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A B S T R A C T   

Using organic amendments to fertilise crops is a crucial part in the sustainability of agricultural systems. The 
residual slurry remaining after biogas production (anaerobic digestate) contains a rich source of plant nutrients 
that provides an alternative to mineral fertilisers. The delivery of many nutrients to plants is facilitated by a 
healthy soil biota: free-living and symbiotic microflora (e.g. archaea, bacteria and fungi) mineralize, solubilize 
and facilitate plant uptake of nutrients and the soil fauna (e.g. protozoa, microarthopods and earthworms) in-
fluence nutrient cycling processes as higher-level consumers and litter transformers. The delivery of nutrients to 
plants via the activity of this soil food web is influenced by fertiliser inputs. Here we review the impact of 
anaerobic digestate on soil biota. The quantity and composition of the carbon in digestate has a large influence 
on soil heterotrophic microbial dynamics and their subsequent influence on nutrient bioavailability. The main 
points are (1) digestate low in carbon has little effect on soil microorganisms, whereas digestate higher in carbon 
increases soil microbial abundance and diversity; (2) labile carbon stimulates fast-growing bacteria, whereas 
recalcitrant carbon shifts the microbial community in favour of slower-growing fungi and Gram-positive bac-
teria; and (3) earthworms, springtails and nematodes dwelling in the soil surface layer can be negatively affected 
by digestate application due to toxicity when compounds such as ammonia are present in high concentrations. 
Generalized understanding of the effect by digestates on soil biota is made difficult by differences in digestate 
properties caused by varying feedstock and production methods and the inherent heterogeneity of soil. There is a 
lack of research investigating the impact of repeated digestate application on soil biota and subsequently soil 
health. This information would give end users more confidence to substitute mineral fertilisers with digestate.   

1. Introduction 

Anaerobic digestion transforms organic matter into energy in a well- 
developed industrial process that generates biogas. During anaerobic 
digestion organic matter is broken down in oxygen-free conditions, 
producing CH4 and CO2 that are used to generate electricity and heat (Al 
Seadi et al., 2008; Fig. 1). In 2009 the European Union set a mandatory 
target that, by 2020, 20 % of all energy consumption should come from 
renewable sources (European Parliament and Council of European 
Union, 2009). This target resulted in numerous EU governments sub-
siding biogas plants installations (Edwards et al., 2015), with over 
18,000 biogas plants being registered by end of 2018, an increase of 192 
% from 2009 (EBA, 2020). Anaerobic digestion to produce renewable 
energy has several advantages; biogas can be produced when needed, 
the produced biogas can supply the current natural gas grid, and energy 
is produced from organic wastes such as household, food and drink 

processing, agriculture, and sewage works. 
After biogas production the resulting slurry, known as anaerobic 

digestate, requires removal from the biogas plant. Originating from 
organic matter feedstock, and with only carbon and hydrogen removed 
as biogas (Möller, 2015), digestate contains the remaining nutrients 
from the digested feedstock (Fig. 1). Digestate can be used as a fertiliser 
in agriculture and has been shown to support crop yields equivalent to 
mineral fertilisers (Šimon et al., 2015; Riva et al., 2016; Ehmann et al., 
2018; Walsh et al., 2018; Barzee et al., 2019; Zicker et al., 2020). 
However, digestate has a low nutrient to volume content when 
compared to mineral fertilisers (Table 1), therefore the cost of trans-
porting it from biogas plants to farms increases with distance and be-
comes uneconomical (Möller et al., 2010). To address this limitation, 
digestate is often separated into a “liquid” and a more fibrous “solid” 
fraction to reduce the volume and therefore the cost of transporting (Al 
Seadi et al., 2012). 
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The separation of digestate causes uneven nutrient distribution; be-
tween 65–75 % of the total nitrogen and 70–80 % of the potassium re-
mains in the liquid fraction, while 55-65 % of the phosphorous and 60- 
70 % of the carbon remains in the solid fraction (Fuchs and Drosg, 
2013). As liquid digestate receives the majority of the nitrogen, of which 
typically over 70 % is in the readily available form of ammonium (Drosg 
et al., 2015) it has good potential as a fertiliser. The solid fraction 
contains a greater amount of phosphorous, but also carbon as organic 
matter (Table 2) and is considered both a source of nutrients (Al Seadi 
et al., 2012) and a soil conditioner to build soil organic matter (SOM)) 
(Logan and Visvanathan, 2019). Little work has been done to understand 
the influence of solid or liquid fractions of digestate on SOM, particu-
larly the living component of SOM. Therefore, this review aims to 
address this knowledge gap by providing a greater understanding of the 
impact of digestate application on soil biota. 

2. The influence of anaerobic digestate on soil microorganisms 

A significant proportion of SOM consists of living and dead micro-
organisms (Liang and Balser, 2011). Soil microorganisms consist of 
archaea, bacteria, fungi, and protozoa, though the majority of studies 
investigating the impact of digestate on soil microorganisms have 
focused on bacteria and fungi as dominant groups in terms of abundance 
and biomass. The focus on these two microbial groups is largely because 
they are considered the largest functional groups responsible for 
nutrient cycling in soil (Buerkert et al., 2012). 

2.1. Effect of digestate on soil microorganism activity and abundance 

The application of the liquid fraction and non-separated whole 
digestate to soils rapidly stimulates microbial activity (Risberg et al., 
2017; Iocoli et al., 2019; Meng et al., 2022). Similar increases in the soil 
microbial biomass have been observed within hours after digestate 
application (Johansen et al., 2013; Monard et al., 2020), but both 
changes in activity, abundance and biomass are temporary and often 
subside within days of application (Alburquerque et al., 2012a; Galvez 
et al., 2012; Iocoli et al., 2019; Barduca et al., 2021) and are not 
detectable after a few weeks (Walsh et al., 2012, 2018; de la Fuente 
et al., 2013; Gómez-Brandón et al., 2016; Viaene et al., 2017; Mórtola 
et al., 2019; Gebremikael et al., 2020; Ren et al., 2020; Różyło and 
Bohacz, 2020; Valentinuzzi et al., 2020). 

