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ABSTRACT 

The reasons for power systems' outages can be complicated and difficult to pinpoint, but an 

obvious shortfall in generation compared to electricity demand has been identified as the major 

cause of load shedding in generation constrained power systems. A sudden rise in demand for 

electricity on these networks at any time could result in a total collapse of the entire grid. 

Therefore, in this thesis, algorithms to efficiently allocate the available generation are 

investigated to prevent the associated hardships and lose experience by the final consumers and 

the electric utility suppliers, respectively. 

Heuristic technique is utilised by developing various dynamic programming-based algorithms 

to achieve the constraints of uniquely controlling home appliances to reduce the overall 

demands for electricity by the consumers within the grid in context. These algorithms are 

focused on the consumers' comfort and the associated benefits to the electricity utility company 

in the long run. The evaluation of the proposed approach is achieved through microload 

management by employing three main techniques; General Shedding (GS), Priority Based 

Shedding (PBS) and Excess Reuse Shedding (ERS). These techniques were evaluated using 

both Grouped and “UnGrouped” microloads based on how efficient the microload managed 

the available generation to prevent total blackouts. A progressive reduction in excess microload 

shedding experienced by GS, PBS, and the ERS shows the proposed algorithms' effectiveness.  

Further, predictive algorithms are investigated for microload forecasting towards microload 

management to prepare both consumers and the electric utility companies for any impending 

load shedding. Measuring the forecasting accuracy and the root mean square errors of the 

models evaluated proved the potential for microload demand prediction.  
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Chapter 1 

Introduction 

1.1 Introduction 

The process by which the electricity demand is forced to match the generation is known as 

electric load management. Electricity demand at any given period is unstable, and this applies 

to the generation as well. Consumers expect the utility providers to supply them with reliable 

and uninterrupted electric power supply; electric utility companies are therefore motivated to 

shed large electrical loads from high-demand peak times to low-demand off-peak time [1-3]. 

The methods used to achieve this are collectively called load management. There is no problem 

when generation is far more than the demand (reserve margin), but when the demand, on the 

other hand, approaches the generation, it may result in an entire grid's total collapse [4]. The 

uncertainties in demand for electricity from consumers and the availability of modern 

technologies strengthen utilities to undertake various Demand Side Management (DSM) [5] to 

achieve optimum electricity availability and use.  

However, the threshold is mostly exceeded because demand is more than the generation and 

supply. Such an imbalance can lead to the breakdown of generating units; thus, some of the 

demand must be blocked to maintain frequency equilibrium [10, 11, 12].  The best load 

management and frequency monitoring procedures thus become issues of prime importance to 

nations. They seem to be most important in developing countries whose generating capacities 

are always yet to catch up with the demand levels (see [9, 14, 15]). In this thesis, we refer to 

the utility companies in such countries as generation constrained power systems. Such 
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generation constrained power systems thus need peculiar solutions to solve load management 

challenges.  

Moreover, when this monitoring has been done, and there is a need to continually block an 

amount of load from the system to maintain a safe and economic running of the overall 

generating, transmitting and distributing systems, and just measuring frequency to block the 

loads will be insufficient. As a result, many countries have resulted in various means of 

intentionally sharing the effect of the quest to balance the electric network across their 

consumers.  Some countries must turn OFF certain communities for periods (Ranging from 

hours to weeks) or even sometimes months and then restoring the power by turning OFF some 

other communities that were previously ON similarly, to match the demand with the supply [1, 

15-20]. The advancement of technology has enabled smart meters to be used to monitor 

changes in frequency and remotely turn OFF households [21]. By means of a smart meter, 

some countries could turn OFF specific or group of appliances in a household aiming at 

levelling the frequency to equilibrium. As the demand for electricity is continually growing 

along with the increasing dependency on modern technologies that are mostly if not entirely 

driven by one form of electricity or the other [22-24], there is the need to focus attention on 

how this load shedding can be optimized in a way that consumers can still use their essential 

electric power-driven devices during the period of load shedding implementations or in times 

of supply shortfalls. 

Smart metering promises an interim solution to the problem. Smart meters allow the 

implementation of time-varying billing methods that support the reduction of power system 

peak demand [25-27]. Energy suppliers send time-varying price information to smart meters 

through a Wide Area Network (WAN) [28]. Many smart meters have data registers to store 

energy consumption with different price schemes. For example, in some developed countries, 

smart meters can store price schemes that vary half-hourly or quarter hourly. Current endeavors 
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in smart grid research have been focusing mostly on optimization techniques modelled to 

minimize bill payments, PAR and peaking. Recent work by Yaghmaee et al., in [13] focuses 

on controlling residential loads comprising storage devices in addition to local sources of 

energy generation to achieve DSM in a two-tier cloud-based implementation.   

Considering recent strives made in the design of smart metering technologies; it has become 

empirical that it finds root in the load management sector. Therefore, there is the need to 

harness the functionalities of the smart meter into the load management research where load-

shedding and its related calculations are performed on the smart metering platform at the 

microload levels by strategically taken OFF specific microloads to stabilize the power system 

or to always make electricity available to across the entire electric grid. 

1.2 Problem Statement 

Another aspect of the demand side management is micro-grids, where consumers can sell their 

self-generated electricity power back to the utility for effective reductions in their utility bills 

[32, 33]. In Ghana, for example, water levels in all the dams have dropped drastically and are 

still dropping as a result of consistent insufficient rainfall over a long period. The drop in the 

water level can heavily be attributed to the fall in the flow of water from the upstream as a 

result of dam construction on its path at Burkina Faso [34].  

Even if the generating units are running at their full capacities, many countries are still faced 

with the issue of rising numbers of consumers of electricity, planned maintenances as well as 

breakdown of generating, transmission and distribution units. Increasing the generation 

capacities and the provision of a high number of spare units and parts could be one of the ways 

to handle these issues. This requires huge financial investments, which may not be readily 

available to most countries facing this situation. This menace is even worse in developing 

countries.  
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In the face of falling installed generation capacities coupled with the increasing number of 

consumers, the power systems must be protected by systematically blocking electricity to 

various parts of the country [32]. However, in view of these problems, constrained power 

systems must perform load shedding due to higher demand than generation resulting in 

completely cutting OFF electricity power to sections of a country or even the entire country 

[35]. The smart meter is equipped with intelligence to collect granular metering information on 

household/company and device basis at a precision order as well as remotely connect and 

disconnect the meter from the electricity supply [25].  

The recent hike in electricity management in the world presents an opportunity to investigate 

how these smart metering systems could be enhanced to ameliorate problems associated with 

the processes adopted by constrained power systems in order to prevent country-wide power 

outages. This practice, referred to as load shedding, creates inconvenience for the consumers 

and at the same time causes the utility to lose huge amounts of revenue [10]. 

1.3 Aims and Objective 

This research work examines and reviews the present methods of load shedding as a guide to 

the development of microload shedding smart metering system by addressing the shortfalls of 

the existing approaches and technologies. Hence, this thesis presents a novel microload 

shedding technique for managing generation constrained power systems. Furthermore, 

considering the opportunities and challenges introduced by the microload shedding in the smart 

grid, this thesis provides efficient algorithms and optimization techniques for managing the 

microloads. 

Specifically, the microload management smart metering system should be able to automatically 

or semi-automatically implement the microload shedding based on schedule or other indicators 

such as load profile or essential load requirements as well as consumer set priorities. The 

following objectives are achieved in the light of the above aim. 
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Objective I: The existing methods of electricity load management have been reviewed 

Objective II: Existing load management algorithms and optimisation techniques have 

been reviewed 

Objective III: Microload management algorithms and optimisation techniques for 

microload shedding have been proposed and designed 

Objective IV: The proposed microload management algorithms have been evaluated 

Objective V: Efficient forecasting techniques have been implemented and applied to 

microload shedding 

 

1.4 Thesis Contributions 

Although this research intends to provide a better customer experience, it has the potential to 

improve revenue generation for the utilities by continually providing services to their 

consumers even in the severest situations of generation deficiencies and or equipment failures.  

Through the microload management approach proposed in this thesis, consumers can monitor 

and control their energy consumptions efficiently in real-time or periodically at a more granular 

level.  

The main contributions have been categorized as primary for those contributions that can be 

directly measured or seen from the output of the research and secondary for indirect 

contributions. The next subsections assess these categories of contributions. 

 

1.4.1 Primary contribution 

Theoretically, this research surveys theories associated with electricity management, smart 

metering and information systems and presents different perspectives to current approaches in 

electricity management and energy metering. The algorithms, optimisation techniques, and 

methodologies outlined in this research will go a long way to shape future research in these 
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fields of research. By developing such a system, the research contributes practically by 

introducing a new kind of smart metering system and approach with its tools and methods. The 

demonstration of the ability to use the smart meter to gather Real-Time Demand (RTD) as a 

granular demand would constitutes a novel approach in the management of electricity for both 

consumers and electric utilities.  Another primary contribution is the design of a smart metering 

system with algorithms and optimisation techniques capable of performing load limiting on the 

meter. As an effort to reduce global warming to some extent, this research provides an 

opportunity for the generation constrained power systems to share the scares electricity 

resources among their consumers without the need for excessive peaking. 

 
1.4.2 Secondary contribution 

This thesis becomes a point of reference to researchers working not only in the fields of smart 

metering, embedded systems but also electricity distribution and optimisation as well as 

information systems research [36, 37]. It will also contribute to the Human-Computer 

Interaction research domains [38, 39]. Notwithstanding the above, the developed artefact, 

microload manageable smart metering system will serve as a guide to future smart metering 

designs and as an exemplar to the Design Science Research (DSR) and its methodology [38].  

 

1.5 Outline of Thesis 

The background aims and objectives of the research are presented in Chapter One. The same 

chapter presents an overview of the problem in the Problem Statement section and outlines 

some research contributions. The thesis outline is also presented in Chapter One. Chapter Two 

reviews the literature on modern trends in electricity management and argues that current 

electricity management methods are good and effective for short-term intervention but pose a 

great burden on the consumers that negatively affect their livelihood when used as a long-term 

measure to stabilise the electricity network. It further argues that electricity has become the 
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fabric of any society and must always be made available. This chapter again reviews current 

research on smart metering, focusing on the adopted communication technologies and the 

intended benefits. Pieces of the literature review show that the current design methods cannot 

be used for microload management. This has therefore, forced the need to research into a design 

that considers the granular load consumptions of all devices and appliances to enable microload 

management. Algorithms and optimisation techniques being used in most non-constrained 

power systems were also reviewed along with the potential to predict the future consumer and 

generation towards informing the stakeholders ahead of such microload shedding is also 

reviewed. 

Chapter Three presents the System Model and the various abstractions involved in the 

algorithms' design, along with the associated assumptions. The chapter emphasises the 

positivist philosophy using heuristics. Furthermore, this chapter presents the design 

consideration of the microload manageable smart metering system. It outlines the requirements 

through models based on available tools and components required to design the smart 

microload meter and a simulator to evaluate the concept and the associated algorithms. 

Chapter Four presents the first proposed microload shedding algorithm dubbed General 

Microload Shedding Algorithm while introducing the concept of Grouped Microloads (GmL) 

and Ungrouped Microloads (UmL). The results and discussions on evaluating the General 

Microload shedding Algorithm on GmL and UmL are presented in this chapter. Finally, this 

chapter concludes that there is significant excess load shedding and the intended request values 

observed and therefore argues for the need for further perspectives to reduce this excess 

shedding. 

Chapter Five looks at the development of the algorithm and optimisation techniques that enable 

more efficient microload management by eliminating the excess load shed and the intended 
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ones observed in the General Microload Shedding approach; introducing the Priority Based 

Microload Shedding Algorithm does this. The PBmL Shedding Algorithm was evaluated on 

both Grouped Microloads (GmL) and the Ungrouped Microloads (UmL); the results show 

significant reductions in the excess shedding. Further, Excess Reuse Microload (ERmL) 

Shedding algorithm was proposed and discussed in Chapter Six. 

To take advantage of the modern trend being presented by the advancement of ICTs, Chapter 

Seven discusses the potential for predictive algorithms in electricity generation and demand 

forecasting for microload management. Finally, the conclusion and future outlooks for this 

research were discussed in Chapter Eight. 

The various chapters are related to each other as follows; chapters are categorised into 

Relevance, Approach, Output and Evaluation. Chapters One and Two focus on the Relevance 

of the research. Chapter Three shows the Approach, and Chapters Four, Five, Six and Seven 

demonstrate the research's Output along with the Testing and Evaluation. Conclusion and 

Future Directions are presented through Chapter Eight. 

1.6 Highlights of Contributions 

In order to establish the niche of this research, the thesis presents overview and new 

perspectives on the smart grid and micro load shedding in Chapters 1 - 3. Following these 

chapters, novel solutions and algorithms are then proposed and evaluated in Chapters 4 - 6. 

Specifically, the concept of microload shedding was introduced in Chapter 1 by giving an 

overview of the state of art research on electricity grid through which the aims and the 

objectives of the thesis were derived. Review of related literature is presented in Chapter 2 

under the broad headings: smart metering systems; current optimization techniques and 

algorithms in smart grid, and overview of energy forecasting. The reviewed research works 

were then categorised as the drivers of smart grid into key objective areas as demand side 
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management (DSM), peak to average ratio (PAR) reduction, cost minimisation (CM), 

consumer privacy and security (CPS), integration of renewable sources of energy (IRSE), and 

demand forecasting (DF) showing key research focusing on these thematic areas of smart grid. 

The grid architecture adopted for the research was introduced in Chapter 3 where the research 

problem was formulated. In Chapter 4, the first algorithm addressing the shortfall of the 

traditional load shedding was developed and evaluated using microload demands, this is 

referred to as General Microload Shedding Algorithms comprising meter-side and server-side 

sub-algorithms which are then applied to grouped and ungrouped microloads. The evaluation 

results show that average of 0.63% and 6.98% excess microload shedding for the grouped and 

ungrouped microloads representing excess shedding of 4.33kW and 47.03kW respectively.  

Priority based microload shedding algorithms were further proposed in Chapter 5 and evaluated 

on the grouped and the ungrouped microloads with the aim of given the end-users the ability 

to choose priority for the microloads and at the same time reducing the excess shedding 

observed from the general microload shedding algorithm. The results obtained by using this 

algorithm show an improvement in the previous approach but still recorded some excess 

microload shedding. A significant reduction in the excess curtailment was achieved which will 

ultimately help the utility companies to reduce wastage and losses resulting from over 

shedding. There was a reduction of the over-shedding from 74.01kW to 4.16kW after 

employing the Priority-based microload shedding techniques using the Ungrouped Priority 

Loads (UPL) consumption profiles. Additionally, the actual percentage shedding was also 

improved from 11% to 0.6% when subjected to a 10% microload shedding using the UPL load 

profiles for example. 

The Chapter 6 considers the reuse of the excesses in the implementation of the various 

algorithms discussed previously. These set of algorithms were referred to as excess reuse 
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algorithms. A progressive reduction in the excess shedding has been observed from the Excess 

Reuse General Microloads (ERGmL) to the Excess Reuse General Ungrouped Microload 

(ERPBUmL), producing the lowest excess shedding recorded. For example, ERPBUmL 

shedding resulting in 0.33kW, 0.20kW, 0.21kW, 0.09kW and 0.05kW as the average of the 

excess shedding for 2%, 5%, 10%, 15%, 20% and 30% request for shedding respectively 

compared to the 4.33Kw and 47.03kW recorded excesses during the general grouped and 

ungrouped microload shedding. The level of excess load shedding produced under the 

ERPBUmL makes it ideal for implementation in live grid infrastructure.  

Finally, the impact of predicting the demand to prepare both consumers and the electric utility 

companies for potential load shedding is discussed in Chapter 7. The accuracy of the forecast 

conducted indicates an average accuracy of 58.87% and 56.78% when using SVR and KNNR 

respectively, while previous research reported 41.01%, 26.57%, 47.02% and 41.37% for RF 

and other forecasting models.  

 

1.7 Chapter Summary 

In this chapter, the problem domain is broadly introduced where insufficient generation of 

electricity energy to meet the increasing demand is shown to be having severe impact on the 

distribution of electricity to the end users and the safe running of the electricity network. DSM 

has been observed to be applied to maintain the stability of the electric network, yet there is a 

major gap in how the DSM is implemented in some countries with noticeable generation 

shortfalls.  

The aims and the objectives of the research are also discussed in this chapter along with the 

contributions of the research which are categorised into primary and secondary contributions. 

Finally, the highlights of contributions and outline of the thesis is discussed, and the chapter 

concluded.  



 11 of 163 

Chapter 2 

Literature Review 

2.1  Introduction 

This chapter addresses the first objective of this research (To review the existing electricity 

load management methods) by discussing the prime concepts and current issues in smart 

metering systems.  The costs of energy have been increasing over the years due to the growth 

in the population [41]. As a result, the energy demand is now more than its supply resulting in 

an increased in the peaking cost of an extra generation of electric power. Consequently, it is 

therefore, critical to find alternative energy generating sources. The smart grid or power 

distribution system can generate, transmit and distribute power [40]. Because of existing 

technologies, the smart grid gradually becomes a full reality in many countries [42]. However, 

the smart grid must have an accepted communication standard to communicate across various 

platforms effectively. The research work in [42] suggest that the security and the reliability of 

the smart grid are also important areas of concern and must be adequately dealt with to aid the 

development and acceptance of smart meters.  

Kamble and Bodkhe in [43] also argue that energy saving has become very important and an 

urgent step to be taken because of the day-to-day increase in the populace. Therefore, there is 

a need to monitor and manage the energy that consumers use. The importance of the security 

issues in smart grid to costumers also led to the evaluation of cybersecurity threats on the smart 

grid by Tweneboah-Koduah et al. in [44], where various cyber-attacks were tested on a smart 

metering infrastructure. It revealed that the smart grid's vulnerabilities are multifaceted and 

required further research to assure consumers of the security of their metering data. 

To further understand the state of the art of the current research activities in smart metering, 

focusing on the electricity grid, this chapter attempts to review research activities on smart grid, 

focusing on smart metering design, communication technologies, and their utility. The chapter 
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also examines those smart grid research focusing on algorithms for PAR and optimization 

techniques to reduce the cost to the consumer and the utility, along with articles aiming at 

efficiently integrating renewable sources of electricity and storage devices. In addition, some 

privacy and security issues have been considered along with energy forecasting to prepare both 

consumers and the utilities towards any possible load shedding. The chapter concludes by 

highlighting research and practical implications of the reviewed articles and proposes some 

further research areas in smart grid aiming at reducing the impact of the load shedding practices 

in generation constrained power systems. 

2.2  Smart metering Systems 

This subsection reviews literature on smart metering systems, their intended aims and the 

communication technologies employed. A smart meter is designed to communicate its status, 

readings, and tamper states to a centralized system on a network. Configuration information 

such as billing rates, meter types, remote shutdown and other information relating to metering 

is sent back to the meter bi-directionally between it and a central server system [45]. Smart 

meters include water and gas metering and sometimes a combination of these three, but we 

refer to the electricity in this thesis. 

 
2.2.1  Smart Metering for Electricity Management 

Exploring Automated Meter Reading (AMR) design as an advantage over traditional meters, 

Popa in [46] claimed that AMR is better than the conventional meter reading because the latter 

is error-prone and time-wasting. On the other hand, AMR solves the conventional meter 

reading problems, but it also needs a system that can communicate the data read to the central 

computer system, where all the meters have been connected. The ZigBee technology can 

connect the meters to the central computer if the system will be wireless and if it will not cover 

a long distance and GSM if the distance to be covered is more than 100 meters. It is also 
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mentioned that there are already power lines in almost all buildings; therefore, it is financially 

efficient because no cost will be incurred to fix these lines. AMR based on Power Line 

Communication (PLC) technology is thus proposed in [47]. The research, however, failed to 

acknowledge the challenges of PLC, such as interference and signal attenuation. 

Aiming at the reduction of the energy consumed by smart meters and plug-in hybrid electric 

vehicles, the researchers in [48] proposed a coalition game approach to smart meter data 

communication were a group of smart meter and Plug-in hybrid electric vehicles (PHEVs) 

communicate to the WAN through one of them as a cluster head. Whiles the work was based 

on a simulation of the algorithm, it presents a whole new perspective of smart metering. 

However, in terms of security, it presents an opportunity for other researchers to investigate 

how neighbouring smart meters may learn of the data to be communicated to the central system 

and the data received from the central system.  

Owen and Ward, in [49] proposing a pathway to facilitate quick response to smart metering 

adoption, argued that, unlike other technologies that have seen much change and evolution over 

the years, smart meters had not seen much change. The research identified some pathways that 

could lead to the quick facilitation of smart metering adoption. These are: regulatory barriers 

should be removed to aid the installation of the smart meters and try out smart meters 

immediately to motivate the implementation of smart meters. But smart meters offer 

opportunities for both households and energy suppliers. For households, they can conserve 

energy since they get feedback on how much energy they are consuming. On the other hand, it 

helps them generate more income for the energy suppliers because energy conserved can be 

used to serve other households, which improves their efficiency and availability. 

