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Abstract

The use of subscale models has been common practice in the industry and has helped
engineers gain more confidence in their design processes. However, each subscale model
is developed for a specific test, and consequently, different types of models are needed for
observing aerodynamic, structural and aeroelastic characteristics of a full-scale aircraft.
Yet, traditional aircraft design methods face serious challenges when a novel aircraft de-
sign emerges and a proof-of-concept is needed for investigating this multi-disciplinary
problem. An example of such a problem is the development of aircraft configurations
with high aspect ratio wings for which the disciplines of aeroelastic and flight mechan-
ics are strongly interconnected. Moreover, if the prediction of dynamic behaviour is of
interest, a method that utilises system identification for analysing experimental data is
of importance. Therefore, this thesis aims to develop a methodology to investigate the
complex flight dynamic behaviour of flexible aircraft by combining techniques for devel-
oping subscale models and methods with the field of system identification. This aim is
achieved through three objectives: 1) assessment of system identification methods for
subscale flexible aircraft, 2) theoretical development of subscale modelling in terms of
scaling laws and aeroelastic simulation framework and, 3) wind tunnel testing of the
subscale model. Aspects of System Identification have been explored through use-cases
where experimental data for a rigid aircraft both in full-scale and subscale configuration
is used. The results highlight the fact that in testing a subscale model, dynamics are more
prone to exhibit non-linear behaviour when compared to the full-scale model. It followed
by the application of system identification for a flexible aircraft based on a simulation
framework. This study emphasised the need for non-linear identification methods, such
as an output error method, to characterise a flexible aircraft system. The work continues
with the exploration of scaling laws applied to a simple aerofoil that is free to pitch and
plunge. These results build the foundation for the development of a subscale high aspect
ratio wing for wind tunnel experiments. The work highlights the trade-offs and compro-
mises faced during the development of a dynamically subscaled model and the practice
of system identification. The main contribution lies in the development of a low-cost
methodology in building a subscale model that allows the use of dynamically scaled mod-
els at the early design stages. This practice provides the designer with a means to de-risk
novel aircraft concepts as early as possible and in doing so, reduce overall development
costs.

Keywords: system identification, dynamic scaling, wind tunnel testing, aeroelastic
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Nomenclature
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K Structural stiffness matrix
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L̄() Rolling moment (N.m2)
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BeaRDSTM BEAm Reduction and Dynamic Scaling Theoretical Framework
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CHAPTER1
Introduction

The aircraft design cycle, as presented in Figure 1.1, is an iterative activity which tra-
ditionally takes a long period of time, involves numerous risks and requires expertise in
various disciplines [1, 2]. Nowadays, the aerospace industry is aiming to make the de-
sign cycle leaner while at the same time develop highly efficient more integrated aircraft.
Moreover, de-risking the design as early as possible and validating design methods and
tools are also critical [3, 4]. Many studies have been conducted to reduce the design cycle
time using various optimisation methods [5–7] that mostly focus on conceptual design and
only utilise computational approaches. This context has motivated this study looking to
integrate dynamic scaling and system identification (SID) and pathways for introducing
these disciplines as early as possible [8, 9].

Scaled models have been used extensively in the past to understand the flight dynamic
phenomena and at the same time, enable a designer to predict and analyse the charac-
teristics of a system [10]. Despite the rapid advancements in computational ability, wind
tunnel testing still has a significant impact on aircraft design validation [11]. On the
other hand, the field of SID has been critical for providing a means of validating design
methods and tools using flight test data [12, 13]. Therefore, SID has always been used
right at the end of a design cycle. Furthermore, the majority of SID practice has focused
on the estimation of parameters found in rigid body flight dynamic models, where often
the non-linear, unsteady and aeroelastic effects are either highly simplified or completely
ignored.

Typically dynamic scaling is conducted at the preliminary design stages and only focuses
on steady and static problems, such as early-stage wind tunnel testing [14]. Moreover,
past dynamic scaling work was carried out in a way that allowed the inertial, aerodynamic
and structural problems to be treated in isolation. For example, wind tunnel testing is
conducted to obtain the aerodynamic data [15], the spin test is done to observe the
inertia effect [16], and Ground Vibration Tests (GVT) are utilised to characterise the
structural behaviour. The only area where all these three factors are combined into a
complete aeroelastic problem is where the designers are concerned with flutter, which
is also observable through subscale models [17]. However, the aeroelastic problems are
usually addressed at a much later design stage where the key components such as wing
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configuration are fixed.

The trends of air transport nowadays are moving towards high capacity long-range air-
craft characterised by highly flexible wing structures [18]. Such concepts bring significant
interference between the rigid body and the structural dynamics. As an implication,
rigid body dynamics no longer dominates the flight dynamics characteristics of the air-
craft and the structural dynamics are now affecting the flight dynamics characteristics
[19, 20]. This coupling can change the stability and control characteristics of the aircraft
and can affect the aircraft’s handling qualities. Here, experimented programme using
subscale models can be a useful approach that gives the designer insight into potential
problems. By conducting the experiments in the earlier design stage, it can de-risk the
design process and provide higher confidence at later design stages. At the same time, the
subscale model can provide a high fidelity mathematical model [21, 22]. As emphasised
by Chambers [10], “The most critical contributions of models are to provide confidence
and risk reduction for new design and to enhance the safety and efficiency of existing
configuration”.

Figure 1.2 provides the framework for utilising the subscale model as part of the design
process, which emphasises the two main focus areas of this thesis: Dynamic Scaling and
System Identification. The process starts with a definition of the full-scale concept
model, which consists of the aircraft configuration and flight condition. Then dynamic
scaling is aimed for building the subscale model. This process is essential to make sure
that the sub-scale model can represent the similitude dynamic behaviour of the full-scale
model. Lastly, experimental testing is carried out to observe the dynamic behaviour of
the subscale model. System identification methods are then applied to the experimental
data to quantify the dynamic behaviour of interest, which will be used to evaluate the
design.

Current research on sub-scale aeroelastic systems mainly focuses on the scaling method-
ology and their results compared to the theoretical scaled models. This research takes
the work further by utilising system identification methods to estimate the flight dynamic
characteristics of the subscale model. It also fills the gap in linking the subscale experi-
mental results with the full-scale theoretical model using system identification methods,
providing further insight into the flight dynamic characteristics.
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Figure 1.1: Aircraft design process (Reproduced from Reference [1]).
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Figure 1.2: Research framework.
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1.1 Aim and Objectives

The aim of this research project is to develop a methodology that enables the investigation
of the complex flight dynamic behaviour of flexible aircraft by combining techniques for
developing subscale models and methods within the field of system identification. To
achieve this aim, the objectives of this research are defined effectively as exploratory
studies, theoretical development and experimental testing.

Within the field of system identification, the exploration of time-domain system identi-
fication methods was conducted by:

• Assessing the limitations of time-domain identification methods.

• Reviewing the challenges in parameter estimation on experimental data.

• Understanding the differences in the identification methods when considering full-
scale aircraft and subscale models, as well as the corresponding dynamics.

• Reviewing the various approaches in parameter estimation for flexible aircraft.

Theoretical development of subscale modelling for wind tunnel testing was done through:

• Review of scaling parameters and respective implications.

• Definition of scaling laws that relate the full-scale vehicle behaviour to subscale
model dynamics.

• Development of a theoretical framework for assessing the scaling laws.

Experimental testing of the subscale model in a wind tunnel environment implies that
the following requirements to be met:

• Assessing the limitations in manufacturing aeroelastic subscale model .

• Validation of the theoretical structural model.

• Validation of the theoretical aeroelastic framework based on wind tunnel experi-
mental results.

1.2 Contributions to Knowledge

In practice a dynamically scaled model is valid for one flight condition only, mainly due
to the interconnected relation between the scaling laws that force compromises in model
design. In the past, this posed a significant difficulty in the use of subscale models, wors-
ened by the fact that the cost of developing subscale models can be quite high. The work
detailed in this thesis was conducted as part of a program aiming to develop a cheap, low
cost approach to manufacture a dynamically scaled model [23, 24]. The key contribution
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of this thesis is the development of a methodology to build and test dynamically scaled
wind-tunnel models. As a case study, a flexible wing has been put through the scal-
ing process and then manufactured (through PolyJet printing technology). Therefore,
a cost-effective, dynamically scaled flexible model can be used at earlier design stages
to mitigate risks. Also, the low cost manufacturing process allows the development of
multiple subscale models, each aimed towards a particular flight condition.

The secondary contributions resulting from the application of the methods developed to
achieve the overall aim can be listed as follows:

• Development of a regressor time-shifting method for identifying the rigid body
dynamics, where measurements from two sensors in separate locations with different
filtering and sampling rate exist [25].
• Suggest a model for identification method to observe the flight dynamic character-

istics of a subscale aircraft inside a wind tunnel environment, where dynamic stall
occurs [26].
• A method is proposed for the development of a reduced order flight dynamic model

that takes into account structural flexibility as well as morphing wingtip effects
[27, 28]. The application of this model in a real-time pilot-in-the-loop simulation
has provided insight into the handling qualities of the vehicle [29].
• Adopted an approach based on non-dimensional equation of motion to highlight

the scaling laws trade-offs when trying to satisfy scaling laws. This has added to
the limited amount of literature available on this topic.
• Development of a theoretical simulation framework under the incompressible flow

assumption, that has been used as a basis for the development of an aeroleastic
subscale model.

1.3 Document Structure

This thesis consists of seven chapters that help build the research framework given in
Figure 1.2. The thesis starts with the introduction of the work in Chapter 1, followed by
a brief literature review in Chapter 2. The literature review focuses on existing work re-
garding dynamic scaling, aeroelastic systems, and system identification. The exploration
of the System IDentification (SID)/Parameter Estimation (PE) methods are presented
in Chapters 3 and 4. Chapter 3 focuses on the application of parameter identification
techniques to a full-scale, subscale and structural problem using experimental data, while
Chapter 4 explores the application of the SID/PE methods for aero-structural problems
where aerodynamics, structure and inertial components are all coupled. This chapter is
followed by the exploration of dynamic scaling trade-offs, which is demonstrated through
the application of the similitude principles to a 2 Dimensional pitch-plunge aerofoil system
in Chapter 5. Chapter 6 brings together all the concepts and lessons from the exploratory
studies in the previous chapters and demonstrates application to a current problem: de-
velopment and identification of subscale high aspect ratio wing at the early stage design.
Finally, Chapter 7 concludes the thesis with a brief list of key findings and recommends
areas of further work.



CHAPTER2
Literature Review

The three important factors to be considered in aeroelasticity and flight dynamics are
aerodynamic forces, inertial forces and elastic forces as presented by the Collar’s triangle
[30] in Figure 2.1. Understanding the interaction between these three factors is necessary
to mitigate risks and ensure performance in aircraft development. For instance, the
interactions between aerodynamics and inertial forces lead to the traditional view of
flight mechanics, such as aircraft stability and control or aircraft response to atmospheric
disturbances. On the other hand, the interaction between elastic and aerodynamic forces
covers issues related to static aeroelasticity, such as divergence and control reversals. In
the extreme case, the coupling between all three factors can lead to self-excited aeroelastic
instabilities known as flutter. Traditionally, in the conceptual design stage, these fields are
treated separately and individually optimised. This is reflected in the practice of design
verification through proof-of-concept studies at the early stage. The usual practice is to
carry out subscale model testing, which allows a practical means of focusing on a specific
set of the aforementioned interactions [10, 31, 32].