The majority of soil microorganisms are heterotrophic and use 
organic carbon as their energy source. As the anaerobic microbes in the 
biogas tank have already converted much of the readily available carbon 

in the feedstock into CH4 and CO2 (Thomsen et al., 2013) there is less 
readily available carbon present for soil microbes to utilise, compared to 
undigested feedstock materials (Chen et al., 2012). In pot studies that 
added a high amount (10-50 % w/w) of whole or liquid digestate to soil 
(García-Sánchez et al., 2015; Muscolo et al., 2017; Panuccio et al., 2021) 
microbial biomass increased. Manfredini et al. (2021) altered the con-
centration of dissolved organic carbon in the digestate and observed that 
higher levels of dissolved organic carbon resulted in increased microbial 
biomass by the end of the study. These studies show that it is when 
carbon concentrations are increased beyond standard field application 
rates, that microbial activity and abundance increase for more than a 
few weeks. This indicates that typical liquid or whole digestate appli-
cation rates do not supply enough available carbon for soil microor-
ganisms to support sustained growth. 

The application of solid digestate led to sustained increases in mi-
crobial biomass and activity (de la Fuente et al., 2013; Badagliacca et al., 
2020; Cattin et al., 2021) indicating that the solid fraction did not result 
in the carbon-limited microbial growth observed for whole or liquid 
digestate. Furthermore, de la Fuente et al. (2013) observed that solid 
digestate increased microbial biomass to a greater extent than any other 
form of digestate and reported a concurrent increase in nitrogen within 

Fig. 1. The process of anaerobic digestion and end-use of anaerobic digestate as a fertiliser.  

Table 1 
Comparison of nutrient content between a 30:11:24 NPK compound fertiliser 
and the average values from four digestates used by Abubaker et al. (2012).   

Digestate 
kg t-1 

NPK 
kg t-1 

Total nitrogen  5.4  303 
Ammonia nitrogen  3.6  148 
Phosphorous  0.6  114 
Potassium  2.3  245  

Table 2 
Nutrient content per weight of the whole, solid and liquid fractions of digestate. 
Data from screw extractor and rotary screen separator experiments by Bauer 
et al. (2009).   

Liquid phase 
kg t-1 

Whole phase 
kg t-1 

Solid phase 
kg t-1 

Dry matter  45.0  73.1  193.1 
Volatile solids  31.3  53.8  165.4 
Total nitrogen  4.0  4.2  4.6 
Ammonia nitrogen  2.6  2.7  3.0 
Phosphorous  0.9  1.2  2.5 
Potassium  3.5  3.6  3.4  
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the microbial biomass in solid digestate treated soils that was absent in 
others. Therefore, the authors reasoned that the high immobilisation of 
nitrogen in the microbial biomass receiving this treatment had an 
important influence over the growth and activity of the soil microor-
ganisms. Although the digestate separation process removes most of the 
nitrogen in the liquid fraction (Tambone et al., 2017), it is apparent that 
the solid fraction still contains sufficient nitrogen to support microbial 
growth. 

The characteristics of the feedstock can influence the impact that 
digestate has on soil microorganisms. The rate of liquid and whole 
digestate applied to land is routinely based on its nitrogen content; 
subsequently digestate with a higher C:N ratio delivers more carbon to 
the soil, which influences its impact on soil microbial activity (Abubaker 
et al., 2013; Iocoli et al., 2019). Muscolo et al. (2017) observed that the 
biochemical nature of the carbon is important, since, when both liquid 
and solid digestate with a lower percentage of carbon as recalcitrant 
plant material was applied, a greater positive effect on microbial 
biomass growth was observed. Alburquerque et al. (2012a) and Risberg 
et al. (2017) both reported significant differences in the effects of 
digestate on microbial activity due to the digestate feedstock type; 
digestates containing a greater amount of readily available carbon 
resulted in increased levels of microbial activity. 

2.2. Effect of digestate on soil microbial community 

Hupfauf et al. (2016) showed that microbial community level 
physiological profiles (using principal components analysis of Micro-
Resp™) for soils receiving applications of solid digestate were distinct 
from those receiving liquid digestate, whilst whole digestate resulted in 
a community profile that lay between the two. The physiochemical 
characteristics of the digestate influence microbial community compo-
sition. The high ammonium and water content of whole and liquid 
digestate create favourable conditions for bacterial groups associated 
with the nitrogen transformation, with increases in the abundance of 
bacterial nitrifiers and denitrifiers being reported (Sawada and Toyota, 
2015; Brenzinger et al., 2018; Ogbonna et al., 2018). 

Another explanation for the differences in the physiological profiles 
of the microbial community may be due to changes in fungi:bacteria (F: 
B) ratios, as the two groups occupy different functional niches in the soil. 
Walsh et al. (2012) observed an increase in bacterial growth six months 
after applying liquid digestate, which reduced the F:B ratio. Similarly, 
Pezzolla et al. (2015) applied a digestate with a dry matter equivalent to 
liquid digestate, and observed an increase in gram-negative bacteria, 
causing a decrease in the F:B ratio. These quick growing bacteria are 
better able than fungi to take advantage of the labile carbon supplied in 
the liquid digestate, whilst very little complex carbon is added that fungi 
can use. This may explain the negative effect of liquid digestate on fungi 
that Wentzel and Joergensen (2016), Elbashier et al. (2018) and Barduca 
et al. (2021) found. However, Coelho et al. (2019) and Gryń et al. (2020) 
observed negligible changes to both groups. 

