
        

Citation for published version:
Brailey, G, Metcalf, B, Price, L, Cumming, S & Stiles, V 2023, 'Raw acceleration from wrist- and hip-worn
accelerometers corresponds with mechanical loading in children and adolescents', Sensors.

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Aug. 2023

https://researchportal.bath.ac.uk/en/publications/0c71f227-2a45-4a04-993c-881ad3ae77c0


 
 

 
 

 
Sensors 2023, 23, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

Article 1 
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Abstract: The purpose of this study was to investigate associations between peak magnitudes of 9 
raw acceleration (g) from wrist- and hip-worn accelerometers and ground reaction force (GRF) var- 10 
iables in a large sample of children and adolescents. 269 participants (127 boys, 142 girls; age: 12.3 ± 11 
2.0yr) performed walking, running, jumping (<5cm; >5cm) and single-leg hopping on a force plate. 12 
A GENEActiv accelerometer was worn on the left wrist and an Actigraph GT3X+ was worn on the 13 
right wrist and hip throughout. Mixed-effects linear regression was used to assess the relationships 14 
between peak magnitudes of raw acceleration and loading. Raw acceleration from both wrist and 15 
hip-worn accelerometers was strongly and significantly associated with loading (all p’s <0.05). Body 16 
mass and maturity status (pre/post-PHV) were also significantly associated with loading, whereas 17 
age, sex and height were not identified as significant predictors. The final models for the GENEActiv 18 
wrist, Actigraph wrist and Actigraph hip explained 81.1%, 81.9% and 79.9% of the variation in load- 19 
ing, respectively. This study demonstrates that wrist- and hip-worn accelerometers that output raw 20 
acceleration are appropriate for use to monitor the loading exerted on the skeleton and are able to 21 
detect short bursts of high-intensity activity that are pertinent to bone health.   22 

Keywords: Accelerometers; bone; impact loading; ground reaction force; physical activity; children 23 
and adolescents 24 
 25 

1. Introduction 26 

Mechanical loading from physical activity (PA) is one of the most potent modifiable fac- 27 
tors that can optimise bone health during growth and reduce the risk of osteoporosis later 28 
in life [1]. Assessment of mechanical loading has typically been confined to the assessment 29 
of ground reaction forces (GRF) and force loading rates in a laboratory setting. To more 30 
closely understand the intricacies of how bone responds to PA during growth and matu- 31 
ration, it is important to be able to accurately assess mechanical loading (GRF) during 32 
habitual PA in free-living situations [2]. The use of accelerometers to measure free-living 33 
PA has become ubiquitous in research [3-6]. However, these wearable devices are most 34 
frequently used to assess energy expenditure in relation to cardiometabolic health out- 35 
comes and their ability to assess activity related mechanical forces that are more relevant 36 
to bone health has been less explored [7]. 37 

A handful of previous studies have demonstrated the potential for accelerometers to 38 
measure the GRFs incurred during PA in children and adolescents [7-9]. However, the 39 
use of accelerometers that output proprietary, count-based data limits the comparability 40 
and applicability of study findings [6] and, most notably, aggregating the output into 41 
epochs results in over-smoothing of the data [10]. As a consequence, dynamic, high-im- 42 
pact activities such as jumping, that are pertinent to bone health [11-13] and generate large 43 
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peak forces at high rates (typically lasting less than 1-second in duration [14]) will go un- 44 
detected using these methods. Recent technological developments have led to widespread 45 
availability of the raw acceleration signal, which overcomes these limitations and has the 46 
resolution necessary to identify impact peaks in the data, making it more reflective of the 47 
GRFs experienced in everyday life [15].  48 

In adults, raw acceleration from both wrist- [15,16] and hip-worn [15-18] devices has been 49 
shown to provide a suitable measure of the impact peaks and mechanical loading incurred 50 
during PA. Similar findings have also been reported for hip-worn accelerometers in chil- 51 
dren [14,19]. However, raw acceleration from a wrist-worn device has not been considered 52 
in this population. Wrist-worn accelerometers are more acceptable to children and ado- 53 
lescents to wear [20,21] and are increasingly used in large-scale cohort studies including 54 
NHANES 2011-2014, Australia’s Child Health CheckPoint [22] and the Pelotas Birth Co- 55 
hort [23] due to the increased adherence to monitor wear, and more representative esti- 56 
mates of activity behaviour that are therefore obtained [20,24,25]. Existing studies in chil- 57 
dren and adolescents are also limited by small sample sizes (n=13 in [19] and 14 in [14]) 58 
and broad age range (5-16 years in [19] and 6-21 years in [14]) of participants. During 59 
growth and maturation, a number of physiological, biomechanical and structural changes 60 
occur, including (but not limited to) changes in stature, leg length and stride frequency, 61 
which influence movement economy and accelerometer output, and changes in landing 62 
force and the rate of force application, which influence the loading characteristics obtained 63 
during movement [26-30]. It is, therefore, unclear whether raw acceleration magnitudes 64 
(from both hip- and wrist-worn accelerometers) across a range of activity intensities re- 65 
flects the pattern of force and loading rate experienced in children and adolescents as they 66 
mature. Understanding this is crucial for the future development, application and inter- 67 
pretation of methods that detect bone-specific activity from hip- and wrist-worn accel- 68 
erometers in this population. 69 

