝜙𝜆 = 0, or 𝑉𝜆 = 0 for the basic electrostatic configuration. From (5.21), the following are 

deduced: 

 when sin𝜙𝜆 > 0, parametric amplification of drive response occurs 

 when sin𝜙𝜆 < 0, parametric attenuation of drive response occurs 

The former case is desirable for the implementation of the AGC, as a larger drive amplitude 

can be attained using smaller drive voltages, where 𝜙𝜆 = 𝜋 2⁄  yields maximum parametric 

amplification. 

Sense dynamics 

The approximated sense equation of motion from (5.15) is given by: 

�̈� + 2Γ�̇� + {𝜔0,𝜆,Δ
2 − 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔

− (𝜔𝜆
2 − 𝜅𝜆

𝑋2

𝑔0
2) cos[2(𝜔𝑡 + 𝜙𝑥) + 𝜙𝜆] + 𝜅0,𝜆,Δ

𝑋2

𝑔0
2

−
𝜒𝑐𝑋𝑌

𝑔0
cos𝜔𝑡

𝑋

𝑔0
} 𝑌

= −𝐺ΩΩ�̇� − 𝜔𝑚
2Δ𝑚 sin 4Θ𝜔 𝑋

+ 𝜒Δ cos(𝜔𝑡 + 𝜙𝑥 + 𝑖Δ𝜋)(1 + 𝑐Δ,𝑋𝑋

𝑋2

𝑔0
2) 

(5.22) 

where 𝜔 = 𝜔𝑋. Using the averaging method on (5.22) then gives the following averaged force 

balance: 

[
−�̅�2 + 𝜆1,𝑟 −2Γ𝜔𝑋 − 𝜆2,𝑟

−2Γ𝜔𝑋 + 𝜆2,𝑟 �̅�2 + 𝜆1,𝑟
] �̅� = [

𝑓Δ + 𝑓𝜆2

𝑓Ω
] 

(5.23) 

As discussed in Section 5.2.2, the balancing force amplitude 𝑓𝜆2  is tuned to ensure the 

quadrature output is nullified, yielding a trimmed rate output where �̅� = �̅�𝝀𝟐. To achieve this, 

the following condition is imposed on the balancing voltage amplitude 𝑉Δ and phase index 𝑖Δ: 

𝑓𝜆2 = 𝜒Δ cos 𝑖Δ𝜋 (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2) = −𝑓Δ −

𝜆1,𝑟 − �̅�2

2Γ𝜔𝑋 − 𝜆2,𝑟
𝑓Ω 

(5.24) 
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Using this condition, similar to the previous case with 𝜆2,𝑟 = 0 , the balancing voltage 

amplitude 𝑉Δ can also be used for closed-loop rate sensing as 𝑉Δ
2 is linearly related to the 

Coriolis force 𝑓Ω and angular rate. The closed-loop rate sensitivity increases as the nonlinear 

frequency imbalance 𝜆1,𝑟 − �̅�2 and parametric excitation amplitude component 𝜆2,𝑟 increase. 

�̅�2, 𝜆1,𝑟 and 𝜆2,𝑟 are given by: 

�̅�2 = 𝜔𝑋
2 − 𝜔𝑌

2

= 2𝜔𝑚
2Δ𝑚 cos4Θ𝜔 −

𝜔𝜆
2

2
cos𝜙𝜆

+ [3𝛾0,𝜆,Δ − 2𝜅0,𝜆,Δ + (2𝛾𝜆 − 𝜅𝜆) cos𝜙𝜆]
𝑥2

4𝑔0
2
 

(5.25) 

𝜆1,𝑟 = −
𝜔𝜆

2

2
cos𝜙𝜆 + (𝜅0,𝜆,Δ + 𝜅𝜆 cos𝜙𝜆)

𝑥2

4𝑔0
2
 

(5.26) 

𝜆2,𝑟 =
𝜒

4𝑔0
𝑐𝑋𝑌

𝑥

𝑔0
+ (

𝜔𝜆
2

2
− 𝜅𝜆

𝑥2

4𝑔0
2) sin𝜙𝜆 

(5.27) 

𝜆2,𝑟 is maximised when the parametric pumping voltage phase is set at 𝜙𝜆 = 𝜋 2⁄ . From (5.7) 

and (5.24), maximising 𝜆2,𝑟  amplifies both open and closed-loop rate sensitivities. In this 

manner, the parametric amplification effect is two-fold. First, the parametric pumping voltage 

amplifies the resonant drive amplitude by reducing the effective damping in (5.21) through 

the term 𝜔𝜆
2. The amplified drive amplitude 𝑥𝑟 then amplifies the Coriolis force 𝑓Ω, which 

linearly amplifies the rate output. This linear amplification is further accompanied by the sense 

parametric amplification due to the enhanced sense Q factor stemming from the parametric 

excitation amplitude component 𝜆2,𝑟 in (5.6). This combination of increased 𝑓Ω and 𝜆2,𝑟 can 

yield a total rate sensitivity amplification of orders of magnitude without requiring an increase 

in the drive voltage amplitude. 

5.3.3. Single mode rate sensing without closed-loop operation 

As discussed in Section 5.2.2 and as shown in (5.24), the nonlinear frequency balancing 

condition (𝜆1,𝑟 = �̅�2) eliminates the possibility for closed-loop rate sensing as the required 

balancing voltage amplitude is invariant with the angular rate, serving only to negate the linear 

elastic coupling force. If there is no linear elastic coupling force (𝑓∆ = 0), the balancing 

voltage can be set to zero, simplifying the voltage distribution. The following investigates the 

conditions to achieve nonlinear frequency balancing, such that the device only operates in 

open loop. 
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From (5.25) and (5.26), the nonlinear frequency balancing condition is given by: 

(𝜅𝜆 − 𝛾𝜆) (1 +
2

3
cos𝜙𝜆)

3𝑥2

4𝑔0
2

= 2𝜔𝑚
2Δ𝑚 cos 4Θ𝜔 − [(𝜅0 − 𝛾0) + (𝜅∆ − 𝛾∆)]

3𝑥2

4𝑔0
2
 

(5.28) 

where the contributions of the bias, parametric pumping and balancing voltages have been 

decomposed. (5.28) has been expressed in a manner to show that the parametric pumping 

voltage amplitude and phase can be used to achieve nonlinear frequency balancing. Any 

(𝑉𝜆, 𝜙𝜆) combination satisfying (5.28) can be used for this purpose, where each combination 

results in different 𝜆2,𝑟. However, the combination resulting in the largest positive parametric 

excitation amplitude component 𝜆2,𝑟 is most desirable for rate output parametric amplification. 

From (5.27), this requires maximising 𝑉𝜆
2 sin𝜙𝜆 , so the (𝑉𝜆, 𝜙𝜆) combinations involving 

larger 𝑉𝜆 and 𝜙𝜆 closest to 𝜋 2⁄  are desirable.  

From (5.28), there are clear restrictions on the practicality of this approach. First, since 𝛾𝜆 ≤

𝜅𝜆, the left side of (5.28) is non-negative, so this condition can only be satisfied if cos4Θ𝜔 >

0. Second, for the same reason, there is a maximum drive amplitude for satisfying (5.28), as 

larger drive amplitudes can result in the right side of (5.28) falling to negative values. The 

maximum drive amplitude is increased for larger imperfection magnitudes and smaller drive 

misalignments, i.e. larger Δ𝑚 cos 4Θ𝜔 . Third, the required parametric pumping voltage 

amplitude 𝑉𝜆 to satisfy (5.28) can be too large for practical implementation. 𝑉𝜆 is large if one 

or more of the following applies:  

 the electrodes are near continuous (𝜅𝜆 ≈ 𝛾𝜆)  

 the electrode span is small (𝜅𝜆 and 𝛾𝜆 are small unless compensated by larger 𝑉𝜆)  

 the selected drive amplitude is too small (left side of (5.28) is small unless 

compensated by larger 𝑉𝜆) 

 the imperfection magnitude Δ𝑚  is relatively large and cos 4Θ𝜔 ≈ 1, resulting in a 

large value of the right side of (5.28) 

These restrictions are similar to those discussed in Section 4.5.5, indicating that the ability to 

tune the parametric pumping phase 𝜙𝜆  does not improve the effectiveness of using the 

parametric pumping voltage for nonlinear frequency balancing. 

Parametric pumping voltage amplitude requirements to restore nonlinear frequency 

balance 
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To demonstrate the role of the parametric pumping voltage to ensure nonlinear frequency 

balancing, the following investigates the effects of the nonlinear frequency imbalance on the 

required parametric pumping voltage amplitude to restore the nonlinear frequency balance. 

System 1 in Table 4.2 is considered for this investigation, subjected to an angular rate of Ω =

250 ° 𝑠⁄ . The balancing voltage amplitude and phase index number required to nullify the 

quadrature sense response are calculated using (5.24), and the required parametric pumping 

voltage amplitude to restore nonlinear frequency balance is calculated from (5.28). The 

parametric pumping voltage phase is set at 𝜙𝜆 = 𝜋 2⁄ . Figure 5.2(a) shows the backbone curve 

of the of the drive frequency 𝜔𝑋, and the variation of the frequency √𝜔𝑌
2 + 𝜆1,𝑟 with the 

drive amplitude for the default case with no parametric pumping voltage. The difference 

between these frequencies in Figure 5.2(a) gives the nonlinear frequency imbalance and a 

marker has been plot at the drive amplitude where these frequencies coincide, showing the 

default nonlinear frequency balancing point without requiring the parametric pumping voltage. 

Figure 5.2(b) shows the required parametric pumping voltage amplitude to restore nonlinear 

frequency balancing across the drive amplitude range considered in Figure 5.2(a). This marker 

is also shown in Figure 5.2(b), which shows the parametric pumping voltage amplitude 𝑉λ 

required to achieve nonlinear frequency balancing beyond this default balancing point when 

𝜙𝜆 = 𝜋 2⁄ .  

 

Figure 5.2: (a) Variations of the frequencies 𝝎𝑿 and √𝝎𝒀
𝟐 + 𝝀𝟏,𝒓 with the drive amplitude when 𝑽𝝀 = 𝟎 

and (b) the required parametric pumping voltage amplitudes required to match these frequencies 

In Figure 5.2(a), nonlinear frequency balancing is achieved at 𝑥 𝑔0⁄ ≈ 0.12 without requiring 

the parametric pumping voltage and is the result of the different drive amplitude dependencies 

of 𝜔𝑋 and √𝜔𝑌
2 + 𝜆1,𝑟 due to the electrode discontinuity. This corresponds to the default case 

where both the left and right sides of (5.28) are null. To restore nonlinear frequency balancing 

(a) (b) 
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at other drive amplitudes, Figure 5.2(b) shows that the required parametric pumping voltage 

amplitude increases significantly with small deviations from the default nonlinear frequency 

balancing point. When 𝑥 𝑔0⁄  deviates from 12% to 10.8%, the required 𝑉𝜆 increases to 1.4 𝑉, 

matching the order of the bias voltage shown in Table 4.2. Also, Figure 5.2(a) shows that 

nonlinear frequency balancing can only be restored if 𝜔𝑋 > √𝜔𝑌
2 + 𝜆1,𝑟  at low drive 

amplitudes. This is because the parametric pumping voltage reduces the drive frequency 𝜔𝑋 

more significantly than √𝜔𝑌
2 + 𝜆1,𝑟. 

Conditions for parametric pumping voltage amplitude and phase to maximise 

parametric amplification while ensuring nonlinear frequency balance 

The following investigates the multiple possible combinations of the parametric pumping 

voltage and phase (𝑉𝜆, 𝜙𝜆), capable of achieving nonlinear frequency imbalance and the 

resulting parametric amplification attained for the different combinations. System 1 in Table 

4.2 is considered for this investigation. The results in Figure 5.2(a) are extended to consider a 

general parametric pumping voltage phase, unrestricted to 𝜙𝜆 = 𝜋 2⁄ . The required parametric 

pumping voltage amplitude 𝑉𝜆 to achieve nonlinear frequency balance is then calculated using 

(5.28) for each 𝜙𝜆  considered. Figure 5.3(a) shows the (𝑉𝜆, 𝜙𝜆) combinations resulting in 

nonlinear frequency balance for drive amplitudes of 𝑥 𝑔0⁄ = 0.1175, 0.1185 and 0.1195. 

The points on these plots where 𝑉𝜆 sin(𝜙𝜆 2⁄ ) = 𝑉𝜆 cos(𝜙𝜆 2⁄ ), i.e. 𝜙𝜆 = 𝜋 2⁄ , correspond to 

the parametric pumping voltage amplitudes shown in Figure 5.2(b) at 𝑥 𝑔0⁄ = 0.1175, 0.1185 

and 0.1195 . Figures 5.3(b), (c) and (d) show the individual plots for the various drive 

amplitude cases shown in Figure 5.3(a), corresponding to 𝑥 𝑔0⁄ = 0.1175, 0.1185  and 

0.1195 respectively. Contours of 𝜆2,𝑟 (2Γ𝜔𝑋)⁄  are shown to indicate the varying parametric 

amplification effects of the (𝑉𝜆, 𝜙𝜆) combinations. As indicated in (5.6), larger 𝜆2,𝑟 (2Γ𝜔𝑋)⁄  

results in larger parametric amplification of the rate output. 
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Figure 5.3: (a) Range of feasible (𝑽𝝀, 𝝓𝝀) combinations for nonlinear frequency balancing at various drive 

amplitudes, with 𝝀𝟐,𝒓 (𝟐𝚪𝝎𝑿)⁄  contours in (b) for 𝒙 𝒈𝟎⁄ = 𝟎. 𝟏𝟏𝟕𝟓, (c) for 𝒙 𝒈𝟎⁄ = 𝟎. 𝟏𝟏𝟖𝟓 and (d) for 

𝒙 𝒈𝟎⁄ = 𝟎. 𝟏𝟏𝟗𝟓 

In Figure 5.3(a), the ellipticity of the plots shows that nonlinear frequency balancing can be 

achieved at any phase 𝜙𝜆, and the voltage amplitude 𝑉𝜆 can be tuned for any chosen phase to 

yield nonlinear frequency balancing. Decreasing the drive amplitude from 𝑥 𝑔0⁄ = 0.1195 to 

0.1175 also increases the major and minor radii of the plots, indicating that larger parametric 

pumping voltage amplitudes 𝑉𝜆  are required to restore nonlinear frequency balancing, 

regardless of the chosen phase 𝜙𝜆 . This is because decreasing the drive amplitude from 

𝑥 𝑔0⁄ = 0.1195 to 0.1175 deviates the drive amplitude further from the default nonlinear 

frequency balancing point shown in Figure 5.2(a) and (b), thus increasing the nonlinear 

frequency imbalance and the required parametric pumping voltage amplitude 𝑉𝜆 to restore 

nonlinear frequency balancing.  

In Figure 5.3(b), (c) and (d), larger values of 𝜆2,𝑟 (2Γ𝜔𝑋)⁄  occur at larger parametric pumping 

voltage amplitudes, i.e. points further away from the origin. Comparing Figure 5.3(b), (c) and 

(d), the drive amplitude case 𝑥 𝑔0⁄ = 0.1175 in Figure 5.3(b) is subjected to the largest 

parametric amplification due to the larger parametric pumping voltage amplitudes involved. 
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This shows that larger drive amplitude deviations from the default nonlinear frequency 

balancing point in Figure 5.2(a) can increase the parametric amplification attained while 

retaining nonlinear frequency balance. However, for all drive amplitudes, the (𝑉𝜆, 𝜙𝜆) 

combinations intersecting with the highest-valued 𝜆2,𝑟 (2Γ𝜔𝑋)⁄  contours lie at the points 

where 𝑉𝜆 sin(𝜙𝜆 2⁄ ) = 𝑉𝜆 cos(𝜙𝜆 2⁄ ), i.e. 𝜙𝜆 = ±𝜋 2⁄ . 

The results in Figures 5.3(b), (c) and (d) show that the attained parametric amplification is 

constrained by the proximity of the chosen drive amplitude to the default nonlinear frequency 

balancing point. This nonlinear frequency balancing restriction limits the practicality of the 

single-mode rate sensing approach to a narrow range of drive amplitudes below the default 

nonlinear frequency balancing point, as the required parametric pumping voltage amplitude 

can be too large for practical implementations. Nonlinear frequency balancing also cannot be 

achieved at larger drive amplitudes, thus limiting the rate output. 

5.3.4. Dual mode rate sensing with closed-loop operation 

Without nonlinear frequency balancing, the balancing voltage in (5.24) is rate-dependent, thus 

enabling closed-loop rate sensing. The balancing voltage must be tuned with angular rate 

changes to retain a nullified quadrature output.  

Expressing (5.24) as 𝑉Δ
2 cos 𝑖Δ𝜋 = 𝑆𝑉(Ω + Ω𝑧

𝑉), the closed-loop rate sensitivity and bias rate 

are: 

𝑆𝑉 =
−

𝐺Ω𝑥𝜔𝑋
2Γ𝜔𝑋 − 𝜆2,𝑟

(𝜆1,𝑟 − �̅�2)

𝛼′
= −

𝐺Ω𝑥𝜔𝑋

𝛼′
(

𝜆1,𝑟 − �̅�2

2Γ𝜔𝑋 − 𝜆2,𝑟
) 

(5.29) 

Ω𝑧
𝑉 = −

𝜔𝑚
2Δ𝜔 sin4Θ𝜔

𝐺Ω𝜔𝑋
(
2Γ𝜔𝑋 − 𝜆2,𝑟

𝜆1,𝑟 − �̅�2 ) 
(5.30) 

where 𝛼′ is: 

𝛼′ = 𝑗
휀0

5𝜌ℎ𝜋𝑔0
2
sin 𝛿 (1 + 𝑐Δ,𝑋𝑋

3𝑥2

4𝑔0
2) 

(5.31) 

From (5.7), (5.29) and (5.30), the presence of the parametric excitation amplitude component 

𝜆2,𝑟 amplifies both closed-loop and open-loop rate sensitivities, while suppressing the closed-

loop bias rate if 𝜆2,𝑟 > 0. From (5.29) and (5.30), a larger nonlinear frequency imbalance 

𝜆1,𝑟 − �̅�2 also results in an amplified closed-loop rate sensitivity and suppressed bias rate. 
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This indicates that drive amplitudes further away from the default nonlinear frequency 

balancing point satisfying (5.28) are desirable for closed-loop rate sensing using this scheme. 