To enable consumers' presentation with their energy consumptions and the ability to control 

their loads, Apperley and Kalyan in [50] show an electricity dashboard. They argue that the 

dashboard provides instant overview and consumption information and the availability of 
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power and control appliance, which will go a long way to minimize energy consumption and 

enhance energy efficiency. Timely consumption information is critical to the consumer as post-

hoc energy consumption information presented to the user may only serve for bill payment or 

records, but real-time or near real-time information could be more effectual for electricity [51].  

To solve the increasing demand for electricity in Malaysia [52], [53] and Ahmad et al. in [54] 

suggested and designed a monitoring system that monitors the increasing rise in the 

consumption of energy across the country. This automated monitoring system is connected to 

a central hub using the GSM network, providing feedback to the consumers and the utilities. 

The feedback generated helps users to form energy conservation habits. GSM was used as the 

communication technology for the design of the metering infrastructure. The opportunity 

presented in this research using GSM technology can be replicated so that consumers can set 

priorities for their essential appliances for the proposed microload management approach.  

Utility companies in Ghana are losing so much revenue as a result of energy theft. NUNOO 

and Attachie in [55], showed that they lose over a billion US dollars annually. Most of the 

energy theft is as a result of illegal connections where the culprits do not pay for the energy 

they use. Others tamper with their meters and therefore pay lesser than they are supposed to 

pay. Electricity theft has increased over the years in Ghana. As a result, a system to monitor 

the theft of electricity at a remote location and using a back tracking algorithm to achieve this 

was proposed. 
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Figure 1 Smart Metering Architecture  

Using the prevailing nationwide coverage of GSM infrastructure in Ghana and most developing 

countries, Azasoo and Boateng [45, 56] proposed and designed a GSM-based smart metering 

system to harness smart meters' potential for deployment in Ghana. Their proposed systems 

were tested and proven to help solve the problem of timely billing information and tamper 

notification being one of the prevailing menaces among the electricity utilities. The proposed 

smart meter could be configured as prepayment or post-payment meters. Another case for 

adopting smart meters was the savings that it could make when the meters communicate 

granular consumption details to the utilities for billing and planning purposes. The architecture 

of their proposed system is presented in Figure 1.  

However, domestic energy can be managed using simple and cost-effective technologies like 

PLC and Bluetooth [57, 58], while emphasizing that energy management is very important. 

Domestic energy usage also accounts for a greater percentage of energy usage in a country due 

to inefficient use and lack of energy conservation and practice. Smart metering can 

automatically read the meters to know the usage of energy in an apartment. The electricity 

consumers will also be aware of the amount of energy they are consuming, which will help 

them develop means to conserve their energy [45]. Nguyen et al. in [59] designed and tested a 
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device that consists of Energy Modem (EM) and Energy Appliance Controller (EC) to be used 

in place of smart meters or can be used with the smart meters. The EC can control power 

switches whilst the EM is responsible for line communication. The authors argue that the most 

significant aspect of their work is that the EC and EM are inexpensive technologies and is also 

available in the general market without showing the total cost of such proprietary 

implementations and other related interoperability issues. The PIC 16F877A is the main 

component of the Microcontroller Unit (MCU). The Power Line Communication (PLC) 

module is another key element of their proposed system. 

The general frequency across the electricity network and/or the Peak Average Ratio (PAR) is 

a key determinant for the efficiency of the network. Commercial or residential DSM aims at 

reducing PAR by the provision of Time of Use (ToU) billing and other incentives through an 

ultimate minimization of customers’ bills when loads shifted to a cheaper price period 

representing a win-win for both the utility companies and the customers [60]. The PAR load 

demand of a power network is computed as the ratio of the daily peak to the average load levels. 

Fractional programing was utilized in [62] aiming at maximizing the benefits of the domestic 

consumer by improving the energy utilization efficiency.  

2.2.2  Smart Metering Communication Technologies and Security issues 

One of the issues facing the current smart metering deployment is the communication between 

the smart meter and the central system (i.e. server). Radio Frequency multiple-input and 

multiple-output (RFMIMO) based communication network for smart metering is proposed by 

Koschel et al., in [63] where the smart meter was placed in a basement of a building. They 

achieved about 150 meters distance between two points located at two different buildings at a 

frequency less than 1 GHz through the provision of RF-MIMO extension for small-scale-fading 

compensation. They did not consider the amount of energy consumed by the proposed 
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communication system, the cost of deploying a MIMO technology in a vast smart metering 

implementation, and the advantage of the MIMO compared with the technologies included in 

the communication standards for smart metering [64].  

To conserve the energy needed for the smart meter home area network, the application interface 

approach was adopted based on fixed and adaptive duty cycling, transmitter energy 

consumption control, and data reduction techniques used in the research work, thereby 

proposing a novel technique known as adaptive sleep time [65]. The research employed an off-

the-shelf ZigBee shield with both having LCD screens that could significantly draw a great 

amount of energy within the research framework; however, the novelty of the adaptive sleep 

time reduces the overall energy consumed by the smart meters themselves.  

Cybersecurity threats are dangerous attacks on a computer system that has useful data by 

malicious people to destroy the system or gain information that should not be in their 

possession [44,66]. The above is a key concern for smart metering and its acceptance; thus, 

measures are being put in place to avert these malicious acts. To enhance security in a short 

and long-range, Zigbee technology or Bluetooth wireless communication was proposed in [67], 

[68] for monitoring the energy consumption of an apartment, including the appliances. A 

simulation model for the smart metering attack was proposed, designs and tested in [69]. A 

survey of attacks and vulnerabilities in computer systems was conducted by [70], revealing 

several vulnerabilities in computer systems that could be extended to smart metering 

infrastructure requiring further research in smart metering and security. Some of these attacks 

include but not limited to the following: Human error, User abuse of authority, Direct probing, 

Probing with malicious software, Direct penetration and Subversion of security mechanism. 

Privacy problems of smart metering are highlighted by Rial and Danezisin in [71]. They 

described the problem as being of great concern to scientists, politicians and all stakeholders 

within the smart grid, and as a result, they are finding ways to reduce these threats. The smart 
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meter reading can provide vital information about a household as a result of load monitoring. 

Consumption data could also enable one to know the profile of inhabitants of a house and their 

lifestyle. To preserve the privacy of smart meters, there is the need to establish a system that 

will ensure as well as guarantee this. A solution is then proposed to enable electricity meters to 

communicate securely to the energy user where the users merge the secured readings from the 

meter with an authenticated tariff policy to get their bill. The bill is then taken to the energy 

providers to ensure correctness and ensure personal information security. The proposed 

system's importance is in its flexibility since the calculation can be done on any device. 

Le et al., proposed a remote power monitoring system that measures and controls the abnormal 

energy usage by public building residents [72]. This is to enable the effective and efficient 

provision of electrical energy. When the remote power monitoring system records any 

abnormal electrical power usage, the data is sent to a gateway through a wireless network made 

up of a power-sampling chip, Wireless Radio Frequency (RF), Micro Controller Unit (MCU), 

relay gateway and a Personal Computer (PC). The researchers hope that when governments 

penalise residents who overuse energy, they will have energy conservation in mind. 

The need to put in place infrastructure and low-cost tools using existing technologies to make 

the smart meters more efficient and smarter is emphasised [73]. An AMI meter consists of a 

meter, a home portal, an access point that collects data in a neighbourhood with a central hub 

is proposed. The research focused on the meter, access point and the central hub arguing that 

it forms a central part of the smart metering system’s demand responsiveness. They considered 

Home and Neighbourhood Area Networks, using the Zigbee technology. Also, the network 

depends on a mesh topology; it presents security implication for the neighbourhood, which 

could be solved in this context by transmitting all metering data directly to a NAN access point. 

In smart grid technology, review was conducted on different security issues related to the 

communication network. On distribution, smart grid technology is vital in minimizing the 
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energy cost by utilizing an energy management mechanism. From a consumer perspective, the 

reduction of the energy cost also reduces the electricity bills paid. On the other side, the supplier 

minimizes the consumers’ peak demands in order not to operate the peak power plants.  

 

2.3  Current Optimization Techniques and Algorithms in Smart Grid 

In [74], the research aimed at reducing peak load by introducing an Energy Consumption 

Scheduler (ECS) into a smart meter. Residential type user was considered with an ECS 

incorporated with functionality to communicate with both the user and the provider. Every 

appliance was given a pre-emption state; an appliance with a higher priority is given a lower 

pre-emption state, meaning that they are less likely to be pre-empted. The cost of per unit power 

generation was greatly reduced due to an over 30% reduction in peak demand levels, as shown 

from their analysis. 

The paper [75] explores the opportunity in demand-side management by proposing a DSM 

energy consumption-scheduling scheme for domestic appliances and reducing both peak-

average-ratio and the resultant inconvenience posed to consumers. The researchers considered 

three categories of appliances: shiftable, throttle-able and essential appliances. To reduce the 

total cost associated with energy consumption under the Peak-Average-Ratio, their scheduling 

scheme aims to achieve an optimized response strategy. A multi-objective optimization 

problem was developed to consider user preferences, thereby reducing the inconvenience 

caused to the user. Their study shows that the scheduling scheme was effective within a peak-

average-ratio constraint and considers different consumer preference levels.  

An attempt has been made by Tsagarakis et al. in [76] to reshape the demand pattern of low 

voltage domestic loads in so doing reducing the cost and the greenhouse gas emission levels. 

The shifting of the non-critical domestic wet load category was considered in their work. The 

research shows that financial factors have a greater impact on the total cost of reduction on 
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both production and consumption of power than those in greenhouse carbon, thereby showing 

that any future attempt should consider the financial aspects. The smart building’s cyber-

physical management was also proposed in [77] to reduce peak demand and efficiently allocate 

solar power. In order to form an agent-based energy profile, energy profile classification was 

used. The home agent considered the uncertainties of load profiles.  

Ru et al., in [78], attempted to solve the problem associated with the determination of battery 

storage size used in photovoltaic systems connected to the grid to reduce the net cost of power 

and the capacity loss of the battery. Additionally, customer load requirements are satisfied with 

a reduction in peak power purchase. Excess electricity from PV is sold back to the grid or 

stored on the battery. With Time of Use pricing, the electricity can be purchased at a low-price 

period and sold back to the grid during a higher price period. A method for evaluating the 

battery’s economic value compared to buying power from the grid is also proposed. 

Similarly, Yang et al. in [60] proposed a cost minimization to the utility and benefit to the 

consumer while increasing the flexibility of how often a user could use a device during a 

particular pricing period. They considered user satisfaction and cost due as a result of demand 

fluctuations. Their numerical formulations considered residential, commercial and industrial 

users. An optimal game-theoretic Time of Use pricing strategy was proposed. However, the 

research considered only one source of electricity generation as opposed to modern smart grid 

trends. The results of their proposed system showed a reduction in peak demand, improved 

utility profit, and reduced the cost of electricity consumed by the user while ensuring their 

benefit. A different approach may be required in a generation constrained power system where 

a typical normal demand cannot be met. From the consumer perspective, the cost minimization 

is the most important parameter of the DSM objectives. In peak hours, the generation cost is 

very high due to the demand as well as the consumers’ bills. In [31], various approaches have 

been utilized to develop efficient algorithms in order to minimize the electricity cost. 
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A Distributed Sub-gradient algorithm is proposed to achieve a convergence between the 

electricity generation and consumption within a smart grid infrastructure relying on the utility’s 

ability to exchange information with the users [79]. It was noted that even when there is a loss 

of data between the two communicating parties, convergence was still achieved. Fixed 

consumption over an adjustable specified time frame and elastic loads were considered in their 

setup. The elastic load consumptions represented satisfaction to the user.  

The authors in [80] proposed a Home Energy Management System to reduce electricity utility 

clients’ energy cost. The results of the work demonstrated over 16 percent savings to the 

consumers. Comfort and discomfort levels were considered in their work. Also, aiming at 

demand reduction to reduce the demand-supply mismatch, a multi-agent framework for 

implementing demand-side management in the smart grid is proposed by Nunna and Doolla in 

[81]. 

In response to the increasing demand for electricity emanating from Electric Vehicles (EV), 

Cao et al. proposed and tested an automated EV charging system that responds to using pricing 

information from the utility company. Test results from their heuristics implementations 

showed a lower cost to the consumer, and a significant reduction in peak loads [82]. Their 

approach considers only EV loads with no reference to the other loads that exist alongside the 

EVs. 

A demand-side management implementation to ease the quest for the reduction in the average 

price of power and the total consumption of industrial consumer is proposed in [83]. A 

deregulated market scenario was considered for the simulation with a sample case study. A 

stochastic model was proposed with real-time and day-ahead pricing schemes based on a set 

of historic data. The proposed implementation also achieved a lower total procurement cost. 

An optimal residential demand response scheme based on a multi-agent system to evaluate the 

network’s optimality was also proposed in [84]. The simulation results from the algorithm 
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show a reduced electricity payment and PAR ratio. The main stakeholders are modelled as a 

Home Agent and Retail Agent. The home agent performs three main functions; predict load, 

predict price and control load.  

A load shedding algorithm for industrial loads by using genetic algorithms based on mixed-

integer nonlinear programming solver is proposed in [85]. Their proposed system uses DC 

micro-grid incorporated with DC storage system to shift AC controllable devices per Time of 

Day (TOD) tariff. Their results were compared with load shifting strategy that employs AC 

distribution Grid with no DC Micro Grid. Results of the work shows a peak load reduction of 

about 19 percent signifying that the amount of power drawn from AC has reduced drastically. 

A technique to match power outage patterns with demand side management schemes is 

proposed with a graphical user interface for consumers to be able to get at forehand the savings 

they will make if they adopt certain strategies in the consumption patterns for the next day. The 

research is aimed at encouraging consumers to use renewable sources of power [86]. Another 

group of researchers considered a situation where users are equipped with devices that can store 

electrical energy, by adopting game theory for the formulation of the energy consumption and 

the energy storage [87]. The players in the game are the users with the energy consumption 

schedules being the strategies. Two distributed demand side management algorithms were then 

proposed where the goal of the player is to minimize the cost of energy with privacy 

preservation and a reduced signaling from their central controller. The researcher concludes 

that the simulation result of the proposed algorithms was a mutual benefit for both consumers 

and the utility providers. 

A demand side management approach was proposed in [88] where an assumption is made of 

an aggregator that communicates with a particular household through a meter by imposing a 

restriction or limit on the total power that could be consumed by a house within a specified 

time frame. The consumers are then required to adjust the consumptions of the individual 
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household appliances to reflect the restrictions imposed by the meters. The proposed approach 

was then compared with a real-time market price to demonstrate how their approach can 

provide a series of guide for consumers when they are to select a load curtailment service 

contract.  

Architecture for home energy management was presented with an automated demand response 

framework for appliances scheduling in a smart home [89]. An optimization problem was 

formulated and solved using a Genetic algorithm based on Real Time Price model and Inclining 

Block Rate. The simulation result shows a significant reduction in peak-average-ratios and 

energy cost representing a positive outcome of the research.  

A fairness approach to demand side management is explored, where the cost of energy is fairly 

distributed across users with a given smart grid. An algorithm to protect the consumer’s privacy 

was also proposed and tested in [90]. Neighbouring grids trade with each other with power 

being routed from surplus locations to deficit locations through coordination with a distributed 

energy resource. Two categories of load were considered, namely shiftable and curtailable 

loads. A priority-based incentive mechanisms was also adopted to encourage customer 

participation as suggested in [91].  

A Cooperative Game and Stackelberg Game approach to demand side management is proposed 

in [92]. The players in the Stackelberg game are the utility as the leader with the consumer as 

the followers. The utility leads by setting the price per kilowatt energy consumed by the 

followers (consumers). In the cooperative game algorithm, the consumers share their 

instantaneous total energy consumption cooperatively, thereby optimizing their prices per unit 

watt by scheduling various loads within their individual controls. The performance of the 

proposed system was the measure of peak-average-ratio and the total energy consumed by the 

individual consumers.  
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A game theoretical framework-based algorithm was used to propose a model predictive control 

algorithm, which combines photovoltaic generation and energy storage capability in [93]. The 

proposed algorithm uses real-time-updated forecasts to reduce errors and enhance realistic 

benefits while allowing competition among the subscribers. The results show that there was a 

slight increase in the cost of power using the proposed algorithm and have a reported improved 

accuracy of forecasting instead. Aiming at preventing user from cheating in an Auction energy 

sale market, a smart meter that record users power consumption and provides information to 

the energy provider is proposed in [94]. A utility function was used to model the users’ 

preferences and usage patterns that are then utilized in proposing an enhanced Arrow-d’ 

Aspremont Gerard-Varet mechanism to enforce truthfulness. As an incentive, users found to 

have declared less consumption than they consumed were made to pay more for their unit 

power. The results of their simulations show that the proposed system ensures truth telling and 

benefit both the consumers and the providers.  

A cloud based smart energy hub is proposed for implementing demand side management for 

gas and electricity in [95]. There is a coordinated interconnection among the smart energy hubs 

representing each domestic house. In [95], the integrated demand side management is modelled 

as a non-cooperative game. To achieve equilibrium, a distributed algorithm is then proposed. 

The cloud computing framework was compared with a typical processing technique to 

determine its effectiveness. Results from the proposed infrastructure shows a more cost-

effective energy of each hub and peak-average-ratio of the demand was also reduced 

drastically.  

Guo et al. investigated how to reduce the corresponding energy cost with real time electricity 

pricing. They proposed a system that has a good trade-off between cost saved and the capacity 

of the storage device in addition to PV-utility grid system. The Lyapunov Optimization 

Technique was used to solve the stochastically formulated mathematical problem aimed at 
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optimizing the cost along with the capacity of the storage devices. Practical Data set was used 

to evaluate the performance of the proposed algorithm [96]. 

In a related work, the ability of smart meter to respond efficiently to time of use price signals 

from the utility within smart grid architecture was also explored where a linear programming 

algorithm in a rolling window manner was used to formulate and solved the problem in [97]. 

It aims at maximizing the utility of the consumer subject to a minimum daily consumption 

level. The method was evaluated against a similar scenario without smart grid, and it was 

reported that the proposed technique was more efficient in terms of cost savings than the other.  

The cost structure of purchasing electricity from a generator and users device specific 

scheduling flexibility was used to compute electricity cost minimization problem with which 

the willingness for the users to shift their electricity consumption was also probabilistically 

modelled. An algorithm was developed to compute the day-ahead-pricing and another for 

estimating and refining the reactions of the users to the prices. Evaluation was done with data 

from Ontario Electricity. The proposed algorithm proved a significant reduction in the cost of 

providing electricity to the users [98].  

In order to take full advantage of the smart grid, Wang et al. in [99] developed a power network 

model comprising of electricity suppliers, utility companies, consumers who are made up of 

appliances and storage systems. The consumptions of the various loads and their work patterns 

were also considered representing a key novelty in the proposed model. A distributed load-

scheduling algorithm based on convex optimization with social welfare improvement as a 

constraint was developed and tested. Simulation results of the proposed model show the 

efficacy of the model. 

The communication overhead and computational burden imposed by a large-scale centralized 

optimization algorithm was shown to greatly reduce with a proposed hierarchical, iterative 

distributed optimization algorithm by Braun et al. in [100]. Simulation results of the proposed 
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algorithm show substantial reduction in the number of iterations required to achieve 

convergence of the algorithm implying a reduction in computational and communication 

burden.  

An ergodic framework for energy management was developed to enhance the existing 

frameworks where active power shedding and reactive support was stochastically [101-103] 

tested through the engagement of smart inverters in [104]. The test setup comprised of a 56-

bus grid and 123-bus feeder. The result was compared with deterministic energy management 

[105] and the proposed framework was found to be more efficient in terms of cost savings. It 

shows that the decentralization and localized implementations are important in the achievement 

of a better efficiency.  

A model for predicting the effect of applying variable tariff structure on electricity load profile 

is proposed in [106]. The paper alludes to the fact that there was significant domestic load 

shifting of about 8% amounting to a financial gain of 35 Euros per year. Dominant among these 

savings was the one derived from wet appliance and only 5 Euros per year is reported for 

consumer appliances and television.  

A related work argues that relying on the future autonomous users to cooperate in relaying 

packets so that other users can optimize their energy will not be realistic as in so doing; they 

may lose energy and opportunity cost by helping to share other nodes packets. Hence a pricing-

based joint user-and-network centred incentive approach is proposed. The method compels 

selfish nodes to forward data. This was achieved by compensating the forwarders in terms of 

their real and opportunity cost captured as a net utility expression, thus becoming the Pareto 

Optimality of the nodes [107]. The approach could be used in a smart grid where the utility and 

the meters represent the nodes, and their gain will be the reduction of energy consumption from 

the perspective of the utility and the reduction in energy cost from the point of view.  
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Also, PAR and consumer preferences as a constraint are multi-objectively explored by Liu et 

al. [108]. The system model considers shiftable and throttleable loads using a scheduling 

algorithm-based demand side management approach. A key finding of the proposed 

mechanism was that consumers' acceptance of the scheduling mechanism was key to the 

successful implementation. The system's objective was to minimize energy cost and the 

associated inconvenience and, by so doing reducing the overall PAR of the electricity network. 