In light of the preceding discussion, this study aims to investigate the associations be- 70 
tween peak magnitudes of raw acceleration from hip- and wrist-worn accelerometers and 71 
ground reaction force variables in a large sample of children and adolescents aged 8-16 72 
years and determine whether factors pertaining to growth and maturation influence the 73 
associations observed. This will help to determine whether raw acceleration from moni- 74 
tors worn at both wear locations can be used to measure PA in relation to loading in the 75 
future and provide researchers with important information regarding the factors that may 76 
need to be considered in order to develop methods that are able to do this effectively. 77 

2. Materials and Methods 78 
2.1. Participants  79 
A total of 282 children were recruited from local schools in and around Exeter, UK. Study 80 
information packs containing an information sheet, parental consent form, child assent 81 
form and medical screening questionnaire were sent home to all pupils in classes whose 82 
physical education lessons coincided with the pre-arranged dates for data collection. 83 
Potential participants had a period of two weeks in which they could return their forms 84 
to confirm participation in the study. Written informed consent and assent was obtained 85 
from parents/guardians and children, respectively. Prior to the collection of data, ethics 86 
approval for the study was granted by the University of Exeter Sport and Health Sciences 87 
Ethics Committee (ref: 170315/B/01 and 171206/B/10). 88 
2.2. Anthropometric measures 89 
The data collection was conducted in the main school hall/sports hall and took place in 90 
two waves, with children aged 9-11 completing the study between June and July of 2017 91 
(Wave 1) and children aged 12-16 from March to July of 2018 (Wave 2). Anthropometric 92 
measures were collected for body mass, stature and sitting height according to the 93 
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methods outlined by Ross et al. [31]. Both stature and sitting height were measured to the 94 
nearest 0.1 cm using a portable stadiometer (Leicester Height Measure; Seca, Birmingham, 95 
UK) and body mass was measured to the nearest 0.1kg using an electronic scale (Seca 96 
7802317004, Birmingham, UK). Two measurements were recorded for each and the mean 97 
values reported. If the values differed by more than 0.4 cm for stature and sitting height 98 
and 0.4 kg for weight, a third measure was taken and the median value was reported. 99 
Body mass index (BMI) was then calculated from these measurements using the formula 100 
body mass/height2 (kg/m2). Leg length was calculated by subtracting the subject’s sitting 101 
height from their stature. Biological maturity was assessed as maturity offset in years from 102 
the estimated age of peak height velocity (PHV) using the sex-specific Mirwald equations 103 
[32]. Maturity offset was calculated by subtracting the predicted age of PHV from the 104 
participant’s current chronological age. 105 
2.3. Procedure  106 
After a sufficient warm-up and familiarisation with each activity, participants performed 107 
walking, running, low jumps, higher jumps and hopping on a portable force platform in 108 
a randomised order. Children in Wave 1 of data collection completed the activities on a 109 
portable AccuSway PLUS force platform (Advanced Mechanical Technology Inc., 110 
Massachusetts, USA; 50.2 x 50.2 x 4.5 cm), which uses Hall Effect sensors to measure 111 
ground reaction forces. The force plate was connected to a laptop via a USB 2.0 connection 112 
and sampled at a frequency of 200 Hz using the AMTI NetForce software. Children in 113 
Wave 2 completed the activities on a portable AccuPower force platform (Advanced 114 
Mechanical Technology Inc., Massachusetts, USA; 102 x 76.2 x 12.5 cm). This platform also 115 
uses Hall Effect sensors and was connected to a laptop via a USB 2.0 connection and 116 
sampled ground reaction force data at a frequency of 1000 Hz using the Accupower 117 
software (version 2.0). For each force plate, a runway of 10 m in length topped with a 118 
10mm depth of EVA foam was constructed so that it was flush with the force plate that 119 
was positioned at the midway point. Participants wore sports shoes and performed the 120 
walking and running activities in shuttles along this runway for 60 seconds. A metronome 121 
set to 120 beats per minute was used for walking and 190 beats per minute for running. A 122 
member of the research team also performed the activities alongside the children to ensure 123 
that they stayed in time and made correct contact with the plate without altering their 124 
natural gait. 125 
Low jumps (approximately 2-5 cm; 120 beats per minute), higher jumps (> 5 cm; 90 beats 126 
per minute) and single-leg hopping (2-5 cm 130 beats per minute) were performed 127 
continuously on the force plate for 10 seconds. Between each activity, the force plate was 128 
adjusted so that the mass was zeroed before the subject stepped onto the plate. 129 
Participants stepped onto the plate when instructed to by the researcher and performed 130 
the activities alongside a member of the research team in time with the metronome beat 131 
to ensure consistency in jump height. Children were instructed to jump with a slight knee 132 
bend, maintain a straight posture and land with their knees slightly bent. There were no 133 
restrictions placed on arm movement. 134 
2.4. Accelerometry 135 
During testing children wore a triaxial GENEActiv (dynamic range ± 8g, Activinsights, 136 
Kimbolton, Cambridgeshire, UK) accelerometer on the left wrist and an Actigraph GT3X+ 137 
(dynamic range ± 6g, Actigraph, Pensacola, FL 32502, USA) accelerometer on the right 138 
wrist. An Actigraph GT3X+ was also worn on the right hip, secured with an elasticated 139 
belt. GENEActiv software (version 2.2) and Actilife Software (version 6.0) were used to 140 
initialise the accelerometers to collect raw acceleration data at a frequency of 100 Hz (in 141 
accordance with previous studies [1,16,19]) and to upload data. 142 
2.5. Data analysis 143 
The magnitude of strain (resulting from gravitational and muscular forces) is an 144 
important factor in determining the adaptive response in bone [33]. The external ground 145 
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reaction force has been shown to be proportional to the magnitude of strain exerted on 146 
the skeleton [34] and is therefore a suitable proxy measure of strain magnitude [15,16]. As 147 
a high strain magnitude alone may not be sufficient to activate bone cells and a high strain 148 
rate is required to stimulate new bone formation [35], the rate of application of external 149 
ground reaction forces (loading rate) is also used as a proxy measure of strain rate [15,16]. 150 
Output variables from the force plate were therefore the peak vertical ground reaction 151 
force (PVF) normalised to bodyweight (BW) calculated by the equation: 152 