Effects of phase tuneable parametric excitation on closed-loop rate sensitivity and bias 

rate and open-loop rate sensitivity 

The following investigates the ability of the phase-tuneable parametric excitation to enhance 

closed-loop rate sensing performance. System 1 in Table 4.2 is considered for this 

investigation. The parametric pumping voltage phase is set at 𝜙𝜆 = 𝜋 2⁄  and the amplitude 𝑉𝜆 

is varied up to 0.6 𝑉 to vary the parametric excitation amplitude component 𝜆2,𝑟. The drive 

amplitude is fixed at 𝑥 𝑔0⁄ = 0.1  by adjusting the drive voltage amplitude 𝑉𝐴𝐶 . As 𝑉𝜆  is 

increased, the required 𝑉𝐴𝐶 to sustain this drive amplitude decreases from 5.4 𝑚𝑉 to 1.3 𝑚𝑉 

for the range of 𝑉𝜆  considered in these results, owing to the drive mode parametric 

amplification described in (5.20). The balancing voltage amplitude 𝑉Δ is manually tuned for 

each angular rate measurement to achieve nullified quadrature sense amplitude, and the phase 

index number 𝑖∆ is set at 0 or 1 depending on the sign of the calculated value of the right side 

of (5.24). Using these configurations, Figure 5.4(a) and (b) show the effects of the parametric 

pumping voltage amplitude 𝑉𝜆 on the closed-loop rate sensitivity and bias rate respectively. 

FE results are also shown. 

 

Figure 5.4: Effect of parametric pumping voltage amplitude on the closed-loop (a) rate sensitivity and (b) 

bias rate 

The FE results exhibit good agreement with the theoretical results shown in Figure 5.4(a) and 

(b), confirming the closed-loop rate sensing performance enhancement effects of the 

parametric pumping voltage. The closed-loop rate sensitivity increases significantly at larger 

parametric pumping voltage amplitudes as parametric resonance is approached. As such, the 

energy dissipation rates of both drive and sense modes decrease, thus increasing the modal Q 

factor without modifying the mechanical damping. 

(a) (b) 
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Figure 5.4(b) shows that small imperfections and drive misalignments can lead to large closed-

loop bias rates. The large bias rate is due to the high linear damping of the system, 

corresponding to a Q factor of 120 without parametric excitation. This can also be confirmed 

from (5.30). However, this bias rate is significantly suppressed when parametric resonance is 

approached. 

Figure 5.5 below shows the effects of the parametric pumping voltage amplitudes considered 

in Figure 5.4(a) and (b) on the corresponding open-loop rate sensitivity, shown as a gain 

relative to the rate sensitivity when 𝑉𝜆 = 0, given by 𝐺𝑆 = 𝑆 (𝑆|𝑉𝜆=0)⁄ : 

 

Figure 5.5: Effect of parametric pumping voltage on the open-loop rate sensitivity 

In Figure 5.5, the FE results similarly exhibit good agreement with the theoretical results as 

Figure 5.4(a) and (b), thus confirming the effectiveness of the present scheme to amplify the 

open-loop rate sensitivity as aimed. One possible explanation for the slight discrepancy 

between the theoretical and FE results at larger parametric pumping voltage amplitudes 𝑉𝜆 is 

higher order electrostatic nonlinearities, which generally increases in significance at larger 

voltages. 

Effects of nonlinear frequency imbalance on closed-loop bias rate amplification using 

the parametric pumping voltage 

The following investigates the effects of the nonlinear frequency imbalance on the 

effectiveness of the parametric pumping voltage to enhance the closed-loop rate sensitivity. 

For this investigation, the nonlinear frequency imbalance is calculated from the right side of 

(5.28), giving the nonlinear frequency imbalance in the absence of the parametric pumping 

voltage. The default nonlinear frequency balancing point is identified as the drive amplitude 

where the right side of (5.28) is zero.  The results in Figure 5.2(a) are considered for this 

investigation, with a default nonlinear frequency balancing point at 𝑥 𝑔0⁄ = 0.12 . The 

nonlinear frequency imbalance is varied by considering multiple drive amplitudes of different 
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proximities from 𝑥 𝑔0⁄ = 0.12. Figure 5.6 shows a comparison of the effects of the parametric 

pumping voltage amplitude 𝑉𝜆  on the closed-loop rate sensitivity for drive amplitudes of 

𝑥 𝑔0⁄ = 0.1 and 0.1185. The result for 𝑥 𝑔0⁄ = 0.1 is identical to the result in Figure 5.4(a). 

 

Figure 5.6: Effect of parametric pumping voltage amplitude on the closed-loop rate sensitivity at different 

drive amplitudes 

In Figure 5.6, the drive amplitude 𝑥 𝑔0⁄ = 0.1185 yields low closed-loop rate sensitivity. This 

is because, as shown in Figure 5.2(a), this drive amplitude is close to the default nonlinear 

frequency balancing point, result in a small nonlinear frequency imbalance. At 𝑉𝜆 = 0.46 𝑉, 

nonlinear frequency balancing is achieved, so 𝑆𝑉 = 0 . This parametric pumping voltage 

amplitude is also shown in Figure 5.2(b) at the point corresponding to 𝑥 𝑔0⁄ = 0.1185. In this 

case, closed-loop rate sensing is not possible and the device can only operate using open-loop 

rate sensing. When 𝑉𝜆 increases beyond 0.46 𝑉, the nonlinear frequency imbalance grows and 

closed-loop rate sensitivity increases more significantly as parametric resonance is approached.  

The results in Figure 5.4(a), (b), Figure 5.5 and Figure 5.6 conclude that a combination of 

large nonlinear frequency imbalances and large parametric pumping voltages is ideal for 

closed-loop rate sensing, and the latter also promotes parametric amplification of the rate 

output and open-loop rate sensitivity.  

5.3.5. Summary 

The linear electrostatic force can be used for parametric amplification of the rate output by 

tuning the phase of the parametric pumping voltage. The component of the resulting 

parametric excitation responsible for this amplification is in quadrature with the self-induced 

parametric excitation. To ensure that the quadrature output is nullified and the rate output is 

trimmed while the rate output is amplified, an additional, rate-dependent balancing voltage 

component is also required, similar to the case without parametric amplification investigated 



209 

 

in Chapter 4. This balancing voltage serves to counteract the force imbalances stemming from 

the imperfection-induced linear elastic coupling and nonlinear frequency imbalance, where 

the latter is responsible for the rate dependency of the balancing voltage. 

The rate-dependency of the balancing voltage generally enables the device to operate in open 

loop using the trimmed and amplified rate output, and in closed loop using the balancing 

voltage amplitude. An exception to this is when nonlinear frequency balancing occurs, in 

which case the balancing voltage only serves to negate the linear elastic coupling force and is 

invariant with angular rate, so closed-loop rate sensing cannot be achieved. It is found that this 

only occurs under special conditions where the nonlinear frequency imbalance is relatively 

small. The parametric pumping voltage can be used to restore nonlinear frequency balancing, 

but larger nonlinear frequency imbalances significantly increase the required parametric 

pumping voltage amplitude to restore nonlinear frequency imbalance, and can be too large for 

practical implementation. 

When nonlinear frequency balancing is not achieved, the device is able to operate in both open 

and closed loops. It is shown that the parametric amplification of the rate output can be 

maximised by tuning the phase of the parametric pumping voltage. Increasing the parametric 

pumping voltage amplitude while its phase is tuned results in significant open-loop rate 

sensitivity enhancements, accompanied by increased closed-loop rate sensitivity and reduced 

closed-loop bias rate. FE results are also shown, confirming the effectiveness of the current 

scheme to achieve the parametric amplification of the rate output, as aimed. It is also found 

that the closed-loop rate sensitivity and bias rate performance can be further improved when 

the nonlinear frequency imbalance is increased. 

5.4. Quadratic parametric amplification 

In this section, the quadratic electrostatic forces are considered to generate the required phase-

tuneable parametric excitation. An alternative trimming approach without involving rate-

dependent balancing forces is also investigated, considering the cases of nonlinear frequency 

balancing and drive force alignment. As such, only open-loop rate sensing is considered in 

this scheme. Using the general framework developed in Section 4.4, a suitable electrostatic 

configuration is identified to generate the required form of electrostatic forces for these aims. 

For the chosen electrostatic configuration, equations of motion are developed and the modal 

dynamics are analysed to identify the voltage conditions for the negation of the drive 

misalignment, nonlinear frequency balancing and phase-tuning the resulting parametric 

excitation. FE results are also included to validate the effectiveness of the present approach to 

achieve parametric amplification the rate output. 
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5.4.1. Selection of voltage distribution 

Trimming with drive force alignment 

Revisiting the balancing force amplitude necessary for nullifying the quadrature response in 

(5.9): 

�̅�𝝀𝟐 = [
𝑓𝜆2

0
] = [−𝑓∆ +

𝜔𝑋
2 − 𝜔𝑌

2 − 𝜆1,𝑟

2Γ𝜔𝑋 − 𝜆2,𝑟
𝑓Ω

0

] 

(5.9) 

The balancing force is not required to trim the rate output and nullify the quadrature output if 

there is no linear elastic coupling force (𝑓Δ = 0) and nonlinear frequency balancing applies 

(𝜔𝑋
2 − 𝜔𝑌

2 = 𝜆1,𝑟 ), in which the balancing force 𝑓𝜆2 cos(𝜔𝑡 + 𝜙𝑥) in the targeted sense 

equation of motion in (5.10) can be set to zero. As such, drive force alignment to ensure 𝑓Δ =

0 is a key requirement to achieve this form of trimming. 

Using the definition of 𝑓Δ in (3.35) and recalling that 𝜔𝑚
2∆𝑚= 𝜔0

2∆𝜔 and 𝑋 = 𝑥 cos(𝜔𝑡 +

𝜙𝑥), the linear elastic coupling force 𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) in (5.10) expressed in terms of the 

modal coordinate is: 

𝑓Δ cos(𝜔𝑡 + 𝜙𝑥) = −𝜔𝑚
2Δ𝑚 sin4Θ𝜔 𝑋 

This is a linear force, proportional to the drive displacement. This force can be counteracted 

by inducing an electrostatic force in antiphase with it, also proportional to 𝑋. This requires the 

appearance of a term in the sense electrostatic force in (4.45b) proportional to 𝑋. This is a 

linear electrostatic force of order 𝑞 = 2, resulting in the following condition: 

𝐴
𝑋1𝑌0
𝑓𝑌

+ 𝜔𝑚
2Δ𝑚 sin4Θ𝜔 = 0 (5.32) 

This implementation modifies the total linear elastic coupling force by introducing an 

electrostatic linear elastic coupling to negate the drive misalignment-induced component of 

the linear elastic coupling force. Using the condition in (5.32), the total linear elastic coupling 

force can be nullified, effectively achieving drive force alignment. 

Following the steps in Table 4.6, Step 2 shows that this implementation requires the 

appearance of a term proportional to 𝑋𝑌 in the total electrostatic potential energy, i.e. 𝐴
𝑋1𝑌0
𝑓𝑌

≠

0  in (4.45b), and Step 3 shows that this involves the capacitance coefficient 𝛽2,4
± , 

corresponding to the sin 4휃0(𝑖) component in the capacitance distribution 𝑐±[휃0(𝑖)]. From 

(4.50b), the component of this capacitance corresponding to 𝑞 = 2 is given by: 
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𝑐2
±[휃0(𝑖)] = 𝛼2,0

± + 𝛼2,4
± cos 4휃0(𝑖) + 𝛽2,4

± sin 4휃0(𝑖) (5.33) 

where the desired term proportional to 𝑋𝑌 appears only in the coefficient 𝛽2,4
± . However, 

noting that the electrode central angular position is defined as 휃0(𝑖) = 2𝑖𝜋 𝑗⁄ , sin4휃0(𝑖) = 0 

for all 𝑖 when 𝑗 = 8, thus eliminating the last term in (5.33). This indicates that the capacitance 

for each electrode 𝑐±[휃0(𝑖)] does not contain the term proportional to 𝑋𝑌 necessary for the 

electrostatic linear elastic coupling. This is because, the angular separation of each electrode 

is 𝜋 4⁄  for the 8 electrode configuration, so the central angular position of each electrode 

coincides with the node of either the drive or sense mode. Consequently, each electrode 

softens only one of the modes, exhibiting no linear elastic coupling between the modes. This 

is shown in Figure 5.7 below, where the electrode placements relative to the modal 

displacements are shown for the 8 and 16 electrode configuration designs: 

 

Figure 5.7: Circumferential variations of modal displacements and electrode distribution for the (a) 8 and 

(b) 16 electrode configurations. The blue electrodes enable electrostatic linear elastic coupling. 

Consequently, when 𝑗 = 8, 𝐴
𝑋1𝑌0
𝑓𝑌

= 0 regardless of the voltage distribution selected and the 

required electrostatic linear elastic coupling force for drive force alignment cannot be 

generated. On the other hand, for the 16 electrode configuration, the electrodes centred at 

휃0(𝑖) for odd 𝑖 can be used to generate the necessary electrostatic linear elastic coupling. For 

this reason, the proceeding investigation on the voltage distribution selection is based on the 

16 electrode configuration. 

Phase-tuneable parametric excitation with quadratic electrostatic force 

The parametric excitation force in (5.10) is: 

(a) (b) 

X 

X 

Y 

Y 
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𝐹𝜆 = [2𝜆1,𝑟 cos 2(𝜔𝑡 + 𝜙𝑥) + 2𝜆2,𝑟 sin 2(𝜔𝑡 + 𝜙𝑥)]𝑌 (5.34) 

where only the terms involving the double-frequency variation of the sense stiffness are 

retained. 

The sense quadratic-ordered (𝑞 = 3) electrostatic force in (4.45b) is given by: 

𝑓𝑈,𝑌|3 = 𝐴
𝑋2𝑌0
𝑓𝑌

𝑋2 + 𝐴
𝑋1𝑌1
𝑓𝑌

𝑋𝑌 + 𝐴
𝑋0𝑌2
𝑓𝑌

𝑌2 (5.35) 

The quadratic electrostatic force can be used to generate the required parametric excitation by 

ensuring that one of the terms in (5.35) equate to 𝐹𝜆 in (5.34). The first term is independent of 

the sense displacement, so it cannot be used to generate the required parametric excitation. 

Noting that the sense amplitude is orders of magnitude smaller than the drive amplitude, the 

last term in (5.35) is negligible. As such, the second term, 𝐴
𝑋1𝑌1
𝑓𝑌

𝑋𝑌 is best suited to generate 

the desired parametric excitation. Setting 𝐴
𝑋1𝑌1
𝑓𝑌

𝑋𝑌 = 𝐹𝜆 and noting that 𝑋 = 𝑥 cos(𝜔𝑡 + 𝜙𝑥) 

gives the following conditions for the electrostatic force coefficient 𝐴
𝑋1𝑌1
𝑓𝑌

: 

𝜔

2𝜋
∫ (𝐴

𝑋1𝑌1
𝑓𝑌

𝑥)[cos(𝜔𝑡 + 𝜙𝑥) + cos3(𝜔𝑡 + 𝜙𝑥)]𝑑𝑡

2𝜋
𝜔

0

= 2𝜆1,𝑟 

(5.36a) 

𝜔

2𝜋
∫ (𝐴

𝑋1𝑌1
𝑓𝑌

𝑋)[sin(𝜔𝑡 + 𝜙𝑥) + sin 3(𝜔𝑡 + 𝜙𝑥)]𝑑𝑡

2𝜋
𝜔

0

= 2𝜆2,𝑟 

(5.36b) 

To ensure that the left side of (5.36a) and (5.36b) is nonzero after the integral is evaluated, the 

electrostatic force coefficient 𝐴
𝑋1𝑌1
𝑓𝑌

 must be harmonic with frequency 𝜔 or 3𝜔, thus serving 

to generate the double frequency parametric excitation terms in (5.34). 

Conditions for selection of voltage distribution 

(5.32), (5.36a) and (5.36b) establish the required form of the electrostatic forces for parametric 

amplification and trimming. Following the steps in Table 4.6 and recalling that 𝜉0
+ > 0 and 

𝜉0
− > 0 due to the presence of the bias voltage, the resulting conditions for the voltage squared 

distribution coefficients are summarised in Table 5.3 for the case when 𝑗 = 16. 
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Table 5.2: Constraints for the coefficients of the voltage squared distribution, 𝝃𝒎𝑽

±  to achieve quadratic 

parametric amplification and trimming for the case of 16 inner/outer electrodes 

 Electrostatic force conditions Voltage squared distribution constraints 

1 𝐴
𝑋1𝑌0
𝑓𝑌

+ 𝜔𝑚
2Δ𝑚 sin 4Θ𝜔 = 0 휁4

+ + 휁4
− − 휁12

+ − 휁12
− ≠ 0 for sin 4Θ𝜔 ≠ 0 

2 

𝜔

2𝜋
∫ 𝐴

𝑋1𝑌1
𝑓𝑌

𝑥[cos(𝜔𝑡 + 𝜙𝑥)

2𝜋
𝜔

0

+ cos 3(𝜔𝑡 + 𝜙𝑥)]𝑑𝑡

= 2𝜆1,𝑟 

 ∫ (𝜉2
+ − 𝜉2

− + 𝜉6
+ − 𝜉6

− + 𝜉10
+ − 𝜉10

− +
2𝜋

𝜔
0

𝜉14
+ − 𝜉14

− ) cos(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡 ∝ 𝜆1,𝑟 

3 

𝜔

2𝜋
∫ 𝐴

𝑋1𝑌1
𝑓𝑌

𝑥[sin(𝜔𝑡 + 𝜙𝑥)

2𝜋
𝜔

0

+ sin3(𝜔𝑡 + 𝜙𝑥)]𝑑𝑡

= 2𝜆2,𝑟 

∫ (𝜉2
+ − 𝜉2

− + 𝜉6
+ − 𝜉6

− + 𝜉10
+ − 𝜉10

− + 𝜉14
+

2𝜋
𝜔

0

− 𝜉14
− ) sin(𝜔𝑡 + 𝜙𝑥) 𝑑𝑡

∝ 𝜆2,𝑟 

4 𝐴
𝑋0𝑌0
𝑓𝑋

∝ cos𝜔𝑡 𝜉2
+ − 𝜉2

− + 𝜉14
+ − 𝜉14

− ∝ cos𝜔𝑡 

5 𝐴
𝑋0𝑌0
𝑓𝑌

= 0 휁2
+ − 휁2

− − 휁14
+ + 휁14

− = 0 

6 𝐴
𝑋0𝑌1
𝑓𝑌

= 𝐴
𝑋1𝑌0
𝑓𝑋

 𝜉4
+ + 𝜉4

− + 𝜉12
+ + 𝜉12

− = 0 

7 𝑑

𝑑𝑡
(𝐴

𝑋0𝑌1
𝑓𝑌

) = 0 
𝑑

𝑑𝑡
(𝜉0

+ + 𝜉0
− + 𝜉4

+ + 𝜉4
− + 𝜉12

+ + 𝜉12
− + 𝜉16

+

+ 𝜉16
− ) = 0 

(5.32), (5.36a) and (5.36b) correspond to conditions 1, 2 and 3 in Table 5.2 respectively. 

