
Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 1

Multi-Level Design of Process-Oriented Enterprise Information
Systems

Essential Guidelines and two Case Studies based on the FMMLx and
the XModelerML

Ulrich Frank*,a, Tony Clarkb

a Universität Duisburg-Essen, Germany
b Aston University Birmingham, United Kingdom

Abstract. This paper presents prototypical multi-level models of two uses cases. They comprise models of
business processes and models that represent the context required to execute a business process. On the one
hand, the context consists of the organizational units that are responsible for the execution of processes.
They are represented by a model of organizational structures. On the other hand, the context includes the
artifacts that are needed or manipulated by processes. The models serve to demonstrate the specific power
of multi-level modeling. First, they integrate models on higher levels, which correspond to domain-specific
modeling languages, with those on lower levels. Second, models are supplemented with objects on L0 to
demonstrate how these can be integrated. Third, the models are executable without the need to generate
code, since models and corresponding program code share the same representation, thus demonstrating the
possibility of advanced application system architectures, which allow users to navigate a comprehensive
representation of the system they work with at runtime. The presentation of the models is supplemented with
a general evaluation of multi-level concepts. The design of the models was inspired by the EMISA process
challenge. Therefore, they are evaluated against the requirements defined with the challenge. In addition, a
challenge is discussed that goes beyond the challenge, that is, the design of multi-level models of behavior.

Keywords. DSML • information system architecture • modeling productivity • executable models • models
at runtime

Communicated by Peter Fettke. Received 2022-04-08. Accepted on 2022-05-03.

1 Introduction

Research on multi-level modeling has produced
a considerable number of relevant contributions.
This applies to specific languages and tools (Atkin-
son and Kühne 2008; Frank 2014b; Jarke et
al. 1995; Kühne and Schreiber 2007; Lara and
Guerra 2010; Macías et al. 2018; Neumayr et al.
2009, 2018; Volz 2011) as well as to their ap-
plication (Frank 2016; Igamberdiev et al. 2016;
Jeusfeld 2019; Kaczmarek-Heß and Kinderen

* Corresponding author.
E-mail. ulrich.frank@uni-due.de

2017; Kinderen and Kaczmarek-Heß 2020; Lara
et al. 2014; Rossini et al. 2015; Selway et al. 2017).
Comparing the approaches is sometimes difficult
because of their complexity and the fact that ter-
minology is not yet unified. However, in order to
achieve a comprehensive assessment of the current
state of research, a differentiated comparison of
the approaches combined with an analysis of es-
sential commonalities is of central importance. At
the same time, exemplary applications are needed
to illustrate the potential of multi-level modeling
over traditional approaches. The MULTI chal-

http://dx.doi.org/10.18417/emisa.17.10
ulrich.frank@uni-due.de


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

2 Ulrich Frank, Tony Clark

lenges that started in 20171 provide an excellent
opportunity to support both objectives (cf., e. g.,
(Jeusfeld 2019; Mezei et al. 2018; Rodriguez and
Macias 2019; Somogyi et al. 2019)).

This paper was prepared as a contribution to the
EMISA process challenge, which is an updated
version of an earlier MULTI process challenge
(Almeida et al. 2019). The organization of this
contribution follows the guidelines published with
the process challenge. However, the solutions
presented in this paper go well beyond the require-
ments specified with the challenge in parts, which
makes a direct comparison with other solutions dif-
ficult. Therefore, the editors have recommended
that this contribution should not be included in
the challenge special issue in this form. For this
reason, it appears in a regular issue. Nevertheless,
three measures were taken to foster the comparison
with other solutions. First, a thorough analysis
of the requirements defined with the challenge
is presented to show why a few details of the
requirements haven been adapted. Second, the
paper includes a comprehensive assessment of the
presented models against the requirements defined
with the challenge. Finally, we give an overview
of those aspects of the presented solution that we
decided should go beyond the challenge in order to
demonstrate the potential of multi-level modeling
more clearly. In addition, the paper includes a
supplemental section where we present prelimi-
nary ideas on how to design multiple levels of
process models. We account for all aspects of the
requirements defined for the challenge.

The following guidelines identify key aspects
for those readers who are not interested in specific
details of the solution and, therefore, might be
offended by the extent of the paper. The details
of the language architecture and the tools pre-
sented in Sect. 2 can be omitted by readers who
are primarily interested in the presented solution.
This is the case, too, for the code fragments and
constraints shown in the paper. It should be suffi-
cient for those readers to look at the overview of

1 https://www.wi-inf.uni-duisburg-
essen.de/MULTI2017/#challenge, accessed on 2022-02-20

language concepts and the corresponding notation
shown in Fig. 2, which is also suited as a reference
when studying the models presented in the paper.
The discussion of selected requirements in Sect. 3
is relevant for understanding specific aspects of
the proposed models. For readers who aim at de-
veloping a more general understanding it should
be sufficient to refer to the requirements presented
with the challenge. We recommend reading the
design guidelines presented in Sect. 4.1, because
they provide the foundation for most of our de-
sign decisions. Fig. 5 gives an overview of the
architecture of the presented multi-level model. It
serves as an additional guideline for selective read-
ing. Readers who are interested in the software
development case only may omit those figures and
related sections (4.2.3, 4.3.2, 4.4.4) that focus on
the insurance case – et vice versa. The evaluation
of the presented solution includes a comparison
with traditional language architectures that can be
omitted by readers who are familiar with multi-
level modeling. Finally, in Sect. 6 we discuss a key
aspect of process modeling, namely the creation
of multi-level models of behaviour. We would
hope that it is especially relevant for those readers
who are interested in enriching process modeling
languages with abstraction.

2 Background: Language, Tool and
Terminology

Our contribution to the challenge is designed with
the FMMLx and implemented with the language
engineering and execution tool XModelerML .
Both have been described in various publications
already. Therefore we will give a brief overview
only. We will also describe core concepts of
the terminology we use, since there is still lack
of a unified terminology for multi-level model-
ing. Also, an overview of the terminology should
support those readers that are not familiar with
multi-level modeling to better understand the pre-
sented models.

2.1 Notes on terminology
Every class in a multi-level model is an object at
the same time since it has state and can execute

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 3

operations. Creating a class from its metaclass
corresponds to instantiation, but is not the same,
because not all of its properties are instantiated di-
rectly. Instead, the instantiation of some features,
which we refer to as intrinsic, may be deferred.
Therefore, we follow a suggestion made by Neu-
mayr et al. (Neumayr et al. 2009; Neumayr and
Schrefl 2009) and speak of concretization. Ac-
cordingly, the act of classifying objects is different
from traditional object-oriented language archi-
tectures like the one advocated by the MOF. To
express this difference, we speak of intrinsic

classification in the case of multi-level mod-
els. Intrinsic features in the FMMLx comprise
attributes, operations, associations and constraints.
Associations may be defined between classes at
different levels.

While the term “level” is of essential relevance
for multi-level modeling, it still lacks a unified
definition (Kühne 2018). We use a pragmatic ap-
proach here and regard a level as being comprised
of classes that allow the same number of con-
cretization steps until the lowest level is reached.
To distinguish this concept of level from the levels
proposed by the MOF, we use the denominator
“L” instead of “M”, e. g. L2 instead of M2. There
are different approaches in use to specify levels.
Some approaches assign a level directly to a class
(Atkinson and Kühne 2001; Frank 2014a). While
levels are usually expressed by numbers (either
starting at the bottom or at the top), they may
also be represented by terms that are supposed
to clearly symbolize the intended level of classi-
fication (Neumayr et al. 2009). We use integers,
starting with 0 at the lowest level. Other ap-
proaches favor an implicit definition of levels, cf.
(Balaban et al. 2018; Jácome-Guerrero and Lara
2020). All these approaches have in common that
a level corresponds to a certain value of an explicit
or implicit ordinal scale.

We refer to the tree of classes that are con-
cretized from a class and its concretizations as a
“concretization subtree”. We call an object O that
is concretized (or instantiated) from a class which
in turn is concretized from a further class and so

on to a class A a descendant of A. Accordingly,
we call A an ancestor of O.

The upcoming new version of the FMMLx also
allows for contingent level classes, that is, classes
the level of which may depend on their usage con-
text. Similar approaches to increase the flexibility
of multi-level models are presented in (Neumayr
et al. 2018) and (Guerra and Lara 2018). However,
we did not need contingent level classes for the
models presented in this paper. With respect to
processes we use the terms “activity” and “task”
synonymously.

2.2 Language and Tool
The models presented in this paper were created
with the Flexible Multi-Level Modeling and Ex-
ecution Language (FMMLx ), (Frank 2014b). It
is specified through an extension of XCore, the
meta model of the multi-level language engineer-
ing environment XModeler (Clark et al. 2015a,
p. 40). As a consequence, the FMMLx is im-
plemented in the XModeler, which resulted in
a new version of the tool, the XModelerML

2 .
In addition to using a multi-level modeling en-
vironment, the contribution also builds on pre-
vious work on DSMLs for enterprise modeling,
in particular on the meta-model that specifies
a language for business process modeling, the
MEMO OrgML (Frank 2011b). The metamodel
that defines the abstract syntax and semantics
of the MEMO OrgMLwas originally specified
with the MEMO meta-modeling language (Frank
2011c), which is not a multi-level language. The
model of the relevant organizational context is, in
part, a multi-level reconstruction of the MEMO
OrgML for modeling organizational structures
(Frank 2011a).

The XModeler is a language engineering work-
bench whose core language is both reflexive and
extensible. In this way, the XModeler is both an
instance of itself and a basis for defining a wide

2 The XModelerML as well as various screencasts that
demonstrate the use of the tool are available on the web
pages of the project LE4MM (Language Engineering for
Multi-Level Modeling): https://www.wi-inf.uni-duisburg-
essen.de/LE4MM/

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

4 Ulrich Frank, Tony Clark

range of co-existing language variants. FMMLx is
an example of such a variant.

The XModeler core is an object-oriented “super-
language” (Clark et al. 2015b) called XOCL whose
class-based type system is called XCore that sup-
ports the creation of classes on any level. Classes
are also objects and the level of a class is com-
puted dynamically on demand depending on its
use. The design of the FMMLx was based on the
assumption that in most cases the level of a class
is relevant for its proper interpretation. Therefore,
a class created with the FMMLx has a particular
level that cannot be changed (except for classes
that are explicitly defined as level-contingent).
Like other multi-level modeling languages, the
FMMLx allows for an arbitrary number of levels.

FMMLx is implemented as an extension of
XCore as shown in Fig. 1. Attributes isIntrinsic

and instLevel are added to XCore classes in or-
der to represent features (attributes, operations),
whose instantiation is deferred to lower levels.
For intrinsic associations the instantiation levels
can be defined separately for both participating
classes (specified with instances of End). The at-
tribute isCore serves a specific model management
purpose that is of no further relevance.

To enable explicit levels, there is need for spe-
cific instantiation operations and for storing a level
with every object. This is achieved by extending
XCore with two specific classes. MetaAdaptor,
which is instantiated from the XCore class Class,
and inherited from it as well, serves the definition
of two specific instantiation operations. The oper-
ation new() overrides new() in Class. It concretizes
an object from a class on level n and assigns it the
level n-1. In addition, the operation newAtLevel(l:

Integer) allows the creation of an object on a
specific level. The MetaClass serves the execution
of the instantiation operations. It also includes the
attribute level that is inherited to all objects in is
concretization subtree.

In addition, MetaClass includes various generic
operations, which in part override corresponding
operations in Class, such as allInstances(). Note
that the attribute lastUpdated was added especially
for the challenge (see requirement P19 in Tab. 1).

It is inherited to all classes in the concretization
subtree of MetaClass. Therefore, a correspond-
ing slot is available in every object that is part
of an FMMLx model. Note that the name of the
attribute is not shown with the representation of
a class in a diagram. That corresponds to other
generic properties like “name” or “allInstances()”.
The corresponding slot value can be shown in a
diagram upon user request. In general, this mono-
tonic extension mechanism allows the definition
of new properties that apply to all classes without
the risk of side-effects.

The FMMLx also features delegation as a spe-
cific kind of association. Within a delegation
association, one class serves as delegatee class,
the other as delegator class. Every message an
instance of the delegator class receives that does
not correspond to any of the operations offered
by it is forwarded transparently to instance of the
delegatee class it is linked to.Through its imple-
mentation with XCore, the FMMLx is executable.
Unlike traditional model editors such as UML
editors, the objects that implement a model in
the editor are not located on M0, but on the level
they represent conceptually, thereby allowing for
a common representation of program and model,
where code, diagrams, and further representations
are different views on the same system. As a
consequence, there is no need to generate code
and to bother with synchronisation of model and
code.

FMMLx levels are distinguished by different
shades of blue. The darker the shade of blue
shown as the background of a class name the
higher the level it indicates. In addition, the level
is indicated through the respective number printed
in gray. The diagram in Fig. 2 serves the de-
scription of the notation and the illustration of
essential language concepts. It also demonstrates
that multi-level modeling editors overcome tradi-
tional boundaries between modeling language and
model. Every class that is created with the model
editor is a concept of the multi-level language
at the same time. Therefore the palette, which
is fixed for traditional languages, is dynamically
adapted during the creation of a model. That

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 5

doc: String

id: String

Doc

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

0,*0,*

0,*
0,*

0,*

Interface Layer

0,1

0,1

1,1

2,2

1,10,*

extended features

0,*

0,*

uinherits from

0,*

0,*

level: Integer

MetaAdaptor

new(): Element

newAtLevel(l: Integer): Element

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

u

part of

u

part of

u

part of

u

part of

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

CollectionMult

type: AssocType

Association

new() : Object

name: String

isAbstract: Boolean

Class

Object

edit(): Element;

getProperties(): Element

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

2,2

0,*

instantiated from

inherits from

contingent levelallInstances() : Seq(Element)

level: Integer

MetaClass

instantiation method 

for FMML
x
 classes

Meta class for 

instantiating FMML
x
 

classes

body: String

isIntrinsic: Boolean

instLevel: Integer

Constraint

level: Integer

singleton: Boolean

lastUpdated: Date

allInstances(): Seq(Element)

XCore (and Extensions)

Figure 1: Meta model of the FMMLx and its relation to XCore

corresponds to the natural process of developing
a common technical language in a project. Such a
process will usually build on generally accepted
concepts as they are, e. g., defined in textbooks.
Those are usually refined to more specific concepts
that fit specific aspects of the domain. Eventu-
ally, the concepts are used to classify particular
objects, and to refer to those. The latter aspect
is also accounted for in the FMMLx . A model
may include objects on L0. Objects on L0 will
usually not qualify as a conceptual abstraction.
Nevertheless, it can be very useful to integrate
them with the conceptual model they are based

on. Such an integration does not only promote
reflection of objects on L0 (and above), that is,
asking them for their class, metaclasses, etc., it
also opens the possibility to change those classes
during runtime, which, of course, recommends
a very cautious approach especially to deleting
parts of a model.

The example model in Fig. 2 also shows that
the classes of a model may be defined on different
levels. While classes like Person or Employee are
located on L1, the class Product, also instantiated
from MetaClass, is on level 3. This corresponds
directly to the structure of natural languages or,

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

6 Ulrich Frank, Tony Clark

more precisely, of the use of language in domains
of discourse. Some concepts, like person, repre-
sent common, rather general knowledge that is
sufficient for a given purpose. Therefore there
will often be no need to refer to more general
terms (like, e. g., animate being) or to account for
more specific ones (like, e. g., teenager). At the
same time, more elaborate discourses may require
distinguishing between terms on different levels of
abstraction. If, e. g., product managers talk about
products, they need to distinguish more general
uses of the term from more specific ones.

Since every class in the model is an object, it
may have a state. The values of the corresponding
slots, like amount in i1, can be shown in the diagram
if this option is selected. The values produced
by operations can be shown in the diagram, too,
e. g., invoiceTotal(). The diagram gets updated
as soon as the model changes. A class can be
assigned constraints, the evaluation of which can
be deferred to a specific level. If a constraint
is violated, a constraint report is presented with
the affected object. Note that the example is
by no means related to the challenge. It serves
illustration purposes only.

Every model with classes above L0 can be con-
cretized (or instantiated respectively) within the
XModelerML . That implies that objects which are
concretized/instantiated from two classes that are
associated need to be linked. Otherwise the corre-
sponding model could not be executed. Therefore,
associations need to be defined as unidirectional
or as bidirectional, which is indicated by the di-
rection of the edge that represents an association.
Depending on this definition, uni- or bidirectional
references are created. Furthermore, associations
can be defined as intrinsic. Each of the two classes
involved in an intrinsic association can be assigned
a specific instantiation level. For example, the
association referstTo between InvoiceItem on
L1 and Product on L3 is to be instantiated on
L0, which means that on L0 concretizations of
InvoiceItem are linked to descendants of Product.
Note that it is also possible to associate/link classes
at different levels. Links represent instantiations
of associations, that is, they link objects that were

concretized from the classes that participate in an
association. The designator of a link as well as
the navigability correspond to the definition of the
association it was instantiated from. The diagram
editor is equipped with filters that allow to define
what parts of a model are shown in a diagram.

As soon as an attribute or association is speci-
fied, the XModelerML generates access operations.
Operations can be specified and compiled either
within the model browser or within specific editors
available with the diagram editor. The following
example shows the XOCL code to implement the
operation invoiceTotal() of the class Invoice. To
support users with a clear arrangement of dia-
grams, the tool allows to selectively hide certain
model properties such as, e. g., methods, access
methods or inherited properties. Note that in all
diagrams shown in this paper, generated access
methods are faded out.

The following example serves to illus-
trate the implementation of operations within
FMMLx models:

c o n t e x t Invoice
@Operation invoiceTotal[monitor=true ]():
Float
l e t sum = 0
i n @For i i n self.getInvoiceItem () do

sum := sum + i.itemTotal ())
end;

sum
end

end

Since not every execution of an operation re-
quires updating an object diagram, monitors can be
defined that update the diagram upon the execution
of certain operations. This is done by including
“[monitor=true]” in an operation’s definition. The
effect is shown in Fig. 2, e. g., with the visualiza-
tion of the value computed by invoiceTotal() of
the object invoice1.

The XOCL also serves the specification of con-
straints. A constraint is defined as a boolean
expression and a corresponding constraint report
that is presented in case a constraint fails. The
following example illustrates the specification of
constraints:

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 7

Level

Delegation
Instantiation Level

Slot Value

Constraint Report

Constraint
Operation Value

Palette

link

Specialization

View Filters

Derived Attribute

navigability

Reading direction

Figure 2: Example object model created with the FMMLx

c o n t e x t Invoice
@Constraint limit
self.invoiceTotal () <= 5000
r ea son : "Total amount of invoice must
not exceed 5000."

end

The XModelerML gives its users the choice be-
tween different kinds of model representations.
As an alternative to the diagram editor, or in addi-
tion to it, various browsers are provided that allow
navigating and changing a model. Fig. 3 shows an
instance of the model browser that is opened on
the same model as the diagram in Fig. 2.