This chapter starts with an elaboration of past studies that discuss experiments using a
subscale model to address aerodynamics and flight dynamics problems, as well as aeroe-
lastic problems. These experiments focused on dynamic testing. In this case, system
identification plays a vital role in the interpretation of results from such dynamic testing.
As a result, this chapter then continues with an overview of the important components

Figure 2.1: Collar’s triangle (Reproduced from Reference [33]).
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of System Identification. Discussed some past studies regarding the identification of the
aeroelastic system. This is followed by a brief discussion on the interpretation of results
from scaled tests (such as wind tunnel tests) and the impact on full-scale vehicle design.

2.1 Subscale Modelling

For ages, people have always relied on experimental testing to understand the character-
istics of a system. Within aerodynamics wind tunnel testing become common practice.
The first wind tunnel was designed by Francis Wenham in 1871 [34]. Although it turned
out to provide little or no help in answering the aerodynamic challenges of that time, it
highlighted the importance of lift-to-drag ratio, albeit at small angles of attack through
direct lift and drag measurement [34]. Then in the 1910s, Eiffel successfully addressed
the validity of the principle behind wind tunnel testing: “The same force as is made by
the thing against air, is made by air against the thing”. He compared the aerodynamic
force on a flat plate using wind tunnel and drop test, and found them to be the same
[34]. Furthermore, Eiffel pioneered a complete aircraft wind tunnel test to show the
correspondence between a model and its performance in actual flight.

Since then, testing a subscale model has become a widely accepted and valuable design
and scientific tool, as mentioned by Chambers “Progress in the technology associated
with model testing in worldwide applications has firmly established model aircraft as a
key element in new aerospace research and development programs” [10]. The statement
was also emphasised by Friedmann, who underlined the importance of wind tunnel tests
using subscale models as a demonstrator for various methods [35].

One of the significant elements to utilising subscale models is that one can experiment
with the condition which is dangerous/risky. For example, spin was a major aircraft safety
concern in the early days of aircraft development, which triggered NASA to build a spin
tunnel facility in 1920 [36]. The example of a subscale model for spin testing is presented
in Figure 2.2 and it shows the variation of aircraft size for spin testing application in
comparison with the full-scale aircraft.

Two different subscale models are commonly used for observing the flight dynamic char-
acteristics during the aircraft design process: static and dynamic models. The ‘static
model’ is specifically built for static wind tunnel tests. It is built to imitate the geometri-
cal features and it focuses on extracting detailed aerodynamic data at a particular flight
condition and configuration. The challenge in developing such static models is to repro-
duce the full-scale aerodynamic features, such as flow separation points and boundary
layer conditions [10]. However, static testing only provides static aerodynamic data and
ignores the dynamic effects. Thus, dynamic testing is introduced to fill the knowledge
gap in observing flow physics due to aircraft motion. The practice of dynamic testing can
be tracked back to as early as 1924, where Munk tested several airplanes with different
weights and sizes to compare their performance [37].

Nowadays, for flight dynamics analyses, dynamic testing can be further divided into
several categories such as: forced oscillation, single/multiple Degree-of-Freedom (DoF)
wind tunnel tests, wind tunnel free-flight models and scaled technology demonstrators
[16]. Each test tends to focus on a specific set of dynamics. For instance forced oscillation
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Figure 2.2: Example of different test model used for spin testing. Left to right: full-scale
aircaft, radio-controlled model, and spin tunnel model (Reproduced from Reference [10]).

tests are conducted to observe the dynamic derivatives related to angular rates, while
the single DoF test is used to characterise the unsteady aerodynamics associated with
phenomena such as wing rock [38]. The differences in the focus of such tests underlines
the fact that each test needs a dedicated subscale model. For example, it is crucial
for the free-flight model to be heavily instrumented, which is not essential for the forced
oscillation test. A more comprehensive study on dynamic testing is available in References
[10, 16, 38].

Another type of dynamic test that utilises subscale models is aeroelastic testing. An
aeroelastic subscale model is designed to reproduce scaled static deflections and modal
behaviour of the full-scale aircraft [30, 39]. The concept of scaling for both flight dynamics
and aeroelastic testing is similar. However, the development of the subscale model focuses
on different similarity issues. In contrast with the subscale model for flight physics de-
velopment which is assumed to be rigid, the aeroelastic subscale model needs to consider
structural flexibility. This is characterised by matching the structural stiffness and the
distribution of mass [30]. Aeroelastic tests aim to evaluate phenomena related to flutter,
gust response, divergence, as well as limit cycle oscillations [40–42] . The problem can
also be extended to an aeroservoelastic problem in which the control surface is free to
move and the response of the free-play control surfaces is observed through experimental
tests.

2.1.1 Similitude Requirements

As discussed in the previous section, the development of a subscale model is heavily
dependent on the technical domain and phenomena that is of interest. In particular
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Scale Factor Incompressible Compressible
Flow Flow

Linear dimension n n
Relative density (m/ρl3) 1 1
Mach number - 1
Froude number (U/

√
lg) 1 1

Linear Acceleration 1 1
Weight, mass n3/ (ρ/ρ0) n3/ (ρ/ρ0)
Moment of inertia n5/ (ρ/ρ0) n5/ (ρ/ρ0)
Linear velocity (U) n1/2 n1/2

Angular velocity n−1/2 n−1/2

Time n1/2 n1/2

Reynolds number (Ul/υ) n3/2υ/υ0 n3/2v/v0

n is the linear scaling factor, ρ0 representing the air density at sea level, υ repre-

senting kinematic viscosity, υ =
µ

ρ
, and υ0 representing kinematic viscosity at sea

level.

Table 2.1: Scale factor for a rigid subscale model (Reproduced from Reference [10]).

for examining dynamic behaviour through dynamic testing, the subscale model needs to
satisfy the dynamic similarity requirements relative to the full-scale model. Table 2.1 is
an example of the required scale factors for developing a rigid subscale model. A dynamic
model that is not dynamically scaled will not allow the observation to be related with the
real full-scale vehicle [16]. In general experimental testing using subscale models must
satisfy the following similitude requirements [10, 32]:

• Geometric Similarity: the basic necessary similitude requirement [43], where the
subscale model must have the geometrical representation of the full-scale model.
The practice of matching the geometric similarities can be traced back to one of
the earliest dynamic testing experiment, where Munk matched the shape and di-
ameter of the propeller for the subscale aircraft development [37]. This requirement
forms the basis for other similitude requirements especially when considering Froude
number similarity.

• Froude Number: a ratio of flow inertia to the external force. This criteria is a
necessary condition for similarity in mechanical phenomena [43]. Froude number
does not consider the viscosity and compressibility of the fluid, but a “free surface”
at constant pressure; when the fluid is a gas, this law applies due to the effect of
gravitational force [44]. It relates the velocity components of a model corresponding
to body forces. The Froude number is defined as:

Fr =
U√
c̄g

(2.1.1)

where U is the free stream velocity, c̄ is the characteristic length, and g is gravi-
tational acceleration. The Froude number similarity in a subscale aircraft test is
essential when the force due to gravity is being considered since gravitational ac-
celeration is not scalable. For a flight dynamic test, Froude number is an essential



SUBSCALE MODELLING 35

Figure 2.3: Reynolds number effects on force and moment characteristics (Data are gen-
erated from Reference [45]).

parameter to observe the manoeuvring vehicle, for example during coordinated turn
or level flight [32] where the lift force counteracts the gravitational force.

• Reynolds Number: the ratio between inertia forces of the fluid and the viscous
force. One of the crucial properties that affects the Reynolds number is viscosity
[43] and this non-dimensional parameter is define as:

Re =
ρUc̄

µ
(2.1.2)

in which ρ is the air density, U is the aircraft velocity, c̄ is the characteristic length
and µ is the dynamic viscosity. Viscosity, or the stickiness of the gas, affects the
boundary layer development which in turn influences the aerodynamic forces acting
on the object. Figure 2.3 presents the effect of Reynolds number variation on the
aerodynamic characteristics of a NACA-230151 [45]. The figure shows that at lower
Reynolds numbers the aerofoil stalls at a lower angle-of-attack while experiencing a
higher drag coefficient. The difference in the Reynold number also affects the trends
in the pitching moment coefficient as a function of angle of attack. Due to its effect
on the flow pattern, Reynolds number similarity is generally essential for all types
of fluid dynamic problems [46]. However, Reynolds number is often compromised
and considered as a secondary parameter for many dynamic tests highlighting the
difficulties in satisfying this similarity requirement [47].

• Mach Number: this captures the compressibility effects within a fluid medium. It
is the ratio between the inertial and the compressibility force and it is an essential
criterion for scenarios where compresibility effects cannot be ignored. For an object
that operates above Mach > 1, a shock wave formed in the nose area provides
a mechanism for drag generation that is not present in subsonic flow [46]. For
the development of a subscale model, there is a trade-off between Mach number
matching and Froude number matching, as both of them are functions of velocity.
Froude number is given in Equation 2.1.1, while Mach number is expressed as

1The data given here is based on Xfoil where the calculation, neglected the compressibility effect
(Mach number), and also considered a common wind tunnel distrubance level.
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follows:

Ma =
U

a
(2.1.3)

where a is the speed of sound, and U is the airspeed. It is almost impossible to
match both Froude and Mach number simultaneously, and often one of the simi-
larity requirements needs to be sacrificed. For flight dynamic tests, the model data
based on Mach number scaling may not be able to represent the flight dynam-
ics characteristics [32, 47], which consequently leads to ignoring the Mach number
similarity criteria. However, Mach number affect the Coefficient of Lift (CL), espe-
cially when comparing an atmospheric free-flying subscale model with high-speed
full-scale aircraft. Thus, to maintain the CL similarity, the test has to be conducted
in a different flight condition than that of the full-scale aircraft [47]. For a more
detailed discussion on the similitude investigation at full-scale Mach numbers and
its trade-off with Froude number similarity, the reader is referred to Reference [31].

• Strouhal Number: this is related to the oscillatory dynamics of the aircraft. It
is the ratio between local and convective inertia forces [46], and it is an important
consideration when unsteady, nonlinear flow conditions are dominant such as during
a spin testing [16, 32]. Strouhal number is defined as:

St =
ωc̄

U
(2.1.4)

where, ω is the frequency, c̄ is the characteristic length, and U is the velocity.
The Strouhal number has a similar form with reduced angular velocity, although
the latter applies to different parameters. Reduced angular frequency is related
to angular rates and control surface rates, while the Strouhal number is related
to unsteady flow effects caused by the oscillatory perturbations of the aircraft. In
the application of the aeroelastic system, the reduced frequency parameter is of
importance [30, 48] because the aerodynamic derivatives (especially lift coefficient)
may be significantly affected by the unsteadiness of the flow. As an example, in
flutter testing the Strouhal number is used to relate the flutter frequency of the
full-scale aircraft and subscale model [32].

• Relative Mass Properties: an essential parameter for a subscale model where
inertial forces are considered. Included in this category are relative density and
relative mass moment of inertia. The importance of matching relative mass and
inertia for dynamic testing for flight dynamics application goes back to the 1920s
when Scherberg developed a methodology to match the scaled inertia, mass and the
position of the centre of gravity for rigid body spinning tests. This was accomplished
by building a lighter model that was loaded with the mass for a specific distribution
[49]. For a flexible aircraft, similitude in mass distribution is required to ensure the
similitude in the loading distribution and the elastic deformations [32]. Moreover,
relative mass properties is an important factor for subscale model studies of flutter.