Condition 4 is similar to condition 5 in Table 5.1, representing the condition to yield a 

harmonic drive force at frequency 𝜔. This condition constraints the coefficients 𝜉2
± and 𝜉14

± , 

which are also involved in conditions 2 and 3. In practice, it is convenient to separate these 

conditions to ensure that the drive force remains only associated with the drive voltage, 

without interference from any other voltage components in the chosen voltage distribution. 

For this purpose, the remaining coefficients involved in conditions 2 and 3, 𝜉6
± and 𝜉10

±  can be 

used to generate the parametric excitation, while 𝜉2
± and 𝜉14

±  are only assigned to the drive 

voltage. 
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Condition 5 is in contrast with condition 1 in Table 5.1. Noting that the aim is to achieve 

trimming and parametric amplification without requiring a balancing force, direct forcing of 

the sense mode is avoided. 

Conditions 6 and 7 define the conditions on the linear electrostatic forces, in a manner similar 

to conditions 2, 3 and 4 in Table 5.1. Condition 6 is identical to condition 4 in Table 5.1, while 

condition 7 replaces conditions 2 and 3 in Table 5.1 since the linear electrostatic force is not 

used to generate the targeted parametric excitation in the present scheme. Condition 7 ensures 

the linear electrostatic stiffness is constant. 

The following voltage distribution satisfies all the conditions in Table 5.2: 

𝑉+[휃0(𝑖)] = 𝑉0 + 𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) − 𝑉𝜆 sin (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
) cos 3휃0(𝑖)

+ 𝑉4 sin4휃0(𝑖) 

(5.37a) 

𝑉−[휃0(𝑖)] = 𝑉0 − 2𝑉𝐴𝐶 cos𝜔𝑡 cos 2휃0(𝑖) + 𝑉𝜆 cos (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
) cos 3휃0(𝑖)

−
𝑉4

2
sin4휃0(𝑖) 

(5.37b) 

where the spatial variation of the voltage distribution is capped to a 4휃0(𝑖)  variation 

component. As such, the voltage squared distribution coefficients 𝜉𝑚𝑉

± = 휁𝑚𝑉

± = 0  for all 

𝑚𝑉 > 8. The parametric pumping voltage amplitude and phase, 𝑉𝜆 and 𝜙𝜆, are used to tune 

the parametric excitation force amplitude. 𝑉4 is a drive alignment voltage, which is used to 

negating the imperfection-induced linear elastic coupling force, i.e. condition 1 in Table 5.2. 

The drive alignment voltage replaces the balancing voltage in (5.11a) and (5.11b). Also, the 

phase of the parametric pumping voltage has been halved to satisfy conditions 2 and 3 in Table 

5.2. 

From (5.37a) and (5.37b), the nonzero voltage squared distribution coefficients in (4.52) are 

given by: 

[
𝜉0

+

𝜉0
−] =

[
 
 
 𝑉0

2 +
𝑉4

2

2
+

𝑉𝜆
2

4
[1 − cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)] +

𝑉𝐴𝐶
2 cos2 𝜔𝑡

2

𝑉0
2 +

𝑉4
2

8
+

𝑉𝜆
2

4
[1 + cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)] + 2𝑉𝐴𝐶

2 cos2 𝜔𝑡]
 
 
 

 

(5.38a) 
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[
 
 
 
𝜉1

+

휁1
+

𝜉1
−

휁1
−]
 
 
 

=

[
 
 
 
 
 
 
 
 −𝑉𝜆𝑉𝐴𝐶 cos𝜔𝑡 sin (

𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

−𝑉4𝑉𝜆 sin (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

−2𝑉𝜆𝑉𝐴𝐶 cos𝜔𝑡 cos (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

−
𝑉4𝑉𝜆

2
cos (

𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

]
 
 
 
 
 
 
 
 

 

(5.38b) 

[
 
 
 
𝜉2

+

휁2
+

𝜉2
−

휁2
−]
 
 
 

= [

2𝑉0

𝑉4

−4𝑉0

𝑉4

]𝑉𝐴𝐶 cos𝜔𝑡 

(5.38c) 

[
𝜉3

+

𝜉3
−] = [

−2𝑉0𝑉𝜆 sin (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

2𝑉0𝑉𝜆 cos (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

] 

(5.38d) 

[
 
 
 
𝜉4

+

휁4
+

𝜉4
−

휁4
−]
 
 
 

=

[
 
 
 
 
 
𝑉𝐴𝐶

2 cos2 𝜔𝑡

2
2𝑉0𝑉4

2𝑉𝐴𝐶
2 cos2 𝜔𝑡

−𝑉0𝑉4 ]
 
 
 
 
 

 

(5.38e) 

[
𝜉5

+

𝜉5
−] = [

−𝑉𝜆𝑉𝐴𝐶 cos𝜔𝑡 sin (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

−2𝑉𝜆𝑉𝐴𝐶 cos𝜔𝑡 cos (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

] 

(5.38f) 

[
 
 
 
𝜉6

+

휁6
+

𝜉6
−

휁6
−]
 
 
 

=

[
 
 
 
 
 
 
𝑉𝜆

2

4
[1 − cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)]

𝑉4𝑉𝐴𝐶 cos𝜔𝑡

𝑉𝜆
2

4
[1 + cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)]

𝑉4𝑉𝐴𝐶 cos𝜔𝑡 ]
 
 
 
 
 
 

 

(5.38g) 

[
휁7

+

휁7
−] = −𝑉4𝑉𝜆 [

sin (
𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

1

2
cos (

𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆

2
)

] 

(5.38h) 

[
𝜉8

+

𝜉8
−] = −

𝑉4
2

8
[
4
1
] 

(5.38i) 
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휁4
+ + 휁4

−  in (5.38e) provides the electrostatic linear elastic coupling, contributing to the 

electrostatic force coefficient 𝐴
𝑋1𝑌0
𝑓𝑌

 in (5.32) and is used to negate the imperfection-induced 

linear elastic coupling. 𝜉6
+ − 𝜉6

− in (5.38g) provides the phase-tuneable parametric excitation, 

and is harmonic at frequency 𝜔 as a result of satisfying conditions 2 and 3 in Table 5.2. 𝜉8
+ +

𝜉8
− in (5.38i) contributes to equal linear electrostatic softening of the drive mode and sense 

modes, in a manner similar to 𝜉0
+ + 𝜉0

−.  

The roles of the remaining coefficients are identical to those for the previous electrostatic 

configurations in (4.65a) and (4.65b), and (5.11a) and (5.11b). The only differences are that 

휁2
+ − 휁2

− in (5.38c) is zero so there is no direct forcing of the sense mode, and 𝜉0
+ + 𝜉0

− in 

(5.38a) is constant (𝑉𝐴𝐶
2 is negligible) so there is no linear parametric excitation induced with 

the present scheme. 

5.4.2. Modal dynamics 

In the following, equations of motions are developed for the chosen voltage distribution in 

(5.37a) and (5.37b). The drive and sense dynamics are analysed using the same techniques, 

assumptions and conditions on (3.14), (4.14), (4.69) and (5.15).  

Equations of motion 

The resulting electrostatic forces of the voltage distribution in (5.37a) and (5.37b) are given 

by: 

[
𝑓𝑈,𝑋

𝑓𝑈,𝑌
] = �̅�𝟎 + �̿�𝟏�̅�𝟏 + �̿�𝟐�̅�𝟐 + �̿�𝟑�̅�𝟑 

(5.39) 

where 

�̅�𝟎 = −
휀0

5𝜌𝜋ℎ𝑔0
2
𝑗 sin 𝛿 [𝜉2

+ − 𝜉2
−

0
] (5.40a) 

�̿�𝟏 = −
2휀0

5𝜌𝜋ℎ𝑔0
3
𝑗 [

𝛿(𝜉0
+ + 𝜉0

−)
sin 2𝛿

4
(휁4

+ + 휁4
−)

sin 2𝛿

4
(휁4

+ + 휁4
−) 𝛿(𝜉0

+ + 𝜉0
−)

] 

(5.40b) 

�̿�𝟐 = −
휀0

20𝜌𝜋ℎ𝑔0
4
𝑗 {3 sin 𝛿 [

3(𝜉2
+ − 𝜉2

−) 0 𝜉2
+ − 𝜉2

−

0 2(𝜉2
+ − 𝜉2

−) 0
]

+ sin3𝛿 [
𝜉6

+ − 𝜉6
− 0 −(𝜉6

+ − 𝜉6
−)

0 −2(𝜉6
+ − 𝜉6

−) 0
]} 

(5.40c) 
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�̿�𝟑 = −
2휀0

5𝜌𝜋ℎ𝑔0
5
𝑗 {

3𝛿

2
[
𝜉0

+ + 𝜉0
− 0 𝜉0

+ + 𝜉0
− 0

0 𝜉0
+ + 𝜉0

− 0 𝜉0
+ + 𝜉0

−]

+
sin 4𝛿

8
[
𝜉8

+ + 𝜉8
− 0 −3(𝜉8

+ + 𝜉8
−) 0

0 −3(𝜉8
+ + 𝜉8

−) 0 𝜉8
+ + 𝜉8

−]

+
sin 2𝛿

4
[

0 3(휁4
+ + 휁4

−) 0 휁4
+ + 휁4

−

휁4
+ + 휁4

− 0 3(휁4
+ + 휁4

−) 0
]} 

(5.40d) 

Within �̿�𝟏, the coefficients 휁4
± contribute to the off-diagonal elements, in a manner similar to 

∆𝑚 sin4Θ𝜔 in the imperfection matrix ∆̿𝑚 in (4.46). In this manner, when the mechanical and 

electrostatic forces are summed, 휁4
± can be used to tune the net drive misalignment effect.  

The coefficients 𝜉6
±  appear within �̿�𝟐 , thus affecting the quadratic electrostatic forces as 

required. 

Incorporating (5.40a) - (5.40d) into (5.39) and substituting the resulting drive and sense 

electrostatic forces and the mechanical forces in (4.44) into (4.43a) and (4.43b) gives the 

following equations of motion: 

�̅̈�𝟏 + 2Γ�̅̇�𝟏 + �̿�𝟏�̅�𝟏 + �̿�𝟐(𝑡)
�̅�𝟐

𝑔0
+ �̿�𝟑

�̅�𝟑

𝑔0
2

= Ω�̿�𝛀�̅̇�𝟏 + 𝜒 cos𝜔𝑡 ([
1
0
] + �̿�𝝌

�̅�𝟐

𝑔0
2
) 

(5.41) 

The primary differences with the equations of motion corresponding to the linear parametric 

amplification case in (5.15) are: 

 �̿�𝟏 and �̿�𝟑 are constant. The linear and cubic electrostatic forces are not actively used 

for parametric excitation, asides from self-induced mechanisms. 

 the time-dependent matrix �̿�𝟐(𝑡) appears, which is used to generate phase-tuneable 

parametric excitation using the quadratic electrostatic force. 

 𝜒Δ = 0, so there is no direct force acting on the sense mode. 

The matrices �̿�𝟏, �̿�𝟐(𝑡) and �̿�𝟑 are given by: 

�̿�𝟏 = 𝜔0,𝜆,4
2 [

1 Δ0,4

Δ0,4 1
] + 𝜔𝑚

2 [
Δ𝑚 cos4Θ𝜔 Δ𝑚 sin4Θ𝜔

Δ𝑚 sin4Θ𝜔 −Δ𝑚 cos4Θ𝜔
] 

(5.42) 

�̿�𝟐(𝑡) = − [
𝜈 0 −𝜈
0 −2𝜈 0

] cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆) (5.43) 

�̿�𝟑 = [
𝛾0,𝜆,4 �̃�0,4 𝜅0,𝜆,4 �̃�0,4

�̃�0,4 𝜅0,𝜆,4 �̃�0,4 𝛾0,𝜆,4
] 

(5.44) 
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Compared to (5.16) and (5.17), the linear resonant frequency and cubic single and coupled-

mode stiffness have been replaced with 𝜔0,𝜆,4
2, 𝛾0,𝜆,4 and 𝜅0,𝜆,4. As the subscript indicates, 

these quantities contain contributions from the drive alignment voltage instead of the 

balancing voltage. In addition, the modal coupling is altered by the terms involving Δ0,4 in �̿�𝟏 

and �̃�0,4, �̃�0,4  in �̿�𝟑 . As the subscripts indicate, these terms stem from the bias and drive 

alignment voltage components, given by: 

𝜔0,𝜆,4
2Δ0,4 = −

휀0𝑉0𝑉4

10𝜌𝜋ℎ𝑔0
3
𝑗 sin 2𝛿 

(5.45) 

�̃�0,4 = −
휀0𝑉0𝑉4

10𝜌𝜋ℎ𝑔0
3
𝑗 sin2𝛿 

(5.46) 

�̃�0,4 = −
3휀0𝑉0𝑉4

10𝜌𝜋ℎ𝑔0
3
𝑗 sin 2𝛿 

(5.47) 

These terms are obtained from the elements in the electrostatic force coefficient matrices �̿�𝟏 

and �̿�𝟑  involving 휁4
+ + 휁4

− , and can be used to negate the imperfection-induced drive 

misalignment. This is shown in (5.42) when evaluating the off-diagonal elements.  

In �̿�𝟐(𝑡), 𝜈 is given by: 

𝜈 = −
휀0𝑉𝜆

2

40𝜌𝜋ℎ𝑔0
3
𝑗 sin3𝛿 

(5.48) 

The parametric pumping voltage amplitude 𝑉𝜆 scales the quadratic electrostatic force. 𝜈 and 

𝜙𝜆 are important parameters used to tune the parametric excitation amplitude and phase. 

The definition of the remaining terms in (5.41) are given in Appendix E. 

Drive dynamics 

The single-degree-of-freedom approximation of the drive equation in (5.41) is given by: 

�̈� + 2Γ�̇� + (𝜔0,𝜆,4
2 + 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔)𝑋 − 𝜈 cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)
𝑋2

𝑔0

+ 𝛾0,𝜆,4

𝑋3

𝑔0
2

= 𝜒 cos𝜔𝑡 (1 + 𝑐𝑋𝑋

𝑋2

𝑔0
2) 

(5.49) 

where 𝑐𝑋𝑋 = 9 4⁄ . 
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Applying the averaging procedure on (5.49) yields the following results for the drive 

frequency and resonant drive amplitude: 

𝜔𝑋
2 = 𝜔0,𝜆,4

2 + 𝜔𝑚
2Δ𝑚 cos4Θ𝜔 −

3

4
𝜈 cos𝜙𝜆

𝑥

𝑔0
+

3

4
𝛾0,𝜆,4

𝑥2

𝑔0
2
 

(5.50) 

𝑥𝑟 =
𝜒(1 + 𝑐𝑋𝑋

𝑥𝑟
2

4𝑔0
2)

2Γ𝑋𝜔𝑋
 

(5.51) 

where the effective drive damping coefficient Γ𝑋 is:  

Γ𝑋 = Γ −

𝜈
4

sin𝜙𝜆

2𝜔𝑋
(

𝑥

𝑔0
) 

(5.52) 

Similar to the linear parametric excitation case in (5.21), the parametric pumping voltage can 

have parametric amplification (sin𝜙𝜆 < 0) or attenuation (sin𝜙𝜆 > 0) effects on the drive 

amplitude. An important difference between (5.21) and (5.52) is that in (5.52), the parametric 

amplification/attenuation effect is scaled linearly by the drive amplitude ratio 𝑥 𝑔0⁄ . As such, 

compared to the linear parametric excitation case, a larger 𝜈 is required to yield the same 

amplification/attenuation effect, thus necessitating a larger parametric pumping voltage 

amplitude. For the same parametric pumping voltage amplitude, the parametric excitation 

from the quadratic electrostatic force is generally weaker than the linear electrostatic force due 

to this scaling. 

Sense dynamics 

The approximated sense equation of motion in (5.41) is given by: 

�̈� + 2Γ�̇� + {𝜔0,𝜆,4
2 − 𝜔𝑚

2Δ𝑚 cos 4Θ𝜔 + 2𝜈 cos(𝜔𝑡 + 𝜙𝑥 + 𝜙𝜆)
𝑋

𝑔0

−
𝜒𝑐𝑋𝑌

𝑔0
cos𝜔𝑡

𝑋

𝑔0
+ 𝜅0,𝜆,4

𝑋2

𝑔0
2}𝑌

= −𝐺ΩΩ�̇� − (𝜔𝑚
2Δ𝑚 sin4Θ𝜔 + 𝜔0,𝜆,4

2Δ0,4)𝑋 − �̃�0,4

𝑋3

𝑔0
2
 

(5.53) 

where 𝜔 = 𝜔𝑋. 