The application of whole digestate resulted in transient (Ren et al., 
2020; Różyło and Bohacz, 2020) or insignificant changes (Makádi et al., 
2016; Brenzinger et al., 2018) to bacterial or fungal abundance and no 
changes to the F:B ratio were observed (Gebremikael et al., 2020). In 
contrast, Chen et al. (2012) observed a shift in microbial community, as 
inferred from growth kinetic parameters, to one dominated by slower 
growing organisms under the application of whole digestate made from 
maize. This response was interpreted to be due to the presence of the 
recalcitrant plant fibres that the microbes in the anaerobic digestor did 
not break down, which support the relatively slower growing microbes, 
such as fungi and Gram-positive bacteria (Meidute et al., 2008; Bastian 
et al., 2009). Chen et al. (2012) used a digestate made only from maize, 
and therefore a comparatively larger proportion of its organic carbon 
would be in a recalcitrant form compared to the digestates used in the 
other studies. 

When digestate with a higher ratio of carbon to nitrogen is applied, 

an increase in fungal content (García-Sánchez et al., 2015; Barduca 
et al., 2021; Panuccio et al., 2021) and F:B ratio (Cattin et al., 2021) 
were observed. The solid fraction of digestate contains a greater avail-
ability and variability of organic carbon, including a high quantity of 
recalcitrant organic matter that saprophytic fungi utilise (Meidute et al., 
2008). Furthermore, Tambone et al. (2017) demonstrated that the ni-
trogen content in the solid fraction is high enough to consider it an 
organic fertiliser, consequently reducing direct competition between 
fungi and bacteria for nitrogen and thereby relieving the nitrogen lim-
itation on fungal growth (Rousk and Bååth, 2007). 

Not all fungi are decomposers and an important fungal group, the 
arbuscular mycorrhizal fungi (AMF), gain their carbon from a symbiotic 
relationship with plants. Despite having their carbon needs met by the 
plants, AMF are affected by digestate application and the fraction of 
digestate applied determines the direction of the effect. Solid digestate 
application has a positive effect on AMF colonisation (Caruso et al., 
2018). This effect may be due to the slow release of phosphorus from 
both the decay of its fibrous material (Gosling et al., 2006) and the 
struvite minerals that precipitate during the anaerobic process (Marti 
et al., 2008), This makes it beneficial for the host plant to maintain the 
symbiosis through supply of photosynthate for the purposes of improved 
phosphorus acquisition. 

Unlike phosphorus, nitrogen addition has been shown to have posi-
tive effects on AMF stimulation (Nouri et al., 2014; Johnson et al., 2015) 
through increasing phosphorus demand by alleviation of nitrogen as the 
nutrient most limiting to plant growth. Although liquid and whole 
digestate are rich in nitrogen, positive effects on AMF colonisation were 
not seen (Wentzel and Joergensen, 2016; Caruso et al., 2018; Dahlqvist, 
2018; Ren et al., 2020), though Ren et al. (2020) did measure an in-
crease in hyphal length. Ren et al. (2020) observed a slight but signifi-
cant decrease of 0.18 in soil pH as they increased digestate dosage rates. 
Since they applied digestate in its whole form, it will have contained a 
high concentration of ammonium N. Although ammonium N initially 
increases soil pH due to its alkaline nature, it reduces soil pH as it un-
dergoes nitrification. Furthermore, as plants take up ammonium ions 
they release acidic hydrogen ions into the soil around the roots to bal-
ance their internal pH (Smith and Read, 2008). These factors result in 
soil acidification, which has been shown by Pan et al. (2020) as a cause 
for suppressing AMF colonisation. 

The physiochemical properties of digestate (such as carbon content 
and type, nutrients, and water volume) influence the physiological 
profile of the microbial community. However not all the aforementioned 
studies observed the same result for the same form of digestate. These 
differences are due to variability in digestate characteristics caused by 
different feedstock sources (Tables 3–4). Other factors contributing to 
different patterns observed in these studies include different soil prop-
erties, dose rates and analytical methodologies adopted by the re-
searchers (Tables 3–4). These differences between disparate studies 
makes understanding the effects of digestate application on microbial 
community structure difficult to quantify. Currently the number of 
studies investigating the impact of digestate application on distinct 
groups of soil microorganisms are too low to generate consensus by 
reviewing only those using similar measurements and current trends 
identified should be taken with caution. 

2.3. Effect of repeated digestate application on soil microbial community 

The changes in microbial community previously discussed were 
observed in experiments that ran for a short time (< 1 year) and under 
controlled laboratory conditions. A two-year field experiment run by 
Coelho et al. (2020), showed no significant changes in soil bacteria and 
fungi abundance and diversity through repeated liquid digestate appli-
cations. Similarly, Makádi et al. (2016) saw no significant change in the 
microbial groups they studied over two years. Furthermore, no signifi-
cant increases in microbial biomass were observed after three years of 
repeated liquid or whole digestate application (Johansen et al., 2015; 
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Šimon et al., 2015; Bhogal et al., 2016; Pastorelli et al., 2021), although 
Alburquerque et al. (2012b) did observe a positive effect after two years. 
This positive effect may have been due to the application of digestate 
twice per year in the rotation, whereas the others only applied once per 
year. Similarly, Odlare et al. (2008) observed a significant increase in 
microbial biomass after four annual digestate applications. It could be 

that fluctuating environmental conditions in the field masked the impact 
of the digestate influence on soil microbes. Indeed Pastorelli et al. 
(2021) observed that the season when soil was sampled had a greater 
influence on microbial community composition than the digestate 
treatment. Therefore, for sustained changes to be detected, more than 
three digestate applications are recommended. 

Table 3 
The effects of the three forms of digestate on soil microbial biomass as measured by chloroform fumigation extraction method. In all experiments the comparison of 
effect by digestate is against a non-fertilised control. Only studies longer than 30 days were selected. In multi-year trials, only data from first year was considered.  

