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The photoluminescence (PL) spectra of monolayer (1L) semiconductors feature peaks ascribed to
different charge-carrier complexes. We perform diffusion quantum Monte Carlo simulations of the
binding energies of these complexes and examine their response to electric and magnetic fields. We
focus on quintons (charged biexcitons), since they are the largest free charge-carrier complexes in
transition-metal dichalcogenides (TMDs). We examine the accuracy of the Rytova-Keldysh inter-
action potential between charges by comparing the binding energies of charge-carrier complexes in
1L-TMDs with results obtained using ab initio interaction potentials. Magnetic fields< 8T change
the binding energies (BEs) by∼ 0.2 meVT−1, in agreement with experiments, with the BE varia-
tions of different complexes being very similar. Our results will help identify charge complexes in
the PL spectra of 1L-semiconductors.

I. INTRODUCTION

The optical properties of layered semiconductors, such
as transition-metal dichalcogenides (TMDs), change as
the sample thickness is reduced from bulk (B) down to
a single layer (1L)[1]. Indirect band gaps in B-TMDs
are often observed to transition to direct band gaps in
1L[2], accompanied by the emergence of photolumines-
cence (PL)[3]. Excitonic effects are enhanced in 1Ls rela-
tive to B-TMDs, due to reduction in electrostatic screen-
ing of the interactions between charge carriers[4]. In
many 1L-semiconductors, including TMDs with honey-
comb lattices, spin-orbit coupling splits the conduction
(CB) and valence (VB) bands at their extrema at the K
and K′ points of the Brillouin zone[5]. This results in op-
tically controllable spin and valley degrees of freedom[6–
8]. Valley polarization is retained for> 1ns[6], ideal
for quantum device applications, such as quantum light-
emitting diodes[9–12]. Localized single-photon emitters
that can be controlled by electroluminescence[9, 12] are
also promising for quantum photonics.
The binding energy (BE) of an exciton may

be calculated from first principles by solving the
Bethe-Salpeter equation (BSE)[13] on top of many-
body perturbation theory calculations within the GW
approximation[14–16], or by quantum Monte Carlo
(QMC) methods[17]. However, studying charge-carrier
complexes, such as quintons, using these approaches is
computationally expensive[18]. Instead, the effective-
mass approximation[19] can be used, whereby the
ground-state energy is modelled by considering an elec-
tron (e) and a hole (h) interacting within a two-band
model[20], and their effective masses are defined by ex-
periment or by first principles band structure calcula-
tions. In effective-mass models of charge-carrier com-
plexes in layered semiconductor materials (LSMs), it is
crucial to take into account the two-dimensional (2d) na-

ture of the electrostatic screening, as this modifies the
form of the interaction between carriers[21, 22]. The sit-
uation for LSMs differs from III-V semiconductor het-
erostructures with a thickness> 1µm[23], in which the
Coulomb 1/r interaction between charge carriers scales
down with the permittivity of the host material[23]. In
LSMs, the so-called Rytova-Keldysh interaction (RKI)
potential[21, 22] provides a more accurate interaction be-
tween charge carriers. Refs.24–26 studied the formation
of multicarrier bound states in 1L-semiconductors using
QMC methods, such as path integral Monte Carlo[27]
and diffusion Monte Carlo (DMC)[18] to solve the
Schrödinger equation for quasiparticles interacting via
the RKI potential. DMC is particularly powerful in stud-
ies of complexes with distinguishable quasiparticles[28],
as it is numerically exact in this case[29]. Ref.26 used
DMC to predict the stability of negative quintons in
TMDs with distinguishable charge carriers (in which
all three e species have different spin and/or valley de-
grees of freedom). These predictions were confirmed in
experimental studies, which provided evidence of quin-
tons in hBN-encapsulated 1L-WSe2[30–33], 1L-MoSe2 on
sapphire[34], and 1L-WSe2 on Si/SiO2[35].

In Mo and W-TMDs, the VB spin-splitting is suffi-
ciently large that the lower spin-split bands are always oc-
cupied at room temperature (RT)[5], while the CB spin-
splitting is comparable with RT[5]. As a result, there are
effectively 4 e and 2 h species available to form charge-
carrier complexes at and below RT[26].

One can distinguish dark[36], bright[36], and
semidark[37] charge-carrier complexes in TMDs. In
dark complexes (Fig.1a), radiative e-h recombination is
not allowed due to spin and/or momentum mismatch be-
tween the constituent e/h[38], while in bright complexes
(Fig.1b), direct radiative e-h recombination is allowed
by conservation of linear and angular momentum[39]. In
semi-dark complexes (Fig.1c), radiative recombination
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FIG. 1. (a) Upper spin-split VB and spin-split CB for 1L-
MoSe2 and 1L-WSe2. The spin-split VB is> 150meV[5], so
we only show the upper VB. (b,c) Classification of quinton
recombination processes in 1L-Mo and 1L-W-TMDs. Eδ =
EXX− − EX− is the difference between the total energies
EXX− and EX− of XX− and X−. ~ω indicates the photon
energies at which XX− peaks in PL spectra are expected.

(XX−)
k1σ1k2σ2k3σ3

k4σ4k5σ5
denotes a quinton consisting of CB e in

valleys k1, k2, and k3 with spins σ1, σ2, σ3 and VB h in val-
leys k4 and k5, with spins σ4, σ5. E.g., the quintons in (a)

are both (XX−)
K↑K↓K′↓

K↑K′↓
. Unlike Figs.1,2 of Ref.26, we only

show complexes with distinguishable charge carriers, because
they are stable and should be experimentally observable.

can take place following an intervalley scattering event
assisted by a phonon that maintains spin, but swaps
an e, e.g., from valley K′ to K[37], accompanied by an
energy shift due to the change in occupation of the
upper and lower spin-split bands[37].

Due to the nature of the CB spin-splitting of Mo-
TMDs[5] (Fig.1a), bright states are energetically lower
than dark[40]. Hence, at low temperature T < 100K, e
in exciton (X), negative trion (X−), and biexciton (XX)
complexes occupy the lower spin-split bands. X com-
plexes therefore travel only a small distance, e.g.∼ 1µm
in 1L-Mo-TMDs[41, 42], before radiative recombination,
which reduces the chance to bind with another charge-
carrier complex[43]. Furthermore, the XX PL peak may
be difficult to distinguish from that of X−, due to the
small energy difference∼ 10meV between their BEs[41].
Ref.34 detected XX and quintons (XX−) in 1L-MoSe2 by
2d coherent spectroscopy (2dCS)[44]. This method can
focus on a delay time∼10ps, over which XX or XX− are
likely to form[45, 46]. However in 1L-W-TMDs, the most

energetically stable excitonic states are dark[40], so that
X have longer lifetimes (∼1ps)[40] than in 1L-Mo-TMDs
(∼0.5ps)[40], favouring larger than X charge-carrier com-
plexes. We therefore focus on 1L-W-TMDs when com-
paring theory with experiments.

