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ABSTRACT Building a quantum analog of classical deep neural networks represents a fundamental
challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical
deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary
number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically
linear. This problem has been variously approached in the literature, principally via the introduction of
measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path
Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine
learning typically associated with superior generalization performance in the classical domain, specifically,
hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel,
which has been used to study the dynamics of classical and quantum machine learning models. The
Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as
they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or
the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space
of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian
XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order
to achieve optimal class separation.

INDEX TERMS Machine Learning, Neural Tangent Kernel, Quantum Kernel, Quantum Machine Learn-
ing, Quantum Neural Networks, Support Vector Machine (SVM).

I. INTRODUCTION
Bridging classical deep neural networks and quantum com-
puting represents a key research challenge in the field of
quantum machine learning [1], [2]. The potential for im-
provement offered by quantum computing in the machine
learning domain may be characterized in terms of its impact
on algorithmic efficiency, generalization error, or else its
capacity for treating quantum data [3].

A notable recent result in the field has been the introduc-
tion of the concept of variational quantum algorithms and
the related neural network analog referred to as the quantum
neural network (QNN) [4]. This, in essence, consists of a
feature map encoding data into a quantum Hilbert space upon

which certain parameterized unitary rotations are applied
prior to final measurement in order to obtain a classification
or regression output. The system as a whole is then optimized
by classical methods. Such models provably lead to a compu-
tational advantage over classical models on certain artificial
tasks [5], and in respect to the analysis of specific physical
systems [6]. It has been quantitatively shown that QNNs can
be trained faster than their classical analogues [4]. However,
QNNs remain problematic in various respects. One limitation
arises from the so-called barren plateau problem [7], in which
the variance of the gradient vanishes exponentially with the
system size as the parameterized transformation becomes in-
creasingly expressive [8]. A number of approaches, including
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layer-wise training of quantum neural networks [9], have
been proposed to mitigate the issue.

A second problematic aspect of QNNs, and the one that
constitutes our principal focus here, is the linearity of the
dynamics of quantum systems. Concatenations of linear
unitary transformations remain unitary and thus ‘stacked’
quantum transformations, in effect, collapse to a single linear
transformation, appearing to rule out de facto the hierarchical
feature learning of classical deep neural networks, which
relies on non-linearities to separate feature layers. This prop-
erty makes the QNN essentially a kernel machine [10]. In
terms of the predictor function, however, the QNN is com-
posed of multiplications of rotation operators parameterized
by both the feature and model weights. The nonlinearity of
projections of rotation operators can be exploited to replicate
a very constrained form of non-linearity for feature learning
[11], [12]. Another strategy is to introduce nonlinearity via
the measurement operation, i.e. a dissipative QNN [13]. Both
approaches involve the projection the quantum state into a
subspace of the original Hilbert space.

Much of the recent study of the dynamics of deep neural
networks in the classical realm has focused on the Neural
Tangent Kernel (NTK) [14] which represents the network in
terms of the corresponding training gradients in the model
parameter space. The NTK hence approximates the behavior
of predictors via a linear model. It is often therefore applied
to study neural networks in their asymptotic, infinite-width,
limit. In this regime, the network exhibits lazy training [15],
i.e. parameter gradients remain at their initial values during
the entirety of the training. The NTK thus accurately charac-
terizes the dynamics of such infinite-width neural networks,
but is otherwise only an approximation [16]. The difference
in test error between the predictor and its linearized version
depends on the problem structure [17], with hierarchical
feature learning capability being crucial to obtaining superior
performance [18]. However, the kernel nature of the NTK
means that it shares with quantum computing a ready inter-
pretation within a Hilbert space, and is thus of considerable
interest within quantum machine learning. The first explicit
application of NTK to quantum neural networks, the quantum
neural tangent kernel (QNTK) was given in [19].

In this paper, we propose a method for overcoming the
de facto lack of hierarchical feature learning capability in
QNNs. We propose the application of Path Kernels [20]
to QNNs, which we call the Quantum Path Kernel (QPK).
Such an approach generalizes the QNTK so that the resulting
kernel is representative of the ensemble of NTKs calculated
over the full parameter path trajectory, i.e. the function
describing the evolution of model parameters over time,
including implicitly any parametric evolutions corresponding
to hierarchical feature learning. We show experimentally an
increased expressivity of the resulting model relative to lin-
earized equivalents, evaluating our method on the Gaussian
XOR mixture classification problem. For this problem, finite-
width neural networks have both theoretically and empir-
ically shown to be close-to-optimal performance whereas

linear NTK models fail [21], suggesting that it cannot be
effectively resolved without implicating multilevel learning
behavior. Furthermore, we discuss possible improvements for
the proposed approach, which can be obtained by considering
only the contribution of the parameter gradient path that gives
rise to the most decorrelated feature representation. These
specifically corresponds to the contributions associated with
the maximally nonlinear point of the parameter path, cor-
responding to the largest (positive or negative) eigenvalues
of the Hessian of the predictor function [22]. We further
enhance the decorrelation between feature representations
via a stochastic, noisy, or non-gradient-descent-based train-
ing algorithm in which the averaging operation between
decorrelated representations allows us to interpret the model
as an ensemble technique.

The paper is structured as follows. In Section II we briefly
review the necessary conceptual background. In Section III
we present the Quantum Path Kernel and discuss the hierar-
chical feature learning of the induced model. In Section IV
we demonstrate how this leads to superior performance in
solving the Gaussian XOR mixture classification problem. In
Section V we draw our conclusions and present directions for
further work.

A. CONTRIBUTIONS
• We propose the Quantum Path Kernel as a mechanism

for building hybrid classical/quantum machine learning
models which are able to emulate the hierarchical fea-
ture learning structure of deep neural networks with-
out violating the underlying linearity of the quantum
dynamics. We conjecture such a kernel can lead to
improved performance of the kernel machine on tasks
involving feature learning.

• We provide numerical evidence of the superior perfor-
mance of the Quantum Path Kernel compared to the
QNTK on the Gaussian XOR Mixture problem, which
is Bayes optimally soluble only through implicating
layerwise nonlinear separability.

• We consider the importance of the extraction of
non-correlated feature representations corresponding to
maximally varying portions of the parameter gradient
path.

B. RELATED WORKS
The introduction of the NTK by [14] has marked a significant
step in the theory of machine learning, sheding new light on
discussions regarding the relative performance of linear and
nonlinear models. For example, [17] suggests that tasks in
which kernel methods (including NTK) perform worse than
neural networks are those in which the kernel suffers from the
curse of dimensionality whereas neural networks, in learning
some useful lower dimensional representation, do not. One
example of such a problem is the Gaussian XOR Mixture
classification task [21]. Furthermore, linearized models have
been shown to perform slightly worse than wide (i.e. large,
but non-infinite) neural networks on CIFAR-10 benchmark
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[23], with the gap between the approaches increasing for
finite width networks [24].

In relation to quantum computation, researchers have spent
substantial effort on the limitations imposed by the linear
dynamics of quantum systems. Authors in [25] review early
approaches to the formulation of nonlinear quantum ma-
chine learning models: some have focused on developing
a quantum perceptron equivalent or quantum neuron, i.e.
a candidate building block for the quantum analogue of
neural networks; [26] uses phase estimation to implement
the functioning of a step function; [27], [28] propose to
exploit the RUS (repeat until success) policy to mimic the
behaviour of tangent and sigmoid activation functions, while
[29] uses RUS to construct a Born machine; [30] emulates the
nonlinearity of perceptrons using measurements. In relation
to QNNs, [31] propose dissipative QNNs in which the non-
linearity is obtained via intertwining measurements between
unitary gates; [32], [33] propose the use of a larger Hilbert
space to implement the nonlinear transformation, while [34]
exploits the exponential form of unitary gate to achieve
periodic activation functions. Finally, non-linear models of
quantum mechanics have been conjectured by [35], although
these violate some computational complexity assumptions
[36].