The coefficient of 𝑌  is composed of terms with various orders of drive displacement 

dependency. The quadratic electrostatic forces contribute to the terms with a linear 

dependence on the drive displacement. 
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Applying the averaging procedure on (5.53) gives the rate and quadrature outputs identified 

in (5.3): 

�̅� = −

[
𝜔𝑋

2 − 𝜔𝑌
2 + 𝜆1,𝑟 2Γ𝜔𝑋 + 𝜆2,𝑟

2Γ𝜔𝑋 − 𝜆2,𝑟 −𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟

] [
𝑓∆
𝑓Ω

]

𝑃1,𝑟
2 − 𝑃2,𝑟

+ 𝑃2,𝑟
−

 

(5.3) 

where the general expressions of the energy dissipation parameters 𝑃1,𝑟, 𝑃2,𝑟
+ 𝑃2,𝑟

−  in terms of 

�̅�2, 𝜆1,𝑟 and 𝜆2,𝑟 have been obtained in (3.62) and (5.4), revisited here: 

𝑃1,𝑟 = 2Γ𝜔𝑋 (3.62) 

𝑃2,𝑟
± = (𝜆1,𝑟

2 + 𝜆2,𝑟
2)

1
2 ± (−𝜔𝑋

2 + 𝜔𝑌
2) 

(5.4) 

The sense frequency 𝜔𝑌
2  and the phase-decomposed parametric excitation amplitude 

components 𝜆1,𝑟 and 𝜆2,𝑟 are given by: 

𝜔𝑌
2 = 𝜔0,𝜆,4

2 − 𝜔𝑚
2Δ𝑚 cos4Θ𝜔 + 𝜈 cos𝜙𝜆

𝑥

𝑔0
+ 𝜅0,𝜆,4

𝑥2

2𝑔0
2
 

(5.54) 

𝜆1,𝑟 = 𝜈 cos𝜙𝜆

𝑥

2𝑔0
+ 𝜅0,𝜆,4

𝑥2

4𝑔0
2
 

(5.55) 

𝜆2,𝑟 = −𝜈 sin𝜙𝜆

𝑥

2𝑔0
+

𝜒

4𝑔0
𝑐𝑋𝑌

𝑥

𝑔0
 (5.56) 

Comparing (5.50) with (5.54) and (5.55), the contribution of the quadratic electrostatic force 

in the terms involving 𝜈 are of opposite signs. As such, depending on the chosen parametric 

pumping voltage phase 𝜙𝜆, the parametric pumping voltage hardens either the drive or the 

sense mode while softening the other. This can be used for nonlinear frequency balancing 

(−𝜔𝑋
2 + 𝜔𝑌

2 + 𝜆1,𝑟 = 0), subjected to the following conditions: 

 If cos 4Θ𝜔 > 0, cos𝜙𝜆 < 0 is required 

 If cos 4Θ𝜔 < 0, cos𝜙𝜆 > 0 is required 

This contrasts the effects of the cubic electrostatic forces for the previous electrostatic 

configurations considered, where the cubic nonlinearities always soften both the drive and 

sense modes and nonlinear frequency balancing purely relies on the difference of the 

corresponding softening rates. In (5.50), (5.54) and (5.55), the cubic electrostatic forces 

contribute to 𝜔𝑋
2, 𝜔𝑌

2 and 𝜆1,𝑟 through the terms with quadratic drive amplitude dependence. 
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Since 𝜅0,𝜆,4 < 0 and 𝛾0,𝜆,4 < 0, similarly, the cubic electrostatic forces soften both the drive 

and sense modes. Since these terms are subjected to quadratic scaling by the drive amplitude 

ratio 𝑥 𝑔0⁄ , the contributions of the cubic electrostatic forces are relatively small compared to 

the quadratic electrostatic forces, particularly at lower drive amplitudes. 

The total linear elastic coupling force amplitude is: 

𝑓∆ = −𝑥(𝜔𝑚
2Δ𝑚 sin4Θ𝜔 + 𝜔0,𝜆,4

2Δ0,4) −
3

4
�̃�0,4

𝑥3

𝑔0
2
 

(5.57) 

The presence of the forces represented by the terms involving Δ0,4 and �̃�0,4 in (5.53) results in 

additional forces components acting in phase/antiphase with the imperfection-induced linear 

elastic coupling force. As such, these forces have the potential to align the drive force. 

5.4.3. Trimming 

As discussed in Section 5.4.1, to replicate the output of a trimmed device without involving a 

rate-dependent balancing voltage, the linear elastic coupling force must be eliminated and 

nonlinear frequency balancing must be achieved. The following investigates the conditions to 

achieve these aims. 

Drive force alignment requires the elimination of the total linear elastic coupling force, that is, 

setting 𝑓∆  in (5.57) to zero. This imposes the following condition for the drive alignment 

voltage: 

𝜔0,𝜆,4
2Δ0,4 +

3

4
�̃�0,4

𝑥2

𝑔0
2

= −𝜔𝑚
2Δ𝑚 sin4Θ𝜔 

(5.58) 

This condition involves fixing the phase of the electrostatic forces arising from the drive 

alignment voltage to be in antiphase with the misalignment-induced linear elastic coupling 

force. The required drive alignment voltage to satisfy (5.58) is drive amplitude-dependent due 

to the term involving the cubic stiffness coefficient �̃�0,4. However, in practice this amplitude-

dependency is negligible because the term involving �̃�0,4  in (5.58) is diminished by the 

quadratic-ordered scaling by the drive amplitude ratio, being the result of cubic electrostatic 

forces. This term is orders of magnitude smaller than 𝜔0,𝜆,4
2Δ0,4, noting from (5.45) and (5.46) 

that 𝜔0,𝜆,4
2Δ0,4 = �̃�0,4 . Unlike the balancing voltage used in the previous electrostatic 

configurations, the drive alignment voltage remains unchanged with angular rate variations. 
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Nonlinear frequency balancing requires satisfying the condition 𝜆1,𝑟 = 𝜔𝑋
2 − 𝜔𝑌

2 . The 

parametric pumping voltage can be used to achieve this. From (5.50), (5.54) and (5.55), the 

condition for nonlinear frequency balancing is: 

𝜈 cos𝜙𝜆 =
2𝜔𝑚

2Δ𝑚 cos4Θ𝜔 + (𝛾4 − 𝜅4)
3𝑥2

4𝑔0
2

9
4 (

𝑥
𝑔0

)
 

(5.59) 

where 𝛾4, 𝜅4 are identical to 𝛾0,λ,4, 𝜅0,λ,4 in (E-2) and (E-3), but with 𝑉0 and 𝑉𝜆 set to zero, so 

the difference 𝛾4 − 𝜅4 is proportional to 𝑉4
2. 

The nonlinear frequency balancing condition in (5.59) has been arranged to show the explicit 

role of the parametric pumping voltage amplitude and phase to restore nonlinear frequency 

balance when the right side of (5.59) is nonzero. Any combination of the parametric pumping 

voltage amplitude (dictating 𝜈) and phase 𝜙𝜆 can be used to satisfy (5.59). 

For an ideal/trimmed device, ∆𝑚= 0 and no drive alignment voltage is required, so 𝛾4 = 𝜅4 =

0. In this case, the right side of (5.59) nullifies and nonlinear frequency balancing is achieved 

without requiring the parametric pumping voltage, i.e. 𝜈 = 0. This is identical to the perfect, 

nonlinear case for the basic electrostatic configuration investigated in Section 3.5.2 when the 

electrodes are continuous. On the other hand, in the presence of imperfections, the right side 

of (5.59) is generally nonzero, so a parametric pumping voltage must be applied to restore the 

nonlinear frequency imbalance. When the right side of (5.59) is kept constant such as the case 

of a fixed drive amplitude and a given imperfection magnitude, the required parametric 

pumping voltage phase 𝜙𝜆 approaches ±𝜋 2⁄  when |𝜈| increases. 

The default nonlinear frequency balancing point occurs at the drive amplitude where the right 

side of (5.59) is nullified. Since 𝜅4 < 𝛾4, this requires cos 4Θ𝜔 < 0. At other drive amplitudes, 

𝑉𝜆 and 𝜙𝜆 can be tuned to restore the nonlinear frequency balance at a chosen drive amplitude. 

However, this form of nonlinear frequency balancing cannot be achieved at low drive 

amplitudes as this requires a large 𝜈  to satisfy (5.59). This is because the quadratic 

nonlinearities associated with the parametric pumping voltage diminish at low drive 

amplitudes, unless compensated by larger parametric pumping voltage amplitudes. 

Parametric pumping voltage amplitude and phase conditions for nonlinear frequency 

balancing 

The following investigates the effects of the imperfection magnitude on the required 

parametric pumping voltage amplitude and phase combinations for nonlinear frequency 

balancing. In this investigation and throughout the remainder of this chapter, a system with 
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parameters as listed in Table 5.3 is used as the control, in addition to the parameters listed 

Table C.1. 

Table 5.3: Parameters of control set of system 

Parameter Value 

𝛿 (°) 15 

𝑉0 (V) 1 

𝑗 16 

𝛿𝐸  5.9e-4 

Θ𝜔 (°) 1 

Γ (Hz) 56.5 

 

In Table 5.3, the elastic modulus variation magnitude 𝛿𝐸 = 5.9𝑒 − 4 corresponds to a linear 

frequency split of 4 Hz. For this investigation, two other systems with identical parameters to 

those in Table 5.3, but with 𝛿𝐸 = 0 and 1.5𝑒 − 3 are also considered, corresponding to the 

perfect device and a linear frequency split of 10 Hz respectively. The drive alignment voltage 

is calculated using (5.58). The parametric pumping voltage and phase combinations required 

for nonlinear frequency balancing are calculated based on (5.59). The phase 𝜙𝜆 is varied from 

0 to 2𝜋 and for each phase considered, the required amplitude 𝑉𝜆  is calculated. The drive 

voltage is regulated to fix the drive amplitude at 𝑥 𝑔0⁄ = 0.1. 

Figure 5.8 below plots the combinations of 𝑉𝜆 cos𝜙𝜆 2⁄  and 𝑉𝜆 sin𝜙𝜆 2⁄  required for 

nonlinear frequency balancing. Contours of constant parametric pumping voltage amplitudes 
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are also shown, represented as circles with radii matching the parametric pumping voltage 

amplitude. 

 

Figure 5.8: (𝑽𝝀 𝐜𝐨𝐬𝝓𝝀 𝟐⁄ , 𝑽𝝀 𝐬𝐢𝐧𝝓𝝀 𝟐⁄ ) combinations required for nonlinear frequency balancing at 

multiple imperfection magnitudes with constant parametric pumping voltage amplitude contours 

In Figure 5.8, for all imperfection magnitude cases, the parametric pumping voltage amplitude 

required to achieve nonlinear frequency balancing is minimised when cos𝜙𝜆 2⁄ = 0, i.e. 

𝜙𝜆 = ±𝜋, indicating that selecting this parametric pumping voltage phase is most effective 

for nonlinear frequency balancing. However, at this phase, the required parametric pumping 

voltage amplitude to restore nonlinear frequency balance increases as the imperfection 

magnitude increases. When 𝜙𝜆 = ±𝜋, no parametric pumping voltage is required to achieve 

nonlinear frequency balancing for the perfect ring, i.e. the origin in Figure 5.8, but the required 

𝑉𝜆 increases to 0.78 𝑉 and 1.23 𝑉 for 𝛿𝐸 = 5.9𝑒 − 4 and 1.5𝑒 − 3 respectively. This is due 

to the increased nonlinear frequency imbalance when larger imperfections are present, thus 

requiring larger 𝑉𝜆 to counteract the larger nonlinear frequency imbalance. 

For the perfect device, Figure 5.8 shows that the nonlinear frequency balance is retained at 

larger parametric pumping voltage amplitudes when 𝑉𝜆 cos𝜙𝜆 2⁄ = ±𝑉𝜆 sin𝜙𝜆 2⁄ , i.e. 𝜙𝜆 =

±𝜋 2⁄ . In the presence of imperfections, Figure 5.8 shows that the corresponding plots for the 

cases of 𝛿𝐸 = 5.9𝑒 − 4 and 1.5𝑒 − 3 approach the plot for the perfect device at larger 𝑉𝜆. 

This indicates that nonlinear frequency balancing can still be approximately achieved by 

setting 𝜙𝜆 = ±𝜋 2⁄  in the presence of imperfections, provided that the amplitude 𝑉𝜆  is 

sufficiently large. As such, this parametric pumping voltage phase condition is key to retaining 

the nonlinear frequency imbalance when the parametric pumping voltage amplitude is 

increased. 
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Using parametric pumping voltage to achieve nonlinear frequency balance 

The following investigates the nonlinear frequency balancing effects of the parametric 

pumping voltage. The system in Table 5.3 is considered for this investigation. For the 

imperfections considered in this system, a drive alignment voltage of 𝑉4 = 1.7 𝑚𝑉 is required 

to nullify the linear elastic coupling as calculated using (5.58). A range of drive amplitudes up 

to 20% of the nominal capacitive gap is considered, and is attained by incrementally varying 

the drive voltage amplitude up to 𝑉𝐴𝐶 = 21 𝑚𝑉. Figure 5.9(a) shows the frequency backbone 

curve of the drive frequency and the drive amplitude dependency of the frequency 

√𝜔𝑌
2 + 𝜆1.𝑟  for the case without the parametric pumping voltage, shown as a difference 

relative to the linear drive frequency. Figure 5.9(b) shows the same set of results, but with the 

parametric pumping voltage amplitude and phase selected to achieve nonlinear frequency 

balancing at 10% of the nominal capacitive gap. The parametric pumping voltage amplitude 

and phase in this case are 𝑉𝜆 = 779𝑚𝑉  and 𝜙𝜆 = 180°, which is a nonlinear frequency 

balancing point at (𝑉𝜆 cos𝜙𝜆 2⁄ , 𝑉𝜆 sin𝜙𝜆 2⁄ ) = (0,0.78) on the plot corresponding to 𝛿𝐸 =

5.9𝑒 − 4 in Figure 5.8. 

 

Figure 5.9: Variations of the frequencies 𝝎𝑿 and √𝝎𝒀
𝟐 + 𝝀𝟏,𝒓 with the drive amplitude for the cases of (a) 

𝑽𝝀 = 𝟎 and (b) 𝑽𝝀 ≠ 𝟎 aimed at achieving nonlinear frequency balancing at 𝒙 𝒈𝟎⁄ = 𝟎. 𝟏 

In Figure 5.9(a), the frequencies do not coincide. Nonlinear frequency balancing point is not 

achieved as the frequency curves are approximately parallel. Without the parametric pumping 

voltage, the primary factor dictating the difference of the drive amplitude dependencies of 

these frequencies is the drive alignment voltage 𝑉4 (compare the definitions of 𝛾0,𝜆,4 and 𝜅0,𝜆,4 

in (E-2) and (E-3)), which is set to small values in this system due to the small imperfections. 

In Figure 5.9(b), at the drive amplitude 𝑥 𝑔0⁄ = 0.2, the reduction of the drive frequency 𝜔𝑋 

from its linear value is increased to 21𝐻𝑧, compared to a decrease of 16𝐻𝑧 in Figure 5.9(a). 
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On the other hand, the frequency √𝜔𝑌
2 + 𝜆1.𝑟 reduces less significantly in the presence of the 

parametric pumping voltage. These opposite effects are attributed to the quadratic electrostatic 

forces generated using the present scheme, as has been previously noted. The effects of the 

quadratic electrostatic forces are most significant at lower drive amplitudes, where the 

quadratic electrostatic forces dominate the nonlinear behaviour compared to the cubic 

electrostatic forces. The quadratic electrostatic forces result in a slight increase of the 

frequency √𝜔𝑌
2 + 𝜆1.𝑟  up to 𝑥 𝑔0⁄ = 0.03  before decreasing at higher drive amplitudes 

when the cubic electrostatic forces gain dominance. This result shows that the quadratic 

electrostatic forces promote nonlinear frequency balancing. 

Effects of chosen drive amplitude on the required parametric pumping voltage 

amplitude for nonlinear frequency balancing 

Figure 5.9(b) shows that nonlinear frequency balancing is achieved at 𝑥 𝑔0⁄ = 0.1 when the 

parametric pumping voltage amplitude 𝑉𝜆 is set at a particular value. To ensure that nonlinear 

frequency balancing is achieved at other chosen drive amplitudes, 𝑉𝜆  must adjusted 

accordingly. The following investigates the effects of the drive amplitude on the required 

parametric pumping voltage amplitude for nonlinear frequency balancing when the parametric 

pumping voltage phase is fixed. The system in Table 5.3 is considered for this investigation, 

and another system with identical parameters except that 𝛿𝐸 = 1.5𝑒−3. Similar to the previous 

examples, the drive alignment voltage is calculated using (5.58), resulting in 𝑉4 = 1.7𝑚𝑉 and 

4.2𝑚𝑉  for the cases of 𝛿𝐸 = 5.9𝑒−4  and 1.5𝑒−3  respectively. The parametric pumping 

voltage phase is fixed at 𝜙𝜆 = 180°, and the required parametric pumping voltage amplitude 

𝑉𝜆 for nonlinear frequency balancing is calculated using (5.59) as the drive amplitude is varied. 

Figure 5.10 shows the variation of the required parametric pumping voltage amplitude for 

nonlinear frequency balancing with the gap-normalised drive amplitude for both imperfection 

magnitude cases considered. 

 

Figure 5.10: Effects of drive amplitude on the parametric pumping voltage amplitude required for 

nonlinear frequency balancing at different imperfection magnitudes 
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In Figure 5.10, the required parametric pumping voltage amplitude to achieve nonlinear 

frequency balancing is significantly increased at lower drive amplitudes. This is because while 

the imperfection magnitude is fixed, the quadratic electrostatic forces diminish significantly 

when the drive amplitude reduces, thus necessitating larger parametric pumping voltage 

amplitudes to compensate for this reduction and negate the imperfection-induced nonlinear 

frequency imbalance. A larger imperfection magnitude also results in an increase of the 

required parametric pumping voltage amplitude as this increases the magnitude of the 

nonlinear frequency imbalance. 

In contrast to the case of nonlinear frequency balancing investigated in Section 5.3.3, the 

results in Figure 5.10 show that the present scheme enables nonlinear frequency balancing at 

larger drive amplitudes. This highlights an advantage of using the quadratic electrostatic 

forces. 

5.4.4. Parametric amplification 

When trimming is achieved with nonlinear frequency balancing and the negation of the linear 

elastic coupling force, �̅� = �̅�𝝀𝟐 and rate output amplification is achieved through the modified 

energy dissipation rate. From (5.6), the effective damping on the sense mode is 2Γ𝑌𝜔𝑋 =

2Γ𝜔𝑋 − 𝜆2,𝑟 where the parametric excitation amplitude component 𝜆2,𝑟  can have effective 

damping reducing effects, and is key to achieving parametric amplification of the rate output. 