AD form / fraction Digestate feedstocka Application rate Plant present Sampling time post application Effect Authors 

Liquid M/OFMIW/EC 10-50 % soil w/w No 6 months increase in biomass Panuccio et al., 2021 
Solid M/OFMIW/EC 25-75 % soil w/w No 6 months increase in biomass Panuccio et al., 2021 
Whole S/EC/OFMIW 25-35 t FW / ha No 112 days no change in biomass Gebremikael et al., 2020 
Liquid S 4.25 L/m2 No 60 days no change in biomass Monard et al., 2020 
Liquid M 180 kg N/ha No 7 weeks no change in biomass Valentinuzzi et al., 2020 
Whole M 70 and 210 kg N/ha Lettuce 34 days no change in biomass Mórtola et al., 2019 
Liquid M/OFMIW/EC 10-30 % soil No 3 months increase in biomass Muscolo et al., 2017 
Liquid OFMIW/M/EC 10-30 % soil No 3 months no change in biomass Muscolo et al., 2017 
Solid M/OFMIW/EC 20-75 % No 3 months increase in biomass Muscolo et al., 2017 
Solid OFMIW/M/EC 20-75 % No 3 months increase in biomass Muscolo et al., 2017 
Whole M 80 kg N/ha No 60 days no change in biomass Gómez-Brandón et al., 2016 
Liquid S/EC 120 kg N/ha Ryegrass 70 days no change in biomass Wentzel and Joergensen, 2016 
Whole S 1.4 g/kg soil No 90 days no change in biomass Pezzolla et al., 2015 
Liquid S/M/EC 96m3/ha No 56 days no change in biomass de la Fuente et al., 2013 
Solid S/M/EC 48 Mg/ha No 56 days increase in biomass de la Fuente et al., 2013 
Whole S/M/EC 96m3/ha No 56 days increase biomass de la Fuente et al., 2013 
Liquid S/OFMIW/SS 64m3/ha Watermelon 152 days increase in biomass Alburquerque et al., 2012b 
Whole S 20 t/ha No 30 days increase in biomass Galvez et al., 2012 
Whole S/EC 120 kg NH4-N/ha No 6 weeks increase in biomass Ernst et al., 2008  

a S: animal slurry, M: animal manure, OFMIW: organic fraction of municipal and industrial waste, EC: energy crops, SS: sewage sludge. 

Table 4 
the effects of the three main forms of digestate on the soil bacterial, fungal and mycorrhizal fungal (MF) abundance. CFU = colony forming units. GCN = gene copy 
numbers. PLFA = phospholipid fatty acids. For digestate effects on MF, only colonisation measurement was accepted for comparison. For the effects of digestate on 
fungi and bacteria, different measurement techniques had to be accepted for enough studies to be selected to provide a pattern.  

AD form / 
fraction 

Digestate 
Feedstocka 

Application rate Plant present Sampling point after 
application 

Effect Authors 

Bacteria 
Liquid S/C/OFMIW 170kgN/ha No 150 days No change in CFU Gryń et al., 2020 
Whole C/OFMIW/M 3.4 t DW/ha No 6 months No change in CFU Różyło and Bohacz, 2020 
Liquid OFMIW; SS 33 m3 FW/ha Grass-sward 

mix 
6 months No change in GCN Coelho et al., 2019 

Liquid M 1100 L/ha Melon <1 yr No change in CFU Elbashier et al., 2018 
Solid OFMIW/C 10 g/100 g soil Wheat 60 days Increase in PLFAs García-Sánchez et al., 2015 
Whole S 340 kg ha No 90 days Increase in PLFAs Pezzolla et al., 2015 
Liquid S 150kgN/ha Grass mix 16 weeks Increase in growth (leucine) Walsh et al., 2012  

Fungi 
Liquid S/C/OFMIW 170kgN/ha No 150 days No change in CFU Gryń et al., 2020 
Whole C/OFMIW/M 3.4 t DW/ha No 6 months No change in CFU Różyło and Bohacz, 2020 
Liquid OFMIW; SS 33 m3 FW/ha Grass mix 6 months No change in GCN Coelho et al., 2019 
Liquid M 1100 L/ha Melon <1 year Decrease in CFU Elbashier et al., 2018 
Liquid M/C/OFMIW 170kgN/ha Sweetcorn 1st year No change in CFU Makádi et al., 2016 
Liquid S/C 120kgN/ha Ryegrass 70 days Decrease in ergosterol Wentzel and Joergensen, 

2016 
Solid OFMIW/C 10 g/100 g soil Wheat 60 days Increase in PLFAs García-Sánchez et al., 2015 
Whole S 340 kg ha No 90 days no change in PLFAs Pezzolla et al., 2015 
Liquid S 150 kgN/ha Grass mix 16 weeks No change in growth 

(ergosterol) 
Walsh et al., 2012  

Mycorrhiza fungi 
Whole OFMIW 25 and 50kgN/ 

ha 
Ryegrass 75 days No effect on colonisation Ren et al., 2020 

Liquid – 140kgN/ha Triticale 223 days Non-sig. decrease in 
colonisation 

Caruso et al., 2018 

Solid – 140kgN/ha Triticale 223 days Increased colonisation Caruso et al., 2018 
Whole OFMIW 100kgN/ha Spring wheat 10 weeks No effect on colonisation Dahlqvist, 2018 
Liquid S/C 120kgN/ha Ryegrass 70 days Decreased colonisation Wentzel and Joergensen, 