Regarding the QNTK literature, authors in [37] have quan-
tified the benefic effect of introducing handcrafted symme-
tries in the quantum neural network using tools derived from
the QNTK. Authors in [38], [39] have investigated lazy
training in the quantum machine learning context.

II. BACKGROUND
This section briefly introduces the key concepts and nota-
tions in relation to Deep Learning and Quantum Machine
Learning through which we develop our results. We denote
byD = {(xi, yi)}ni=1 ⊆ X×Y a labelled dataset of pairs that
are i.i.d. sampled from an unknown probability distribution.
We indicate the data vector space with X = Rd, and the
target space with either Y = R or Y ⊆ Z, |Y| < ∞ for
regression or classification tasks, respectively. We indicate
uniform sampling from a uniform discrete distribution with
∼ {vi}ni=1 and sampling from a normal distribution of mean
µ and variance σ2 with ∼ N (µ, σ).

A. A PRIMER ON QUANTUM MACHINE LEARNING
MODELS
Here we fix the notation for our quantum machine learning
models. The state of a quantum system of m-qubits is de-
scribed by a density matrix ρ ∈ H ≡ C2m×2m . The initial
state of a quantum computation is denoted by ρ0 = |0⟩⟨0|,
and the (possibly parametric) unitary transformations by
U, V,W . Any parametric unitary can be written as

U(θ) = exp

{
−i

m∑

k=1

fj(θ)σ
(q1,...,qk)
α1,...,αk

}
, (1)

where αi ∈ {x, y, z,0} for i = 1, . . . , k, and σα1,...,αk
is a

tensor product of one or more corresponding Pauli matrices

applied to qubits q1, ..., qk. The same transformation may
be interpreted as a rotation and be equivalently denoted
by R

(i1,...,ik)
α1,...,αk (θ), where θ ∈ RP are rotational angles. A

quantum neural network is a function of the form1:

f(x;θ) = Tr[ρx,θO] = Tr[V †(θ)U†
ϕ(x)ρ0Uϕ(x)V (θ)O],

(2)
where O indicates any measurement operator. Both the ma-
trices U and V are decomposed in single and two-qubits
parametric rotations interspersed with non-parametric gates
(e.g. CNOT).

B. KERNEL METHODS AND KERNEL MACHINES
A kernel on X is a binary, symmetric, positive definite
function κ : X × X → R. The kernel function generalizes
the notion of an inner product by mapping elements ofX into
a Hilbert space H, which typically has a richer, more task-
specific, structure compared to the original space equipped
with linear inner products [41]. The mapping is achieved via
an implicit feature map ϕ : X → H. This formalism enables
the exploitation of potentially infinite-dimensional Hilbert
spaces (such as those implied by the Gaussian feature map or
Radial Basis Function, in which x is mapped to a multivariate
Gaussian of mean x and fixed covariance), residing in the
space of square-integrable multivariate functions.

From the perspective of feature transformation, the kernel
function κ can be expressed as follows:

κ(x,x′) = ⟨ϕ(x),ϕ(x′)⟩H. (3)

In the majority of tasks, it is not necessary to have knowledge
of or utilize the explicit form of the feature map ϕ; it is
sufficient that function κ obeys Mercer’s condition.

A kernel machine is a function that can be expressed as
a linear combination of kernel evaluations over the training
objects {(xi, yi)}ni=1:

f(·) =
n∑

i=1

αiκ(xi, ·) =
n∑

i=1

αiϕi(·), (4)

where αi ∈ R (the first equality being a statement of the
celebrated representer theorem). Different kernels capture
different aspects of the data, resulting in the corresponding
kernel machines having differing characteristics (and ulti-
mately differing performances in the context of a classifica-
tion problem).

The associated learning problem is then one of finding
the kernel machine f = argminR[f ] that minimizes the
empirical risk function

R[f ] =

n∑

i=1

ℓ(f(xi), yi) + λ∥f∥2 (5)

with ℓ being a convex loss function, and λ ≥ 0 regularization
term. The learning problem is thus a convex, n-dimensional

1The most general form of QNN proposed is the data re-uploading QNN,
which allows the interspersing of data encoding and trainable transforma-
tions. Such a form, however, does not add any computational power to the
standard QNN approach [40].
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optimization problem independent of the dimensionality of
the original space in which the xi were embedded prior to
feature transformation.

C. NOTIONS OF NONLINEARITY IN CLASSICAL AND
QUANTUM LEARNING MODELS
With respect to both kernel machines and layerwise deep
learning, the concepts of linear model, nonlinear model, and
feature learning that we utilize here are as formalized in [42].

A linear model is thus a function of the form:

f(x;θ) =

p∑

j=1

θjϕj(x), (6)

where {ϕj : X → R}pj=0 are the feature functions, whose
values corresponds with the model features. We might con-
sider an additional feature ϕ0 ≡ 1 that incorporates the bias.
The formula in Equation 6 is linear with respect to the space
of the parameters Rp; in fact, we can interpret the function as
an inner product in that space, i.e.

f(x;θ) = ⟨θ,ϕ(x)⟩Rp , (7)

with θ = (θ1, ..., θp) and ϕ(x) = (ϕ1(x), ..., ϕp(x)), while
it behaves nonlinearly with respect to the original feature
space X , due to the feature functions. In this sense, kernel
machines are linear models.

A nonlinear model is a function of the form:

f(x;θ) =

p∑

j=1

θjϕj(x) +
ϵ

2

p∑

j,k=1

θjθkψj,k(x)

+
ϵ

3!

p∑

j,k,ℓ=1

θjθkθℓψj,k,ℓ(x) + · · · (8)

The higher-order terms of the expansion are characterized
by their own set of features, e.g. {ψj,k : X → R}pj,k=1

for the second order term. The elements of such sets are
unique up to a permutation of their variables, thus the terms
1/2!, 1/3!, ... compensate the multiple counting of such ele-
ments in Equation 8. The term ϵ≪ 1 adjusts the contribution
of the nonlinear terms. If the model is truncated to the second
term it is denoted a quadratic model [42], [43]. In such a case
the loss function is quartic and thus we cannot analytically
determine the optimal parameters as for linear regression.
The parameter dynamics of such a model is given by:

f(x,θ + dθ) (9)

= f(x,θ) +

p∑

j=1

dθj

[
ϕj(x) + ϵ

p∑

k=1

θjψj,k(x)

]

+
ϵ

2!

p∑

j,k=1

dθjdθkψj,k(x) (10)

= f(x,θ) +

p∑

j=1

dθjϕ
E
j (x;θ)

+
ϵ

2

p∑

j,k=1

dθjdθkψj,k(x) (11)

where ϕE are effective feature functions, i.e. features that
depend on, and evolve with, the model parameters, which
are learnt during the optimization phase. This behaviour can
be generalized to consider terms of even higher orders: the
presence of order n terms make the feature functions of order
n − 1, effectively, which may further influence the lower
order terms. Models having effective feature functions have
feature learning capabilities. A deep learning model is both
capable of feature learning and composed of several non-
linear modules arranged in a hierarchical fashion [44]; such
that differing layers can follow differing (albeit hierarchically
conditioned) gradient paths.