Fig.1 classifies XX− in 1L-Mo- and W-TMDs with re-
spect to recombination energy and T -dependence of the
emitted photons’ intensity. There are two XX− types:
(1) those with 1e in the upper spin-split CB and 2e in
the lower spin-split CB, and (2) those with 1e in the up-
per spin-split CB and 1e in the lower spin-split CB. The
CB spin splittings in 1L-Mo- andW-TMDs are∼ 3meV[5]
and∼ 30meV[5], respectively. These are much less than
the XX− BEs∼ 50meV[30, 34, 47], as reported in Ta-
ble I. The fact that the XX− BE is larger than the spin
splitting implies XX− complexes are thermodynamically
stable at T close to 0K, even taking into account the
energy required to excite 1e to the upper spin-split CB.
Assuming the CB spin-orbit splitting ∆′ of 1L-TMDs to
be≪XX− BE, Eb

XX− , each XX− can be treated as a two-

state system[48]. For kBT ≪ ∆′ ≪ Eb
XX− , with kB the

Boltzmann’s constant, the fraction of XX− with 1e and
2e in the upper spin-split CB, hence the PL intensity of
the corresponding XX−, is[49]:

I(T ) ∼
{

const. for 1 e in upper spin band

e−∆′/(kBT ) for 2 e in upper spin band
(1)

Here, we use DMC within the effective-mass approxi-
mation to calculate XX− energies in 1L-semiconductors.
XX− are the largest free charge-carrier complexes in
TMDs[26]. We provide an interpolation formula for XX−

BEs for all 1L-semiconductors as a function of e and
h effective masses, permittivity of the surrounding me-
dia, and in-plane susceptibility of the 1L-semiconductor.
We also use DMC to calculate the energies of charge-
carrier complexes in the presence of out-of-plane mag-
netic and in-plane electric fields, to identify whether
the behavior in external fields can be used to investi-
gate PL peaks. We find that applying an external mag-
netic field helps identifying charge-carrier complexes in
1L-semiconductors which have different e and h effec-
tive masses, while electric fields can be used to identify
charge-carrier complexes in all 1L-semiconductors. We
explore the accuracy of the RKI potential by comparing
BEs with results obtained using ab initio random-phase
approximation (RPA) interaction potentials[50]. We find
that, within the effective-mass approximation, RKI can
describe quasiparticles on length scales larger than the
lattice constant. Therefore our results can be used to
determine the PL spectra of excitonic charge complexes.
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TABLE I. Eb
XX− of XX− calculated by DMC and by Eq.7, compared with experiments from Refs.30, 34, 35, and 47. The e and

h effective masses me and mh in terms of the free e mass m0 are taken from many-body GW calculations[14, 51]. We assume
the materials suspended in vacuum, or encapsulated in hBN, or placed on top of a substrate such as SiO2[35] and sapphire[34].
Wherever ǫ 6= ǫ0, the vacuum r∗ is used

BE of XX− (Eb
XX−) (meV)

TMD me

m0

mh

m0
ǫ Vacuum r∗ (Å)

DMC Eq. (8) Experiment
1L-MoS2 (vac.) 0.35 0.428 [52] ǫ0 38.62 [52] 58.6(6) 59.33
1L-MoSe2 (vac.) 0.38 0.44 [53] ǫ0 39.79 [54] 57.0(4) 58.13

0.38 0.44 [53] ǫ0 52.2 a 46.1
1L-MoSe2 (sapph. subs.)

0.38 0.44 [53] 4.95ǫ0 39.79 [54] 29.3
∼ 40 [34]

1L-MoTe2 (vac.) 0.65 0.64 [51] ǫ0 73.61 [55] 33.8(3) 35.61
1L-WS2 (vac.) 0.27 0.32 [53] ǫ0 37.89 [56] 57.4(3) 57.60

0.27 0.32 [53] ǫ0 45.1 b 49.7
1L-WS2 (hBN)

0.27 0.32 [53] 4ǫ0 37.89 [56] 31.4
52.4 [47]

1L-WSe2 (vac.) 0.29 0.34 [53] ǫ0 45.11 [56] 52.0(7) 50.23
0.29 0.34 [53] ǫ0 44.33 c 50.97

1L-WSe2 (SiO2 subs.)
0.29 0.34 [53] 2.45ǫ0 45.11 [56] 37.6

51 [35]

0.29 0.34 [53] ǫ0 48d 47.7
1L-WSe2 (hBN)

0.29 0.34 [53] 4ǫ0 45.11 [56] 28
49 [30], 50.7 [47]

1L-WTe2 (vac.) 0.325 0.460 [5] ǫ0 49.56 [54, 57] 47.5(3) 48.56

a The experimental XX and X− BEs are∼ 18meV[34] and∼ 27meV[34], respectively. With r∗ = 52.2 Å and ǫ = ǫ0, Eqs.48,49 of Ref.26
give XX and X− BEs∼ 17.9, 27.6meV, respectively.

b The experimental XX and X− BEs are∼ 19.2meV[47] and∼ 30.2meV[47], respectively. With r∗ = 45.1Å and ǫ = ǫ0, Eqs.48,49 of
Ref.26 give XX and X− BEs∼19.9, 29.2meV, respectively.

c The experimental X− BE is∼ 30meV[35]. With r∗ = 44.33Å and ǫ = ǫ0, Eq.49 of Ref.26 gives BE∼ 30meV.
d The experimental XX BEs are∼ 18.2meV[30] or∼ 20.1meV[47], and those of X− are∼ 27.1meV[30] or∼ 29.7meV[47]. With r∗ = 48Å
and ǫ = ǫ0, Eqs.48,49 of Ref.26 give XX and X− BEs∼18.9, 28.1meV, respectively.

II. RESULTS AND DISCUSSION

A. Units

In the following, we will use Hartree excitonic units
(e.u.), in which the e-h reduced mass µ, 4π times the
absolute permittivity ǫ, the Dirac constant ~, and the
charge e are all equal to 1, i.e., µ = 4πǫ = ~ = e = 1.
This helps to scale down the BEs with respect to r∗ and
effective masses, as explained in Methods. The screening
length is r∗ ≡ κ/(2ǫ), with κ the in-plane susceptibility,
as discussed in Methods. The e.u. of length is the exci-
ton Bohr radius a∗0 = 4πǫ~2/(µe2)[58], that of magnetic

flux density is B∗ = µ2e3/[(4πǫ)2~3], that of electric field

is F ∗ = µ2e5/[(4πǫ)
3
~
4], and that of energy is the exci-

ton Hartree 2R∗

y, with R
∗

y = µe4/[2(4πǫ)
2
~
2] the exciton

Rydberg constant[58].