The proposed system's effectiveness was evaluated in a simulation environment.  

A single source smart grid was also considered by Manaseh et al. in [109], where the main aim 

was to reduce the overall load on the grid. Consumer self-generated and energy storage devices 

were used to formulate a PAR reduction strategy. Simulation results from the proposed system 

suggest a cost-benefit for the end-users and PAR reduction across the entire grid. A Generalized 

Tot for Tat (GTFT) dominant game-based energy scheduling algorithm centred on game theory 

was proposed for scheduling demand as a response mechanism [110]. A multi tariff 

methodology to avoid rising demand was adopted based on individual and community usage. 

The shiftability of loads was based on PAR. The proposed system was subject to a simulation-

based evaluation and was reported as very effective.  

Similarly, energy production and storage were formulated as an optimization problem to reduce 

PAR using energy scheduling (ES) in [109]. The renewable energy source was also used, with 

the storage devices being activated during low demand and released during peak demand 

periods. As a result, peak hour consumption is minimized, demonstrating a cost-saving for both 

the utility and the end-users. Also, in research by Nguyen et al. [111], distributed user profile 

was used in the adoption of game theory aimed at reducing PAR of the utility.  

Hajj and Awad used the demand and utility pricing vector-based game-theoretical approach in 

[112] to show the effectiveness of demand-side management in the simulation environment 

with a single source smart grid. The end-user’s objective was to reduce the cost of energy and 
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the utility, on the other hand, to improve their power profile by reducing the PAR. A converged 

Nash Solution was obtained based on the dual constrained optimization problem. Experimental 

results from the evaluation of their systems show that the proposed method effectively reduced 

both PAR and the effective cost of energy bore by the consumer. 

Another key area of the smart grid is energy forecasting. In terms of generation constrained 

power systems, forecasting the demand and the supply of electricity can go a long way to 

prepare both consumers and the utility companies to take necessary actions towards prompt 

responses to any possible load shedding and in this case microload shedding. A motivation of 

energy forecasting in general is presented in subsection 2.4 where some key terminologies and 

background are illustrated. While subsection 2.5 gives review of related works on energy 

forecasting in smart grid. 

2.4  Overview of Energy Forecasting 

There are different regression models identified from literature in [144,156,159] including but 

not limited to K-Nearest Neighbour Regression (KNNR), Multivariate Adaptive Regression 

Splines (MARS), Support Vector Regression (SVR), Random Forest (RF), Artificial Neural 

Network (ANN), and Decision Tree (DT). However, in this research, it is worth noting that 

summaries of prediction experiments based on KNNR, SVR, RF, ANN and DT are presented. 

2.4.1  K-Nearest Neighbour Regression (KNNR) 

 

The KNNR is a non-parametric classification approach developed in 1951 and further 

expanded in the 1970s mainly for classifying data sets, but it can also be used for regression 

problems. It falls under the supervised machine learning techniques. The KNNR is simple yet 

very powerful for prediction. It stores all the dataset marked for the training in memory and 

does nothing until a prediction is needed; that is why it is often referred to as a lazy learning 

algorithm [187]. 
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The number of nearest neighbours (k) is critical in the performance of the KNNR model. AS a 

result, correctly computing the value of k becomes essential as a low value of k means the high 

influence of noise, and a higher value implies higher computational expenses. One way of 

estimating k value is: 

! = 	√(&)  (Equation 2.1) 

where, n is the number of entries. 

Another approach is the use of the Elbow Technique and computing the accuracy of various 

K values, which was eventually used for this research.  

 

2.4.2  Multivariate Adaptive Regression Splines (MARS) 
 
Introduced in 1991 by Jerome Friedman, MARS is also a non-parametric regression model. 

The nonlinear interactions between the variables are automatically modelled as extensions of 

linear models. The model determines the core functions and the associated variable from the 

dataset [186].  Most open-source implementation of it uses the name; “Earth”, because the 

trademark and license of MARS is own by Salford Systems. 

MARS models are built in the form shown in the Equation 2.2 below in which the weighted 

sum of the basic function (!()) has one being multiplied by the related coefficient ℵ!; 

+()) = 	∑ ℵ!"
!#$ (!())  (Equation 2.2) 

where, the constant coefficient is represented as ℵ! and the basic function is represented as 

(!()) taken one the following forms; 

1. (!()) == -	./&01-&1	1 

2. (!()) == ℎ4&56	78&.14/& 

3. (!()) == 9:/;8.1	/7	1</	/:	=/:6	ℎ4&56	78&.14/&0 

2.4.3  Support Vector Regression (SVR) 
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When Support Vector Machine (SVM), which is focused on binary classification, is used for 

real-world prediction problems, it is called SVR. It is used for non-linear data sets [188]. The 

advantage of the SVR is the flexibility it provides such that an acceptable error margin can be 

selected for a given experimental setup. 

 The entire training dataset can be represented as [(>%&'()%*+	,>%.*+/01)% = 1,2,3, …ℳD 	)] where, 

the actual dataset is >%.*+/01, the expected predicted value is represented as >%&'()%*+	 and the 

number of elements in the dataset is given as ℳD . SVR works by mapping the >%.*+/01 into n-

dimensional space containing features formulated as the non-linear relationship between the 

independent variables and the dependent variables. This is represented as an optimized 

hyperplane with the function shown in equation 2.3 below. 

7()) = 	E+ × G()) + I  (Equation 2.3) 

where, 7()) represents the >%&'()%*+	values, the n-dimensional weight factor is represented as 

the E, the mapping of the >%.*+/01 is represented by the G()) and adjustable factor is the I. 

 

2.4.5  Random Forest (RF) 
 
RF was proposed by L. Breiman a decade ago and has remained very successful as a regression 

and classification model; it employs averaging of predictions from multiple randomised 

decision trees. A high level of importance is placed on the input features. It has been known to 

be quite flexible in terms of regression and classification applications. On the other hand, it is 

computationally very expensive [189]. 

 

2.4.6  Artificial Neural Network (ANN) 

Developed in the 1950s, ANN is a prediction algorithm that mimics the brain’s biological 

structure. It operates like a black box and does not bother so much about the box’s elements 

(i.e. the individual inputs). ANN can manage very large and complex datasets with multiple 
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interrelated parameters. Relationships between the parameters and the independent/dependent 

variables are learnt by observing previous patterns in the dataset [190].  

 

2.4.7  Decision Tree (DT) 
 
DT has been widely used for energy forecasting because household energy consumptions 

involve various patterns. It is used for classification and regression. The approach falls under 

the non-parametric supervised learning techniques. Simple decision gathered from the data is 

used to develop models that predict the dependent variables. DT uses the white box approach 

where the details of a given explanation can be represented as Boolean logic. 

Mathematically, given an actual dataset containing the independent variable >%.*+/01, 

represented as the vector >% ∈ K2; where, 4 =1, 2, 3, …, & and a label vector L ∈ K1, samples 

with similar target values are grouped together when the feature space is split. Further 

information about the DT can be found at [191]. 

 

2.5  Related Works on Energy Forecasting 

 
Mahmood et al. proposed a classification method based on time of use and other constraints. 

Cost efficiency and the utility of the appliances were determined by applying binary swarm 

optimization (BSO) [133]. To reduce the impact of higher consuming appliances on the overall 

demand of a home, Pipattanasomporn et al. [134] proposed a home management algorithm that 

keeps the total energy consumed from a household at predetermined levels based on certain 

priorities. Similarly, Liu et al. applied particle swarm optimization to determine the support 

vector machine’s parameters and feature selection [135].  

Rodrigues et al. [136] proposed an Artificial Neural Network (ANN) method for predicting the 

home demand and confirmed the efficacy of the proposed approach through simulation. 

Consequently, the technique further revealed that the artificial neural network represents a 
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reliable technique in predicting household energy consumption. They concluded that their 

approach was more effective for hourly and daily demand predictions. An optimization method 

was proposed by Li et al. [195] and compared with multi-objective differential evolution 

(MODE), non-dominated sorting genetic algorithm (NSGA), multi-objective genetic algorithm 

(MOGA) and multi-objective particle swarm optimization (MOPSO). Among these multi-

objective algorithms, MODE yielded the best performance.  

To increase the forecasting accuracy, Butt et al. in [137] proposed long short-term memory to 

ascertain the local trend and extract similar short and medium time series fore-casting patterns 

and, further, for learning the relationships in the data set, convolutional neural network along 

with multi-layer perceptron was utilized. The utility of the proposed prediction technique was 

validated through a real-world experimental setup.  

Juan et al. also proposed a hybrid decision support system based on the Zero-One Goal 

Programming model and Genetic Algorithm to improve sustainable performance [138]. The 

effect of weather on energy usage and energy efficiency and various forecasting methods were 

reviewed by Lazos et al. [139].  

The Recurring Neural Network technique for demand prediction of a single home was also 

proposed and investigated by Kong et al., [140] to overcome usage uncertainty and high 

volatility in electric demand. Their proposed approach outperformed the previous methods they 

compared their results to. A single household energy consumption and weather information 

were collected by Makonin et al., in [141] and [142]. Further, Shin et al., in [143], also collected 

data with higher precision and 22 separate houses.  

Machine learning based on regression analysis was used to predict household consumption in 

[144], where dimensionality reduction was performed using principal component analysis to 

find the hidden patterns to cluster the data. Visibility, temperature and humidity were among 

the climate variables integrated to forecast the consumption. The researcher in [145] developed 
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a two-stage learning method; representational learning and regression technique to reduce the 

computational complexity involved in relearning existing data for prediction.  Where learning 

of pattern in aggregate data was used to regress on individual appliance groupings. 

Computational simplicity and flexibility of handling changes in metering data were observed 

to be key benefits of the proposed architecture. Recognized user activities were extracted using 

information theory to optimized home appliances’ demands.  

To optimize the demand from households, a knapsack optimization problem was formulated 

by Cottone et al. [146]. Short-term load forecasting model improvement based on daylight 

information was investigated by Lopez et al. in [147]. The proposed approach uses both neural 

network and autoregressive components for the prediction. Improvement was recorded as 

compared to previous techniques. Domestic demand of Urban area was investigated by Tian et 

al. using spatial regression and ordinary least square methods. The LaGrange statistical test 

methods and regression analysis were performed on gas and electricity usage using household 

energy consumption profiles and council tax. The method was evaluated on a simulation setup 

that proves the regression analysis’s performance [148].  

The impact of using smart home appliances on electricity bill and variable electricity pricing 

along with a method to predict the demand based on time of use of these devices was 

investigated by Gottwalt et al. [149], in which homes equipped with smart meters were 

simulated to generate load profiles with flat tariffs. They concluded that when the load is 

shifted, the utility may experience a new peak at a different time. To preserve the comfort of 

the user and at the same time reduce the electric bills, Rasheed et al. proposed a technique that 

uses a multiple-binary knapsack optimization method. Weather conditions, electric prices and 

behavioural responses of 3 types of appliances were optimized. The efficacy of the proposed 

approach was shown through simulation [150].  
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The flexibility of wet appliances was forecasted using a stochastic agent-based approach in 

[151]. The proposed approach was validated using empirically obtained data. They concluded 

that the share of energy consumed at night hours could be increased based on the existing 

flexibility, leading to an effective reduction in the consumption recorded at night hours. Genetic 

Algorithm, ANN, and SVM were used to predict buildings’ energy requirement based on 

weather data by Zhu et al. [152]. Appliance demand forecasting for peak demand reduction 

using machine learning was also investigated by Haq et al. [153]. They concluded that their 

approach outperforms previously reported techniques using smart meter consumption data 

based on clustering, neural network and support vector machine.  

The ensemble method was used by Wang et al. based on a bagging tree model. The evaluation 

metrics of the proposed model demonstrated comparatively better compared to other 

techniques [154]. Appliance demand patterns were mathematically extracted as state duration 

probabilities and their usage periods to predict the future demand by Dinesh et al. [155]. 

Calendar and seasons were considered the improvement of the performance. The result was 

compared with various machine-learning algorithms, after which their approach performed 

better than all of them.  

Short-term demand was predicted by Torabi et al. using a hybrid model made up of ANN and 

SVM representing. Further, using 3 clusters reduces the error rate when evaluated against the 

ANN and the SVM individually [156]. Khakimova et al., 2017 proposed a model predictive 

control system based on the optimization technique [157] to reduce execution time and 

associated complexities. The cost, power, complexities of various machine learning techniques 

were analysed by Kaur and Bala, based on household energy prediction towards energy 

consumption reductions [158].  

The ensemble method was utilized by Divina et al., 2018 to predict the short-term energy 

demand using RF, GBM and ANN as base models [159]. Muralitharan et al. used CNN and 
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then NNPSO and NNGA for the optimization of energy usage. It was observed that NNPSO 

was good for long-term prediction, and NNGA performed better for short-term prediction 

[160]. Active data driven methods; LSSVM, SVM, ANN, GPMGMM and Physics-based 

models were used to examine a hybrid model approach to energy prediction by Dong et al. in 

[161].  

A multi-predictor method was proposed by Yin and Chao, for energy demand forecasting with 

cyber swarm for individual optimal parameter selection for the predictor. MAPE and MSE 

parameters were used to compare the results. Various predictive models for demand forecasting 

such as SVM, Bayesian network, ANN and genetic programming were used to evaluate energy 

and non-energy data sets [162]. The gradient Boosting method was observed to have performed 

better when appliance-based energy prediction using predictive models such as SVM, MLR, 

RF and GBM were performed by Candanedo et al. where R-Square, accuracy and RMSE were 

selected for the evaluation parameters [163].  

RF was used by Wang et al. to forecast the energy needed using hourly data. The results were 

compared with SVR and RT. They further investigated the same model in academic 

environments and concluded that semester-based forecasting would be better for such an 

environment instead of an all-year approach, as was mostly the case [164].  

A comprehensive analysis of energy classification techniques and prediction models was done 

by Wei et al. Various clustering models such as K-means and predictive models such as 

decision tree, statistical regression, GA, ANN and SVM were discussed [165].  

Kaur and Bala predicted household energy consumption using ANN, SVR, KNN and Random 

Forest. Their models were evaluated based on their accuracy for choosing the best model 

concerning other models [144]. Activity performed, usage duration, rating of appliances was 

used as constraints to develop an energy demand model by Subbiah et al.  
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Individual modelling technique and various data sets proved the efficacy of the proposed 

approach [166]. Gupta et al. utilized several machine learning algorithms to forecast and then 

compared the results using multiple evaluation parameters for predicting the emergence of 

heart diseases within a cloud infrastructure [167].  

Weather information was considered in predicting solar power generation by Sharma et al. 

using machine learning algorithms. Accuracy parameter was the evaluation source after 

employing various regression algorithms, and the SVM prediction algorithm achieved the best 

accuracy [168]. The dynamic predictive control system was deployed by Ha et al., to research 

the energy management issues within households. They eventually suggested that a heuristic 

optimization could be adopted for further refining the results [169].  

An optimized artificial neural network was used to predict energy consumption. Ardakani and 

Ardelhali used Multivariable predictive models in this investigation where the result indicated 

that IPSO-ANN outperformed all the rest of the prediction algorithms. Hybrid models were 

compared with SVM and ANN models to predict the energy demand of buildings. The results 

obtained were evaluated using correlation coefficient and RMSE [170].  

Weather, Solar, wind, tidal and other forms of energy sources is the focus of smart grid research 

nowadays for energy efficiency and demand management [171], [172]. Energy demand 

prediction is also being researched in commercial, domestic, agricultural, transportation, 

education and others. Using various machine-learning algorithms [173], [174], [175]. These 

algorithms are applied to regression and classification techniques on consumption and 

generation data sets [176], [177].  

Household energy consumption plays a significant role in the overall electricity demand, and 

as such, they are mostly more affected by the continuous blackouts associated with energy-

poor countries [178], [179]. This is worsened by the lack of infrastructure to support 

electricity’s continuous growing demand from all sectors. As a result of insufficient generating 



 37 of 163 

capacities coupled with mostly dilapidated transmission and distribution networks, most of 

these electric utility providers are forced to perform load shedding, which has negative effects 

on both the consumers and the utility companies involved [180], [128], [181].  

The purpose of domestic consumption forecasting includes the supply of the minimum required 

energy, inform the households of the possibility of rolling out blackout, thereby reducing the 

environmental impact of peaking and the reductions in associated cost to both utility companies 

and the end-users. A crucial aspect is the effect this has on the already high global warming 

level and the associated climate change [182], [183]. The evidence of the climate change is 

becoming more alarming than ever before [184]. 

A multi-year minutely consumption dataset in [142] was utilized to evaluate the possibilities 

to enhance energy management through future forecasting of the demands. The influence of 

weather information on demand is investigated. The evaluation metrics recorded show that 

prediction and microload management can benefit electric utilities and their end-users and 

ultimately impact climate change. 

Table 1 below, categorises the drivers of smart grid into key objective areas of demand side 

management (DSM), Peak to Average Ratio (PAR) reduction, Cost minimisation (CM), 

consumer privacy and security (CPS) and integration of renewable sources of energy (IRSE) 

and demand forecasting (DF) showing key research focusing on these thematic areas of smart 

grid from the related works reviewed in this section. 

Table 1 Drivers of Smart Grid 

References DSM PAR  CM CPS IRSE DF 
[5, 7, 8, 10, 13, 28, 60, 78, 81-88, 91, 94, 95, 

109, 111-114, 118, 123, 124, 127] 

X      

[113, 114, 123]  X     

[31, 60,98, 113,115]   X    
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[42,44, 66, 71, 90,113]    X   

[53,101, 114, 171, 172, 174, 176, 177]     X  

[102, 136, 137, 139, 1140, 41, 144, 147, 

152-156, 158-161, 165, 174-176, 187,192] 

     X 

 

2.6  Chapter Summary 

In summary, it had been deduced that current endeavors in smart grid research had focused 

mostly on optimisation techniques modelled to minimize bill payments, PAR and peaking, and 

maintaining consumers preferences. Very recent work by Yaghmaee et al., in [113] focuses on 

controlling residential loads comprising storage devices in addition to local sources of energy 

generation sources to achieve DSM in a two-tier cloud-based implementation. An optimisation 

algorithm with a linear multilevel cost function is then proposed to reduce the cost of energy 

to the consumer and ultimately reducing the PAR. 

Also, Latifi et al., in [114], develop a diffusion strategy-based algorithm to overcome real-time 

adaptability and additive noise channels or link failures in a smart grid where consumers share 

only estimated optimal energy consumption trends with their neighbours. By modelling the 

smart grid as an adaptive network with lower communication overhead, the consumer can sell 

their excess energy from renewable sources at a more competitive price while achieving 

minimum PAR and their consumption costs.  

In a similar manner, Yang et al., in [60] also proposed ToU based DSM in a smart grid where 

Game-Theoretic is used to optimise the pricing strategy of ToU billing for increasing and 

minimising user benefit and cost to the utility companies, respectively. In addition, an 

aggregated energy hub approach was used to model residential energy consumption in a smart 

grid. Mix Integer Linear Programing was used to solve the objective function of reducing 
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energy cost and peak demand while considering the preferences of the consumers. However, a 

key constraint with Mix Integer Linear Programing optimisation approaches is the time and 

memory resources used to arrive at a solution can be huge when the integer variables are 

increased.  The results obtained from testing the proposed model shows a 20% and 50% 

reduction in total energy cost and peak power demand, respectively. The model considered gas 

and electricity as the energy and referred to peak power, which applies only to electricity [115].  

The models and those by Uturbey et al. in [116] and Chiş and Koivunen in [117] assume 

adequate generation with instantaneous cost of peaking as a key constraint on the overall 

network as well as the preservation of consumers’ set priority of use [118], [119]. However, 

not all electricity networks are able to generate the required electricity to meet the demand of 

their consumers due to continuous increase in electricity demand with constant or inadequate 

generation sources. As a result, generation constrained power systems from time to time 

implement blackouts across sections of their networks [120-122]. This practice, referred to as 

load shedding, creates inconvenience for the consumers and at the same time causes the utility 

to lose huge amounts of revenue.  

Also, a closely related strand of literature examines the DSM approach based on Home Energy 

Management System aimed at minimizing the electricity cost to the consumer along with 

associated discomfort and the reduction in PAR of the entire grid where an energy shifting 

based home management strategy was proposed by Khalid et al., in [123] to minimize energy 

consumption and PAR in DSM. The consumer loads were scheduled in a real-time and day-

ahead manner. The load then balanced during on-peak and off-peak periods through 

coordination of home appliances as a knapsack problem for the real-time scheduling. The 

proposed system considered three pricing schemes Time of Use (TOU), Critical Peak Pricing 

(CPP), Real-Time Pricing (RTP), where granular microloads are automated for the consumer 
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to make savings on the electricity bill alongside PAR reduction across the grid without 

considering the situation where the utility is unable to meet even the off-peak demand of the 

consumers.  