In addition to the data types that are provided
by the XModelerML , the FMMLx is supplemented
with an extensible set of auxiliary types such as
monetary values or currencies and enumeration
types that comprise of an ordered collection of
values to characterize specific properties. Ad-
vanced users may also use a console that allows to
inspect and manipulate objects using the XOCL.
References to objects in a model can either be
established through global variables or by specify-
ing the path from the system’s root to the targeted
model.

3 Case Analysis

This section serves a brief analysis of the cases
presented in the challenge. Note that we shall
comment on those aspects only that leave room for
interpretation, not on all requirements described
in the challenge:
P4: The term “actor” represents a versatile ab-
straction that may relate to persons or machines.
P4 indicates that it is intended to represent people.
However, P5 recommends a slightly different in-
terpretation: an actor represents the holder of a
position or an organizational role. In most cases,
an actor will be an employee. We decided for
this interpretation for two reasons. First, it corre-
sponds more clearly to the technical terminology
of organizational design. Second, it enables a
more elaborate definition of organizational assign-
ments, since it distinguishes between permanent
organizational units (positions) and temporary
responsibilities (roles).
P5: corresponds to the comment on P4.
P6: Accordingly, this requirement would be trans-
lated into: “A task type may alternatively be

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

8 Ulrich Frank, Tony Clark

Figure 3: Illustration of the XModelerML model browser

assigned to a particular set of positions that are
authorized ...”.
P7: While a decision can be regarded as an artifact,
we prefer conceptualizing it as a set of alternative
events with additional information regarding the
type of a decision.
P9: While seniority is a common concept, it is not
obvious how to interpret it in this context. One
could think of the total time a person was employed
or the time she served in a particular position or
role. Both options as well as a combination of
both can make sense. However, we assume that
seniority is captured through specific position
types such as “senior manager”, “project leader”,
or “financial officer” (which are mentioned in the
challenge) and, possibly, additional ones, e. g.,
“senior developer”.
P14: The requirement to instantiate each artifact
type in every activity (task) seems too restrictive.
If a customer order is passed from one process
activity to another this requirement would lead to

useless instantiations. However, we assume that it
can be useful to define for specific task types that
their instances are supposed to create instances of
specific artifact types.
P15: We interpret this requirement as follows: an
actor may hold a position and additional roles.
P16: In a strict sense the technology we use does
not satisfy this requirement because every object
(or class) is of one class only. The language we
use does not support multiple generalization.
P18: While this requirement makes sense in many
cases we would be reluctant applying it in general.
There may be cases where a lower level manager is
authorized to perform tasks that require a specific
technical competence such as deploying a new
version of a database schema. It is not neces-
sarily a good idea to grant a senior manager the
authorization to perform any task a lower level
manager is authorized to support. In addition there
is no connection between instances of a subclass
and instances of a corresponding superclass. If

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 9

the class Senior Manager is specialized from the
class Manager, and Manager is associated with a
class Product to express that instances of Manager

are linked to those products (or product types,
if Product is on a classification level > 1), for
which they may define prices, then an instance
of the Senior Manager would have no link to that
instance of Manager. Therefore, it would not be
clear, what authorization to “inherit”. But even
without associations, specialization would com-
promise system integrity. If, e. g., an upper limit
for salaries of managers is defined with Manager,
the corresponding assertion: “Every manager has
a maximum salary of x” would need to hold for
every senior manager, too, but very likely should
not. As a consequence we handle this requirement
with care.
S3: The task Coding should have a reference to
code. Since code must reference the programming
language in which it was written (S4), we assume
that no further, redundant references from Coding

to programming languages are required.
S7: This might reflect a rule that is valid in
a certain time frame but it hardly qualifies as
a constraint that should be built into software
because that would require a program modification
when Ann Smith leaves the company or somebody
else is authorized to write COBOL code. Our
approach to satisfy this rule is to reformulate it:
Only developers who master COBOL are allowed
to change COBOL code. That would imply that
Ann Smith is currently the only developer that
masters COBOL.
S11: Since Bob Brown is an analyst we assume
that analysts in general may design tasks.
S13: We follow the guideline and assume that
S13 overrides S2.

It is not defined which role or organizational
unit performs the design activity. We assume that
holders of the position “Designer” are responsible
for that activity.

4 Model Design
The design of the proposed solution is separated
into two parts. The first part provides the multi-
level context for the process models including

the organizational structure and artifacts that are
consumed and produced by processes. The second
part provides models for the software engineering
process and the claims handling process.

4.1 General Orientation and Essential
Design Guidelines

The design of multi-level models integrates what
is traditionally regarded as conceptual modeling
with the design of modeling languages. In other
words, there is no strict dichotomy between lan-
guage and language application. While such an
approach may seem odd to those who take the
traditional approach for granted, it is actually an
obvious reflection of how technical languages are
organized in advanced societies. As shown in
Fig. 4, a field of expertise is typically character-
ized by a general terminology as it is described
in text books that give an overview of the entire
field. While concepts on this level are useful,
that is, can be reused in a wide range of specific
cases, they will often not be elaborate enough to
satisfy specific needs. They require refinement
for more specific technical languages. This kind
of refinement can be repeated step by step until a
level of specificity is reached that fits a particular
use case. Such a language hierarchy combines the
benefits of a wider range of reuse on the higher
levels with a higher degree of productivity on
the lower levels where lower levels benefit from
reusing concepts on higher levels. This idea of
language levels serves us as an orientation for
the design of multi-level models. Therefore, we
introduce various concepts on higher levels that
are not explicitly mentioned in the challenge. It
is, of course, possible to represent a concept like
manager as a class on M1 that is instantiated
from a generic metaclass on M2. However, that
would require defining it from scratch. Instead,
we suggest defining it by re-using more general,
but still domain-specific concepts like position,
management position, process manager, etc., to
constribute to modeling productivity (for those
you need to specify a certain kind of management
position) and model integrity. Different from a
generic metaclass, a domain-specific metaclass

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

10 Ulrich Frank, Tony Clark

guides with the specification of more specific
classes and prevents nonsensical specifications to
a large degree. Note that the example in Fig. 4 re-
lates to concepts relevant for the challenge, it does
not anticipate the solution that we shall present
later.

The design of a multi-level model is in general
more demanding than the design of a traditional
one level model. At the same time, there is lack of
a comprensive method for designing multi-level
models. De Lara and Guerra present design pat-
terns for guiding the creation of multi-level models
with regard to specific problems (Lara et al. 2014).
Kühne proposes “sanity checks” that are based on
a more formal analysis of models with specific
emphasis on guiding a proper conception of level
(Kühne 2018). According to our experience, it
requires multiple loops to refine classes and their
levels. Apart from that we use a few guidelines to
support the required design decisions. They corre-
spond to those presented with the design method
in (Frank 2021). The following two guidelines are
of specific relevance. They are adapted from more
general guidelines that apply to the construction
of any conceptual model:
Design principle 1: Specify known knowledge
on the highest possible level within the scope of
your project. Rationale: The representation of
knowledge on level l that could be represented on
a level m with m > l creates the risk of conceptual
redundancy, which in turn compromises integrity
and adaptability. It is important, though, to deter-
mine the highest possible level within the scope
of a particular project, instead of aiming at the
highest level in general.
Design principle 2: The higher the level of a
class, the more invariant it should be. Rationale:
In general, it is advisable to design classes on any
level in a way that they are widely invariant during
the life time of a system. However, the future
of a domain may be hard to predict. The higher
the level of a class, the more other classes are
affected by its modification. Thoroughly check
all properties of a class C in case they apply to
possible future classes on levels below that of C.

These guidelines are specific to the design of
multi-level modeling:
Design principle 3: The design of a multi-level
model recommends combining a top-down with
a bottom-up approach. Rationale: Our experi-
ence with the design of multi-level models has
shown that modelers have different preferences
and abilities regarding the concepts they start with.
When thinking about the targeted domain, some
associate higher level concepts at first, while other
look for more concrete examples. In both cases,
it is important to develop a hierarchy of concepts,
which, at first, is created by using “is a” relation-
ships only. During the course of model design, it
is usually required to combine both approaches
to iteratively assess and revise a given state of a
model. Finally, “is a” relationships have to be
disambiguated, which will eventually result in the
construction of levels. Note that most modeling
tools, including the XModelerML , do not directly
support a bottom-up approach, since they require
the class of an object to exist before it can be
created.
Design principle 4: “Fake” levels should be
avoided. If a class does not include any property
that is instantiated on the level below, it should be
modeled as a superclass. Rationale: There is clear
semantic difference between generalization and
intrinsic classification. That distinction would
get blurred if clear cases of generalization are
modelled as intrinsic classification. Note that this
guideline will not exclude modeling a class as an
intrinsic metaclass instead as a superclass if only
foreseeable future changes may lead to properties
that are to be directly instantiated. For example, it
may seem appropriate at first to abstract the two
classes Printer and Scanner into the common su-
perclass PeripheralDevice. However, if we know
that in the near future each product category (like
printer and scanner) will be assigned a specific
international category id, that would justify mod-
eling PeripheralDevice as intrinsic metaclass of
the two other classes.

The specification of business process models
requires accounting for the relevant context. Pro-
cesses make use of artifacts, which they may use

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 11

Organisational Unit

Position

Department

Team

Market Analyst

Marketing 
Department

Quality Circle 
Product PG 1

Market 
Analyst MA2

Market 
Research Team

Committee

Quality Circle

Department 
of Physics

Dean of Dep. 
of Physics

Physics Faculty 
Council

Department

Institute

Dean

Faculty Council

Rector’s 
Office

D
SM

L
„t

ex
t 

b
o

o
k“

„l
o

ca
l d

ia
le

ct
“

„l
o

ca
l 

n
am

es
p

ac
e“

ra
n

ge
 o

f 
re

u
se

P
ro

d
u

ct
iv

it
y 

o
f 

re
u

se
Dean of Dep. 

of Physics

Ann Smith

Market 
Analyst MA2

Tom Hutton

Figure 4: Illustration of levels in natural language

or create/manipulate. Furthermore, business pro-
cesses will usually require the participation of
human actors within an organizational setting. Ac-
cordingly, there is need to model organizational
structures and artifacts in addition to the two pro-
cess models. The design of the multi-level model
presented in this paper reflects the idea shown in
Fig. 4. Therefore, each domain, process, orga-
nizational structure, and artifact, is represented
in a multi-level model. In each case, the highest
level represents text book level knowledge, which
is, step by step refined into more specific models.
Fig. 5 gives an overview of the model components
that form the overall contribution to the challenge.
Since the process models refer to the context mod-
els, we shall start with the presentation of the
context models. The presentation of all models
follows a common structure. At first, we introduce
core concepts. Subsequently, we discuss those

design decisions that seem to be of specific rele-
vance. Finally, if that is the case, we will discuss
further issues such as specific lessons learned.

4.2 Organizational Context
The models of organizational structures we pro-
pose go in part beyond the requirements of the
challenge. This is for two reasons. First, we regard
it as an implicit request related to the design of
multi-level models in general to account for reuse.
That recommends developing abstractions that are
suited to cover further possible use cases. Second,
the meaning of an organizational unit depends on
its relation to other organizational units. That may
require modeling organizational units that are not
explicitly mentioned in the challenge.

4.2.1 General Concepts
Core Concepts: An organizational structure con-
sists of organizational units and relationships be-
tween these units. Relationships comprise ag-

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

12 Ulrich Frank, Tony Clark

Generic Process Model

Software 
Development Process

Claims Handling 
Process

Instantiations Software 
Development Process

Instantiations Claims 
Handling Process

Generic Organizational Structure

Org. Structure 
Software Firm

Org. Structure 
Insurance Company

More Specific Organizational Structure

Instantiations of Org. 
Structure Software

Instantiations of Org. 
Structure Insurance

Generic Artifacts

Artifacts Software 
Firm

Artifacts Insurance 
Company

Instantiations of 
Artifacts Insurance 

Instantiations of 
Artifacts Software 

concretized from

uses (software case)

Fig. 6

Fig. 7

Fig. 9 Fig. 8

Fig. 9 Fig. 8

Fig. 12

Fig. 20 Fig. 16

Fig. 17

Fig. 10

Fig. 11

Fig. 11

Fig. 10

Fig. 10

Fig. 13

uses (insurance case) uses (generic context)

Figure 5: Structure of the overall multi-level model

gregation and, possibly, different kinds of line
of command (such as disciplinary or related to a
certain function or product). In addition to organi-
zational units, roles and committees are important
concepts to define the division of labour and its
coordination within an organization. Since there
is no need to cover committees in the scope of the
challenge, we will not account for them. Organi-
zational units exist either as composite units that
include further organizational units or as elemen-
tary units, that is, as positions. The corresponding
concepts are represented with the composite pat-
tern on L3, which is, of course, not a “natural”
choice, but a result of analyzing the variety of
more specific concepts. Different from a position,
a role is not regarded as an organizational unit in a
strict sense, because it is not permanently assigned

to an employee. A role may be filled only by hold-
ers of positions the types of which qualify for the
corresponding role type. We also know that a
particular position, represented by an object on
L0, is filled by an employee and that an employee
is a person. Some positions are characterized as
management position, which means that holders
of these positions may supervise holders of other
positions. Projects are also often regarded as a
specific kind of composed organizational unit, that
is, however, different from regular organizational
units, only of temporary nature. This textbook
knowledge about organizations is shown in Fig. 6.

Concretizations of the classes shown in Fig. 6
still represent textbook knowledge, but on a more
specific level. Concepts such as “department”,
“head department”, or “division” are probably

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 13

0

1..*

1

0

0
linkedTo

0..1

1..*

1

1

composedOf

0..1

1

0

0
fills

0..1

0..*

0

0

servesAs

1..*

0..1

0

0

partOf

1

0..1

0

0

manages

1..*

0..*

1

1

assignedTo

0..*

0..*

2

2

qualifiedToLead

1..*

0..*

1

1

qualifiesFor

1

0..*

0

0
allocated

1..*

0..*

2

2

suitedFor

0..*

0..*

2

2

superOrdinated

^MetaClass^

3 UnitOfWork

description: String[1]2

typeDescription: String[1]1

singleton: Boolean[1]1

creationDate: Date[1]1

performance: Performance[1]0

^MetaClass^

3 OrgUnit

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

^MetaClass^

3 Position

focus: Focus[1]2

salary: MonetaryValue[1]0

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from SingleUnit)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

2 totalPositions(): Integer

1 totalSalary(): MonetaryValue

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

adequateSuperior0

legitimateRole11

^MetaClass^

3 Role

roleFocus: RoleFocus[1]2

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from SingleUnit)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

^MetaClass^

3 CompOrgUnit

orgCriterion: OrgCriterion[1]1

annualBudget: MonetaryValue[1]0

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

2 numOfTypes(): Integer

0 totalSalaries(): MonetaryValue

0 numOfOpenPos(): Integer

0 numOfFilledPos(): Integer

properPart01

properPart11

^MetaClass^

3 ManagementPosition

focus: Focus[1] (from Position)2

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from SingleUnit)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

2 totalPositions(): Integer (from Position)

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

legitimateManage00

legitimateManage11

^MetaClass^

3 SingleUnit

senior: Boolean[1]1

numOfUnits: Integer[1]1

filled: Boolean[1]0

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

1 numOfOpen(): Integer

1 numOfFilled(): Integer

maxAssignment0

^MetaClass^

3 TemporaryUnit

terminated: Date[0..1]0

established: Date[1]0

description: String[1] (from UnitOfWork)2

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

^MetaClass^

1 Person

lastName: String[1]0

gender: Gender[1]0

firstName: String[1]0

dateOfBirth: Date[1]0

0 age(): Integer

^MetaClass^

1 Employee

employedSince: Date[1]0

empID: String[1]0

0 age(): Integer (from Person)

qualifiedForRole0

^MetaClass^

1 Assignment

percent: Integer[1]0

Figure 6: General concepts for modeling organizational structures

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

14 Ulrich Frank, Tony Clark

common in many countries. Apart from specific
peculiarities, which may vary with the cultural
background, we assume that the general use of
these concepts comprises a common understand-
ing of an order of aggregation. A subsection is
part of a department, which may be part of a head
department, etc. This knowledge is represented
on L2 and forms a language layer that can be used
to describe more specific types of organizational
units, e. g. with respect to a certain industry or a
particular company. That requires to clearly dis-
tinguish between these more specific types. The
attribute roleFocus of the class Role and focus of
the class Position serve this purpose. The intrin-
sic attribute orgCriterion of CompOrgUnit serves
the same purpose, but for distinguishing organiza-
tional units on level 1 only. These attributes are
to be instantiated on level 1.

Note that the idea of textbook knowledge does
not imply that all classes representing this knowl-
edge need to be on the same level. There may be
cases, where the diversity of a concept is not wide
enough for multiple levels of classification. In the
example, this is the case for the classes Person and
Employee. One could think of classifying people
into men and women, which could be achieved by
adding a further level. However, in the context
of organizational design that will usually not be
required. In the case of employees, one could
think of multiple classification, e. g. with respect
to qualification, authorization, responsibility, etc.
However, these aspects are covered by the classes
Position and Role and their multiple concretiza-
tions. While an employee is assigned to one and
only one position, she may be assigned more than
one role at a time.

In addition to positions, the model accounts
for roles. A role type such as “Tester” serves
describing a temporary assignment. It is possible
to define which position types qualify for which
role type. As a consequence, only those holders of
a position the type of which qualifies for a certain
role type can fill a corresponding role. While an
employee must not hold more than one position,
she may hold more than one role simultaneously.
Note that it is conceivable to represent “Tester”

as a position, too. However, according to the
challenge it should be possible that an employee is
both analyst (i. e., holds a corresponding position)
and a tester. Since we decided to model “Analyst”
as position, the only option left for “Tester” is role.
The relationships between positions and roles are
specified through associations that apply to differ-
ent levels. First, the regular association suitedFor

serves assigning position types on L2 to the role
types on L2 they are suited for. The intrinsic
association qualifiesFor between Position and
Role allows expressing that a certain role type on
L1 can be filled only with an employee who holds
a position of certain types.

The class ManagementPosition is specialized
from Position. The association qualifiesToLead

with the CompOrgUnit allows defining the composi-
tional unit types on L2 that a management position
type on L2 is eligble to manage. Its concretiza-
tion enables, e. g., expressing that a department
manager qualifies as manager of a department
— and, may be, in addition, of a project. The
intrinsic association assignedTo serves linking
particular management position types, such as
SoftwareProjectManager to corresponding organi-
zational unit types like SoftwareProject. Finally,
the intrinsic association manages allows assigning
particular management positions to particular or-
ganizational units. Hence, this conceptualization
allows defining elaborate governance structures.

The excerpt of the model shown in Fig. 7 repre-
sents a partial concretization of the more generic
model in Fig. 6. The concepts represented by
classes on L2 should correspond to concepts used
in many organizations, hence, they should allow
for a wide range of reuse.

The multi-level model of concepts in Fig. 6
and 7 serves as a DSML to create more specific
models of organizational structures.

