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Abstract 

 
Policymakers have been calling for actions to meet the UN targets to reduce emissions to 
1990 levels. Aligned with the aim of this study, we use a range of machine learning 
methods to predict the carbon emissions of 30 countries and establish those that are on 
track to achieve the UN targets. We provide a breakdown of the forecasted freight modal 
emissions of 23 countries using trade flows. We segment them using K-Means clustering 
to compare their CO2 emanations. Our findings indicate that only three countries are in 
line with the mentioned targets. Thus, we propose actions for those that are not. 
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Introduction 

In the past, the fluctuation of the temperature and rainfall were either due to pre-
anthropogenic factors such as volcanic eruptions or solar flux (Crowley, 2000). However, 
nowadays, the impact of human activity on climate change has become even more evident 
and dramatic than natural disasters. Climate change, which is an internationally 
recognised problem, has far-reaching impacts, affecting everything from geopolitics and 
economies to migration. In fact, transportation, which is responsible for 19.2% of the 
carbon emission, has an important role in climate degradation. Therefore, taking 
appropriate preventative measures will contribute to the reduction of transport-related 
emissions and their drastic impact on climate change. 

In December 2019, the European Commission declared the adoption of “The European 
Green Deal” (2019) to realize climate neutrality in Europe by 2050. This initiative 
underlines that it is necessary to realize a 90% reduction in transport emissions by 2050 
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and 50% of 1990s emissions by 2030 to achieve climate neutrality. According to 
European Commission, the transport sector is the second largest source of carbon 
emission after manufacturing. In fact, about one-quarter of the European Union’s (EU) 
greenhouse gas emission is due to the transport sector, and the share of the road sector is 
more than one-fifth of the total carbon emission in the EU (European Green Deal, 2019). 
An increase in multimodal transport and a shift from the road, which is used to handle 
75% of inland freight transport onto rail and waterways, is considered an important tool 
to increase the efficiency of the transport system. 

In this paper, we predict the total CO2 emissions of the transportation sector per 
country and investigate the capability of meeting the climate change targets across 30 
countries in 2030. Furthermore, we analyse the distribution of emissions across transport 
modes to compare and cluster these countries based on their emission patterns. 
Accordingly, we answer four research questions: 

1. What are the carbon emission predictions for countries by 2030? 
2. How likely is each country to achieve the UN climate target of reducing carbon 

emissions to half of 1990 levels? 
3. What will be the future share of CO2 emanations across transport modes 

considering the trade volumes of each country? 
4. What freight transport policies could help clusters of countries to reach their UN 

climate targets? 
The paper is organised as follows. Initially, we present the literature review, discussing 

the transportation sector’s environmental effects on climate change and its significance. 
We continue with providing the relevant literature on transport mode distribution. We 
then review the use of machine learning models in predicting emissions. Next, we 
describe the methodology employed to answer the discussed research questions, 
including the underlying data sources. Finally, we present our findings and reflect on our 
results by providing insights, discussing the limitations, and offering future directions. 

 
Literature Review 

Impact of Transportation on Climate Change 
The sustainability of transportation and its impact on climate change have been widely 
studied in the literature. Pal et al. (2023) identified the transportation factors that impact 
climate change and the preventive measures that can be used to deal with them. They 
grouped these measures as “environment,” “sociology,” and “modernity” and assessed 
them using Simple Additive Ranking, Interpretive Structural Modelling, and Interpretive 
Ranking Process. Based on the literature survey as well as discussions with the experts, 
they used 12 transportation factors and 12 preventive measures and analysed the existence 
or nonexistence of relationships between each transportation factor and the preventive 
measures. They found that population growth and urbanization are the major factors that 
influence climate change by increasing the demand for vehicles and their emission. They 
revealed that pollution has the highest priority that dominates other factors. The top three 
related transportation factors were ranked as carbon emission, global warming, and 
depletion of the ozone layer, followed by others such as urbanization and residents’ 
attitudes. In this way, they provide an overall picture of the order of factors to solve the 
climate change problem. However, the selection weights they used in Simple Additive 
Weighting are arbitrary and can result in different outcomes depending on the specific 
weights chosen. The selection of an appropriate sample of experts who will be 
representative of the climate change problem analysis is lacking.  