The work in [123] was an extension of [124], where Bacterial Foraging and Genetic Algorithms 

were used to formulate and solve the optimization problem. Therefore, this research seeks to 

explore ways of deploying the smart metering system to ameliorate the situations. 
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Chapter 3 

The System Model and Problem Formulation 

3.1  Introduction 

In this chapter, the system model is introduced along with the problem formulations referred 

to throughout the rest of the thesis. Even though the system model assumes a hierarchical 

approach, it could be readjusted to meet any modern grid requirements. The problem 

formulations could also be changed to match any adopted power system grid structure.  

3.2  System Model 

The System Model comprises a typical power system structure of generation constrained power 

systems like that of Nigeria and Ghana comprising four (4) key networks, namely: Generation 

Network, Transmission Network, Distribution Network and the Consumer Network. These 

networks are categorized into five key Layers, with Layer 1 and Layer 2 being the focus of this 

research. The electricity grid's pictorial structure is depicted in Figure 2, where the Microload 

Smart Meters are represented MSM representing households equipped with controllable 

microloads (mL). The mL(s) are shown in the architecture as Entertainment, Washer/Dryer, 

Water Heater, and other emerging metering systems. Additionally, the Wide Area Network 

(WAN), Neighbourhood Area Network (NAN) and Metering Information System Server 

(MISS) are clearly shown. 
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Figure 2 Microload Architecture 

 

The assumption is that the electricity grid is a traditional grid where electricity is generated at 

a single point source and distributed. The consumers of the electricity make use of it when they 

need it. The mL is the last level of control and accounts for almost all the total electric energy 

utilised by the whole Main Power System (MPS), representing the Demand (D) on the overall 

Power System (PS). Another assumption is that there is no internally self-generated electricity 

at Layer 2 and Layer 1. The parameters of each Load are; Current (C), Voltage (V), Load Power 

(LP), Priority (Pr), Status (S = ON =1 or OFF = 0), Load ID (Lid), Control Type (CT), Schedule 

Status (SS), and could be configured to add more parameters. All these parameters are attached 

to a particular Load. The Smart Meter (SM) is the main connection to the mL (L = L1, L2, L3, 

. . Ln) directly connected to it. The parameters considered for this research are; Total 

Consumption (TC, which is the sum of all LPs), Voltage (V), Current (C), Number of 
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Controllable Loads (NCL), Meter ID (MId). The list of home appliances considered for the 

evaluation of the algorithms is shown in Table 2 in the Simulation Setup sub-section of Chapter 

4 with their categorisation for six and thirty-five priority levels and their currents (C). The 

power system structure is also shown in Figure 3. 

 

 

Figure 3 The Power System Structure 

 

3.3  Problem formulation 

The research assumes an electric grid made up of residential loads served by a single source of 

generation. Six controllable grouped loads per household were considered and evaluated and 

then extended to thirty-five microloads. For the six controllable loads, it is assumed that a group 

of similar or closely related electric devices are lumped together as a single controllable group 

to reduce the overall number of identifiable mLs in a house. Four algorithms were proposed 

and evaluated: GS, PBS, ERGS, and ERPBS. This is aimed at reducing the impact of the 
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traditional approach to load shedding in generation constrained power systems while reducing 

the PAR within the part of the grid in context.  

Additionally, optimisation of the priority of the mLs is proposed to maximise adherence to 

consumers’ set priorities. The optimisation of the available power is intended to reduce the 

peak to average ratio of the overall electric grid, thereby increasing the network’s efficiency. 

Simultaneously, the priority optimisation will help increase customer satisfaction by making 

sure that their salient loads are not cut-off by the proposed mechanism. The rated current of an 

appliance or grouped mL with Priority = p belonging to SM = m∈M, where M represents the 

total number of Smart Meters (SM) in a particular District Power System (DPS) as shown in 

Layer 3 in figure 3 as: 

Rated Current = M34 

The voltage (v) of an SM is given as M34 where =	 ∈ N	 whith user priority (P) such that 9	 ∈ O 

all belonging to a particular PDS is given as: 

P&4 

The known consumption of an mL given as Q	 ∈ R having priority 9	 ∈ (SN = =) is given as: 

Q34 

Therefore, we compute the known consumption (Q34) as shown in Equation 3.1. 

Q34 =	 M34P&4      (Equation 3.1) 

The total load of an SM = (=	 ∈ N) at anytime τ, is given as: R45  

The R45  is computed as follows: 

R45 = ∑ R342
3#6 	   (Equation 3.2) 

Hence, the total demand TC being D of all SMs (N ∋ =) in a particular DPS is computed as: 

U = ∑ R45"
4∈8         (Equation 3.3) 

where k  {k	∈	K| τ = 1} 
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d is denoted as the expected demand from a particular DPS. Ideally, D = d but that has not 

always been the case resulting in financial losses to the electricity utility companies along with 

the associated inconvenience caused to the final consumer. The total d of an SM = =	 ∈ N	 at 

any time τ, is given as: ;45  

d is computed as follows: 

V = ∑ ;452
3#6 	 (Equation 3.3) 

A key objective of the proposed algorithms is to distribute the Expected Demand d such that: 

Algorithm Objective 1    

V = ∑ 	"
4∈8 ∑ R342

3#6  (Equation 3.4) 

Another objective is the maximisation of the priority of the users to meet essential energy 

needs. Let the microload or grouped microload that are not affected by the microload shedding 

as P* and those affected as P’ so that; 

O = O∗ + O: (Equation 3.5) 

Algorithm Objective 2         

=-)4=406(O∗)  (Equation 3.6) 

The user priority is denoted as Pr or Pi which is inversely proportional to the total sum of the 

priority of the consumer given as PT . Where the constant of this proportionality is Prc. Hence; 

 
O' ∝ 1 O;X 	 (Equation 3.7) 

Therefore,  

O' =
O'*

O;
X 	  (Equation 3.9) 

Another objective is to reduce the PAR of the entire grid in context and thereby enhancing 

network efficiency. 

Algorithm Objective 3 

=-&4=406(OYZ)  (Equation 3.8) 
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The computation for PAR at time τ is given as: 

OYZ5 =
80<	&(0"	=>	?	0+	+%4(	5

.@('0A(	80<	&(0"B	=>	?
  (Equation 3.9) 

Therefore, we compute the PAR at [ (OYZ5) as: 

OYZ5 =	
80<	&(0"	=>	(∑ ∑ E!"#!$%&

"∈( )5

.@('0A(	80<	&(0"B	=>	(∑ ∑ E!"#!$%&
"∈( )

                  (Equation 3.10) 

Microloads with specific user-set priorities from Layer 1 of the power system structure shown 

in figure 12 is computed in Equation 3.1. The total demand per household shown in Layer 2 is 

also obtained through Equation 3.2. The Layer 3 of the DPS in Figure 3 observes the total 

demand from all households under that DPS and computed from equations 3.3. By evenly 

distributing the demand among household devices through Equation 3.10 to 3.12, the PAR is 

reduced. This is achieved through the proposed microload shedding algorithms discussed in 

Chanpter 4, 5 and 6. 

3.4 Chapter Summary 

The chapter 3 focuses on the system model and the problem formulations. The proposed model 

comprising microload architecture and a typically generalised microload grid structure are 

shown in this chapter along with the model formulation and their dependencies as the problem 

formulation. Some source codes relating the proposed approach are shown in the Appendix 4. 

 

 



 47 of 163 

 
Chapter 4 

Proposed General Microload Shedding  

4.1 Introduction 

Two main sub-algorithms accounts for the general microload shedding, namely (GSS) sub-

Algorithm and GmL Meter Side (GMS) sub-Algorithm. These algorithms are discussed in this 

chapter along with the simulation setup and their results. 

4.2 The GSS and GMS Sub-Algorithms 

The first algorithm in this heuristic approach is the General Microload Shedding (GmL) 

Algorithm, which assumes that there are no priorities associated with the various microloads. 

As a result, the algorithm considers the microloads to satisfy the constraint sent to it from the 

server. Two sub-algorithms are used to implement the GmL Algorithm as GmL Server Side 

(GSS) sub-Algorithm and GmL Meter Side (GMS) sub-Algorithm to help preserve the privacy 

of the end users’ microloads.  

 

Figure 4 GmL Server Side (GSS) Sub-Algorithm 
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The GSS sub-Algorithm is responsible for acquiring and computing the percentage of demand 

that should be shed by a particular smart meter to achieve the intended load shedding across 

the entire network in context. The pseudo-code in Figure 4 shows the GSS Algorithm. The 

GMS sub-Algorithm computes the amount of power to be shed per meter and selects the 

appropriate microload to be turned OFF on to achieve the percentage reduction required in 

demand per the received signal from the server. It uses only the load and its magnitude to 

determine the curtailment or otherwise. The pseudo-code in Figure 5 shows the process and 

the iterations involved in the GMS sub-Algorithm. 

 

Figure 5 GmL Meter Side (GMS) Sub-Algorithm 

 

4.3 Simulation Setup 

The setup is such that a single generation source is assumed to be serving the grid in context. 

The grid comprises twenty-six homes equipped with uniquely identifiable thirty-five 

microloads maximum. First, we grouped the loads into six controllable groups. Again, it is 

assumed that the users do not have the means to assign priorities to their appliances or the 

groupings.  The grouped microloads are referred to as Grouped Microloads (GmL). GSS and 
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GMS sub-Algorithms are performed on the microloads. Secondly, each microload is identified 

as a unique controllable microload, this microload category is referred to as Ungrouped 

Microloads (UmL). The simulation is then repeated for this set of microloads (i.e. UmL). The 

possible combinations of microloads per household are shown in Table 2 below. The total 

consumption per microload was given in Equation 3.1 as Q34. 

 

Table 2 Ratings for GCmL 1 to 6 

 

The simulation tool was developed in python and run on the server with all the dataset locally 

hosted on the server. The source code can be located at the appendix sections of the thesis in 

Appendix 4. 
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4.4  GGmL and GUmL Shedding Results and Discussions  

The simulation results of conducting the General microload shedding on the GmL and the UmL 

are presented and discussed in this section along with the performance evaluation of the 

General Microload Shedding (GmL) Algorithm. The accuracy of the GmL and UmL General 

shedding and the PAR optimization presented are also discussed. The simulation was 

conducted using the GCml and UCmL shown in Table 2 above, with the indicated categories 

of the microloads. A 30%, 20%, 15%, 10%, 5% and 2% microload shedding were requested 

and the expected demand along with the actual demands are compared for the GCmL and 

UCmL General Microload Shedding Algorithms. 

4.4.1  GGmL Shedding 

The requested 30%, 20%, 15%, 10%, 5% and 2% microload shedding represent a curtailment 

of 202.47kW, 134.98kW, 101.24kW, 67.49kW, 33.75kW and 13.50kW respectively from an 

overall instantaneous total demand of 674.90kW. The total demand, traditional shedding and 

the GGmL shedding for 30% GGml shedding request’s result is shown in Figure 6 below. 

 

Figure 6 Results of conducting 30% GGmL Request using Grouped Microloads 

 
30% GGmL Shedding 
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An expected shedding of 202.47kW, referred to as traditional shedding, was expected for the 

30% GGmL shedding, but the actual overall shedding recorded was 303.60kW representing an 

excess overall microload shedding of 101.13kW, which appears to be very significant. The 

percentage of actual shedding recorded was 44.98% representing an excess percentage 

shedding of 14.98%. On average, the total consumption per household (SM) is 25.96. This 

means that the excess curtailments recorded for the 30% GGmL shedding would have been 

enough to cater for four houses without the need for shedding at all.  

In terms of the distribution of the shedding per households, it was observed that SMs (23, 26, 

16, 12, 21, 6 and 10) have experience percentage excess shedding of between 31% to 44% with 

the highest excess shedding recorded on SM23 and the lowest of these was recorded on SM10. 

The SM23 recorded an excess of 8.18kW, representing a percentage excess of 44% and SM10 

recorded 4.64kW over-shedding, representing a 31% percentage excess over-shedding. The 

category of SMs that recorded less than 10% of percentage excess shedding is; SMs (4, 18, 15, 

7, 17, 2, 5, 22 and 3) in descending order. SM4 and SM3 recorded the highest and the lowest, 

respectively, with SM4 recording excess shedding of 1.15kW and SM4 recording 0.52kW 

being 9% and 3% excess shedding, respectively. In terms of the SM excess shedding, in 

between (31%-40%) and (less 10%) is the (10%-30%) category. A 30%, 27%, 27% and 27% 

excess shedding were recorded at SM30, SM24, SM8 and SM20 representing 5.27kW, 

6.31kW, 6.74 and 4.46kW respectively.  The rest are SMs(11, 25, 1, 14 and 19), with the lowest 

excess shedding being recorded at SM19, with 1.63kW being 10% excess shedding. 
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20% GGmL Shedding 
 

 

Figure 7 Results of conducting 20% GGmL Request using Grouped Microloads 

The 20% GmL Shedding is categorised into three. The first represents those shedding from 

45% to 61% instead of 20% representing 8kW to 16.1kW instead of the expected GmL 

shedding of 3.56kW to 5.28kW. This include the following SMs; SM (1, 6, 8, 11, 13, 16, 20, 

21, 23, 24 and 25). The next group is those with a percentage shedding of 30% to 37%, with 

actual shedding from 8.7kW to 8.8kW. These actual shedding were expected to be 5.86kW to 

3.5kW in that order.  

The final group of the GmL shedding of 20% is relatively close to the expected shedding of 

20%, which are 26%, 26% and 29% representing excess shedding of 1.36kW, 1.5kW and 

2.16kW. Overall total excess shedding of 142.42kW was observed when a 20% GmL shedding 

was requested with an expected demand of 539.92kW, resulting in 397.5kW of actual demand 

from the various microloads of the 26 SMs. The summary of this result is shown in Figure 7 

above. 
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15% GGmL Shedding 
 
The results of the 15% GmL shedding request is shown in Figure 8 below. It was observed that 

the actual GmL Shedding experienced by the grid was similar to that of the 20% GmL 

shedding. This could be explained as being caused by the grouping of the loads, and as a result, 

the allotted shedding required per SM was not distributively possible. An expected shedding 

of 101.23kW and actual shedding of 277.4kW was observed, representing an excess shedding 

of 176.17kW, which is higher than even the request kilowatt. This resulted in an actual demand 

of 397.5kW as against the expected demand of 573.67kW. The difference between the actual 

and expected demand is too high for this algorithm and microload grouping to be put into a 

live grid. 

The lowest excess shedding was observed on SMs(10, 9 and 11) with 2.84kW, 2.43kW and 

3.37kW, representing percentage excess shedding of 26%, 26%, and 29%. The SMs(13,6, 21, 

16 and 23) recorded percentage shedding of 51%, 53%, 54%, 56% and 61% representing over 

shedding of 5.86kW, 11.94kW, 11.63kW, 11.78kW and 12.14kW respectively. The rest of the 

SMs recorded 30% to 49% actual shedding ranging from 4.31kW to 12.17kW excess shedding. 

 

Figure 8 Results of conducting 15% GGmL Request using Grouped Microloads 
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10%, 5% and 2% GGmL Shedding 

It was observed that requesting 10%, 5% and 2% GmL shedding resulted in the same actual 

demand as the results obtained from the 15% and the 20% GmL shedding. It was explained 

that this could be due to the grouping of the microloads into grouped microloads. The results 

are shown in Figure 9, 10 and 11. In terms of the relationship between the actual and expected 

shedding, the actual shedding is higher for all the requested shedding requested under the GmL 

shedding.  

 

Figure 9 Results of conducting 10% GGmL Request using Grouped Microloads 
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Figure 10 Results of conducting 5% GGmL Request using Grouped Microloads 

 

The results show that the traditional shedding approach that completely cut power from a grid 

section would outperform this approach in terms of the actual kilowatts shed. For the 10% 

GmL shedding, an expected demand of 607.41kW resulted in an actual demand of 397.50kW, 

representing an overall shedding of 41%, far more above the required 10%. The 5% GmL 

shedding yielded an actual demand of 397.5kW against an expected demand of 641.16kW that 

is an overall eight times the expected shedding. The 2%, on the other hand, shows the highest 

over-shedding with a total of 263.9kW over-shedding recorded.  
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Figure 11 Results of conducting 2% GGmL Request using Grouped Microloads 

 

To conclude, the GmL shedding shows very significant excess shedding along with the 

requested kilowatts, which shows that it may not be effective for effecting microload shedding 

that will benefit both electricity utility companies and their consumers. 

4.4.2  GUmL Shedding 

Similar to the GGmL shedding, curtailments of 202.47kW, 134.98kW, 101.24kW, 67.49kW, 

33.75kW and 13.50kW were expected for microload shedding request of 30%, 20%, 15%, 

10%, 5% and 2% respectively from an overall instantaneous total demand of 674.90kW. The 

actual overall microload demands observed after effecting the above percentage shedding were; 

426.28kW and 481.08kW for 30% and 20% microload shedding, respectively; the 15%, 10%, 

5% and 2% all recorded 494.69kW. 

The figures below (i.e. Figures 12, 13, 14, 15, 16 and 17) show that the excess shedding has 

significantly reduced compared to those observed on the Grouped-Microload (i.e. GGmL) 

shedding. Overall excess shedding of 55.12kW, 69.09kW, 89.91kW, 124.26kW, 158.68kW 

and 179.28kW was recorded for the 30%, 20%, 15%, 10%, 5%, and 2% respectively. The 
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excess shedding constitutes overall shedding of 37% and 29% for the expected 30% and 20% 

shedding. The 15%, 10%, 5%, and 2% all recorded 27% shedding. Hence, there has been an 

improvement in the grouped microload shedding, but the excesses remain huge and 

undesirable.  

 

Figure 12 Results of conducting 30% GUmL Request using UnGrouped Microloads 

 

Figure 13 Results of conducting 20% GUmL Request using UnGrouped Microloads 
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Figure 14 Results of conducting 15% GUmL Request using UnGrouped Microloads 

 

 

Figure 15 Results of conducting 10% GUmL Request using UnGrouped Microloads 
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Figure 16 Results of conducting 5% GUmL Request using UnGrouped Microloads 

 

 

Figure 17 Results of conducting 2% GUmL Request using UnGrouped Microloads 

 

The Table 3 below compares GGmL and GUmL Shedding.  
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Table 3 GGmL Shedding versus GUmL Shedding 

GGmL GUmL 
GGmL - 
GUmL 

% 
Requested 

Expected 
Demand 
(kW) 

Demand 
(kW) 

Excess 
Shedding 
(kW) 

% 
Excess 
Shedding 

Excess 
Shedding 
(kW) 

% Excess 
Shedding 

Change in 
Excess 

Shedding (kW)  
30 481.40 478.6 2.79 0.4% 40.43 6.0% 37.64 
20 550.17 545.9 4.25 0.6% 49.72 7.4% 45.47 
15 584.60 581.4 3.17 0.5% 63.87 9.5% 60.70 
10 618.95 614.8 4.16 0.6% 74.01 11.0% 69.85 
5 653.37 646.1 7.31 1.1% 44.66 6.6% 37.35 
2 673.97 669.7 4.28 0.6% 9.50 1.4% 5.22 

 

4.5  Chapter Summary 

The result and analysis of General Microload Shedding (GmL) with Grouped and Ungrouped 

Microloads was investigated in this chapter. Dwindling generation, coupled with the increasing 

electricity demand, is compelling both developed and developing countries to explore and 

implement various techniques to prevent overloading the grid [125,128]. In the generation 

constrained powers system, load shedding is predominant, causing severe hardship for the 

consumers and hampers the productivity of the electric utility companies involved. An attempt 

has been made to reduce these burdens as seasonal and sectional load shedding is being 

implemented [129,130]. The microload are categorised into two groups; Grouped and 

Ungrouped Microloads.  

 

A General Microload Shedding Algorithm is implemented in both categories. In general, there 

is a significant curtailment along with the expected load shedding resulting in over shedding. 

It was observed that as much as 20% microload shedding was recorded for a 2%, 5% and 10% 

requested microload shedding. Further, the grouped microloads experienced the highest over 

shedding, while the ungrouped microloads recorded less over shedding than the former. 

However, the excess shedding experienced under the ungrouped microload was also significant 

and not desirable for implementing a live grid. The need to consider other algorithms and 
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approach for affecting the microload shedding is therefore necessary. In the next chapter, a 

priority-based microload shedding is investigated. 
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Chapter 5 

Priority Based Microload Shedding  

5.1  Introduction 

To get the consumers involved in the proposed load shedding system, priority information is 

attached to the various microloads; (i.e. Grouped and Ungrouped microloads). The consumers 

are assumed to set the priorities of each microload as individual loads or grouped loads. This 

simulation's assumed priority levels are shown in Table 2 as GCmL and UCmL for the grouped 

and the ungrouped microloads, respectively. In this chapter, the excess microload shedding 

recorded in the GmL approach was significantly reduced by considering user priorities. It is 

assumed that at this stage the users have pre-set priorities on each microload group, and these 

priorities are considered by the meter side sub-algorithm shown in Figure 4 in Chapter 4. This 

work has contributed to the following publications: [127, 128]. 