• Relative Structural Properties: essential for a subscale model where structural
properties must be considered, such as the study of flutter or an aircraft flexible
body modes. Included in this requirement are both similarity in the structural
bending and torsional stiffness parameters. These parameters are related to mate-
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rial properties and geometrical shape of the subscale model [48, 50]. For a static
aeroelastic test, the similitude of these parameters are of primary concern, while
mass scaling is considered not to be as critical [32].

Figure 2.4: Similitude requirements in the Collar’s triangle (Modified from Reference
[33]).

The relation between the similitude requirements and the dynamics of interest is high-
lighted in the Collar’s triangle shown in Figure 2.4. Although often compromises, Mach
number and Reynolds number are crucial factors for ensuring aerodynamic similarity.
Likewise, the similarity in the relative structural properties is essential for testing that
includes elastic forces, while relative mass and inertia scaling are crucial for testing that
includes inertial forces. In the case of two forces interacting, matching the similitude
requirements that are related for both forces is also crucial. As an example, for mechan-
ical vibration problem, the subscale model should be scaled according to the mass and
inertia distribution, as well as the structural characteristics (specific bending and torsion
parameters). However, in the case of all three forces interacting, such as buffet, flutter
or dynamic response, both Froude number and Strouhal number similarity have to be
matched as well.

Ideally, a subscale model should entirely represent the full-scale model. However, it is
rarely possible to scale down all dynamic similitudes simultaneously [51]. One needs to
focus on the parameter which is the most important for a particular dynamic of interest
[16, 32]. For example, it is only possible to have a subscale model that matches both
Froude and Mach number, if the subscale model is flying in a different medium or tested
at different flight conditions (e.g. angle of attack setting) [32]. Consequently, the scaling
laws when designing a wind tunnel subscale model should be carefully chosen based on
(1) similitude requirements, (2) dynamics of interest and, (3) wind tunnel capabilities
[52].

2.1.2 Similitude of Aeroelastic System

Flutter is considered to be one of the most critical aeroelastic engineering problems that
can result in catastrophic structural failure, and even today, its prediction poses an
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engineering challenge. Nevertheless, due to the design process and culture of today’s
aerospace industry, where design problems are addressed separately, flutter instability
conditions can appear late in the aircraft development cycle [48, 53]. Figure 2.5 illustrates
the rough order in terms of modal frequencies of the natural modes for the various design
problems of interest. In this diagram, the aerodynamics model also represents the flight-
dynamic model placed in a low frequency dynamics, the finite element model represents
the structural dynamics at higher frequency dynamics, while the aeroservoelastic model
covers a much wider spectrum of dynamics as it requires the coupling of the aerodynamics
and the structural dynamics. The figure also illustrates experimental testing as part
of the design process. Wind tunnel testing conducted to evaluate the low frequency
dynamics, while the ground vibration test is conducted to validate the finite element
model. Furthermore, flutter tests are conducted to understand the aeroelastic behaviour.

Figure 2.5: Model and experiments in aircraft design (Reproduced from References [48,
54]).

Assessing for flutter instability at a later design stage is possible for a conventional
aircraft because the frequencies between the flight dynamics and aeroelastic modes are
well separated. The rigid body mode frequency is usually less than 1 Hz, and the elastic
frequency of a conventional aircraft is around 2-3 Hz [55], although the elastic frequency
can be as low as 1 Hz in some advanced supersonic aircraft [55]. The same problem also
arises when the aircraft has high aspect ratio, lightweight wings. Structural flexibility can
move the aeroelastic frequencies closer to the rigid body dynamics and consequently result
in undesirable and complex non-linear aeroservoelastic coupling [55–58], and possibly
more critical flutter issues [59–62].

With the advent of high aspect ratio wings, the issue of structural flexibility and its cou-
pling with flight dynamics has become more and more critical. The similitude require-
ments need to be revisited if scaled technology demonstrators are to be used. Friedmann
[35] describes twelve classical scaling parameters that must be considered to scale down a
2-Dimensional aerofoil in incompressible flow. However, this classical aeroelastic scaling
is inadequate to deal with the problem where the system such as control system actuation
is also involved. Pototzky [63] developed an aeroservoelastic analytical model by incorpo-
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rating the aeroelastic equations of motion with gust and control surfaces, which was only
valid for a structure with small deformations. In developing the scaling law, the common
scaling factor being used to relate the full-scale and subscale model are the comparison
between the geometrical length (Sg), speed (SU) and air density (Sρ), as follows:

Sg =
c̄FS
c̄SC

(2.1.5)

SU =
UFS
USC

(2.1.6)

Sρ =
ρFS
ρSC

(2.1.7)

Here, FS represents the full-scale aircraft while SC represents the subscale model, and
the geometrical scaling is done via the mean aerodynamic chord (c̄). These common
scaling factors also work for scaling gust response [64, 65]. Furthermore, Wan and Cesnik
also found that these common scaling factors for linear structures is also applicable for
non-linear structures that exhibit large deformations [66].

Nevertheless, Froude number similarity can dictate the relationship between the geomet-
rical and speed scaling laws of the subscale model and the full-scale aircraft [65]. Although
the importance of the Froude number for an aeroelastic system is still debatable. For
a small subscale UAV (Unmanned Aerial Vehicle), Oulette [67] found that the effect of
Froude number is less significant if the dynamics are only restricted to the short period
mode and certain structural dynamics. In contrast, Wan and Cesnik [66] emphasise that
Froude number plays a vital role to guarantee the matching of nonlinear stiffness proper-
ties between models. Froude number is important for wind tunnel experiments in which
gravity provides one of the loads, such as for side wall mounted models [65]. Mounting
a subscale model on the floor can eliminate the need of matching the Froude number, as
in this configuration, the gravity does not affect the wing load distribution.

Another similitude requirement to be considered is Mach number similarity. This re-
quirement is vital for rotary wing applications but not very critical where the flow can
be assumed to be incompressible [35]. Ting et al. [68] suggested that the change in
Mach number affected the lift curve slope of the aircraft and considered this effect by
aiming for a similar CL value, obtained through a higher angle-of-attack setting for the
subscale model [68]. For the use of aeroelastic subscale models, especially to observe
flutter or limit-cycle oscillations, it is also essential to match the reduced frequency [65].
Furthermore, French and Eastep [39] also emphasise the need to match both frequency
and structural mode shapes simultaneously [69, 70]. To verify the scaling process between
the fullscale and the wind tunnel subscale model, Pototzky utilised root locus patterns
[63]. The root locus is used to show the pole position of each aeroelastic mode. Fur-
thermore, root-locus pattern is also used to predict the change in the aeroelastic mode of
the subscale model for various dynamic pressures. If the patterns are scaled correctly, it
reassures the fact that flutter frequencies and flutter dynamic pressures of the subscale
model are scaled accordingly [63].

On the other hand, Ricciardi et al. [69, 71] have developed the non-dimensional aeroelas-
tic equations of motion and used it as the basis of the non-linear optimisation routine for
developing a subscale model. Here, one of the criteria is to match the modal properties
(frequency, mode shape and modal masses) for a truncated number of modes which fall
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within the frequency range of interest. Another optimisation method proposed by Spada
et al. [72] is based on two optimisation loops. Here, the first loop aims to match the
static deformation while the second loop targets the natural frequencies and mode shapes.
Nonetheless, none of the previous studies discuss the damping characteristics of either
the subscale or full-scale, except in Reference [70] where a cost function is proposed to
directly scale the aeroelastic equation and to match aeroelastic reduced frequency and
damping. However, this method is computationally expensive because it requires aeroe-
lastic analysis for each optimisation cycle.

2.1.3 Development of Subscale Model

The subscale model is developed based on the scaling laws and dictated by the similitude
requirements. However, the consequence of applying scaling laws to build a subscale
prototype is that the sub-scale model cannot be manufactured in a similar way to the
full-size aircraft [71]. This shows the importance of choosing appropriate design and
material properties for the subscale model.

Figure 2.6: Example of aeroelastic wind tunnel model (Reproduced from References [42]
and [73]).

A common method for building an aeroelastic model for wind tunnel testing is by design-
ing a spar that represents the stiffness of the wing coupled with the aerodynamic external
shape using light balsa pods [17]. Usually, concentrated lumped masses need to be placed
carefully in order to match both modal frequencies and mode shapes [39]. To study the
aeroelasticity of high-aspect-ratio wings, Tang and Dowell [42, 73] used a flat steel spar
with multiple thin flanges to reduce torsional stiffness and make it more flexible. The
aerodynamic profile was made of 18 aerofoil pieces glued to the spar with spaces between
plates filled with light wood (basswood), as presented in Figure 2.6. This wood resulted
in additional mass which contributes towards a small increment of bending and torsional
stiffness [73]. It is worth mentioning that this wing is not a representation of a full-scale
system, meaning that no scaling laws has been applied here.

For a dynamically scaled wing design, the internal structure should be designed to match
both the bending and torsional stiffnesses. In fact, these dictate the choice of mate-
rial property for the subscale model. Previous work on building the subscale model
includes the use of ladder configurations [71], spar and stinger configurations [41] as well
as conventional rib and spar configurations [72, 74]. Other variations include flange spar
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configurations [75]. Figure 2.7 presents examples of the different structural design that
can be used for the development of a subscale model. The reader is referred to Reference
[30] for a more detailed explanation on different spar configuration and its consequences
to the structural properties of a model.

Figure 2.7: Example of the internal structural design for subscale model, left: rib and
spar configuration, and right: various spar configuration (Reproduced from References
[76, 77]).

The spar design is not only determined by the choice of material but also depends on the
method used to attach the aerodynamic profile to the spar. For a rib and spar configura-
tion, a thin layer of skin can be used to cover and form the aerodynamic shape. For this
type of design the skin can be made using fibreglass or composites [41, 74]. Alternatively,
polyethylene can be used to introduce the aerodynamic shape while balsa may be used as
local support for a ladder configuration as discussed in Reference [71]. It is often assumed
that the chosen material for manufacturing the aerodynamic shape introduces negligible
stiffness to the subscale model. And hence, requires designers to focus on optimising
the spar design to match the target stiffness properties [71]. Appropriate mass/inertia
distributions can be achieved using balsa wood with stainless steel/aluminium ribs [74],
foam/PVS core [41], carbon fibre [78], or aluminium [71].

Alternatively, 3-D printing technology is available today and provides a quick, cheap and
simple way to build subscale models. This technology allows the accurate manufacturing
of thin but solid models [79]. The idea to utilise ‘replica-type plastic model’ is not new,
and in the past, the manufacturing tolerance, changes in material properties and the cost
of fabrication were the challenges that limited the wide spread use of this method [17]. It
is arguable that the manufacturing precision is lower when compared to traditional metal
models. However, for an initial design test, a 3-D printed subscale model is sufficient
as a proof-of-concept, especially considering the lower cost and manufacturing time [80].
Although the wind tunnel model being discussed in Reference [80] is a simple model of
a missile’s nose cone, and not a wing configuration. Nowadays, the cost of 3-D printing
is economically acceptable and at the same time allows a more complicated design to
be easily manufactured. The use of 3-D printing for developing a subscale model is
becoming increasingly popular and is suitable for the development of the subscale models,
for instance a scaled wing-box structure [81], or a flexible half-wing designs [82]. However,
even with this available technology, the problems for developing highly flexible subscale
wings are still addressed conventionally by designing the aerodynamic profile in sections
and leaving a small gap between each section [68, 73, 82]. The latter often leads to
undesirable aerodynamic flow around the gap regions [24].