Design Decisions: Filling organizational roles
will usually require a certain qualification. There-
fore, it may seem appropriate to associate the class
Role with Employee to express whether or not an
employee is qualified. We decided for a different
conceptualization, where the qualification is de-
fined by the association suitedFor and the intrinsic

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 15

superOrdinated

qualifiedToLead

suitedFor

qualifiedToLead

0..*

1

0

0 leads

1..*

1..*1

1

mayLead

^ManagementPosition^

2 MiddleManager

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = admin

description =

totalPositions()-> 0

^ManagementPosition^

2 TopManager

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = admin

description =

totalPositions()-> 0

^CompOrgUnit^

2 Department

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

orgCriterion: OrgCriterion[1] (from CompOrgUnit)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

annualBudget: MonetaryValue[1] (from CompOrgUnit)0

0 totalSalaries(): MonetaryValue (from CompOrgUnit)

0 numOfOpenPos(): Integer (from CompOrgUnit)

0 numOfFilledPos(): Integer (from CompOrgUnit)

description =

numOfTypes()-> 0

^CompOrgUnit^

2 HeadDepartment

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

orgCriterion: OrgCriterion[1] (from CompOrgUnit)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

annualBudget: MonetaryValue[1] (from CompOrgUnit)0

0 totalSalaries(): MonetaryValue (from CompOrgUnit)

0 numOfOpenPos(): Integer (from CompOrgUnit)

0 numOfFilledPos(): Integer (from CompOrgUnit)

description =

numOfTypes()-> 0

^ManagementPosition^

2 ProjectManager

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = org

description =

totalPositions()-> 0

^Position^

2 SalesPosition

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = sales

description =

totalPositions()-> 0

^Position^

2 OrgPosition

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = org

description =

totalPositions()-> 0

^Position^

2 TechPosition

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = tech

description =

totalPositions()-> 0

^TemporaryUnit^

2 Project

budget: MonetaryValue[1]0

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

creationDate: Date[1] (from UnitOfWork)1

terminated: Date[0..1] (from TemporaryUnit)0

performance: Performance[1] (from UnitOfWork)0

established: Date[1] (from TemporaryUnit)0

properlyManaged0

description =

^Role^

2 QM_Role

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

roleFocus = quality

description =

^ManagementPosition^

2 FunctionalManager

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = admin

description =

totalPositions()-> 0

^ManagementPosition^

2 ProcessManager

typeDescription: String[1] (from UnitOfWork)1

singleton: Boolean[1] (from UnitOfWork)1

senior: Boolean[1] (from Position)1

numOfUnits: Integer[1] (from SingleUnit)1

creationDate: Date[1] (from UnitOfWork)1

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

1 totalSalary(): MonetaryValue (from Position)

1 numOfOpen(): Integer (from SingleUnit)

1 numOfFilled(): Integer (from SingleUnit)

focus = org

description =

totalPositions()-> 0

Figure 7: General concepts for modeling more specific organizational structures

association qualifiesFor, both between Position

and Role. This is mainly, because it allows for
a higher level of expressiveness and abstraction.
The association suitedFor allows defining that
a certain kind of role, such as a role related to
quality management (QM_Role in Fig. 7) requires
somebody who holds a position that qualifies as
“technical”. The association qualifiesFor enables
to further constrain this rule. Both would not be
possible by associating Role with Employee on L1.
But why did we then decide to assign an employee
object to a role on L0 (via the intrinsic association
servesAs)? We assume that this conceptualization
is better suited to fit common ideas of filling roles.

Modeling composed organizational units leads
to the question whether specific units like, e. g.
“marketing department” should be modeled as in-
stances on L0 or as types on L1. At first, it may
seem strange to model a marketing department as a

type, because there seems to be no need to further
instantiate it. However, there are two reasons, why
we decided for modeling those composed units
as types. First, large companies that comprise
various subsidiaries may want to define a certain
organizational schema that is instantiated with
every subsidiary. Second, distinguishing between
marketing department and, e. g., manufacturing
department on the type level allows for the spec-
ification of characteristic properties, e. g. that a
marketing department must include a market re-
search group. If a company has one organizational
unit only, the corresponding classes would have
to be defined as singletons.

Intrinsic associations require a more elab-
orate analysis. First, the regular association
superOrdinated serves the definition of a hierarchy
of composed organizational unit types. For exam-
ple, the type “head department”, represented by a

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

16 Ulrich Frank, Tony Clark

class on level 2, is characterized as being superor-
dinated to the type “department”, which in turn
may be superordinated to the type “subsection”.
The intrinsic association composedOf is instantiated
on level 1, which is to say that a corresponding link
between two objects on level 1 is created. Hence,
a class like MarketingDepartment could be linked
to a MarketResearch to express that in a particular
concretization, one could also speak of a specific
domain, the organizational unit type “marketing
department” comprises a sub unit type “market
research”. Note that for each of the correspond-
ing classes it is possible to specify whether they
are singletons or not (defined with the attribute
singleton within the class UnitOfWork, see Fig. 6).
Finally, the intrinsic association partOf allows
linking objects that represent organizational units
on level 0 to be linked. For example, a particular
position can be assigned to a certain organizational
unit, or, a particular subsection can be assigned to
a particular department. Please note that in rare
cases, the diagram editor places diagram elements
on top of each other. That may lead to individual
diagram elements being hidden, such as the multi-
plicity of the association superordinated between
OrgUnit and CompOrgUnit in Fig. 6.

The introduction of the class TemporaryUnit,
which can, e. g., be concretized into a class like
Project represents the outcome of a difficult design
decision. Projects are organizational units that are
usually outside of the permanent organizational
structure of a company and do not include other
permanent organizational units. Instead, particu-
lar positions are assigned to projects for a limited
time. That is the rationale for conceptualization
we finally decided for. However, it is conceivable
that projects have a different meaning in project-
oriented organizations such as consulting firms.
Therefore, the generalizability of the proposed
conceptualization may be limited.

We assume that position types can be assigned
to any composite organizational unit. Like any
organizational unit type, a position type can be
defined as singleton. For reasons outlined in 3, we
do not represent the concept “actor” directly, but
regard an actor as being represented by a certain

position or a role each of which is filled by an
employee. Therefore, we assume that the actor
type referred to in the challenge corresponds to
either a position type or a role type. The class
Employee is associated with the class Person via
delegation, that is, an instance of Employee serves
as a role of an instance of Person.

Further Issues: To understand the implications
the model in Fig. 6 has on objects on lower lev-
els it is pivotal to look at intrinsic properties in
general and at intrinsic associations in particu-
lar. The impact of intrinsic attributes like the
already mentioned ones of CompOrgUnit is obvious.
The attribute orgCriterion determines whether a
type of organizational unit is mainly devoted to a
function, e. g. procurement, or to an object, such
as “consumer electronics”. Note that we do not
account for other criteria to form organizational
structures like matrix or tensor because that would
considerably increase the complexity of the model
without adding to the solution demanded for by
the challenge.

With respect to model integrity and to the idea
of multi-level language/model hierarchies it is
important that dependencies between these as-
sociations are accounted for. The association
composedOf can be defined for those classes only,
the meta classes of which are linked through
an instantiation of “subordinated”. For exam-
ple: a class like Department on level 2 may be
linked to the subsection to define that subsec-
tions are subordinated to departments. As a
consequence, concretizations of Department, like
MarketingDepartment can be associated via “com-
posedOf” only to classes that were defined as sub-
ordinated, e. g., MarketResearch as a concretization
of subsection. These dependencies are expressed
with constraints that are defined with the XOCL
at the level of the generic model already, e. g. the
constraint properPart1 and the intrinsic constraint
properPart0 (see below). For a discussion of char-
acteristic aspects of multi-level constraints see
(Tony Clark and Ulrich Frank 2018).

c o n t e x t CompOrgUnit

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 17

// Notice how these constraints use
// 'of ' and 'isDescendentOf ' to
// move down and up the multi -level
// structure of the model.

// properPart1 requires all CompOrgUnits
// at level 1 to be composed of OrgUnits
// at level 1 that are instances of the
// corresponding superOrdinated type at
// level 2.

@Constraint properPart1
self.getOrgComposed1s ()→ f o r A l l (i |
self.of().getSubOrdinated ()→ exists(c |
i.isDescendentOf(c)))

end

// properPart0 requires all CompOrgUnits
// at level 0 to be part of OrgUnits
// at level 0 that are instances of the
// corresponding composedOf type at
// level 1.

@Constraint properPart0
self.getIncludes0 ()→ f o r A l l (i |
self.of().getOrgComposed1s ()→ exists(c
| i.isDescendentOf(c)))

end

These constraints achieve two aims: (1) To require
that the model on level 1 is consistent in terms
of the type structure so that it is not possible to
create a model with missing classes; (2) To require
the structure of objects at level 0 to be type-wise
consistent. Both of these aims are important when
considering the semantics of the models and the
ability of tools that support the use of the domain
specific languages that are created.

Note that the associations between the classes
OrgUnit and CompOrgUnit also define which posi-
tion types may be assigned to which composed
organizational unit. That is a consequence of
applying the composite pattern. Usually there are
no restrictions on L2, that is every position type
on L2 might be subordinated to any composed
organizational unit type on L2. On L1, however,
it may be the case that certain position types must
not be assigned to certain types of organizational
units. Using multi-level constraints we achieve a
model that constrains the assignment of position
types at every level.

Further aspects could be accounted for that
relate to specific requirements related, e. g., to

human resources such as more elaborate concep-
tualizations of required skills or of performance
indicators, or to accounting, like a more elaborate
structure to represent wages. While these aspects
are not subject of the challenge, a high level DSML
for modeling organizational structures could in-
clude them to increase its potential utility. In
addition, certain aspects of corporate governance,
concerning, for example, decision making author-
ity or responsibilities related to data and systems,
could be represented.

As we mentioned already, all classes in the
model inherit the attribute name from the top level
meta-class Class in XCore. The attribute is not
shown explicitly in the model to avoid complexity.
Accordingly, the attribute lastModified was added
to Class. The slot values are also not shown in
the diagrams, but are accessible. In addition, the
modification of the meta object protocol would
allow for a more sophisticated solution which
would make sure that every modification of an
object’s state results directly in updating the slot
that corresponds to the attribute lastModified.

The analysis of position types on L2 in Fig. 7
may lead to the suspicion that design principle
4 was violated, because the distinction through
the attributes focus and description may be seen
as semantically poor. While we regard this as a
valid objection, we believe that this additional level
makes sense, because it allows for a more elaborate
conceptualization of certain position types. For
example technical positions (TechPosition) may be
characterized by further, more specific properties
that, within a certain concepts are common to all
position types of this kind, e. g. “requiresEgineer-
ingDegree” or “programmingSkills”. Similarly,
the class QM_Role could be associated with quality
management certificates to support corresponding
specifications with specific types of quality man-
agement roles. That would be in line with design
principle 1.

4.2.2 Focus on Software Development
Firm

According to typical textbook definitions, a busi-
ness process type defines a schema that clearly

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

18 Ulrich Frank, Tony Clark

controls the execution of all business processes
of the same kind. This is probably not the case
for software development processes. They rather
qualify as projects with respect to the fact that
the concept of a project is often defined by the
singularity of its nature. However, the design of a
development process will usually not start anew
for each project. Instead, it makes sense to define
a process schema similar to that of a business
process. However, different from a business pro-
cess schema, it should allow for a higher degree
of flexibility for its instances in order to account
for the specific peculiarities projects have to deal
with.

Core Concepts: The challenge explicitly men-
tions the following “actor” types in the software
development firm: developer, analyst, senior an-
alyst, senior manager, tester, and project leader.
Except for tester (see below), they are all modeled
as position types. Note that neither senior man-
ager nor project leader are needed for modeling
the software development process in accordance
with the requirements. Instead of senior manager,
we used the more context-specific type of senior
project manager (see Fig. 8).

The attribute creationDate represents the date
the corresponding position type was first intro-
duced into a company. The class SoftwareProject

is not mentioned in the challenge. We added it
to the model, because it would be required to
define the structural context a project is taking
place in. Again, the classes used to define position
types could be defined in a more differentiated
way. The challenge also refers to particular actors
Ann Smith and Bob Brown. Both are shown in
Fig. 8.

Design Decisions: According to P15 an “ac-
tor may have more than one actor type.” S11
illustrates this requirement with a specific instanti-
ation: “Bob Brown is an analyst and tester.” It is a
common conceptualization suggested in most text-
books on organizational design that an employee
fills one and only one position. This seems to be
an iron rule in most organizations (even though,
one may find exceptions). To not violate this rule
and to satisfy the requirements at the same time

we decided to model tester as a role. That would
indirectly respond to requirement P15: an actor
could fill one position but in addition multiple
roles. S11 would be accounted for too, since L0
Bob Brown could be represented as holding the
position of an analyst and the role of a tester at the
same time.

It may seem more appropriate to model the
attribute salary with Employee rather than with the
class Position. Nevertheless, we decided for the
second option because it allows for a higher level
of abstraction and a more consistent handling of
organizational governance. While it is common
practice to define a salary range for a certain
position type, and to assign a value out of this
range to a particular position, it is not common to
define a salary for an employee independent of the
position he holds. The hierarchy of position types
would allow the definition of a certain salary or a
salary range for position types through attributes
within their classes on L2. This could be done with
employees only if they were represented through
additional (meta) classes, too. However, we do not
see how employees could be (intrinsicly) classified
without referring to the positions they hold.

Further Issues: To further improve modeling
productivity and to contribute to model integrity
at the same time, one could integrate more specific
position types that are known in the software indus-
try. Also, the conceptualization of position types,
role types and types of organizational units could
be enriched with more specific properties, such
as specific skills or required resources (hardware,
software).

4.2.3 Focus on Insurance Company
Core Concepts: According to the challenge, the
following position types in the insurance domain
should be accounted for: claims handling man-
ager, financial officer. These position types are
created through concretizations of the classes
AdminManager and FinanceManager. In addition,
we introduce the position type ClaimHandlingClerk

as a concretization of ClericalPosition, because
we assume that process instances are not handled

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 19

servesAs

fills

qualifiesFor

mayLead

fills

^TechPosition^

1 SeniorAnalyst

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = true

numOfUnits = 0

creationDate = 01 Oct 2015

totalSalary()-> 0 EUR

numOfOpen()-> 0

numOfFilled()-> 0

^TechPosition^

1 Analyst

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 3

creationDate = 01 Oct 2011

totalSalary()-> 0 EUR

numOfOpen()-> 2

numOfFilled()-> 1

^QM_Role^

1 Tester

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

numOfUnits = 3

creationDate = 01 Oct 2003

numOfOpen()-> 2

numOfFilled()-> 1

^TechPosition^

1 Developer

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 14

creationDate = 01 Oct 1996

totalSalary()-> 0 EUR

numOfOpen()-> 13

numOfFilled()-> 1

^ProjectManager^

1 SeniorProjectManager

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = true

numOfUnits = 0

creationDate = 01 Oct 2002

totalSalary()-> 0 EUR

numOfOpen()-> 0

numOfFilled()-> 0

^Project^

1 SoftwareProject

terminated: Date[0..1] (from TemporaryUnit)0

performance: Performance[1] (from UnitOfWork)0

established: Date[1] (from TemporaryUnit)0

budget: MonetaryValue[1] (from Project)0

typeDescription =

singleton = false

creationDate = 01 Oct 1998

^Person^

0 pers1

lastName = Smith

gender = female

firstName = Ann

dateOfBirth = 24 Oct 1989

age()-> 32

^Person^

0 pers7

lastName = Brown

gender = male

firstName = Bob

dateOfBirth = 04 Jun 1983

age()-> 38

^Employee^

0 emp8

employedSince = 01 Jun 2009

empID = AT639

age()-> 38

^Employee^

0 emp41

employedSince = 01 Feb 2016

empID = DZ832

age()-> 32

^Analyst^

0 an1

salary = 72000 EUR

performance = medium

filled = true

^Tester^

0 tester1

performance = medium

filled = true

^Developer^

0 dev9

salary = 98000 EUR

performance = high

filled = true

Figure 8: More specific concepts to model organizational units in sofware firms

by a manager. Fig. 9 shows the position types and
corresponding instances.

Design Decisions: Since the basic structure
of the model shown in Fig. 9 is widely in line
with the corresponding model of the software
development case, no further design decisions
were required here. There was only need to decide
for particular interpretations of the requirements.
P6 refers to the actors John Smith and Paul Alter,
which are allowed to assess claims. We assume
that this allowance it based on the positions they
hold. Therefore, we defined the position type
Claim Assessor. According to P4) “Ben Boss
created the task type assess claim”. The challenge
does not mention the position filled by Ben. We
assume that somebody who fills a specific position

is required for this task. Therefore, we introduced
the position type ProcessDesigner and linked an
instance of it to an instance of Employee, which
is in turn linked as a delegator to the object that
represents Bob Brown.

Note that the values returned by operations like
totalSalary() or numOfOpen() in position types
on L1 or age() in objects on L0 serve to demon-
strate that models created with the FMMLx in
the XModelerML are executable. The code below
shows the implementation of the intrinsic opera-
tion totalSalary() within the class Position on
L3.

currency := Currency ("EUR","EUR",1);

c o n t e x t Position

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

20 Ulrich Frank, Tony Clark

0

fills

fills

fills

^OrgPosition^

1 ClaimHandlingClerk

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 0

creationDate = 01 Jun 1972

totalSalary()-> 0 EUR

numOfOpen()-> 0

numOfFilled()-> 0

^AdminPosition^

1 ClaimAssessor

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 5

creationDate = 01 Jan 1976

totalSalary()-> 109000 EUR

numOfOpen()-> 3

numOfFilled()-> 2

^OrgPosition^

1 ProcessDesigner

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = true

numOfUnits = 3

creationDate = 01 Mar 2003

totalSalary()-> 71000 EUR

numOfOpen()-> 2

numOfFilled()-> 1

^ProcessManager^

1 ClaimHandlingManager

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 3

creationDate = 01 Nov 2009

totalSalary()-> 0 EUR

numOfOpen()-> 3

numOfFilled()-> 0

^FunctionalManager^

1 FinancialOfficer

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = true

numOfUnits = 1

creationDate = 01 Nov 2002

totalSalary()-> 0 EUR

numOfOpen()-> 1

numOfFilled()-> 0

^MetaClass^

1 Person

lastName: String[1]0

gender: Gender[1]0

firstName: String[1]0

dateOfBirth: Date[1]0

0 age(): Integer

^MetaClass^

1 Employee

employedSince: Date[1]0

empID: String[1]0

0 age(): Integer (from Person)

qualifiedForRole0

^ProcessDesigner^

0 PD9

salary = 71000 EUR

performance = high

filled = true

^ClaimAssessor^

0 CA27

salary = 57000 EUR

performance = high

filled = true

^ClaimAssessor^

0 CA66

salary = 52000 EUR

performance = medium

filled = true

^Employee^

0 CH_9

employedSince = 01 Oct 2008

empID = CH447

age()-> 44

^Employee^

0 ECA_8

employedSince = 01 Apr 2012

empID = ECA394

age()-> 28

^Employee^

0 ECA_4

employedSince = 01 Feb 2009

empID = ECA739

age()-> 34

^Person^

0 p8

lastName = Brown

gender = male

firstName = Bob

dateOfBirth = 14 Dec 1977

age()-> 44

^Person^

0 p34

lastName = Smith

gender = male

firstName = John

dateOfBirth = 04 Feb 1993

age()-> 28

^Person^

0 p42

lastName = Alter

gender = male

firstName = Paul

dateOfBirth = 06 Jun 1987

age()-> 34

Figure 9: Positions required for the insurance case

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 21

@Operation totalSalary [monitor=true] ():
MonetaryValue
l e t sum = 0
i n @For i i n allInstances do

i f i.filled
then sum := sum + i.salary.amount
e l s e false
end

end;
// return an instance of the class
// MonetaryValue value using the
// currency Euro.
MonetaryValue(sum ,currency);

end
end

Like the diagram excerpt in Figs. 8 and 9 demon-
strates the use of delegation in the XModelerML .
An object that is concretized or instantiated from
a class that is defined as a delegator class by a
delegation association, like Employee, delegates
those methods that are not included in the protocol
of its class transparently to the object of the corre-
sponding delegatee class it is linked to. Note that
delegation is different from inheritance, because
it allows “inheriting” the state of an object, too.
In that sense, it is suited to mitigate problems that
arise from the fact that object-oriented languages
allow an object to be of one class only (for a
detailed discussion see (Frank 2000)).