5.2  The Priority Based Microload Shedding 

As discussed earlier in Chapter 4, concealing the actual microloads consumptions from the 

server preserves the user's privacy. As a result, the Server Side GmL Shedding sub-algorithm 

is the same as that of the Priority Based Microload Shedding server-side sub-algorithm as in 

Figure 4. The Priorities are therefore considered only in the Meter Side sub-algorithm shown 

in Figure 18. The server only allocates the amount of energy to be curtailed by each smart 

meter. The smart meter computes which microload to be cut-off to achieve the desired 

curtailment based on the assigned user priorities. The meter side sub-algorithm for the priority-

based microload shedding is shown in Figure 18 below. 
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Figure 18 Meter Side Sub-algorithm 

 

5.3  Results and Discussions 

The proposed system is evaluated on the GmL and the UGmL, and the results are discussed 

under their subheadings, respectively. The setup is similar to those discussed in the previous 

chapter. The GmL Server Side (GSS) sub-Algorithm is the same as the Priority-based one as 

reported in Figure 12 of Chapter 4, but the algorithms utilise the priority of the loads at the 

meter side as shown in Figure 18 above.  

5.3.1  Priority Based Grouped Microload (PbGmL) Shedding 

This subsection discusses the simulation results obtained from grouping the microloads into 

six priorities groups. High priorities are assigned high priority numbers such that the higher the 

priority, the more user prefers that microload group in that category remain unaffected (ON) 

during microload shedding periods. 2%, 5%, 10%, 15%, 20% and 30% microload shedding 
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requests were conducted in that order, and the results are discussed, respectively. The PbGmL 

shedding assumes that the user sets the priorities of all the microloads (i.e. P = 1 for Grouped 

Microloads 1 to P = 6 for Grouped Microloads 6), implying each grouped microload category 

has a unique priority as shown in Table 2. Expected Demand is given as (Dm) where Priority 

Based Grouped Microload (PbGmL) Shedding and Priority Based Ungrouped Microload 

(PBUmL) Shedding were performed. 

 

Figure 19 Results of conducting 2% PBGmL Request using Grouped Microloads 
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Figure 20 Results of conducting 5% PBGmL Request using Grouped Microloads 
 

 

Figure 21 Results of conducting 10% PBGmL Request using Grouped Microloads 

 

The total demand from the 26 SMs was observed to be 674.90kW at the beginning of all 

simulations. Figure 19 to Figure 24 show the results of Priority Based Grouped Microload 

(PbGmL) for the 2%, 5%, 10%, 15%, 20% and 30% requests for microload shedding, 
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respectively. As shown in the figures; 2%, 5%, 10%, 15%, 20% and 30% microload 

management was performed on the same consumption profile of 26 SMs consuming a total of 

674.90kW with expected demand of 661.40kW, 641.16kW, 607.41kW, 573.67kW, 539.92kW 

and 472.43kW respectively. 

Table 4 PBGmL Excess Shedding 

% 
Requested 

Expected 
Demand 
(kW) 

Demand 
(kW) 

Excess 
Shedding 
(kW) 

% 
Excess 
Shedding 

30 472.43 432.0 40.43 6.0% 
20 539.92 490.2 49.72 7.4% 
15 573.67 509.8 63.87 9.5% 
10 607.41 533.4 74.01 11.0% 
5 641.16 596.5 44.66 6.6% 
2 661.40 651.9 9.50 1.4% 

 

However, the actual total demands recorded for these microload shedding request were 

651.9kW, 596.5kW, 533.4kW, 509.8kW, 490.2 and 432.0kW in ascending order of the 

percentage request made. The lowest percentage of excess shedding is observed on 1.4% 

request with a total excess of 9.50kW, and the largest excess shedding is seen to be 74.01kW 

on 11%. Table 4 shows the excess shedding amongst the percentage requests made.  

 

Figure 22 Results of conducting 15% PBGmL Request using Grouped Microloads 
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Figure 23 Results of conducting 20% PBGmL Request using Grouped Microloads 

 

Figure 24 Results of conducting 30% PBGmL Request using Grouped Microloads 
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5.3.2  Priority Based Ungrouped Microload (PBUmL) Shedding 

The ungrouped microloads are subjected to the same priority-based algorithm as the grouped 

microloads. The simulation results of the ungrouped microloads shedding are discussed in this 

subsection. Overall, there appears to be a very significant reduction in the excess microload 

shed, along with the expected values. The performance of the PBUmL is shown in Figure 25 

to Figure 30.  

There was a huge gap between the excess load shed and a comparison between PBGmL 

shedding and PGUmL shedding. The PBGmL shedding recorded 40.43kW, 49.72kW, 

63.87kW, 74.01kW, 44.66kW and 9.5kW representing over-shedding of 6.0%, 7.4%, 9.5%, 

11.0%, 6.6% and 1.4% for the 30% to the 2% PBGmL shedding. The PBUmL shedding on the 

other hand recorded excess shedding of 2.79kW, 4.25kW, 3.17kW, 4.16kW, 7.31kW and 

4.28kW which represents fractional percentage over-shedding of 0.4%, 0.6%, 0.5%, 0.6%, 

1.1% and 0.6% for the requested shedding of 30% to 2% PBUmL shedding. Hence, the PBUmL 

performs significantly better than the PBGml shedding. This can be explained by the number 

of controllable microloads available to share the required demand level.  

 

Figure 25 Results of conducting 30% PBUmL Request using UnGrouped Microloads 
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Figure 26 Results of conducting 20% PBUmL Request using UnGrouped Microloads 

 

 

Figure 27 Results of conducting 15% PBUmL Request using UnGrouped Microloads 
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Figure 28 Results of conducting 10% PBUmL Request using UnGrouped Microloads 

 

 

 

Figure 29 Results of conducting 5% PBUmL Request using UnGrouped Microloads 
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Figure 30 Results of conducting 2% PBUmL Request using UnGrouped Microloads 

 

5.4  Chapter Summary 

In this chapter, the most effective ways of reducing the impact of traditional load shedding of 

electricity in generation constrained power systems on the consumers within the context of the 

smart grid was examined after the general grouped and ungrouped microload shedding show 

that there is significant excess shedding along with the intended one. Therefore, algorithms to 

efficiently allocate the available generation without incurring high excess shedding are 

investigated. Dynamic programming-based algorithms are developed to achieve this constraint 

by uniquely controlling home appliances to reduce the overall electricity demands in two ways; 

Grouping the microloads and controlling them as one controllable group of microload 

(Grouped Microload) and uniquely controlling each microload (Ungrouped Microload).  

A significant reduction in the excess curtailment was achieved as it helps the utility companies 

to reduce wastage and ultimately reduce losses resulting from over shedding.  There was a 

reduction of the over-shedding from 74.01kW to 4.16kW after employing the Priority-based 

microload shedding techniques using the Ungrouped Priority Loads (UPL) consumption 

profiles. Additionally, the actual percentage shedding was also improved from 11% to 0.6% 
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when subjected to a 10% microload shedding using the UPL load profiles. The next chapter 

considers the re-use of the excess in the implementation of the various algorithms discussed 

previously. 
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Chapter 6 

Excess Reuse Microload Shedding  

6.1  Introduction 

This chapter introduces the excess reuse concept to reuse the excess microload shedding 

experienced in the previous approaches, namely, General Microload Shedding [125,126] and 

Priority Based Microload Shedding [127]. It was previously seen that there were high values 

excess shedding when the households’ microload demands were curtailed using the General 

and Priority Based Microload Shedding techniques for the Grouped and UnGrouped 

Microloads. Similar to the previous approach, the microloads used for the simulation are shown 

in Table 2. Most of the work reported in this chapter has contributed to the publication in [128]. 

The simulation and the subsequent results are discussed in the subsections below. 

6.2  The Excess Reuse General Microloads Shedding  

After observing the excess shedding that comes along with the intended values termed as over-

shedding as seen in the work reported in [125] and [126], the Excess Reuse General Microloads 

(ERGmL) Shedding is developed to reuse the excess from the first household (SM) in the 

sequence to the next successive house (SM). ERGmL Shedding Algorithms in Figure 31 shows 

the sequence of this approach. To validate the ERGmL shedding, it was subjected to both 

Grouped Controllable Microloads (GCmL) and Ungrouped Controllable Microloads 

(UGCmL), as shown in Table 2 in Chapter 4.  

6.2.1  ERGmS using GCmL Consumption Profiles 

The GCmL Consumption profiles of 26 homes fitted with a 6-grouped controllable microload 

were subjected to the ERGmL shedding Algorithm. At the start of the simulation, the overall 

demand from the 26 homes was seen to be 674.90kW before curtailments of 202.47kW, 

134.98kW, 101.24kW, 67.49kW, 33.75kW and 13.50kW was initiated, representing 
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percentage microload shedding requests of 30%, 20%, 15%, 10%, 5% and 2% respectively. 

This load shedding is referred to as Excess Reuse General Grouped Microload (ERGGmL) 

Shedding. 

 

Figure 31 ERGmL Algorithm 

 

30% ERGGmL Shedding 

The results of requesting 202.47kW microload shedding reveal 261.9kW representing 38.81% 

microload shedding which shows an excess of 8.81% shedding. This is a marginal over-



 75 of 163 

shedding compared to the previous techniques discussed. It was also observed that a significant 

number of households experienced less shedding than the requested values, which was 

demonstrated by the negative excess shedding seen from these smart meters. SMs (7, 9, 12, 17, 

22 and 26) experienced this negative over-shedding at values of 6.8kW, 0.93kW, 0.26kW, 

7.32kW, 4.68kW and 0.09kW respectively. This observation could be attributed to the fact that 

excesses from previous houses are redistributed on the successive ones leading to more 

available electric energy for the affected houses. Figure 32 below shows how the houses (SMs) 

performed under the 30% ERGGmL Shedding. 

 

Figure 32 Results of conducting 30% ERGGmL Request using Grouped Microloads 

The lowest excess shedding was observed on the SM3 and SM6 at 0.52kW and 0.58kW in that 

order. On the other hand, the highest excess shedding observed were seen from SM 16, SM6 

and SM 21, which recorded 7.46kW, 7.27kW and 7.16kW. On average, the excess shedding 

per request observed was 2.29kW.  

 

20% ERGGmL Shedding 

When a 20% microload shedding was requested under this context, an excess shedding of 

7.31% was observed, representing 49.32kW actual excess shedding with an expected demand 
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of 539.92kW and an actual demand of 490.6kW. Regarding individual households’ microload 

shedding, several households experienced under-shedding resulting from the excess reuse of 

the previous successive houses. The average excess shedding recorded for all households under 

the 20% ERGGmL shedding request was 1.90kW. 

An average of 5kW was observed to have been reused, with 50.50kW being the total reused 

among the following smart meters; SMs (3, 7, 9, 12, 14, 17, 19, 21, 24 and 26). Among these 

houses, SM24 recorded under-shedding of 6.66kW and 3.64 was recorded by SM14. The 

summary of the ERGGmL shedding performance at a request of 20% microload shedding is 

shown in Figure 33. In terms of excess shedding, 10.34kW, 10.36kW and 10.82kW were seen 

as the highest recorded for SM16, SM8 and SM23, respectively and a low of 1.36kW and 

1.98kW were recorded at SM10 and SM22. 

 

 

Figure 33 Results of conducting 20% ERGGmL Request using Grouped Microloads 

 

15% ERGGmL Shedding 

When a 15% ERGmL was requested, an expected shedding of 101.23kW yielded an actual 

shedding of 167.10kW, representing a 67.87kW over-shedding. This amounted to an actual 
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demand of 505.8kW instead of an expected demand of 573.67kW. An average of 2.61kW was 

observed for the 26 houses when subjected to the 15% ERGmL shedding. While there was 

apparent general over-shedding, there are some houses that experience some levels of under-

shedding. 

SMs (3, 5, 7, 9, 12, 14, 16, 19, 21, 24 and 26) experienced various levels of under-shedding 

with the highest recorded at SM24, SM21 and SM26 with 5.00kW, 4.47kW and 4.39kW, 

respectively. The lower margin was recorded at 2.73kW. Apart from the under-shedding, some 

houses experienced excess shedding of 2.42kW, 2.73, 2.76kW, and others. The highest excess 

sheddings were recorded at SM6, SM8, SM23 and SM25, recording 11.94kW, 12.17kW, 

12.14kW and 11.85kW, respectively. Figure 34 shows the demand, expected shedding and the 

actual ERGGmL Shedding recorded per household. 

 

Figure 34 Results of conducting 15% ERGGmL Request using Grouped Microloads 

 

10% ERGGmL Shedding 

The results of the 10% ERGGmL shedding request is shown in Figure 35 below. It shows that 

13 households experienced over-shedding at various magnitudes, and the rest were completely 
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under-shed. On average, the 26 households recorded 2.60kW with a total expected demand of 

607.41kW yielding 539.7kW, which is an excess shedding of 67.71kW. 

 

Figure 35 Results of conducting 10% ERGGmL Request using Grouped Microloads 

 

The maximum over-shedding were recorded on SM11, SM21, SM23 and SM25 as 12.12kW, 

13.12kW, 13.46kW and 13.78kW. SM3 and SM9 recorded 4.84kW and 4.09kW as the lowest 

over-shedding as previously indicated, 13 SMs experienced negative excess shedding, which 

means that they were under-shed. The smallest of these values were observed on SM4, SM14 

and SM22 as 1.75kW, 1.82kW and 1.56kW, respectively. 

.  

2% and 5% ERGGmL Shedding 

After requesting 2% and 5% microload shedding, an average of 4.68kW and 3.90kW were 

observed for the 2% and the 5% requests, respectively. Similar to the other shedding observed 

under the ERGGmL shedding, 2% and 5% all showed similar households over-shed in various 

magnitudes. The over-shedding experience values in the 2% request were higher than that of 

the 5% shedding requests, but the under-shedding of the 5% were also higher than that of the 

2% requests. 
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Figure 36 Results of conducting 5% ERGGmL Request using Grouped Microloads 

 

Expected demands of 661.4kW and 641.16kW resulted in 539.7kW and 539.7kW, respectively, 

for the 2% and the 5% microload shedding requests. These developed excess shedding of 

121.7kW and 101.46kW for 2% and 5%. While the 2% shedding yielded 18.03% excess 

shedding, the 5% was 15.03%, which appears to be even lower than that of the 2%. The 2% 

and the 5% results are shown in Figure 36 and Figure 37. 

 

Figure 37 Results of conducting 2% ERGGmL Request using Grouped Microloads 
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6.2.2  ERGmS using UGCmL Consumption Profiles 

The ERmL shedding algorithm is further evaluated on the ungrouped microloads presented in 

Table 2. The average excess shedding for requesting 2%, 5%, 10%, 15%, 20% and 30% 

ERGUmL shedding were 2.83kW, 2.03kW, 2.12kW, 0.99kW, 2.10kW and 1.12kW 

respectively. This shows an improvement from the previous techniques that yielded higher 

average excesses. Part of this work has been published in [128]. Details of the performance of 

this approach are discussed below. 

2% and 5% ERGUmL Shedding 

A 13.77kW and 33.37kW requests using the ERGUmL shedding representing 2% and 5% of 

the instantaneous demand resulted in actual demands of 600.49kW and 600.49kW, 

respectively, amounting to excess shedding of 73.48kW and 52.88kW. These excesses 

represent 11% and 8% of the original demand. The effective demand for a 2% and 5% 

ERGUmL shedding appeared to be the same (i.e. 600.49kW). This can be explained from the 

minimum selectable loads' perspective under the 2% being similar or the same as those of the 

5%.  

Though 73.48kW and 52.88kW were observed as excess shedding for the 2% and 5%, 

respectively, most of the houses were not negatively affected. Households represented by SM 

(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 and 26) effectually experienced under-shedding during 

both 2% and 5% microload shedding. The rest of the households, on the other hand, are those 

that experienced over-shedding, which resulted in the excesses recorded 2% and the 5% 

shedding requests under the ERGUmL approach. 



 81 of 163 

 

Figure 38 Results of conducting 2% ERGUmL Request using UnGrouped Microloads 

In terms of the 2% request, the minimum and the maximum over-shedding were observed at 

SMs (13, 1, and 19) and SMs (11, 21 and 23). On the other hand, the maximum and the 

minimum under-shedding were observed at SMs (2, 8 and 18) and SMs (4, 14 and 22). The 5% 

microload shedding requests also yielded a minimum and maximum over-shedding at SM (13 

and 19 ) and SMs (11, 21 and 23).  

 

Figure 39 Results of conducting 5% ERGUmL Request using UnGrouped Microloads 

While the maximum and the minimum under-shedding were observed at SMs (2 and 8 ) and 

SMs (4 and 14 ), overall, the excess shedding recorded for these two requested were 11% and 
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8% for 2% and 5% requests, respectively. This improved from the previous technique, which 

yielded a percentage of excess shedding of 18.03% and 15.03% for 2% and 5% ERGGmL 

requests. The 2% and 5% ERGUmL shedding results are shown in Figure 38 and Figure 39, 

respectively. 

10% ERGUmL Shedding 

A 68.79kW microload shedding request resulted in 563.91kW as an actual demand with an 

expected demand of 618.25kW. On average, a 2.12kW excess was observed when a 10% 

microload was initiated, a slight improvement from the 2.6kW obtained from the 10% 

ERGGmL shedding request. SMs (1, 2, 4, 6, 8,10, 11, 13, 14, 16, 18, 20, 22, 23 and 25) 

experienced over-shedding in various magnitudes, with the lowest being recorded at SMs (13 

and 22) and the highest values at SMs (20 and 23). This result is summarized in Figure 40 

below. 

 

Figure 40 Results of conducting 10% ERGUmL Request using UnGrouped Microloads 

Despite this, many households were observed to have experienced under-shedding, which is 

the aim of this approach. In terms of the under-shedding, SM4 recorded the lowest with 2.24kW 

and SMs (21 and 24) recorded the highest with 3.05kw and 3.33kW, respectively. 
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15% ERGUmL Shedding 

The minimum excesses recorded when a request of 103.14kW was made under the ERGUmL 

shedding representing a 15% request, was seen at SMs (1, 13, 15, and 22) with 1.42kW, 

0.69kW, 1.46kW and 0.7kW. SMs (20 and 23) obtained the highest excesses with 7.14kW and 

6.96kW, respectively. The result obtained from the 15% microload shedding is shown in Figure 

41. 

 

Figure 41 Results of conducting 15% ERGUmL Request using UnGrouped Microloads 

The excesses' presence did not affect the negative shedding obtained on SMs (24, 21, 26, etc.) 

recording -5.00kW, -4.57kW, -4.48 etc., as excesses representing the highest under-shedding. 

The minimum under-shedding was recorded at SM3 with -3.36kW. A 4% excess shedding was 

recorded under the ERGUmL compared to that of the ERGGmL under the same request was 

10.06% showing an improvement of over 6% of the total demand. 

 

20% ERGUmL Shedding 

An excess of 8% was recorded when a request of 137.57kW was made, representing 20% actual 

request. In terms of the individual households, 5.91kW and 5.59kW were recorded as the 

highest excess shedding experienced under SM20 and SM23. Comparing the ERGGmL 
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shedding, which recorded an average excess of 1.90kW and an overall excess of 7.31%, 

performed better than the ERGUmL shedding, which resulted in an average excess of 2.10kW 

and 8% for the overall excess.  

 

 

Figure 42 Results of conducting 20% ERGUmL Request using UnGrouped Microloads 

 

The expected demand for 550.17kW yielded 495.61kW. Despite the non-conformance of the 

20% ERGUmL shedding with the rest, SM19, SM22, and SM26 recorded under-shedding of 

0.81kW, 3.20kW and 0.11kW, respectively. The highest of the negative excess shedding were 

recorded at SM22 the lowest was seen on SM26. The results are shown in Figure 42 above. 

 

30% ERGUmL Shedding 

A 30% microload shedding request made under the ERGUmL resulted in 452.27kW as the 

actual demand with an expected demand of 498.4kW representing an excess shedding 

29.13kW. On average, the individual smart meters had an average excess shedding of 1.12 kW 

compared to the ERGGmL shedding, which resulted in 2.29kW on the average and an overall 

excess of 59.43kW was recorded. 
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Figure 43 Results of conducting 30% ERGUmL Request using UnGrouped Microloads 

 

Regarding the negative excess shedding, the 30% ERGUmL shedding request yielded 0.27kW, 

0.81kW, 2.39kW, 0.37kW, 1.44kW and 3.10kW at SMs (2, 7, 9, 14, 17 and 26) and the highest 

at SM26 with the lowest at SM2. The rest of the households experienced excess shedding, with 

the lowest at SM13 with 0.41kW and 4.12kW was recorded as the highest at SM25. These can 

be observed in the Figure 43. 