To overcome this issue, Pankonien and Reich [83] built a wind-tunnel flutter model
using multi-material 3-D printing techniques. This multi-material printing allows stiffness
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control along the span with elastomeric breaks to maintain a continuous aerodynamic
surface [83]. The results show that the printed subscale model achieves a predictable
response with flutter speed within 15% of the predicted value and a modal assurance
criterion of greater than 0.89 for the first three mode shapes. This novel 3-D printing
technique uses Polyjet technology that allows printing multi-material components in a
similar manner to the inkjet printer which prints using multicolour ink [84]. The Polyjet
3-D printer uses jets to layer a photopolymer curable resin onto the printers build bay
[84]. The careful combination of multiple materials in this technology allows printing
both rigid and flexible (elastomeric) components within the same build. Therefore, 3-D
PolyJet printing can be a rapid and inexpensive solution for developing subscale wind
tunnel models, especially where structural deformation is of interest. However, literature
regarding the use of multi-material printing for developing dynamically scaled models
is still limited. The reader is referred to Reference [84] for a detailed description of
this manufacturing method and Reference [85] for reviews on the additive manufacturing
processes

2.2 System Identification

The subject of system identification is a part of systems theory that deals with an inverse
problem, as referred by Iliff [86]: “Given the answer, what was the question?”. However,
a more comprehensive definition of system identification is given by Zadeh [87] as “deter-
mination, on the basis of observation of input and output, of a system within a specified
class of systems to which the system under test is equivalent”. This subject deals with
not only theoretical aspect but also practical components. As highlighted by Ljung [88],
system identification is “[an] ‘art’ and science to construct a mathematical model of a
dynamic system based on observed input-output data”. Here, the ‘science part’ is related
to the techniques for parameter estimation and model structures determination, while
the ‘art’ deals with the practical application in defining and addressing the problem.

The origins of system identification can be traced back to statistical theory and curve-
fitting. The early stages of system identification occured through analogue matching,
and as digital computers emerged, more advanced estimation techniques subsequently
evolved. References [89–92] present the surveys and recent applications of system iden-
tification over the last few decades highlighting the challenges of system identification.
These can be categorised in the four essential components referred to as Quad-M [54]:
Manoeuvre, Measurement, Models, and Methods as given in Figure 2.8. Each of
these components will be described in the following section.

2.2.1 Manoeuvre

As explained earlier, system identification is an inverse problem in which accurate ob-
servations are of high importance. As mentioned by Jategaonkar [54] “If it is not in
the data, it cannot be modelled” meaning that the manoeuvre for identification purposes
should be able to capture the dynamics of interest. In other words, it is important to
design the experiments such that relevant dynamics of the vehicle are sufficiently excited
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Figure 2.8: Four essential components of system identification (adopted from Reference
[54]).

for system identification purposes. One of the ways in desiging the experiment is through
input design, which requires the consideration of the following [93]:

• The input must be able to excite the modes and corresponding parameters appro-
priately (Sensitivity).

• The input signals (amplitude, bandwidth, and rates) are realisable by the specific
actuators (Realisability).

• The input should restrict the motion of the aircraft within the identified flight region
of interest (Model limitation).

For a conventional aircraft, system identification can be used to obtain the key parameters
corresponding to the aircraft dynamics such as the short-period, phugoid and dutch roll
modes. Each components of each observed dynamics acts over a different frequency band
characterised by the eigenfrequency. For example, the phugoid mode has a slower dynamic
compared to the short-period mode. Furthermore, when considering flexible aircraft, the
resonance frequency of each structural mode needs to be considered as well. Hence,
for identification purposes, the input must have enough energy to excite the frequencies
around the eigenfrequency of interest. In that case, experiments can be designed to
capture a wide range of frequencies or repeated multiple times while targeting different
frequencies of interest.

In general, the classical input designs for aircraft identification are: step, doublet, 3-2-1-1
and frequency sweep. The step, doublet and 3-2-1-1 are classified as square input, while
the frequency sweep input belongs to the category of sinusoidal input [54, 94]. Each input
design has a different bandwidth and magnitude of excitation energy. An illustration of
the different input design methods in the time domain and the energy spectra in frequency
domain are presented in Figure 2.9. The frequency sweep input in Figure 2.9 is designed
to cover the range of 0.2 to 1 Hz. The figure shows that 3-2-1-1 input and frequency
sweep input have a wide frequency band (in terms of energy spectrum) compared to the
step and doublet input. These inputs are able to excite more of the system dynamics and
it is worth noting that the increase in the frequency bandwidth is proportionally inverse
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Figure 2.9: Time and frequency domain comparison of various inputs.

to the change in the energy content [54]. A low magnitude energy content means that
the input might not be able to excite the system adequately.

For time domain identification, the 3-2-1-1 input is preferable due to the higher band-
width and a more uniform energy content compared to other square input. On the other
hand frequency-sweep input should be used for the identification methods in frequency
domain [95]. However, both 3-2-1-1 and frequency sweeps inputs tend to drive the aircraft
away from the test flight conditions due to the low-frequency content at the beginning
of the frequency sweep and the first three pulse input in the case of 3-2-1-1 [94]. Thus,
the challenge in designing an input for identification purposes lies in maximising the
data content in the most efficient way. Furthermore, it is preferable that the input only
results in small deviations to keep the vehicle around the trim condition. By doing so,
small perturbation assumption can be used for identification purposes allowing the more
straightforward identification of linear models.

Several ongoing works on the development of optimal input in short duration flight are
available in References [96–98]. Amongst those, an optimal input design is the orthogonal
multi-sine input. One of the examples of the multi-sine input is for identification of a
hypersonic aircraft [99]. This input design approach is an extension of Schroeder sweep
input design [98] which is optimised and then used simultaneously for more than one
control surface to excite the different modes in an orthogonal sense. The idea behind
multi-sine input is similar to the frequency sweep input: to excite the specific modes
in the frequency region of interest. Instead of continuously applying a sinusoidal input
with increasing frequency, a sum of sinusoids over various frequencies, amplitudes and
phases are used. This results in a shorter signal duration compared to the traditional
frequency sweeps and higher frequency bandwidths compared to the standard 3-2-1-1
input. It should be noted that this requires at least some a-priori knowledge of where
the dynamics of interest lie in the frequency domain. The multi-sine input2 takes the
following form [94]:

u(t) =
n∑
i=1

Ai cos

(
2πit

T
+ ϕi

)
(2.2.1)

where n is the total number of harmonic frequencies, T is the time length of the excitation,

2The multisine input design is generated through the mkmsswp.m function within the SIDPAC (System
IDentification Programs for AirCraft) library [94]
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and ϕi is the phase of each harmonic components. The latter is chosen to produce a low
peak factor (PF) defined as [94]:

PF(u) ≡ [max(u)−min(u)] /2√
(uTu) /N

(2.2.2)

A single sinusoid has a PF of
√

2 and relative peak factor (RPF) is thus defined as:

RPF(u) =
PF (u)√

2
(2.2.3)

RPF is a way to measure the efficiency of the input for identification purposes. A single
sinusoid has RPF equal to 1. For parameter estimation purposes, a low RPF is preferable
because in this case the input has sufficient energy with low amplitude for a wide range
of frequencies. Low amplitude input also implies that the excitation did not drive the
aircraft away from the nominal operating point. An in-depth mathematical view on
optimising the multisine excitation is given in Reference [100].

For aircraft identification, input design is usually performed through the use of the control
surfaces such as elevators, ailerons and rudder, depending on the dynamics of interest
(or using all the control surfaces orthogonally for multi-sine orthogonal input). It is
uncommon to use the flap to excite the dynamics because the flap actuators usually do
not provide sufficient bandwidth. However, in the case of identifying the wing bending
dynamics of a sailplane, de Silva and Mönnich [101] argued that flaps are suitable for
dynamic inputs as it provides direct influence on wing lift rather than the elevator. By
having a direct change of the wing force, it is more efficient in exciting the wing bending
modes compared to the elevator deflection. This is because the lift developed from the
variation in the angle of attack has a delay response from the aircraft pitching dynamics.
Furthermore, in the case of identifying flexible transport aircraft, Najmabadi [102] found
that the frequency sweep input through rudder does not adequately excite any modes.
For a shorter input duration, Grauer et al [103] utilised multi-sine input for extracting
models of an aeroelastic joined-wing wind tunnel model. However, unlike the square or
frequency sweep input, it is impossible for the pilot to produced multi-sine command
input. Thus, this input can only be performed through the use of a computer controlled
flight control system.

2.2.2 Measurement

The purpose of system identification is to find a suitable model based on the measured
dynamics. Although the manoeuvre should be designed to capture the dynamics of inter-
est, if the measurement was not able to capture the dynamics, the identification results
cannot be trusted. Thus, the problem of measurement in system identification focuses on
data gathering activities, such as accurate data acquisition and instrumentation systems.

Data acquisition deals with data collection: the records of time series data of input and
output variables. Here, the discussion of the problem related to data acquisition is limited
to the sampling rate of the sensor. According to Nyquist frequency, a sampling rate of



46 LITERATURE REVIEW

Figure 2.10: Nyquist frequency and aliasing problem.

ωN can capture frequency content up to ωs/2.

ωN = ωs/2 (2.2.4)

This means that the sampling rate according to Nyquist frequency needs to be at least
twice the maximum frequency of interest (ωmax) [104]. Figure 2.10 presents the compar-
ison of the signals with the frequency of interest of 0.2 Hz and the sampling frequency
of 0.4 Hz. Here, the sampling frequency of 0.4 Hz means that frequencies as low as
0.2 Hz can be captured. Furthermore, the figure also illustrates the pre-sampling data
problem known as aliasing. For this illustration, the sampling frequency of 0.27 Hz is
chosen, resulting in a Nyquist frequency of 0.135 Hz. By doing so, rather than capturing
the signals at 0.2 Hz, this rate is capturing at a much lower frequency of 0.07 Hz. A
falsely attributed high-frequency signal to lower frequencies due to the sampling process
is known as the aliasing problem [94].

The aliasing problem as well as noise and atmospheric disturbances suggest a higher
sampling rate for accurate estimation near the maximum frequency of interest [94, 95].
In fact, Tischler [95] stated that the rule of thumb is to select filter bandwidth (ωf ) at
least five times the maximum frequency of interest, and the minimum sampling rates of
five times higher of the filter bandwidth.

ωs ≥ 5 · ωf (2.2.5)

ωf ≥ 5 · ωmax (2.2.6)

combining both equations results in

ωs ≥ 25 · ωmax (2.2.7)

This means that to identify a system that has maximum frequency of interest of 2 Hz,
the minimum sampling rate of the sensor should be 50 Hz.

Regardless of the sampling rate, a proper instrumentation system is needed and that has
to be located appropriately within the airframe. A standard instrumentation system for
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Figure 2.11: Example of sensor location for aeroelastic identification (Reproduced from
Reference [105]).

rigid body aircraft identification from flight data includes [94]:

• the use of vanes (air-relative velocity) to measure the angle of attack, sideslip angle
and airspeed.
• the use of accelerometers and gyroscopes to measure the translational accelerations

and angular velocities respectively. Both sensors are positioned to align with the
body axes of the aircraft.
• the use of potentiometers to measure control surfaces deflection and pilot inputs.