Turning to QNNs, the quantum model

f(x;θ) = Tr[ρx,θO], (12)

with ρx,θ = V †(θ)U†
ϕ(x) |0⟩⟨0|Uϕ(x)V (θ) and O a Her-

mitian observable, is a linear model in the space of den-
sity matrices of the quantum system H: the trace operation
Tr
[
A†B

]
is an inner product for the space of matrices Ck×k.

Such a property implies that the construction of a layer-wise
architecture for v, i.e. v(θ) =

∏
i Vi(θ) effectively collapses

to a single operation: this may add more degrees of freedom
to the linear transformation2 but cannot make the model
nonlinear in H in the manner of a classical deep learning
model.

However, in terms of the predictor function f(x;θ), the
quantum model does not necessarily fit the form set out Equa-
tion 6 since the parameters of the QNN model, in particular
the angle of rotation operation (in the form of imaginary
exponential function), are subject to the trace operation.
Thus, for example, consider a single-qubit quantum model
acting on a single input x ∈ R1, depending on a single
parameter θ ∈ R1, with feature map Uϕ(x) = exp(−ixσx),
variational form V (θ) = exp(−iθσx) and measurement
operator i O = σz , in which case f(x;θ) has the form:

f(x;θ) = Tr
[(

cos2(θ+x) −i sin(θ+x) cos(θ+x)
1
2 i sin(2(θ+x)) sin2(θ+x)

)(
1 0
0 −1

)]

= cos(2(θ + x)) (13)

which is nonlinear in its weights. Clearly, if we were to con-
sider a model other than a QNN then the predictor function
would change, for example as in [30], however it does not
alter our argument here.

To recap, a QNN is a linear model in the Hilbert space of
the density matrices due to the linearity of the evolution of
closed quantum systems. However, its predictor is nonlinear
in the parameter vector θ since its structure results in a com-
position of trigonometric functions. This potentially allows
a limited degree of representational learning capability if
aggregated layer-wise (limited in the sense of applying only
to a highly constrained set of activation functions). However,
due to the Lie algebraic equivalence of any given sequence
of quantum transformations to some single unitary operation

2depending on the generators involved and up to a maximum of 4n − 1
(where n number of qubits)
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in the absence of the trace operation, we are still not able to
characterise truly deep models in the quantum domain.

D. CHARACTERIZATION OF MODEL DYNAMICS
THROUGH THE NEURAL TANGENT KERNEL
The output f(x;θ) of a machine learning model trained via
(possibly stochastic) gradient descent can be approximated
as a first-order Taylor expansion f(x;θ) ≈ f(x;θ0) +
∇θf(x;θ0)(θ − θ0). Such an approximation allows the
representation of machine learners as linear (kernel) models
via the Neural Tangent Kernel (NTK, [14]):

κntk(x,x
′;θ) = ∇θf(x;θ) · ∇θf(x

′;θ) (14)

This is widely used to characterize the dynamics of
infinite-width neural networks [15], in which the NTK is
independent of the random initialization and constant in time.
On a coarse level of detail, we can assert that model training
that takes place in the lazy-training regime, i.e. when the
evolution of θ(t) during the training of the model f(x,θ)
closely follows the tangent path, can be decently approxi-
mated by the NTK. A more detailed analysis in [16] has
revealed that the NTK is constant if and only if the model is
linear (in its parameters). Such a result allows us to quantify
the nonlinearity of a model through its Hessian norm of
the predictor function: if ∥Hf∥ ≪ ∥∇wf∥ then the model
is nearly linear. This has been used in [11] to analyze the
behaviour of the QNNs in the lazy training regime.

III. THE QUANTUM PATH KERNEL FRAMEWORK
Extant quantum methods hence do not fully capture the devi-
ations from gradient path linearity exhibited by empirically-
optimal finite-width learners in the classical domain during
hierarchical feature learning (where, of necessity, lower-level
features reach learning convergence prior to the higher-level
features that utilise them). Thus, in order to encompass
this learning behaviour within the (implicitly kernel-based)
quantum machine learning regime, we introduce into the
quantum domain a key idea of Domingo’s [20], namely Path
Kernelization:

κpk(x,x
′; γ) =

∫

γ

∇θf(x;θ) · ∇θf(x
′;θ) dθ (15)

where kpk is the Path Kernel, i.e. the line integral of κntk
over the multidimensional curve representing the evolution
of the parameters θ = γ(t), t ∈ [0, 1] during training, with
θ̄ = γ̄(1). Appendix A-A gives a proof the Path Kernel
is effectively Mercer, and sets out the pseudocode for its
construction.

In general, chain rule dependencies arising from the
specifics of the architecture of the classical deep networks
will imply that hierarchical dependencies develop among
the parameters during learning. The result holds even for
stochastic gradient descent optimization, in which case Equa-
tion 15 is a stochastic integral. It is thus key to our argument
to consider the parameter path γ and its morphological evo-
lution. For linear models, assuming a vanilla gradient descent

training over a convex loss function L, the parameter path is
described by a linear vector {(1 − t)θ0 + tθf | t ∈ [0, 1]}
where θ0 ∈ Rp are the parameters at their initialization,
and θf ∈ Rp are the parameters at their convergence on the
(ideally global) minima of L. In this case, it is immediately
possible to check that the derivative of the linear model ∇θf
is independent of θ, and thus that the NTK is constant. For
nonlinear models, the loss function L may become non-
convex and γ is not constrained to have a linear trajectory.
In this latter case, both the ∇θf and the NTK will vary over
time during learning.

The Path Kernel was originally introduced in [20] in terms
of a direct functional equivalence between non-linear models
trained with gradient descent and path kernel machines (cf
Section A-B). We do not, however, here focus on the potential
of Path Kernels in approximating nonlinear models. Instead,
we seek to exploit the intrinsic potential of Path Kernels to
capture implicit feature hierarchy formation in a manner ca-
pable of implementation on a hybrid deep machine learning
model within a quantum neural network setting. We thus seek
to establish whether incorporation of a quantum version of
path construction into kernel machines, such as the SVM,
can yield performance enhancements in a feature learning
setting: Section IV will seek to quantify this directly.

We depict the construction of the Path Kernel in Figure 1.
The parameter trajectory for a nonlinear model is described
by a complex, non-straight curve. Each point of the parameter
path θt = γ(t) may be used to define a new kernel represen-
tation for the training data, namely κntk(x,x

′;θt). We can
then define a sequence of kernels stacked in a hierarchical
way (whose structure, in passing, resembles the layers of a
deep neural network, though this observation is peripheral to
the argument being made here). Thus, each new “layer" is a
source of representation learning: the new representation (i.e.
kernel matrix) is the result of an optimization process that
further adapts the previous representation to the given data
discrimination problem (which resembles, though is again
not equivalent to, classifier boosting).