For the logarithmic approximation to the RKI we will
use a different set of units, as explained in Ref.26. Since
in the logarithmic regime r ≪ r∗, where r is the separa-
tion between charge carriers, the behavior of the energy
changes when compared with the intermediate regime
r ≫ r∗. In the logarithmic e.u., the e-h reduced mass
µ, 4πǫr∗, ~, and the electronic charge are all equal to 1,
i.e., µ = 4πǫr∗ = ~ = e = 1. We define the logarithmic
e.u. of length to be

√
2r0, where r0 =

√

4πǫr∗~2/(2e2µ),
the unit of energy E0 = e2/(4πǫr∗), the unit of mag-

netic flux density B0 =
√
µE0/

(√
2er0

)

= eµ/(4πǫr∗~),

and the unit of electric field F0 = E0/
(√

2r0e
)

=
√

e4µ/[(4πǫr∗)
3
~2].

To convert the Bohr radius, flux density, electric field,
and energy from e.u. to SI units, each value needs to be
multiplied by a∗0, B

∗, F ∗, and 2R∗

y, respectively. To con-
vert from logarithmic e.u. to SI units, each value needs
to be multiplied by

√
2r0, B0, F0, and E0, respectively.

Table II summarizes all acronyms used in this paper.

B. Binding energies

We define the X, X−, and XX BEs as:

Eb
X = Ee + Eh − EX (2)

Eb
X− = Ee + EX − EX− (3)

Eb
XX = 2EX − EXX (4)

where the complexes are defined in Table II. In the ab-
sence of external fields, Ee = Eh = 0.
We define the de-excitonization energy of XX− as:

EDE
XX− = EX + EX− − EXX− , (5)

and the electron affinity of XX as:

EEA
XX = EXX + Ee − EXX−

= Eb
X− − Eb

XX + EDE
XX− . (6)
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TABLE II. List of acronyms

Symbol Definition

General acronyms
2d two-dimensional
TMD Transition metal dichalcogenide
1L Monolayer
ML Multilayer
LSMs Layered semiconductor materials
RT Room temperature
BE Binding energy
VB Valence band
CB Conduction band
PL Photoluminescence
e.u. Hartree excitonic units
SI International system
µ Reduced mass
me Electron effective mass
mh Hole effective mass
m0 Free electron mass
CoM Center of mass
ǫ Absolute permittivity
~ Dirac constant
r∗ Screening length
B Magnetic flux density
F Electric field
R∗

y Exciton Rydberg constant
a∗
0 exciton Bohr radius

Charge complexes
e, h Single electron, single hole
X Exciton
X− Negative trion (negatively charged exciton)
X+ Positive trion (positively charged exciton)
XX Biexciton (bound states of 2e and 2h)
XX− Quinton (bound states of 3e and 2h)
D−XX Donor-bound double-negative biexciton
D0X− Donor-bound double-negative exciton

Total energies
Ee Ground-state total energy of electron
Eh Ground-state total energy of hole
EX Ground-state total energy of exciton
EX− Ground-state total energy of negative trion
EXX Ground-state total energy of biexciton
EXX− Ground-state total energy of quinton

Binding energies

Eb
X Binding energy of exciton

Eb
X− Binding energy of negative trion

Eb
XX Binding energy of biexciton

Eb
XX− Binding energy of quinton

EDE
XX− Deexcitonization energy of quinton

EEA
XX Electron affinity of biexciton

Methods
QMC Quantum Monte Carlo
DMC Diffusion Monte Carlo
VMC Variational Monte Carlo
BSE Bethe-Salpeter equation
RKI Rytova-Keldysh interaction
RPA Random-phase approximation
RPAI RPA interaction
FEM Finite-element method
2dCS 2d coherent spectroscopy
CW Continuous wave
PVD Physical vapor deposition

Since the most stable dissociated complexes have the low-
est ground-state energies, the XX− BE is the minimum
of EDE

XX− and EEA
XX for a given r∗ and effective mass:

Eb
XX− = min

{

EEA
XX, E

DE
XX−

}

. (7)

By comparing Eq.7 with 5,6 for 1L-TMDs, the energy
difference between bright X and XX− PL peaks is EDE

XX− .

We calculate EDE
XX− of XX− complexes in

all 1L-semiconductors with all the possible val-
ues for r∗/a

∗

0 = {0, 0.5, 1, 2, 4, 6, 8,∞} and
σ = {0, 0.1, 0.2, . . . , 1, 1.5, 4, 9,∞}, where σ = me/mh is
the mass ratio. We fit:

EDE
XX−

R∗

y(1− y)
=

4
∑

i=0

5−i
∑

j=0

aijx
iyj + b1

√
x+ b2

√
1− x

1 +
3
∑

k=1

ckyk + y2
(

d1
√
x+ d2

√
1− x

)

(8)
to our DMC EDE

XX− , where {aij}, {bi}, {ci}, and {di}
are fitting parameters, x = σ/(σ + 1) = me/ (me +mh)
is a rescaled mass ratio and y = r∗/(r∗ + a∗0) is a
rescaled in-plane susceptibility parameter. The fitting
function goes as the square root of the mass at ex-
treme mass ratios (σ = 0 and σ = ∞), as required
by the Born-Oppenheimer approximation[58]. We fit
EDE

XX−/[R∗

y(1 − y)] so that the asymptotic behavior at
r∗ → ∞ obtained using the logarithmic interaction can
be included in the fit. The error in the fitted EDE

XX−

is< 5% at each data point. The statistical error bars
on the DMC EDE

XX− data points are much smaller than
the error in the fit. We therefore use an unweighted
least-squares fit[59]. We provide a program [60] that
can be used to evaluate EDE

XX− and XX− BE for any 1L-
semiconductor, for which effective masses, r∗, and dielec-
tric constant of the environment are the inputs.
Using the BE fits in Eqs.48,49 of Ref.26 together with

Eqs.6,7,8, we calculate the XX− BEs in Fig.2. Above the
yellow line in Fig.2c, the XX− BE =EDE

XX− (all 1L-TMDs

fall in this region). Below the yellow line, the XX− BE
is equal to the XX electron affinity.
Table I lists the XX− BEs from DMC and the fit

of Eq.8 for 1L-WS2, 1L-WSe2, 1L-WTe2, 1L-MoS2, 1L-
MoSe2, 1L-MoTe2.
To measure X−, XX, XX− BEs, in Ref.30 we used con-

tinuous wave (CW) PL at 4K for 1L-WSe2 encapsulated
between 2 10nm (bottom) and 3nm (top) ML-hBN on
Si/SiO2. Refs.30, 35, and 47 used different experimental
conditions for 1L-WSe2, but they all produced similar re-
sults, Table I, across various techniques and substrates.
The size of a charge-carrier complex in a 1L-TMD can

be defined by r0. This is∼ 8Å in TMDs listed in Table
I, because their e and h masses and screening lengths
are around the same order. Hence, we suggest that en-
capsulation in> 1nm ML-hBN can be described by the
permittivity ǫ = 4ǫ0[61–64] of bulk hBN.
For ML-hBN-encapsulated TMDs we test 2 approaches

to compare our results with experiments.
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FIG. 2. (a) DMC BEs of XX− as a function of r∗/(r∗ + a∗
0).