4.3 Artifacts
The artifacts used and produced in the processes
that are subject of the challenge are objects and,
more specifically, documents. Different from or-
ganizational design, both case descriptions do
not share noteworthy commonalities apart from a
rather abstract general notion of resource. How-
ever, we assume that there are indeed more com-
monalities that could be accounted for in a generic
model of resources used and created within busi-
ness processes. First, both cases are likely to use
IT resources such as application systems, tools,
platforms etc. Second, software development pro-
cesses may refer to documents other than software
artifacts, including contracts. However, we de-
cided to focus on the requirements specified in the
challenge and not to extend the scope too much.
As a consequence, the “Generic Artifacts” model

in Fig. 5 is restricted to the class Resource that is
referred to by the generic process model.

4.3.1 Focus on Software Development
Core Concepts: The classes that represent artifacts
in the software domain are shown in Fig. 10.The
model comprises three kinds of artifacts, repre-
sented by the class SoftwareArtifact: code, mod-
els and reports. We assume that all artifacts are
created with a language. This is expressed through
associations between artifact types and language
types.

Design Decisions: It is not trivial to determine
the nature of software development artifacts. On
the one hand, they can be regarded as linguistic
artifacts. A model, for example, can be conceptu-
alized as being created with or instantiated from
a modeling language. However, from a project
management perspective, it can be useful to re-
gard a model as a specific kind of document. We
decided to account for both aspects.

We regard all documents that are created to
analyze, design, implement or test a software
system as software artifacts. The general con-
cept of a software artifact is represented by the
class SoftwareArtifact on L3 (see Fig. 10). At
this level, we know already that software arti-
facts on L0 have a creation date, a state, e. g.,
“early”, “in progress”, “complete”, that they may
be write protected, etc. The concretizations of
SoftwareArtifact on L2 represent different kinds
of artifacts, such as code, models, reports, etc.
and associations between these. For example, we
know that every artifact may depend on other ar-
tifacts. In addition, every artifact may require a
language for its construction. This knowledge is
represented by the association requiresLang be-
tween the class Resource and the class Language

and the circular association requires of the class
SoftwareArtifact, both on L3. In addition, the in-
trinsic associations maybeWrittenIn and writtenIn

between Resource and Language, to be instantiated
on L1 and L0 respectively, allow assigning a par-
ticular artifact, like, e. g., a COBOL program to
the language it was written in. The association
requiresLang is to constrain the range of languages

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

22 Ulrich Frank, Tony Clark

that can be used to specify maybeWrittenIn links
which in turn constrain writtenIn links. Both con-
straints are expressed in Resource. The constraint
appropriateLangKind, which is to be checked on
L0 is shown below

c o n t e x t Resource
@Constraint appropriateLang
self.of().getLanguages ()→ exists(c |
self.getWrittenInLang ().isDescendentOf(
c))

end

The association evaluatedBy between the classes
Code and TestReport addresses requirement S9:
“Each tested artifact must be associated to its
test report.” Fig. 10 also illustrates how the
XModelerML supports the construction of mod-
els on lower levels. In the shown example, the
cardinality constraint implicitly defined with the
intrinsic association writtenIn is violated. As a
consequence, the user is offered a set of languages,
the model could be linked to.

Software artifacts are created with a language.
While natural language plays an important role in
that respect, e. g. for documents produced during
requirements engineering, we do not explicitly
account for natural language. First, it is likely to
be part of many software development documents
anyway, e. g. in comments. Second, we assume
that every document used professionally in a soft-
ware development process reflects some kind of
structure. A manual, e. g., should comply with
a default structure for representing manuals. We
regard this structure, which could be defined, e. g.,
as an XML DTD, as the language, a corresponding
document is created with.

Common properties of all languages used to
create software development artifacts are repre-
sented by the class Language on L3. It includes
various attributes that enable the concretization
of a range of more specific kinds of languages on
L2. These include, e. g., executable to indicate
whether a class of executable languages is repre-
sented, or dsml that allows to specify whether a
language is conceptualized as a DSML. Classes on

L2 serve the representation of programming lan-
guages (ProgLang), modeling languages (ModLang),
and further classes which can be added through
a characteristic instantiation of the attributes pro-
vided for this purpose in Language. Accordingly,
classes on L2 can be concretized into language
classes on L1 through the instantiation of attributes
like, e. g., graphicalNotation or isDSL. In addition
modeling languages can be classified as static,
functional, or dynamic. Finally, objects on L0
represent particular languages such as COBOL.
Languages can be associated with software arti-
facts as long as the corresponding constraints are
not violated.

Further Aspects: Like all multi-level models
that we present, the model of software artifacts is
executable and, thus, may serve as an information
system that can answer questions related to soft-
ware artifacts and their use, e. g. with respect to
planning and staffing projects. To provide more
support, further relevant aspects could be included,
such as the tools that are required and/or are avail-
able to create and manage software artifacts, and
the platforms they run on, or dependencies be-
tween the artifacts.

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 23

writtenIn

maybeWrittenIn

writtenIn

writtenIn

maybeWrittenIn

requiresLang

maybeWrittenIn

maybeWrittenIn

requiresLang

requiresLang

maybeWrittenIn

requiresLang

writtenIn

maybeWrittenIn

0..*
1..*

1
1maybeWrittenIn

0..*
0..*

2
2

requiresLang

0..*

0..*

0

0

requires

0..*

1

0

0

writtenIn

^MetaClass^

3 Language

executable: Boolean[1]2

multiLevel: Boolean[1]1

dsml: Boolean[1]1

version: String[1]0

^MetaClass^

3 Resource

id: String[1]0

creationDate: Date[1]0

appropriateLang0

appropriateLangKind1

^MetaClass^

3 SoftwareArtifact

mainFocus: ArtiFocus[1]2

state: State[1]0

reuseRatio: Integer[1]0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

^Language^

2 ProgLanguage

paradigm: Paradigm[1]1

staticTyping: Boolean[1]0

multiLevel: Boolean[1] (from Language)1

dsml: Boolean[1] (from Language)1

version: String[1] (from Language)0

executable = true

^Language^

2 ModellingLanguage

abstraction: Abstraction[1]1

multiLevel: Boolean[1] (from Language)1

dsml: Boolean[1] (from Language)1

version: String[1] (from Language)0

executable = false

^Language^

2 ConceptModellingLang

multiLevel: Boolean[1] (from Language)1

dsml: Boolean[1] (from Language)1

abstraction: Abstraction[1] (from ModellingLanguage)1

version: String[1] (from Language)0

executable = false

^Language^

2 ExecModellingLanguage

multiLevel: Boolean[1] (from Language)1

dsml: Boolean[1] (from Language)1

abstraction: Abstraction[1] (from ModellingLanguage)1

version: String[1] (from Language)0

executable = true

^Language^

2 DocLanguage

markUp: Boolean[1]1

multiLevel: Boolean[1] (from Language)1

dsml: Boolean[1] (from Language)1

version: String[1] (from Language)0

executable = false

^SoftwareArtifact^

2 Code

target: CodeFocus[1]1

openSource: Boolean[1]1

distributesUse: Boolean[1]1

LoC: Integer[1]0

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

1 numOfCodeUnits(): Integer

mainFocus = implementation

^SoftwareArtifact^

2 Model

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

1 numOfModels(): Integer

mainFocus = design

^SoftwareArtifact^

2 Report

couldBeGenerated: Boolean[1]1

generated: Boolean[1]0

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

mainFocus = documentation

^Model^

1 ObjectModel

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^ConceptModellingLang^

1 OO_ModelingLanguage

version: String[1] (from Language)0

multiLevel = false

dsml = false

abstraction = complete

^ProgLanguage^

1 ImperativeProgLanguage

version: String[1] (from Language)0

staticTyping: Boolean[1] (from ProgLanguage)0

paradigm = imperative

multiLevel = false

dsml = false

^ConceptModellingLang^

1 ProcessModellingLang

declarative: Boolean[1]0

version: String[1] (from Language)0

multiLevel = false

dsml = true

abstraction = dynamic

^ExecModellingLanguage^

1 ExecOOModLanguage

version: String[1] (from Language)0

multiLevel = true

dsml = false

abstraction = complete

^DocLanguage^

1 MarkUpLanguage

version: String[1] (from Language)0

markUp = false

multiLevel = false

dsml = false

^ConceptModellingLang^

1 TestCaseModellingLanguage

version: String[1] (from Language)0

multiLevel = true

dsml = true

abstraction = functional

^Code^

1 AppCode

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

LoC: Integer[1] (from Code)0

target = application

openSource = false

distributesUse = false

numOfCodeUnits()-> 1

^Model^

1 BusinessProcessModel

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^Report^

1 TestReport

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

generated: Boolean[1] (from Report)0

creationDate: Date[1] (from Resource)0

couldBeGenerated = true

^Model^

1 TestCase

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^ObjectModel^

0 ERP_HR

issue [0]

state = advanced

reuseRatio = 15

id = HR_OO7

creationDate = 07 Mar 2021

^OO_ModelingLanguage^

0 UML

version = 2.1
^ImperativeProgLanguage^

0 COBOL

version = 21.1

staticTyping = true

^ProcessModellingLang^

0 BPMN

declarative = false

version = 6.4

^MarkUpLanguage^

0 ReportDTD

version = 3.0

^TestCaseModellingLanguage^

0 TestML

version = 1.1

^AppCode^

0 c45

state = advanced

reuseRatio = 0

id = ERP_D5

creationDate = 01 Apr 2021

LoC = 893

^BusinessProcessModel^

0 OrderManagementS4

state = early

reuseRatio = 10

id = BPS4

creationDate = 01 Mar 2021

^TestReport^

0 TR_ERP4

state = complete

reuseRatio = 25

id = TR_ERP4a

generated = false

creationDate = 24 Apr 2021

^TestCase^

0 TC_ERP5

state = complete

reuseRatio = 20

id = TC_ERP5_3

creationDate = 02 Apr 2021

Figure 10: Artifacts and languages required for the software development process

4.3.2 Focus on Claims Handling
Core Concepts: Different from the software de-
velopment process, the challenge lacks a detailed
description of the claims handling process. There-
fore, we had to make a few assumptions concerning
the resources required to run the process. First,
the process requires some kind of a claim made
by a policy holder. We assume that a claim is
filed electronically, e. g. through a web page and is
represented by an object. Second, the process re-
quires access to the corresponding contract, which
is a specific kind of document. Finally, some

kind of compensation statement or the denial of
compensation are created. They are official mes-
sages that need to be documented accordingly.
The model shown in Fig. 11 comprises the classes
needed to represent these concepts.

The class Document on L3 serves the representa-
tion of knowledge about any kind of documents
in the insurance domain (and maybe beyond that).
It can be concretized into the class Contract on
L2 that defines additional properties relevant for
contracts. A further concretization that is relevant
for the challenge is the class CustomerNotifcation

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

24 Ulrich Frank, Tony Clark

that defines the properties required for official cus-
tomer notifications. It can be concretized into the
class ClaimsHandlingNotificiation on L1 which
itself can be concretized into objects that represent
particular notifcations such as granting or denial
of a claim for damages. The class Contract can
be concretized into classes that represent specific
types of contracts, such as some kind of damage
insurance, which itself can be instantiated into a
particular damage insurance contract.

Design Decisions: The challenge mentions pol-
icy holder as an actor. We represent a policy
holder through the class PolicyHolder. It could
be concretized from a higher level class such as
PrivateCustomer. However, we decided against
this option, because there would be no use of this
additional abstraction within the scope of the chal-
lenge. Hence, a policy holder is represented as a
role, therefore it needs to be linked to an object
that represents the corresponding person. The
intrinsic association holds between PolicyHolder

on L1 and Contract on L2 represents the knowl-
edge that every contract in the domain requires the
participation of a policy holder. This conceptual-
ization also allows representing employees who
hold policies without redundancy.

4.4 Processes
The design of the two process types that are subject
of the challenge require the use of a process mod-
eling language. Therefore, we will first outline a
meta model that defines basic concepts of such
a language. A comprehensive specification of a
process modeling language would clearly exceed
the scope of a journal paper. The BPMN spec-
ification (OMG 2013), for example, comprises
about 500 pages. The specification of the process
modeling language, which is part of the MEMO-
OrgML (Frank 2011b) that serves us as a reference
still comprises about 120 pages. Therefore, the
(meta) model presented in Fig. 12 is restricted
to those aspects that need to be covered in order
to satisfy the requirements described in the chal-
lenge. While this model qualifies as a multi-level
model, because it includes classes on more than
one level, the additional abstraction enabled by

the FMMLx is restricted to static and functional
aspects and does not account for multiple levels of
dynamic abstractions. Subsequently we present
thoughts on the design of multi-level process mod-
els which go beyond the challenge.

4.4.1 Generic Process Model
Core Concepts: The objects that constitute the pro-
cess itself are specified in the multi-level process
model in Fig. 12. It is based on a reconstruction
of parts of the metamodel of the MEMO-OrgML
(Frank 2011b), which was defined using a tradi-
tional, two level language hierarchy. The diagram
shown in Fig. 12 represents an excerpt of the upper
level classes of the entire model only. It should
be sufficient to illustrate that it is suited to satisfy
the requirements described in the challenge. The
class Event is on L3. This allows for the defini-
tion of specific language concepts to represent
start and stop events on level 2. The model also
indicates how activity types are related to organi-
zational role or position types (in the challenge
accounted for on a different level of abstraction
as “actors”) and to artifacts types. The intrinsic
association mayPerform between SingleUnit and
ProcessActivity allows for the definition of posi-
tion and role types that are qualified to perform
activities of a certain type. The additional in-
trinsic association performs allows to control the
assignment of particular positions or roles to an
activity (see below).

Control flow concepts comprise sequence,
branching, fork and synchronizer. Branchings
indicate that a decision has to be made on how
to continue a process, which requires the speci-
fication of at least two alternative branches. For
each decision type, it can be specified to what
degree it is automated. Forks serve splitting the
control flow into a number of concurrent threads.
Synchronizers are used to represent the specific
kind of synchronizing concurrent threads. An OR
synchronizer defines that the concurrent threads
are synchronized as soon as the first one of the
respective threads terminates. In contrast, the
use of an AND synchronizer indicates that all

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 25

0

files

sentTo

issuedFor

relatedTobasedOn

clarifies

refersTo

0..1

1

0

0

clarifies

1

0..*

0

0

refersTo

1

1

1

1

basedOn

1..*

1

0

0

issuedFor

0..1

1

1

1
relatedTo

1

0..*

0

0

files

0..*

1

0

0

sentTo

^MetaClass^

3 Document

readOnly: Boolean[1]2

legal: Boolean[1]2

confidential: Boolean[1]1

creationDate: Date[1]0

^MetaClass^

1 Person

lastName: String[1]0

firstName: String[1]0

dateOfBirth: Date[1]0

0 age(): Integer

^MetaClass^

1 PolicyHolder

since: Date[1]0

custID: String[1]0

0 age(): Integer (from Person)

^Document^

2 Contract

subject: InsuranceSubject[1]1

obligation: Obligation[1]1

term: Date[0..1]0

start: Date[1]0

confidential: Boolean[1] (from Document)1

creationDate: Date[1] (from Document)0

readOnly = true

legal = true

^Document^

2 CustomerNotification

signature: Boolean[1]1

confidential: Boolean[1] (from Document)1

creationDate: Date[1] (from Document)0

readOnly = true

legal = false

^Document^

2 Claim

subject: InsuranceSubject[1]1

confidential: Boolean[1] (from Document)1

creationDate: Date[1] (from Document)0

legitimateClaim10

legitimateClaim20

readOnly = false

legal = false

^Contract^

1 DamageInsurance

maxCover: MonetaryValue[1]0

term: Date[0..1] (from Contract)0

start: Date[1] (from Contract)0

creationDate: Date[1] (from Document)0

subject = damage

obligation = insurance

confidential = true

^CustomerNotification^

1 ClaimHandlingNotification

compAmount: MonetaryValue[1]0

creationDate: Date[1] (from Document)0

0 claimedAmount(): MonetaryValue

signature = true

confidential = false

^Claim^

1 DamageClaim

damageReport: String[1]0

claimedAmount: MonetaryValue[1]0

creationDate: Date[1] (from Document)0

subject = damage

confidential = false

^ClaimHandlingNotification^

0 compensationConsent

compAmount = 4680 EUR

creationDate = 12 Mar 2021

claimedAmount()-> 6800 EUR

^DamageClaim^

0 dc14

damageReport =

claimedAmount = 6800 EUR

creationDate = 09 Jan 2021

^DamageInsurance^

0 DamagePolicy

maxCover = 1000000 EUR

term = 31 Dec 2023

start = 01 Jan 2001

creationDate = 02 Dec 2000

^Person^

0 pers1

lastName = Susan

firstName = Miller

dateOfBirth = 17 Apr 1989

age()-> 32

^PolicyHolder^

0 polHo1

since = 01 Jun 2011

custID = RD492

age()-> 32

Figure 11: Artifacts required for the claim handling process

related threads have to terminate before the pro-
cess may continue. Note that we do not use the
term “gateway” in our model. We regard it as too
is ambiguous and, hence, potentially misleading,
because it is used for essentially different control
flow concepts. This ambiguity is clearly shown
in the “gateway class diagram” in the BPMN
specification (OMG 2013, p. 88).