It thus becomes possible, via explicit substitution for the
corresponding Quantum NTK previously defined, to con-
struct a Quantum Path Kernel (QPK) as follows:

κqpk(x,x
′; γ)

=

∫

γ

∇θ ⟨0|V †(x)U†(θ)OU(θ)V (x)|0⟩T

· ∇θ ⟨0|V †(x′)U†(θ)OU(θ)V (x′)|0⟩ dθ (16)

≈ 1

T

T−1∑

i=0

∇θ ⟨0|V †(x)U†(θt)OU(θt)V (x)|0⟩T

· ∇θ ⟨0|V †(x′)U†(θt)OU(θt)V (x′)|0⟩ (17)

where T is the number of points sampled from the curve γ,
and t = i/T ∈ [0, 1]. Equation 16 defines the QNTK as
its classical analog. Equation 17 is the discretized version
of the preceeding equations, corresponding to actual imple-
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θ1
θ2

t

γ(t4)

γ(t7)

γ(t12)

γ(t15) γ(tT )

NTK(γ(t4))

NTK(γ(t7))

NTK(γ(t12))

NTK(γ(t15))

NTK(γ(tT ))

1
T

∑
=

Path Kernel

FIGURE 1: Computation of the Path Kernel. Bottom left: A typical parameter trajectory γ is depicted, representing parametric
evolution during the training phase. Top left: as θ evolves, it gives rise to differing NTK matrices, corresponding to distinct
representations of the data. Such a sequence of matrices thus give rise to a hierarchical stack of representations in the feature
learning regime. Middle: as the training approaches convergence, subsequent matrices become similar to each other, and thus
their corresponding representations are correlated. Right: the Path Kernel constitutes the average over these representations.

mentation in a gradient descent-trained model. The equation
representing the corresponding kernel machine is given by:

f(·) =
n∑

i=1

αiκqpk(xi, ·), (18)

where the coefficients αi are determined during the training
process (such as is the case for SVMs and kernel ridge regres-
sors), and xi are the elements of the training set. Importantly,
these coefficients do not depend on the value of x.

The resulting Quantum Path Kernel (QPK) is consequently
both a quantized version of Domingo’s Path Kernel as well as
a generalization of the Quantum NTK, one that is implicitly
capable of embodying the complex parametric interactions
(such as transient parametric co-evolutions) that occur during
learning in order to arrive at the final trained model, including
those implicated in hierarchal feature learning.

A. THE QUANTUM PATH KERNEL AS A
GENERALIZATION OF QUANTUM NEURAL TANGENT
KERNEL

The primary motivation for introducing the Quantum Path
Kernel is to enhance the performance of kernel machines
in the quantum domain. As such, it represents a departure
from the typical focus of QNTK theory, which primarily
aims to predict specific properties of the underlying quantum
model. Nevertheless, it is possible to interpret the QPK as
a generalization of the QNTK with corresponding insights
into the dynamics of the training process. In particular, it
may be seen that the QNTK is constant only when it is fully

independent of θ, in which case:

κqpk(x,x
′; γ) =

∫

γ

κqntk(x,x
′;θ) dθ

= κqntk(x,x
′;0)

∫

γ

dθ = κqntk(x,x
′;0). (19)

That is, the Quantum Path Kernel becomes identical to
the Quantum Neural Tangent Kernel. However, as set out
in section II-C, the particular structure of QNNs will, of
itself, give rise to a nonlinear predictor. Thus, in principle, the
QNTK would not be expected to be constant in output terms
in the finite width regime [11]. However, a close-to-constant
behavior can be expected for quantum machine learning
models whose training is lazy (i.e. lazy training induced via
overparameterization of the QNN, such that a large number
of parameters result in a simplified loss landscape [45], [46],
leading to rapid convergence to a global minima).

B. DECORRELATION IN FEATURE REPRESENTATION
The QPK clearly exhibits dependency on the training ini-
tialization: different initial parameter values, optimization
algorithms or learning rates may lead to differing QPK kernel
matrices. In particular, the utilization of ‘vanilla’ gradient-
descent optimization algorithms, with a fixed number of
training epochs, may introduced subtle biases in the QPK.
For example, if training were to converge rapidly, any con-
tribution between the instance of convergence and the end
of the training will be effectively identical and oversampled:
this contribution will hence outweight the others, biasing the
‘stack’ of aggregated kernel matrices toward its final layer, as
per 1.

To avoid this, more sophisticated optimization algorithms
can be considered. For example, the ADAM optimizer adap-
tively increases the learning rate in locally convex portions
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of the loss landscape, leading to fewer similar contributions
within the path kernel. Furthermore, it is possible to per-
turb parameter paths via stochastic, noisy or non-gradient-
descent-based optimization techniques in order to decorre-
late subsequent contributions to the QPK. Having different,
highly decorrelated contributions would allow us to interpret
the QPK as an ensemble technique analogous to bootstrap
aggregation (bagging) often used for tuning the bias/variance
trade off in classical machine learning. (Multiple Kernel
Learning [47] might also be used to optimally weight in-
dividual contributions over the kernel at the expense of
interpretability in path terms) .

Appendix A-C discuss implementation details for the QPK
and its tested variants. We therefore now turn to an examina-
tion of the test regime.

IV. EXPERIMENTAL EVALUATION OF THE QUANTUM
PATH KERNEL IN CLASSIFYING GAUSSIAN XOR
MIXTURES
Machine-learning non-linearities such as those underpinning
feature learning in empirical DNNs can thus be feasibly
implemented in a quantum setting via the QPK. It remains
to demonstrate that this can yield superior generalization
performance on plausible quantum devices. Our evaluation,
therefore, considers the reference case of the Gaussian XOR
Mixture classification problem [48]–[50].

In particular, the Gaussian XOR Mixture classification
problem is an important benchmark for highlighting layer-
wise learning capabilities of a model (or the lack of them),
in that it intrinsically requires a two-layer solution in order to
achieve Bayes optimal class separation. Theoretical evidence
has shown that kernel methods, in particular those with
random features, struggle to accurately classify XOR data
vector mixtures [21]. In Appendix B we further analyze the
problem, reproducing the results of [21], and proposing an
interpretation of the success of feature learning models in
tackling the Gaussian XOR Mixture problem.

Our experimental workflow is pictured in Figure 2. Firstly,
we generate the dataset for the above described problem.
Secondly, we train several QNNs to best fit the generated
data. Thirdly, we use the training information to create the
QNTK and QPK matrices; the latter are used to train a
kernel machine (specifically the Support Vector Machine) to
obtain final classifications. Then, our analysis begins with
convergence study of the QNNs with an increasing number
of layers, to highlight the effect of architectural parametriza-
tion in QNNs. Finally, we compare the performances of the
QNTK and QPK approaches in terms of testing and training
accuracy. The simulation details are shown in Appendix C.

A. EXPERIMENTAL SETUP
The ground truth Gaussian XOR Mixture dataset is specified
by d the dimensionality of the features, d′ ≤ d the number
of non-zero features representing the multidimensional Gaus-
sian XOR Mixture, ϵ̄ the variance of the Gaussian noise, and

n the number of data points; it is composed as follows:

Dd,d′,ϵ̄,n =

{
([x1 + ϵ1, ..., xd′ + ϵd′ , 0, ..., 0]T , yi)

∈ Rd × {±1}

}n

j=1
(20)

where xi ∼ {±1}, ϵi ∼ N (0, ϵ̄) for i = 1, ..., d′, and yi =∏d′

i=1 xi. Such a dataset is optimally classified via the oracle
function

foracle(x) =

d′∏

i=1

xi. (21)

We generate multiple datasets Dd,d′,ϵ,n having feature
dimensionality ranging in d = 2, 3, ..., 10, noise ranging in
ϵ = 0.1, 0.2, ..., 1.0, number of non-zero features fixed to
d′ = 2, and number of elements fixed at n = 32. Then, each
dataset has been randomly partitioned into a training setDtrain
and a testing set Dtest.

Each dataset is processed by a distinct quantum neural
network, each sharing the same structure described by:

f(x;θ) = Tr[ρx,θO]

= Tr[V †(θ)U†
ϕ(x)ρ0Uϕ(x)V (θ)O] (22)

with data encoding:

Uϕ(x) =

d∏

j=1

exp
{
−i xjσ(i)

y

}
(23)

such that the trainable ansatz is described:

V (θ) =

L∏

j=1

exp
{
−i θ2i+1σ

(j)
x

}

exp
{
−i θ2iσ(j)

z ⊗ σ(j+1 mod d)
z

}
(24)

with the L hyperparameter representing the number of layers
of the model. Finally, the observable is O = σ

(0)
z .