output force (N)
mass (kg) x 9.81 m.s−2

         (1) 153 

and the average loading rate (ALR; BW/s) calculated by the equation: 154 
 155 

peak vertical force (BW)
time of peak force (s)−start time of ground contact (s)

      (2) 156 

For the walking and running activities, steps were viewed individually in Excel to ensure 157 
correct contact had been made with the force plate and any incomplete steps were 158 
excluded. Ground contact was defined as the period of time in which the force went above 159 
10 N up until it then went below this again. Ground reaction force variables were extracted 160 
for at least 4 steps for both walking and running activities. For the low jumps, higher 161 
jumps and hopping activities, the force-time histories containing the multiple jumps over 162 
the 10-second sampling interval were inspected in excel and GRF variables were 163 
calculated for a mean of 8 jumps and hops. 164 
Accelerometer files were downloaded and saved in .csv format and exported into Excel 165 
for data processing. Resultant acceleration was calculated using the Euclidean norm 166 
minus 1 (ENMO) approach for the wrist worn GENEActiv and Actigraph GT3X+ 167 
accelerometers using the following equation [36]: 168 

�(x2) + (y2) + (z2)− 1        (3) 169 

For the hip worn GT3X+ accelerometer, only the vertical acceleration was extracted as 170 
most of the loading through the body is in line with the vertical vector [15]. The raw 171 
resultant and vertical acceleration data was extracted into excel separately for each 172 
participant and activity based on the timestamp that was recorded at the start and end of 173 
each activity during the data collection. Acceleration-time histories were created for the 174 
individual activities and then inspected to identify the peaks in acceleration (maximum 175 
values per step/jump that were consistent for each individual within an activity) for all 176 
included activities. The peak resultant and vertical magnitudes of raw acceleration were 177 
extracted manually for 8-10 steps, jumps and hops and a mean value was calculated and 178 
reported. Accelerometer output was in gravity-based acceleration units (g), where 1 g is 179 
equivalent to 9.81 m.s-2. 180 
2.6. Statistical Analysis 181 
Sample characteristics and descriptive data are presented as mean and standard deviation 182 
for continuous variables and as percentages for categorical variables. Independent 183 
samples t-tests were used to test for differences between boys and girls for these variables. 184 
Mixed-effects linear regression was used to assess the relationship between peak 185 
magnitudes of raw acceleration from each accelerometer (GENEActiv wrist, Actigraph 186 
wrist and Actigraph hip) and force to account for the fact that participants had performed 187 
repeated assessments (5 activities). As PVF and ALR act as proxy measures of strain 188 
magnitude and rate (both of which are important for stimulating the mechanosensory 189 
system of bone to result in bone formation [33]), a composite loading score that combined 190 
both of these measures (with equal weighting) was created. This score was calculated as 191 
the average of the z-scores for peak vertical force and average loading rate (loading rate 192 
was log-transformed prior to being z-scored to normalise the positively skewed 193 
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distribution). The loading score, which is a standardised score representing both the 194 
magnitude and rate of strain exerted on the body during activity, can be interpreted as a 195 
higher score indicating greater loading. Body mass (kg) was centred (by subtracting the 196 
sample mean mass from each subjects’ mass) in order to aid the interpretation of a possible 197 
‘body mass x acceleration’ interaction (i.e., in the presence of the interaction, the 198 
acceleration coefficient represents the steepness of the slope when the mass value = 0, 199 