For aeroelastic identification, such as flutter, more sensors have to be deployed to identify
the structural behaviour. An example of sensor locations of a subscale aeroelastic research
aircraft is given in Figure 2.11, and it consists of: potentiometers at control surfaces
(grey area)3, 18 distributed accelerometers (red dots), embeded GPS/INS (EGI) system
(green square), gyroscopes (blue dot) and air data vanes (yellow) [105]. A more in-depth
discussion on the type, number and location of the sensors for aeroelastic testing (flutter
test in particular) can be found in Reference [106]. Moreover, Reference [101] presents
practical comparative results of aeroelastic aircraft identification from various sensors
including accelerometers and strain gauges. A more in-depth discussion on the use of
strain measurement to identify structural behaviour can be found in Reference [107].

In practice, each measurement device has systematic and random errors. Given the
numbers of the sensor for aircraft identification, a method to check the consistency of
the measurement is needed. This approach is also known as data compatibility analysis,
which is based on the kinematic relationships. The compatibility analysis is needed to
ensure that the measured data is consistent and free from systematic errors, such as time
lag, scale factor, and zero shift biases. For further elaboration on data compatibility
check the reader is referred to References [54, 94].

3The exact location of the potentiometers in the control surfaces are not exactly specified in Reference
[105]
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Figure 2.12: Example of methods used for aircraft identification.

2.2.3 Methods

System Identification is applicable in both time and frequency domains. The basis for
frequency domain identification method is the Fast Fourier Transform (FFT) which trans-
forms the time domain data into frequency domain data [108]. It is arguable that the
frequency domain has advantages when compared to the time domain. Frequency do-
main allows direct estimation of the control input through transfer functions and, most
importantly, it does not require numerical integration, so there is no risk of divergence
in the parameter estimation algorithms [95, 108]. Thus, these methods can be used to
identify unstable systems. On the other hand, by applying a Fourier Transform the
transformation from time to frequency domain data is prone to leakage errors [109] 4.
However, for a linear time-invariant system, both time and frequency domain identifica-
tion are effectively equivalent [109]. This emphasises the fact that time domain methods
are more capable of identifying a non-linear system. More importantly, Jategaonkar [54]
emphasises that the state-space representation in the time domain is closer to physical
reality than frequency-domain techniques. A brief summary from Reference [95] of the
comparison between time and frequency domain identification is presented in Table 2.2.

Furthermore, in the application of time domain estimation for the aeroelastic system,
problems lie in the number of estimated parameters as well as the wide range of identified
frequencies. This manifests in the large-sized matrices and large number of ordinary
differential equations [110]. The typical approach for aeroelastic system estimation is the
output error [101, 111–113]. However, given the complexity of aeroelastic systems, often
those studied are limited to the analyses of either longitudinal dynamics only [111], limited
to the first elastic mode [112], or using the step-by-step method in which the number of
estimated parameters taken into account is gradually increasing [101]. Identification of
an aeroelastic system can also target the prediction of the damping and frequency at a
particular flight condition that can be used to identify flutter margins [114, 115].

Another approach in dealing with estimation of aeroelastic characteristics can be done
by only looking at it as a structural problem at the beginning through methods such as
Eigenvalue Realisation Algorithm (ERA) [116, 117]. This method starts by estimating the
eigenvalue characteristics of the system, which consist of natural frequencies, mode shapes
and damping ratios. Eigenvalue estimation is a common approach in civil engineering

4Note that leakage error is different from aliasing. Aliasing is caused by the improper sampling of the
signal, while leakage error is caused by the length of the measurement signal. However, a random signal
will always have leakage.
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Frequency Domain Time Domain

Measurement
Small number of data
points

Large number of data
points

Data in frequency domain
(derived from time history
data)

Data in time history,
maybe some filtering is
needed

Algorithm
Matching frequency
response

Matching time history data

No integration occurs, can
be used for unstable system

Integration is usually
involved in the process,
special techniques are
required to identify
unstable systems

Identified Model

Linear model, special
technique needed for
non-linear model

Linear and non-linear
model can be directly
identified

Time delay can be directly
identified

Time delay cannot be
directly identified

No biases identified
Bias must be identified and
the model can be correlated

Manoeuvre input Frequency sweep
Multi-step input (such as
3-2-1-1)

Confidence intervals Accurate
Optimistic (factor of 5-10 is
needed)

Table 2.2: Comparison of frequency and time domain identification methods.
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and also known as modal analysis [118, 119]. Bucharles and Vacher [120] are using ERA
methodology in determining the initial aeroelastic model. The results are then combined
with the rigid body model and optimised through the output error method. A similar
approach is also applied for the identification of an aeroelastic system based on wind
tunnel test results [121, 122]. In comparison to other algorithms, the use of ERA method
in identification of an aeroelastic wind tunnel model has been shown to have a higher
success rate with reasonable computational cost [123]. More recent algorithms used to
identify the eigenvalue characteristics of a discrete model are the subspace identification
methods which are discussed in References [124–127].

2.2.4 Model

The aircraft’s dynamics in system identification is captured through a mathematical
model which can either be behavioural or phenomenological. The phenomenological
model, also known as “white-box” models, are often derived from Newtonian mechanics
in which the parameters have a physical meaning yet these can be complex and difficult
to simulate. On the other hand, the behavioural models (or “black-box” models), are
easier to implement and quicker to simulate with limited interpretive or predictive capa-
bilities of the physical model [54]. An illustration of identification algorithms for aircraft
identification in time domain is shown in Figure 2.12. Here, the term hybrid refers to
“gray-box” models, that attempt to combine the “black-box” and “white-box” modelling
approaches.

For flight dynamic analysis, models that have a parameter with physical meaning are
preferable, while for structural identification the black-box model is more favourable.
However, when the aircraft is treated as a flying flexible machine [128], the model is a
combination of flight dynamics (represented by aerodynamics coefficient) and structural
dynamics. The flight dynamics model represented by the conventional 6 DoF equation of
motion in the aircraft’s centre of gravity, while the structural dynamics are represented
through n number of nodes with n × 6 DoF. Figure 2.13 gives an illustration of the
beam element model of a flexible aircraft and its coordinate system. Point O represents
the 6 DoF of the rigid body motion of the aircraft in a reference frame. Typically for
conventional aircraft this reference frame is attached to the centre of gravity. Point P
represents the axes system and the degree of freedom of P th structural node and the
strips on each node represent the aerodynamic contributions.

By considering the rigid and structural DoF, the general linearised equations of motion
for aeroelastic aircraft is given by [129]:

M(η)

{
η̈

Ḃ

}
+ C (η,B)

{
η̇
B

}
+K (η,B)

{
η
0

}
= Qext (η, η̇,B,Ω) (2.2.8)

in which η consists of nodal displacements and rotations, while B contains the rigid

body translational and angular velocity in the body frame
{
u v w p q r

}T
. M

is the mass matrix that takes into account the coupling between the rigid body and
structural dynamics of the aircraft. C and K represent the damping and stiffness matrices
respectively, while Qext is the external forcing term as a function of η, η̇, B, and rigid

body orientation Ω, which define as
{
x y z φ θ ψ

}T
. External forces include
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Figure 2.13: Example of axes system and the structure node of the aircraft.

engine thrust, gravitational loading and aerodynamic loading.

A simplified approximation of the aeroelastic system is usually based on the use of the
mean axes system [130]. These axes are defined as orthogonal axes, in which the ori-
entation of the axis is chosen so that the linear and angular momenta of the relative
motion to the body axes are zero. Therefore, the inertial coupling between the overall
and relative deformation is reduced. Schwanz and Wells [110] grouped the aeroelastic
analysis for flight dynamics in six categories; Exact, Quasi-Static, Modal Substitution,
Residual Stiffness, Residual Flexibility and Modal Truncation. For more details on the
approximations and assumptions the reader is referred to Reference [131].

In the aeroelastic aircraft identification problem, a more generalised approach (similar
to the modal truncation model) is preferable as it gives more insight into the system.
One of the standard theories used for the generalised approach was developed by Waszak
and Schmidt [132], assuming large amplitude in the body coordinate system but small
structural deformations. The generalised forces are introduced to couple the rigid-body
and elastic degrees-of-freedom. The generalised equation of motion has been used in
several studies to characterise the stability of aeroelastic vehicles [19, 20, 55, 133].

2.3 Validation and Interpretation

Once the subscale model has been through experiments and its characteristics has been
identified, the problem of relating these results to predict the full-scale behaviour is
of interest. As aforementioned in Section 2.1.1, the subscale model must satisfy the
similitude requirements that are manifested in the set of scaling factors presented in
Table 2.1. These scaling factors illustrate the fact that the dynamics of the subscale
model which is n times the size of the full-scale model will have a dynamic response
n1/2 of the full-scale aircraft. Therefore, both models cannot be compared directly in
the time domain. Instead, by converting time response into a non-dimensional time τ ,
the non-dimensional time response is then comparable [35]. The non-dimensional time τ
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defined as:

τ =
U

l
t (2.3.1)

where U is the velocity, l is the characteristic length, and t is the response in the time
domain.

The same concept of non-dimensional similarity also applies when relating wind-tunnel
data to flight test data; a common example is the use of aerodynamic coefficients. The
use of such aerodynamic coefficients is common practice in the area of fluid mechanics
[46]. As an example the Lift (CL) can be defined as:

CL =
L

1
2
ρU2S

(2.3.2)

where L is the lift force, 1
2
ρU2 is the dynamic pressure and, S is the wing area. Table 2.3

illustrates two different models that have different geometrical size and flight conditions
and corresponding lift forces. The lift force acting on both models are different, but their
CL values are similar, meaning that considering the size and flight conditions both models
have comparable aerodynamic forces. The same value of the aerodynamic coefficient
ensures the similitude of aerodynamic characteristics.

Parameter Full-Scale Subscale
Altitude ft 35,000 0
Air Density (ρ) kg/m3 0.38 1.225
Velocity (U) m/s 190 47.5
Dynamic Pressure (q̄) kg/ms2 6859 1381.95
Wing Area (S) m2 122.4 0.478
Lift Force (L) kN 503 0.396
Lift Coefficient (CL) - 0.6 0.6

Table 2.3: Ilustration of the aerodynamic coefficient.

In developing a subscale model, these aerodynamic coefficients are one of the main con-
siderations. Also, depending on the aim of the experiments, one can look at these subjects
differently. For example, to validate an aircraft design, one is focused on matching the
geometrical properties, while to observe dynamic behaviour one can focus on matching
some of the aerodynamic coefficients and can ignore some of the geometrical properties
[51]. Either way, the results from the subscale model testing needs to be relatable to the
full-scale aircraft.

Kulkarni et al [51] identified four types of errors in the response of different models, as
presented in Figure 2.14. These errors consist of full-scale computational error, subscale
computational error, numerical scaling error and physical scaling error. Understand-
ing these errors helps quantify the relation between the experimental results using the
subscale model and full-scale model.

The use of non-dimensional parameters help in relating the wind-tunnel subscale ex-
periment with the full-scale flight test. Nevertheless, dynamic pressure and the size of
the scale model are not the only sources of the aerodynamic coefficients. As mentioned
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Figure 2.14: Overview of experimental error when using subscale model (Reproduced
from Reference [51]).

earlier, the difference in Reynolds and Mach numbers can affect the aerodynamic coeffi-
cient. In practice, the correction and extrapolation procedures are the ‘secret recipe’ of
the aircraft industry because these provide the competitive advantage [134]. However,
literature regarding wind-tunnel testing and correction schemes that focus on static wind
tunnel testing are available in References [135–137]. Furthermore, discussions related to
scaling effects are available in References [138, 139].