Perez-Calder et al. (2021) analysed whether the European aviation sector was able to 
adapt itself to the EU emission trading scheme. They focused on 10 European airlines 
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from 2012 to 2019, when the airline sector was introduced to the emission regime. K-
means clustering groups the airlines based on their eco-efficiency level and applies the 
Markov model to predict future behaviour. They revealed that the larger airlines were the 
most eco-efficient while those that focused on low-cost strategy behaved worse. Although 
they made improvements in their use of air traffic capacity, their CO2 emission efficiency 
was not improved and even got worse in some cases. On the other hand, the trend that 
they observed using a Markov model showed that European airlines would experience a 
decline in CO2 emission efficiency in the medium and long term. This was attributed to 
their already tight operational efficiency, the economic collapse caused by the pandemic, 
and the increasing share of the low-cost business. However, the study lacks a scenario 
analysis that would demonstrate the implications of different measures. For instance, 
encouraging investments in the development of biofuels and the supply chain, as well as 
making international agreements to obtain optimal flight routes to increase the energy 
efficiency of engines.  

Ülengin et al. (2018) also analysed the impact of transport on greenhouse gas 
emissions. Initially, they defined the environmental, economic, social, and political 
dimensions of the transportation sector based on document coding of the related literature, 
and expert judgments. They conducted a fuzzy cognitive map analysis to investigate 
variables related to climate change. They assessed the impact of potential policies based 
on the scenarios provided by the International Energy Agency for the global level as well 
as the local policy suggestions developed by Turkish authorities for the local level. The 
scenario analysis showed that improving vehicle efficiency alone would not reduce 
carbon emissions drastically. An aggregated scenario, where R&D incentives, policy 
actions (including carbon taxation), motivation toward alternative fuel options, and 
environmental standards, all contribute significantly to reducing the climate impacts. 
From a localized perspective, on the other hand, the decrease in the share of freight 
transportation by road with an increase by rail and air, the increase in HOV lanes and toll 
charges, and R&D activities to improve electric and hydrogen-powered passenger cars 
have a significant impact in reducing the emissions. However, the authors did not use a 
multicriteria decision model to select the best strategy to focus on.   

Tight et al. (2005) investigated the development of UK transport targets for CO2 
emissions for 2050. They used five future carbon emission scenarios for the UK in order 
to achieve the stabilization of Co2 at 550 and 450 ppm. They used 26% of the total 
emission as well as 41% of the total emission based on the forecast as two approaches to 
specify the proportion of carbon emission that can be attributed to transport sections. They 
derived the overall targets and expected contributions from transport emissions to be 
achieved by 2050, which ranged from 8.2 to 25.8 MtC. Their analysis showed that even 
the lowest target requires an important reduction from the current emission level. Hence, 
important changes related to the nature of transport and the perception of organizations 
and individuals will be necessary to achieve the targets. However, they did not make a 
detailed analysis of each transport mode. 

 
Transport mode distribution 
In the literature, the measures to reduce carbon emissions in the freight transport sector 
are generally based on new energy vehicles and the role of biofuel. Chiaramonti et al. 
(2021) provide an extensive literature review on this issue. Panoutsou et al. (2021) 
provide information about policy-related challenges to the use of advanced sustainable 
biofuels for transport. On the other hand, an important contribution to the reduction of 
carbon emissions can be realized through a modal shift in freight transport that happens 
gradually and slowly. Multimodal logistics policy should be aligned with clean energy-
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based electrification policies and national rail plans (Gupta and Dhar, 2022). However, 
the literature on the impact of modal shifts is relatively scarce. 

Chen et al. (2020) analyse the impact of the modal shift on reducing carbon emissions. 
For this purpose, energy consumption and carbon emissions of road and rail freight 
transport are compared, and scenario analysis is conducted to find the energy and carbon 
emission reduction in the transport sector by the modal shift policy. They found that 
although the modal shift policy plays a positive role in carbon emissions, the costs caused 
by the policy are higher than the benefits in some situations. They suggest analysing each 
case separately rather than using the same regulation in each area.  