which is more meaningful when 0=mean mass rather than 0=no mass as no child is 0kg). 200 
This ‘body mass x acceleration’ interaction will determine whether body mass has a 201 
modifying effect on the association between acceleration and loading score (i.e., for a 202 
given value of acceleration does it predict the same loading score across all participants’ 203 
body mass, or does it predict a higher or lower loading score in heavier children). Maturity 204 
offset was dichotomised into pre-PHV (all those with a negative maturity offset value) 205 
and post-PHV (all those with a positive maturity offset value) as described by Mirwald et 206 
al. [32] to represent distinct stages in biological maturation. As children in study wave 1 207 
and wave 2 had force data collected using different force plates and sampling frequencies 208 
(due to limited availability of equipment), a dummy variable was added to the model to 209 
determine whether the force plate used had any influence on the outcome by indicating 210 
whether there were any systematic differences in loading score between groups.  211 
Linear Mixed-Effects Modelling (LMEM) was used to analyse the repeated measures 212 
nature of this data. All participants had 5 repeat measures of acceleration and loading 213 
score (one for each type of activity), therefore acceleration could be treated as both a fixed 214 
effect and a random effect while all other potential predictor variables – including 215 
quadratic and cubic terms for acceleration, age, sex, height, centred body mass, maturity 216 
status and all two way interactions with acceleration – were entered as fixed effects 217 
simultaneously into the model.  Entering acceleration as a random effect allowed the 218 
acceleration related slopes to vary for each participant. Intercepts were not given the 219 
freedom to vary for each participant in these models as the lines should all start in the 220 
same place (PVF and ALR = 0 when acceleration = 0). A blended approach of forced entry 221 
and manual backwards elimination was used to develop the optimum model for 222 
predicting loading score. For the first iteration of the model, all predictor variables listed 223 
above were entered simultaneously into the model and any that were non-significant 224 
(p>0.05) in the full model were removed for the second/final iteration of the model unless 225 
they were also part of a significant interaction term, or the same variable was significant 226 
in the other two accelerometer models. The Pseudo R2 and Pseudo R2 change was used to 227 
identify the proportion of the variance explained by the model and any significant 228 
additional variance explained by other factors that were added to the model. The residual 229 
plots from the final model were inspected to ensure that residuals were normally 230 
distributed and unrelated to the magnitude of the predicted value. Significance was set at 231 
≤0.05. All statistical analyses were conducted using IBM SPSS version 28.0 (IBM, Armonk, 232 
NY). 233 

3. Results 234 
3.1. Participant characteristics 235 

Descriptive characteristics are presented in Table 1. Due to a technical error with the force 236 
plate during wave 1 data collection, 13 participants did not have any ground reaction force 237 
data and were excluded from the analysis, resulting in a final sample size of 269 238 
participants (127 boys, 142 girls). Participants had a mean age of 12.3 (± 2.0) years and 239 
boys and girls in the sample were similar in terms of age, height, leg length and mass. 240 
Girls had a significantly higher BMI compared to boys (19.45 vs. 18.43 kg/m2, p<0.05) and 241 
a significantly lower predicted age of PHV (12.02 vs. 13.60 years, p<0.05). Maturity offset 242 
(years to/from PHV) was also significantly lower in girls than in boys (0.31 vs. -1.28 years, 243 
p<0.05).  244 
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Table 1. Descriptive characteristics for the whole study sample, and for boys and girls separately. 245 
Mean (SD) 246 