This data encoding is been chosen for its simplicity:
the encoding of one feature for each qubit results in a
constant-depth circuit. The choice of the trainable ansatz,
though, is particularly important: the underlying functional
transformation has the potential to be affected by barren
plateau issues if it is too expressive [8], for example when
the parametric transformation is able to approximate any
arbitrary unitary matrix. The expressibility of a quantum
transformation can be examined using Lie-algebraic tools
as shown in [51]. Among the class of unitaries that are
non-maximally expressive, we have selected a specific form
that has empirically demonstrated favorable trainability as
detailed in [46, Fig. 7a]. The choice of the observable is also
guided by the necessity of avoiding the barren plateau issue.
According to [52], global observables are likely to exhibit
vanishing gradients; we thus apply the simplest possible
classifier observable acting on a single qubit. The circuit is
pictured in Figure 3. In our experiment, the observed qubit is
the uppermost; although any other qubit choice would result
in a similar predictor due to the symmetric structure of the
circuit.
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1. Generate dataset 2. Train QNN 3. Compare NTK and PK

|0⟩ V (x) U(θ)

θ L(θ)

NTK

PK
SVM

FIGURE 2: Gaussian XOR Mixture classification experiment workflow.

|0⟩ Ry(x1)

Rzz(θ1)

Rzz(θ1)

Rx(θ2)

Rzz(θ3)

Rzz(θ3)

Rx(θ4)

|0⟩ Ry(x2)

Rzz(θ1)

Rx(θ2)

Rzz(θ3)

Rx(θ4)

|0⟩ Ry(0) Rx(θ2) Rx(θ4)

Uϕ(x) V (θ) having L = 2 layers

• • • •

• • • •

FIGURE 3: Quantum circuit schematic of the classification model used for d = 3 qubits and L = 2 layers.

Each dataset is processed with the above described QNN
employing a number of layers ranging from L = 1 to 20.
According to [53], the QNNs should be initialized at θ = 0
to avoid further trainability issues. However, we do not need
to consider such initialization strategy for the variational
unitary since the previous expedients were sufficient to allow
successful training. Thus, the parameters θj are sampled from
a standard normal distribution. Each QNN is trained using
the stochastic gradient-descent algorithm ADAM for 1000
epochs using an initial (adaptive) learning rate η = 0.1.
The loss function is either BCE or MSE and, for the sake of
simplification, the batch size is equal to the total cardinality
of the training set. These loss functions are commonly used
for classification and regression tasks, which differs from the
loss functions used in the works related to QNTK theory.

In the experimental setup described above, we study, both
epoch-wise and depth-wise, the effect induced by different
initialization parameters on the convergence of the loss func-
tion during training.

B. RESULTS
We evaluate the depthwise convergence characteristics of
the respective f(x;θ) models in terms of the correspond-
ing accuracies of the Quantum Path Kernel and Quantum
NTK under SVM final classification. Of particular interest
is evaluating the closeness of models to the lazy training
regime, indicative of the model being near to linear. Lazy
training, in classical machine learning, typically occurs for
very wide neural networks with the loss decreasing to zero
exponentially rapidly, while network parameters stay close to
their initialization values throughout training. In the current

context, this would correspond to the Quantum Path Kernel
collapsing to the Quantum Neural Tangent Kernel, and we
would anticipate convergent classification performances for
the two approaches.

We therefore evaluate training loss for each of the QNN
models over the respective training epochs with an increasing
number of QNN layers L = 1, ..., 20. This will be used to de-
termine proximity to the lazy training regime (i.e. identifying
if the QNN converges exponentially fast to zero loss). We
additionally plot the norm difference between the parameters
during training compared to their initialization values. These
will be used to determine the extend to which parameters
vary from their initialization, indicative the training richness
of models in the non-lazy training regime.

We are also interested in determining the robustness of
the classifiers to stochastic noise influences during training
and their corresponding resilience to overfitting (or the extent
to which benign overparameterization [45] effects exists),
measured in terms of generalization performance. Therefore,
the above evaluations are repeated for datasets additively
noise-perturbed in an increasing signal-to-noise ratio.

Finally, we are interested in comparing the generalization
performances of our approach to that of the QNTK. For this,
we evaluate test accuracy score for the QPK and QNTK,
against the oracle. Superior performance of the QPK, in
solving the Gaussian XOR Mixture problem, will be taken
to be indicative of superior ability to replicate the layerwise
feature-learning capability of classical multilayer networks.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 4: Behavior of the quantum machine learning models f(x;θ) over the training phase. (4a) illustrates the training
dataset for the parameter selection d = 4, ϵ = 0.1; (4b) shows the evolving loss for each of the 20 evaluated depthwise models
(L = 1, ..., 20) during training; (4c) quantifies the deviation of the parameter vector from its initialization. (4d-4e-4f) show the
corresponding information when d = 4, ϵ = 0.4; (4g-4h-4i) for d = 4, ϵ = 1.0.

1) Depthwise convergence characteristics
Figure 4 indicates the respective convergence behavior of
the evaluated quantum machine learning models with respect
to the increasing number of layers. Column 1 has illustra-
tive samples from the training distribution with row-wise
decrements in the signal-to-noise ratio, column 2 gives the
corresponding loss curves during training, and column 3
indicates the corresponding change in the magnitude of the
parameter vector offset from initialization:

∥θ(n)− θ(0)∥
∥θ(0)∥ (25)

where θ(0) is the value of the parameters at their initializa-
tion, and θ(n) is their value at the n-th epoch.

It is evident that none of the models reach the interpolation
threshold [54] - i.e. the point at which the training data is
fitted perfectly with zero training error. To fit the training

dataset we would need at least 32 parameters (2 non-zero
coordinates per point per 16 points). However, we are not
able to reach the interpolation threshold even in the deepest
configuration with a total of 40 parameters. This behaviour is
expected by the choice of a parametrically-constrained U in
effect acting as a form of regularisation. As in the classical
DNN case, an increasing number of parameters results in a
decrease in the loss (Figure 4b-4e-4h), and in an increase
in the proximity between the parameter vectors and their
initialization (Figure 4c-4f-4i).

We can conclude that none of the QNN models exhibit
evidence of lazy training. In particular, while models hav-
ing a higher number of parameters do indeed converge
more rapidly, parameters are nonetheless varying substan-
tially from their initialization. This behaviour is even more
noticeable in the smaller models, with a norm difference
oscillating substantially prior to the convergence. Such non-
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trivial training is suggestive of the QPK differing largely from
the QNTK in its training characteristics.

2) Test and train accuracy of the Quantum Path Kernel
verses the Quantum NTK

Figure 5 indicates the corresponding test accuracies, measur-
ing how well the respective models generalize to unseen data.
While the QPK and Quantum NTK models both perform sim-
ilarly at low signal-to-noise ratios, it is particularly striking
to observe the outperformance of the QPK over the Quantum
NTK with increasing hierarchical depth at the highest signal-
to-noise setting.

Figure 6 indicates the training accuracy with depth at
the point of convergence. It may be observed that the QPK
exhibits lower loss than the Quantum NTK across the full
signal-to-noise range, with the effect becoming more marked
at higher noise levels (ultimately over-fitting relative to the
noise-free oracle in panel c), consistent with the expectation
that QPK has a lower bias than the Quantum NTK.

In sum, results confirm the anticipated improvement in
performance for the QPK over the QNTK in the Gaussian
XOR mixture setting.