Some of the identified problems in the extrapolation of wind tunnel results compared
to the free flight data are the mounting interference, wall correction, geometric fidelity,
and mismatches in Reynold number. Petterson and Rizzi [137] utilised Computational
Fluid Dynamics (CFD) for extrapolation of wind tunnel results to the real-flight, which
focuses on understanding the effect of the wing mounting and Reynolds number. Traub
[140] uses a more straightforward stitching method to extrapolate the drag value from
wind tunnel test at a lower Reynolds number to real flight at a higher Reynolds number.
For aeroelastic aircraft, Hegg et al. [52] present a methodology of mapping the full-scale
dynamics to the aeroelastic subscale model in a controlled wind tunnel environment using
different air properties.

Extrapolation of wind tunnel results to the real flight can also be used to give an insight
into the handling qualities of the aircraft. Nguyen et al. [141] use Mach and Reynolds
number correction to relate wind tunnel data and free flight data for aircraft certification
purpose. For an aeroelastic aircraft, this is of interest because previous studies show that
introducing flexibility effects in the flight simulator result in worse Cooper-Harper rating
than the rigid body aircraft simulation model [55, 142].
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2.4 Summary

Based on this review and considering the aim and objectives of this research the following
key points can be made:

• The majority of research done so far emphasise the importance of matching Froude
and Strouhal numbers for dynamic testing using subscale models. Mach and Reynolds
numbers remain critical for static testing of subscale models in wind tunnels.

• For manufacturing aeroelastic subscale models the recent development of 3-D Poly-
jet printing is a key enabler. However, there is limited research in the application
of this method.

• In the identification of aeroelastic behaviour, ERA and output error methods are
the most common. These algorithms must be combined with careful model instru-
mentation to provide high quality measurements as well as dedicated experimental
design which leads to optimal inputs for identification.

The interpretation of results from experiments that combine subscale modelling and
system identification in the conceptual and early design stages still poses a significant
engineering challenge. On the one hand, the lack of a full-scale aircraft at this stage
forces engineers to be dependent on computationally expensive numerical methods to
predict aeroelastic effects while on the other hand, assumptions and compromises when
developing a subscale model and scaling up test results lead to significant uncertainties.

The review has not addressed discussion regarding the development of simulation models
either for scaling, simulation or validation purposes. The reader is referred to References
[142, 143] for detailed simulation model development of a flexible aircraft. However, a
brief introduction on flexible aircraft modelling is presented in Chapter 4.1.



CHAPTER3
System Identification Methods

The simple block diagram shown in Figure 3.1 presents the problems associated with
control, identification and model at a top level. It consist of control input u, dynamic
output y, aircraft system S, and external disturbance w. This figure can concisely present
the generalised system identification problem, which attempts to find the system S, with
stochastic assumptions for the external disturbance w, from measurements of the output
y and carefully designed input u. For an established system with an established model
structure, the system identification problem simplifies to a parameter estimation problem.

Figure 3.1: Aircraft from a system perspectives.

The following aspects must be clearly specified to solve the parameter estimation problem
[94]:

1. a model structure with unknown parameter Θ to be estimated,
2. a set of observations or measurements, z,
3. mathematical model for the measurement process, and
4. assumptions about the uncertainty in the model parameter Θ and measurement

noise ν.

55
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In general, the measurement equation is defined as:

z = h(Θ) + ν (3.0.1)

Depending on the assumptions, the parameter and measurement can be designated as
[144]:

1. Least-squares Model: where parameter Θ is vector of unknown constant parameters
and measurement noise ν is a random vector of measurement noise.

2. Output-error Model: where the parameter vector Θ can be either a random variable
(Bayesian Model) or a vector of unknown constant parameters (Fisher Model) and
measurement noise ν is a random variable with probability density p(ν).

This chapter elaborates on the least-squares approach through regression methods and
the Fisher model through output-error methods for parameter estimation of aircraft dy-
namics. Both least-squares and output-error methods are standard identification pro-
cedure for rigid body aircraft identification. However, these methods are not practical
to identify structural properties. Therefore, the last section in this chapter covers sub-
space identification approach, which is a common methodology applied to the problem
of structural model identification.

3.1 Regression Method

The regression method falls within the equation-error approach because it aims to min-
imise a cost function defined directly from the input-output equation [54]. Consider the
following linear aerodynamic model:

CM = CM0 + CMαα + CMqq + CMδe
δe + ν (3.1.1)

This is an example of a regression model for a typical pitching moment dynamics. Here
α, q, and δe are the independent variables, while CM is the dependent variable or re-
sponse variable. Assuming that the dependent and independent variables are measurable,
Equation 3.1.1 is left with CM0 , CMα , CMq , and CMδe

as the constant parameters to be
determined.

In general, Equation 3.1.1 can be written as:

y = Θ0 +
n∑
j=1

Θjξj

z(i) = Θ0 +
n∑
j=1

Θjξj(i) + ν(i), i = 1, 2, . . . , N (3.1.2)

where y is the dependent variable, ξ contains the regressor vectors which are the functions
of the independent variables, Θj contains the model parameters, z(i) are the output
measurements for N number of data points, and ν is the measurement error.
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For the Ordinary Least Squares (OLS) approach, Equation 3.1.2 is reformulated as fol-
lows:

y = XΘ (3.1.3)

with the following measurement equation:

z = XΘ + ν (3.1.4)

where z ∈ RN×1, Θ ∈ Rnp×1, X ∈ RN×np , ν ∈ RN×1, and np is the number of parameters
to be estimate. The parameter vector Θ is obtained by minimising the following cost
function:

J(Θ) =
1

2
[z −XΘ]T [z −XΘ] (3.1.5)

The estimated parameter Θ that minimises the cost function must satisfy:

∂J

∂Θ
= −XT z + XTXΘ = 0 (3.1.6)

and some algebraic rearrangement leads to:

Θ̂ = (XTX)−1XT z (3.1.7)

Therefore, under the assumptions of zero mean Gaussian noise the estimate covariance
matrix can be calculated as follows:

E
[
(Θ̂−Θ)(Θ̂−Θ)T

]
= σ2(XTX)−1 (3.1.8)

such that the real parameter value Θ are within Θ̂± 2σ
√

(XTX)−1 [94]. 1

3.1.1 Unmeasured Variables

One of the major problems in utilising the OLS approach is when the dependent vari-
ables cannot be measured directly. For example, consider the pitching moment model as
presented in Equation 3.1.1. In this case the dependent variables can be computed from
standard moment equation [145]:

CM =
Iyy
q̄Sc̄

q̇ (3.1.9)

However, the pitch rate derivatives q̇ is typically not a direct measurement. This variable
should be calculated from the measurement of dependent variables, linear acceleration and
angular rates [54]. Thus, q̇ is obtained by differentiating the q variable. Nevertheless,
flight test data is often noisy, and to compute the derivatives of measured data from
neighbouring values can amplify the noise [94]. One of the solutions to tackle this issue
is by calculating the derivatives using local smoothing techniques [146].

The following smoothing approach is based on a second-order polynomial model. It

1OLS function can be obtained by utilising lesq function from SIDPAC library.
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assumes that the local data points lie on a parabola with the local model identified as:

y = a0 + a1t+
1

2
a2t

2 (3.1.10)

Given z(i) as the ith measured data at i∆t, the equations used for the local fit are:

z(i− 2) = a0 + a1(−2∆t) +
1

2
a2(−2∆t)2

z(i− 1) = a0 + a1(−∆t) +
1

2
a2(−∆t)2

z(i) = a0

z(i+ 1) = a0 + a1(∆t) +
1

2
a2(∆t)2

z(i+ 2) = a0 + a1(2∆t) +
1

2
a2(2∆t)2

(3.1.11)

The equation above can be rearrange into matrix form as follows:
1 −2∆t 4∆2t
1 −∆t ∆2t
1 0 0
1 ∆t ∆2t
1 2∆t 4∆2t


 a0

a1

a2

 =


z(i− 2)
z(i− 1)
z(i)

z(i+ 1)
z(i+ 2)

 (3.1.12)

From the Equation 3.1.12, the unknown variables, a0, a1, a2, can be estimated using
least-squares solution (see Equation 3.1.4) as:

â0(i) =
1

35
[−3z(i− 2) + 12z(i− 1) + 17z(i) + 12z(i+ 1)− 3z(i+ 2)]

â1(i) =
1

10∆t
[−2z(i− 2)− z(i− 1) + z(i+ 1) + 2z(i+ 2)]

â2(i) =
1

14∆2t
[2z(i− 2)− z(i− 1)− 2z(i)− z(i+ 1) + 2z(i+ 2)]

(3.1.13)

in which â0 is the estimation of smoothed value of z at i, and â1 is the estimation of
smoothed value of ż at i, by considering ẏ = a1 + a2t [94]. 2

3.1.2 Identification of a Full-Scale Rigid Body Aircraft

In this example, linear regression is applied to aircraft flight-test data to estimate the
non-dimensional longitudinal stability and control derivatives. The test aircraft is the
Jetstream 3102 (Figure 3.2). Flight test data was collected for several short-period ma-
noeuvres at different flight configurations. Figure 3.3 presents the measurement data

2deriv.m function from SIDPAC library can be used to calculate the differential using local smoothing.
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from 1 data point of the flight test, which consists of angle-of-attack, pitch-rate, and ele-
vator deflection. It is worth noting that: (1) pitch-rate and angle-of-attack have different
filtering and sampling rates and the sensors are physically at different locations, and (2)
sensor measurement for pitch-rate is non-collocated with the aircraft’s centre of gravity
(CG) and the body axes centre used for flight dynamic analysis.

Wing span : 15.85 m

Reference area : 25.08 m

M.A.C. : 1.72 m

Fuselage length : 13.35 m

Pitch inter�a : 35,765 kgm

2

2

Angle of attack vanes

Inertial measurement unit

Figure 3.2: Cranfield’s Jetstream 31 G-NFLA and reference data.

The aircraft mass and geometry characteristics and test flight conditions are specified as
follows [147]:

c̄ = 1.72 m S = 25.08 m2

m = 6551 kg UTAS = 164 kts
h = 6210 ft Iyy = 36,765 kg m2

Figure 3.3: Measured input and output variables for short period manoeuvre.

The equations of motion that represent the longitudinal short period motion in state-
space form are as follows [145, 148]:

[
q̇
α̇

]
=


q̄Sc̄

Iyy

c̄

2UTAS
CMq

q̄Sc̄

Iyy
CMα

1
q̄S

mUTAS
CLα

[ q
α

]
+


q̄Sc̄

Iyy
CMδe

q̄S

mUTAS
CLδe

 [ δe ] (3.1.14)
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The symbols q̄, S, c̄, m and Iyy represent dynamic pressure, reference area, mean aerody-
namic chord, aircraft mass and pitch inertia respectively. The identification of derivatives
such as CMα , CLα , CLδe and CMδe

is of specific interest here. For application of OLS
method the model equation define as follow:

q̇ =
q̄Sc̄2

2IyyUTAS
CMqq +

q̄Sc̄

Iyy
CMαα +

q̄Sc̄

Iyy
CMδe

δe (3.1.15)

α̇− q =
q̄S

mUTAS
CLαα +

q̄S

mUTAS
CLδeδe (3.1.16)

Here α̇ and q̇ are the dependent variables obtained by differentiating the sensor measure-
ments using smoothed numerical derivatives. Furthermore, due to the issues mentioned
earlier regarding sensor measurements, it was found that the measured pitch rate (qm)
must be shifted in time to provide more accurate identification of the SPPO (Short Period
Pitching Oscillation) dynamics [25]. The issue of measurement time shifting has also been
discussed by Tischler [95] and Jategaonkar [54]. By defining time shift parameter (τ) as
a function of distance between the angle of attack vane and the Inertial Measurement
Unit (IMU) (xm), τ = xm/U . The corrected pitch rate and angle of attack are defined
as:

qc = qm(t+ τ)

αc = αm +
qcxm
UTAS

(3.1.17)

The comparison between the measurement and corrected variables for both pitch rate
(qm and qc) and angle of attack (αm and αc) based on Equation 3.1.17 are given in Figures
3.4 and 3.5 respectively.