Design Decisions: Events between processes
are not mandatory in some business process mod-

elling languages such as the BPMN. Enforcing
the use of events may sometimes be perceived as
inappropriate and result in seemingly redundant
events, e. g. “coding complete” produced by the
activity “coding”. However, events are of pivotal
relevance for managing the control flow. Without
some kind of event it would, e. g., not be possi-
ble to detect the end of an activity. Therefore,
we decided that the proposed language requires

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

26 Ulrich Frank, Tony Clark

0..1

0..*

0

0

performs

1

0..1

1

1

requiresDecision

0..1

0..1

1

1

producesStop

0..1

0..1

1

1

producesEvent

0..1

2..*

1

1

createsChoice

0..1

0..*

1

1

resultsIn

1

1

0

0

beginsWith

1

1..*

1

1

terminatedBy

0..*

0..*

0

0

creates

0..1

0..*

1

1 designs

0..1

2..*

1

1startsThread

0..*

0..*

1

1

mayCreate

0..*

0..*

1
1mayUse

0..1

0..*

1

1 mayPerform

0..1

0..1

1

1

createsFork

2..*

0..1

1

1

requiresSynch

0..1

0..1

1

1

regTriggers0..1

0..1

1

1

startFork

0..1

0..1

1

1

triggers

1

1

1

1

startedBy

0..1 1

1

1synchsTo

0..*

0..*

0

0

uses

^MetaClass^

3 Event

medium: ComMode[1]2

machineGenerated: Boolean[1]2

machineDetectable: Boolean[1]2

producedBy: Producer[1]1

id: String[1]0

createdAt: Date[1]0

^MetaClass^

3 StopEvent

medium: ComMode[1] (from Event)2

machineGenerated: Boolean[1] (from Event)2

machineDetectable: Boolean[1] (from Event)2

producedBy: Producer[1] (from Event)1

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

^MetaClass^

3 RegularEvent

medium: ComMode[1] (from Event)2

machineGenerated: Boolean[1] (from Event)2

machineDetectable: Boolean[1] (from Event)2

producedBy: Producer[1] (from Event)1

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

^MetaClass^

3 SingleUnit

senior: Boolean[1]1

numOfUnits: Integer[1]1

filled: Boolean[1]1

^MetaClass^

3 StartEvent

medium: ComMode[1] (from Event)2

machineGenerated: Boolean[1] (from Event)2

machineDetectable: Boolean[1] (from Event)2

producedBy: Producer[1] (from Event)1

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

^MetaClass^

3 Branching

decision: Decision[1]2

typeID: String[1]1

numOfBranches: Integer[1]1

id: String[1]0

^MetaClass^

3 Activity

autoLevel: Automation[1]2

validating: Boolean[1]1

expectedDuration: Integer[1]1

critical: Boolean[1]1

terminated: Date[0..1]0

started: Date[0..1]0

2 toValidate(): Boolean

1 successorOf(a: Activity): Boolean

1 businessProcess(): BusinessProcess

allowedToManipulate0

criticalTask1

legitimateCreation0

legitimatePerform0

legitimateUse0

onlyOneTrigger1

properValidation1

^MetaClass^

3 Resource

id: String[1]0

creationDate: Date[1]0

^MetaClass^

2BusinessProcess

isCore: Boolean[1]1

id: String[1]0

1 allActivities(): Activity

^MetaClass^

2 Fork

typeID: String[1]1

id: String[1]0

1 numOfThreads(): Integer

^MetaClass^

2 Synch

typeID: String[1]1

numOfThreads: Integer[1]1

id: String[1]0

1 numOfThreads(): Integer

^MetaClass^

2 OrSynch

synchThread: String[1]0

typeID: String[1] (from Synch)1

numOfThreads: Integer[1] (from Synch)1

id: String[1] (from Synch)0

1 numOfThreads(): Integer (from Synch)

^MetaClass^

2 AndSynch

typeID: String[1] (from Synch)1

numOfThreads: Integer[1] (from Synch)1

id: String[1] (from Synch)0

1 numOfThreads(): Integer (from Synch)

Figure 12: Generic process meta model

the specification of events before and after every
activity.

In general the design of a multi-level model
presents design decisions regarding the choice of
level to place a certain concept. In the case of a
generic process model that relates especially to the
question whether core concepts such as event or
activity should be placed at L2 or at L3. Placing
them on L3 allows concretizations to classes on

L2 that represent specific kinds of activities, such
as fully automated, partially automated or manual.
We assume that it makes sense to distinguish
these types, because that allows for the definition
of specific constraints, e. g. that fully automated
activities must not be performed by a human. This
decision corresponds to design principle 1, which
suggests to model that knowledge on the highest
level and not only on the level of specific process

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 27

types. For the same reason, we decided to define
start and stop events already on L3, too. As a
consequence, L2 may comprise an extensive range
of activity (meta) types comprising, e. g., machine
generated start events or machine generated start
events that are not machine detectable, etc. It is
important to note that this extensive use of different
classes creates a challenge for the implementation
of modeling tools. During the course of creating a
model, it may, for example, happen that an activity
that was at first modeled as fully automated needs
to be changed to partially automated, which would
imply some kind of class migration. Therefore, it
also depends on the change operations offered by
the corresponding modeling tool, whether or not
to decide for additional (meta) classes on L2.

In addition to activities and events there is need
for control flow concepts like sequence, branch-
ings and concurrent threads. Concurrent threads
are enabled ty the classes Fork and the subclasses
of the abstract class Synchronizer. The class
Branching serves the representation of branchings.
It may be regarded as inappropriate to model Fork
and synchronizers on L2 and Branching even on L3,
because it seems they are instantiated only once.
Nevertheless, we decided otherwise. The class
Branching on L3 allows for concretizations on L2
that represent certain kinds of decisions such as
“automated”, “human based on clear rules”, etc.
Hence, related constraints, for example, that a fully
automated activity must not result in a branching
that requires a human decision, can be defined on
that level already. On L1 it is possible to define
branching types that are characterized by a unique
id, because branching types do not have a name.
The number of branches, which is represented
by an attribute could as well be computed by an
operation. At level 0, that is at the level where
a process is executed, the branching is collapsed
into a sequence, but nevertheless, a descendant
of Branching on L0 may be useful to store the
corresponding decision. Similarly Fork and the
subclasses of Synchronizer are concretized into
classes on L1 that are characterized by a unique id.
On L0 they serve the representation of particular
process executions.

There is no explicit concept for modeling se-
quences. Instead, a sequence is implicitly modeled
by various associations between event types, ac-
tivity types and other control flow concepts. At
the level of a particular process type, a sequence
if represented as a link between instances of these
elements (cf. the process diagram in Fig. 15). At
the level of a particular process instance, there are
no links anymore. However, that does not cause
a loss of information, because the control flow of
a process instances can be created from the one
specified for its type and additional information
provided by descendants of the classes Branching,
Fork, and of subclasses of the Synchronizer.

Requirements P4 and S11 are related to the
design of task types. They do not specify the
preconditions an actor needs to satisfy to be al-
lowed to design a task type. We decided for two
supplementary approaches to account for this is-
sue. First, the association defines between certain
position types on L1 and the class BusinessProcess
on L2 allows representing that holders of positions
of a certain type are entitled to design an entire
business process model. Fig. 13 shows a corre-
sponding use of this association together with an
example instantiation. Second, it is possible to
specify that certain position types or roles types
are eligible to design particular task types, which
is enabled by the association designs between the
classes SingleUnit and Activity (cf. Fig. 12).

In addition to the specification of the control
flow, the proper execution of business processes
calls for some kind of process governance. At
the level of a generic process model, governance
comprises rules that relate to the rights of those
who participate in a process. Corresponding reg-
ulations are specified through various intrinsic
associations between the classes Activity and Sin-
gleUnit. The association mayPerform defines the
position types that are entitled to perform tasks
of a certain type. The association performs is
restricted to those roles and positions the types of
which are linked to the type of the activity they
are linked to. In addition, the right to perform
activities of a certain type is also related to re-
quirement P18. A task that may be performed by

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

28 Ulrich Frank, Tony Clark

0..1 0..*

0 1defines
^MetaClass^

2BusinessProcess
isCore: Boolean[1]1

id: String[1]0

^TechPosition^

1 Analyst

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 3

creationDate = 01 Oct 2011

totalSalary()-> 72000 EUR

numOfOpen()-> 2

numOfFilled()-> 1

fills defines
^BusinessProcess^

1 AppDevelopment

id: String[1] (from BusinessProcess)0

isCore = false

^Person^

0 pers7

lastName = Brown

gender = male

firstName = Bob

dateOfBirth = 04 Jun 1983

^Employee^

0 emp8

employedSince = 01 Jun 2009

empID = AT639

^Analyst^

0 an1

salary = 72000 EUR

performance = medium

filled = true

Figure 13: Representation of task type designers

the holder of a certain position can be performed
by his superior as well. As we argued in Sect. 3
already, we regard it as problematic expressing
that by specializing a management position type
from a position type. Nevertheless, we wanted to
account for the basic idea, namely, that a manager,
as a default, has the right to perform all tasks, his
subordinates are entitled to perform.

Both restrictions are represented by the con-
straint legitimatePerform. It checks whether the
class of a performing unit at L0 is linked to the
corresponding activity type through an instance
of the association mayPerform.

c o n t e x t Activity
@Constraint legitimatePerform
self.of().getQualiSingleUnit ()→ exists(
c |
self.getActUnit ().isDescendentOf(c))

end

Note, however, that satisfying this constraint alone
may not be sufficient to qualify a manager for
performing a task. As we outline in Sect. 3 al-
ready, it would be problematic to grant a manager
automatically the right to manipulate every re-
source her superiors may manipulate. Therefore,
we specified a further constraint that accounts for
specific skills which may be required for perform-
ing an activity (see constraint allowedToManipulate
below).

Other aspects of process governance relate to
the resources that are required for performing a
process. The constraint legitimateCreation for
instance, serves to check whether resources may
be created within an activity. To this end, it checks
whether the type of the activity and the types of the
corresponding resources are linked by an instance
of the intrinsic association mayCreate:

c o n t e x t Activity
@Constraint legitimateCreation
self.getCreatedResources ()→ f o r A l l (i |
self.of().getPossCreatedRess ()→ exists(
c | i.isDescendentOf(c)))

end

According to requirement P9, tasks the type of
which is characterized as critical may be per-
formed by “senior actors” only. That leads to the
question how a “senior actor” should be modelled.
We decided to use position types for that purpose.
Each position type may be specified as senior.
We believe that this approach is more appropriate
than representing seniority with the class Employee
or even with the class Person, because it reflects
some kind of authority that is formally linked to
the position within the organizational hierarchy.
The constraint criticalTask is to check whether
the type of a position or role assigned to a critical
task type is qualified as senior. Note that the
constraint is simplified in the sense that it does
not check whether a unit had been assigned yet.

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 29

Similar simplifications apply to other constraints
as well.

c o n t e x t Activity
@Constraint criticalTask
self.getCritical () ⇒ self.
getQualiSingleUnit ().getSenior ()

end

In addition, requirement P9 demands that a criti-
cal task type which creates a certain artifact type
needs to be followed by a corresponding valida-
tion activity. To account for this requirement, we
decided for various extensions. We added the oper-
ation allActivities() to the class BusinessProcess.
It returns the set of all task types included in a
process on L1. Then we added the intrinsic at-
tribute validating to Activity, which allows spec-
ifying that an activity type is suited to validate
the outcome of a previous activity type. The op-
eration toValidate of Activity computes whether
the outcome of an activity requires validation —
by checking whether the activity is critical and
a resource was created. Finally, the operation
successorOf(a: Activity) computes whether an
activity type is succeeding another activity type,
by accessing the set of all activity types through
the methods businessProcess() and allActivities.
These extensions allow the definition of the con-
straint properValidation to Activity:

c o n t e x t Activity
@Constraint properValidation
self.toValidate () ⇒ self.
businessProcess ().allActivities ()→
exists(i | i.successorOf(self) and i.
validating)

end

Note that this constraint is not entirely satisfactory.
First, there may be more than one task type that
need validation. That would require additional
information on how to identify the corresponding
validating task type. The challenge does not
provide such information. Second, it can only be
determined on completion of a process instance
at L0 whether an actual validation took place.
A process type may include a branching with
only one alternative that includes a validation

task. At the level of a process type it cannot be
decided whether this path will be taken during the
execution of a process.

The intrinsic associations mayReportTo between
Position and ManagementPosition, to be instan-
tiated on L1, and reportsTo (or “supervisedBy”
in the opposite reading direction), which is in-
stantiated on L0, serve accounting for P18. This
conceptualization allows expressing the basic idea
of P18 and avoids at the same time problematic
consequences that may occur with the suggested
specialization relationship. If, e. g., a developer is
allowed to modify the code she works on, it does
not necessarily mean that her superior is allowed
to do so as well. However, the superior is likely
to have the authority to demand a modification.

Further issues: It may appear at first sight that
the association performs (and, accordingly, the
associations mayUse and mayCreate) is redundant. If
the association mayPerform was instantiated on L0
only, then positions could be assigned to activities.
However, in that case, one could not express that
only certain types of positions or role qualify for
that particular activity type, which would be a
serious threat to process integrity.

The consistent use of concurrent threads re-
quires rather complex constraints that ensure
proper synchronization. For a corresponding con-
straint see (Frank 2011b). We did not add synchro-
nization constraints to the model presented here,
because they are not required by the challenge and
would substantially increase the complexity of the
model.

As we shall see below, the multi-level process
model allows for instantiations on level 0. How-
ever, the proper creation of process instances on
L0 requires dynamic instantiation (see illustration
of specific problem in Fig. 18) as it could, e. g.,
be provided by some form of process execution
engine .

While defining a task type within a business
process as critical is definitely better than leaving
that characterization to particular tasks at L0 only
(design principle 1), the requirements related to
projects may be different. A certain reference
process model for software development projects

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

30 Ulrich Frank, Tony Clark

may, e. g., include the activity coding, but it may
not be regarded as critical in all projects. In those
cases, it would be more appropriate to allow for
defining a task as critical at L0 only. Note that
this remark relates to the general concern that
processes used for managing projects are differ-
ent from business processes and may, therefore,
recommend a different kind of conceptualization.

Process modeling includes further aspects that
go beyond the requirements described in the chal-
lenge. However, with respect to preparing for
process execution they need to be accounted for.
First, process governance will often include rules
that concern the identity of actors who manage
tasks and of corresponding resources as well. For
example, the position type “sales assistant” may
be assigned to various activity types of an order
management process. Also, every activity type
may create or use certain resource types. A more
specific process governance may define that for
every instance of the order management process
all corresponding tasks have to be assigned the
same instance of the position “sales assistant”.
This could be achieved by adding a constraint
to more specific process models. Since such a
constraint is not too unusual, it would be bene-
ficial representing the corresponding knowledge
at the level of the generic process model already.
That would, however, require to use some kind of
optional constraint template that could be further
refined at the level where the missing knowledge
is available.

Similarly, it may be necessary to express that
the instance of a certain resource type on L0
has to be unique during the entire process, for
example, an order or a contract. Again, this could
be expressed through constraints at the level where
this restriction applies or at a higher level with
an optional constraint template. With respect
to information resources such as documents or
objects in general, information flow has to be
accounted for, too. It makes a difference, whether
an object’s state is passed through a process, or
only a reference to the object. Therefore, it should
be possible to express that together with the used
communication channels. With respect to process

analysis further aspects may have to be accounted
for, such as costs, failures, bottlenecks, etc.

4.4.2 The Software Development Process
Before we present the multi-level process model,
the software development process as it is defined
in the challenge is represented in the notation of
the MEMO-OrgML (Organisation Modeling Lan-
guage) (Frank 2011a), (Frank 2011b), because a
specific notation allows for a more comprehensible
representation (Fig. 14). The model is based on the
UML activity diagram in Fig. 1 of the challenge
description. In addition, it also represents the rel-
evant context with respect to organizational units
and artifacts. This way, it served us as a blueprint
for developing the corresponding FMMLx model.

4.4.3 Software Development Process
Core Concepts: The objects the process tasks refer
to, that is, the relevant context, are defined in the
models depicted in figures 6 and 10. The designa-
tors used for naming the artifacts used or produced
by a process task correspond to the names of the
classes in the multi-level models of artifacts for
the software development domain (Fig. 10). Ac-
cordingly, the designators that indicate the role or
position types, the instances of which are respon-
sible for a process task, correspond to the classes
with the same name in the multi-level model of
the organizational structure in the same domain.

Fig. 15 and 16 depict the model of the software
development process created with the FMMLx .

Design decisions: According to S7, Ann Smith
is “the only one allowed to perform coding in
COBOL.” As we argued already in Sect. 3, it
would violate principles of organizational design
to create a “lex Ann Smith”. Therefore we repre-
sent the underlying idea, i. e., that only a person
who is qualified to modify code is allowed to
do so, on a more abstract level. The association
masters between Employee and Language serves
expressing that the corresponding employee is
qualified to manipulate artifacts written in one
of the languages linked to her. Since we assume
that software artifacts are manipulated only within
processes, the rule that only a qualified employee,

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 31

< Designer >

Design

RA completedProject started Project 
finished

Design 
completed

< Senior Analyst >

Test Case Design

Coding 
completed

< Developer >

Coding

TC completed TDR 
completed

< Senior Analyst >

Test Design Review

< Tester >

Testing

< Analyst >

Requirements Analysis

9 d

Code

Test Case

Business 
Process Model

Test 
Report

Activity, partially automated

Software 

Artifact Type

may 

create

Event

< created, published 

through e-mail>

single OrgUnit 

assigned to 

activity type

Fork, indicates 

parallel threads
AND 

Synchronizer

critical

expected 

duration

Test Case

Object Model

Object Model

Figure 14: Diagram of the software engineering process model in the MEMO OrgML notation

i. e. one who masters the required language, may
manipulate an artifact is implemented as a con-
straint within the software development process,
namely the constraint allowedToManipulate with
the class Activity (see Fig. 12).

Note that we decided to specify this constraint
with the generic process model for simplification
purposes only. It does not apply to the insurance
case. Therefore, the activities specified for the
software development case should have been con-
cretized from a more specific class that could be
specialized from the class Activity on L3. This
class could then be used to specify the constraint.

c o n t e x t Activity
@Constraint allowedToManipulate
self.getCreatedResources ()→ f o r A l l (r |

r.getRequiredLang ()→ f o r A l l (l |
getActUnit ().getEmployee ().

getLangMastered ()→ includes(l)))
end

Fig. 17 illustrates the application of the constraint,
which fails in the case of an employee who is in
charge of an activity that requires a language he
does not master. It would, of course, be possible
to assign a responsible employee or position re-
spectively to each artifact. However, that seems
to be too restrictive, because it would require that
particular employee to participate in all projects
where this artifact is manipulated. That would

create serious problems in case the corresponding
employee is temporarily not available.

Further issues: From a static perspective, the
concepts used to specify generic process models
allow for representing particular process instances
on L0. However, this kind of instantiation may
produce results that are disturbing. The example
of a partial instantiation of the software devel-
opment process shown in Fig. 18 illustrates the
problem. The instance of the class ObjectModel

that is used during design should be the same that
is created during requirements analysis. While it
is characterized by the state “early” in the require-
ments analysis task, its state turns to “advanced”
in the design task. However, with a static view
on instantiation, it is not possible to represent two
different states of an object, because an object is
represented only once. If its state is changed later
in a process that would cause a problem, because
then the previous activity would be linked to a
wrong state of the object.