Pinchasik et al. (2020) make several scenario analyses, such as longer freight trains, 
policy packages, border-crossing measures to reveal the effect of shifting from road to 
rail and waterborne freight transport on reducing emissions in the Nordics. Their analysis 
showed that the impact of such a shift is only minor, and it should only be accepted to 
contribute to other policy objectives.  

Jonkeren et al. (2019) evaluate the impact of a modal shift in transportation to carbon 
dioxide emission reduction. They use the shift-share model to reveal how rail and inland 
waterway transport will contribute to reducing carbon dioxide emission reduction. They 
analyse the market freight transport in the Netherlands. The model helps to specify 
whether and to what extent any policy related to modal shift will result in carbon dioxide 
emission reduction. The position of the balls in a quadrant shows whether a respective 
transport mode will contribute to a reduction in the future.  

 
Forecasting CO2 Emissions of Countries 
Throughout the literature, various methods have been utilized to predict the CO2 
emissions of the countries. Some research methods opt for the utilization of survey-based 
methods (Piecyk and McKinnon, 2013), some utilize decomposition methods to derive 
the underlying impacting factors (Qu, 2020), and others use secondary data to model and 
estimate the subsequent emissions of a specific country. For instance, some studies have 
adopted neural networks (Wen and Yuan, 2020), while others utilize other models such 
as kernel prediction algorithms (Ma et al., 2021), SVM (Sun et al., 2019), regression 
(Zhao and Niu, 2017), and RELM (Sun and Sun, 2017). Most of these models depend on 
the richness of the environment, and they are best utilized when there is an abundance of 
data to predict the future CO2 emanations of a specific sector. Lack of sufficient data or 
predictors will result in partial training of the models and inaccurate results. In this study, 
we adopt machine learning approaches to predict future CO2 emission patterns based on 
univariate data. Moreover, the majority of the literature on transportation sector emissions 
focuses on modelling a specific country’s emanation pattern (Wang and Wang, 2021; Li 
et al., 2021; Yang and O’Connell, 2020). Compared with these works, we consider 
multiple countries. Lam et al. (2018) provided their analysis of passenger transport 
emissions, and Kazancoglu et al. (2021) focused on road transport emissions. However, 
we focus on freight transport emissions rather than passengers or a specific mode of 
transportation. 

Our contribution to knowledge is that we relate CO2 prediction with transport mode 
emission distribution usage and to specify which country will be able to reach the 
emission targets set by the EU and which countries will fall short of them. We compare 
the estimates in terms of the range of possible CO2 emanations (i.e., prediction interval) 
they attain; thus, our focus is not on the accuracy but rather on providing a scenario-based 
analysis of the likelihood of achieving certain targets. This will provide an important 
guideline for the governments to decide on the countermeasures to be taken. 
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Methodology 

Data sources and variables 
Various data from different sources have been utilized for research. The univariate data 
used to forecast the trajectory of emissions and evaluate whether a country would reach 
the Green Deal goals was adopted from European Commission’s Emissions Database for 
Global Atmospheric Research (Crippa et al., 2022). The data includes longitudinal 
measurements of annual carbon dioxide emissions of various countries from 1997 to 2021 
measured in million tonnes and comprises a breakdown of emissions by sectors. We used 
the transport sector’s CO2 emanations for this study to evaluate the possibility of 
countries reaching the Green Deal goals by 2030. Also, to exclude the anomalous 
decrease in CO2 levels during the COVID-19 pandemic (Le Quéré et al., 2020), we only 
utilised the data points up until 2019.  

The other data source that was utilized was Eurostat’s database (Eurostat, 2023) which 
included data for the modal split of air, sea, and inland freight transport by trade volume 
for each country across various years. We use the carbon emissions in tonne-km 
attributable to each mode based on the freight distribution to modes. In the case of 
Australia, the modal distribution was obtained from the annual statistics yearbook 
published by its respective department of transport (BITRE, 2022). Moreover, modal split 
of Turkey was obtained from the impact assessment report of its ministry of Environment, 
Urbanization and Climate Change (Directorate General of Environmental Impact 
Assessment, Permit and Inspection, 2021). 