V. CONCLUSION AND FURTHER WORK
We have introduced the Quantum Path Kernel as a mech-
anism for incorporating key complex classical multi-layer
network learning behaviors, in particular hierarchical feature
learning, within quantum neural networks via an appropri-
ately expressive kernelization of the training process. We
evaluate our approach on the Gaussian XOR mixture classi-
fication problem, a straightforward benchmark of multilayer
learning capacity that requires a minimum two-layer solution
in order to approach Bayes optimally. Experimental results
indicate superior generalization performance relative to the
Quantum NTK, an advantage which is especially pronounced
in high-depth, low signal-to-noise settings.

We have shown theoretically that the Quantum Path Kernel
converges to the Quantum NTK only in the lazy training
regime, i.e. when the training loss decreases to zero expo-
nentially fast whilst model parameters stay close to their
initializations across training. Such behaviour is classically
seen in infinite-wide neural networks, whose behaviour is
then close to that of a linear model. Our experiments, by
contrast, indicate that QNNs do not operate in the linear
regime.

We have discussed, though do not evaluate in the cur-
rent paper, the potential for using stochastic, noisy or non-
gradient descent based optimization techniques to artificially
perturb parameter paths within the QPK in order to implicate
more decorrelated feature representations. We, furthermore,
propose in future to extend the QPK approach via weighting
of individual kernel representations in a more heuristic way,
for example via Multiple Kernel Learning. We have also
referred in passing to the interpretation of the QPK as an
ensemble method due to the averaging operation over its

kernel matrices. This will be explored more fully in future
investigations.
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represent the standard deviation over three (otherwise identical) experiments having parametric specifications d = 4, ϵ = 0.1,
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FIGURE 6: Respective training accuracies of the Quantum Path Kernel model, the Quantum NTK and the oracle. Error bars
represent the standard deviation over three (otherwise identical) experiments having specifications d = 4, ϵ = 0.1, (6a);
d = 4, ϵ = 0.4 (6b); d = 4, ϵ = 1.0 (6c).

[14] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent
kernel: Convergence and generalization in neural net-
works,” Advances in neural information processing
systems, vol. 31, 2018.

[15] L. Chizat, E. Oyallon, and F. Bach, “On lazy training
in differentiable programming,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[16] C. Liu, L. Zhu, and M. Belkin, “On the linearity of
large non-linear models: When and why the tangent
kernel is constant,” Advances in Neural Information
Processing Systems, vol. 33, pp. 15 954–15 964, 2020.

[17] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Mon-
tanari, “When do neural networks outperform kernel
methods?” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2021, no. 12, p. 124 009, 2021.

[18] M. Chen, Y. Bai, J. D. Lee, et al., “Towards un-
derstanding hierarchical learning: Benefits of neural

representations,” Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 22 134–22 145, 2020.

[19] N. Shirai, K. Kubo, K. Mitarai, and K. Fujii, “Quan-
tum tangent kernel,” arXiv preprint arXiv:2111.02951,
2021.

[20] P. Domingos, “Every model learned by gradient
descent is approximately a kernel machine,” arXiv
preprint arXiv:2012.00152, 2020.

[21] M. Refinetti, S. Goldt, F. Krzakala, and L. Zde-
borová, “Classifying high-dimensional gaussian mix-
tures: Where kernel methods fail and neural networks
succeed,” in International Conference on Machine
Learning, PMLR, 2021, pp. 8936–8947.

[22] B. Ghorbani, S. Krishnan, and Y. Xiao, “An investi-
gation into neural net optimization via hessian eigen-
value density,” in International Conference on Ma-
chine Learning, PMLR, 2019, pp. 2232–2241.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2023.3287736

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Incudini et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

[23] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov,
and R. Wang, “On exact computation with an infinitely
wide neural net,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[24] Y. Bai, B. Krause, H. Wang, C. Xiong, and R. Socher,
“Taylorized training: Towards better approximation of
neural network training at finite width,” arXiv preprint
arXiv:2002.04010, 2020.

[25] M. Schuld, I. Sinayskiy, and F. Petruccione, “The
quest for a quantum neural network,” Quantum Infor-
mation Processing, vol. 13, no. 11, pp. 2567–2586,
2014.

[26] ——, “Simulating a perceptron on a quantum com-
puter,” Physics Letters A, vol. 379, no. 7, pp. 660–663,
Mar. 2015, ISSN: 0375-9601. DOI: 10.1016/j.physleta.
2014.11.061. [Online]. Available: http://dx.doi.org/
10.1016/j.physleta.2014.11.061.

[27] Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik,
“Quantum neuron: An elementary building block
for machine learning on quantum computers,” arXiv
preprint arXiv:1711.11240, 2017.

[28] W. Hu, “Towards a real quantum neuron,” Natural
Science, vol. 10, no. 3, pp. 99–109, 2018.

[29] K. Gili, M. Sveistrys, and C. Ballance, “Introducing
non-linearity into quantum generative models,” arXiv
preprint arXiv:2205.14506, 2022.

[30] F. Tacchino, C. Macchiavello, D. Gerace, and D. Ba-
joni, “An artificial neuron implemented on an actual
quantum processor,” npj Quantum Information, vol. 5,
no. 1, pp. 1–8, 2019.

[31] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles,
“Trainability of dissipative perceptron-based quantum
neural networks,” Physical Review Letters, vol. 128,
no. 18, p. 180 505, 2022.

[32] N. Guo, K. Mitarai, and K. Fujii, “Nonlinear
transformation of complex amplitudes via quan-
tum singular value transformation,” arXiv preprint
arXiv:2107.10764, 2021.

[33] Z. Holmes, N. Coble, A. T. Sornborger, and Y. Subaşı,
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APPENDIX A THEORETICAL AND IMPLEMENTATIONAL
DETAILS OF THE PATH KERNEL IN THE CLASSICAL
MACHINE LEARNING DOMAIN

The Path Kernel was introduced in [20] as a means of
replicating arbitrary gradient descent-based machine learning
models in the form of kernel machines, under some weak
assumptions. The Path Kernel is consequently of inherent
interest in the theory of classical machine learning in that it
grants a further layer of interpretability to models, including
those, such as the neural networks, that often lacks this [55].
In contrast, kernel machines permit a clear interpretation
of prediction functions in terms of linear combinations of
data in the training set as a consequence of the Representer
Theorem. In particular, [20, Theorem 1] indicates that the
machine learning model h(x;w) : RD × RP → R (with D
the dimensionality of the data and P the number of model
parameters) can be rewritten equivalently as a function f
utilizing the Path Kernel:

h(x; w̄) = f(x, γ̄) =

m∑

i=1

αi(x)κpk(x,xi; γ̄) + α0(x).

(26)

where

κpk : RD × RD × ([0, T ]→ RP )→ R (27)

κpk(x,xi; γ) =

∫ T

0

κntk(x,xi; γ(t)) dt (28)

is the Path Kernel, a parametric kernel function (this parame-
terization has been rendered explicit in current formulation).
In this case, γ̄ : [0, 1]→ RP is the parameter path as detailed
in Section III with a terminal parameter value γ̄(1) = w̄
and for particular values of αi defined in Appendix A-B. The
Neural Tangent Kernel can also be expressed as a parametric
kernel,

κntk : RD × RD × RP → R (29)
κntk(x,xi;w) = ∇wh(x;w) · ∇wh(xi;w). (30)

Equation 26 holds under the proviso that h is differentiable
in w, and trained via Gradient Descent (GD) for the given
training dataset {(xi, y

∗
i )}mi=1 ⊆ RD × R using the convex

differentiable loss function L(w) =
∑M

i=1 ℓ(h(xi,w), y∗i ).
Equation 26 differs from a linear model due to the explicit

dependency of the data x in the weights αi, and it remains
a matter of discussion as whether the path kernel in fact
represents a more generalized model class than that of kernel
machines (although it is clearly equivalent for infinitely small
learning rates [56]). This debate need not concern us for the
present purposes, where the intent is to obtain a class of mod-
els capable of representing the network gradient trajectory in
a manner expressible on current quantum computers.