Using the definition of 𝜆2,𝑟 in (5.56), the effective sense damping coefficient Γ𝑌 is: 

Γ𝑌 = Γ +

𝜈
2

sin𝜙𝜆 −
𝜒

4𝑔0
𝑐𝑋𝑌

2𝜔𝑋
(

𝑥

𝑔0
) 

(5.60) 

Compared to the effective drive damping coefficient in (5.52), the terms involving 𝜈 have 

opposite signs, in a manner similar to the effect of 𝜈 on the frequencies 𝜔𝑋 and √𝜔𝑌
2 + 𝜆1.𝑟. 

This indicates that the parametric pumping voltage results in asymmetric effects on the modal 

energy dissipation rates. This contrasts the linear parametric excitation where both modes are 

amplified/attenuated by the parametric pumping voltage (see discussion in Section 5.3.2). 

Consequently, parametric amplification of the rate output results in attenuation of the drive 

amplitude, hence the Coriolis force. However, in practice, this can be prevented by the AGC, 

which fixes the drive amplitude to compensate for the parametric attenuation of the drive mode. 

Secondly, the potential parametric attenuation of the drive amplitude is limited. Comparing 

the terms involving 𝜈 in (5.52) and (5.60), when 𝜈 is sufficiently large to approach parametric 

resonance of the sense mode such that Γ𝑌 ≈ 0, the effective drive damping in (5.52) is such 
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that Γ𝑋 ≈ 3Γ 2⁄  so the parametric attenuation is limited to a 1 3⁄  reduction of the drive 

amplitude. 

From (5.59), it has been established that the nonlinear frequency balancing condition imposes 

a condition on the value of 𝜈 cos𝜙𝜆 and that any feasible (𝑉𝜆, 𝜙𝜆) combination can be used to 

achieve this. However, when parametric amplification is considered, each (𝑉𝜆, 𝜙𝜆) 

combination results in a different value of 𝜈 sin𝜙𝜆 in (5.60), hence varying the magnitude of 

parametric amplification attained. Based on (5.60) and noting that 𝜈 < 0, the chosen phase 𝜙𝜆 

has the following effects: 

 when sin𝜙𝜆 > 0, Γ𝑌 < Γ. Effective damping decreases and rate output amplification 

occurs. 

 when sin𝜙𝜆 < 0, Γ𝑌 > Γ. Effective damping increases and rate output attenuation 

occurs. 

where the former phase condition is desirable. As such, the specific (𝑉𝜆, 𝜙𝜆) combinations 

satisfying (5.59) while yielding large, negative values of 𝜈 sin𝜙𝜆 in (5.60) are most desirable 

for maximising the rate output amplification while retaining nonlinear frequency balance. This 

corresponds to a large 𝑉𝜆 and a phase at 𝜙𝜆 ≈ 𝜋 2⁄ . 

Effects of parametric pumping voltage and phase on parametric 

amplification/attenuation 

The following investigates the magnitudes of the parametric amplification or attenuation 

attained when selecting various combinations of parametric pumping voltage amplitude and 

phase achieving nonlinear frequency balance. For this investigation, the systems for the results 

in Figure 5.8 corresponding to the perfect device and 𝛿𝐸 = 5.9𝑒 − 4 are considered. The drive 

alignment voltage 𝑉4 for both imperfection magnitudes are calculated in a similar manner and 

the drive voltage amplitude 𝑉𝐴𝐶 is tuned to fix a drive amplitude of 𝑥 𝑔0⁄ = 0.1. Figure 5.11 

re-plots the combinations of 𝑉𝜆 cos𝜙𝜆 2⁄  and 𝑉𝜆 sin𝜙𝜆 2⁄  in Figure 5.8 required for nonlinear 

frequency balancing for both imperfection magnitudes. Contours of the calculated values of 

𝜆2,𝑟 (2Γ𝜔𝑋)⁄  at various (𝑉𝜆 cos𝜙𝜆 2⁄ , 𝑉𝜆 sin𝜙𝜆 2⁄ ) combinations are also shown, which are 

determined using (5.56) and the definition of the drive frequency in (5.50). 𝜆2,𝑟 (2Γ𝜔𝑋)⁄ > 0 

and 𝜆2,𝑟 (2Γ𝜔𝑋)⁄ < 0 correspond to parametric amplification and attenuation respectively 

(see (5.6)). Points A and C have also been shown to indicate the (𝑉𝜆, 𝜙𝜆)  combinations 

corresponding to 𝜆2,𝑟 (2Γ𝜔𝑋)⁄ ≈ 0 for 𝛿𝐸 = 0 and 5.9𝑒−4 respectively, while points B and 

D yield 𝜆2,𝑟 (2Γ𝜔𝑋)⁄ ≈ 0.75. The (𝑉𝜆, 𝜙𝜆) combination at point C is used to achieve the 

nonlinear frequency balancing shown in Figure 5.9(b) 
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Figure 5.11: (𝑽𝝀 𝐜𝐨𝐬𝝓𝝀 𝟐⁄ , 𝑽𝝀 𝐬𝐢𝐧𝝓𝝀 𝟐⁄ ) combinations required for nonlinear frequency balancing at 

multiple imperfection magnitudes and the parametric amplification/attenuation contours 

Figure 5.11 shows that parametric amplification is attained when 𝑉𝜆 cos(𝜙𝜆 2⁄ )  and 

𝑉𝜆 sin(𝜙𝜆 2⁄ ) are of the same signs, i.e. 0 < 𝜙𝜆 < 𝜋 or −2𝜋 < 𝜙𝜆 < −𝜋, and that increased 

parametric amplification is attained further away from the origin, i.e. at larger parametric 

pumping voltage amplitudes. On the other hand, larger parametric pumping voltage 

amplitudes increase the parametric attenuation when 𝑉𝜆 cos(𝜙𝜆 2⁄ ) and 𝑉𝜆 sin(𝜙𝜆 2⁄ ) are of 

opposite signs, i.e. −𝜋 < 𝜙𝜆 < 0  or 𝜋 < 𝜙𝜆 < 2𝜋 . As such, parametric pumping voltage 

phase within these ranges should be avoided.  

Modifying the parametric pumping voltage amplitude and phase by following along the points 

on the plots in Figure 5.11 allows the magnitude of parametric amplification/attenuation to be 

adjusted while retaining nonlinear frequency balance. Figure 5.12(a) and (b) below show the 

rate sensitivity gain 𝐺𝑆 achieved for the cases of 𝛿𝐸 = 0 and 5.9𝑒 − 4 respectively when the 

parametric pumping voltage amplitude 𝑉𝜆 is varied by following along the points on the plots 

in Figure 5.11 where 𝑉𝜆 cos(𝜙𝜆 2⁄ ) ≥ 0  and 𝑉𝜆 sin(𝜙𝜆 2⁄ ) ≥ 0 . In these results, the rate 

sensitivity gain 𝐺𝑆 is calculated relative to the rate sensitivity at points A and C, 𝑆𝐴 and 𝑆𝐶, 

for the corresponding perfect/imperfect ring cases, given by: 

𝐺𝑆|𝛿𝐸=0 =
𝑆

𝑆𝐴
 or 𝐺𝑆|𝛿𝐸=5.9𝑒−4 =

𝑆

𝑆𝐶
 

FE results are also shown using (𝑉𝜆, 𝜙𝜆) combinations from point A to B in Figure 5.11 for 

the perfect ring case and from point C to D for the 𝛿𝐸 = 5.9𝑒 − 4 case. The range of 𝑉𝜆 

considered is limited for the FE results because higher levels of parametric amplification result 

in increased durations of the transient study to achieve steady state, due to the reduced sense 

mode energy dissipation rate. 
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Figure 5.12: Effect of parametric pumping voltage amplitude on the rate sensitivity gain for (a) 

ideal/trimmed and (b) imperfect rings 

Comparing Figure 5.12(a) and (b), for lower rate sensitivity gains, the presence of 

imperfections significantly increases the required parametric pumping voltage amplitude. This 

is due to the pre-existing nonlinear frequency imbalance in imperfect devices. On the other 

hand, the presence of imperfections has minimal impact on the gain attained at larger 

parametric pumping voltage amplitudes. The theoretical results show that a rate sensitivity 

gain of 7 is attained when 𝑉𝜆 ≈ 5𝑉 with or without imperfections. This demonstrates the 

ability of large parametric pumping voltage amplitudes to desensitise the rate sensitivity gain 

to the effects of imperfection. 

The FE results are in good agreement with the theoretical results at lower rate sensitivity gains, 

but the theoretical results underestimate the rate sensitivity gain attained at larger 𝑉𝜆. One 

possible explanation is the electrostatic fringing effects at larger 𝑉𝜆. Also, the present analysis 

is based on neglecting sense-to-drive back coupling. As the sense amplitude amplifies while 

the drive amplitude is fixed, the accuracy of this assumption decreases. Larger 𝑉𝜆 can also 

result in non-resonant, hard excitation of higher order modes. A Fourier transform of the ring 

radial displacements in (C-1) from the FE results shows the presence of a response from the 

𝑛 = 3 mode pair of the same order of magnitude as the sense amplitude. 

Comparing Figure 5.12(a) and (b) against that using the linear electrostatic force in Figure 5.5 

shows that the required parametric pumping voltage amplitude is an order of magnitude higher 

while yielding the same rate sensitivity gain. This is because the quadratic electrostatic force 

is generally diminished by the drive amplitude ratio 𝑥 𝑔0⁄ , thus requiring a larger 𝑉𝜆  to 

compensate for this and match the net parametric excitation force amplitude of the 

corresponding linear electrostatic force. This is clear when comparing (5.27) and (5.56). When 

𝜆2,𝑟  is equal between both cases, |𝜈| > |𝜔𝜆
2|. The need for a larger parametric pumping 

voltage amplitude 𝑉𝜆 to generate the same level of parametric amplification is a disadvantage 



231 

 

of using the quadratic electrostatic force for this purpose compared to using the linear 

electrostatic force. 

5.4.5. Summary 

The quadratic-ordered electrostatic forces can be used to generate the required phase-tuneable 

parametric excitation for rate output amplification. In the present scheme, this is achieved in 

conjunction with drive force alignment and nonlinear frequency balancing to retain a trimmed 

sensor output. 

The trimming approach involving a combination of drive force alignment and nonlinear 

frequency balancing eliminates the requirement for a rate-dependent balancing force, so the 

device only operates in open-loop in the present scheme. These are achieved through the 

introduction of a drive alignment voltage component serving to negate the imperfection-

induced linear elastic coupling between the modes, and a parametric pumping voltage with 

tuneable amplitude and phase for nonlinear frequency balancing. The quadratic electrostatic 

forces result in opposite effects on the drive and sense frequencies, thus promoting nonlinear 

frequency balancing. In contrast to the use of linear electrostatic forces, the quadratic 

electrostatic forces enable nonlinear frequency balancing to be achieved at larger drive 

amplitudes, which is advantageous for Coriolis force amplification. It is found that for a given 

imperfection magnitude and drive amplitude, multiple combinations of parametric pumping 

voltage amplitude and phase are well-suited for nonlinear frequency balancing. However, the 

amplitude and phase combinations yielding the greatest rate output parametric amplification 

effects are the most desirable.  

The quadratic electrostatic force, being nonlinear, is weaker than the linear electrostatic force 

due to the drive amplitude dependency. This results in smaller magnitudes of the generated 

parametric excitation. As such, larger parametric pumping voltage amplitudes are generally 

required to yield the same parametric amplification effect as the corresponding linear 

parametric excitation. However, larger parametric pumping voltage amplitudes have 

demonstrated the ability to desensitise the attained rate sensitivity gain to the effects of 

imperfection. FE results have also been shown, confirming the potential of the present scheme 

to enhance the rate sensitivity.  

5.5. Summary and conclusions 

In this chapter, the exploitation of the electrostatic forces to enhance rate sensitivity while 

ensuring trimmed rate output and nullified quadrature output has been investigated. 

Approaches involving the use of linear and quadratic electrostatic forces have been considered. 

The key feature of these schemes is a phase-tuneable parametric excitation, and the component 
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of the parametric excitation responsible for rate output amplification is in quadrature with the 

self-induced parametric excitation. 

The approach involving the linear electrostatic force involves introducing a phase-tuneable 

parametric pumping voltage component, and is a direct extension of the electrostatic 

configuration used in Chapter 4 to negate the self-induced parametric excitation. Due to the 

similarity of the electrostatic configuration used, trimming is similarly achieved using rate-

dependent balancing voltage components, and the potential of using the balancing voltage 

component for closed-loop rate sensing is similarly considered. The special case of nonlinear 

frequency balancing is first investigated, as this condition desensitises the balancing voltage 

to angular rate changes, in which case the device only operates in open-loop. Multiple 

restrictions involving the chosen drive amplitude, imperfection and electrode span apply for 

the conditions to achieve nonlinear frequency balancing through the use of linear electrostatic 

forces for parametric excitation. Most notably, nonlinear frequency balancing cannot be 

achieved beyond a limiting drive amplitude, thus limiting the Coriolis force magnitude. 

Without nonlinear frequency balancing, the device can operate in both open and closed-loop. 

It is found that the nonlinear frequency imbalance improves closed-loop rate sensing 

performance by minimising the closed-loop bias rate and increasing the closed-loop rate 

sensitivity. These performance enhancements are reinforced further by increasing the 

parametric pumping voltage amplitude, which also amplifies the sense amplitude and open-

loop rate sensitivity. FE results have also been included, confirming the ability of the linear 

electrostatic forces to enhance the open-loop rate sensitivity. 

The use of the quadratic electrostatic forces for phase-tuneable parametric excitation is 

similarly achieved using a phase-tuneable parametric pumping voltage component. However, 

an alternative trimming approach without involving rate-dependent balancing voltage 

components has been considered. This form of trimming is achieved through a combination 

of nonlinear frequency balancing and drive force alignment. A drive alignment voltage 

component is introduced to negate the imperfection-induced linear elastic coupling, and the 

parametric pumping voltage is able to achieve nonlinear frequency balancing. It is found that 

the quadratic electrostatic forces stemming from the parametric pumping voltage result in 

opposite effects on the drive and sense frequencies, thus promoting nonlinear frequency 

balancing. This avoids the restrictions to achieving nonlinear frequency balancing when linear 

electrostatic forces are used for parametric excitation. Multiple combinations of parametric 

pumping voltage amplitude and phase can be used to achieve nonlinear frequency balance, 

with each combination resulting in different magnitudes of parametric amplification or 

attenuation of the rate output. The combinations yielding maximised parametric amplification 

have been identified and the ability of the parametric pumping voltage to enhance the rate 
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sensitivity has been validated using FE results. Compared to the use of linear electrostatic 

forces, the parametric excitation magnitude when using quadratic electrostatic forces is 

generally smaller. As such, larger parametric pumping voltage amplitudes are required to 

attain the same parametric amplification effect as the case when linear electrostatic forces are 

used. 

The investigations in this chapter demonstrate the ability of using electrostatic forces to 

replicate the performance of higher Q factor devices without reducing the mechanical damping. 

Specifically, the use of quadratic electrostatic forces to amplify the rate output is an example 

where, through strategic implementations, electrostatic nonlinearities can enhance rate sensing 

performance. The proposed schemes can be implemented at larger drive amplitudes. The 

combination of amplified Coriolis force at larger drive amplitude operations and enhanced Q 

factor due to the phase-tuneable parametric excitation has the potential to enhance rate 

sensitivity significantly.   
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6. CONCLUSIONS AND FURTHER WORK 

6.1. Introduction 

This research has investigated electrostatic nonlinearities for capacitive ring-based CVG’s in 

the context of rate measurement performance. The review of electrostatic nonlinearities in 

Chapter 1 concludes that electrostatic nonlinearities are often regarded as an undesirable 

feature causing rate sensing output to differ to that expected of a linear device. This research 

has focused on mitigating against the undesirable effects of electrostatic nonlinearity and 

focused on developing strategies to leverage electrostatic nonlinearities to enhance sensor 

performance. The main contributions of this research relate to modelling the dynamic 

behaviour of the ring under different electrostatic configurations and validating theoretical 

predictions against numerical results obtained using a commercial finite element package.  

In this final chapter, the key findings of the research are summarised in relation to meeting the 

aims and objectives stated in Section 1.5. Scope for future research is also proposed. 

6.2. Research summary and contributions 

This research aims to investigate the use of electrostatic nonlinearities to improve rate sensing 

performance in capacitive ring-based CVG’s. The following summarises the key 

investigations and main outcomes of the preceding chapters. 

1) In Chapter 2, the linear dynamics of a forced vibrating ring is considered in the presence 

of structural and damping imperfections where the imperfections are modelled as 

circumferentially varying density, elastic modulus and damping to represent typical 

material defects in practice. The linear equations of motion for the drive and sense modes 

of the imperfect ring are derived, and it is found that the imperfection parameters depend 

on the orientation of the drive force relative to the principal axes of imperfection. The 

resulting modal frequency response varies with drive force orientation and these variations 

influence the modal amplitude, phase, bandwidth and resonant frequency.  These 

quantities are used to identify the imperfection parameters, as special conditions apply for 

the resonant frequency and phase, and bandwidth when the drive force orientation aligns 

with the principal axes. The effect of angular rate on the linear forced modal response of 

the ring is then considered to establish the main effects of imperfections on rate sensing 

performance. Structural imperfections are found to degrade rate sensing performance by: 

i) reducing rate sensitivity; ii) introducing a non-zero rate offset bias; and iii) inducing a 

quadrature output. Damping imperfections are found to mainly contribute to the bias rate. 

In the presence of imperfection, the effect of neglecting sense-to-drive back coupling was 

investigated in detail because this assumption is made throughout the thesis. It is found 
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that neglecting back coupling is only valid when the modal bandwidth is sufficiently large 

compared to the gyroscopic and elastic back coupling. The back coupling amplifies the 

effects of structural imperfections, thus degrading rate sensing performance as well. 

2) In Chapter 3, the influence of electrostatic nonlinearity on the performance of a standard 

capacitive ring based CVG was investigated for a device with evenly spaced electrodes 

inside and outside the ring.   The electrodes were modelled as parallel-plate capacitors 

paired with a grounded ring, and the resulting electrostatic forces were incorporated into 

the equations of motion for the case when only bias and drive voltage components are 

applied. Modelling the nonlinear electrostatic force as a power series to cubic-order it is 

found that the bias voltage dominates the electrostatic nonlinearities, resulting in self-

induced parametric excitation and amplitude-dependent drive and sense frequencies. The 

primary mechanisms influencing sensor output compared to that of a linear, trimmed 

device are caused by linear elastic coupling force and nonlinear frequency imbalance. 