To cope with this problem, one could use the
workaround shown in Fig. 18: two different ob-
jects are assigned to the tasks in order to represent
two different states. The fact that both objects
represent the same object is expressed through a
common identifier. There may be certain analysis
scenarios where the use of such a workaround is
helpful. However, in general, the instantiation of

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

32 Ulrich Frank, Tony Clark

startsThread

createsFork

mayPerform

producesEvent

producesStop

mayCreate

mayCreate

requiresSynch

regTriggers

mayPerform

producesEvent

mayCreate

mayPerform

mayCreate

requiresSynch

mayCreate

qualifiesFor

synchsTo

producesEvent regTriggers

mayPerform

mayCreate

mayPerform

triggers

producesEvent

mayPerform

mayCreate

^AsynchStop^

1 ProjectFinished

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^compSupported^

1 Testing

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 9

critical = false

^AsynchRegular^

1 TDR_Completed

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^AsynchRegular^

1 CodingCompleted

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = app

^AndSynch^

1 AndSynch_A

id: String[1] (from Synch)0

typeID = ESA

numOfThreads = 2

^compSupported^

1 TestDesignReview

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 2

critical = true

^AsynchRegular^

1 TCCompleted

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^AsynchRegular^

1 Design_Completed

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = app

^compSupported^

1 Coding

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 0

critical = true

^compSupported^

1 TestCaseDesign

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 5

critical = true

^compSupported^

1 Design

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 7

critical = false

^Fork^

1 Fork_A

id: String[1] (from Fork)0

typeID = FTA

^AsynchRegular^

1 RA_Completed

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^compSupported^

1 RequirementsAnalysis

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 12

critical = false

^AsynchStart^

1 StartProject

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^Model^

1 ObjectModel

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^Model^

1 TestCase

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^Report^

1 TestReport

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

generated: Boolean[1] (from Report)0

creationDate: Date[1] (from Resource)0

couldBeGenerated = true

^Model^

1 BusinessProcessModel

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

numOfModels()-> 1

^Code^

1 AppCode

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

creationDate: Date[1] (from Resource)0

LoC: Integer[1] (from Code)0

target = application

openSource = false

distributesUse = false

numOfCodeUnits()-> 1

^TechPosition^

1 Developer

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 14

creationDate = 01 Oct 1996

totalSalary()-> 98000 EUR

numOfOpen()-> 13

numOfFilled()-> 1

^QM_Role^

1 Tester

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

numOfUnits = 3

creationDate = 01 Oct 2003

numOfOpen()-> 2

numOfFilled()-> 1

^TechPosition^

1 Analyst

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = false

numOfUnits = 3

creationDate = 01 Oct 2011

totalSalary()-> 72000 EUR

numOfOpen()-> 2

numOfFilled()-> 1

^TechPosition^

1 SeniorAnalyst

salary: MonetaryValue[1] (from Position)0

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

senior = true

numOfUnits = 0

creationDate = 01 Oct 2015

totalSalary()-> 199000 EUR

numOfOpen()-> -2

numOfFilled()-> 2

startsThread

producesEvent

7

1

2

3

4

5

1

2

3

4

5

6Figure 15: FMMLx model of the software development process and its relevant context (part 1)

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 33

producesStoprequiresSynch

requiresSynch

synchsTo

mayPerform

mayCreate

^AsynchStop^

1 ProjectFinished

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^compSupported^

1 Testing

terminated: Date[0..1] (from Activity)0

started: Date[0..1] (from Activity)0

expectedDuration = 9

critical = false

^AsynchRegular^

1 TDR_Completed

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = email

^AsynchRegular^

1 CodingCompleted

id: String[1] (from Event)0

createdAt: Date[1] (from Event)0

producedBy = app

^AndSynch^

1 AndSynch_A

id: String[1] (from Synch)0

typeID = ESA

numOfThreads = 2

^Report^

1 TestReport

state: State[1] (from SoftwareArtifact)0

reuseRatio: Integer[1] (from SoftwareArtifact)0

id: String[1] (from Resource)0

generated: Boolean[1] (from Report)0

creationDate: Date[1] (from Resource)0

couldBeGenerated = true

^QM_Role^

1 Tester

performance: Performance[1] (from UnitOfWork)0

filled: Boolean[1] (from SingleUnit)0

typeDescription =

singleton = false

numOfUnits = 3

creationDate = 01 Oct 2003

numOfOpen()-> 2

numOfFilled()-> 1

4

5

6

Figure 16: FMMLx model of the software development process and its relevant context (part 2)

Figure 17: Abstraction of the “lex Smith” – for the classes Person and Employee see Fig. 6

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

34 Ulrich Frank, Tony Clark

a business process needs to be done dynamically.
This allows for changing the state of objects during
the course of instantiating activities step by step.
The realization of the dynamic instantiation of a
process type requires a process execution method
in the end, implemented, e. g. in process manage-
ment class, that is able to instantiate activities
and to listen to the events that are created upon
the termination of activities. Our model does
not implement this kind of dynamic instantiation,
but it could be extended with a process execution
facility, e. g. to enable simulations.

creates

^RequirementsAnalysis^

0 reqAn7

terminated = 28 Feb 2021

started = 26 Feb 2021

^ObjectModel^

0 obMod17

state = early

reuseRatio = 0

id = ERP_OO8A

creationDate = 28 Feb 2021

uses
^Design^

0 des12

terminated = null

started = 01 Mar 2021

^ObjectModel^

0 obMod18

state = advanced

reuseRatio = 0

id = ERP_OO8A

creationDate = 28 Feb 2021

Figure 18: Illustration of problem with static instanti-
ation of process types

4.4.4 The Claims Handling Process
The diagram in Fig. 19 illustrates our interpreta-
tion of the claims handling process that builds the
foundation for the model that we will subsequently
present. After a claim was received, the first activ-
ity, “Check Claim” is to check, whether the claim
is formally covered by a valid insurance policy.
We assume that a position of the type “Claims
Handling Clerk” is in charge of this validation, the
possible outcomes of which are reflected by the
following branches represents this validation. If a
valid insurance policy exists, the claim assessment
activity is triggered. It is handled by an employee
who holds the position of a claims handling man-
ager and uses the insurance policy and the damage
claim already used in the previous activity. The
assessment of a claim includes determining the
amount to be reimbursed. The final activity in
the process, “Authorize Payment” is performed

by either a financial officer or a claims handling
manager.

Core Concepts: The construction of the claims
handling process with the FMMLx takes the di-
agram in Fig. 19 as a blueprint. The document
types used in the process correspond to the classes
specified in the model of artifacts in the insurance
domain (cf. Fig. 11). Apart from documents of
the class ClaimHandlingNotification, they are only
used, not created. The capability of an activity
type to create or use a certain type of document
is specified in the generic process model by the
associations mayCreate and mayUse, which are in-
stantiated as links in the claims handling process,
which is shown in Fig. 20.

Design Decisions: The design of the process
model did not include any specific design decision
different from those required for the design of the
software development process.

Further Issues: It seems obvious that a claims
handling process may not include more than one
instance of an insurance policy. However, the
generic process model does not define a limit for
the maximum multiplicity. Hence, more than one
instances of insurance policy could be assigned
to a task on L0. This issue could be addressed
by a constraint either added to the correspond-
ing instance of the class BusinessProcess on L1.
However, that would create a challenge to model
integrity, because it would partly contradict the
corresponding assertion in the generic process
model. While this was already known with the
design of the generic model, the FMMLx does
not offer a language concept to express that the
maximum multiplicity may change within the
concretization subtree.

5 Evaluation

The evaluation of the solution consists of two
parts. At first, we will check the presented mod-
els against the requirements published with the
challenge. The second part is focused on a more
general comparison against traditional modeling
approaches.

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 35

< Claim H. Manager >

Claim AssessmentClaim covered

Claim received

Claim settledClaim 
assessed

< Financial Officer 
Claim H. Manager >

Authorize Payment

< Claim Handl. Clerk >

Reject Claim

< Claim Handl. Clerk >

Check Claim

3 d

Claim Handling 
Notification

Insurance 
Policy

Document

Damage 
Claim

Claim not 
covered

Insurance 
Policy

Damage 
Claim

Claim Handling 
Notification

Claim rejected

used

created

Decision

(IT-supported)

Branching

Figure 19: OrgML model of the claims handling process

5.1 Evaluation against Requirements
To check the presented model against the require-
ments, we will explicitly account for every require-
ment in the two lists P and S. Tab. 1 presents the
results of checking the proposed solution against
requirements P1 to P19 related to “processes,
tasks, actors, and artifacts”. Tab. 2 relates to
requirements S1 to S13. If we conclude that a
requirement is clearly satisfied, the correspond-
ing evaluation is marked with an “S” if it is not
satisfied in a literal sense, we use a “C”.

Tab. 3 serves to further facilitate the comparison
with regular contributions to the challenge. The
entries in the first column describe the additions
that go beyond the requirements defined with the
challenge.

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

36 Ulrich Frank, Tony Clark

1

2

3

4
5
6

7

1

2

3

4

5
6

7

Figure 20: FMMLx model of the claims handling process

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 37

Requirement Assessment
P1: A process type (such as claim handling)
is defined by the composition of one or more
task types (receive claim, assess claim, pay
premium) and their relations.

S The generic process model in 12 and the models of the software develop-
ment process and the insurance process in figs. 15, 16 and 20 show that
this requirement is clearly satisfied.

P2: Ordering constraints between task types
of a process type are established through gate-
ways, which may be sequencing, and-split,
or-split, and-join and or-join.

S The generic process model defines all control flow elements mentioned
in the requirement, with the only difference that other designators are
used for naming gateways.

P3: A process type has one initial task type
(with which all its executions begin), and one
or more final task types (with which all its
executions end).

S This requirement is satisfied on the type level by the intrinsic associa-
tions terminatedBy and startedBy between BusinessProcess and
StopEvent and StartEvent respectively. In addition, the intrinsic as-
sociation beginsWith is to link the representation of particular business
process with the starting event on L0.

P4: Each task type is created by an actor, who
will not necessarily perform it. For example,
Ben Boss created the task type assess claim.

S The intrinsic association designs between SingleUnit and Activity
allows the realization of this requirements. In addition, the association
defines between selected position types and BusinessProcess allows
to specify that the holder of a certain position defines all task types of a
certain process types (cf. Fig. 13).

P5: For each task type, one may stipulate a
set of actor types whose instances are the only
ones that may perform instances of that task
type.

S In the generic process model, the intrinsic association mayPerform
between the classes SingleUnit and Activity, both on L3, allows
assigning classes representing role or position types on L1 to activity
types on L1. The constraint legitimatePerform within Activity
checks whether the assignment of a particular role or position to an
activity on L0 is legitimated by a corresponding link between their
classes on L1.

P6: A task type may alternatively be assigned
to a particular set of actors who are authorized
(e. g., John Smith and Paul Alter may be the
only actors who are allowed to assess claims).

C We did not include that in the generic process model, because it violates
principles of organizational design to define regulations ad personam.
Possible assignments can, however, be restricted by the solution to
P5. Nevertheless, it would, of course, be possible to define an intrinsic
association between ActUnit and Activity, which would be instantiated
on L0, however, at the risk of producing contradictions to the constraints
defined with the associations described with the solution for P5.

P7: For each task type (such as authorize
payment) one may stipulate the artifact types
which are used and produced. For example,
assess claim uses a claim and produces a claim
payment decision.

C The artifact types that can be used and produced by a task type can be
defined through instantiations of the intrinsic associations mayCreate and
mayUse defined. However, in our model decisions are not conceptualized
as artifacts. Instead, they are represented by branchings and the alternative
event types that they produce.

P8: Task types have an expected duration. S The intrinsic attribute expectedDuration of Activity, to be instanti-
ated at L1, serves the representation of this property.

P9: Critical task types are those whose in-
stances are critical tasks; each of the latter
must be performed by a senior actor and the
artifacts they produce must be associated with
a validation task.

C The intrinsic attribute critical of Activity allows characterizing a
task type as critical. The constraint criticalTask of Activity checks,
whether a critical task type is assigned to a position type that qualifies as
senior. The requirement that the artifacts produced by a critical activity
need to be linked to a validation task is accounted for by the constraint
properValidation in Activity. For reasons outlined in Sect. 4.4.1,
the constraint is limited by the lack of further information.

P10: Each process type may be enacted multi-
ple times.

S Process types are represented on L1 and, hence, allow for multiple
instantiations.

P11: Each process comprises of one or more
tasks.

S Each business process has exactly one start event, which in turn triggers
an activity directly or indirectly through a fork.

P12: Each task has a begin date and an end
date.

S The intrinsic attributes started and terminated of Activity allow
assigning a begin and end date to task at L0.

Continued on next page

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

38 Ulrich Frank, Tony Clark

Table 1 – Continued from previous page
Requirement Assessment
P13: Tasks are associated with artifacts used
and produced, along with performing actors.

S Obviously satisfied by various associations between Activity on the
one hand, and the classes Resource and SingleUnit on the other hand
(cf. fig 12).

P14: Every artifact used or produced in a
task must instantiate one of the artifact types
stipulated for the task type.

S The various assocations between Activity and Resource, as well as the
constraints legitimateCreation and legitimateUse of Activity
satisfy this requirement.

P15: An actor may have more than one actor
type

C As we outlined already in Sect. 3, we struggle with this requirement,
because the FMMLx (like any other object-oriented language we know)
does not allow for multiple classification (multiple generalization is
different!). Our model accounts for this requirement by using roles that
can be assigned to an employee in addition to her position.

P16: Likewise, an artifact may have more than
one artifact type.

C For the same reasons that apply to P15, we cannot satisfy this requirement.
Different from P15, we do not see how the use of roles, that is, of
delegation, would help. If, however, a relaxed interpretation is applied to
the requirement, our solution would be satisfactory: a particular contract,
for example, may be an instance of the class InsurancePolicy and a
descendant of Document at the same time.

P17: An actor who performs a task must be
authorized for that task.

S Clearly satisfied by the associations between Activity and SingleUnit
and additional constraints; corresponds to P5.

P18: Actor types may specialize other actor
types in which case all the rules that apply to
instances of the specialized actor type must
apply to instances of the specializing actor
type.

C This requirement is not directly realized by the proposed solution for
reasons explained in Sect. 3. Nevertheless, the generic process models
allows addressing a slightly modified version of this requirement through
the constraint legitimatePerform in Activity: a superior may
perform every task one of her subordinates is authorised to carry out,
as long as this would not violate additional constraints like, e. g., that a
program may be manipulated only by actors who master the corresponding
language.

P19: All modeling elements, at all levels, must
have a last updated value of type time stamp.

S This requirement is satisfied by the attribute lastUpdated in MetaClass
(see Fig. 1), since all FMMLx classes inherit from MetaClass. A
more sophisticated solution would include the automatic update of the
corresponding slot value. This could be achieved through a modification
of the meta object protocol, which we did not do, since that implies a
remarkable effort and would go beyond the requirement defined with
the challenge. Note that the attribute and the corresponding slot values
are not shown in the diagrams that represent the solution. This is due
to the general decision not to show attributes or operations defined in
MetaClass or in Class in diagrams, like, e. g., the attribute name or the
operation allInstances().

Table 1: Evaluation against requirements P1 to P19

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 39

Requirement Assessment
S1: A requirements analysis is performed
by an analyst and produces a requirements
specification.

S Satisfied by the software development process in Fig. 15.

S2: A test case design is performed by a
developer or test designer and produces test
cases ... only senior analysts may perform a
test case design.

S The first part of the requirement is directly addressed by the software
development process model, the second part is also accounted for by the
constraint criticalTask, which checks whether the type of a position
or role assigned to an instance of a critical task type is qualified as senior.

S3: An occurrence of coding is performed by
a developer and produces code. It must fur-
thermore reference one or more programming
languages employed.

S The instantiation of the intrinsic association mayCreate between
SingleUnit and Activitiy in the software development process
satisfy the first part. The software artifact model defines that every
particular code document needs to refer to the language it was created
with.

S4: Code must reference the programming
language(s) in which it was written.

S That corresponds to the second part of S3.

S5: Coding in COBOL always produces
COBOL code.

S Every particular code document, including COBOL code, needs to be
linked to the language in which it was written (cf. S 4). Therefore, the
requirement seems to be redundant.

S6: All COBOL code is written in COBOL. S Again, with respect to the proposed solution, this requirement is redun-
dant.

S7: Ann Smith is a developer; she is the only
one allowed to perform coding in COBOL.

S The constraint allowedToManipulate defines a corresonding rule that
may lead to Ann Smith being the only one who is allowed to perform
coding in COBOL if she happens to be the only one who masters COBOL.

S8: Testing is performed by a tester and pro-
duces a test report.

S Directly represented by the sofware development process model, see 16.

S9: Each tested artifact must be associated to
its test report.

C We are afraid that this requirement cannot be satisfied without further
information. While it would be no problem to associate the class Code
with the class TestReport (see Fig. 10), it is not clear, whether this
should apply to every code document and what other documents require
testing. Furthermore, it is not clear, whether a test report has to be created
within the same process the document to be tested was created in.

S10: Software engineering artifacts have a
responsible actor and a version number.

C The intrinsic attribute version in SofwareArtifact allows assigning
a version number to every artifact at L0. A responsible actor is assigned
via the activity during which an artifact is manipulated. Hence, our
solution is based on the assumption that artifacts are manipulated only
within processes.

S11: Bob Brown is an analyst and tester. He
has created all task types in this software
development process.

S Directly represented in the model shown in Fig. 13.

S12: The expected duration of testing is 9
days.

S Represented in the software development process model (see Fig. 16).

S13: Designing test cases is a critical task
which must be performed by a senior analyst.
Test cases must be validated by a test design
review.

S Both aspects of this requirement are accounted for in the model of the
software development process. It is a matter of interpretation, whether
the assignments made in the software development process are valid
for all processes where test cases are designed, which leads to further
questions we shall discuss in Sect. 6.

Table 2: Evaluation against requirements S1 to S13

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

40 Ulrich Frank, Tony Clark

Additional Concepts Rationale
Concepts to describe organizational
structures on L 3, e. g., Position,
CompOrgUnit, Role. See Fig. 6.

These concepts serve the representation of text-book knowledge on organiza-
tional structures. The purpose of this additional abstraction is to provide a
DSML that can be used for (almost) any kind of organization. At the same
time, it is clearly more restrictive than concepts known from GPMLs, thus
contributing to model integrity.

Concepts to describe more specific orga-
nizational structures on L2. See Fig. 7.

These classes represent more specific language concepts. Together with
more generic concepts they demonstrate that multi-level modeling is suited to
mitigate the notorious conflict between range of reuse (high on a more generic
level) and productivity of reuse (growing with lower levels). The lower levels
benefit from reusing concepts defined on higher levels.