 247 

 248 

 249 

 250 

 251 

 252 

BMI=body mass index; APHV= age at peak height velocity; prePHV= those with a negative 253 
maturity offset value; postPHV= those with a positive maturity offset value; maturity offset 254 
predicted using Mirwald et al. [32] prediction equations; * P <0.05 for differences between boys 255 
and girls 256 
3.2. Linear mixed-effects modelling 257 
Scatterplots for the loading score and raw acceleration values from each accelerometer for 258 
the whole sample are displayed in Figure 1. Residuals were normally distributed and 259 
inspection of residual plots demonstrated that the variance of the residuals did not differ 260 
by the magnitude of the predicted value. Sex, age, height, their respective interactions 261 
with acceleration, and the ‘maturity x acceleration’ interaction were excluded from the 262 
final model as they were all non-significant in the first iteration of the model. In the final 263 
model, acceleration was a significant predictor of loading score - accounting for 74.4%, 264 
77.4% and 75.1% of the variance in loading score for the GENEActiv wrist, Actigraph wrist 265 
and Actigraph hip, respectively (p <0.001). Given that this relationship was curvilinear, 266 
the addition of the quadratic and cubic acceleration terms significantly improved the 267 
ability of acceleration to model the loading score (pseudo R2 increased to 80.7%, 81.5% 268 
and 79.4% with the addition of these terms for the GENEActiv wrist, Actigraph wrist and 269 
Actigraph hip accelerometer, respectively; all p’s < 0.001). The unstandardized beta 270 
coefficients, 95% confidence intervals, t statistics and p values from the final model for the 271 
GENEActiv wrist, Actigraph wrist and Actigraph hip are presented in Table 2.  272 
Maturity status (Pre/Post PHV) was a significant predictor of loading score in all models. 273 
At the wrist, being pre-PHV was associated with a lower loading score - reflected by the 274 
negative coefficients for the pre-PHV group (GENEActiv wrist: unstd beta = -0.14, p<0.001.  275 
Actigraph wrist: unstd beta = -0.13, p<0.001; Table 2) whereas at the hip, being pre-PHV 276 
was associated with a higher loading score (Actigraph hip: unstd beta = +0.07, p=0.049). 277 
Body mass was a significant predictor of loading score in the GENEActiv model (p= 0.041), 278 
however, for the Actigraph wrist and hip, a significant ‘mass x acceleration’ interaction 279 
was observed (p=0.033 and p=0.007, respectively), whereby for a given acceleration value, 280 
those who are heavier will produce a slightly lower loading score and those who are 281 
lighter will produce a slightly higher loading score. The final models explained 81.1% 282 
(GENEActiv wrist), 81.9% (Actigraph wrist) and 79.9% (Actigraph hip) of the variance in 283 
loading score (all p’s <0.001). Entering acceleration as a random effect and allowing the 284 
acceleration related slopes to vary for each individual also significantly improved the final 285 
model (GENEActiv wrist: unstd beta= 0.002, Wald Z= 6.12; p< 0.001; Actigraph wrist: 286 
unstd beta= 0.002; Wald Z= 5.89, p< 0.001; Actigraph hip: unstd beta= 0.005, Wald Z= 7.47, 287 
p< 0.001). No significant differences in loading score were identified between children in 288 

 All Male Female 
 (n=269) (n=127) (n=142) 

Age 12.3 (2.0) 12.3 (2.1) 12.3 (1.9) 
Height (m) 1.54 (0.14) 1.55 (0.15) 1.54 (0.12) 

Leg Length (m) 0.74 (0.07) 0.75 (0.08) 0.73 (0.07) 
Mass (kg) 46.01 (13.50) 45.15 (13.75) 46.79 (13.27) 

BMI (kg/m2) 18.97 (3.12) 18.43 (2.87) 19.45 (3.27)* 
Predicted APHV 12.77 (1.02) 13.60 (0.69) 12.02 (0.60)* 

Maturity offset (years) -0.44 (1.93) -1.28 (1.86) 0.31 (1.68)* 
Pre/Post-PHV (%) 53/47 68/32 40/60 
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wave 1 (force data collected using the AccuSwayPLUS force platform) and wave 2 (force 289 
data collected using the Accupower force platform; p= 0.22-0.87). 290 
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Figure 1. Force loading score and raw acceleration from GENEActiv (a), Actigraph wrist (b) and 330 
Actigraph hip (c) accelerometers for all activities for the whole sample. Force loading score was 331 
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calculated as the average of the z-scores for peak vertical force and average loading rate (loading 332 
rate was log-transformed prior to being z-scored to normalise the positively skewed distribution). 333 
The loading score can be interpreted as a higher score indicating greater loading. Raw acceleration 334 
is presented as the Euclidean norm minus 1 (ENMO). 335 

Table 2. Relationship between loading scores and raw acceleration values from the GENEActiv 336 
wrist, Actigraph wrist and Actigraph hip accelerometers (statistics from linear mixed-effects regres- 337 
sion models). 338 