These effects negatively impact sensor performance by reducing rate sensitivity, and 

introducing bias and quadrature errors. The nonlinear frequency imbalance stems from a 

mismatch between the drive-sense frequency split and the self-induced parametric 

excitation amplitude. Nonlinear frequency balancing is achieved naturally by using 16 or 

32 electrodes, but for the 8 electrode design nonlinear frequency balancing is only 

achieved for the continuous electrode case. 

3) Forces stemming from linear elastic coupling and nonlinear frequency imbalance must be 

counteracted to restore linear, trimmed sensor output. In Chapter 4, this is achieved by 

generating specific nonlinear electrostatic forces with the purpose of negating these forces. 

A general framework is proposed and developed to determine the necessary electrostatic 

forces through a strategic, goal-based manipulation of the voltage applied to each 

electrode. An approach that negates the self-induced parametric excitation is developed 

that requires two additional voltage components to be applied, in addition to the bias and 

drive voltages. These are: i) a parametric pumping voltage to generate a linear parametric 

excitation in antiphase with the self-induced parametric excitation, and ii) a balancing 

voltage serving to nullify the quadrature output by replicating the sense mode force 

balance of the linear, ideal/trimmed case. The approach developed was applied and it was 

found that the self-induced parametric excitation can be negated. It is found that negating 

the self-induced parametric excitation suppresses the nonlinear drive amplitude 

dependency of the rate sensitivity and bias rate. The extent of this effect depends on the 

magnitude of imperfection, drive misalignment and electrode span. However, the 

quadrature output is not generally nullified. The balancing voltage complements negation 

of the self-induced parametric excitation by enabling the sense response to approach linear 

and trimmed behaviour at increased drive amplitudes regardless of the imperfections. The 
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balancing voltage is rate-dependent and can be used for closed-loop rate sensing unless 

frequency matching occurs.  

4) To further enhance rate sensitivity a phase tuneable parametric excitation was considered 

in Chapter 5, in addition to negating the effects of the linear elastic coupling force and 

nonlinear frequency imbalance. Linear and quadratic electrostatic forces can be used to 

achieve this purpose and both schemes were investigated. The use of linear electrostatic 

forces is an extension of the implementation used to linearise sensor output in Chapter 4, 

but with a variable-phase parametric pumping voltage. In both schemes, the resulting 

parametric excitation reduces the energy dissipation rate, effectively increasing the Q 

factor of the sense mode and achieving parametric amplification of the rate output. Both 

approaches were investigated and both showed significantly improved rate sensitivity. To 

maintain trimmed sensor output together with amplified response, the quadratic 

parametric amplification scheme is advantageous compared to the linear parametric 

amplification scheme because the quadratic nonlinearities cause the drive and sense 

frequencies to change in opposition, and so is well suited to reducing or eliminating the 

nonlinear frequency imbalance. However, the magnitude of the parametric excitation from 

quadratic electrostatic forces is smaller. As such, larger parametric pumping voltages are 

generally required to attain the same magnitude of rate output amplification as that when 

using linear electrostatic forces. 

The analysis to understand the effects of electrostatic nonlinearities in capacitive CVG’s is 

quite complex because the nature of the electrostatic nonlinearities vary depending on the 

chosen electrostatic configuration of the device. The present research has shown that through 

careful implementation, electrostatic nonlinearities do not necessarily degrade rate sensing 

performance and have potential to enhance sensing performance instead. The research 

conducted provides a proof of principle that electrostatic nonlinearities can be used to enhance 

rate sensing performance, beyond that expected of standard ideal devices. The applicability of 

the proposed general framework for the manipulation of the electrostatic nonlinearities 

extends beyond the investigations presented so far. The next section discusses scope for future 

research on the exploitation of electrostatic nonlinearities to develop high performance 

devices.  

6.3. Future research 

The present research could be extended in the following areas. 
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6.3.1. Imperfection characterisation in the presence of electrostatic 

nonlinearities 

In Chapter 2, the linear modal frequency responses have been used to characterise the 

imperfections, where the principal axes orientations are of particular interest. However, in 

practice, perfect linearity of the modal response is typically not achievable. The later chapters 

have shown that electrostatic nonlinearities are present even at low drive amplitudes, albeit 

having a less significant effect. Even for the case of low drive amplitudes, the strength of the 

electrostatic nonlinearities can be amplified with larger bias voltages. Although the present 

research on electrostatic nonlinearities only focuses on resonant operation, it is anticipated 

that the modal response across a range of drive frequencies is susceptible to electrostatic 

nonlinearity, potentially complicating the process of identifying the mechanical imperfection 

present in the ring. 

For the case of perfect rings, studies on the nonlinear modal frequency response have been 

reported for both uncoupled and coupled mode cases [49], and the results clearly show how 

the frequency response varies depending on the form of the nonlinear electrostatic forces 

considered. The study in [49] shows the Duffing nonlinearity, when sufficiently strong, results 

in amplitude frequency responses not admitting one-to-one relationships between the 

amplitude and frequency. This is further complicated by the possibility of unstable operating 

points at some chosen amplitudes. When the mode-coupling electrostatic restoring forces are 

considered, the present research has shown that the drive and sense frequencies are non-

coincident even for perfect rings. For the drive mode, the study in [49] has also shown that the 

nonlinear elastic coupling between the modes results in an additional peak in the amplitude 

frequency response, which is indicative of a nonlinear elastic back coupling from the sense 

mode. When imperfections are included, it is anticipated that these amplitude frequency 

response complexities will affect the respective variations when the drive force orientation is 

varied, in which case the measurement methods proposed in Chapter 2 must account for the 

electrostatic nonlinearities to obtain an accurate identification of the imperfection parameters.  

The present research has only considered the case where the electrostatic configurations are 

perfect, involving evenly distributed electrodes and identical electrode spans. However, 

manufacturing tolerances of the device can result in slight mispositioning of the electrodes 

and geometric variations from electrode to electrode. Since previous research has shown that 

the electrostatic forces can be used to introduce artificial imperfections [45], it is of practical 

interest to investigate the aforementioned effects for potential electrostatic-induced 

imperfections such as frequency splits, and the effects on the resulting electrostatic 

nonlinearities. 
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6.3.2. Parametric amplification for bandwidth improvement 

In Chapter 5, parametric amplification has been used to amplify the sense amplitude for the 

specific case when the drive frequency is fixed. This could be extended to off-resonance 

amplification of the sense response to sustain enhanced rate sensitivities in these cases. It is 

anticipated that this implementation is most beneficial when the imposed parametric excitation 

approaches parametric resonance and the quality factor is significantly enhanced, and could 

be used to suppress the accompanying bandwidth reduction for high quality factor operations 

in typical linear devices. 

While the present research has shown that the form of electrostatic forces varies depending on 

the chosen electrostatic configuration, one study on comb drive actuated gyroscopes has 

demonstrated bandwidth improvements using electrostatic forces composed of only linear and 

cubic uncoupled restoring forces [55], achieved using a square rooted form of sinusoidal 

voltage. In this study, comparisons of the drive and sense amplitude frequency responses show 

that the parametric amplification compensates for off-resonant reductions of drive amplitudes 

by increasing the sensitivity of the sense mode to the Coriolis force, thus achieving a ‘flattened’ 

region on the sense amplitude frequency response. However, increasing the amplitude of this 

voltage decreases the maximum sense amplitude. In ring-based CVG’s, it is of practical 

interest to consider how the electrostatic configuration can be manipulated to achieve this 

bandwidth improvement without reducing the peak sense amplitude. 

In Chapter 2, it has been shown that the gyroscopic back coupling can result in splitting the 

peaks within the modal amplitude frequency responses and that the threshold of peak splitting 

similarly ‘flattens’ the peak region within the amplitude frequency responses. In this case, it 

is of practical interest to investigate the effects of the gyroscopic back coupling in the presence 

of electrostatic nonlinearities and the use of parametric amplification to replicate this effect. 

To achieve this, an investigation into the interaction between the fully coupled gyroscopic 

forces and the nonlinear electrostatic forces is required.   
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Appendix A: Integrals for Calculations of the Ring 

Energies 

Kinetic energy 

Removing the integral in (2.3) yields an expression for the cross sectional kinetic energy of 

the ring Δ𝐸𝑘(휃). 

Δ𝐸𝑘(휃) =
𝐵ℎ𝑅𝑑휃

2
∑(Α𝑝 cos 𝑝휃 + Β𝑝 sin𝑝휃)

∞

𝑝=0

 
(A-1) 

where the coefficients Α𝑝 and Β𝑝 are given by: 

∑(Α𝑝 cos 𝑝휃 + Β𝑝 sin𝑝휃)

∞

𝑝=0

 

= 𝜌 [1 + ∑(𝛿𝜌𝜎 cos 𝜎Θ𝜌,𝜎 cos 𝜎휃 + 𝛿𝜌𝜎 sin𝑚Θ𝜌,𝜎 sin𝜎휃)

∞

𝜎=1

]∑(𝜉𝐸𝑘

𝑖 cos 𝑖𝑛휃

2

𝑖=0

+ 휁𝐸𝑘

𝑖 sin 𝑖𝑛휃) 

(A-2) 

where 𝜉𝐸𝑘

𝑖  and 휁𝐸𝑘

𝑖  are the coefficients describing the circumferential variation of |𝑑𝒓 𝑑𝑡⁄ |
2
, 

given by: 

𝜉𝐸𝑘

0 = 𝑅2Ω2 +
𝑛2 + 1

2𝑛2
(𝑋2 + 𝑌2)Ω2 −

2

𝑛
Ω(�̇�𝑌 − 𝑋�̇�) +

𝑛2 + 1

2𝑛2 (�̇�2 + �̇�2) 
(A-3a) 

𝜉𝐸𝑘

1 = 2𝑅𝑋Ω2 +
2

𝑛
𝑅�̇�Ω 

(A-3b) 

휁𝐸𝑘

1 = 2𝑅𝑌Ω2 −
2

𝑛
𝑅�̇�Ω 

(A-3c) 

𝜉𝐸𝑘

2 =
𝑛2 − 1

2𝑛2 [�̇�2 − �̇�2 + (𝑋2 − 𝑌2)Ω2] 
(A-3d) 

휁𝐸𝑘

2 =
𝑛2 − 1

𝑛2 (�̇��̇� + 𝑋𝑌Ω2) 
(A-3e) 

Integrating Δ𝐸𝑘(휃) along the circumference of the ring gives the total kinetic energy of the 

ring. The following observations simplify the resulting integral: 
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∫ cos𝑝휃 𝑑휃

2𝜋

0

= {
2𝜋, 𝑝 = 0
0, 𝑝 ≠ 0

 

∫ sin𝑝휃 𝑑휃

2𝜋

0

= 0 

Applying this observation and integrating the cross-sectional kinetic energy in (A-1) from 휃 =

0 to 2𝜋 gives the following expression for the total ring kinetic energy: 

𝐸𝑘 = Α0𝜋𝐵ℎ𝑅 (A-4) 

From (A-1), Α0 is the mean cross sectional kinetic energy and is the only component that 

contributes to the total kinetic energy.  

From (A-2), by multiplying the two trigonometric series, (A-2) can be rearranged as: 

∑(Α𝑝 cos 𝑝휃 + Β𝑝 sin𝑝휃)

∞

𝑝=0

 

= 𝜌 ∑(𝜉𝐸𝑘

𝑖 cos 𝑖𝑛휃 + 휁𝐸𝑘

𝑖 sin 𝑖𝑛휃)

2

𝑖=0

 

+
𝜌

2
∑ ∑ [

(𝜉𝐸𝑘

𝑖 𝛿𝜌𝜎 cos 𝜎Θ𝜌,𝜎 − 휁𝐸𝑘

𝑖 𝛿𝜌𝜎 sin 𝜎Θ𝜌,𝜎) cos(𝜎 + 𝑖𝑛)휃

+(휁𝐸𝑘

𝑖 𝛿𝜌𝜎 cos 𝜎Θ𝜌,𝜎 + 𝜉𝐸𝑘

𝑖 𝛿𝜌𝜎 sin𝜎Θ𝜌,𝜎) sin(𝜎 + 𝑖𝑛)휃
]

∞

𝜎=1

2

𝑖=0

 

+
𝜌

2
∑ ∑ [

(𝜉𝐸𝑘

𝑖 𝛿𝜌𝜎 cos 𝜎Θ𝜌,𝜎 + 휁𝐸𝑘

𝑖 𝛿𝜌𝜎 sin 𝜎Θ𝜌,𝜎) cos(𝜎 − 𝑖𝑛)휃

−(휁𝐸𝑘

𝑖 𝛿𝜌𝜎 cos 𝜎Θ𝜌,𝜎 − 𝜉𝐸𝑘

𝑖 𝛿𝜌𝜎 sin𝜎Θ𝜌,𝜎) sin(𝜎 − 𝑖𝑛)휃
]

∞

𝜎=1

2

𝑖=0

 

(A-5) 

To identify Α0 , the left and right sides of (A-5) are compared. As such, the ( 𝑖, 𝜎, 𝑛 ) 

combinations of interest are such that 𝑖𝑛 = 0, 𝜎 + 𝑖𝑛 = 0 or 𝜎 − 𝑖𝑛 = 0. From (A-2), 𝑖 ≥ 0 

and 𝜎 > 0 so 𝜎 + 𝑖𝑛 ≠ 0 in all cases. As such, the second group of summation in (A-5) does 

not contribute to Α0. In the third summation group, the cos(𝜎 − 𝑖𝑛)휃 component contributes 

to Α0 for the density variation components 𝜎 = 𝑛 and 𝜎 = 2𝑛. Using these results, Α0 is: 

Α0 = 𝜌𝜉𝐸𝑘

0 +
𝜌

2
(𝜉𝐸𝑘

1 𝛿𝜌𝑛 cos 𝑛Θ𝜌,𝑛 + 휁𝐸𝑘

1 𝛿𝜌𝑛 sin 𝑛Θ𝜌,𝑛)

+
𝜌

2
(𝜉𝐸𝑘

2 𝛿𝜌2𝑛 cos 2𝑛Θ𝜌.2𝑛 + 휁𝐸𝑘

2 𝛿𝜌2𝑛 sin 2𝑛Θ𝜌,2𝑛) 

(A-6) 
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Substituting (A-6) into (A-4) gives the total kinetic energy expression in (2.6) and (2.7a) - 

(2.7c). 

The 𝑛휃  variation component of the density in (2.5) has negligible contributions to the 

equations of motion. To demonstrate this, the portion of the kinetic energy associated with the 

𝑛휃 density variation coefficient, 𝛿𝜌𝑛 is given by: 

𝐸𝑘|𝑚=𝑛 = 𝜌𝜋𝐵ℎ𝑅2 [(𝛿𝜌𝑛 cos 𝑛Θ𝜌,𝑛 𝑋 + 𝛿𝜌𝑛 sin𝑛Θ𝜌,𝑛 𝑌)Ω2

+
(𝛿𝜌𝑛 cos 𝑛Θ𝜌,𝑛 �̇� − 𝛿𝜌𝑛 sin𝑛Θ𝜌,𝑛 �̇�)

𝑛
Ω] 

(A-7) 

Using Lagrange’s equations in (2.15a) and (2.15b), the resulting modal forces from this 

portion of the kinetic energy are: 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘|𝑚=𝑛

𝜕�̇�
) −

𝜕𝐸𝑘|𝑚=𝑛

𝜕𝑋
= −𝜌𝜋𝐵ℎ𝑅2Ω2𝛿𝜌𝑛 cos𝑛Θ𝜌,𝑛 

(A-8a) 

𝜕

𝜕𝑡
(
𝜕𝐸𝑘|𝑚=𝑛

𝜕�̇�
) −

𝜕𝐸𝑘|𝑚=𝑛

𝜕𝑌
= −𝜌𝜋𝐵ℎ𝑅2Ω2𝛿𝜌𝑛 sin𝑛Θ𝜌,𝑛 

(A-8b) 

(A-8a) and (A-8b) show that the 𝑛휃 variation component in the density only contributes to the 

equations of motion through centripetal effects, which have been neglected in the equations 

motion used throughout this dissertation due to the applicability of the Ω ≪ 𝜔0 condition. The 

other term in (A-7) which is linearly proportional to Ω has no net contribution to the equations 

of motion when 𝐸𝑘|𝑚=𝑛 is incorporated into Lagrange’s equations. 