Introduction of classes to represent spe-
cific positions and roles instead of using
a more general concept like actor.

Similar to the introduction of high level concepts for describing organizational
structures, these concepts represent reusable domain-specific knowledge that
supports the convenient and safe creation of artifact types that are characteristic
for a specific domain.

Classes on L3 and L2 to represent pro-
cess modeling concepts.

While the intention here is similar to the previous one, the effect of this measure
is less convincing. For reasons outlined in the paper, higher level concepts for
process modeling foster reuse of specific static or functional aspects of process
models on lower levels, but they do not allow for reusing dynamic aspects such
as, e. g., a certain constraint on a sequence of activities that would apply to
process models on lower levels, too.

Introduction of specific opera-
tions like totalSalary() in
Position or claimedAmount()
in ClaimHandlingNotification.

At first, these operation serve to demonstrate that the presented models are
executable. In addition, they demonstrate the utility of intrinsic operations.

Introduction of additional con-
straints like properPart0 or
properPar1 of CompOrgUnit, or
allowedToManipulate of Activity.

Adding constraints aims to demonstrate the utility of active constraints enabled
by the XModelerML . Whenever a change operation on a model violates a con-
straint, an alert is created an shown within the diagram. Furthermore, intrinsic
constraints show how to restrict more specific DSML through knowledge that
is available with more generic concepts already.

Use of delegation to specify the relation-
ship between the classes Person and
Employee.

This extension is motivated by the need to allow for more elaborate specifica-
tions of organizational responsibilities than those possible through a generic
concept like actor. Also, it is to demonstrate that the XModelerML implements
delegation and, thus, allows to transparently access the state of role filler
objects by role objects.

Table 3: Elements of the solution that go beyond the challenge

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 41

5.2 Comparison with Traditional
Language Architectures

During the last 30 years, one of the authors was
involved in the development of numerous model-
ing languages and corresponding modeling tools,
which were designed within traditional language
architectures that allow one classification level
only, for example, (Frank 1994, 1998, 2011a,b;
Frank et al. 2009; Gulden and Frank 2010; Kirch-
ner 2005; Overbeek et al. 2015). Against this
background we shall at first perform a general
comparison of multi-level languages against lan-
guages that follow the traditional paradigm. Sub-
sequently, we look at specific features offered by
the FMMLx and the XModelerML . For a compre-
hensive analysis of specific benefits of multi-level
modeling and its comparison to traditional ap-
proaches see (Frank 2022).

5.2.1 General Assessment of Multi-Level
Languages

The design of modeling languages aims at pro-
viding prospective users with an instrument that
facilitates the convenient creation of consistent
models. In the case of DSML, the models are
restricted to certain domains. The convenience of
modeling corresponds to productivity and to ease
of use. While both aspects are not independent
from the concrete syntax, we fade this aspect out,
because both, traditional language and multi-level
languages may benefit from a thoroughly designed
notation alike.

Among the limitations of languages of the tra-
ditional paradigm, the lack of expressiveness is
probably the most frustrating one. Whenever
you build a system you would like to express the
knowledge you have at the appropriate level of ab-
straction. For example, a metamodel can be used
to describe properties of a position type, but even
though we know the specific characteristics that
apply to particular positions only (salary, filled by
a certain employee, etc.), we cannot express them.
If that is not possible you are forced to develop
workarounds that are likely to increase a system’s
complexity and, as a consequence, are a threat to
system integrity. Unfortunately, with the design

of DSML this is not a rare exception, but a rule.
Multi-level modeling overcomes limitations of ex-
pressiveness that are inherent in the old paradigm.
The models presented in this paper include nu-
merous examples. All intrinsic features used in
these models could not have been expressed in the
traditional paradigm.

A further source of great frustration with the old
paradigm is the fact that the specification of a lan-
guage always starts from scratch. Meta-modeling
languages and meta-modeling tools offer basic
language concepts such as “class”, “attribute”, etc.
only. This is a remarkable restriction. Imagine,
we would have to write this paper with a primitive
language like that! As a consequence, the design
and implementation of languages is costly and
error-prone. Another problem is related to the pre-
vious one: the need to clearly distinguish between
language and language application. Unfortunately,
there are no clear rules to make this distinction.
For example, one has to decide whether notions
like “organizational unit” or “department” should
be modelled as language concepts or rather be
specified with the language. If one decides for or-
ganizational unit, department would not qualify as
language concept anymore, even though it is defi-
nitely part of technical languages in the domain of
organizational design. A multi-level model does
not require this distinction. Both notions can be
included in one language, on different levels of
abstraction.

In addition, and related to the previous, the de-
sign of languages within the traditional paradigm
is confronted with a sometimes frustrating deci-
sion. On the one hand, the utility of a language
depends on its reach. The more people use it, the
better are economies of scale. On the other hand,
its utility depends on its specificity. The better it
is tailored to a particular domain, the higher is its
contribution to productivity and model integrity.
For all the DSML that we developed within the
traditional paradigm we were forced to decide for
a particular trade-off between economies of scale
and modeling productivity — even though both
are of pivotal relevance. As the design of the
multi-level models presented in this paper clearly

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

42 Ulrich Frank, Tony Clark

illustrates, that conflict can be substantially re-
laxed. The generic models enable a wide range of
reuse and the more specific models, while benefit-
ing from reusing the concepts of a more general
DSML, allow the adaptation to specific needs.
This is a huge economic advantage enabled by
the additional abstraction provided by multi-level
languages.

Despite these obvious benefits, it may seem at
first sight that multi-level modeling suffers from a
serious drawback. The solution we present in this
paper is of remarkable complexity. It is indeed the
case that the higher level of a multi-level model
may be characterized by specific kinds of com-
plexity not known of in the traditional paradigm.
The generic process model and the generic model
of organizational structures are obvious examples.
However, even though this objection cannot be
ignored, it is hardly convincing in the end. First,
it would not be less complex to satisfy the require-
ments of the challenge with traditional language
concepts than with the intrinsic features and es-
pecially the constraints specified in the generic
models. To the contrary, it would be necessary
to overload concepts and to add more complex
constraints to somehow create models of compara-
ble semantics. Second, the degree of complexity
inherent to a multi-level model varies. The higher
the level of abstraction, the more complex and
demanding the construction (and understanding)
of a multi-level model gets. At the same time,
convenience and integrity of use increase on lower
levels, because the concepts defined on higher
levels already enable reuse and guidance. This
corresponds to the general rule that the reduction
of complexity implies to first increase it.

5.2.2 Specific Features of the FMMLx and
the XModelerML

In addition to multi-level modeling in general,
the FMMLx and its implementation with the
XModelerML offer specific features that had an
impact on the proposed solution. First, the abil-
ity to define associations across different levels
proved to be very useful. Otherwise, it would not

have been possible expressing, e. g., that an em-
ployee can fill any kind of position at a level where
particular position types were still abstracted away.
Also, the definition of separate instantiation levels
within one intrinsic association turned out to be
useful, for example, to express that the holder of
a certain position may define a business process
type (cf. fig 13).

With respect to the language engineering en-
vironment provided by the XModelerML , it is
a substantial advantage that all models are exe-
cutable. The models can be seen as applications
that allow for interaction. The state of a model
can be changed, either within the diagram editor
or by using the model browser. Operations do
not only serve the support of specific inquiries,
such as computing the total amount of salaries
assigned to all instances of a certain position type.
In addition, it is possible to add specific control
classes that could orchestrate more complex appli-
cation scenarios, like the enactment of a particular
process including the required user interactions.

Models and programs share the same internal
representation. Therefore, synchronization of the
two is not an issue. Every user is free to use the
representation of his choice. A diagram view will
often be preferable when the relationships between
classes need to be accounted for. The browser is
likely to be seen as more convenient, when the
focus is on editing operations or constraints. In
addition to these standard views, it is possible to
create further views in order to build a customized
user interface.

6 Discussion
The challenge is mainly motivated by the idea
to compare and assess existing approaches to
multi-level modeling. In addition, the scenarios
presented with the challenge should also serve as
a laboratory for evaluating and further developing
existing languages and tools. With this in mind, we
will first discuss the experiences we had with the
FMMLx and the XModelerML during the design of
the solution. Then we will point out a key research
challenge whose importance is underlined by the
process challenge.

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 43

6.1 Limitations of Multi-Level Modeling
and the FMMLx

The evaluation of the models we propose shows
that they satisfy directly most of the require-
ments defined by the challenge. The remain-
ing requirements are also addressed, but in some
cases based on an interpretation that may be
slightly different from what the authors of the
challenge intended. Therefore, the FMMLx and
the XModelerML served us as effective tools to
develop a solution. Nevertheless, we experienced
a few limitations of the language and the tool as
well. The main drawback we experience with
the FMMLx was the insufficient support for repre-
senting contingencies. The design of multi-level
models recommends expressing the knowledge
we have on the highest possible level. It some-
times happens that we have relevant knowledge
we would like to express with a class at a certain
level, but we cannot exclude, or we may even know
that there are exceptions within the concretization
tree of that class. Of course, one could cope with
this kind of contingency by treating the different
cases separately. That would, however, lead to
conceptual redundancy: common properties of
the affected classes would have to be modelled
multiple times. A prominent example are cases
where the level of a class may differ with the
context, hence, its level is contingent (cf. the brief
outline in Sect. 2). The latest extension of the
language allows for defining the level of a class
as contingent, which means that it can be adapted
with the context the class is used in. This feature is,
however, not implemented in the current version
of the XModelerML .

While we did not need contingent level classes
(or “level jumps”), a modification of the model
would have likely created such a demand. If, for ex-
ample, we had decided to model SoftwareArtifact
as concretization of Document, Document would
have been at L4, while it is at L3 in the artifact
model of the insurance domain. With respect to
the obvious differences between both domains that
does not seem as a serious drawback. In contrast,
we experienced the lack of language concepts to

specify multiplicities within intrinsic associations
as contingent as a more serious limitation. We
could not express that the cardinality of an intrinsic
association between Resource and Activity needs
to be changed within some concretizations (see
corresponding discussion in Sect. 4.4.3). Both
specific limitations indicate that there is need for
concepts that enable underspecification in order
to cover a wider range of possible concretizations.

The design of the presented models was guided
by a preliminary method that goes beyond the
principles described in Sect. 4.1. Even though
it provides very useful support, the design of the
models confirmed two conjectures we made al-
ready earlier. First, there is need for extending
the method with more specific guidelines that con-
cern, e. g., decisions on the appropriate level of
classes or on the use of contingent level classes
(for a corresponding proposal see Frank and Töpel
2020). Second, the variety and contingency of
domains to be covered by a method implies that
a method cannot be comprehensive. Therefore,
modelers need to be trained and reflective to make
informed and convincing decisions. While this is
the case for any modeling method, this insight has,
according to our experience, even more weight
for multi-level modeling. Note, however, that this
does not mean that multi-level modeling is more
demanding for all stakeholders. Those who use
existing higher level models as languages to create
more specific models benefit from less complexity
and more guidance, which is clearly demonstrated
by the lower level models shown, e. g., in figures
8, 11, 10, or 15. Therefore, the occasional reserva-
tion against multi-level modeling that it would be
too complicated for most users, is not appropriate.
Instead, the development of the presented models
once again confirms a general principle: the re-
duction of complexity implies increasing it at first.
This does not come as a surprise. Usually, the
development of a DSML is more demanding, i. e.,
of higher complexity, than using the language.

The XModelerML proved to be an effective tool
to create, and execute, multi-level models. Espe-
cially, the option to switch between a diagram and

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

44 Ulrich Frank, Tony Clark

a browser/editor view was useful in many situa-
tions. However, this assessment is not free of bias,
because we were involved in the development of
the tool. In any case, it is extremely useful for
a tool to support model changes, because these
can hardly be avoided. The XModelerML enables
deleting and modifying almost all properties of
classes, including names, and levels of attributes,
associations, and operations. Furthermore, types
of attributes can be changed, as well as the prop-
erties of associations and the implementation of
operations and constraints. It is also possible to
lift or lower the level of all objects of a model. The
latter, however, is usually not required. Instead,
we occasionally experienced the need for changing
the level of a particular class, which is currently
not supported by the XModelerML . While this
kind of change will usually not allow for being
fully automated, it would be very useful if the tool
guided the user interactively through the required
changes.

During the design of the models it became
apparent that a tool should provide support for
dealing with large models. The model for the soft-
ware development firm comprises of 84 classes
in total, with 17 classes on L3, 30 on L2, and 37
on L1. The model can easily grow to a substan-
tially larger size with further concretizations. The
XModelerML provides two features to cope with
the size of diagrams. First, it allows hiding parts
of a diagram, while the affected objects are still
accessible through the object browser. Second,
it is possible to distribute a diagram to different
views, which are accessible through tabs at the
top of the canvas (see screenshot in Fig. 2). Each
view shows a certain part of a model. Views may
overlap, that is, parts of a model can be shown in
more than one view.

6.2 The Challenge Beyond the Challenge:
Multi-Level Modeling of Behavior

The solution we present aims at the requirements
defined by the challenge. Therefore, it does not
address a further aspect of multi-level process
models that is especially relevant and, at the same

time, extremely challenging. The solution com-
prises of static and, to a small degree, functional
abstractions only. However, modeling processes
suggests to account for dynamic abstractions, too.
The state of the art in process modeling is charac-
terized by a remarkable lack of abstraction and,
as a consequence, poor reuse and little support of
model integrity. The design of a process model
always starts from scratch with primitive concepts
such as event, activity, etc. In the field of business
process modeling, this limitation has been known
for long. A popular approach to mitigate it is
the development of reference process models (see,
e. g., Fettke et al. 2006, Frank and Lange 2004).
A thoroughly designed model, for example of an
order management process, should serve as a ref-
erence for an entire industry or parts of it. Even
though the idea is appealing it did not turn into
the expected success story. One of the obstacles
that hinders the distribution of reference models
is their limited adaptability. Reuse is mainly re-
stricted to copy&paste. Various approaches aimed
at addressing the resulting maintenance problem
such as the conceptualization of process variants
(Hallerbach et al. 2010) or the use of rules to
constrain the range of change operations (Popp
and Kaindl 2015).

Other approaches focus at the core of the prob-
lem, the lack of abstraction, by proposing concepts
of process specialization. Van der Aalst and Bas-
ten use petri nets to define specialization rules for
processes (Aalst and Basten 2002) or operations
in object-oriented software systems (Schrefl and
Stumptner 2002). Wyner and Lee propose an ap-
proach to process specialization, which, however,
rather qualifies as process instantiation (Wyner
and Lee 2002). While these approaches promise
some relief, their effect on reuse and adaptabil-
ity remains modest. This is due to the principle
problem that process models do not allow for
monotonic extensions of the control flow. As a
consequence, the effect of changes applied to a
superprocess on its subprocesses is not determin-
istic (for an elaborate analysis of this problem see
Frank 2012).

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 45

Applying the idea of multi-level modeling to
process models may help to find a way out of this
predicament. The following scenario illustrates
the idea. At a higher level, a general model of
claims handling processes would represent the
knowledge that is common to all claims handling
processes in the insurance industry. It would,
e. g., include that every claim has to be formally
checked before it is further analyzed. This model
would form a language to describe more specific
claims handling processes, e. g., in the field of
vehicle insurance. The corresponding language
could then be (re-) used to define a more specific
process model, for a certain type of insurance
policy or for a certain company. While we believe
that this is an appealing idea that has the potential
to clearly improve the current state of the art of
process modeling, we are aware of the challenges
it brings. This assessment was confirmed by a
recent Dagstuhl seminar on multi-level modeling
(João Paulo A. Almeida et al. 2018). While most
of the participants regarded multi-level process
modeling as a formidable challenge, they also
agreed that multi-level modeling is suited to im-
prove reuse and adaptability of process modeling
languages and process models alike.

7 Related Work

The models proposed as a solution to the chal-
lenge build in part on previous work on tradi-
tional, non-multi-level DSMLs. The MEMO
OrgML, for designing both organizational struc-
tures (Frank 2011a) and business process models
(Frank 2011b), makes use of similar abstractions,
but suffers from the limitations of traditional lan-
guage architectures. That is the case, too, for the
comprehensive environment for enterprise model-
ing (Frank and Bock 2020) that implements the
language.

There are three papers that directly relate to
the work presented here. In his contribution
to process challenge, presented at MULTI 2019,
Jeusfeld proposes a multi-level model designed
with DeepTelos (Jeusfeld 2019). DeepTelos is

based on first-order logic. The language is speci-
fied as a model of a theory defined by 30 axioms
(Jeusfeld 2021). Its semantics is therefore different
from the FMMLx and other multi-level languages
that are based on object-oriented concepts. In
particular, an object in DeepTelos can be of more
than one class. The solution presented to the
MULTI 2019 challenge builds on a specification
of the BMPN-core with Telos, the predecessor of
DeepTelos (Jeusfeld 2021, p. 8). Compared to
our solution, it puts less emphasis on modeling the
organizational context and resources. Therefore it
does not include aspects of organizational gover-
nance, which we accounted for in some detail. In
part, the proposed models are based on interpreta-
tions of the requirements that are different from
ours. For example, “CodingCobol” is modelled
as a subclass of the task type “Coding”, which
is linked to the object representing Ann Smith,
thus representing a “lex Smith” that we wanted to
avoid.

Somogyi et al. present a solution that is based on
an idiosyncratic approach to multi-level modeling
called “Dynamic Multi-Layer Algebra” (Somo-
gyi et al. 2019). While a detailed discussion of
the proposed models would go beyond the scope
of this paper, it is noticeable that some of the
models are challenging to read. For example, the
class SeniorAnalyst is instantiated from SeniorAc-
torType and specialized into AnalystJoe, which
in turn is an instance of Actor. The contribution
by Rodriguez and Macias (Rodriguez and Macias
2019), which is based on MultEcore presents a
solution with an overall structure similar to ours.
However, it lacks an explicit representation of
organizational structures. Also, the process model
is less elaborate, since it does not include events.

Kaczmarek-Heß and de Kinderen developed
a multi-level model of organizational structures
(Kinderen and Kaczmarek-Heß 2020). It was
designed with the FMMLx and an earlier ver-
sion of the XModelerML . Similar to our solu-
tion, it builds in part on the OrgML. The classes
OrganizationalUnit and Position are also located
at level 3. Classes are modelled in more detail,
that is, they comprise of more attributes. Also, the

http://dx.doi.org/10.18417/emisa.17.10


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

46 Ulrich Frank, Tony Clark

model includes a class to represent organizations,
which allows to account for various organization-
s/companies in one model. The model does not
make use of the composite pattern to represent
organizational structures and does not introduce a
class dedicated to the representation of employees.