Unstd=unstandardized; AIC= Akaike’s information criterion; CI= confidence interval; PHV= peak height velocity (all 339 
negative maturity offset values categorised as prePHV and all positive maturity values categorised as postPHV, 340 
estimated by Mirwald et al. [29] prediction equations); g= gravitational units (where 1g= 9.81 m.s2); c = centred on the 341 
mean body mass of the whole sample. 342 

 343 

4. Discussion 344 

The present study examined the associations between peak magnitudes of raw ac- 345 
celeration from wrist- and hip-worn accelerometers and GRF across a range of impact 346 
intensities in a large sample of children and adolescents to determine whether raw accel- 347 
eration can be used as a proxy measure of loading in this population. Using linear mixed- 348 
effects modelling to account for the repeated nature of the data, this study found that raw 349 
acceleration from both wrist- (GENEActiv, Actigraph GT3X+) and hip-worn (Actigraph 350 
GT3X+) accelerometers was strongly and significantly associated with loading (a compo- 351 
site loading score; the mean of PVF and ALR z-scores) in children and adolescents. Body 352 
mass and maturity status (pre/post-PHV) were also significantly associated with loading, 353 
whereas age, sex and height were not identified as significant predictors. Raw acceleration 354 
alone explained ~75% of the variance in loading score. Findings demonstrated that the 355 

 GENEActiv (wrist) Actigraph (wrist) Actigraph (hip) 

 
Unstd Beta 

Coeff (95% CI) 
t P 

Unstd Beta 

Coeff (95% CI) 
t P 

Unstd Beta 

Coeff (95% CI) 
t P 

Intercept 
-2.12  

(-2.29, -2.10) -45.61 <0.001 
-2.25 

(-2.35, -2.14) -40.72 <0.001 
-2.98  

(3.17, -2.80) 31.67 <0.001 

Acceleration (g) 
1.21 

(1.12, 1.29) 28.39 <0.001 
1.30 

(1.19, 1.42) 22.53 <0.001 
2.22 

(1.97, 2.46) 17.69 <0.001 

Acceleration squared (g) 
-0.17  

(-0.19, -0.15) 
-15.34 <0.001 -0.21 

(-0.25, -0.18) 
-12.25 <0.001 -0.52  

(-0.061, -0.42) 
-10.56 <0.001 

Acceleration cubed (g) 
0.01  

(0.01, 0.01) 10.87 <0.001 
0.01 

(0.01, 0.02) 9.18 <0.001 
0.05  

(0.04, 0.06) 8.25 <0.001 

Maturity status 

(prePHV=0, postPHV=1) 

-0.14 
(-0.2, -0.07) 

-4.24 <0.001 -0.13 
(-0.19, -0.07) 

-4.03 <0.001 0.07 
(0.00, 0.14) 

1.97 0.049 

Body massc (kg) 
-0.003 

(-0.01, 0.00) 
-2.04 0.041 -0.002 

(-0.01, 0.001) 
-1.21 0.229 0.003 

(0.00, 0.01) 
1.74 0.082 

Body massc  x  

Acceleration interaction 

0.0005 
(-0.001, 0.0004) -1.01 0.312 

-0.001 
(-0.002, -0.0001) -2.13 0.033 

-0.002  
(-0.003, 0.0005) -2.71 0.007 

Goodness of fit 
Pseudo R2 (%) 

AIC 

 81.1 

887.1 
 

 

 

 81.9 

839.7 
 

 

 

 79.9   

896.4 
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relationship was curvilinear, therefore inclusion of cubic and quadratic acceleration terms 356 
further improved the ability of the model to predict loading. The final models for the GE- 357 
NEActiv wrist, Actigraph wrist and Actigraph hip accelerometers explained 81.1%, 81.9% 358 
and 79.9% of the variation in loading score, respectively. Results from the present study 359 
provide further evidence that accelerometers that output raw acceleration are appropriate 360 
for use to monitor the loading exerted on the skeleton. This study also expands the exist- 361 
ing literature in child/adolescent populations and demonstrates that wrist-worn accel- 362 
erometers are also suitable to assess loading in this population. 363 