6.3  The Excess Reuse Priority Based Microloads Shedding 

The excess reuse priority-based microload shedding (ERPBmS) is similar to the ERGS but 

takes into account the priorities assigned to the microloads in deciding which of the devices or 

group of devices (i.e. in the case of the grouped priority microloads) to be cut off to meet the 

minimum requirements from the grid.  
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Figure 44 ERPBmL Algorithm 

 

Like the previous approach discussed, two sets of microloads are considered. These are 

Grouped Controllable Loads (GCmL) and the Ungrouped Controllable Loads (UGCmL). The 

algorithm performing the ERPBmS is shown in Figure 44 above. 
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6.3.1  ERPBmS using GCmL Consumption Profiles 

Generally, a 202.47kW, 134.98kW, 101.24kW, 67.49kW, 33.75kW and 13.50kW microload 

shedding requests representing 30%, 20%, 15%, 10%, 5% and 2% under the Excess Reuse 

Priority Based Grouped Microload (ERPBGmL) shedding resulted in actual demands of 

456.8kW, 521.00kW, 550.50kW, 588.20kW, 620.5kW and 656.80kW respectively for the 26 

households considered. The specifics of each of the requests are discussed in their respective 

subheadings below.  

30% ERPBGmL Shedding 

The expected microload demand of 472.43kW resulted in an actual demand of 456.80kW, 

representing an excess shedding of 2% on the expected 30% request.  The result shown in 

Figure 45 depicts many households experiencing under-shedding, with very few experiencing 

visible over-shedding. On average, there was 0.60kW over-shedding across the 26 households. 

Visible over-shedding were seen at SMs (1, 6, 10, 11, 13, 15, 18, 19, 20 and 23), with the 

highest being 8.18kW recorded at SM23. The lowest of the over-shedding was seen at SM10, 

recording 0.34kW. In terms of the negative excesses recorded, the maximum was seen at SM24 

with 7.69kW and SM12 recorded 0.26kW as the minimum under-shedding.  

 

Figure 45 Results of conducting 30% ERPBGmL Request using Grouped Microloads 
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20% ERPBGmL Shedding 

When the same load profiles were subjected to a 20% ERPBGmL shedding representing a load 

shedding of 134.98kW, the result obtained was 521.00kW as an actual demand resulting in 

15.63kW excess shedding. On average, 0.73kW (i.e. 3%) excess shedding was observed across 

all the smart meters. The highest excess recorded was seen at SM19 with 4.02kW, and its 

minimum was 0.36kW seen at SM7. Besides, SM4 did have all its expected demand met. 

The maximum under-shedding recorded under the 20% request was 3.66kW at SM20. SM26 

recorded 0.06kW as the minimum under-shedding. The result of the 20% microload shedding 

is shown in Figure 46 below. 

 

Figure 46 Results of conducting 20% ERPBGmL Request using Grouped Microloads 

 

15% ERPBGmL Shedding 

The expected demand for 573.67kW produced 550.50kW as an actual demand representing 

excess shedding of 23.18kW. The average excess shedding recorded was 0.89kW amounting 

to 3% extra shedding. The maximum excess shedding was observed at SM19 with 5.21kW 
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excess. 0.17kW was recorded as the minimum excess. Figure 47 shows the result of requesting 

101.24kW under the ERPBGmL shedding. 

Like the other results under the ERPBGmL shedding, the 15% request also experienced various 

under-shedding per household. The maximum of these was seen at SM16 with 4.32kW, and 

SM23 recorded the minimum as 0.56kW. 

 

Figure 47 Results of conducting 15% ERPBGmL Request using Grouped Microloads 

 

10% ERPBGmL Shedding 

A 67.49kW microload shedding request resulted in an actual demand of 588.20kW against an 

expected demand of 607.41kW, amounting to an excess of 19.21kW, representing 3% excess. 

On average, 0.74kW was shed across the smart meters. The highest excess shedding was seen 

at SM20 with 6.32kW, and the lowest was 0.27kW at SM24. 

In terms of under-shedding, 3.69kW recorded at SM2 was the highest, and the minimum was 

observed at SM4 with 1.75kW. Figure 48 shows the result of the 10% ERPBGmL Shedding 

request. 
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Figure 48 Results of conducting 10% ERPBGmL Request using Grouped Microloads 

 

2% and 5% ERPBGmL Shedding 

Request to shed 13.50kW and 33.75kW representing 2% and 5% yielded 656.80kW and 

620.50kW as actual demands. Therefore, these demands resulted in excess shedding of 4.60kW 

and 20.66kW at an average of 0.18kW and 0.79kW excess shedding. The performance of the 

ERPBGmL shedding algorithm on the 2% and 5% shedding are shown in Figure 49 and Figure 

50 below. 

 

Figure 49 Results of conducting 5% ERPBGmL Request using Grouped Microloads 
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The highest excess recorded for the 5% shedding request was observed on SM20 with 7.51kW 

excess and SM10 recorded 0.04kW as the lowest excess recorded.  

 

Figure 50 Results of conducting 2% ERPBGmL Request using Grouped Microloads 

 

It was also observed that most of the households recorded excess shedding when the 5% 

shedding request was made. The lowest under-shedding was observed on SM26 with 0.06kW 

and SM21 recorded 1.49kW as the highest under-shedding. 

The biggest excess shedding under the 2% request was seen at SM24 with 1.13kW and the 

smallest was 0.01kW seen at SM18. In terms of the negative excesses representing under-

shedding, 0.76kW was observed to be the highest under-shedding, and the lowest was seen at 

SM11, recording 0.04kW. 

6.3.2  ERPBmS using UCmL Consumption Profiles 

The Excess Reuse approach was further evaluated on the ungrouped controllable microloads 

with assigned priorities and the results discussed within this subsection. 
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2% and 5% ERPBUmL Shedding 

 

Figure 51 Results of conducting 2% ERPBUmL Request using UnGrouped Microloads 

 

The above result in Figure 60 shows how the algorithm performed when subjected to a 2% 

microload shedding. That of the 5% microload shedding is shown in Figure 52. The highest 

excess recorded is seen in SM13 as 1.07kW for the 2% when a request of 13.75kW was made. 

A 34.39kW requested resulted in an actual demand of 652kW, yielding the highest excess at 

SM8 with 1.48kW for the 5% microload shedding. The lowest excess of 0.01kW was recorded 

for both 2% and 5% requests at SM18 and SM25, respectively. The average excess shedding 

recorded for the 2% and the 5% microload shedding was 0.09kW and 0.05kW, respectively. 

An increasing number of smart meters experience no excess shedding at all. These were 

observed at SMs (6, 11 and 16) and SMs (5 and 10), respectively, where they recorded 0.0kW 

over-shedding for both 2% and the 5% shedding requests. Eight households recorded negative 

excesses representing under-shedding, with the highest of 0.37kW recorded at SM14 and the 

lowest of 0.02kW at SM2 when the 2% microload shedding request was made. The 5% 

microload shedding request also resulted in nine households experiencing under-shedding with 

the highest of 1.67kW at SM24 and the lowest of 0.03kW at SM2 and SM16. 
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Figure 52 Results of conducting 5% ERPBUmL Request using UnGrouped Microloads 

 

10% ERPBUmL Shedding 

Subjecting the households to a 10% microload shedding request with an expected demand of 

618.95kW resulted in an actual demand of 617.51kW, representing a marginal over-shedding 

of 1.44kW compared to all the previous techniques applied. On average, the excess recorded 

was 0.06kW from all the 26 households in context. The highest excess was recorded at SM5 

with 0.79kW and 0.01kW was recorded for both SM22 and SM25. 

Like the 2% and the 5% shedding, the 10% shedding SM17 recorded no change in expected 

demand resulting in zero excess shedding. However, eight households experienced negative 

excess shedding, with the highest under-shedding at SM6 0.76kW. The relationship shared 

between the expected and the actual demands are shown in Figure 53 below.    



 94 of 163 

 

Figure 53 Results of conducting 10% ERPBUmL Request using UnGrouped Microloads 

 

15% ERPBUmL Shedding 

A microload shedding request of 103.16kW representing a 15% request resulted in an actual 

shedding of 104.05kW, a 0.91kW excess shedding recorded. On average, across the 26 

households, a 0.03kW excess shedding was recorded. This is a significant improvement from 

all the previous ones. The percentage of excess shedding recorded was computed as 0.13%.  

 

Figure 54 Results of conducting 15% ERPBUmL Request using UnGrouped Microloads 
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The excess shedding distribution was such that the maximum was recorded at SM22, recording 

0.70kW, and the minimum excess was recorded at SM1, which recorded 0.01kW. The 

contribution of under-shedding to improving the overall performance was recorded in SMs (4, 

6, 9, 14, 17, 19, 21, 23 and 25). Among these, the highest was recorded at SM23 with negative 

excess of 0.65kW. The lowest negative value was 0.01kW recorded at SM6, SM17 and SM19. 

The results of this are shown in Figure 54. 

20% ERPBUmL Shedding 

From the 20% microload shedding shown in Figure 55, there is visible marginal over-shedding 

and under-shedding across the various households. It is difficult to see any significant changes 

between the expected demands and the actual demands. An average of 0.09% excess shedding 

was recorded across the households when 137.55kW microload shedding request being the 

20% was made. An expected 550.17kW resulted in 549.54kW producing an excess of 0.63kW.  

0.44kW was recorded as the maximum excess at SM24 while SM4, SM6 and SM13 recorded 

0.01kW as the excess shedding. SM5, SM9 and SM12 recorded no change between the 

expected and the actual demands. Negative excess was recorded in SMs (3, 8, 15, 18, 21, 23 

and 25). Amongst these, the highest value was seen at SM25 as 0.43kW and 0.01kW at SM3, 

representing the lowest of the under-shedding. 
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Figure 55 Results of conducting 20% ERPBUmL Request using UnGrouped Microloads 

 

30% ERPBUmL Shedding 

A 30% microload shedding request amounting to 206.32kW resulted in an actual demand of 

481.05kW against an expected demand of 481.40kW. An excess microload shedding of 

0.35kW was recorded, representing 0.05% of the instantaneous demand. The result of the 30% 

microload shedding is summarised in Figure 56. 0.01kW was recorded on average across all 

the households. 

SMs (12, 21, 24 and 26) recorded no change in the expected demands when compared to the 

actual values obtained. The highest excesses were recorded at SM4 with 0.85kW, and SM1, 

SM13 and SM25 all recorded 0.01kW as the lowest of the excesses recorded. On the other 

hand, negative excesses were observed in eight houses, with the highest observed at SM5, 

which recorded it was 0.85kW. The lowest of the under-shedding was seen at SM20 with 

0.04kW.  
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Figure 56 Results of conducting 2% ERPBUmL Request using UnGrouped Microloads 

 

6.4  Chapter Summary 

The microload shedding algorithm has been further extended to reuse the excess shedding 

observed from the General Shedding and Priority Based Shedding Algorithms. The novel 

algorithm in these heuristics is referred to as Excess Reuse Microload (ERmL) Shedding 

Algorithm. Two techniques were derived from the ERmL; Excess Reuse General Microload 

(ERGmL) shedding and Excess Reuse Priority Based Microload (ERPBmL) Shedding 

techniques.  

First and foremost, the ERGmL was evaluated on six grouped microloads referred to as Excess 

Reuse General Grouped Microload (ERGGmL) shedding where on the average 4.68kW, 

3.90kW, 2.60kW, 2.61kW, 1.90kW and 2.29kW were observed across the smart meters as 

excess shedding for the 2%, 5%, 10%, 15%, 20% and 30% microload shedding requests. The 

same technique is then applied on the Ungrouped Controllable microloads as Excess Reuse 

General Ungrouped Microload (ERGUmL) shedding in which the average excess shedding 

across all the households was seen as 2.83kW, 2.03kW, 2.12kW, 0.99kW, 2.10kW and 1.12kW 

for the 2%, 5%, 10%, 15%, 20% and 30% microload shedding requests respectively. 
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Secondly, the ERPBmL shedding approach was evaluated on the grouped microloads as Excess 

Reuse Priority Based Grouped Microload (ERPBGmL) shedding in which the average excess 

shedding obtained across the smart meters were 0.18kW, 0.79kW, 0.74kW, 0.89kW and 

0.60kW for the 2%, 5%, 10%, 15%, 20% and 30% microload shedding requests respectively. 

After which it was tested on the ungrouped microloads as Excess Reuse Priority Based 

Ungrouped Microload (ERPBUmL) shedding resulting in 0.33kW, 0.20kW, 0.21kW, 0.09kW 

and 0.05kW as the average of the excess shedding for 2%, 5%, 10%, 15%, 20% and 30% 

request for shedding. 

A progressive reduction in the excess shedding has been observed from the ERGmL to the 

ERPBUmL, producing the lowest excess shedding. The level of excess produced under the 

ERPBUmL makes it ideal for implementation in live grid infrastructure. In the next chapter, 

the impact of predicting the demand to prepare both consumers and the electric utility 

companies for potential load shedding is discussed. 
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Chapter 7 

Generation and Demand Predictions for Microload Shedding 

7.1  Introduction 

Five prediction models are developed and tested as an initial step towards the aim of preparing 

all stakeholders in the smart grid ahead of any significant load shedding. The ultimate 

importance of forecasting will be that the current grid demand is considered, and the next 24 

hours’ demand is predicted along with the granular consumption of the microloads. The 

predicted overall demand and the microload demand are then compared to evaluate the next 

24-hour load-shedding requirements. If there is a need to curtail some of the microloads, it is 

communicated to the end-users and other parties affected as predicted microload shedding.  

The end users can then readjust the priorities to meet their energy needs in the coming hours. 

According to related research, the prevailing weather conditions significantly influence 

electricity demand. Therefore, the weather conditions such as Temperature (Temp (C)), Dew 

Point Temperature (Dew Point Temp (C)), Relative Humidity (Rel Hum (%)), Wind Direction 

(Wind Dir (10s deg)), Wind Speed (Wind Spd (km/h)), Visibility (Visibility (km)) and 

Saturation Pressure (Stn Press (kPa)) were considered as the independent variables in this 

experimental setup. 

However, to evaluate the forecasting, minutely consumption data of various microloads 

obtained from Makonin et al., in [142] was used instead. This data set comprises microload 

consumption from one home in Vancouver, Canada, from April 2012 to the end of March 2014. 

The different microloads’ data were cleaned and processed. The weather data was hourly, and 

the microload consumptions were in minute intervals. The time interval of one hour was 

processed into minutely weather data. Three months of data comprising the weather and the 

microloads was selected from the process data and used for the evaluation. The extracted data 

set used can be found at https://tinyurl.com/e4nb5h2 with a one-hour extract in Appendix 2.  
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The microloads and their respective IDs are as follows; North Bedroom (B1E), Master/South 

Bedroom (B2E), Basement Plugs & Lights (BME), Clothes Dryer (CDE), Clothes Washer 

(CWE), Dining Room Plugs (DNE), Dishwasher (DWE), Electronics Workbench (EBE), 

Security/Network (EQE), Kitchen Fridge (FGE), HVAC/Furnace (FRE), Garage (GRE), Heat 

Pump (HPE), Instant Hot Water Unit (HTE), Home Office (OFE), Outside Plug (OUE), Ent 

Tv/PVR/AMP (TVE), Utility Room Plug (UTE), Wall Oven (WOE), and Rental Home (RSE). 

The weather information used as the independent variables in this research are; Temperature 

(Temp (C)), Dew Point Temperature (Dew Point Temp (C)), Relative Humidity (Rel Hum 

(%)), Wind Direction (Wind Dir (10s deg)), Wind Speed (Wind Spd (km/h)), Visibility 

(Visibility (km)) and Saturation Pressure (Stn Press (kPa)). The predictive models used in this 

research are discussed in the next subsection. 

The metric of evaluation obtains the measure of prediction model quality in statistic or machine 

learning. Two main metrics identify predictions techniques in energy prediction evaluation. 

These are Root Mean Square Error (RMSE) and Accuracy [156,156]. Additionally, 

computational complexity, which refers to the computational resources required for the 

practical application of learning algorithms [193, 194].  

7.3.1  Root Mean Square Error (RMSE) 

When the errors of a prediction model are averaged and the result's square root is obtained, this 

is referred to as RMSE. It ranges from zero upward and never a negative number. It does depict 

the measure of the difference between the predicted and the actual values. Its interpretation can 

be subjective to the data in context. Therefore, the values are only important when the test and 

the predicted values are well understood. 

!"#$ =	√Σ(HI)*+,-./+,−HI0./123)
2

K   (Equation 7.1) 

where, 4	 = 	1,2,3, … , &	and n is the total number of predictors, >4.*+/01 is the actual demand 

from the microloads and >4&'()%*+() is the predicted demand. 
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7.3.2  Accuracy 

Accuracy is the most popular performance metric for predictive models in terms of energy 

demand forecasting. As indicated through its name, it represents how accurate a predictive 

model performed. It is a percentage measure of the predicted and the actual demands. It can be 

computed from Equation 7.2 below. 

Y..8:-.\ = 	
∑ (|(M%56789:N	M%;<=>?67=>)|)×6$$P(''#
?

2
  (Equation 7.2) 

 
 

7.3.3  Computational Complexity 

The resources needed by a computing system to enable a learning algorithm to solve a given 

real-world problem, in this case, prediction and classification is computed as computational 

complexity. There are two basic types of computational complexity; sample and computational 

complexity [193, 194]. In this research, the focus is on the RMSE and the accuracy of the 

prediction models, as discussed in [144] and [192]. 

7.4  Results and Discussions 

In this section, the results obtained for the various models used are discussed. To compare the 

accuracy of the predictions, the data is subdivided into training and testing sets. Consistent with 

the work reported in [144], the data set was divided into 70% training and 30% testing data. 

The first ten headers of the training and the test data sets are shown in Appendix 2 as 

Forecasting Dataset Samples. The results of the various techniques are discussed below. 

7.4.1  KNNR Prediction Results 

As indicated earlier, the elbow technique for obtaining the appropriate K value was used for 

the KNN predictive method, where the values obtained for the KNN approach are shown in 

Figure 57, 58, and the rest can be found in Appendix 6 as K-values. Once the K value is 

known, the next is to make a prediction.  
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Figure 57 K values for North Bedroom (B1E) 

 

 

Figure 58 K Values for Wall Oven (WOE) 

 

The evaluation metrics Root Mean Square Error (RMSE) and Accuracy for the KNN approach 

are shown in Figure 68 and Figure 69 below for all the microloads. It can be observed that the 

majority of the microloads resulted in RMSE around 100 with CDE, HPE, RSE and WOE 

recording 524.95, 651.88, 455.71 and 158.5, respectively. The lowest RMSE values were 

observed from OUE, EBE, EQE, DNE, B1E, UTE and THE, respectively, recording 0.11, 0.12, 

2.64, 3.62, 7.47, 7.68 and 8.58.  

 



 103 of 163 

 
Figure 59 KNNR RMSE values 

 

 
Figure 60 KNNR Accuracy values 

 

The best accuracy values were observed on EBE, OUE, CDE, WOE, B1E and DWE, all 90% 

and above, with EBE recording 100% accuracy. The worse results were seen on FRE, RSE, 

DNE, OFE, HPE, UTE, B2E, TVE, BME and GRE all recording below 50% with 43% and 

47% being observed at TVE and GRE and 4%, 12%, 15% and 18% were observed on FRE, 

RSE, DNE and OFE respectively. FGE and EQE recorded 55% and 50%, respectively too. 
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7.4.2  SVR Prediction Results 

The results obtained from the SVR predictions are shown in Figure 61 and Figure 62 for the 

RMSE and the Accuracy, respectively, below. Regarding the RMSE values obtained, three key 

peaks were observed at CDE, HPE and RSE, being 524.94, 644.73 and 432.73. The values of 

6.96, 3.38, 0.12, 2.57, 8.56, 0.14 and 3.81 were all recorded as the lowest for B1E, DNE, EBE, 

EQE, THE, OUE and UTE, respectively. The rest of the microloads recorded RMSE values 

between 19 and 131.92 as observed on GRE and BME. 

 
Figure 61 SVR RMSE values 

An accuracy value of 100% was recorded for EBE, while 99%, 98%, 98%, 97%, 95% and 94% 

were recorded for OUE, CDE, WOE, CWE, B1E and EBE, respectively. On the other hand, 

RSE, FRE, DNE, and OFE recorded 1%, 5%, 17% and 17%, respectively, as their Accuracy 

values for the SVR prediction. B2E, EQE, FGE, GRE and HTE all were observed to record 

values from 50% to 82%. 
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Figure 62 SVR Accuracy values 

 
7.4.3  RF Prediction Results 

The RMSE values obtained from the RF prediction are shown in Figure 63 below, where it can 

be observed that CDE, HPE and RSE recorded 620.31, 712.65 and 532.89, respectively, as the 

highest RMSE values recorded. RMSE values of 0.11 to 8.31 were observed for B1E, DNE, 

EBE, EQE, THE, OUE and UTE. The microload OUE recorded 0.11, and the 8.31 was 

recorded on the HTE. RMSE values of 127.14, 134.17 and 161.09 were observed on BME, 

HPE and RSE, respectively. Also, B2E, FGE and TVE recorded 61.30, 69.01 and 77.03, 

respectively. CWE, FRE, OFE and GRE recorded 43.79, 43.67, 26.35 and 19.09, respectively, 

as their RMSE values. 