2016  

a S: animal slurry, M: animal manure, OFMIW: organic fraction of municipal and industrial waste, EC: energy crops, SS: sewage sludge. 
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The indirect effects of repeated digestate application on microor-
ganisms due to changes in soil physiochemical properties are currently 
unknown. The most important soil property for determining microbial 
biomass and community diversity is soil pH (Fierer and Jackson, 2006; 
Hermans et al., 2017; Ma et al., 2019). Variability in soil pH influences 
many other soil properties, including the solubility of inorganic and 
organic compounds such as nutrients and metals (Veroney and Heck, 
2015). A significant reduction or increase in pH leads to microbial 
community changes (Lauber et al., 2009; Rousk et al., 2009). pH may 
also have a direct effect on microorganisms, many of which have 
intracellular pH levels close to neutral and a significant alteration in soil 
pH may exert a physiological stress that tolerant or extremophile taxa 
can grow better in (Hozzein et al., 2013; Quatrini and Johnson, 2018). 
Digestates tend to be slightly alkaline (Abubaker et al., 2012; Wentzel 
and Joergensen, 2016; Prays et al., 2018; Coelho et al., 2019; Iocoli 
et al., 2019). However digestate application can cause soil acidification 
depending on ammonium load that gets transformed into nitrate (Ren 
et al., 2020) or the content of volatile fatty acids (Risberg et al., 2017). 
Multi-year trials running between 2 and 4 years found no change in soil 
pH (Odlare et al., 2008; Alburquerque et al., 2012b; Bhogal et al., 2018; 
Elbashier et al., 2018; Barłóg et al., 2020) but after six years Zicker et al. 
(2020) observed a significant decrease in soil pH from digestate appli-
cation, indicating that the effects of digestate application take time 
before they are noticeable. However, these effects can be remediated by 
liming, a common practice in agriculture. 

Soil organic carbon (SOC) is a major determinant of soil microbial 
biomass (Hu et al., 2014) and community composition (Drenovsky et al., 
2004) with low SOC concentrations favouring oligotrophic microbes 
(Semenov, 1991). Multi-year field trials have reported no change in SOC 
(Odlare et al., 2008; Šimon et al., 2015; Barłóg et al., 2020; Pastorelli 
et al., 2021) or SOM (Bhogal et al., 2018), of which SOC is a major 
component. It may be that these trials were too short in duration for 
changes to be seen, as Smith (2004) showed that it takes between 6 and 
10 years for changes in SOC to be detected under various rates of carbon 
inputs, land uses and soil types. 

There is some concern that digestate application may lead to the 
accumulation of heavy metals in soils, particularly as some studies have 
shown that digestate sourced from sewage, industrial, and urban waste 
contain levels of copper, cadmium, nickel, lead and zinc above those set 
by the relevant governing bodies as acceptable for land application 
(Govasmark et al., 2011; Bonetta et al., 2014; Coelho et al., 2018). A 
high concentration of heavy metals in the soil can reduce enzyme 
function, inhibit respiration, and shift the composition of the microbial 
community to favour organisms that can tolerate the contamination 
(Giller et al., 2009; Chu, 2018). Multiple studies have analysed diges-
tates made from a range and mix of organic materials for their heavy 
metal content and found them to be below the advised threshold levels 
set by their nation or federation (Kuusik et al., 2017; Coelho et al., 2018; 
Mórtola et al., 2019; Panuccio et al., 2021) and so are considered safe to 
apply. However, the long-term cumulative effect of repeated digestate 
applications on heavy metal concentration in soils is unexplored, either 
due to direct accumulation in the soil or indirectly due to changes in 
metal solubility through an alteration of pH. 

There are concerns about the presence of hazardous compounds in 
digestate based on animal, industrial or household waste, such as anti-
biotics (Widyasari-Mehta et al., 2016), hormones (Withey et al., 2016; 
Congilosi and Aga, 2021), pesticides (Govasmark et al., 2011), phar-
maceuticals and personal care products (Narumiya et al., 2013; Samaras 
et al., 2014; Malmborg and Magnér, 2015), phenols (Levén et al., 2012; 
Limam et al., 2013), salinity (Pawlett and Tibbett, 2015), microplastics 
(Weithmann et al., 2018), and persistent organic compounds including 
PAHs, phthalates, and dioxin-like compounds (Govasmark et al., 2011; 
Bhogal et al., 2016). The presence of these compounds can have negative 
effects on microorganisms (Levén et al., 2006; Chen et al., 2013; Lip-
ińska et al., 2014; Molaei et al., 2017; Al-Ani et al., 2019; Mahfouz et al., 
2020), but their influence on the soil microbiota due to digestate 

application is underexplored. Some studies have shown that pesticides 
and phthalates can stimulate microbial growth as the compounds pro-
vide an energy source to species able to utilise them (Iocoli et al., 2019; 
Osadebe et al., 2020; Zhang et al., 2020a). However, they can also 
inhibit the activity of other microorganisms (Baćmaga et al., 2018; Gao 
et al., 2020) and therefore will alter the microbial community structure. 

Digestate contains a consortium of microorganisms that are intro-
duced to the soil when applied, which can be negative in the case of 
pathogens and altering the native microbial community composition. 
Pathogen transfer is a particular concern for biogas facilities that supply 
digestate to multiple farms. To do so, they must meet quality assurance 
schemes set by governmental legislation, such as the EU's ECN-QAS or 
the UK's BSI PAS110. The thermophilic conditions of the anaerobic 
digestion process reduce pathogen load (Jiang et al., 2020; Nag et al., 
2019) compared to original feedstock and pre-or post- pasteurization 
further sanitize the digestate (Thwaites et al., 2013; Nag et al., 2019). 
Regarding digestate sourced microorganisms altering the soil microbial 
community, Coelho et al. (2020) observed that these microorganisms 
did not replace the native microbial populations and attributed this to 
two factors. Firstly, most digestate sourced microorganisms are obligate 
or facultative anaerobes and therefore cannot survive the aerobic con-
ditions in the soil surface and secondly that digestors operate at higher 
temperatures than those found in soil, which impacts growth and ac-
tivity. Fernández-Bayo et al. (2017) and Podmirseg et al. (2019) tested 
the establishment of digestate sourced microorganisms that can survive 
in the soil by applying digestate to sterilised and non-sterilised soil. They 
discovered that only in sterilised soils could the digestate-sourced mi-
croorganisms establish. 