(b) DMC BEs of XX− as a function of σ/(σ+1). (c) XX− BEs
as a function of rescaled susceptibility and mass ratio. Above
the yellow line EDE

XX− < XX electron affinity, so that X and
X− are the most energetically competitive. Below the yellow
line the situation is reversed, so that XX and free e are the
most competitive. The white stars show the mass ratios and
in-plane susceptibility of 1L-MoS2 at (0.45,0.93), 1L-MoSe2 at
(0.46, 0.94), 1L-MoTe2 at (0.50,0.98), 1L-WS2 at (0.46,0.91),
1L-WSe2 at (0.46,0.93), 1L-WTe2 at (0.41,0.95), where the
first and second numbers in brackets are σ/(σ+1) and r∗/(r∗+
a∗
0), respectively. XX− BEs are between 0.00736(5)R∗

y and
0.0288(1)R∗

y, with the numbers in brackets the BE error bars.

1) We fix ǫ = ǫ0 and determine r∗ by fitting Eqs.48,49
of Ref.26 to the experimental X−, XX BEs in Refs.30, 34,
35, and 47. This is reasonable because, at distances larger
than the layer-layer separation, the Keldysh interaction
of Eq.15 for a ML is of the same form as for a 1L[65], but
with r∗ being the sum of r∗ for the different layers[65].

For r ≪ r∗, only ǫr∗ appears in the logarithmic approxi-
mation to the Keldysh interaction in Eq.16, apart from a
constant contribution to the total energy, which cancels
out of EDE

XX− . Hence, it is preferable to fix ǫ, and treat r∗
as the independent parameter. The XX− BEs calculated
with this approach for 1L-WSe2 and 1L-WS2 encapsu-
lated in ML-hBN agree with the experiments in Refs.30
and 47, differing by at most∼ 2meV, as for Table I.
2) We use ab initio vacuum r∗ for 1L-TMDs. To de-

scribe hBN encapsulation we use ǫ = 4ǫ0, consistent
with Refs.61–64. This gives BEs∼5-18meV smaller than
Refs.30 and 47. This difference could either due to the
phenomenological parameters (r∗ and ǫ), obtained by ab

initio methods and used in the Mott-Wannier-Keldysh
model of Eq.14, or be a result of neglecting intervalley
scattering[66] and contact (exchange) interactions.
The substrate effect on the BE of a charge-carrier com-

plex can be described by:

ǫ = (ǫ0 + ǫsubstrate)/2, (9)

where ǫsubstrate is the bulk permittivity of the substrate.
In Ref.35, 1L-WSe2 was grown on SiO2 by physical va-
por deposition (PVD) and the X− and XX− BEs of
1L-WSe2 at RT were measured as∼30 and 51meV, re-
spectively, by CW PL. Using the permittivity of SiO2,
ǫsubstrate ∼ 3.9ǫ0[67] in Eqs.9, 8, and Eq.49 of Ref.26,
we calculate the X− and XX− BEs to be∼19 and
38meV, respectively,∼10-13meV less than the experi-
ments in Ref.35 done at RT, while our calculations cor-
respond to T=0K. Approximating the sapphire permit-
tivity as isotropic with ǫ = 8.9ǫ0[68] gives X−, XX,
XX− BEs in 1L-MoSe2 to be∼13.6, 13.7, 30meV, re-
spectively. In Ref.34 exfoliated 1L-MoSe2 was trans-
ferred to a sapphire substrate and 2dCS at 13K was
used to measure X−, XX, and XX− BEs∼27,18, 40meV,
respectively[34]. Substrate-induced roughness can also
cause inhomogeneity in the electronic structure and extra
carrier scattering[69]. This affects PL, leading to inho-
mogeneous broadening[70, 71], which makes it difficult to
identify charge-carrier complexes[34]. In Ref.34, PL spec-
tra were not recorded as a function of excitation power.
However, power-dependent measurements help assign the
PL peaks to X−, XX, XX−, because they show, respec-
tively, sublinear, quadratic, and superlinear dependence
with excitation power.
Due to the complexity in defining r∗ and ǫ for 1L-

TMDs encapsulated in hBN or placed on a substrate, we
use the first approach, where we fix ǫ = ǫ0 and determine
r∗ by fitting theoretical X− and XX BEs to available
experiments, so to define the XX− BEs.

C. Other charge-carrier complexes

We investigate doubly charged complexes, including
XX2− (4e and 2h) and D0hh (one positive donor ion,
1e, 2h), in which all charge carriers are distinguishable.
Optimizing wave functions with pairwise and three-body
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TABLE IV. Theoretical Eb
D−XX

for 1L-TMDs in vacuum, with
ab initio masses and r∗ from Table I

TMD Eb
D−XX

(meV)
1L-MoS2 (vac.) 58.3(5)
1L-MoSe2 (vac.) 78.6(3)
1L-WS2 (vac.) 80.4(5)
1L-WSe2 (vac.) 70.5(7)

correlations by variational Monte Carlo (VMC) energy
minimization[72] does not result in bound-state wave
functions. If we constrain the wave function to be bound,
and then perform DMC, the resulting energy confirms
that complexes are unbound. Thus, doubly charged com-
plexes are unstable for all relevant material parameters.
In Ref.26 we considered what is the largest stable

charge-carrier complex that can occur in 1L-TMDs. We
showed that XX with two indistinguishable e is unstable
in 1L-TMDs, because of the resulting antisymmetry of
the spatial wave function. We concluded that, in bound
complexes featuring only singly charged dopant ions and
charge carriers, all charge carriers must be distinguish-
able. Our results show that a charge-carrier complex can
feature at most one dopant ion. Because of the band
structure (see Fig.1a), 1L-TMDs can have 4e species and
2h species. This suggests that the largest stable cluster
will have a positive donor ion, 4 distinguishable e, and 2
distinguishable h. We get bound-state wave functions de-
scribing the donor-bound double-negative XX (D−XX).
These seven-body complexes are predicted to be stable in
1L-WS2, 1L-WSe2, 1L-MoS2, 1L-MoSe2 in vacuum and
air. The DMC-calculated BEs with respect to the most
energetically favorable products [donor-bound negative
X (D0X−)+free X] are in Table IV. Because the domi-
nant decay products include an X, the BE gives the PL
peak position of the D−XX complex relative to the X
line, possible in samples containing donor defects.