The Accuracy values obtained for the RF predictions are shown in Figure 64. The results show 

that the RF has performed very poorly compared to all the previously discussed results. As 

observed from the graph in Figure 73, EQE recorded 100%, OUE and WOE recorded 99% and 

82%, respectively; 58% was recorded on EQE. FGE, HTE and RSE all recorded 0% for the 

accuracy under the RF prediction model. 1% was observed for B2E and HPE; 2% was also 

observed for BME and OFE; similarly, 4% was observed for the FRE microload. 11%, 11% 
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and 17% were observed at GRE, TVE and UTE, respectively. B1E, CDE, CWE, DNE and 

DWE all recorded accuracies of 21% to 35%. 

 
Figure 63 RF RMSE values 

 
 

 
Figure 64 RF Accuracy values 

 

 
7.4.4  ANN Prediction Results 

The ANN prediction results show three key peaks from the graph in Figure 65 below for the 

RMSE values. These were observed on CDE, HPE and RSE with RMSE values of 524.95, 
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644.73 and 474.33. RMSE values between 129 and 159 were observed on BME, DWE and 

WOE, where 158.48 was observed on the WOE and 129.30 were observed on DWE. Single 

digits of MSE values from 0.11 to 8.58 were seen on B1E, DNE, EBE, EQE, THE, OUE and 

UTE, where OUE recorded the 0.11 and 8.58 were recorded for the HTE on the other hand. 

FGE and TVE were observed to record 83.69 and 71.73, respectively. RMSE values of 48.38, 

40.62 and 38.02 were recorded for B2E, CWE and FRE as their respective. The rest of the 

microloads recorded RMSE values of 19.08 and 26.37 on GRE and OFE.  

The Accuracy observed during the ANN prediction shows that over 90% accuracy values were 

observed on B1E, CDE, CWE, DWE, OUE, WOE and EBE where 100% was recorded for 

EBE and 99% was observed for OUE. Accuracy values of 74%, 62%, and 82% were also 

observed for B2E, EQE, and HTE. Accuracy values of 30% to 57% were observed on BME, 

FGE, GRE, HPE, OFE, TVE and UTE, with 57% recorded on FGE and TVE recorded 30%. 

DNE, FRE and RSE recorded 15%, 4% and 29%, respectively. The Accuracy results are shown 

in Figure 66 below. 

 
Figure 65 ANN RMSE values 
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Figure 66 ANN Accuracy values 

 
 
7.4.5  DT Prediction Results 

The RMSE and the Accuracy values observed from the DT predictions are shown in Figure 67 

and Figure 68 respectively.  

 
Figure 67 DT RMSE values 

 

RMSE values of 9.07, 3.45, 0.12, 2.63, 8.58, 0.11 and 7.85 were observed on B1E, DNE, EBE, 

EQE, THE, OUE and UTE, respectively, being the lowest RMSE values observed. 19.09 and 

34.05 RMSE values were observed on GRE and OFE, respectively. RMSE values of 40.51 to 
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83.75 were observed on B2E, CWE, FGE, FRE and TVE microloads. 138.18, 142.72 and 

158.49 were observed on BME, DWE and WOE, respectively. The highest was observed at 

CDE, HPE and RSE with RMSE values of 523.95, 654.33 and 662.68, respectively. 

 
Figure 68 DT Accuracy values 

 

As shown in Figure 68 above, the accuracy values observed under the DT predictions has CDE, 

CWE, DWE, EBE, OUE and WOE, all recording from 92% to 100% where the 100% was 

recorded on EBE, and 92% was observed on the DWE. Accuracies of 82% and 86% can be 

observed on HTE and B1E, respectively. Accuracies of 43% to 56% were observed on B2E, 

BME, EQE, FGE, GRE and TVE where FGE recorded 56% and TVE recorded 43%; 25% was 

recorded for HPE and UTE; 15%, 16% and 18% were also recorded for DNE, OFE and RSE 

microloads respectively. The lowest accuracy value obtained was seen on FRE, being 4%. 

7.5  Comparative Analysis of Results 

The existing literature reviewed showed that the approach reported in this thesis outperformed 

most of the works reported in [192]. The microload forecasting by Gajowniczek and 

Zabkowski in [192] evaluated various prediction models, including some of those discussed in 

this research where 24-hour microload consumption data was used to predict the next 24-hour 
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consumption of the microloads. In this research, 42 days microload consumption was used to 

predict the next 18 days microload demands based on the 70% training and 30% testing data 

comprising minutely consumption data of 20 microloads.  

Gajowniczek and Ząbkowski in [192] obtained 41.07% for accuracy when the RF model was 

evaluated, but the result here shows an average of 26.57%, 47.02% and 41.37% was also 

obtained for SVR and KNNR where this research shows an average of 58.87%, 56.78% which 

shows that the evaluation reported in this research outperformed those of Gajowniczek and 

Zabkowski. 

The specific results obtained for each microloads are discussed subsequently, with Figure 69 

showing their respective accuracies, and their RMSEs are shown in Figure 70, Figure 71 and 

Figure 72.  

 
B1E 

RMSE values of 6.97, 9.07, 7.76, 6.96 and 7.47 were observed for ANN, DT, RF, SVR and 

KNNR with accuracies of 95%, 86%, 31%, 95% and 90%, respectively, when the B1E 

microload was subjected to the prediction techniques under evaluations. The best accuracy was 

observed on both ANN and SVR. The lowest accuracy was seen during the RF algorithm, with 

31%. It was expected that a lower RMSE recorded by RF compared to the rest of the techniques 

should have yielded a better accuracy, but that was not the case for the RF technique. 

B2E 

In terms of the B2E microload consumption predictions, the lowest observed accuracy was 

seen from the KNNR and RF techniques with 1% and 38% and RMSE of 61.30 and 63.75, 

respectively. Accuracies of 74%, 56% and 51% were observed for ANN, SVR and DT with 

RMSEs of 48.38, 63.75 and 61.53, respectively. 

BME 
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None of the techniques recorded up to 50% accuracy; ANN recorded 48% as the highest 

accuracy, with the lowest being observed at RF with 2%. The RMSEs of ANN and RF were 

131.95 and 127.14, respectively. DT, SVR and KNNR all recorded accuracy of 46%, with 

RMSEs of 138.18, 131.92 and 137.05, respectively. 

CDE 

Apart from RF, which shows an RMSE of 620.31 and an accuracy of 35%, all the rest of the 

algorithms were observed to have recorded 524,95 for the RMSE, an accuracy of 98%. 

CWE 

RMSEs of 40.61 to 43.79 was recorded for the CWE microload prediction with an accuracy of 

mostly 93% to 98%, except RF recording 33% accuracy with RMSE of 43.79, lowest in terms 

of the accuracy metric. 

DNE 

The RMSEs recorded for this microload ranged from 3.34 to 4.24, and an accuracy of 15% was 

observed for ANN, DT and KNNR. SVR yielded 17%, and RF recorded 21%, being the highest 

in accuracy with an RMSE of 3.34. 

DWE 

Most of the algorithms recorded 90% to 94% accuracy, but RF recorded 23%, being the lowest 

with RMSE of 134.17. The rest of the RMSEs were between 129.28 to 142.72, with the highest 

accuracy at ANN and SVR with an accuracy of 94%.  

EBE 

All algorithms recorded 0.12 and 100% accuracy for the EBE microload. 

EQE 

The RMSEs observed for this microload was 2.57 to 2.64, with the best accuracy being 

recorded by ANN and SVR as 62%. The lowest accuracy was observed at DT with an accuracy 

of 48%. RF recorded 58% and 2.59 as its REMSE. 
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Figure 69 Prediction Accuracies of microloads consumptions 
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Figure 70 Prediction RMSEs of microloads consumptions ALL 
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FGE 

RF recorded 0% for accuracy with RMSE of 69.01. The rest of the techniques yielded RMSEs 

ranging between 83.62 to 83.75 and accuracy of 55% to 57%, with the highest accuracy was 

observed at ANN and SVR with an accuracy of 57%. 

FRE 

SVR recorded 5% as the highest accuracy for this category of microload with RMSE of 36.72. 

All other techniques recorded 4% with RMSE from 38.02 to 43.67. 

GRE 

Accuracy of 11% and RMSE of 19.09 was observed for RF as the lowest accuracy representing 

the lowest accuracy observed. ANN and SVR recorded 19.08 for their RMSEs and 50% for 

their accuracies as the highest. The rest recorded 48% accuracies and 19.09 for their RMSEs. 

HPE 

RMSEs of 644.73 was recorded for ANN and SVR, with an accuracy of 45% being the best-

recorded accuracy for the HPE microload predictions. DT and KNNR recorded 25% and 27% 

for their accuracies, respectively, with RMSEs of 654.33 and 65185. The lowest accuracy was 

observed on the RF with 10% and RMSE of 712.65. 

HTE 

Accuracy of 82% was recorded for ANN, DT, SVR and KNNR with RF recording 0% with 

RMSE of 8.31. ANN, DT and KNNR were observed to have recorded RMSEs of 8.58 and 

SVR recorded 8.56 for its RMSE. 

OFE 

RMSEs of 25.35 to 34.05 were observed for all the techniques. The lowest accuracy was 

recorded from RF as 2% and the highest of 34% was observed on ANN. 

OUE 
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Accuracies of 99% were observed for all the approaches with RMSEs of 0.11 except for SVR, 

which recorded RMSE of 0.14. 

 

Figure 71 Prediction RMSE less than 90 of microloads consumptions 
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Figure 72 Prediction RMSEs greater than 90 of microloads consumptions 

 
 
RSE 
RMSEs of 432.73, 455.71, 474.33, 532.89 and 662.68 for SVR, KNNR, ANN, RF and DT 

respectively with accuracies of 1%, 12%, 29%, 0% and 18% with the highest accuracy on ANN 

and RF recorded the lowest accuracy. 

TVE 
RMSEs ranging from 71.73 to 81.37 were observed when predicting the microload 

consumption of TVE. The lowest accuracy was observed on RF with 11%. 30% and 33% were 

observed on ANN and SVR respectively. DT and KNNR recorded 43% as their accuracies.  

UTE 
The UTE microload consumption prediction yielded 48% as the best accuracy for ANN with 

RMSE of 7.27 and the lowest accuracy of 17% was observed on RF with RMSE of 6.76. DT, 

SVR and KNNR were observed to recorded 25%, 27% and 28% for accuracy respectively with 

RMSE of 7.85, 3.81 and 7.68. 

WOE 
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The lowest accuracy for predicting this microload was observed on RF as 82% with RMSE of 

161.09. Accuracy of 98% was observed for all the rest of the approaches evaluated with RMSEs 

of 158.48, 158.49, 158.47 and 158.50 for ANN, DT, SVR and KNNR respectively. 

 

7.6  Chapter Summary 

Microloads’ prediction to reduce the burdens associated with the proposed microload shedding 

techniques has been considered in this chapter. Various predictive algorithms have been 

discussed and evaluated on minutely microload consumption data from a Canadian home over 

three months. Summaries of prediction experiments based on KNNR, SVR, RF, ANN and DT 

are presented.  

The independent variable considered are Temp (C), Dew Point Temp (C), Rel Hum (%), Wind 

Dir (10s deg), Wind Spd (km/h), Visibility (km) and Stn Press (kPa). The corresponding 

dependent variables are the microload consumptions. The dataset was split into 70% for the 

training and 30% for the testing, consistent with previously reported works. Two evaluation 

metrics were used for examining the efficacy of the methods; RMSE and Accuracy values 

obtained are consistent with those reported in [144,156,159]. 

However, the reported works made use of hourly consumption data for the forecasting. The 

results show significant potential for forecasting in microload shedding where the predicted 

microload demands could be used to predict the generation requirements of any constrained 

electric grid. 
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Chapter 8 

Conclusion and Future Works 

8.1  Introduction 

This chapter reviews the extent to which the aim and objectives of this research have been 

achieved. The research is aimed at proposing and designing microload management algorithms, 

and optimisation techniques for microload shedding in generation constrained power systems.  

8.2  Conclusion 

 The research presented here seeks to address one of the important electricity load management 

issues focusing on generation constrained power systems. The research commenced with 

getting a broader understanding of the causes and effects of the severe load shedding 

experience in generation constrained power systems by undertaking various investigations to 

validate and substantiate the problem in context. The need for different microload shedding 

algorithms to systematically effect microload shedding was identified through the review of 

related literature on smart grid. 

Further, the modern smart grid and its related research works were reviewed, focusing on load 

shedding. It was deduced that modern endeavours have mostly focused on peak demand 

reductions and electric bill payment reductions. However, load shedding as a result of the lack 

of sufficient generating capacity to meet the increasing electricity demand has not been fully 

explored. The heuristic technique was used to propose various algorithms to systematically 

distribute the generation among various domestic devices in residential households to reduce 

the identified burdens on the end-users. 

Firstly, General Microload Shedding Algorithm was proposed and validated using Grouped 

and UnGrouped Microloads. It was observed that there was significant excess shedding along 

with the required values. In some cases, the excesses recorded exceeded the actual demands. 
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The Grouped microload recorded even higher excesses as compared to the UnGrouped 

microloads. 

Secondly, to solve the significant excesses recorded using the previous technique, a Priority 

Based Microload Shedding Algorithm was proposed. The Grouped and Ungrouped microload 

were used to validate this algorithm, where the microloads were assumed to have priorities set 

on them by the end-user. Even though the excesses recorded under this approach was lower 

than those recorded for the General microload shedding algorithm, the excess values were still 

of great concern. Some of the excesses were enough to supply full electricity to some houses.  

The results obtained from this approach show that the Ungrouped microloads experience less 

excess shedding than the Grouped microloads. 

Excess Reuse Microload Shedding algorithm was further proposed to reduce the excesses 

recorded. This algorithm was in twofold, General Excess Reuse Microload shedding algorithm 

and Priority Based Excess Reuse Algorithm. Both Grouped and UnGrouped microloads show 

a significant reduction in the excesses observed when the two algorithms were tested. The 

Priority Based Excess Reuse Algorithm outperformed the General Excess Reuse Algorithm. 

The Ungrouped microloads showed almost no excesses, but rather negative excesses were 

recorded, meaning that the available electricity was efficiently distributed among the 

microloads. 

Furthermore, the potential of energy forecasting on microload shedding was investigated using 

real minutely microload consumption data obtained from a single house in Canada. The future 

consumption of the microloads was predicted to alert both the electricity utility companies and 

their end-users about an impending load shedding to prepare ahead of time. It is hoped that 

when implemented, it will go a long way to help household set appropriate priority for those 

periods of load shedding and at the same time give enough time to the electric utility companies 
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to make necessary adjustments on the generations and distribution before effecting any load 

shedding. The evaluation metrics used showed the efficacy of the forecasting. 

8.3  Limitations 

Even though this research contributes to both theory and practice by way of the publications 

and the proposed approach to microloads management, there are some limitations identified; 

The data used to validate the proposed microload management algorithms were obtained 

through the random selection of domestic appliances consumption profile cross-sectional (i.e. 

instantaneous consumptions) created 26 households. The instantaneous demand may not give 

the true complexities associated with microloads. 

Also, the consumption data used for the prediction were collected from a single household and 

may not represent the other houses in the area. Additionally, using a single household's 

consumption, the independent variables were obtained hourly and later converted to minutely 

data to match the consumptions before being used for the experiment. 

8.4  Future Outlooks 

Logically, the next stage of this work will be to use real-time consumption data for effecting 

microload management. Further research is also needed in the area of consumption prediction 

using weather conditions as the independent variable. Other predictive algorithms could be 

used to predict the consumption and the generation, and the best performing models are 

retained in terms of their accuracies and minimum errors.  

8.9  Chapter Summary 

The contributions of this research are summarised in this chapter along with some future works. 

The limitation of the research has also been discussed in this concluding chapter.  
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Appendix 1 

The demands of the 26 households 

Table 5 Grouped Microloads Extracts 

id grid_id meter_id load_id voltage load current app_power rea_power status 
1 1 1 1 251 0.4 1.594 0.4 0.4 On 
2 1 1 2 263 0.7 2.662 0.7 0.7 On 
3 1 1 3 218 6.5 29.817 6.5 6.5 On 
4 1 1 4 240 1.8 7.5 1.8 1.8 On 
5 1 1 5 256 8 31.25 8 8 On 
6 1 1 6 237 0.4 1.688 0.4 0.4 On 
7 1 2 1 233 0.6 2.575 0.6 0.6 On 
8 1 2 2 225 1.5 6.667 1.5 1.5 On 
9 1 2 3 232 10.1 43.534 10.1 10.1 On 

10 1 2 4 242 6.2 25.62 6.2 6.2 On 
11 1 2 5 239 12.1 50.628 12.1 12.1 On 
12 1 2 6 237 6.4 27.004 6.4 6.4 On 
13 1 3 1 233 0.2 0.858 0.2 0.2 On 
14 1 3 2 225 1.5 6.667 1.5 1.5 On 
15 1 3 3 232 7 30.172 7 7 On 
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Table 6 UnGrouped Microloads Extracts 

id grid_id meter_id load_id voltage load current app_power rea_power priority_id status 
1 1 1 1 251 0.32379 1.29 0.32379 0.32379 35 On 
2 1 1 2 263 0.13676 0.52 0.13676 0.13676 34 On 
3 1 1 3 218 0.01744 0.08 0.01744 0.01744 33 On 
4 1 1 4 240 0.156 0.65 0.156 0.156 32 On 
5 1 1 5 256 0.00256 0.01 0.00256 0.00256 31 On 
6 1 1 6 237 0.46452 1.96 0.46452 0.46452 30 On 
7 1 1 7 233 0.01631 0.07 0.01631 0.01631 29 On 
8 1 1 8 225 0.018 0.08 0.018 0.018 28 On 
9 1 1 9 232 0 0 0 0 27 On 

10 1 1 10 242 0.10406 0.43 0.10406 0.10406 26 On 
11 1 1 11 239 0 0 0 0 25 On 
12 1 1 12 237 0 0 0 0 24 On 
13 1 1 13 233 0 0 0 0 23 On 
14 1 1 14 225 1.76175 7.83 1.76175 1.76175 22 On 
15 1 1 15 232 3.02528 13.04 3.02528 3.02528 21 On 
16 1 1 16 242 0 0 0 0 20 On 
17 1 1 17 218 1.61102 7.39 1.61102 1.61102 19 On 
18 1 1 18 240 0 0 0 0 18 On 
19 1 1 19 256 0.08448 0.33 0.08448 0.08448 17 On 
20 1 1 20 237 0 0 0 0 16 On 
21 1 1 21 233 0 0 0 0 15 On 
22 1 1 22 225 1.467 6.52 1.467 1.467 14 On 
23 1 1 23 232 0 0 0 0 13 On 
24 1 1 24 242 0.02662 0.11 0.02662 0.02662 12 On 
25 1 1 25 239 0.20554 0.86 0.20554 0.20554 11 On 
26 1 1 26 237 4.12143 17.39 4.12143 4.12143 10 On 
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27 1 1 27 233 2.53271 10.87 2.53271 2.53271 9 On 
28 1 1 28 225 0.97875 4.35 0.97875 0.97875 8 On 
29 1 1 29 251 0 0 0 0 7 On 
30 1 1 30 263 0 0 0 0 6 On 
31 1 1 31 218 0 0 0 0 5 On 
32 1 1 32 240 0.5208 2.17 0.5208 0.5208 4 On 
33 1 1 33 256 0 0 0 0 3 On 
34 1 1 34 237 0.41238 1.74 0.41238 0.41238 2 On 
35 1 1 35 233 0 0 0 0 1 On 
36 1 2 1 225 0.387 1.72 0.387 0.387 35 On 
37 1 2 2 232 0.18096 0.78 0.18096 0.18096 34 On 
38 1 2 3 242 0.02904 0.12 0.02904 0.02904 33 On 
39 1 2 4 239 0.15535 0.65 0.15535 0.15535 32 On 
40 1 2 5 237 0.00474 0.02 0.00474 0.00474 31 On 
41 1 2 6 233 0.91336 3.92 0.91336 0.91336 30 Off 
42 1 2 7 225 0.0315 0.14 0.0315 0.0315 29 On 
43 1 2 8 232 0.03712 0.16 0.03712 0.03712 28 On 
44 1 2 9 242 0.10406 0.43 0.10406 0.10406 27 On 
45 1 2 10 218 0.18748 0.86 0.18748 0.18748 26 On 
46 1 2 11 240 0.0144 0.06 0.0144 0.0144 25 On 
47 1 2 12 256 0.03328 0.13 0.03328 0.03328 24 On 
48 1 2 13 237 1.44333 6.09 1.44333 1.44333 23 Off 
49 1 2 14 233 1.82439 7.83 1.82439 1.82439 22 Off 
50 1 2 15 225 2.934 13.04 2.934 2.934 21 Off 
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Appendix 2 