3. The influence of anaerobic digestate on soil meso-organisms 

Very few studies have looked at how anaerobic digestate impacts soil 
meso-organisms. Meso-organisms contribute to the carbon and nitrogen 
cycles via herbivory on belowground plant and fungal structures (Zhao 
and Neher, 2014), predation (Murray et al., 2009) and fragmentation of 
plant litter (Song et al., 2020), such as recalcitrant plant fibres remining 
in digestate. These actions free up the carbon locked in complex plant, 
fungal and faunal bodies into smaller particles and compounds which 
microorganisms can utilise. Meso-organisms include a diverse faunal 
range including nematodes and small arthropods such as springtails and 
mites. However, of the studies found looking at meso-organisms in 
relation of digestate application to soil, only springtails, mites, and plant 
parasitic nematodes were investigated. 

The application of digestate had either no effect on springtails (Alves, 
2016; Pommeresche et al., 2017) or a positive effect on both springtails 
and mites (Platen and Glemnitz, 2016) over the course of multiple ap-
plications. Platen and Glemnitz (2016) observed a positive correlation 
between soil moisture and springtail abundance, with the liquid diges-
tate providing more water to the soil than a mineral nitrogen control. 
Yet, Pommeresche et al. (2017) observed a reduction in surface dwelling 
springtails shortly after liquid digestate application. This reduction may 
be due to elements or compounds in the digestate being toxic, as Renaud 
et al. (2017) observed depressive effects on springtail reproduction 
caused by cadmium and zinc. Digestate also contains a high concen-
tration of ammonium (Möller and Müller, 2012) which Domene et al. 
(2010) showed was the main reason for springtail mortality after sewage 
sludge application. This mortality may be due to an increase in soil pH 
beyond levels that springtails could tolerate, as observed by Maccari 
et al. (2020) under high doses of ammonium rich poultry litter appli-
cation. However, springtails produce multiple generations within a year 
(Badejo and Van Straalen, 1993), indicating that populations may well 
recover a few months after application. This ability to recover could 
explain why Platen and Glemnitz (2016) observed a positive effect on 
springtails, as the temporary negative effects may have been negated by 
more permanent beneficial changes in soil properties from digestate 
application. 
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Several studies have investigated the use of digestate on suppressing 
plant parasitic nematodes, as these cause considerable damage to 
important crops. Laboratory studies demonstrated reductions in the 
number of root knot nematodes (Jothi et al., 2003; Westphal et al., 2016; 
Wang et al., 2019; Das et al., 2022), and eggs produced by soybean cyst 
nematodes (Xiao et al., 2007) between digestate and non-digestate 
treated soils. Mechanisms proposed for the suppressive effects of 
digestate include: promoting populations of nematode suppressing 
bacteria (Westphal et al., 2016), nematicidal compounds from plants in 
digestate mixtures (Wang et al., 2019) or elevated ammonium and 
organic acids content produced from the digestion process (Min et al., 
2007). Xiao et al. (2007) compared ammonium enriched digestate 
against volatile fatty acid enriched digestate and observed the latter 
being more effective at reducing egg counts. However, the suppressive 
effects declined over time, and after 2 (Xiao et al., 2007; Wang, 2019) 
and 6 months (Westphal et al., 2016) from application no differences 
between treatments were found. This indicates that these nematodes are 
likely to produce multiple generations during their host plants' growing 
season, enabling their population to recover. Indeed, in an experiment 
growing mangolds, Westphal et al. (2016) observed an increase in 
nematode egg and cyst numbers in digestate treated soils compared to 
soils receiving no digestate after 5 months, despite a reduction early in 
the growth of the mangold. 

There is great difficulty in directly attributing the effects of digestate 
applications to changes in meso-organism abundances due to too few 
studies having been conducted (Table 5). Whilst the research here in-
dicates that meso-organisms living close to the soil surface are nega-
tively impacted, they can recover due to quick generation times and 
even be positively impacted in the longer term due to changes in soil 
properties caused by the digestate. However, both the number of studies 
involving meso-organisms and the number of meso-organism groups 
studied, are too small to make a scientifically robust generalisation. 
Much more work in this area is needed to properly understand the ef-
fects of digestate application on meso-organisms. This is a challenge due 
to the immense diversity of meso-organisms, but necessary to do as they 
are a key link in carbon and nutrient cycling. 

4. The influence of anaerobic digestate on soil macro-organisms 

Earthworms are the most studied soil macro-fauna in relation to 
impacts of anaerobic digestate application. Earthworms are considered 
ecological engineers (Lavelle et al., 1997); mixing of organic matter 
through the soil profile, aerating and improving soil fertility, increasing 
soil porosity, and breaking down organic matter into segments that 

other decomposers can utilise (Blouin et al., 2013). As such they are 
candidate indicators of soil health (Fusaro et al., 2018) and the reasons 
for selecting this group to determine the effect of digestate application 
on macro-organisms are logical. The majority of arable field experiments 
showed no significant change in earthworm abundance after whole 
digestate application (Bermejo et al., 2010; Clements, 2013; Frøseth 
et al., 2014; Johansen et al., 2015; Koblenz et al., 2015; Rollett et al., 
2020; Moinard et al., 2021). The overall lack of an effect may be due to 
the inherently low numbers of earthworms found in arable fields 
(Stroud, 2019) as Rollett et al. (2020) observed a decrease in earth-
worms abundance in a densely populated perennial ley field after 
digestate application. To understand the reason for this decrease, look-
ing at how digestate influences individual ecological groups of earth-
worms is necessary. 

Earthworms can be broadly defined into three ecological groups: 
epigeic, endogeic and anecic (Bouché, 1977), though species are found 
corresponding to multiple categories (Bottinelli et al., 2020). Epigeic 
(litter dwelling) earthworms actively avoided digestate amended soils 
where possible (Clements, 2013; Ross et al., 2017). Whilst endogeic 
(topsoil dwelling) did not express such clear avoidance behaviour (Ross 
et al., 2017), their biomass decreased after digestate application (Ernst 
et al., 2008; Bhogal et al., 2016). In contrast epi-anecic (subsoil dwelling 
who collect food from soil surface) earthworms responded positively to 
digestate application (Ernst et al., 2008). Digestate is commonly applied 
either to the top of the soil surface or shallowly injected, and the 
negative effects caused by digestate indicate the presence of potentially 
toxic constituents, such as high ammonium and salt contents, which 
were both found to contribute to greater earthworm mortality (Bhogal 
et al., 2016; Natalio et al., 2021). Epi-anecic earthworms can avoid these 
toxic effects due to their deep burrowing nature, although a small 
number were found dead shortly after digestate application as a result of 
being present in the surface soil immediately after application (Moinard 
et al., 2021). Overall, very few ecotoxicological tests have been done to 
understand the impact of digestate application on earthworms and there 
may be other factors involved. 