D. Accuracy of the Rytova-Keldysh interaction

RKI arises from the approximation that the in-plane
susceptibility of a material is a constant[21]. Here, we
investigate the RKI accuracy by using an alternative ap-
proach based on ab initio calculations for 1L-MoS2. Re-
alistic dielectric functions exhibit spatial dependencies
which differ from the Coulomb interaction at short range
(r ≪ r∗). At long range (r ≫ r∗), in-plane screening
becomes irrelevant, and all physical dielectric functions
behave as the Coulomb interaction, as explained in Meth-
ods. Given that the binding of excitonic complexes oc-
curs on length scales larger than the lattice spacings (Ta-
ble I), where screening effects are most prominent (Fig.3),
an investigation into their effects on charge-carrier bind-
ing is warranted. Ref.50 parameterized a dielectric per-
mittivity ǫ(q) for 1L-MoS2 via RPA applied to Kohn-
Sham orbitals from density functional theory calculations
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FIG. 3. Unscreened Coulomb interaction potential:
vCoul(r) = 1/r; RKI: vK(r) = V (r/r∗)/r∗, with r∗ of 1L-MoS2

in vacuum from Table I; RPAI: vRPA(r). a1L-MoS2
= 3.15Å[5]
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FIG. 4. BE of a donor atom in 1L-MoS2 as a function of donor
impurity charge Z. VMC and DMC results are compared with
the numerical data of Ref.50.

to study charged defects. We refer to the real-space inter-
action formed from ǫ(q) as the RPA interaction (RPAI),
and compare it to RKI in Fig.3.

We use cusp conditions[18] to prevent the wave func-
tion of charge carriers to diverge around particle coales-
cence points[26]. We use the same trial-wave-function
form as our calculations with RKI, see Methods for de-
tails. As a test, Fig.4 verifies we reproduce the the-
oretical donor-atom BEs of Ref.50, for the case of an
adatom-bound e above a 1L-MoS2 surface. Our data
have small∼ 10−4 − 10−3meV error bars, and differ from
Ref.50 by a few meV, for typical BEs∼few hundreds meV.
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TABLE V. BEs of charge-carrier complexes in 1L-MoS2 cal-
culated using different interaction potentials. R-RPA is the
rounded RPAI, with rc in brackets. RKI values from Ref.26.

Interaction potential
BE (meV)

X X− XX
Bare RPA 765.45(2) 77.7(7) 184.5(7)
R-RPA (2× aMoS2

) 454.5(1) 30.0(3) 16.0(4)
R-RPA (aMoS2

) 483.8(4) 30.7(4) 19.4(8)
R-RPA (0.5× aMoS2

) 492.47(3) 30.9(2) 20.4(4)
RKI 546.5 35.0 23.5
Experiment ∼ 500 [73, 74]
GW -BSE 40.0 [75]

Fig.3 indicates that at distances> a1L-MoS2
, RPAI fol-

lows the same form as RKI (and, ultimately, Coulomb)
interactions. However, at distances∼ a1L-MoS2

, RKI
no longer overlaps RPAI, hence cannot describe the in-
teraction between quasiparticles. Fig.3 shows that for
r ≪ 0.5a1L-MoS2

, RPAI reduces to an unscreened 1/r
potential, while the RKI behavior is that of a logarith-
mic divergence[22]. However, within the effective-mass
approximation, we can only describe quasiparticles on
length scales> a1L-MoS2

, as shown in Table I and Fig.3,
whose associated Bloch wave packets are localized in mo-
mentum space, with well-defined effective mass.

The RPAI BEs of charge-carrier complexes are in Table
V. Removing the bare Coulomb interaction at distances<
a1L-MoS2

is necessary to obtain results in agreement with
previous experimental[73, 74] and theoretical[75] works.
For rc < a1L-MoS2

, we truncate the RPAI to a constant
v(r < rc) = v(rc). The precise value of rc is not partic-
ularly important for the BE calculation of charge-carrier
complexes, as we observe a weak BE dependence on this
parameter, see Table V.

Table V indicates that there is no need to use an ex-
pression for the electrostatic interaction between charge
carriers in LSMs more sophisticated than RKI when eval-
uating BEs of trions, biexcitons, and quintons. As ex-
plained in Methods, any errors in the Mott-Wannier-
Keldysh model of charge-carrier complexes for an isolated
1L are either due to the parameters (effective masses,
r∗, environment permittivity), or to a more fundamental
breakdown of the effective-mass approximation. Inter-
valley scattering may play an important role in the com-
plexes’ BEs[50], while exchange effects could be relevant
in highly localized complexes[76].

E. Complexes in uniform magnetic fields

For an out-of-plane external magnetic field of flux den-
sity B = (0, 0, B), where B is a positive constant, we can

write the Hamiltonian as:

Ĥ =
∑

i

1

2mi
(−i~∇i − qiAi)

2 +
∑

i>j

qiqj
4πǫr∗

V (rij/r∗)

=
∑

i

(

− ~
2

2mi
∇2

i + i
~qi
mi

Ai · ∇i +
q2i |Ai|2
2mi

)

+
∑

i>j

qiqj
4πǫr∗

V (rij/r∗) (10)

where Ai = −ri×B/2 = (−yi, xi, 0)B/2 is the magnetic
vector potential for particle i in the Coulomb gauge (so
that ∇i · Ai = 0)[58]. We neglect the charge carriers’
intrinsic magnetic dipole moment energy in the external
magnetic field, because this contribution cancels out.
Substituting Ai into Eq.10, the term q2i |Ai|2/(2mi) =

q2iB
2|ri|2/(8mi) provides a quadratic confining potential

for the particles in the complex. This cannot be regarded
as a perturbation for the (otherwise free) center-of-mass
(CoM) motion, because there is a quantitative difference
between a bound state wave function in a quadratic po-
tential and free motion in zero potential, no matter how
small the quadratic coefficient[28]. The zero-point en-
ergy of the CoM motion in the confining potential re-
sults in a linear [O(B)] contribution to the total energy,
as given in Eq.12. The term also weakly perturbs the
relative motion within the complex, giving a quadratic
[O(B2)] contribution to the energy. We thus include the
q2i |Ai|2/(2mi) = q2iB