Forecasting Data 

Table 7 One-Hour Extract from Weather Data 

Date/Time Temp (C) 

Dew 
Point 
Temp (C) 

Rel 
Hum 
(%) 

Wind 
Dir (10s 
deg) 

Wind 
Spd 
(km/h) 

Visibility 
(km) 

Stn Press 
(kPa) 

01/01/14 
00:00 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:01 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:02 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:03 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:04 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:05 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:06 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:07 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:08 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:09 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:10 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:11 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:12 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:13 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:14 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:15 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:16 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:17 5.2 4.9 98 9 8 0.4 102.88 
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01/01/14 
00:18 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:19 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:20 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:21 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:22 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:23 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:24 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:25 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:26 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:27 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:28 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:29 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:30 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:31 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:32 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:33 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:34 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:35 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:36 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:37 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:38 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:39 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:40 5.2 4.9 98 9 8 0.4 102.88 
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01/01/14 
00:41 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:42 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:43 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:44 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:45 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:46 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:47 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:48 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:49 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:50 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:51 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:52 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:53 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:54 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:55 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:56 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:57 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:58 5.2 4.9 98 9 8 0.4 102.88 

01/01/14 
00:59 5.2 4.9 98 9 8 0.4 102.88 
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Table 8 One-Hour Extract from Microload Consumption Data 

Date/
Time 

B1E 
(w) 

B2E 
(w) 

BME 
(w) 

CDE 
(w) 

CWE 
(w) 

DNE 
(w) 

DWE 
(w) 

EBE 
(w) 

EQE 
(w) 

FGE 
(w) 

FRE 
(w) 

GRE 
(w) 

HPE 
(w) 

HTE 
(w) 

OFE 
(w) 

OUE 
(w) 

RSE 
(w) 

TVE 
(w) 

UTE 
(w) 

WOE 
(w) 

01/01/
14 

00:00 0 55 0 0 0 0 0 0 39 0 103 0 38 5 19 0 63 22 51 0 
01/01/

14 
00:01 0 56 0 0 0 0 0 0 38 0 103 0 38 5 19 0 63 22 51 0 
01/01/

14 
00:02 0 56 0 0 0 0 0 0 38 0 102 2 38 5 19 0 63 22 51 0 
01/01/

14 
00:03 0 56 0 0 0 0 0 0 40 0 103 0 39 5 19 0 61 21 52 0 
01/01/

14 
00:04 0 55 0 0 0 0 0 0 38 0 103 0 37 5 19 0 63 21 51 0 
01/01/

14 
00:05 0 55 0 0 0 0 0 0 38 0 103 2 37 5 19 0 59 21 51 0 
01/01/

14 
00:06 0 55 0 0 0 0 0 0 41 0 102 2 38 5 19 0 61 21 51 0 
01/01/

14 
00:07 0 55 0 0 0 0 0 0 38 0 103 2 38 5 19 0 63 22 51 0 
01/01/

14 
00:08 0 55 0 0 0 0 0 0 38 0 103 0 37 5 19 0 63 22 51 0 
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01/01/
14 

00:09 0 56 0 0 0 0 0 0 44 0 103 0 37 5 36 0 217 22 51 0 
01/01/

14 
00:10 0 55 0 0 0 0 0 0 38 0 103 0 38 5 20 0 196 22 51 0 
01/01/

14 
00:11 0 54 0 0 0 0 0 0 38 0 103 0 38 5 19 0 191 22 51 0 
01/01/

14 
00:12 0 55 0 0 0 0 0 0 38 0 103 0 37 5 19 0 191 21 51 0 
01/01/

14 
00:13 0 55 265 0 0 0 0 0 38 0 102 2 36 5 19 0 191 22 51 0 
01/01/

14 
00:14 0 54 0 0 0 0 0 0 38 0 103 0 38 5 67 0 191 22 51 0 
01/01/

14 
00:15 0 55 0 0 0 0 0 0 38 0 103 2 38 5 67 0 189 23 51 0 
01/01/

14 
00:16 0 55 0 0 0 0 0 0 39 0 102 0 38 5 66 0 191 21 51 0 
01/01/

14 
00:17 0 55 0 0 0 0 0 0 38 0 103 2 38 5 70 0 194 21 51 0 
01/01/

14 
00:18 0 55 0 0 0 0 0 0 38 0 102 0 38 5 68 0 61 22 51 0 
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01/01/
14 

00:19 0 55 0 0 0 0 0 0 39 0 102 2 38 5 68 0 61 22 51 0 
01/01/

14 
00:20 0 55 0 0 0 0 0 0 38 0 103 2 38 5 67 0 61 21 51 0 
01/01/

14 
00:21 0 55 0 0 0 0 0 0 38 0 103 2 37 5 67 0 63 22 51 0 
01/01/

14 
00:22 0 55 0 0 0 0 0 0 41 0 104 2 37 5 66 0 61 21 51 0 
01/01/

14 
00:23 0 55 0 0 0 0 0 0 39 0 103 2 38 5 72 0 61 21 51 0 
01/01/

14 
00:24 0 55 0 0 0 0 0 0 39 0 103 0 38 5 66 0 63 21 51 0 
01/01/

14 
00:25 0 55 0 0 0 0 0 0 42 0 102 0 38 5 68 0 66 23 51 0 
01/01/

14 
00:26 0 55 0 0 0 0 0 0 39 141 103 4 39 5 66 0 61 21 51 0 
01/01/

14 
00:27 0 55 0 0 0 0 0 0 38 130 103 0 37 5 66 0 63 22 51 0 
01/01/

14 
00:28 0 55 0 0 0 0 0 0 29 128 102 0 38 5 66 0 63 21 51 0 
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01/01/
14 

00:29 0 55 0 0 0 0 0 0 38 127 102 4 37 5 65 0 66 22 51 0 
01/01/

14 
00:30 0 55 0 0 0 0 0 0 39 130 103 2 38 5 66 0 61 22 51 0 
01/01/

14 
00:31 0 55 0 0 0 0 0 0 38 127 103 2 38 5 68 0 63 22 51 0 
01/01/

14 
00:32 0 55 0 0 0 0 0 0 39 126 103 0 38 5 66 0 63 22 51 0 
01/01/

14 
00:33 0 55 0 0 0 0 0 0 38 124 103 2 38 5 20 0 207 22 51 0 
01/01/

14 
00:34 0 55 0 0 0 0 0 0 38 125 103 0 38 5 19 0 196 21 51 0 
01/01/

14 
00:35 0 55 0 9 0 0 0 0 39 0 102 0 37 5 19 0 194 22 51 0 
01/01/

14 
00:36 0 54 0 4765 0 0 0 0 38 0 103 0 37 5 19 0 191 22 50 0 
01/01/

14 
00:37 0 55 0 4741 0 0 0 0 38 0 102 0 38 5 19 0 191 22 50 0 
01/01/

14 
00:38 0 54 0 4732 0 0 0 0 39 0 103 4 37 5 19 0 189 21 50 0 
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01/01/
14 

00:39 0 54 0 4748 0 0 0 0 38 0 103 2 37 5 19 0 189 22 51 0 
01/01/

14 
00:40 0 5 0 4720 0 0 0 0 38 0 102 4 37 5 19 0 189 22 50 0 
01/01/

14 
00:41 0 5 0 4725 0 0 0 0 41 0 103 2 38 5 19 0 61 22 50 0 
01/01/

14 
00:42 0 5 0 260 0 0 0 0 38 0 103 0 37 5 19 0 66 21 51 0 
01/01/

14 
00:43 0 5 0 4742 0 0 0 0 38 0 103 2 37 5 19 0 63 22 51 0 
01/01/

14 
00:44 0 5 0 259 0 0 0 0 37 0 103 2 38 5 19 0 63 22 51 0 
01/01/

14 
00:45 0 5 0 5041 0 0 0 0 38 0 103 0 37 5 19 0 61 22 51 0 
01/01/

14 
00:46 0 5 0 4751 0 0 0 0 38 0 103 2 38 5 19 0 63 22 51 0 
01/01/

14 
00:47 0 5 0 260 0 0 0 0 38 0 103 4 38 5 19 0 63 21 51 0 
01/01/

14 
00:48 0 5 0 4758 0 0 0 0 38 0 103 0 38 5 19 0 61 21 51 0 
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01/01/
14 

00:49 0 5 0 255 0 0 0 0 38 0 103 0 38 5 19 0 59 21 51 0 
01/01/

14 
00:50 0 5 0 5320 0 0 0 0 38 0 102 2 38 5 19 0 61 22 50 0 
01/01/

14 
00:51 0 4 0 259 0 0 0 0 39 0 102 2 37 5 19 0 61 21 51 0 
01/01/

14 
00:52 0 5 0 252 0 0 0 0 38 0 103 2 38 5 19 0 61 22 51 0 
01/01/

14 
00:53 0 5 0 4749 0 0 0 0 38 0 103 2 37 5 19 0 61 21 51 0 
01/01/

14 
00:54 0 5 0 255 0 0 0 0 39 0 103 0 39 5 19 0 63 21 51 0 
01/01/

14 
00:55 0 5 0 4794 0 0 0 0 38 0 102 0 38 5 19 0 61 22 51 0 
01/01/

14 
00:56 0 5 0 259 0 0 0 0 38 0 103 0 38 5 19 0 212 22 51 0 
01/01/

14 
00:57 0 5 0 253 0 0 0 0 40 0 103 0 38 5 19 0 194 22 51 0 
01/01/

14 
00:58 0 5 0 252 0 0 0 0 38 0 102 2 38 5 19 0 191 21 51 0 
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01/01/
14 

00:59 0 5 0 254 0 0 0 0 38 0 102 0 39 5 20 0 191 21 51 0 
01/01/

14 
01:00 0 5 0 253 0 0 0 0 42 0 102 4 37 5 19 0 189 22 51 0 
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Appendix 3 

K Values 
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Appendix 4 

Source Code of the Main Microload Shedding Function 

 
from Quarshie import UserLoad 
import json as json 
from models.Energy import EnergyModel 
from models.Load import LoadModel 
from models.Reuse import ReuseModel 
from multiprocessing import Process 
 
import matplotlib.pyplot as plt 
 
if __name__ == '__main__': 
    """""" 
    # setup database 
    energy = EnergyModel() 
    load = LoadModel() 
    reuse = ReuseModel() 
 
 
 
    worker = UserLoad() 
 
    while (True): 
        grid_id = input("Select Grid (1-3 for range and 1 for a single grid): ").split('-') 
        if int(grid_id[0]) <= 0: 
            print("Grid ID can't be 0") 
            continue 
 
 
        meter_id = input("Select Meters (1-3 for range and 1 for a single Smart Meter): ").split('-') 
        if int(meter_id[0]) <= 0: 
            print("Meter ID can't be 0") 
            continue 
 
        shed = input("Enter Percentage to be shed: Whole numbers from 1 to 100: ") 
 
        if int(shed) <= 0: 
            print("% Shedding cannot be less than 1") 
            continue 
 
        grid_id_start = int(grid_id[0]) 
 
        grid_id_end = (int(grid_id[1]) + 1 if len(grid_id) > 1 else int(grid_id_start) + 1) 
        meter_id_start = int(meter_id[0]) 
        meter_id_end = (int(meter_id[1]) + 1 if len(meter_id) > 1 else int(meter_id_start) + 1) 
        shed = int(shed) 
        break 
 
    print("Grid Id       Meter Id        Total Demand        Expected Demand     Actual Demand  % Shedding") 
 
    for k in range(grid_id_start, grid_id_end): 
        koko=0 
        for i in range(meter_id_start, meter_id_end): 
            koko = worker.calculateDemand(k, i, shed, koko) 
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    # show graph 
    graph = load.raw_query("select meter_id, total_demand, expected_demand, demand from tbl_load 
group by meter_id") 
 
    m_id = [] 
    t_demand = [] 
    e_demand = [] 
    demand = [] 
 
    plt.style.use('fast') 
    fig, ax = plt.subplots() 
    fig.set_facecolor('w') 
    ax.patch.set_facecolor('w') 
    for i in graph: 
        m_id.append(i[0]) 
        t_demand.append(i[1]) 
        e_demand.append(i[2]) 
        demand.append(i[3]) 
 
    ax.spines['bottom'].set_color('0.3') 
    ax.spines['top'].set_color('0.3') 
    ax.spines['right'].set_color('0.3') 
    ax.spines['left'].set_color('0.3') 
 
    ax.plot(m_id, t_demand, "p--", label='Total Demand', color="blue", linewidth="2") 
    ax.plot(m_id, e_demand, "p-.", label='Traditional Shedding', color="red", linewidth="2") 
    ax.plot(m_id, demand, 'p:', label='ERPBUmL Shedding', color="green", linewidth="2") 
 
    plt.legend(loc='upper left', fontsize='small', ncol=3, facecolor='w') 
    plt.title(str(shed) + "% Load Shedding", fontsize=11, fontweight='bold') 
    plt.xlabel('Smart Meters (SM)', fontsize=10, fontweight='bold') 
    plt.ylabel('Demand (KW)', fontsize=10, fontweight='bold') 
    plt.xticks(m_id) 
    plt.subplots_adjust(top=0.96, left=0.05, right=0.99) 
    plt.show() 
 

Source Code of the Quarshie Function 

# Smart Grid 
koko=0 
from models.Energy import EnergyModel 
from models.Load import LoadModel 
from models.Reuse import ReuseModel 
 
class UserLoad: 
    def __init__(self): 
        self.max_voltage = 240 
        self.smarID = 0 
        self.meterID = 0 
        self.Load_ID = 0 
        self.Load = 0 
        self.priority = 0 
        self.status = 'On' 
        self.pf = 0.8 
        self.Voltage = 0 
        self.total_load = 0 
 
        self.load = LoadModel() 
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        self.energy_table = EnergyModel() 
        self.reuse = ReuseModel() 
 
    def createNewLoad(self, smartID, meterID, Load_ID, watt, priority, state): 
        min_ = self.max_voltage - (10 / 100) * self.max_voltage 
        max_ = self.max_voltage + (10 / 100) * self.max_voltage 
        self.Voltage = np.random.randint(min_, max_, 1) 
        self.smarID = smartID 
        self.priority = priority 
        self.meterID = meterID 
        self.Load_ID = Load_ID 
        self.Load = watt / 1000.0 
        self.current = self.currentCalculation() 
        self.reactivePower = self.Voltage * self.current 
        self.activePower = self.Voltage * self.current 
        self.state = state 
        self.excess= 0 
 
 
    def currentCalculation(self): 
        return (self.Load / (self.Voltage)) 
 
    def showGridLoad(self, gridId): 
        load = self.energy_table.raw_query( 
            "select sum(load) as total_load, sum(current) as total_curr from " + 
self.energy_table.gettableName() + " where grid_id =" + gridId) 
        if len(load) == 0: 
            print('Data Does not Exist') 
        else: 
            print(load) 
            self.total_load = load[0]['total_load'] 
            self.current = load[0]['total_curr'] 
            print('Total Load of Grid ID {} = {} KW'.format(gridId, self.total_load)) 
 
    def showMeterLoad(self, gridId, meterId): 
        load = self.energy_table.raw_query( 
            "select sum(load) as total_load, sum(current) as total_curr from " + 
self.energy_table.gettableName() + " where grid_id = " + gridId + " and meter_id = " + meterId) 
        if len(load) == 0: 
            print('Data Does not Exist') 
        else: 
            print(load) 
            self.total_load = load[0]['total_load'] 
            self.current = load[0]['total_curr'] 
            print('Total Load of Grid ID {},Meter ID {} = {} KW'.format(gridId, meterId, self.total_load)) 
 
    def showUserLoad(self, gridId, meterId, loadId): 
        load = self.energy_table.raw_query( 
            "select sum(load) as total_load, sum(current) as total_curr from " + 
self.energy_table.gettableName() + 
            " where grid_id = " + gridId + " and meter_id = " + meterId + " load_id = " + loadId) 
        if len(load) == 0: 
            print('Data Does not Exist') 
        else: 
            self.total_load = load[0]['total_load'] 
            self.current = load[0]['total_curr'] 
            print('Total Load of Grid ID {}, Meter ID {}, Load ID {} = {} KW'.format(gridId, meterId, loadId, 
                                                                                     self.total_load)) 
 
    def knapsack(self, p, w, e): 
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        p_sort, w_sort = (list(t) for t in zip(*sorted(zip(p, w)))) 
 
        prior = p_sort 
        weight = w_sort 
        d = 0 
        state = [] 
        for i in range(len(weight)): 
            d = d + weight[i] 
            if d <= e: 
                state.append(prior[i]) 
            else: 
                d = d - weight[i] 
 
        return d, state 
 
    def calculateDemand(self, gridId, meterId, shed, koko): 
 
        newkoko = koko 
        where_clause = " where grid_id=" + str(gridId) + " and meter_id=" + str(meterId) 
        load = self.energy_table.find(["* "], where_clause) 
        print("koko before= ", koko) 
        state = [] 
        if len(load) == 0: 
            print('Data Does not Exist') 
        else: 
            total_demand = round(self.energy_table.find(["sum(load) "], where_clause)[0][0],2) 
            expected_demand = round(total_demand - (shed / 100) * total_demand, 2)  
            priority_tmp = self.energy_table.find(["priority_id "], where_clause) 
            priority = [] 
            for i in priority_tmp: 
                priority.append(i[0]) 
 
            weight_tmp = self.energy_table.find(["load "], where_clause) 
            weight = [] 
            for i in weight_tmp: 
                weight.append(i[0]) 
 
            #demand, state = self.knapsack(priority, weight, expected_demand) 
            #koko = expected_demand-demand 
            sacksize = expected_demand + koko 
            if koko<=0: 
                sacksize = expected_demand 
            demand, state = self.knapsack(priority, weight, sacksize) 
            print('Sacksize= ', round(sacksize, 4), '  ') 
            #BEFORE demand, state = self.knapsack(priority, weight, expected_demand + koko) 
            newkoko = expected_demand - demand 
            print('Difference= ', round(koko, 4), '  ') 
            #kokoko= koko 
            #print("Kokoko = ", kokoko) 
            print(str(gridId)+"             "+str(meterId)+"               "+str(total_demand)+ "               "  + 
str(expected_demand)+ "                "+str(round(demand,2))+"          "+ str(shed)) 
 
            self.load.set("grid_id", gridId) 
            self.load.set("meter_id", meterId) 
            self.load.set("total_demand", total_demand) 
            self.load.set("expected_demand", expected_demand) 
            self.load.set("demand", round(demand, 2)) 
            self.load.set("shed", shed) 
            self.load.save() 
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        self.energy_table.update(["status='On'"], " where grid_id=" + str(gridId) + " and meter_id=" + str( 
            meterId) + " and priority_id in (" + ",".join(str(x) for x in state) + ")") 
        self.energy_table.update(["status='Off'"], " where grid_id=" + str(gridId) + " and meter_id=" + str( 
            meterId) + " and priority_id not in (" + ",".join(str(x) for x in state) + ")") 
 
        return newkoko 
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Appendix 5 

Source Code for Selected Forecasting Functions 

 
import pandas as pd 
import numpy as np  
import matplotlib.pyplot as plt 
import sklearn 
from sklearn.neural_network import MLPClassifier 
from sklearn.neural_network import MLPRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
from math import sqrt 
from sklearn.metrics import r2_score 
from sklearn import metrics 
# reading data from csv to pandas dataframe 
df = 
pd.read_csv("/Users/julius/Desktop/Predictions/My_Data_for_Minutely/ALL_Data_minutely_Weather_coded_
clean2_Months.csv") 
dataset = df 
X = dataset.iloc[:, :-21].values 
y = dataset.iloc[:, 27].values 
# splitting the dataset into testing and training sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=False) 
mlp = MLPRegressor(hidden_layer_sizes=(8,8,8), activation='relu', solver='adam', max_iter=100) 
mlp.fit(X_train,y_train.ravel()) 
pred = mlp.predict(X_test) 
df1 = pd.DataFrame(pred) 
print('Mean squared error: {}'.format(metrics.mean_squared_error(y_test, pred))) 
print('Mean absolute error: {}'.format(metrics.mean_absolute_error(y_test, pred))) 
# predicting B2E (w) with temperature 
X = df['Temp (C)'] 
y = df['B2E (w)'] 
X = np.array(X).reshape(-1,1) 
y = np.array(y).reshape(-1,1) 
# splitting the dataset into testing and training sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=False) 
mlp = MLPRegressor(hidden_layer_sizes=(8,8,8), activation='relu', solver='adam', max_iter=1000) 
mlp.fit(X_train,y_train.ravel()) 
pred = mlp.predict(X_test) 
df1 = pd.DataFrame(pred) 
print('Mean squared error: {}'.format(metrics.mean_squared_error(y_test, pred))) 
print('Mean absolute error: {}'.format(metrics.mean_absolute_error(y_test, pred))) 
 