As the Path Kernel is not widely deployed in practical
machine learning, we detail here some of its properties. In
A-A we prove the Path Kernel is a Mercer Kernel. In A-B we
briefly comment on the proof of [20, Theorem 1]. In A-C we
demonstrate a numerical implementation of the Path Kernel.

A. PATH KERNEL IS A MERCER KERNEL

Given any γ̄, the function κ̄pk(x,x
′) = κpk(x,x

′; γ̄) is a
positive definite or Mercer kernel on RD. A Mercer kernel
satisfies

n∑

i=1

n∑

j=1

cicjκ(xi,xj) ≥ 0 (31)

for all sequence of elements x1, ...,xn ∈ RD and constants
c1, ..., cn ∈ R.

It is straightforward to demonstrate that such a condition is
valid of the Path Kernel. Firstly, κ̄ntk(x,xi) = κntk(x,xi;w)
is a positive definite function for any w in consequence of the
positive definiteness of the Gram matrix of inner products in
the Hilbert space of the kernel. Secondly, since both the pos-
itive combination and the infinitesimal limit of combinations
of positive definite kernels still satisfy the Mercer condition,
then the preceding is immediately valid for the Path Kernel
in both its discrete and continuous formulations.
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B. COMMENT ON THEOREM 1 IN DOMINGO’S WORK
In this section we comment on [20, Theorem 1] in order to
highlight some of its limitations. The dynamics of any pre-
dictor under training via gradient descent may be described
by a first-order non-homogeneous differential equation:

dh(x;w)

dt
= −

P∑

j=1

∂h

∂wj
· ∂L
∂wj

. (32)

where h(x;w) : RD×RP and L is the convex differentiable
loss function. We can describe these predictor dynamics over
training in terms of the Tangent Kernel:

dh(x;w(t))

dt
=

d∑

j=1

∂h(x;w)

∂wj
· dwj

dt
(33)

=

d∑

j=1

∂h(x;w)

∂wj
·
(
−∂L(w(t))

∂wj

)
(34)

=

d∑

j=1

∂h(x;w)

∂wj
·
(
−

m∑

i=1

∂ℓ(y∗i , h(xi;w))
∂wj

)

(35)

=

d∑

j=1

∂h(x;w)

∂wj
·
(
−

m∑

i=1

∂ℓ(y∗i , yi)
∂yi

∂h(xi;w)

∂wj

)

(36)

= −
m∑

i=1

∂ℓ

∂yi

d∑

j=1

∂h(x;w)

∂wj

∂h(xi;w)

∂wj
(37)

= −
m∑

i=1

∂ℓ

∂yi
∇wh(x;w) · ∇wh(xi;w) (38)

= −
m∑

i=1

∂ℓ

∂yi
κntk(x,xi;w) (39)

In the limit ϵ→ 0 we obtain:

h(x) = h(x; γ(1))

= h(x; γ(0))−
∫ 1

0

m∑

i=1

∂ℓ

∂yi
κntk(x,xi; γ(t)) dt. (40)

Such a function cannot be straightforwardly represented as
a linear model. However, by multiplying and dividing by
the Path Kernel itself we obtain the following equation, at
the cost of introducing a dependency of x in the model
parameters:

h(x; γ(1)) = h(x; γ(0))

+

m∑

i=1

(
−
∫ 1

0
∂ℓ
∂yi

κntk(x,xi; γ(t))dt

κpk(x,xi; γ)

)
κpk(x,xi; γ)

= h(x; γ(0)) +

m∑

i=1

αi(x)κpk(x,xi; γ). (41)

Various works have suggested that imposing stronger as-
sumptions on training can remove the dependency of x in the
model parameters. For example, the authors in [56] achieve

this by imposing a requirement that the loss derivative is of
constant sign during training.

C. NUMERICAL CALCULATION OF THE PATH KERNEL
We can calculate the value of the Path Kernel by approximat-
ing the integral with a direct sum

κpk(x,xi, γ) =

∫ 1

0

κntk(x,xi, γ(t)) dt

≈ 1

T

T−1∑

i=0

κntk(x,xi, γ(t)) (42)

where t = i/T .
The implementation details are reported in the following

pseudo-code listings. In Figure 7 we indicate how to cal-
culate the Neural Tangent Kernel of the predictor f once
the parameter value w is fixed. In particular, the gradient
can be calculated with the finite difference method or, if the
predictor is implemented with a Quantum Neural Network,
with the parameter-shift rule.

The procedure for calculating the Path Kernel is shown in
Figure 8 and uses the Neural Tangent Kernel to calculate the
individual contribution of each training epoch and thereafter
calculates the average kernel matrix pointwise.

In Section III-B we discussed the potential significance
of decorrelated features; we here propose a numerical im-
plementation of the Effective Path Kernel. In contrast to the
original Path Kernel, the Effective Path Kernel seeks to avoid
to biasing due to multiple similar kernel contributions. This
is especially important if the training has converged signfi-
ciantly earlier that the last training epoch: any contribution
after convergence has the same Neural Tangent Kernel and
will increase its relative weight as the number of epochs
after convergence increases. Its formulation is given in Fig-
ure 9. Both the Path Kernel and Effective Path Kernel can
be straightforwardly implemented in parallel over multiple
CPUs (or multiple QPUs) for the evaluation of f .

APPENDIX B NUMERICAL EVIDENCE FOR THE
INABILITY OF RANDOM FEATURE KERNEL
TECHNIQUES IN SOLVING THE GAUSSIAN XOR
MIXTURE CLASSIFICATION
In [21] the authors demonstrate that a two-layer-depth neural
network with only a small number of neurons can easily
outperform kernel methods on the Gaussian Mixture classi-
fication problem, under the assumption that the number of
training data points n → ∞ is linearly proportional to the
dimensionality of the data d→∞.

We modify Refinetti’s experiment for the current purposes
to show the same result in a more straightforward way.

We define the two-layer neural network as the function:

fnn(x;W1,W2,W3, b1, b2, b3) =

W3 · relu(W2 · relu(W1 · x+ b1) + b2) + b3 (43)

parameterized by W1 ∈ Rh×d,W2 ∈ Rh×h,W3 ∈
R1×h, b1, b2 ∈ Rh×1, b3 ∈ R, where h is the number of
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procedure CreateNeuralTangentKernel
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
parameter value w ∈ Rp.

Output: real symmetric matrix n× n representing the neural tangent
kernel of f over the given dataset.

▷ Start procedure
M ← zero filled n× p matrix
for i ∈ 0, ..., n− 1 do

M [i]← ∇f(xi, w) ▷ The array has size p.

return MMT ▷ Matrix size: (n× p)(p× n) = (n× n)

FIGURE 7: Pseudo-code for the Neural Tangent Kernel formulation.

procedure CreatePathKernel
Input: predictor function f : Rd×Rp → R, data set {xi ∈ Rd}n−1

i=0 , pa-
rameter path γ ∈ Rp×t obtained during the gradient descent-based training
phase.

Output: real symmetric matrix n× n representing the Path kernel of
f over the given dataset.