The “Organization Ontology” published by the
W3C (W3C 2014), is a recommendation for the
representation of organizational structures. The
model is specified with RDF. Its main purpose
is “supporting linked data publishing of organiza-
tional information across a number of domains”.
To that end, the ontology remains on a high, rather
superficial level. The documentation of the on-
tology includes illustrations of how concepts can
be refined to adapt to specific organizations, e. g.
by adding “qualifying information” like attributes
or by decomposing concepts, like “corporation”
into “business unit”, “division”, etc. Therefore,
the organization ontology is clearly less elaborate
than the generic model of organizational structures
in this paper. It is, however, aimed at a different
purpose, which restricts comparability of the two
models.

Various approaches exist that aim at the speci-
fication of process modeling languages, such as
EPC (Keller et al. 1992), BMPN (OMG 2013) or
UML activity diagrams (OMG 2015) in general,
or workflow management languages, e. g., BPEL
(OASIS 2007) or YAWL (van der Aalst and ter
Hofstede 2005) in particular. With respect to
the purpose of these specifications, that is, the
definition of general (business) process modeling
languages, it would be beside the point to com-
pare them against our process model the design of
which was aimed at the requirements defined in
the challenge. Nevertheless, already a brief look
at the BMPN specification gives an impression
of obvious limitations caused by a traditional lan-
guage architecture. While the BMPN, for obvious
reasons, abstracts domain-specific characteritics
of business processes away, it nevertheless needs
to provide some kind of adaptation mechanisms.
This is mainly achieved by allowing users to add
further attributes (OMG 2013, p. 57). It is not pos-
sible, however, to define new language concepts,

as it is the case for multi-level models. While
resources are mandatory for the execution of busi-
ness processes, the specification of resources in
BPMN remains shallow, again for the reason that
the variety of resource types is enormous. The
multi-level resource models that we present indi-
cate how variety and the need for adaptability can
be coped with.

8 Conclusions

The design of the models presented in this con-
tribution was related to an effort that was clearly
higher than we expected. That was mainly due
to the fact that we had to change models several
times, even though we had prepared the design
thoroughly. We believe that this effort paid off.
First, it helped us to further reflect upon principles
and obstacles of developing multi-level models.
Second, the result should be suited to demonstrate
clear benefits enabled by the additional abstrac-
tion offered by multi-level models. We hope that
the models presented in this paper contribute to a
critical discussion that compares specific aspects
of the different contributions to the challenge and
the corresponding tools, since further research
on multi-level modeling depends on competition.
At the same time, we will appreciate it if compe-
tition is complemented by a concerted effort to
consolidate the research field, and to regard the
development of multi-level models of behavior as
a community challenge. If we succeed in bundling
resources, appreciation and dissemination of multi-
level modeling, which, after all, represents a major
progress in conceptual modeling, should be clearly
strengthened.

The latest version of the XModelerML is avail-
able in the download section of the web pages of
the project LE4MM (“Language Engineering for
Multi-Level Modeling”). The models presented
in this paper can be downloaded from there, too.
Corresponding screencasts demonstrate the instal-
lation of the XModelerML , as well as loading
and using the provided models (https://www.wi-
inf.uni-duisburg-essen.de/LE4MM/downloads/).

http://dx.doi.org/10.18417/emisa.17.10


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 47

References

van der Aalst W. M. P., Basten T. (2002) Inher-
itance of Workflows: An Approach to Tackling
Problems Related to Change. In: Theoretical Com-
puter Science 270(1-2), pp. 125–203

Almeida J. P. A., Rutle A., Wimmer M., Kuhne T.
(2019) The MULTI Process Challenge. In: Staff I.
(ed.) 2019 ACM IEEE 22nd International Con-
ference on Model Driven Engineering Languages
and Systems Companion (MODELS C). IEEE,
pp. 164–167

Atkinson C., Kühne T. (2001) The Essence of Mul-
tilevel Metamodeling. In: Gorgolla M., Kobryn C.
(eds.) UML 2001 - The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools.
Lecture Notes in Computer Science. Springer,
pp. 19–33

Atkinson C., Kühne T. (2008) Reducing accidental
complexity in domain models. In: Software &
Systems Modeling 7(3), pp. 345–359

Balaban M., Khitron I., Kifer M., Maraee A. (2018)
Multilevel Modeling: What’s in a Level? A Po-
sition Paper. In: Hebig R., Berger T. (eds.) Pro-
ceedings of MODELS 2018 Workshops. CEUR
Workshop Proceedings Vol. 2245. CEUR-WS.org,
pp. 693–697

Clark T., Sammut P., Willans J. S. (2015a) Ap-
plied Metamodelling: A Foundation for Language
Driven Development (Third Edition). In: CoRR
abs/1505.00149

Clark T., Sammut P., Willans J. S. (2015b) Super-
Languages: Developing Languages and Appli-
cations with XMF (Second Edition). In: CoRR
abs/1506.03363

Fettke P., Loos P., Zwicker J. (2006) Business Pro-
cess Reference Models: Survey and Classification.
In: Bussler C. J., Haller A. (eds.) Business Pro-
cess Management Workshops. Lecture Notes in
Computer Science Vol. 3812. Springer, pp. 469–
483

Frank U. (1994) Multiperspektivische Un-
ternehmensmodellierung: Theoretischer Hinter-
grund und Entwurf einer objektorientierten En-
twicklungsumgebung. Oldenbourg

Frank U. (1998) The MEMO Object Modelling
Language (MEMO-OML)

Frank U. (2000) Delegation: An Important Con-
cept for the Appropriate Design of Object Mod-
els. In: Journal of Object-Oriented Programming
13(3), pp. 13–18

Frank U. (2011a) MEMO Organisation Modelling
Language (1): Focus on Organisational Structure

Frank U. (2011b) MEMO Organisation Modelling
Language (2): Focus on Business Processes

Frank U. (2011c) The MEMO Meta Modelling
Language (MML) and Language Architecture. 2nd
Edition. http://www.icb.uni-due.de/fileadmin/
ICB/research/research_reports/ICB-Report_
No43.pdf

Frank U. (2012) Specialisation in Business Process
Modelling: Motivation, Approaches and Limita-
tions

Frank U. (2014a) Multilevel Modeling – Toward a
New Paradigm of Conceptual Modeling and Infor-
mation Systems Design. In: BISE 6(6), pp. 319–
337

Frank U. (2014b) Multilevel Modeling: Toward
a New Paradigm of Conceptual Modeling and
Information Systems Design. In: Business and
Information Systems Engineering 6(6), pp. 319–
337

Frank U. (2016) Designing Models and Systems
to Support IT Management: A Case for Multi-
level Modeling. In: Proceedings of MULTI 2016.
CEUR-WS.org, pp. 3–24

Frank U. (2021) Prolegomena of a Multi-Level
Modeling Method Illustrated with the FMMLx .
In: Proceedings of the 24th ACM/IEEE Interna-
tional Conference on Modell Driven Engineering
Languages and Systems: Companion Proceedings.
IEEE

http://dx.doi.org/10.18417/emisa.17.10
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICB-Report_No43.pdf
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICB-Report_No43.pdf
http://www.icb.uni-due.de/fileadmin/ICB/research/research_reports/ICB-Report_No43.pdf


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

48 Ulrich Frank, Tony Clark

Frank U. (2022) Multi-level modeling: corner-
stones of a rationale. In: Software and Systems
Modeling (Online First)

Frank U., Bock A. (2020) Conjoint Analysis and
Design of Business and IT: The Case for Multi-
Perspective Enterprise Modeling. In: Kulkarni
V., Reddy S., Clark T., Barn B. (eds.) Advanced
Digital Architectures for Model-Driven Adaptive
Enterprises. IGI Global, pp. 15–45

Frank U., Heise D., Kattenstroth H., Ferguson D.,
Hadar E., Waschke M. (2009) ITML: A Domain-
Specific Modeling Language for Supporting Busi-
ness Driven IT Management. In: Rossi M., Gray J.,
Sprinkle J., Tolvanen J.-P. (eds.) Proceedings of
the 9th OOPSLA workshop on domain-specific
modeling (DSM’09). Helsinki Business School

Frank U., Lange C. (2004) A Framework to Sup-
port the Analysis of Strategic Options for Elec-
tronic Commerce

Frank U., Töpel D. (2020) Contingent Level
Classes: Motivation, Conceptualization, Modeling
Guidelines, and Implications for Model Manage-
ment. In: Guerra E., Iovino L. (eds.) Proceedings
of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings. ACM, pp. 622–
631

Guerra E., Lara J. D. (2018) On the Quest
for Flexible Modelling. In: Wąsowski A., Engi-
neering A. S. I. G. o. S. (eds.) Proceedings of
the 21th ACMIEEE International Conference on
Model Driven Engineering Languages and Sys-
tems. ACM, pp. 23–33

Gulden J., Frank U. (2010) MEMOCenterNG – A
full-featured modeling environment for organisa-
tion modeling and model-driven software devel-
opment. In: Proceedings of the 2nd International
Workshop on Future Trends of Model-Driven De-
velopment (FTMDD 2010)

Hallerbach A., Bauer T., Reichert M. (2010) Con-
figuration and Management of Process Variants. In:
Vom Brocke J., Rosemann M. (eds.) Introduction,
methods and information systems. Handbook on
business process management. Springer, pp. 237–
255

Igamberdiev M., Grossmann G., Stumptner M.
(2016) A Feature-based Categorization of Multi-
Level Modeling Approaches and Tools. In: Atkin-
son C., Grossmann G., Clark T. (eds.) Proceedings
of the 3rd International Workshop on Multi-Level
Modelling (MULTI 2016), Saint-Malo, France.
CEUR Workshop Proceedings Vol. 1722. CEUR-
WS.org, pp. 45–55

Jácome-Guerrero S. P., de Lara J. (2020) TOTEM:
Reconciling Multi-Level Modelling with Standard
Two-Level Modelling. In: Computer Standards &
Interfaces 69, p. 103390

Jarke M., Eherer S., Gallersdörfer R., Jeusfeld M.,
Staudt M. (1995) ConceptBase – A Deductive Ob-
ject Base for Meta Data Management. In: Journal
of Intelligent Information Systems 4(2), pp. 167–
192

Jeusfeld M. (2019) DeepTelos for ConceptBase:
A Contribution to the MULTI Process Challenge.
In: Burgueño L., Pretschner A., Voss S., Chau-
dron M., Kienzle J., Völter M., Gérard S., Zahedi
M., Bousse E., Rensink A., Polack F., Engels
G., Kappel G. (eds.) 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems Companion, MODELS
Companion 2019, Munich, Germany, September
15-20, 2019. IEEE, pp. 66–77

Jeusfeld M. (2021) ConceptBase.cc User Manual:
Version 8.1. http://conceptbase.sourceforge.net/
userManual81/

João Paulo A. Almeida, Ulrich Frank, Thomas
Kühne (2018) Multi-Level Modelling (Dagstuhl
Seminar 17492). In: Dagstuhl Reports 7(12),
pp. 18–49

http://dx.doi.org/10.18417/emisa.17.10
http://conceptbase.sourceforge.net/userManual81/
http://conceptbase.sourceforge.net/userManual81/


Enterprise Modelling and Information Systems Architectures
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10
Multi-Level Design of Process-Oriented Enterprise Information Systems 49

Kaczmarek-Heß M., de Kinderen S. (2017) A
Multilevel Model of IT Platforms for the Needs of
Enterprise IT Landscape Analyses. In: Business &
Information Systems Engineering 59(5), pp. 315–
329

Keller G., Nüttgens M., Scheer A.-W. (1992) Se-
mantische Prozeßmodellierung auf der Grundlage
"Ereignisgesteuerter Prozeßketten (EPK)". http:
//www.uni-saarland.de/fileadmin/user_upload/
Fachrichtungen/fr13_BWL/professuren/PDF/
heft89.pdf

de Kinderen S., Kaczmarek-Heß M. (2020) On
Model-Based Analysis of Organizational Struc-
tures: an Assessment of Current Modeling Ap-
proaches and Application of Multi-Level Model-
ing in Support of Design and Analysis of Orga-
nizational Structures. In: Software and Systems
Modeling 19(2), pp. 313–343

Kirchner L. (2005) Cost Oriented Modelling of
IT-Landscapes: Generic Language Concepts of a
Domain Specific Language. In: Desel J., Frank U.
(eds.) Enterprise Modelling and Information Sys-
tems Architectures. Lecture Notes in Informatics.
Gesellschaft für Informatik, pp. 166–179

Kühne T. (2018) A Story of Levels. In: Hebig
R., Berger T. (eds.) Proceedings of MODELS
2018 Workshops. CEUR Workshop Proceedings
Vol. 2245. CEUR-WS.org, pp. 673–682

Kühne T., Schreiber D. (2007) Can programming
be liberated from the two-level style: multi-level
programming with deepjava. In: Gabriel R. P.,
Bacon D. F., Lopes C. V., Steele G. L. (eds.)
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming sys-
tems and applications (OOPSLA 2007). ACM
SIGPLAN notices. ACM, pp. 229–244

de Lara J., Guerra E. (2010) Deep Meta-modelling
with MetaDepth. In: Vitek J. (ed.) Objects, Models,
Components, Patterns. Springer, pp. 1–20

de Lara J., Guerra E., Cuadrado J. S. (Dec. 2014)
When and How to Use Multilevel Modelling. In:
ACM TOSEM 24(2), 12:1–12:46

Macías F., Rutle A., Stolz V., Rodríguez-
Echeverría R., Wolter U. (2018) An Approach
to Flexible Multilevel Modelling. In: Enterprise
Modelling and Information Systems Architectures
13, pp. 1–35

Mezei G., Theisz Z., Urban D., Bacsi S. (2018)
The bicycle challenge in DMLA, where validation
means correct modeling. In: Hebig R., Berger
T. (eds.) Proceedings of MODELS 2018 Work-
shops, co-located with ACM/IEEE 21st Interna-
tional Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2018),
Copenhagen, Denmark, October, 14, 2018. CEUR
Workshop Proceedings Vol. 2245. CEUR-WS.org,
pp. 643–652

Neumayr B., Grün K., Schrefl M. (2009) Multi-
level Domain Modeling with M-objects and M-
relationships. In: Proceedings of the Sixth Asia-
Pacific Conference on Conceptual Modeling - Vol-
ume 96. APCCM ’09. Australian Computer So-
ciety, Inc., Wellington, New Zealand, pp. 107–
116

Neumayr B., Schrefl M. (2009) Multi-Level Con-
ceptual Modeling and OWL. In: Heuser C. A.,
Pernul G. (eds.) Advances in Conceptual Model-
ing - Challenging Perspectives. Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidel-
berg, pp. 189–199

Neumayr B., Schuetz C. G., Jeusfeld M. A., Schrefl
M. (2018) Dual deep modeling: multi-level mod-
eling with dual potencies and its formalization
in F-Logic. In: Software and Systems Modeling
17(1), pp. 233–268

OASIS (2007) Web Services Business Process
Execution Language Version 2.0. http: / / docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html

OMG (2013) Business Process Model and Nota-
tion (BPMN): Version 2.0.2. http://www.omg.org/
spec/BPMN/2.0

OMG (2015) OMG Unified Modeling Language:
Version 2.5. http://www.omg.org/spec/UML/2.5/
PDF

http://dx.doi.org/10.18417/emisa.17.10
http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf
http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf
http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf
http://www.uni-saarland.de/fileadmin/user_upload/Fachrichtungen/fr13_BWL/professuren/PDF/heft89.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF


International Journal of Conceptual Modeling
Vol. 17, No. 10 (2022). DOI:10.18417/emisa.17.10

50 Ulrich Frank, Tony Clark

Overbeek S., Frank U., Köhling C. A. (2015) A
Language for Multi-Perspective Goal Modelling:
Challenges, Requirements and Solutions. In: Com-
puter Standards & Interfaces 38, pp. 1–16

Popp R., Kaindl H. (2015) Automated refinement
of business processes through model transforma-
tions specifying business rules. In: Rolland C. (ed.)
2015 IEEE 9th International Conference on Re-
search Challenges in Information Science (RCIS
2015). IEEE, pp. 327–333

Rodriguez A., Macias F. (2019) Multilevel Mod-
elling with MultEcore: A Contribution to the
MULTI Process Challenge. In: Burgueño L.,
Pretschner A., Voss S., Chaudron M., Kienzle
J., Völter M., Gérard S., Zahedi M., Bousse E.,
Rensink A., Polack F., Engels G., Kappel G. (eds.)
22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Sys-
tems Companion, MODELS Companion 2019,
Munich, Germany, September 15-20, 2019. IEEE,
pp. 152–163

Rossini A., de Lara J., Guerra E., Nikolov N.
(2015) A Comparison of Two-Level and Multi-
level Modelling for Cloud-Based Applications.
In: Taentzer G., Bordeleau F. (eds.) Modelling
Foundations and Applications: Proceedings of the
11th European Conference, ECMFA 2015, held
as Part of STAF 2015, L‘Aquila, Italy. Springer,
pp. 18–32

Schrefl M., Stumptner M. (2002) Behavior-
consistent specialization of object life cycles. In:
ACM Trans. Softw. Eng. Methodol. 11(1), pp. 92–
148

Selway M., Stumptner M., Mayer W., Jordan A.,
Grossmann G., Schrefl M. (2017) A Conceptual
Framework for Large-Scale Ecosystem Interoper-
ability and Industrial Product Lifecycles. In: Data
& Knowledge Engineering 109, pp. 85–111

Somogyi F. A., Mezei G., Urban D., Theisz Z.,
Bacsi S., Palatinszky D. (2019) Multi-level Mod-
eling with DMLA - A Contribution to the MULTI
Process Challenge. In: Burgueño L., Pretschner
A., Voss S., Chaudron M., Kienzle J., Völter

M., Gérard S., Zahedi M., Bousse E., Rensink
A., Polack F., Engels G., Kappel G. (eds.) 22nd
ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Com-
panion, MODELS Companion 2019, Munich, Ger-
many, September 15-20, 2019. IEEE, pp. 119–127

Tony Clark, Ulrich Frank (2018) Multi-Level Con-
straints. In: Regina Hebig, Thorsten Berger (eds.)
Proceedings of MODELS 2018 Workshops co-
located with ACM/IEEE 21st International Con-
ference on Model Driven Engineering Languages
and Systems (MODELS 2018), Copenhagen, Den-
mark, October, 14, 2018. CEUR Workshop Pro-
ceedings Vol. 2245. CEUR-WS.org, pp. 103–117

van der Aalst W., ter Hofstede A. (2005) YAWL:
yet another workflow language. In: Information
Systems 30(4), pp. 245–275

Volz B. W. (2011) Werkzeugunterstützung für
methodenneutrale Metamodellierung

W3C (2014) The Organization Ontology. https:
//www.w3.org/TR/2014/REC-vocab-org-20140
116/

Wyner G. M., Lee J. (2002) Process Specializa-
tion: Defining Specialization for State Diagrams.
In: Computational & Mathematical Organization
Theory 8(2), pp. 133–155

http://dx.doi.org/10.18417/emisa.17.10
https://www.w3.org/TR/2014/REC-vocab-org-20140116/
https://www.w3.org/TR/2014/REC-vocab-org-20140116/
https://www.w3.org/TR/2014/REC-vocab-org-20140116/