 
Prediction 
By adopting a machine learning approach, we utilize PyCaret’s Python library (Ali, 2020) 
to train and compare a range of time series models and derive transport emission forecasts 
of countries up to 2030. In addition to providing various time series models, this package 
also automates the parameter selection stages described in Beard et al. (2019). Prior to a 
training and parameter selection, data is scaled using a median-based scaling method that 
is robust against outliers (Lin et al., 2018) to dampen the effect of anomalous data points. 
Moreover, to equalize the variance (Milionis, 2022), approximate the underlying white 
noise to a normal distribution (Shumway and Stoffer, 2017), and ease deriving the 
prediction intervals (Chatfield and Xing, 2019), we consider box-cox and log 
transformations on the input data before training the models. The choice of whether to 
apply the transformation or which one to choose depends on the model’s performance on 
the test set.  

The models are then trained using the widely utilized 80/20 train-test split and cross-
validated using a 4-fold expanding window approach where the forecasting horizon is set 
to 11 years ahead to predict 2030’s emissions, with a window size of 10 and step size of 
5. After training using 39 training observations, the 10 top-performing models are 
selected and evaluated, considering their mean absolute percentage error and based on 
the remaining 11 data points to derive the best-performing model. This model is then 
trained on the entire data and used to obtain the point estimates and prediction intervals 
of the amount of emission up until 2030. For the models that do not inherently offer the 
prediction interval as an output, we calculated the empirical prediction interval by 
bootstrapping the countries’ emission data and creating 100 sample time series that mimic 
the underlying data and forecasting 2030’s emanation.  

The obtained prediction interval from the best-performing model denotes the range of 
values that the estimated CO2 emissions can take. Thus, comparing it with the country’s 
emission target and calculating the proportion of the forecasted emission range below the 
target level to the entire predicted emission interval will determine the country’s 
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probability of reaching and producing lower than the targeted emission level for 2030 
based on the current trend in the data. Consequently, if the emission range of the county 
falls entirely below the target emission, the probability of that country reaching the Green 
Deal objective would be 1; au contraire, if the emission range falls entirely above the 
target goal, the probability would be 0.  

Moreover, the obtained point estimates of the 2030s emitted CO2 only reflect the total 
transport sector emanations. However, the question remains, to what extent each freight 
transport mode contributes to the emissions of a country? This distinction is important 
since each mode contributes disproportionately to the country’s overall pollution, 
especially since there is a significant difference among the average emission factors of 
each mode. To answer this question, we first convert the forecasted CO2 emissions to 
freight transport-only emanations (provided in an article by Ritchie, 2020). Then, by 
utilizing the latest freight modal split percentages (considering that 2019 was the last data 
point used for building the model) and factoring in the average emission factors of each 
transport mode, we derive the forecasted carbon dioxide produced by each country per 
transport mode. To incorporate the emission factors, we utilized the information provided 
in European Chemical Transport Association (ECTA) and European Chemical Industry 
Council (CEFIC) Guideline for Measuring and Managing CO2 Emission from Freight 
Transport Operations (ECTA & CEFIC, 2021). Due to the constraints on data coverage, 
we could not include the United States, Iceland, New Zealand, Japan, Mexico, and South 
Korea in this analysis.  

By utilising cluster analysis on the resulting data, we identify the countries with 
homogeneous estimated modal emission patterns. We employ a model-based approach 
for this analysis and perform K-means clustering (Hartigan and Wong, 1979) to derive 
the results. The optimal number of derived clusters is determined using an elbow method. 
The resulting clusters reveal the countries that require adopting similar policies to 
conform to the Green Deal objectives. Finally, we compare the modal split and transport 
mode emission distribution of the countries reaching the 2030s target with others.  
 
Findings 

After deriving the prediction intervals, they were compared with the Green Deal 
objectives (whether the forecasted interval includes 50% of the average 1990s emissions) 
to derive the fraction that the predicted interval falls below the target emission level. Table 
1 outlines the best-performing models and their estimates.  

 
Table 1: Best Performing Models and their Estimates of 2030's CO2 Emission. 