2|ri|2/(8mi) term in our QMC cal-
culations. The linear (i~qi/mi)Ai · ∇i term in Eq.10
breaks time-reversal symmetry as it is imaginary[77]. It
only adds to the energy in second-order perturbation the-
ory, giving another O(B2) contribution. This vanishes
when we use a variational Ansatz consisting of a real
trial wave function. We therefore neglect it.
The ground-state energies of isolated e/h are Ee =

~eB/(2me) and Eh = ~eB/(2mh), in the presence of a
magnetic field[58]. More generally, if a bound complex
of Ne e and Nh h moves in a magnetic field, from Eq.10
the quadratic confining potential is:

U =
∑

i

e2B2|ri|2
8mi

≈ B2e2

8

(

Ne

me
+
Nh

mh

)

R2, (11)

where R is the CoM position. The total mass of the
complex is Neme + Nhmh. Hence, we obtain the CoM
zero-point energy of a charge complex as:

ECoM =
~eB

2

√

Ne/me +Nh/mh

Neme +Nhmh
. (12)

If me = mh ≡ m then ECoM = ~eB/(2m), independent
of Ne, Nh. For a bound complex, our results show that
the magnetic field can always be made sufficiently weak
so that the external potential is slowly varying on the
length scale of the complex (i.e.

√

~/(eB) < a∗0). Hence,
Eq.12 is the leading-order contribution to the free charge-
carrier complex energy in a magnetic field.
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FIG. 5. Theoretical BEs of (a) X, (c) X−, and (e) XX as a function of perpendicular magnetic field for 1L-WSe2 in vacuum.

We use the ab initio mass and r∗ parameters of Table I. The CoM contribution for X is Eb,CoM
X = (Eb

X)B=0
+Ee +Eh −ECoM

X ;

for X− is Eb,CoM

X−
=

(

Eb
X−

)

B=0
+Ee−ECoM

X− ; and for XX is Eb,CoM
XX =

(

Eb
XX

)

B=0
+2ECoM

X −ECoM
XX . Experimental BEs of (b) X,

(d) X−, (f) XX for 1L-WSe2 encapsulated in hBN, compared with DMC ones using ǫ = ǫ0 and r∗ = 48Å and the fit to Eq.21

Fig.5 plots the DMC X, X−, XX BEs for 1L-WSe2
in vacuum, in the presence of an out-of-plane magnetic
field, using RKI. me, mh, and r∗ are taken from Table
I. Our results are in agreement with Ref.78. The CoM
contribution of Eq.12 is a good approximation to calcu-
late the X, X−, XX BEs in magnetic fields< 8T, because
it is exact up to linear order in magnetic field within the
effective-mass approximation. For the X BE in magnetic
fields> 8T, we use Eq.21, derived in Methods. The fitted
C in Eq.21 is 0.557 for X in 1L-WSe2.

Figs5b,d,f compare our DMC BEs with measurements
for hBN-encapsulated 1L-WSe2. The sample is produced
by exfoliating flux zone grown B-WSe2[79], then encapsu-
lating it with ML-hBN (10nm bottom and 3nm top) us-
ing an all-dry technique[80, 81]. Measurements are done
in a closed-cycle cryostat (Attocube Attodry 1000) at
4K with superconducting magnets allowing out-of-plane
magnetic fields up to 8T. CW excitation is provided with
a diode laser at 658nm, close to the 1L-WSe2 optical band
gap[82]. Polarization-resolved excitation and collection
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TABLE VI. DMC and experimental X, X−, XX BEs in meV
for 1L-WSe2 with an out-of-plane external magnetic field.

B (T)
DMC Experiment

X X− XX X X− XX
0 439.35 27.72 19.07 439.35 28.17 18.85
1 439.54 27.90 19.25 439.63 28.41 19
2 439.72 28.09 19.43 439.73 28.51 19.52
3 439.91 28.27 19.61 440.09 28.79 19.2
4 440.09 28.46 19.79 440.38 29.02 19.8
5 440.28 28.65 19.96 440.60 29.23 19.7
6 440.46 28.83 20.14 440.85 29.24 20.41
7 440.65 29.02 20.32 441.00 29.46 20.44
8 440.83 29.20 20.5 441.35 29.51 20.68

pass through a confocal microscope with the sample in
reflection geometry. The PL signal is sent to a liquid-N2-
cooled spectrometer (Princeton).

We assume r∗ = 48 Å and ǫ = ǫ0, as discussed in
Sec.II B. The theoretical and experimental BEs differ<
0.3meV over the 0-8K temperature range. The O(B)
magnetic-field dependence is only via the effective masses
and Ne, Nh, via the CoM energy, Eq.12. The fact that
the theoretical and experimental magnetic-field trends
in Fig.5 agree well demonstrates that the approximation
with ab initio effective masses is accurate. The main
challenge is to obtain a sufficiently accurate interaction
between charge carriers. The BE O(B) term is the same
for all complexes, in the limit me = mh. For most 1L-
TMDs, me andmh are similar, Table I, implying that the
magnetic-field dependence cannot be used to distinguish
carrier complexes. Table VI has DMC and experimental
X, X−, XX BEs for 1L-WSe2 in the presence of an out-of-
plane external magnetic field, as for Fig.5. The variation
of BEs of different charge complexes is the same< 8T.

F. Complexes in uniform electric fields

A bias voltage ∆V applied to a 1L-LSM results in an
in-plane electric field. Its precise form depends on de-
vice geometry. Here, we assume a uniform electric field
F = −∆V/d, where d is the distance between terminals,
for simplicity. F will perturb the energies of charge-
carrier complexes in the CoM frame. We therefore in-
vestigate the effects of F on BEs by including an addi-
tional term −

∑

i qiFxi in the Hamiltonian, where xi is
the x coordinate of particle i. Fig.6 plots the X BE shift
as a function of electric field strengths for 1L-MoS2, 1L-
MoSe2, 1L-WS2, 1L-WSe2, in vacuum and encapsulated
by hBN, using the ab initio parameters in Table I and
ǫ = 4ǫ0. In each case, X BE goes as the square of the in-
plane electric field, as expected for a linearly polarizable
exciton[83]. Thus, the total energy of an isolated neutral
complex of polarizability α in a uniform F is:

E = EF=0 − αF 2/2, (13)