▷ Start procedure
M ← zero filled t elements array
for j ∈ 0, ..., t− 1 do

w ← γ[j]
M ←M +CreateNeuralTangentKernel(f, {xi}n−1

i=0 , w)

return 1
tM

FIGURE 8: Pseudo-code for the Path Kernel formulation.

procedure CreateEffectivePathKernel
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
number of training epochs t, parameter path γ ∈ Rp×t obtained during the
gradient descent-based training phase, correlation threshold C ∈ [0, 1].

Output: real symmetric matrix n×n representing the Effective Path kernel
of f over the given dataset.

ℓ← CreateEffectivePathKernelRec(f, {xi}n−1
i=0 , γ, C, 0, t− 1)

n← number of elements in the list ℓ
return 1

n

∑n−1
i=0 ℓi

procedure CreateEffectivePathKernelRec
Input: predictor function f : Rd × Rp → R, data set {xi ∈ Rd}n−1

i=0 ,
parameter path γ ∈ Rp×t obtained during the gradient descent-based training
phase, correlation threshold C ∈ [0, 1], start instant ts ∈ [0, ..., t), end instant
te ∈ [0, ..., t), ts < te.

Output: array of t elements, each one coarsely quantifying the curvature
of the parameter path at each training epoch.

▷ Start procedure
if ts ≥ te then

return [] ▷ Empty list

Ms ← CreateNeuralTangentKernel(f, {xi}n−1
i=0 , γ[ts])

Me ← CreateNeuralTangentKernel(f, {xi}n−1
i=0 , γ[te])

c← correlation between Ms and Me ▷ interpret the matrix as vectors to
calculate the correlation, or change evalutation metric, e.g. Frobenius norm

if |c| > C then
return [Ms,Me] ▷ Highly correlated representation

else if ts + 1 < te then
tm ← int(ts/2 + te/2)
L← CreateEffectivePathKernelRec(f, {xi}n−1

i=0 , γ, C, ts, tm)
R← CreateEffectivePathKernelRec(f, {xi}n−1

i=0 , γ, C, tm + 1, te)
return [Ms,Me] ∪ L ∪R ▷ Concatenate lists

FIGURE 9: Pseudo-code for the Effective Path Kernel formulation.
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hidden neurons per layer (the number of hidden neurons is
here fixed to h = ⌈

√
d⌉). In our setting, we randomly initial-

ize the weights W1,W2,W3 by sampling the matrix element
i.i.d. from a Gaussian of zero mean and unitary variance.
The model is then trained using the gradient-descent-based
algorithm ADAM for a maximum 1000 epochs with learning
rate 0.001 (the model is implemented in Python3 library
scikit-learn, with the default configuration).

We define a random feature kernel machine as:

κrf(x,x
′) = ⟨ϕ(x), ϕ(x′)⟩, ϕ(x) = relu(W · x) (44)

with the activation weights parameterized by W ∈
Rf×d, wi,j ∼ N (0, 1), where f has been chosen such that
the number of parameters of the random feature kernel is
greater that or equal to the number of parameters in the neural
network, thus:

f =
(dh+ hh+ h) + (h+ h+ 1)

d
. (45)

For h = ⌈
√
d⌉ we can tightly upper bound f with f <

⌈
√
d⌉ + 5. This kernel function is then fed to a SVM for

classification (as implemented in scikit-learn).
We randomly generate the dataset Dd,d′,ϵ̄,n as detailed in

Section IV-A. The experiment described below consists in
comparing the performance of the neural network classifier
with variations of the random feature kernel on the dataset
Dd,3,ϵ,16d for data point dimensionality d = 4, 8, 12, 16, 20
and noise ϵ = 0, 0.1, 0.2, ..., 1.9, 2.0. We keep the number
of non-zero features d′ = 3, meaning we are effectively
classifying 3D Gaussian XOR mixtures, with the number of
training vectors of the dataset fixed to be 16d. The dataset is
then randomly split 75% in the training dataset and 25% in
the test set. For each dataset, we compare the performances
of the oracle with the performances of the best of 10 ran-
domly initialized neural networks and the best of 10 random
feature kernels. For each dataset specification, we repeat this
procedure 10 times.

In Figure 10 we set out the results of the above described
experiments. It may be observed that Neural Networks out-
perform the kernel approach in each case, with the differen-
tial in accuracy increasing with the number of zero-valued
features. Refinetti et al. [21] suggest that this difference in
performance is accounted for by the fact that random feature
kernels in high dimension behave as linear transformations
[57].

We have here suggested a complementary interpretation
of the results of such experiments. We have shown that the
difference of performance between the two models is not
uniquely determined by the failure of kernel methods per
se. In fact, it is determined also by the feature learning
capabilities of neural networks; inspecting the evolution of
the W1 parameters during the training of a neural network
reveals that elements in W1 related to the zero-features do
indeed go to zero (Figure 11). This results in having all of
the hidden neurons (whose number is proportional to

√
d

and thus increasing with the number of features) working

adaptively to classify the three discriminatively informative
components or features, thereby improving overall perfor-
mance in contrast to the random feature kernel approach, for
which adding feature (and parameters) drastically decreases
performance (which is to say the path model outperforms
the random feature kernel in this problem by being able to
discharge junk features candidates, thus performing feature
learning).

APPENDIX C DATA, CODE, AND SIMULATION DETAILS
Both the code to reproduce the indicated experiments and
also the relevant data are freely available at https://github.
com/incud/QuantumPathKernel. The code is released open-
source.

The indicated experiments have been simulated on two
devices:

• one Dell Latitude 5510 having: Intel Core i7-10610U
CPU with 4 physical cores, 16GB RAM, without
CUDA-enabled GPUs;

• one cluster node having: Intel Xeon Silver 4216 CPU
with 64 physical cores, 180GB RAM, with 4 x CUDA-
enabled GPUs NVidia Tesla V100S 32GB VRAM.

The software runs on Ubuntu 20.04 LTS and uses Python
v3.9.11, PiP packet-manager v22.0.4 along with the other
libraries listed in requirements.txt file in the root of
the attached repository. Installation and simulation instruc-
tions are documented in the README.md file in the root of
the repository. Our code is based upon freely available, open-
source frameworks only.

The framework used to define and simulate the quantum
circuit is PennyLane [58]. The simulations have been accel-
erated using the JAX library [59]. (JAX might require instal-
lation from source code if used on operating systems different
from Ubuntu). Alternatively, the source code can be set such
that PennyLane does not require this library. (However, in
this case, the circuit simulation might be substantially slower
and would not benefit the full potential of multicore CPUs
and GPUs). These experiments have not been run on quantum
hardware.

The input and output of each experiment are contained in
different subfolders within the root directory. They contain
the specifications needed to generate the training and testing
datasets, the datasets themselves, the trace of the parameters
during the training for any model, and the Quantum NTK
and Quantum Path Kernel Gram matrices for each model
(which may be used to create a pre-trained model), and also
the resulting plots. The README.md explains in detail the
commands needed to reproduce our results.

The simulations for all experiments have taken approxi-
mately 600 hours across both machines used.
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(a) (b) (c)

(d) (e) (f)

FIGURE 10: Comparison of the performance of Random Feature Kernel and (2 layer) Neural Networks over the 3D Gaussian
XOR Mixture problem with an increasing number of features set to zero. (10a, 10b, 10c, 10d, 10e, 10f) have respectively 4, 8,
12, 16, 20, 24 features per point, the first three being the only non-zero ones.

(a) (b) (c)

FIGURE 11: Values of theW1 matrix for individual neural networks of the form of Equation 43 during training on the Gaussian
XOR Mixture datasets D24,3,0.8,384: (11a, 11b, 11c) represent the coefficients at initialization, after 250 training epochs and
after 750 training epochs of training with ADAM at a learning rate 0.001.
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