Figure 3.4: Comparison of qm and qc. Figure 3.5: Comparison of αm and αc.

Figures 3.6 and 3.7 show the results of applying smoothed derivatives to calculate the
dependent variables (α̇ and q̇).
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Figure 3.6: Calculation of q̇ input. Figure 3.7: Calculation of α̇ input.

Applying the least-squares estimation given in Equation 3.1.7 for the pitching moment
coefficient as presented in Equation 3.1.16, the following variables need to be defined:

Θm =
[
Mq Mα Mδe

]T
zm =

[
q̇(1) q̇(2) . . . q̇(N)

]T
Xm =


q(1) α(1) δe(1)
q(2) α(2) δe(2)

...
...

...
q(N) α(N) δe(N)


where N is the number of data points, and

Mq =
q̄Sc̄2

2IyyUTAS
CMq (3.1.18)

Mα =
q̄Sc̄

Iyy
CMα (3.1.19)

Mδe =
q̄Sc̄

Iyy
CMδe

(3.1.20)

A similar approach is also applied to the lift equation, resulting in the identified param-
eters shown in Table 3.1.

Table 3.1 also allows the comparison of parameter estimated obtained using measured
and corrected regressor matrix. The table shows both the identified parameter and its
associated variance. The variance is an important parameter to indicate the quality of
the parameter estimates obtained. In this case, correcting the measured variable (q) by
a slight time shift improves the confidence intervals for almost all parameter estimates as
shown in Table 3.1.

On the contrary, the lift coefficient due to elevator deflection (CLδe ) maintains a high
variance. Furthermore, when compared to empirical methods given by Cooke [149], the
determined CLδe value is an order of magnitude less. This difference in magnitude em-
phasises the fact that the short period manoeuvre is not capable of estimating CLδe
parameter.
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Parameter
Identification using qm Identification using qc

Θ̂ σ(%) Θ̂ σ(%)

CMq 9.391 24.8 -19.94 4.51
CMα -1.085 5.87 -0.763 2.69
CMδe

-0.928 4.40 -1.511 1.03
CLα 6.524 2.14 6.334 1.85
CLδe -0.3635 27.27 0.3091 29.27
ζ [ - ] 0.170 0.486

ω [rad/s] 2.20 2.21

Table 3.1: Identified parameters and SPPO characteristics using measured and corrected
pitch rate.

Figure 3.8: Identification of pitching moment coefficient using OLS.

Another way to evaluate the quality of the parameter estimates is by looking at the
estimated output. Figure 3.8 shows the comparison of q̇ from (derived) measurement and
the identification results. The results show a match between the data and the identified
model with the residual (ν) being an order of magnitude lower, indicating good quality
of identification results.

The reader is referred to Reference [25] for a thorough discussion of this work.



REGRESSION METHOD 63

3.1.3 Multivariate Orthogonal Functions

The least squares estimator is a simple and effective identification method. However, some
issues can arise with this approach. Firstly, there are possibilities that the polynomial
terms are highly correlated. For example, q and α̇ are often similar and highly corre-
lated during an aircraft’s longitudinal short period motion [150]. These highly correlated
regressors can cause a problem in parameter estimation during least squares estimation
[94]. Secondly, least-squares regression obliges the use of deterministic regressors, and
this means that the model structure should be fixed before conducting the identification
procedure. The results from Section 3.1.2 show a large variance in the identified CLδe
parameter, which indicates that it is poorly identified.

Multivariate Orthogonal Functions (MOF) are often used to address problems of model
structure and highly correlated regressors (data collinearity) while allowing the possibil-
ity of having limited non-linear regressors. The issue of the deterministic regressors is
addressed by creating multivariate regressors and selecting the regressors order according
to their effectiveness in modelling the dependent variable. The goal is to approximate
the data efficiently, in a least-squares sense, using a small number of modelling terms
[151, 152]. Furthermore, the problem of inter-regressor correlation is addressed by trans-
forming a large pool of dependent variables into a set of orthogonal polynomials [151].
By ensuring orthogonality, the correlation among regressor is expected to vanish or at
least be minimised.

As an illustration, suppose that there are two correlated regressors. By orthogonalising
the second regressor with respect to the first, the correlated components of the second
regressor are effectively removed. As a result, orthogonalisation regressors leads to two
orthogonal regressors: the first has no change and the second may have relatively low
information content.

The methods for orthogonality can be explained as follows. Consider a linear model
equation as:

y = Θ1ξ1 + Θ2ξ2 + · · ·+ Θnξn (3.1.21)

which consists of an output y and regressor ξ. The idea of using MOF for modelling
purposes is to convert the regressor ξ into p so that:

pi
Tpj = 0 i 6= j, i, j = 1, 2, . . . , n (3.1.22)

This first regressor used as an orthogonal function is a vector of ones (p1 = 1) which
represent a bias term. The next orthogonal function (pi) is built to be orthogonal based
on the previous orthogonal function (pi−1) using the Gram-Schmidt orthogonalisation
procedure [94]. Therefore, the jth orthogonal function is defined as:

pj = ξj −
j−1∑
k=1

γkjpk j = 2, 3, . . . , n (3.1.23)
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in which ξj is the jth regressor vector, and γkj is a scalar vector defined as:

γkj =
pk
T ξj

pkTpk
(3.1.24)

A simple example of orthogonalised vector in two dimensional plane is as follow. Consider
u is a vector of 4i + 3j and v is a vector of 2i + 5j. In a two dimensional plane of i and
j given in Figure 3.9. Using the above methodology, vector ṽ is built to be orthogonal
with u which satisfies the relationship given in Equation 3.1.23

ṽ = v − γu (3.1.25)

in which

γ =
u · v
u · u

(3.1.26)

The orthogonalised ṽ is shown in Figure 3.10, and it can be seen that ṽ is perpendicular
with u. Similarly, for three dimensional vectors of u, v, and w (see Figure 3.11), the
orthogonalise vector of ṽ and w̃ with respect to u is given in Figure 3.12. The same
concept is also applied in the independent regressor for identification purposes.
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In the application of MOF in aircraft identification, the orthogonalization is applied to
the original regressor matrix ξj resulting in the orthogonal regressors pi. Therefore, the
new orthogonal function can be arranged as follows:

[
p1 p2 p3 . . . pn

]


1 γ12 γ13 . . . γ1n

0 1 γ23 . . . γ2n

0 0 1 . . . γ3n
...

...
...

. . .
...

0 0 0 0 1

 =
[

1 ξ1 ξ2 . . . ξn
]

(3.1.27)

or in concise matrix form:

PG = X (3.1.28)

Therefore, the orthogonal regressor is given by:

P = XG−1 (3.1.29)

Now, using the orthogonalised regressor, the least squares identification problem can be
rewritten such that the measurement equation is given by:

z = Pa+ ν (3.1.30)

where z is the dependent variable vector, P is the matrix of orthogonal regressor, a is
vector of the unknown parameters and υ is the vector of measurement errors.
Therefore, the parameter estimates is as follows:

â = (P TP )−1P T z (3.1.31)

Since the regressor matrix has been orthogonalised, pTi pj = 0 for i 6= j. Thus

âj = (P T
j Pj)

−1Pj
T z (3.1.32)

This means that the jth parameter only depends on the measured output and the jth
regressor.

Due to the nature of the orthogonalisation process which sequentially uses the previous
orthogonal regressor, the orthogonal function is heavily dependant on the ordering of
the original regressor matrix [94]. Dynamic programming can be utilised to define the
sequence of the regressors. The sequence of the regressors is calculated via comparisons
to the measured output using the norm value calculated as follows:

Pj =

(
pj
Tpj
zT z

)
, j = 1, 2, ..., n

The first regressor is picked from the most significant norm value. And the remaining
regressors are orthogonalised based on the subsequent norm of the current regressor.
Orthogonal functions with the norm value less than 0.01% are dropped. This small norm
value suggests that the function is ill-conditioned or dependent on the other orthogonal
functions.



66 SYSTEM IDENTIFICATION METHODS

Based on the order of the orthogonal function, the question now is how to determine
the most effective number of orthogonal functions to be retained in the final model. On
this issue, the concept of predicted squared error (PSE) is utilised [94, 151]. PSE is a
combination of mean-square fit error (MSFE) and overfit penalty (OFP), and defined as:

PSE =
1

N
(z − ŷ)T (z − ŷ) + σ2

max
n

N
(3.1.33)

in which N is the number of points for each orthogonalised function, n is the number of
orthogonal functions, and σ2 is the maximum model fit error variance known as:

σ2
max =

1

N − 1

N∑
i−1

[z(i)− z̄]2 (3.1.34)

MSFE is proportional to the OLS cost function [94], its value will decrease as more
orthogonal functions are added to the equation, because this is related to the error pre-
diction of the dependent variable. On the other hand, the OFP value increases as more
orthogonal functions are added, because this function is proportional to the number of
orthogonal functions n. The PSE is the minimum point of this combination, which is
the point at which the modelling terms provide a low fit error as well as good prediction
capability. This optimal modelling terms then used as the identified model structure.
The flowchart of the multivariate orthogonal function is presented in Figure 3.133.

3The MOF is utilise using mof function from the SIDPAC library.
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Example 3.1.1 MOF application in non-linear system identification
Consider the following 2 DoF non-linear aeroelastic equation of motion [58]:[

m mxαc1/2

mxαc1/2 Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
Kh 0
0 Kα(α)

] [
h
α

]
=

[
−L
M

]
(3.1.35)

In this example, Equation 3.1.35 is simplified by only considering the pitching DoF
such that :

Iαα̈ + cαα̇ +Kα(α)α = M (3.1.36)

The left hand side of the equation represents structural motion, in which the non-
linearity is introduced through Kα defined as a fourth-order polynomial (see Figure
3.14):

Kα(α) = 2.82
(
1− 22.1α + 1315.5α2 − 8580α3 + 17289.7α4

)
(3.1.37)

and the right hand side of the equation represents the aerodynamic moment M which
is modelled as:

M = ρU2c2
1/2
CMα

[
α +

(
1

2
− a
)
c1/2

α̇

U

]
+ ρU2c2

1/2
CMδe

δe (3.1.38)

Here, δe represents the control surface deflection, while CMα and CMδe
representing the

non-dimensional pitching moment with respect to the change in the angle of attack and
elevator deflection respectively. The system parameters and its definition are presented
in Table 3.2.

Figure 3.14: Non-linearity of Kα as a function of α.
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Parameter Value Units Description

Iα 0.065 kg.m2 Mass Moment of Inertia
cα 0.0360 N.s/rad Pitch Damping coef.
ρ 1.225 kg/m3 Air Density
U 20 m/s Air Speed
c1/2 0.135 m Semi Chord
a -0.6 - Constants

CMα -0.6280 /rad Pitch Moment coef.
CMδe

-0.6350 /rad Pitch Moment due to Input

Table 3.2: System parameters and definition.