Bending potential energy 

In a similar manner to the kinetic energy, the cross sectional bending potential energy of the 

ring can be expressed as: 

Δ𝐸𝑏,𝑅(휃) =
𝐼

2
𝐸(휃)(

𝜕2𝑢

𝑅2𝜕휃2
+

𝑢

𝑅2)

2

𝑅𝑑휃 
(A-9) 

where 𝐸(휃) is given in (2.9). Substituting (2.1) and (2.9) into (A-9) gives the following 

expression for the cross sectional bending potential energy of the ring: 

Δ𝐸𝑏,𝑅(휃) =
𝐸𝐼(𝑛2 − 1)2𝑑휃

2𝑅3
∑(Α𝑝 cos𝑝휃 + Β𝑝 sin𝑝휃)

∞

𝑝=0

 
(A-10) 
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where  

∑(Α𝑝 cos 𝑝휃 + Β𝑝 sin𝑝휃)

∞

𝑝=0

= (
𝑋2 + 𝑌2

2
+

𝑋2 − 𝑌2

2
cos 2𝑛휃 + 𝑋𝑌 sin 2𝑛휃)

+ ∑
𝑋2 + 𝑌2

2
(𝛿𝐸𝜎 cos𝜎Θ𝐸,𝜎 cos𝜎휃 + 𝛿𝐸𝜎 sin𝜎Θ𝐸,𝜎 sin 𝜎휃)

∞

𝜎=1

+ ∑

[
 
 
 
 (

𝑋2 − 𝑌2

4
𝛿𝐸𝜎 cos 𝜎Θ𝐸,𝜎 −

𝑋𝑌

2
𝛿𝐸𝜎 sin𝜎Θ𝐸,𝜎) cos(𝜎 + 2𝑛)휃

+(
𝑋𝑌

2
𝛿𝐸𝜎 cos 𝜎Θ𝐸,𝜎 +

𝑋2 − 𝑌2

4
𝛿𝐸𝜎 sin𝜎Θ𝐸,𝜎) sin(𝜎 + 2𝑛)휃

]
 
 
 
 ∞

𝜎=1

+ ∑

[
 
 
 
 (

𝑋2 − 𝑌2

4
𝛿𝐸𝜎 cos 𝜎Θ𝐸,𝜎 +

𝑋𝑌

2
𝛿𝐸𝜎 sin𝜎Θ𝐸,𝜎) cos(𝜎 − 2𝑛)휃

−(
𝑋𝑌

2
𝛿𝐸𝜎 cos 𝜎Θ𝐸,𝜎 −

𝑋2 − 𝑌2

4
𝛿𝐸𝜎 sin𝜎Θ𝐸,𝜎) sin(𝜎 − 2𝑛)휃

]
 
 
 
 ∞

𝜎=1

 

(A-11) 

To obtain the total bending potential energy, the cross-sectional bending potential energy 

Δ𝐸𝑏,𝑅(휃) is integrated around the ring circumference. Consequently, in a similar manner to 

the kinetic energy, only Α0 is of significance in (A-10), yielding a total ring bending potential 

energy of: 

𝐸𝑏,𝑅 =
𝐸𝐼𝜋(𝑛2 − 1)2

𝑅3
Α0 

(A-12) 

Α0 can be obtained by equating the terms independent of 휃 on the left and right sides of (A-

11). From (2.9), 𝜎 ≥ 1 so the first and second summation groups do not contribute to Α0. The 

third summation group contributes to Α0 when 𝜎 − 2𝑛 = 0. Α0 is given by: 

Α0 =
𝑋2 + 𝑌2

2
+

𝑋2 − 𝑌2

4
𝛿𝐸2𝑛 cos 2𝑛Θ𝐸,2𝑛 +

𝑋𝑌

2
𝛿𝐸2𝑛 sin2𝑛Θ𝐸,2𝑛 

(A-13) 

Substituting (A-13) into (A-12) gives the expression of the ring bending potential energy as 

shown in (2.10). 
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Appendix B: Derivation of Bending Potential Energy of 

Support Beams 

As discussed in Section 3.3.2, the support beams considered for the equations of motion 

derived in (3.14) are of the semi-circular type, shown below. 

 

The semi-circular beam is fixed at the hub (point O) and constrained to displace with the ring 

at the supporting point B, subjected to the radial and tangential displacements described in 

(2.1) and (2.2) for 𝑛 = 2. The supporting point of the 𝑖th beam is selected at angular position 

휃𝐵 + 2𝑖𝜋 8⁄  ( 𝑖 = 1,2,⋯ ,8 ) such that the support beams are unobstructed by the inner 

electrodes. 휃𝐾 is a general coordinate ranging from 0 to 𝜋 describing an arbitrary point A on 

the support beam. Using the described representation of one supporting semi-circular beam, 

in what follows, Castigliano’s theorem is employed to derive the total bending potential 

energy contribution from the 8 support beams. 

When the ring deflects, point B displaces, applying radial and tangential forces 𝐹𝑢(𝑖) and 

𝐹𝑣(𝑖)  on the 𝑖 th semi-circular beam. These forces depend on the displacements at the 

supporting points of each beam, hence varying with the index 𝑖. These forces elicit a bending 

moment in the semi-circular beam. The bending moment at point A, 𝑀𝐴(𝑖) can be obtained 

from the cross product between the position vector of B relative to A, 𝒓𝑩𝑨, and the vector 

representation of 𝐹𝑢(𝑖) and 𝐹𝑣(𝑖), 𝑭(𝑖). For this purpose, the coordinate system AA1A2A3 is 

implemented, where A is the origin and the A-A3 axis is perpendicular to the AA1A2 plane. 

The moment vector 𝑴𝑨(𝑖) is given by: 

Ring 

Hub 

Support beams 

O 

A 

B 

휃𝐵 

휃𝐾 
𝐹𝑢(𝑖) 

𝐹𝑣(𝑖) 

O’ 

A1 

A
2
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𝑴𝑨(𝑖) = 𝒓𝑩𝑨 × 𝑭(𝑖) (B-1) 

where 

𝒓𝑩𝑨 =

(

 
 

𝑅

2
(1 − cos 휃𝐾)

−
𝑅

2
sin휃𝐾

0 )

 
 

 

(B-2) 

𝑭(𝑖) = (
𝐹𝑢(𝑖)

𝐹𝑣(𝑖)
0

) 
(B-3) 

𝑀𝐴(𝑖) is derived from the A-A3 component of the cross product in (B-1), giving: 

𝑀𝐴(𝑖) =
𝑅

2
[𝐹𝑢(𝑖) sin 휃𝐾 + 𝐹𝑣(𝑖)(1 − cos 휃𝐾)] 

(B-4) 

This expression can also be directly derived from a geometric inspection of the diagram above. 

The total bending potential energy from the 𝑖th support beam, 𝐸𝑏,𝐾
𝑖 , is given by the following 

integral: 

𝐸𝑏,𝐾
𝑖 = ∫

𝑀𝐴(𝑖)2

2𝐸𝐾𝐼𝐾
(
𝑅

2
𝑑휃𝑘)

𝜋

0

=
𝑅3

32𝐸𝐾𝐼𝐾
[𝜋𝐹𝑢(𝑖)2 + 8𝐹𝑢(𝑖)𝐹𝑣(𝑖) + 3𝜋𝐹𝑣(𝑖)

2] 
(B-5) 

where the evaluated result of the integral has also been shown with 𝑀𝐴(𝑖) being substituted 

for its derived expression in (B-4). 𝐸𝐾𝐼𝐾 is the flexural rigidity of the support beam. 

From Castigliano’s theorem, the partial derivatives of (B-5) give the radial and tangential 

displacements at the 𝑖th supporting point, where 𝑢𝑖 = 𝜕𝐸𝑏,𝐾
𝑖 𝜕𝐹𝑢(𝑖)⁄  and 𝑣𝑖 = 𝜕𝐸𝑏,𝐾

𝑖 𝜕𝐹𝑣(𝑖)⁄ . 

Performing these differentiation operations on (B-5) derives a linear relationship between the 

displacement components 𝑢𝑖, 𝑣𝑖 and the force components 𝐹𝑢(𝑖), 𝐹𝑣(𝑖), given by: 

[
𝐹𝑢(𝑖)

𝐹𝑣(𝑖)
] = [

𝑘𝑢𝑢 𝑘𝑢𝑣

𝑘𝑢𝑣 𝑘𝑣𝑣
] [

𝑢𝑖

𝑣𝑖
] 

(B-6) 

where 
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[

𝑘𝑢𝑢

𝑘𝑢𝑣

𝑘𝑣𝑣

] =
32𝐸𝐾𝐼𝐾

𝑅3(3𝜋2 − 16)

[
 
 
 
 
3𝜋

2
−2
𝜋

2 ]
 
 
 
 

 

(B-7) 

The linearity of the force-displacement relationship in (B-6) shows that 𝐹𝑢(𝑖) and 𝐹𝑣(𝑖) are 

restoring forces defined by the stiffness coefficients 𝑘𝑢𝑢 , 𝑘𝑢𝑣  and 𝑘𝑣𝑣 . 𝑘𝑢𝑢  and 𝑘𝑣𝑣  are 

unidirectional stiffnesses in the radial and tangential directions respectively, while 𝑘𝑢𝑣 is the 

coupled-direction stiffness. These stiffness values are not arbitrary, constrained to the ratio 

shown in (B-7) due to the geometry of the support beam. (B-7) shows that the stiffening effects 

of the semi-circular supporting beams are predominantly in the radial direction. 

Substituting (B-6) into (B-5) allows the potential energy 𝐸𝑏,𝐾
𝑖  to be expressed in terms of the 

radial and tangential displacements, giving: 

𝐸𝑏,𝐾
𝑖 =

1

2
𝑘𝑢𝑢𝑢𝑖

2 + 𝑘𝑢𝑣𝑢𝑖𝑣𝑖 +
1

2
𝑘𝑣𝑣𝑣𝑖

2 
(B-8) 

which takes on the expected form of the summed potential energy of linear springs in the 

radial, tangential and coupled directions. 

Noting that the supporting points lie on the ring at angular positions 휃 = 휃𝐵 + 2𝑖𝜋 8⁄  (see 

above diagram), the displacement components 𝑢𝑖, 𝑣𝑖 can be expressed in terms of the drive 

and sense mode displacements using (2.1) and (2.2). This gives: 

𝑢𝑖 = 𝑋 cos 2(휃𝐵 + 2𝑖𝜋 8⁄ ) + 𝑌 sin2(휃𝐵 + 2𝑖𝜋 8⁄ ) (B-9) 

𝑣𝑖 = −
𝑋

2
sin 2(휃𝐵 + 2𝑖𝜋 8⁄ ) +

𝑌

2
cos2(휃𝐵 + 2𝑖𝜋 8⁄ ) 

(B-10) 

Substituting (B-9) and (B-10) into (B-8), followed by summing the bending potential energy 

across all 8 supporting beams gives the following result for the total bending potential energy 

arising from the supporting beams: 

𝐸𝑏,𝐾 = ∑𝐸𝑏,𝐾
𝑖

8

𝑖=1

=
𝐾

2
(𝑋2 + 𝑌2) 

(B-11) 

where 𝐾 = 4𝑘𝑢𝑢 + 𝑘𝑣𝑣 , representing the effective total modal stiffness of the supporting 

beams.  The contribution from the coupled-direction stiffness 𝑘𝑢𝑣  nullifies after the 

summation. 
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Recalling that the total bending potential energy in the equations of motion (3.5a) and (3.5b) 

is given by the sum 𝐸𝑏 = 𝐸𝑏,𝑅 + 𝐸𝑏,𝐾 . Substituting (B-11) into this summation and 

substituting the resulting expression of 𝐸𝑏 into (3.5a) and (3.5b) gives the net contribution of 

the support beams to the equations of motion. Since (B-11) only contains uncoupled quadratic 

terms in the drive and sense mode displacements, the derivatives 𝜕𝐸𝑏 𝜕𝑋⁄  and 𝜕𝐸𝑏 𝜕𝑌⁄  in 

(3.5a) and (3.5b) ensure that the supporting beams only yield restoring force effects, 

contributing to the linear resonant frequency 𝜔0 defined in (3.18) through its second term.  
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Appendix C: Procedures for FE model setup  

In Chapters 3-5, FE results have been included to validate the mathematical models resulting 

from the various electrostatic configurations implemented, such as (3.6), (4.65a) and (4.65b). 

In the following, the details of how the FE model is developed are discussed. 

Default parameters and operating conditions 

The system considered for all the theoretical and FE results in Chapters 3-5 possesses the 

default properties and operating conditions shown in Table C.1. A range of angular rates is 

necessary to determine the rate sensitivity and bias rate such as those shown in Figure 3.9(a), 

Figure 3.9(b) and Figure 3.11 using a linear fitting of the rate output against the angular rate 

described by the expression in (3.59). 

Table C.1: Default parameters and operating conditions 

Parameter/operating condition Value 

𝑅 (μm) 550 

𝐵 (μm) 80 

ℎ (μm) 4 

𝜌 (kg m3⁄ ) 2320 

𝐸 (GPa) 160 

𝐾 (N m⁄ ) 0.03 

𝑔0 (μm) 1.4 

휀0 (𝐹 𝑚⁄ ) 8.85e-12 

Ω (°/s) 230 - 250 

A range of angular rates are considered to enable the linear interpolation of the rate output 

using the relationship in (3.59) to obtain results for the rate sensitivity and bias rate. 

The dimensions of the ring correspond to the device reported in [6].  The remaining parameters 

and operating conditions are varied depending on the results investigated. 
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Numerical solutions of equations of motion 

The Simulink toolbox is an integrated feature of the MATLAB software package, enabling 

direct solving of nonlinear equations of motion such as (3.14). Simulink uses iterative time-

stepping methods such as Runge-Kutta [67], which are used to solve these equations of motion. 

To incorporate the equations of motion in Simulink, the equations of motion are first arranged 

in the form of �̈� = ℎ𝑋(𝑋, 𝑌, �̇�, �̇�, 𝑡) and �̈� = ℎ𝑌(𝑋, 𝑌, �̇�, �̇�, 𝑡) before solving the equations of 

motion. 

To calculate the evolution of the modal coordinates (𝑋, 𝑌) with time, the main calculation 

parameters required are: 

 Initial conditions for the modal displacements and velocities (𝑋, 𝑌, �̇�, �̇�).  

 Sampling frequency 𝑓𝑠 = 𝑛𝜔𝑓, where 𝑓 = 𝜔 (2𝜋)⁄  is the drive force frequency in Hz.   

 Total number of time steps 𝑁𝑡, usually specified as an integer multiple of the number 

of drive forcing cycles 𝑁𝜒 such that 𝑁𝑡 𝑛𝜔⁄ = 𝑁𝜒.  

where 𝑛𝜔 (or 𝑓𝑠) and 𝑁𝜒 (or 𝑁𝑡) are the solver parameters which must be determined before 

setting up the FE model. In this work, the initial conditions are set at the default configuration 

corresponding to the undeflected, stationary ring, i.e. 𝑋 = �̇� = 𝑌 = �̇� = 0. 

Choosing a higher sampling frequency 𝑓𝑠 ensures better accuracy of the solution for the modal 

displacements, but at the expense of a longer computation duration. However, the solution 

exhibits convergence as 𝑓𝑠 increases. This is demonstrated in Figure C.1 for the steady-state 

sense amplitude when solving for 𝑌 in (5.15). 

 

Figure C.1: Effect of 𝒏𝝎 on the converge of the steady-state sense amplitude 

In Figure C.1, the solution exhibits minimal variations for 𝑛𝜔 > 100 and variations of less 

than 1% is achieved. 
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The total number of time steps is determined by the time taken to achieve steady-state response, 

thus depending on the linear damping and parametric amplification. Figure C.2 shows the 

effects of the parametric amplification on the required forcing cycles for the sense response to 

achieve steady-state by solving (5.15). For clarity of the steady-state behaviour, the oscillatory 

behaviour has been discarded and only the sense displacement at the first quarter of each 

forcing cycle is shown in Figure C.2, i.e. at 𝜔𝑡 = 2𝜋𝑁𝜒 + 𝜋 2⁄ . When the drive mode is 

phase-locked at resonance, this corresponds to the instance in each cycle where the sense 

displacement is at extreme. As such, the theoretical results for the steady-state rate output 

obtained using the averaging method are also shown for comparisons with the time-stepped 

results using Runge-Kutta (RK).   

 

Figure C.2: Sense displacements at times 𝝎𝒕 = 𝟐𝝅𝑵𝝌 + 𝝅 𝟐⁄  for various levels of parametric amplification 

and the corresponding theoretical averaged rate outputs at steady-state 

In a manner similar to the sampling frequency, the number of forcing cycles required to reach 

steady-state can be determined when the cycle-to-cycle variations of the modal displacements 

reduce to negligible magnitudes. For example, the results for 𝑉𝜆 = 570 𝑚𝑉 in Figure C.2 

exhibit variations of less than 1% at approximately 𝑁𝜒 ≥ 800. Figure C.2 also shows that the 

theoretical averaged results of the steady-state rate output exhibit good agreement with the 

numerical results when the Runge-Kutta method is directly applied on the equations of motion. 

As such, these numerical results also serve as an additional validation of the theoretical 

averaged results. 

Careful selections of 𝑛𝜔 (or 𝑓𝑠) and 𝑁𝜒 (or 𝑁𝑡) are required in the FE model to obtain results 

of sufficient accuracy. The aforementioned calculations in Simulink are repeatedly performed 

for the various device parameters considered to obtain appropriate selections 𝑛𝜔 and 𝑁𝜒 for 

each parameter before being incorporated into the FE model.  
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FE model 

Setup 

The FE model is developed using the software COMSOL. The ring is modelled as a 2 - 

dimensional structure, surrounded by electrodes on the inner and outer sides of the 

circumference. Figure C.3 shows the FE model of the vibrating ring, and the electrodes are 

modelled as continuous circular lines. The solid corresponding to the ring is bisected into two 

regions separated by the mid-surface.  

 

Figure C.3: FE model for the vibrating ring and electrodes 

The support beams are modelled as point forces in the radial and tangential directions, acting 

at 8 evenly distributed points on the mid-surface. These forces depend linearly on the in-plane 

ring displacements, thus serving as restoring forces using the force-displacement relationship 

in (B-6). 

ℎ 

𝑔0 

𝑔0 

Inner electrode 

Outer electrode 

Ring mid-surface 

휃 
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Voltages are applied on the circular lines corresponding to the inner and outer electrodes, 

while the ring is grounded. The voltage distributions are modelled as piecewise functions of 

the angular position 휃, characterised by zero voltages at the values of 휃 which are not within 

the electrode span and time-varying voltages at the remaining angular positions. Figure C.4 

shows an example of these piecewise functions for the voltage distribution for the inner 

electrode set in (4.11) for the case where 𝑎𝑉,0
− = 1, 𝑎𝑉,𝜆

− = 𝑎𝑉,𝐴𝐶
− = −1 and  𝑉0 = 2115 𝑚𝑉, 

𝑉𝜆 = 329 𝑚𝑉, 𝑉𝐴𝐶 = 7.6 𝑚𝑉 with 8 evenly distributed electrodes with span of 𝛿 = 38°, at 

the instance 𝑡 = 0. 

 

Figure C.4: Voltage distribution implementing bias, drive and parametric pumping voltage components in 

inner electrode set as a piecewise function of the angular position 𝜽 

The representation of the voltages as piecewise functions simplifies the geometry of the FE 

model significantly, as this avoids the need to split the circular electrode lines into multiple 

arcs when discontinuous electrodes are modelled. 

Mesh convergence 

Due to the nonlinearity of the model, transient analyses are required to obtain the steady-state 

sense response. The time required to complete the transient analyses of the FE model in 

COMSOL is substantial, so it is necessary to select the lowest possible mesh resolution giving 

steady-state results of sufficient accuracy. As such, prior to performing the transient analyses, 

a mesh convergence analysis is performed on the FE model. Since only the circumferential 

variations of the radial and tangential displacement fields are of interest in the present research, 

the geometry of the FE model is only meshed along the circumferential direction. The mesh 

convergence analysis is performed based on the built-in eigenfrequency analysis tool to obtain 

𝑉0 + 𝑉𝜆 + 𝑉𝐴𝐶 

𝑉0 + 𝑉𝜆 

𝑉0 + 𝑉𝜆 − 𝑉𝐴𝐶 
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the 𝑛 = 2 natural frequencies while varying the number of mesh elements along the ring 

circumference. Figure C.5 below shows the variations of these frequencies with the number 

of mesh elements for a non-rotating ring with parameters described in Table C-1, with an 

electrostatic configuration composed of only a bias voltage component at 𝑉0 = 2𝑉 applied to 

8 continuous inner and outer electrodes.  