Country Best Model MAPE Target 

Emission 

2030 

Forecast 

Forecast Bounds Prob 

Australia AdaBoost 0.53% 33.291 113.609 [113.287, 116.222] 0 

Austria AdaBoost* 1.83% 7.960 28.702 [27.097, 30.486] 0 

Denmark Naive 

Forecaster† 

13.93% 5.720 12.185 [9.781, 15.181] 0 

Finland ARIMA‡ 7.08% 5.766 10.823 [8.023, 12.554] 0 

France  Naive 

Forecaster† 

2.09% 60.951 125.688 [104.988, 150.469] 0 

Germany Theta 

Forecaster‡ 

1.77% 83.805 165.205 [145.316, 180.892] 0 

Greece Auto ARIMA† 24.64% 8.550 9.9144 [8.121, 12.104] 0.108 

Hungary ARIMA† 11.15% 3.799 13.411 [10.0943, 17.817] 0 

Iceland Extra Trees* 5.20% 0.315 1.0111 [0.992, 1.357] 0 
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Country Best Model MAPE Target 

Emission 

2030 

Forecast 

Forecast Bounds Prob 

Ireland ARIMA‡ 13.59% 3.209 11.431 [8.105, 15.999] 0 

Italy ETS‡ 11.45% 53.096 95.819 [49.6567, 126.564] 0.045 

Japan Auto ARIMA 3.14% 121.088 161.974 [9.5574, 314.39] 0.366 

Latvia Gradient 

Boosting*‡ 

9.14% 1.122 3.529 [2.674, 4.014] 0 

Lithuania Bayesian 

Ridge*‡ 

12.38% 1.905 6.202 [5.253, 8.101] 0 

Luxembourg Decision Tree* 17.40% 1.736 7.867 [7.355, 10.504] 0 

Mexico Naive 

Forecaster† 

1.20% 46.396 147.283 [107.988, 200.877] 0 

Netherlands Theta 

Forecaster‡ 

17.10% 14.883 32.132 [27.272, 36.393] 0 

New 

Zealand 

ETS‡ 5.31% 5.081 19.600 [17.796, 21.491] 0 

Norway ARIMA‡ 4.91% 5.690 11.225 [8.575, 13.593] 0 

Poland Theta Forecaster 

† 
11.51% 11.921 70.111 [48.252, 101.871] 0 

Portugal Exponential 

Smoothing 

16.45% 6.409 21.026 [11.399, 29.069] 0 

Slovakia K Neighbours*‡ 8.62% 1.858 9.824 [5.481, 58.183] 0 

Slovenia K Neighbours* 4.21% 1.717 6.683 [6.185, 7.282] 0 

South Korea Extra Trees* 5.01% 31.862 136.589 [117.308, 153.019] 0 

Spain  Decision Tree* 30.41% 36.797 112.129 [104.089, 143.515] 0 

Sweden ARIMA‡ 10.99% 10.090 16.702 [10.714, 19.788] 0 

Switzerland Naive 

Forecaster‡ 

5.55% 7.360 15.762 [13.437, 17.717] 0 

Turkey Orthogonal 

Matching 

Pursuit*† 

13.59% 15.834 112.978 [108.752, 146.565] 0 

UK Croston‡ 2.01% 59.23 117.903 [115.397, 119.395] 0 

United 
States 

Auto ARIMA 4.64% 763.1 1915.667 [1687.23, 
2144.104] 

0 

* These models internally apply conditional Deseasonalising and Detrending 
† The input was log transformed. 
‡ The input was transformed using Box-Cox method. 
 
Predictions for individual countries 
The forecasts from the models demonstrate that among the 30 countries considered for 
this study, only 3 countries show the possibility of reaching the goal. The estimates, which 
reflect the current trajectory of the countries’ emissions and their underlying policies at 
play, elucidate that many countries cannot reach the emission reduction objective. Of the 
analysed candidates, only Japan, Greece, and Italy exhibit a chance to reach and exceed 
their target objective in 2030. Moreover, the findings also suggest a strong requirement 
for policy reform among the studied country to reach their emission reduction objective. 