Whilst studies investigating the associations between raw acceleration and GRF variables 364 
in children and adolescents are scarce, similar findings to the present study have been 365 
observed. Meyer et al. [19] reported correlations of 0.89 and 0.90 between raw acceleration 366 
from hip-worn accelerometers (GENEActiv; Actigraph GT3X+) and peak vertical GRF in 367 
5–16-year-olds for walking, jogging, running, jump landings, skipping and dancing activ- 368 
ities. Pouliot-Laforte et al. [14] also reported correlations of 0.96-0.99 between raw accel- 369 
eration from the hip and GRF during multiple one- and two-legged jumping activities, 370 
and during a heel rise test in a sample of healthy controls (n= 14; aged 6-21 years) and in 371 
those with Osteogenesis Imperfecta (n=14; aged 7-21 years). Whilst the latter study did 372 
not investigate whether any other factors influenced the relationships observed, in the 373 
former study, sex, age, height, weight and leg length were not found to have a significant 374 
influence. However, this study used a small sample (n=13) that had a wide age range (5- 375 
16 years) and consisted of only 3 girls, therefore it was likely that there was not adequate 376 
statistical power to identify any differences due to these factors. In agreement with the 377 
present study, others [7,9] have reported that body mass is a significant predictor of force 378 
when investigating the associations between acceleration (count-based outputs, 15 & 60 s 379 
epochs) and GRF variables. In addition to body mass, the present study also found that 380 
maturity status (pre/post-PHV) was significantly associated with loading score. To our 381 
knowledge, this is the first study to have investigated whether there is an influence of 382 
maturity on the associations observed between acceleration and force. 383 

Maturity status (pre/post-PHV) was a significant predictor of loading score in all models. 384 
However, the direction of the relationship differed between the wrist and hip wear loca- 385 
tions. At the hip, it was demonstrated that being post-PHV was associated with a slightly 386 
lower loading score than pre-PHV. During activities such as jumping, landing peak verti- 387 
cal GRF and loading rate have been shown to decrease from pre- to post-maturity [27- 388 
29,37]. This is due to improved dampening mechanisms (greater pre-activation and en- 389 
gagement of the stretch-reflex), which serve to effectively reduce stiffness upon landing 390 
and the spikes in GRF during ground contact [27,29,37]. Since acceleration measured at 391 
the hip provides a good approximation of the forces acting on the body [8], the finding 392 
that those in the post-PHV group will have a slightly lower force compared to those who 393 
are pre-PHV for the acceleration model at the hip is therefore in agreement with the find- 394 
ings outlined above. At the wrist, being post-PHV was associated with a greater loading 395 
score. This opposite relationship may be a result of greater arm movement/noise in the 396 
acceleration data at the wrist in less mature children that is unrelated to the loading expe- 397 
rienced during impact activities. During gait, less mature children have a more unstable 398 
coordination pattern with arm movement and greater variability in arm swing patterns 399 
are observed until 10-14 years of age [38,39]. After this point, arm movement is much more 400 
consistent and reflects that of adults [38,39]. Poorer coordination and greater within-sub- 401 
ject variability in arm movement patterns may therefore result in higher acceleration val- 402 
ues being recorded at the wrist in pre-PHV children compared to post-PHV for a given 403 
force and may be why these findings between maturity status and acceleration were iden- 404 
tified at the wrist.  405 
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Previous studies investigating the associations between raw acceleration and GRF in chil- 406 
dren and adolescents [14,19] have only used monitors placed on the hip. The present study 407 
further expands the literature by investigating associations between loading and raw ac- 408 
celeration from wrist-worn devices. The hip is a popular accelerometer wear location as 409 
is it thought to best reflect whole body movement and energy expenditure [40]. It is also 410 
an appropriate wear location when assessing activity in relation to loading as the accel- 411 
erometer measures the second derivative of the displacement of the hip, which is closely 412 
related to weight-bearing movement [9]. However, wear compliance with hip-worn de- 413 
vices can be poor [20,25], which leads to selection bias and misclassification [20,40]. Due 414 
to the significantly greater wear-compliance observed with wrist-worn monitors 415 
[20,24,25], they are now increasingly used to assess PA in relation to numerous health 416 
outcomes. Results in the present study demonstrated that the relationship between raw 417 
acceleration and loading was very similar for both the wrist- and hip-worn accelerome- 418 
ters, which suggests that wrist-worn devices that output raw data are also appropriate for 419 
use when assessing PA in relation to loading in children and adolescents. Comparable 420 
relationships between wrist- and hip-worn accelerometers have also been reported in sim- 421 
ilar studies in adults [15,16]. However, further research is needed to confirm whether 422 
these findings translate to free-living situations where activities that involve decoupling 423 
of wrist and hip accelerations occur [25,40,41]. 424 