FIG. 6. DMC BE shift for (a) X, (b) XX, (c) donor atoms
as a function of F 2 for different 1L-TMDs in vacuum and
encapsulated in hBN. Error bars in (a,c) are smaller than the
symbols. The solid and dashed lines are BEs determined by
the polarizabilities in Table VII for 1L-TMDs in vacuum and
encapsulated by hBN. The vertical dotted lines correspond to
F = 50mVnm−1, beyond which VMC energy minimization
does not result in bound-state wave functions.
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where EF=0 is the energy of the complex in the absence of
external fields. The variation of energy with electric field
strength remains quadratic up to at least∼ 50mVnm−1.
> 50 mVnm−1 we find that optimizing wave functions by
VMC energy minimization does not result in bound-state
wave functions. If the parameters in the wave function
are fixed such that a bound state is forced, the resulting
DMC calculations are unstable. It is possible that some,
or all, complexes remain bound at these larger electric
fields, and our QMC calculations become unstable, due
to the choice of trial wave function. The form we use is
isotropic, so it does not allow the complex to polarize in
VMC. Polarization arises at DMC level.
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FIG. 7. DMC BE shift for (a) X− and (b) X+ as a function
of F 2 for different 1L-TMDs in vacuum and encapsulated in
hBN. Where error bars are not visible they are smaller than
the symbols. The solid and dashed lines show BEs determined
by the polarizabilities in Table VII

The XX and donor-atom BEs vary linearly with F 2,

TABLE VII. Theoretical in-plane polarizabilities of X, XX,
D0, X−, X+ in 1L-TMDs, in vacuum and hBN encapsulated

TMD
Polarizability (eVnm2 V−2)

X XX D0 X− X+

1L-MoS2 (vac.) 5.84(2) 11.14(8) 2.802(9) 66(6) 44(6)
1L-MoSe2 (vac.) 5.76(2) 11.0(1) 2.687(9) 80(9) 45(6)
1L-WS2 (vac.) 8.04(3) 15.8(1) 3.70(1) 108(10) 72(7)
1L-WSe2 (vac.) 10.10(4) 24.8(3) 3.96(1) 130(16) 118(9)
1L-MoS2 (hBN) 17.17(4) 34.2(3) 6.51(2) 179(17) 161(22)
1L-MoSe2 (hBN) 16.22(4) 32.3(2) 6.89(2) 211(22) 181(23)
1L-WS2 (hBN) 27.16(4) 54.9(3) 4.95(1) 316(27) 246(32)
1L-WSe2 (hBN) 30.43(4) 61.4(3) 5.29(1) 409(32) 367(32)

TABLE VIII. Calculated BE shifts of X, XX, D0, X−, X+ us-
ing Eq.13 and polarizabilities in Table VII for 1L-TMDs, both
in vacuum and encapsulated by hBN, for F = 50mVnm−1.
Not all complexes are bound at F = 50 mVnm−1

TMD
Binding-energy shift (meV)
X XX D0 X− X+

1L-MoS2 (vac.) 7.3 < 1 3.5 76 48
1L-MoSe2 (vac.) 7.2 < 1 3.4 93 49
1L-WS2 (vac.) 10.1 < 1 4.6 125 80
1L-WSe2 (vac.) 12.6 5.8 4.9 150 135
1L-MoS2 (hBN) 21.5 < 1 8.1 201 180
1L-MoSe2 (hBN) 20.3 < 1 8.6 243 206
1L-WS2 (hBN) 34.0 < 1 6.2 362 273
1L-WSe2 (hBN) 38.0 < 1 6.6 473 408

Fig.6. However, while the donor-atom BEs increase with
F 2, the XX BEs decrease. For a 4-particle complex,
alignment of charges in the direction of the applied field
places like charges closer together, and reduces BE with
respect to dissociation into two-particle complexes. Trion
BEs also vary linearly with F 2, Fig.7. However, QMC
calculations become unstable at much lower F . This is
reflected in the higher polarizabilities for trions than for
neutral complexes, Table VII.
The predicted BE shifts of each of the complexes are in

Table VIII for 1L-TMDs, both in vacuum and encapsu-
lated by hBN, subject to F = 50mVnm−1, beyond which
VMC energy minimization does not result in bound-state
wave functions. The shifts in the peaks of the trions are
so large that, at the very least, they should be experi-
mentally distinguished from the neutral complexes when
an electric field is applied. Identification of a positive
from a negative trion may be possible in some materi-
als/environments, but not all. For neutral complexes,
the differences of a few meV in BE shifts suggest they
are unlikely to be experimentally identified by their peak
shifts under an electric field.

III. CONCLUSIONS

We used DMC to calculate XX− BEs in 1L-LSMs
within the effective-mass approximation, using the RKI
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potential. A program available online [60] can be used to
evaluate interpolated XX− BEs given e and h effective
masses, in-plane susceptibility, and environment permit-
tivity for a desired 1L-LSM. The BEs of charge-carrier
complexes in 1L-LSMs in vacuum from RKI are in ex-
cellent agreement with those obtained using interaction
potentials taken from ab initio RPA, suggesting RKI is a
reliable interaction potential to describe screened inter-
action between charge carriers in 1L-LSMs.

We also considered the effect of external out-of-plane
magnetic fields and in-plane electric fields on BEs of
charge-carrier complexes in 1L-LSMs. The resulting BE
changes are linear in magnetic fields and quadratic in
electric fields up to 10T and 50mVnm−1.

We measured X, X−, XX BEs for hBN-encapsulated
1L-WSe2 up to 8T, where the BEs vary linearly with
magnetic field, and found them to be in good agreement
with the effective-mass approximation using ab initio ef-
fective masses. These BE shifts could in principle be
used to identify complexes in PL experiments, provided
m∗

e and m∗

h are different. In practice, m∗

e and m∗

h in
1L-TMDs are too similar to distinguish complexes in ex-
ternal magnetic fields. In-plane electric fields should shift
the BE peaks in proportion to the field strength and al-
low for identification of charged from neutral complexes.

We derived BEs of charge-carrier complexes in 1L-
TMDs by solving the interacting quantum few-body
problem for each complex, working within the effective-
mass approximation, with a RKI potential between
charge carriers. The BE magnetic-field dependence
agrees with experiments on a sub-meV energy scale.
Since this only involves m∗

e and m∗

h, and not the param-
eters describing the screened interaction, the approxima-
tion with ab initio effective masses is highly accurate.

Efforts to improve the quantitative accuracy of BE cal-
culations should therefore focus on the description of sub-
strate and environmental screening, and on the inclusion
of contact interactions and intervalley scattering.
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IV. METHODS

A. Effective-mass approximation

All our calculations are performed within the effective-
mass approximation. For charge-carrier complexes in 1L-
LSMs in the absence of external fields, we solve the Mott-
Wannier-Keldysh Schrödinger equation[26]:



−
∑

i

~
2

2mi
∇2

i +
∑

i>j

qiqj
4πǫr∗

V (rij/r∗)



ψ = Eψ, (14)

where mi and qi are the band effective mass and charge
of particle i, rij is the separation of particles i and j, E is
the energy eigenvalue, ǫ is the absolute permittivity of the
surrounding medium, and r∗ ≡ κ/(2ǫ), where κ is the in-
plane susceptibility. In Eq.14 the electrostatic interaction
potential V , known as RKI[21, 22, 84], is given by[26]:

V (r/r∗) =
π

2
[H0(r/r∗)− Y0(r/r∗)] , (15)

where Hn(x) is a Struve function[85] and Yn(x) is a
Bessel function of the second kind[85]. At long range
(r ≫ r∗) the potential in Eq.15 is a Coulomb interaction
V (r/r∗) ∼ r∗/r; at short range (r ≪ r∗), logarithmic:

V (r/r∗) ≈ − ln

(

eγr

2r∗

)

, (16)

where γ ∼ 0.57721 is Euler’s constant[85].