 
Clusters of countries in achieving climate change targets 
After gathering and synthesising the modal freight distribution of the focused countries 
and their respective predicted emissions in 2030, we clustered them using hierarchical 
clustering. The optimal number of clusters was selected as two based on the dendrogram, 
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the within-group sum of squares plot of the clusters with respect to the number of clusters 
experiences it first veer. Segmenting the countries revealed two clusters: one cluster with 
7 countries and another with 16 countries. Countries in the first group are heavy emitters 
(France, Germany, Italy, Poland, Spain, Turkey, Australia) and those in the second group 
are light emitters. Considering this assignment and the countries that exhibit a chance to 
reach the Green Deal objectives, we can suggest that balancing the emission amounts 
across transport modes or opting for rail freight transport mode, which possesses the 
lowest average emission factors, would be ideal for reaching this target. 

To provide an alternative perspective on how these countries differ in their emission 
amount across modes, we group the countries reaching and not reaching the discussed 
goal and compare their average emission amounts across modes utilizing the null 
hypothesis framework. By analysing Table 2, we can conclude that the main difference 
between the countries that have the potential to reach the Green Deal goal arises from the 
higher number of emanations they have from maritime. This discussed difference is 
partially significant at a 90% confidence interval (t=1.744; SE=3.423). 

 
Table 2: Comparison between countries that are likely and unlikely to achieve targets 

  Statistic Df p 
Mean 

difference 
SE 

difference 

Inland 

waterways 

Student's t 0.5276 
21 

0.603 0.262 
0.498 

Mann-Whitney U 12.00 0.292 5.17e-5 

Maritime 
Student's t -1.7553 

21 
0.094 -6.036 

3.439 
Mann-Whitney U 5.00 0.089 -3.466 

Roads 

 

Student's t -0.0248 
21 

0.980 -0.340 
13.696 

Mann-Whitney U 17.00 0.711 1.274 

Railways 

 

Student's t 0.3643 
21 

0.657 1.166 
3.202 

Mann-Whitney U 17.00 0.711 0.200 

Air 
 

Student's t 1.0479 
21 

0.307 0.559 
0.533 

Mann-Whitney U 4.00 0.069 0.339 

 
Discussion and conclusion 

Throughout this research, we aimed to provide a more detailed account of how far the 
countries are from achieving the climate neutrality goals. This study we attempted to 
answer the following questions: “How likely is it for the countries to reach the Green 
Deals initiative’s 2030 milestone?” and “What would be the modal emission distribution 
pattern of freight transport in 2030 among the countries?”. To answer these questions, we 
adopt a machine-learning approach to forecast 30 countries’ emissions and derive the 
CO2 emanations of countries per each transport mode based on the current policies and 
the modal split. With only a few years away from reaching the climate initiative’s 2030’s 
milestone, the estimates intervals indicated that among the 30 analysed countries, only 
Greece, Italy, and Japan exhibited a chance of reaching the discussed target and show a 
necessity for drastic reforms in the current transport policies. These exigent findings 
indicate that only a few countries will adhere to the Green Deal goals.  

Moreover, by clustering the resulting output from the modal emissions split, we found 
4 distinct future emission patterns among the countries based on the current policies. The 
clusters reveal that for the countries to adhere to the set targets of the initiative, they 
should either balance out their emissions by decreasing their dependence on a specific 
transport mode while trying to reduce them or they should try to become more dependent 
on more alternative transport modes such as rail due to their low emission factor. Finally, 
we grouped and compared the countries that present the chance of reaching with 
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initiative’s 2030 objective and others. The findings indicate that the main difference 
between these groups is the amount of CO2 emitted from maritime, and these countries’ 
distinctiveness is because they are heavily reliant on maritime transport mode.  

Future research could examine the level at which countries would reach the target 
goals by providing a scenario analysis. Alternatively, it can also address the limitations 
of this study in the following ways. This study adopted a machine-learning approach to 
predict future CO2 emissions by selecting a model, among many, based on its 
performance on the test set. Adopting a more sophisticated approach that models the 
underlying assumption of a country’s CO2 emissions or including preceptors that 
improve the model’s fit would provide a better and more accurate forecast. Additionally, 
since the underlying technology employed for producing fuels is constantly improving, 
the emissions factors are subjected to constant change. Thus, utilizing an updated average 
emission factor per mode could better estimate how the emissions are scattered along 
transport modes.  
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