 

 

Figure C.5: Variation of calculated 𝒏 = 𝟐 natural frequency with number of mesh elements along ring 

circumference 

The results in Figure C.5 show that the calculated natural frequency converges as the number 

of mesh elements is increased. Based on these results, the subsequent transient studies are 

performed using 576 mesh elements, which corresponds to a 0.015% deviation of the 

calculated natural frequency from the converged value. 

Post-processing of transient study results 

After defining the mesh resolution, the sampling frequency 𝑓𝑠 and the number of drive cycles 

𝑁𝜒, the transient studies are performed to obtain the variation of the radial displacements with 

time. The radial displacement results are obtained at evenly-spaced positions on the ring mid-

surface for each time-step, giving the following expression for the radial displacement, 

represented as a discrete Fourier series: 

𝑢(휃𝑖𝜃 , 𝑡𝑖𝑡) = ∑[𝑍𝑛(𝑡𝑖𝑡) cos(𝑛휃𝑖 − 𝜙𝑛)]

∞

𝑛=0

 
(C-1) 
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where 휃𝑖𝜃 is the angular position of the 𝑖𝜃-th measurement location on the ring mid-surface, 

given by 휃𝑖 = 2𝑖𝜃𝜋 𝑗𝜃⁄ . 𝑗𝜃  is the number of points on the mid-surface where the radial 

displacements are obtained, and 𝑖𝜃  is an integer ranging from 1 to 𝑗𝜃 , defining the 𝑖𝜃 -th 

measurement point. In this procedure, 𝑗𝜃 = 120 is used. 𝑡𝑖𝑡  is the 𝑖𝑡-th sampling time and 

depends on the chosen sampling frequency 𝑓𝑠, given by 𝑡𝑖𝑡 = 𝑖𝑡 𝑓𝑠⁄ . 

The drive and sense responses can be derived from the radial displacements in (C-1) by 

implementing a Fourier transform of (C-1) in 휃𝑖, which gives 𝑍𝑛(𝑡𝑖𝑡) and 𝜙𝑛 for the various 

circumferential wave numbers involved. The drive and sense responses correspond to 𝑛 = 2 

and are given by: 

𝑋(𝑡𝑖𝑡) = 𝑍2(𝑡𝑖𝑡) cos𝜙2 (C-2a) 

𝑌(𝑡𝑖𝑡) = 𝑍2(𝑡𝑖𝑡) sin𝜙2 (C-2b) 

Once the drive and sense responses are obtained, the corresponding amplitudes and phases 

can be obtained. To achieve this, 𝑋(𝑡𝑖𝑡) and 𝑌(𝑡𝑖𝑡) are first represented as Fourier series: 

𝑋(𝑡𝑖𝑡) = ∑[𝑥𝑚 cos(𝑚𝜔𝑡𝑖𝑡 + 𝜙𝑥,𝑚)]

∞

𝑚=0

 
(C-3a) 

𝑌(𝑡𝑖𝑡) = ∑[𝑦𝑚 cos(𝑚𝜔𝑡𝑖𝑡 + 𝜙𝑥,𝑚 + 𝜙𝑦𝑥,𝑚)]

∞

𝑚=0

 
(C-3b) 

Similar to the procedure from (C-1) to (C-2a) and (C-2b), Fourier transformations of (C-3a) 

and (C-3b) in 𝜔𝑡𝑖𝑡  are performed to obtain the amplitudes 𝑥𝑚, 𝑦𝑚 and the phases 𝜙𝑥,𝑚, 𝜙𝑦𝑥,𝑚 

for the various harmonics 𝑚. Since the modal responses at the frequency of the drive force are 

of interest, the drive and sense amplitudes and phases for 𝑚 = 1 are required, given by: 

𝑥 = 𝑥1 (C-4a) 

𝜙𝑥 = 𝜙𝑥,1 (C-4b) 

𝑦 cos𝜙𝑦𝑥 = 𝑦1 cos𝜙𝑦𝑥,1 (C-4c) 

𝑦 sin𝜙𝑦𝑥 = 𝑦1 sin𝜙𝑦𝑥,1 (C-4d) 



259 

 

The results in (C-4a) – (C-4d) correspond to averaged results from the theoretical analysis 

presented throughout Chapters 3-5. (C-4c) and (C-4d) give the rate and quadrature outputs 

respectively, which are directly compared to the theoretical averaged results presented 

throughout Chapters 3-5. (C-4c) and (C-4d) are obtained at multiple angular rates within the 

range specified in Table C.1 to obtain the rate sensitivity and bias rate using the relationship 

in (3.59). 
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Appendix D: Effects of Number of Electrodes on the 

Biasing Electrostatic Potential Energy Component with 

the Implementation of Fundamental Voltage 

Distribution 

The square of the basic voltage distribution in (3.6) can be expanded into the following form:  

𝑉±[휃0(𝑖)]
2 = 𝑉0

2 +
𝑉𝐴𝐶

2 cos2 𝜔𝑡

2
± 2𝑉0𝑉𝐴𝐶 cos𝜔𝑡 cos2휃0(𝑖)

+
𝑉𝐴𝐶

2 cos2 𝜔𝑡

2
cos 4휃0(𝑖) 

(D-1) 

The biasing component of the electrostatic potential energy, �̅�  in (3.8) stems from the 

interaction between the capacitance summation 𝑐++−(𝑖) and the invariant component of the 

voltage squared distribution in (3.6), which are the first two terms in (D-1). However, in 

practice, 𝑉𝐴𝐶 ≪ 𝑉0 so the terms involving 𝑉𝐴𝐶
2 can be neglected and only the bias voltage 

squared term, 𝑉0
2 is shown in (3.8). Since the voltage squared component 𝑉0

2 is identical for 

all electrodes, it is independent of the electrode number 𝑖  and as such, the form that the 

summation in (3.8) takes is only dictated by the capacitance summation 𝑐++−(𝑖). The analysis 

presented in Sections 3.3 - 3.5 is strictly focused on the case of 𝑗 = 8. In what follows, the total 

number of electrodes 𝑗  is kept general to identify its effects on �̅�  and subsequently, the 

equations of motion. 

Substituting the radial displacement expression in (2.1) with 𝑛 = 2 into (3.10a) and performing 

the integration enables the capacitance summation 𝑐++−[휃0(𝑖)]  to be expressed as a 

trigonometric series in the central angular position 휃0(𝑖) in a manner similar to the voltage 

distribution in (3.6), thus identifying the capacitance of each of the 𝑖th electrode. This gives: 

𝑐++−[휃0(𝑖)] = 𝛼0
++− + 𝛼4

++− cos 4휃0(𝑖) + 𝛽4
++− sin 4휃0(𝑖) + 𝛼8

++− cos8휃0(𝑖)

+ 𝛽8
++− sin 8휃0(𝑖) 

(D-2) 

where the central angular position of the 𝑖th electrode is defined as: 

휃0(𝑖) = 2𝑖𝜋 𝑗⁄  (D-3) 

This generalises the central angular position for the total number of evenly distributed 

electrodes 𝑗. In Section 3.3.1, 휃0(𝑖) = 𝑖𝜋 4⁄  for the specific case for 𝑗 = 8.  
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In (D-2), the coefficients 𝛼0
++−, 𝛼4

++−, 𝛽4
++−, 𝛼8

++−, 𝛽8
++− are the result of the integration of 

the various ordered terms in 𝑢 in (3.10a).  These coefficients are given by: 

𝛼0
++− =

2휀0𝐵𝑅

𝑔0
𝛿 [1 +

1

2
(
𝑋2 + 𝑌2

𝑔0
2 ) +

3

8
(
𝑋2 + 𝑌2

𝑔0
2 )

2

] 
(D-4a) 

𝛼4
++− =

휀0𝐵𝑅

2𝑔0
sin 2𝛿 (

𝑋2 − 𝑌2

𝑔0
2

+
𝑋4 − 𝑌4

𝑔0
4 ) 

(D-4b) 

𝛽4
++− =

휀0𝐵𝑅

𝑔0
sin2𝛿 (

𝑋𝑌

𝑔0
2
+

𝑋3𝑌 + 𝑋𝑌3

𝑔0
4 ) 

(D-4c) 

𝛼8
++− =

휀0𝐵𝑅

16𝑔0
sin4𝛿 (

𝑋4 − 6𝑋2𝑌2 + 𝑌4

𝑔0
4 ) 

(D-4d) 

𝛽8
++− =

휀0𝐵𝑅

4𝑔0
sin 4𝛿 (

𝑋3𝑌 − 𝑋𝑌3

𝑔0
4 ) 

(D-4e) 

These expressions have been arranged in ascending powers of the modal coordinates to 

distinguish the contributions of the various ordered terms, i.e. 𝑢0 , 𝑢2 , 𝑢4  in (3.10a). 

Specifically, 𝛼8
++− and 𝛽8

++− are purely composed of 4th order terms in the modal coordinates, 

indicating that they arise purely from the electrostatic nonlinearities. They are the direct result 

of the integration of the quartic term, 𝑢4  in (3.10a). Capping the Taylor series expansion up 

to the 4th order in (3.10a) limits the resulting trigonometric series to an 8휃0(𝑖) variation in (D-

2).  

Substituting (D-2) into (3.8) determines which of the coefficients 𝛼0
++−, 𝛼4

++−, 𝛽4
++−, 𝛼8

++−, 

𝛽8
++− have net contributions to �̅� after the summation operation in (3.8) is evaluated. As such, 

it follows that the result of the summation of 𝑐++−[휃0(𝑖)] dictates the resulting terms that 

appear in �̅� and subsequently, the equations of motion. This gives: 

�̅� = −
𝑉0

2

2
∑[𝛼0

++− + 𝛼4
++− cos 4휃0(𝑖) + 𝛽4

++− sin4휃0(𝑖) + 𝛼8
++− cos 8휃0(𝑖)

𝑗

𝑖=1

+ 𝛽8
++− sin8휃0(𝑖)] 

(D-5) 

To evaluate the summation of 𝑐++−[휃0(𝑖)] and the result of (D-6), the following conditions 

apply: 



262 

 

∑cos𝑚휃0(𝑖)

𝑗

𝑖=1

= ∑cos
𝑚

𝑗
(2𝑖𝜋)

𝑗

𝑖=1

= {
𝑗,

𝑚

𝑗
∈ ℤ

0, else
 

(D-6a) 

∑sin𝑚휃0(𝑖)

𝑗

𝑖=1

= ∑sin
𝑚

𝑗
(2𝑖𝜋)

𝑗

𝑖=1

= 0  for all (𝑚, 𝑗) combinations 

(D-6b) 

where 𝑚 = 0,4,8, representing the 휃0(𝑖) variation components in (D-5). 

The summation in (D-6b) indicates that the coefficients of the sine variations in (D-2), 𝛽4
++− 

and 𝛽8
++−  have zero net contributions in �̅�  as the corresponding terms nullify after the 

summation across all electrodes. Also, for 𝑚 = 0, 𝑚 𝑗⁄  is always an integer regardless of the 

number of electrodes 𝑗. As such, the summation in (D-6a) for the case of 𝑚 𝑗⁄ ∈ ℤ always 

applies when 𝑚 = 0, indicating that 𝛼0
++− in (D-2) never nullifies after the summation in (3.8). 

Applying these observations on (D-5) and substituting 𝛼0
++− , 𝛼4

++− , 𝛼8
++−  for the 

corresponding definitions in (D-4a), (D-4b) and (D-4d) gives the following results for the 

summation in (D-5): 

Table D.1: Effect of the number of electrodes on the effective form of the biasing electrostatic potential 

energy component 

𝒋 �̅� 

𝑗 = 1,2,4 
𝑈 = −𝑗

𝑉0
2

2
(𝛼0

++− + 𝛼4
++− + 𝛼8

++−)

= −𝑗
휀0𝐵𝑅𝑉0

2

2𝑔0
{2𝛿 + (𝛿 +

sin 2𝛿

2
)

𝑋2

𝑔0
2
+ (𝛿 −

sin 2𝛿

2
)

𝑌2

𝑔0
2

+ (
3

4
𝛿 +

sin2𝛿

2
+

sin4𝛿

16
)

𝑋4

𝑔0
4
+ (

3

4
𝛿 −

3 sin4𝛿

16
)
2𝑋2𝑌2

𝑔0
4

+ (
3

4
𝛿 −

sin2𝛿

2
+

sin4𝛿

16
)

𝑌4

𝑔0
4} 

𝑗 = 8 
�̅� = −𝑗

𝑉0
2

2
(𝛼0

++− + 𝛼8
++−)

= −𝑗
휀0𝐵𝑅𝑉0

2

2𝑔0
[2𝛿 + 𝛿

𝑋2 + 𝑌2

𝑔0
2

+ (
3

4
𝛿 +

sin4𝛿

16
)
𝑋4 + 𝑌4

𝑔0
4

+ (
3

4
𝛿 −

3 sin4𝛿

16
)
2𝑋2𝑌2

𝑔0
4

] 
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All other 𝑗 
�̅� = −𝑗

𝑉0
2

2
𝛼0

++− = −𝑗
휀0𝐵𝑅𝑉0

2

2𝑔0
𝛿 [2 +

𝑋2 + 𝑌2

𝑔0
2

+
3

4

(𝑋2 + 𝑌2)2

𝑔0
4

] 

The terms involving 𝛿, sin2𝛿 and sin4𝛿 arise from the coefficients 𝛼0
++−, 𝛼4

++− and 𝛼8
++− 

respectively, all of which contribute to �̅� when 𝑗 = 1, 2 or 4. The terms in �̅� contribute to the 

resulting drive and sense equations of motion in (3.5a) and (3.5b) with modal forces described 

by the derivatives 𝜕�̅� 𝜕𝑋⁄  and 𝜕�̅� 𝜕𝑌⁄  respectively. 

The expression for �̅� in Table D.1 for the case of 𝑗 = 1, 2 or 4 shows that 𝛼4
++− results in a 

difference between the coefficients of the uncoupled terms, i.e. 𝑋2 and 𝑌2 as well as 𝑋4 and 

𝑌4. This shows that using 1, 2 or 4 evenly distributed electrodes breaks the modal symmetry 

described in Section 3.3.1. When �̅� is incorporated into Lagrange’s equations in (3.5a) and 

(3.5b), this electrostatically-induced modal asymmetry elicits a splitting of the linear resonant 

frequency in a manner similar to the ring imperfections, as well as the splitting between the 

Duffing coefficients of the drive and sense modes. This is because the use of 1, 2 or 4 

electrodes results in unequal spring effects on the drive and sense modes. 

𝛼8
++−  only affects the 4th-order terms in �̅�  and is nullified unless 𝑗  = 1, 2, 4 or 8. The 

expression for �̅� for the case of 𝑗 = 8 in Table D.1 has been derived in (3.11). The condition 

𝛾0 = 𝜅0 requires the 4th-order terms in �̅� to be proportional to (𝑋2 + 𝑌2)2, thus the use of 1, 

2, 4 or 8 electrodes must be avoided to satisfy this condition. As such, while the use of 8 

electrodes is sufficient for the linear device as the linear frequency splitting effect due to 𝛼4
++− 

can be avoided, a nonlinear frequency imbalance still exists in an otherwise ideal/trimmed 

ring when sin4𝛿 ≠ 0 with electrostatic nonlinearities considered.  
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Appendix E: Definitions of terms in the equations of 

motion for quadratic parametric amplification 

The equations of motion where the quadratic electrostatic forces are used for parametric 

excitation are given by (5.41), where �̿�𝟏 and �̿�𝟑 are given in (5.42) and (5.44): 

�̿�𝟏 = 𝜔0,𝜆,4
2 [

1 Δ0,4

Δ0,4 1
] + 𝜔𝑚

2 [
Δ𝑚 cos4Θ𝜔 Δ𝑚 sin4Θ𝜔

Δ𝑚 sin4Θ𝜔 −Δ𝑚 cos4Θ𝜔
] 

(5.42) 

�̿�𝟑 = [
𝛾0,𝜆,4 �̃�0,4 𝜅0,𝜆,4 �̃�0,4

�̃�0,4 𝜅0,𝜆,4 �̃�0,4 𝛾0,𝜆,4
] 

(5.44) 

The linear resonant frequency 𝜔0,𝜆,4
2 and the cubic modal stiffness coefficients 𝛾0,𝜆,4, 𝜅0,𝜆,4 

are given by: 

𝜔0,𝜆,4
2 = 𝜔𝑚

2 −
2휀0

5𝜌𝜋ℎ𝑔0
3
𝑗𝛿 (2𝑉0

2 +
5𝑉4

2

8
+

𝑉𝜆
2

2
) 

(E-1) 

𝛾0,𝜆,4 = −
휀0

5𝜌𝜋ℎ𝑔0
3
𝑗 [3𝛿 (2𝑉0

2 +
5𝑉4

2

8
+

𝑉𝜆
2

2
) −

5 sin4𝛿

32
𝑉4

2] 
(E-2) 

𝜅0,𝜆,4 = −
휀0

5𝜌𝜋ℎ𝑔0
3
𝑗 [3𝛿 (2𝑉0

2 +
5𝑉4

2

8
+

𝑉𝜆
2

2
) +

15 sin 4𝛿

32
𝑉4

2] 
(E-3) 

𝛾0,𝜆,4 = 𝜅0,𝜆,4  when 𝑉4 = 0 , regardless of the electrode span. This coincidence occurs 

naturally because 𝑗 = 16. 

The harmonic drive force amplitude 𝜒 and its correction factor matrix �̿�𝝌 are given by: 

𝜒 =
6휀0𝑉0𝑉𝐴𝐶

5𝜌𝜋ℎ𝑔0
2
𝑗 sin 𝛿 

(E-4) 

�̿�𝝌 = [

9

4
0

3

4

0
3

2
0

] 

(E-5) 

These differ from those of the other electrostatic configurations considered due to the unequal 

amplitudes of the drive voltage components of the inner and outer electrode sets in (5.37a) 

and (5.37b). 