Digestate is applied to a rate of total nitrogen per hectare, to match 
the nutrient requirements of the crop, which can require high volumes of 
digestate to be applied. At a volume of 50/ha to supply 170kgN/ha, 
more dead earthworms were found compared to a lower volume of 25 t/ 
ha (Johansen et al., 2015). As such a method to mitigate earthworm 
mortality would be to reduce the application rate, which can be done by 
using a split application method where the crop is fertilised at two or 
more time periods during its growth. Another option is to alter the 
method by which digestate is applied, which is either broadcast, 

Table 5 
the effects of whole digestate application on soil mesofauna (springtails and nematodes) and macrofauna (earthworms).  

AD form / fraction Application rate Field site Sampling time post application Effect Authors 

Springtails 
Whole 147 kg N/ha Grassland 1.5 months No change in abundance Pommeresche et al., 2017 
Whole – Arable 4 months No change in abundance Alves, 2016 
Whole 196 kg N/ha Arable 1-6 months Increase in abundance Platen and Glemnitz, 2016  

Nematodes  Pot and plant    
Whole 300 kg NH4-N/ha Pot – None 3 months No change in abundance Wang, 2019 
Whole 120 kg N/ha Pot - Sugarbeet 6 months No change in egg / cyst count Westphal et al., 2016 
Whole 120 kg N/ha Pot - Mangold 5 months Increase in egg / cyst count Westphal et al., 2016 
Whole NH4

+ enriched 23.4-187.2 m3/ha Pot – Soybean 2 months No change in egg count Xiao et al., 2007 
Whole VFA enriched 23.4-187.2 m3/ha Pot – Soybean 2 months No change in egg count Xiao et al., 2007  

Earthworms 
Whole 140-167 kg N/ha Arable 2 years Non-significant increase in abundance Moinard et al., 2021 
Whole 120-250 kg N/ha Arable 3.5 years No change in abundance Rollett et al., 2020 
Whole 120-250 kg N/ha Grassland 3.5 years Decrease in abundance Rollett et al., 2020 
Whole 160 kg N/ha Arable 4 weeks Non-significant increase in abundance Koblenz et al., 2015 
Whole 71.9 kg N/ha Arable 6 weeks Non-significant increase in abundance Clements, 2013 
Whole 120 kg N/ha Arable 1 month Non-significant increase in abundance Bermejo et al., 2010  
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bandspread or injected. Investigation into the effects of these application 
methods on earthworm mortality has not been undertaken. Thirdly, it 
would be worth investigating whether transforming the physiochemical 
properties of digestate would influence its toxicity. 

5. Transforming anaerobic digestate 

5.1. Composting 

The high ammonium nitrogen content of digestate that makes it a 
good fertiliser has negative effects on micro- to macro-organisms as 
discussed previously, and on the environment through leaching and 
volatilisation (Nkoa, 2014). Transforming it through composting re-
duces these problems, with additional benefits such as reduction in 
pathogen contamination (Bustamante et al., 2012; Tambone et al., 2015; 
Subirats et al., 2022) and odours (Rincón et al., 2019). In order to be 
composted effectively, additional materials such as woodchips, corn 
stalks, or oyster shells as bulking agents, and, in the case of organic 
materials, to increase the C:N ratio are required (Zeng et al., 2016; Li 
et al., 2020; Lu et al., 2020). Usually, only the solid fraction is com-
posted, but the liquid fraction can be used to water compost piles 
(Bustamante et al., 2013; Vu et al., 2015). 

Applying composted digestate to soil had a positive and lasting effect 
on microbial abundance (de la Fuente et al., 2013) but it reduced the 
peak of microbial activity, compared to when solid digestate was 
applied, and lowered the amount of carbon that was mineralised. This 
dampening of respiration is because compost contains a higher amount 
of carbon that is resistant to decomposition, as the readily and semi 
degradable carbon has already been decomposed during the anaerobic 
digestion and aerobic composting stages. Maynaud et al. (2017) 
demonstrated that the solid fraction of digestate still contained a sub-
stantial amount of the easily accessible carbon of the digestate. As a 
result, the microbial biomass did not increase as much under composted 
digestate application compared to the application of the solid digestate, 
yet was still higher than the biomass in whole digestate or liquid 
digestate treated soils. Adding composted digestate to degraded agri-
cultural land had a positive influence on the soil microbial diversity 
(Caracciolo et al., 2015; Manasa et al., 2020). 

5.2. Additives 

Attention is being given to studying the effects of adding biochar into 
digestate to reduce environmental pollution risks from its application. 
Biochar is a material derived from the thermal decomposition of organic 
material in the absence of oxygen (pyrolysis), often using feedstock 
materials that are otherwise considered a waste product. Biochar is a 
high carbon and highly porous material and has been found to reduce 
N2O emissions (Dicke et al., 2015; Martin et al., 2015) and nitrate 
leaching (Plaimart et al., 2021) when applied with digestate. 