The use of raw acceleration data, rather than data processed in any epoch length, is a 425 
strength of the present study as it prevents over-smoothing of brief, sporadic bursts of 426 
high-intensity activity that are important for generating an osteogenic response [34]. The 427 
multilevel regression analysis used also offers merit over other analysis approaches, such 428 
as performing correlations for each activity. At present, it is not possible to know the type 429 
of activity being performed in free-living data, so although correlation analysis per activ- 430 
ity is useful, it does not demonstrate how well loading can be predicted without infor- 431 
mation on activity type. Using the multilevel regression approach, findings demonstrate 432 
that you can explain ~80% of the variance in loading using accelerometry, even when there 433 
is no information regarding activity type. The use of a large sample is also beneficial as it 434 
enabled the influence of factors including age, sex, height, weight and maturity status on 435 
the associations between raw acceleration and loading to be investigated in more detail. 436 
Nevertheless, this study is not without limitations.  437 

The use of a portable force plate rather than a laboratory mounted force plate may be a 438 
limiting factor. Whilst laboratory mounted force plates are considered the ‘gold standard’, 439 
a number of studies have demonstrated that portable force plates are reliable, precise and 440 
accurate, and provide data that is highly comparable to that of laboratory-based plates 441 
[42-45]. The GRF data was also collected using two different force plate models with dif- 442 
ferent sampling frequencies (200 Hz vs. 1000 Hz, due to technical specification). Whilst 443 
there is a risk that the lower resolution of 200 Hz may result in missed impact peaks [45], 444 
studies have reported near perfect correlations between peak force data collected at 200 445 
Hz during jumping with data sampled at 250, 400 and 500 Hz [46]. Moreover, data sam- 446 
pled at 400 Hz has been shown to capture very similar data to that of 1,200 Hz [45]. There- 447 
fore, the different sampling frequencies are unlikely to have impacted the force data ob- 448 
tained. There was also no evidence of systematic differences between the measures in the 449 
regression model. Whilst similar associations between raw acceleration and loading were 450 
identified for the wrist and hip wear-locations in this sample, the study included struc- 451 
tured activities where arm movements typically paralleled lower body movements. The 452 
similar findings between wrist and hip wear locations may, therefore, not translate to free- 453 
living situations where decoupling of wrist and hip accelerations have been shown to oc- 454 
cur and accelerations during particular activities are disproportionately larger at one lo- 455 
cation compared to the other [25,40,41]. For example, during racket sports, basketball and 456 
computer games, the wrist will record disproportionately larger accelerations than the hip 457 
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[40]. The decoupling of wrist and hip accelerations, and therefore the extent to which the 458 
relationship between loading and acceleration is similar, will be population specific [40] 459 
and further research is needed to investigate whether these findings translate to free-liv- 460 
ing situations with more unstructured activities, or whether differences between the wrist 461 
and hip wear locations occur. Free-living, unstructured situations are also likely to result 462 
in more noise in the acceleration signal and the use of a filter may therefore need to be 463 
explored and applied in future in order to get a clean estimation of body accelerations. It 464 
should also be noted that reliability and validity of the Mirwald method for estimating 465 
age at PHV in youth has been questioned and, thus, the findings of this study pertaining 466 
to the influence of maturation should be interpreted with a degree of caution [45]. Future 467 
studies may seek to replicate this study with alternative methods for estimating biological 468 
maturation. Finally, the Actigraph accelerometer reached its measurement limit for some 469 
of the high-impact jumping activities. In future, devices with a larger measurement range 470 
may be needed to detect all movements that incur large mechanical loads. 471 

The present study demonstrates that raw acceleration from both wrist- and hip-worn 472 
monitors is a valid approach to measuring the loading incurred during PA in children and 473 
adolescents. The finding that the wrist performed similarly to the hip is particularly en- 474 
couraging as adherence to wear protocols is much higher with wrist-worn monitors and 475 
the activity data obtained is therefore more representative of habitual activity [20,40]. As 476 
raw acceleration is reflective of the loading incurred during PA and has the resolution 477 
necessary to examine impact peaks in the data over several days/weeks, future research 478 
should examine the frequency related mechanisms of loading in relation to bone health 479 
outcomes. The ability to accurately capture exposure to loading over longer periods of 480 
time in free-living situations using accelerometers and determining the temporal aspects 481 
of dynamic loading will enable new insights to be gained as to how habitual PA influences 482 
skeletal health during growth. 483 

5. Conclusions 484 

The present study examined the associations between ground reaction force varia- 485 
bles and peak magnitudes of raw acceleration from both hip- and wrist-worn accelerom- 486 
eters in a large sample of children and adolescents to determine whether raw acceleration 487 
is a valid approach to measuring the loading incurred during PA in this population. Lin- 488 
ear mixed-effect regression modelling demonstrated that raw acceleration from both hip- 489 
and wrist-worn accelerometers is strongly and significantly associated with loading in 490 
children and adolescents (explaining around 80% of the variance) and is therefore a suit- 491 
able method of assessing the loading characteristics of PA in the future.  492 
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