We do not include contact interactions between charge
carriers due to exchange and correlation effects that occur
when they are localized on the same site[76], since these
partially cancel out of BEs for complexes larger than X.

B. QMC calculations

We use VMC[72] and DMC[29, 86] to calculate the to-
tal energies of complexes of charge carriers in 1L-LSMs.
We use the RKI potential in Eq.15 or, for the short
range (r ≪ r∗) limit, the logarithmic interaction of
Eq.16. Our trial wave functions for complexes of dis-
tinguishable charge carriers are of the Jastrow form[18],
which includes a pairwise sum of terms depending on the
distances between charge carriers, as for Ref.26. Trial
wave functions are optimized within VMC by minimiz-
ing first the energy variance[87, 88], then the energy
expectation[72]. Our fixed-node DMC energies are exact
solutions to the Mott-Wannier-Keldysh model of Eq.14.
DMC calculations use time steps in the ratio 1 : 4, with
the corresponding target configuration populations in the
ratio 4 : 1. The resulting energies are extrapolated lin-
early to zero time step and to infinite population. QMC
calculations are done in the casino code[18].
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C. Fitting function for BE as a function of

magnetic field

We consider a complex of Ne and Nh e and h inter-
acting via the logarithmic approximation to the Keldysh
interaction in the presence of a uniform magnetic field
B = (0, 0, B). Let B̃ = B/B0, m̃i = mi/µ, q̃i = qi/e,

r̃i = ri/(
√
2r0), and r̃∗ = r∗/(

√
2r0) be magnetic field,

mass, charge, and position of particle i. The screening

length and the Hamiltonian ˆ̃H = Ĥ/E0 in logarithmic
e.u. are as defined in Sec.II A. We thus get:

ˆ̃H = −
∑

i

1

2m̃i
∇̃2

i +
∑

i

B̃2r̃2i
8m̃i

−
∑

i>j

q̃iq̃j ln (e
γ r̃ij/ 2)

+
∑

i>j

q̃iq̃j ln (r̃∗) , (17)

where we neglect the term (i~qi/mi)Ai · ∇i in Eq.10
that breaks time-reversal symmetry. The energy eigen-
value Ẽ = E/E0 is therefore the sum of a function

f(σ, B̃), where σ = me/mh, and an additive constant
c(r̃∗) =

∑

i>j q̃iq̃j ln (r̃∗). For X in the absence of an

external magnetic field, ẼX
B=0 = 0.41057747491(7) −

ln(
√
2)− ln(r̃∗) was calculated in Ref.26.

For B̃ such that the magnetic confinement energy
is larger than the log interaction, the interaction
−∑

i>j q̃iq̃j ln(e
γ r̃ij/2) is negligible compared with the

magnetic confinement energy of each particle. The di-
mensionless total energy is the sum of the zero-point en-
ergies of the individual particles in the quadratic poten-
tial plus the constant c(r̃∗). Hence, at large B̃ ≫ 1:

Ẽ =

(

Ne

m̃e
+
Nh

m̃h

)

B̃

2
+O(1) + c(r̃∗) (18)

≈
(

Ne

m̃e
+
Nh

m̃h

)

B̃

2
+ ẼB̃=0, (19)

since ẼB̃=0 ∼ c(r̃∗), when r̃∗ is large (r̃∗ ≫ 1).

For small B̃ ≪ 1, we use the CoM zero-point energy
approximation, Eq.12, in which we assume the quadratic
potential varies on the scale of the complex. Then:

Ẽ =
B̃

2

√

Ne/m̃e +Nh/m̃h

Nem̃e +Nhm̃h
+ ẼB̃=0. (20)

The total energies for X with me = mh are calculated
using the finite-element method (FEM) implemented in
Mathematica[89]. The results are converged by increas-
ing the region size and decreasing the maximum cell
size in order to achieve at least six digits of precision.
This leads to errors comparable errors to QMC (see

Sec.IVB). Subtracting the large-B̃, Eq.19, from the en-
ergy shift of X due to external magnetic fields, results
in the logarithmic-like behavior in Fig.8. This suggests
the following formula for the energy shift of a generic

r
~

*
= 0.1 r

~

*
= 0.2 r

~

*
= 0.5 r

~

*
= 1

r
~

*
= 2 r

~

*
= 4 r

~

*
= 8 r

~

*
= ¥

FIG. 8. (a) Dependence of CX on susceptibility. The markers
show fitted CX. The line is a quadratic fit to the points as for
Eq.22.(b) Shift in energy of X with equal m∗

e and m∗
h due to

external magnetic field, after subtracting the large-B̃ behavior
from Eq.19, for several r̃∗. Markers indicate the finite-element
method results, while lines show the fit of Eq.21.

charge-carrier complex due to external magnetic field:

Ẽ − ẼB=0 =
1

2





√

Ne/m̃e +Nh/m̃h

Nem̃e +Nhm̃h
−

(

Ne

m̃e
+
Nh

m̃h

)]

ln
(

1 + B̃ + C2B̃2
)

+

(

Ne

m̃e
+
Nh

m̃h

)

B̃

2
, (21)

where C = C(r̃∗, σ) is independent of r̃∗ in the r ≪ r∗
limit in which the logarithmic interaction is valid.
We use the least-squares method to fit the FEM results

for the BE shift of X with equal m∗

e and m∗

h, Fig.8, for
several values of susceptibility, and extract the fitting
parameter CX for each r̃∗. We use a polynomial fit to get
the dependence of CX on susceptibility, Fig.8:

CX = −0.1020(22)+ 0.546(9)x+ 0.194(6)x2, (22)
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where x = r̃∗/ (1 + r̃∗). Since most 1L-TMDs have effec-
tive mass ratios close to 1, Table I, we neglect the mass-
ratio dependence of C. Our fit is only valid for r̃∗ & 0.5.
Although the fit from Eq.21 is derived for the logarithmic

interaction, it does fit well our DMC results in Fig.5 for
the full Keldysh interaction for experimentally relevant
values, as shown by the red curves in Fig.5.
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