Multi-year field trials running between 1.5 and 4 years showed that 
the co-application of digestate with biochar had a positive effect on soil 
microbial biomass compared to soil receiving digestate only (Hewage, 
2016; Greenberg et al., 2019). This increase could be due to a variety of 
reasons. The biochar provides a surface for bacteria to adhere to (Hill 
et al., 2019), preventing them being leached by the liquid in the diges-
tate. Similarly, nutrients may sorb to the surface of biochar due to its 
high cation exchange capacity, which steadies the supply of nutrients 
delivered from the digestate and thereby increases the availability of 
nutrients to microbes over time (Zhu et al., 2017). The highly porous 
nature of biochar can increase the water holding capacity of sandy soils 
(Glaser et al., 2002), the soil texture used in both aforementioned 
studies, retaining moisture from sources such as the digestate and 
ensuring microorganisms have access to water during drier periods. The 
pH of biochar should also be considered. An alkaline biochar may offset 
soil acidification by digestate, thereby creating a more favourable 
environment for microorganisms, as Hewage (2016) observed that soils 

applied with digestate and a biochar of pH 8 had a higher soil pH than 
digestate treated soils by the end of their experiment. 

5.3. Nutrient recovery 

The recovery of nutrients from anaerobic digestate is of interest to 
the biogas industry as it reduces problems of storage and cost of trans-
porting the bulky liquid material. Techniques are being investigated to 
remove nutrients which can then be applied to soils as a fertiliser. 
Methods can be physical, such as drying or filtering the digestate to 
concentrate the nutrients and clean the water for safe disposal or reuse 
(Knoop et al., 2018; Chiumenti et al., 2013). Chemical methods include 
ammonia stripping to recover nitrogen (Liu et al., 2015; Zarebska et al., 
2015), the formation of struvite crystals to capture phosphorous and 
nitrogen (Zhang et al., 2020b; Muhmood et al., 2019), and the use of 
materials such as biochar or zeolites that have a high cation exchange 
capacity to absorb nutrients (Kocatürk-Schumacher et al., 2017; Shep-
herd et al., 2016). Biological methods include reed beds and algae 
runways (Nielsen and Stefanakis, 2020; Díez-Montero et al., 2020). 

These techniques are mostly in the early stages of development 
(Khoshnevisan et al., 2021; Shi et al., 2018; Logan and Visvanathan, 
2019) and their effects on soil biota is not a primary research concern. 
However, a similarity with all these products is the zero to very low 
carbon content, or in the case of biochar highly recalcitrant carbon. 
Therefore, it can be conjectured that the application of these products 
will have indirect benefits to soil microbial community should they 
stimulate crop yield, with bigger crops equalling more roots for 
decomposition as well as triggering nutrient mining by plants through 
increased exudates. Sorbent materials such as zeolites and biochar 
positively influence microorganisms involved in nitrogen cycling (Cos-
tamagna et al., 2020; Karličić et al., 2017). Yet these benefits may be 
outweighed by any significant changes in the soil physiochemical status, 
particularly pH. Nitrogen based fertiliser has been shown to acidify soils 
(Pan et al., 2020). P-struvite crystals may increase levels of magnesium 
to above optimum, turning this essential metal toxic (Gell et al., 2011). 
Being of organic material origin there are also potential toxic elements 
in biochar based on its feedstock and pyrolysis process that can have 
subsequent negative effects on the soil biology (Godlewska et al., 2021). 

Unlike chemical and physical nutrient recovery techniques, biolog-
ical nutrient recovery methods may be most promising for benefiting 
soil microbes. Algae grown in a digestate substrate can be processed and 
used as a biofertiliser (Hussain et al., 2021; Solovchenko et al., 2016). 
The application of algae as a fertiliser has been shown to have positive 
effects on the microbial biomass in the soil (Marks et al., 2019). When 
applied as necromass, the algae cells decompose and release nutrients 
and carbon into the soil, providing resources to support microbial 
growth. Living algae are also applied and can contribute to microbial 
biomass growth in multiple ways, which include the following. Firstly, 
some algae such as cyanobacteria can grow in the soil and directly add to 
the abundance (Perin et al., 2019). Secondly, algae produce extracel-
lular polysaccharides, which provide a carbon source to other microbes 
(Marks et al., 2019). Thirdly they may be able to ameliorate soil pollu-
tion (Subashchandrabose et al., 2011) and improve conditions for soil 
microorganisms. The application of algae as a nutrient recovery tech-
nology is facing challenges for implementation, such as digestate 
turbidity and algae biomass processing (Xia and Murphy, 2016). 

6. Conclusion and future research requirements 

The addition of anaerobic digestate to soil has variable effects on the 
soil biota (Fig. 2) and long-term research is needed to understand the 
cumulative effects of repeated digestate application on soil organisms. 
Digestate can be altered by physical separation to liquid and solid 
fractions. Evidence from the reviewed literature suggests that the solid 
fraction of digestate has positive effects on all groups of soil microor-
ganisms. The liquid fraction only slightly benefits bacteria and 
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negatively affects mycorrhizal and saprophytic fungi. Digestate in its 
whole form negatively affects litter surface dwelling springtails, nema-
todes and earthworms, though these effects are reduced for organisms 
that inhabit deeper layers of soil. The negative effects of digestate on soil 
organisms are due to a combination of factors including, but not limited 
to; (i) lack of carbon supplied to support growth, (ii) toxicity due to 
ammonia and contaminant content, and (iii) changes to habitat condi-
tions caused by shifting soil pH. 

The focus of biogas production should include optimisation of 
digestate quality for fertiliser use, without detrimentally effecting biogas 
production. Plant operators can separate the digestate for fertiliser use 
to reduce handling costs or add materials such as biochar to the digestate 
to improve the retention of nutrients in the soil. Digestate can be sta-
bilised by composting, reducing its toxicity and the negative environ-
mental impacts such as nutrient losses at application, and positively 
benefiting soil microorganisms. In all cases research needs to be done to 
understand the long-term effects of these digestate products on soil 
organic matter, including the life within, which underpins all soil pro-
cesses necessary for productive crop growing. By ensuring that anaer-
obic digestate promotes the development of soil organic matter and 
functioning of soil biota, biogas facilities can provide farmers with a 
sustainable alternative to mineral fertilisers. 
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