A doublet input from the control surfaces (5o amplitude) is used to excite the system.
Figure 3.15 shows the system response for this input, which consists of δe, α̈, α̇, α,
and K(α) over time. For identification purposes, it is assumed that α̈, α̇, α, and δe
are direct measurements. The identification procedure is applied by merging Equation
3.1.36 with Equation 3.1.37 and 3.1.38 such that:

Iαα̈ =
(
ρU2c2

1/2
CMα −Kα(α)

)
α +

(
ρUc3

1/2
CMα

(
1

2
− a
)
− cα

)
α̇ + ρU2c2

1/2
CMδe

δe

(3.1.39)

where the left hand side of the equation isolates the dependent variable. In this case,
the regressor matrix is defined as:

X =

 α1 α̇1 δe1
...

...
...

αN α̇N δeN

 (3.1.40)

and the parameters to be identified are:

Θα = ρU2c2
1/2
CMα −Kα(α)

Θα̇ =

(
ρUc3

1/2
CMα

(
1

2
− a
)
− cα

)
Θδe = ρU2c2

1/2
CMδe

It is worth mentioning that in this case, Θα is expected to be a non-linear fourth-
order polynomial function. The maximum order of α needs to be stated, when applying
the MOF identification method. In this case, the maximum order of α in any model
term is 5, while the maximum model order term is also 5. These choices will allow
orthogonalised terms to be based on α5 to α, or α to α4δe, or in the very extreme, a
possibility to have terms such as αα̇δe and α3α̇δe.

Given the maximum allowable model order, there are 19 possible combinations of re-
gressors. By orthogonalising the regressors, the MOF function shows that the minimum
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PSE is at the orthogonal function number of 6 with the order of:

Θ̂ =
[
α α̇ α3 α2 α4 δe

]
(3.1.41)

As presented in Figure 3.16, the PSE is at the minimum value on the regressor number
six, while the R2 value is almost 100% at the same number of regressors. This number
of regressor results in the following model structure being identified:

Θα = −8.3468 + 74.3875α− 3831.4α2 + 1.9346e4α3 − 5.6614α̇− 0.0775δe (3.1.42)

The comparison of the Iαα̈ from simulation and identification results is presented in
Figure 3.18 while the comparison of model and identified Θα is shown in Figure 3.17.
Figure 3.18 shows a match response between the simulation and identification results
with residual that are two orders of magnitude lower. Furthermore, the comparison
of Θα presented in Figure 3.17 shows that the validity of the identification results is
limited for the range of α from -0.06 rad to 0.1 rad, as the system is only excited in
this region.

Figure 3.15: System response for a doublet input.
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Figure 3.16: PSE and R2 with respect to
the number of regressors.

Figure 3.17: Identified Θα limited to the
α disturbance.

p(
\n

u)

Figure 3.18: Comparison of the identification model and simulation results.
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3.2 Output Error Method

The previous regression based method aims to find a suitable mathematical model that
matches the dependent variables to the independent variables. Ideally, both of these
variables should be obtained through direct measurements. However, it is not possible
to measure all variables directly (especially particular states). In practice, a process of
integration or differentiation of the measured variables is often needed before the appli-
cation of the OLS algorithm (see Chapter 3.1.1). This process can lead to inaccuracies
in parameter estimates, primarily because the measured data is often noisy and certain
systematic errors cannot be avoided (for example errors due to sensor placement) [54].

The unmeasured variables are no longer an issue in the output error method. This method
tries to find a suitable model in which the model output is matched directly with the
measurement. Integration or differentiation are usually embedded in the model function,
and moreover, a non-linear relationship between model parameter Θ and the measurement
y is made possible. Furthermore, this method assumes the noise as a random vector with
the probability density function p(ν) and includes this assumption explicitly in the cost
function. On the other hand, the OLS approach only uses this noise property after the
parameter estimation to quantity parameter covariances.

The Output Error (OE) method is in fact a simplification of the maximum likelihood
estimator for deterministic systems, in which the process noise is assumed to be zero and
the measurements are only corrupted by measurement noise. Fundamentally the output
error method relies on adjusting the model parameter estimates iteratively to minimize
the error between measured variables z and the predicted model output y, as described
in the following dynamic system [94]:

ẋ(t) = Ax(t) + Bu(t) ; x(0) = x0 (3.2.1a)

y(t) = Cx(t) + Du(t) (3.2.1b)

z(i) = y(i) + ν(i) ; i = 1, 2, . . . , N (3.2.1c)

ν is N(0,R)

cov[ν(i)] = E[ν(i)νT (j)] = Rδij (3.2.1d)

The measurement equation can also be defined as:

z = h (Θ) + ν (3.2.2)

where Θ is a vector of unknown parameters, and ν is a random vector with probability
density p (ν).

Consider the sequence of measurements ZN = [z(1), z(2), . . . , z(N)] for unknown pa-
rameter Θ, the likelihood function for the measurement is denoted by L [ZN ; Θ] such
that:

L [ZN ; Θ] = L [z(1), z(2), . . . , z(N); Θ]

= L [z(N)|Z(N − 1); Θ]L [z(N − 1)|Z(N − 2); Θ] . . .

=
N∏
i=1

L [z(i)|Z(i− 1); Θ] (3.2.3)
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By considering the measurement error covariance matrix R, the likelihood function as
given in Equation 3.2.3 can also be written as [54, 94] :

L [ZN ; Θ,R] = {(2π)n0|R|}−N/2exp

[
−1

2

N∑
i=1

[z(i)− y(i)]TR−1[z(i)− y(i)]

]
(3.2.4)

given n0 is the number of measured output.

Maximum likelihood estimation effectively searches for parameter Θ that maximises
this likelihood function L [ZN ; Θ,R]. A means of computing the maximum likelihood
is by setting first order derivatives of the Equation 3.2.4 with respect to Θ and R to
zero. However, for computational purposes, it is preferable to minimize the negative
logarithm of the likelihood functions rather than maximising the likelihood functions
[54, 94]. Therefore, the maximum likelihood estimation problem is often given as:

Θ̂ = max
N∏
i=1

L [z(i)|Z(i− 1); Θ,R]

= min
N∑
i=1

− ln {L [z(i)|Z(i− 1); Θ,R]} (3.2.5)

J(Θ,R) =
1

2

N∑
i=1

νT (i)R−1ν(i) +
N

2
ln |R|+ Nn0

2
ln(2π) (3.2.6)

The covariance matrix R is included in Equation 3.2.6 and it acts as a weighting function
for the sum of squares of the response error. When the noise covariance matrix is not
known, its value is estimated by differentiating Equation 3.2.6 with respect to R and
setting the result to zero.

∂J(Θ,R)

∂R
= 0 (3.2.7)

This yields:

R =
1

N

N∑
i=1

ν(i)νT (i) (3.2.8)

Equation 3.2.8 highlights the fact that the estimate covariance matrix is dependent on
the residual ν, which in turn depends on Θ. At the same time, Equation 3.2.6 shows
that the cost function for finding the estimated parameter is dependent on the covariance
matrix. Therefore, often relaxation techniques are implemented to calculate the cost
function [94]. The relaxation technique is conducted by computing R for a given fixed
Θ, and then minimising the cost function to Θ, and repeating this until a convergence
criteria is satisfied.

The problem defined by Equation 3.2.5 and 3.2.6 is effectively an optimisation problem.
The following subchapters discuss and compare two search algorithms, namely the mod-
ified Newton-Raphson and the Interior Point Algorithm. Both of these algorithms are
gradient based methods which needs initial conditions. The initial conditions are usually
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calculated through OLS method as given in Figure 3.19.

Figure 3.19: Estimation architecture for output error identification.

3.2.1 Modified Newton-Raphson

The Newton-Raphson method is an iterative method aiming to minimise the cost function
(or likelihood function in case of MLE) J(Θ) such that the condition:

∂J(Θ)

∂Θ
= 0 (3.2.9)

is satisfied. The algorithm relies on small perturbation Taylor series expansion J (Θ + ∆Θ)
to define step sizes when searching for optimal parameter estimates. Jategaonkar [54]
shows that: (

∂J

∂Θ

)
i+1

≈
(
∂J

∂Θ

)
i

+

(
∂2J

∂Θ2

)
i

∆Θ (3.2.10)

where

∆Θ = Θi+1 −Θi (3.2.11)

and (∂2J/∂Θ2) is also often known as the information matrix.

By setting Equation 3.2.10 to zero, ∆Θ can be defined as :

∆Θ = −
[(

∂2J

∂Θ2

)
i

]−1(
∂J

∂Θ

)
i

(3.2.12)
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In the other words, the basic idea behind this method is to construct a quadratic approx-
imation at each iteration and then take a step in the direction of the minimum of that
approximated quadratic function [54]. In the case of the cost function given in Equation

3.2.6, for a given R̂, the negative log-likelihood function J(Θ) becomes:

J(Θ) =
1

2

N∑
i=1

νT (i)R̂−1ν(i)

=
1

2

N∑
i=1

[z(i)− y(i)]T R̂−1[z(i)− y(i)] (3.2.13)

The measurement z(i) is independent of the model parameter Θ. Therefore, the partial
differential of Equation 3.2.13 with respect to the parameter results in:

∂J(Θ)

∂Θj

= −
N∑
i=1

∂yT (i)

∂Θj

R̂−1ν(i) (3.2.14)

∂2J(Θ)

∂Θj∂Θk

=
N∑
i=1

∂yT (i)

∂Θj

R̂−1∂yT (i)

∂Θk

−
N∑
i=1

∂2y(i)

∂Θj∂Θk

R̂−1ν(i) (3.2.15)

The computation of the second term of the partial derivative of Equation 3.2.15 can be
computationally expensive, complex and time-consuming. Furthermore, since this term
is multiplied by the residual ν, this contribution tends to zero as the process converges.
In the ideal case of zero mean and independent noise, this term tends to cancel out
when summed over a sufficient length of data points [54]. Therefore, the second term
of the Equation 3.2.15 is neglected and the optimisation algorithm is usually referred to
as the modified Newton-Raphson method. Now substituting Equation 3.2.14, 3.2.15 into
Equation 3.2.12 yields:

∆Θ̂ =

[
N∑
i=1

∂yT (i)

∂Θ
R̂−1∂y(i)

∂Θ

]−1

Θ=Θ0

[
N∑
i=1

∂yT (i)

∂Θ
R̂−1ν(i)

]
Θ=Θ0

(3.2.16)

where
∂yT (i)

∂Θ
is the system gradient (output sensitivity) and

∑N
i=1

∂yT (i)

∂Θ
R̂−1∂y(i)

∂Θ
is

known as the Fisher information matrix.

The system gradient is calculated assuming small perturbations through the central dif-
ferencing scheme. Although more computational time is needed when compared to for-
wards/backwards differencing methods, the central differencing method is a second order
accurate scheme that leads to higher accuracy and sensitivities and helps in reducing
the total number of iterations [94]. Furthermore, the inverse of the information ma-
trix is calculated using the rank deficient method implementing through singular value
decomposition to reduce the adverse effects of data collinearity.

As mentioned earlier, the relaxation techniques are often used to find the estimated
parameter. For example when finding the values for the next iteration, estimates based
on Equation 3.2.16, R̂ and ν are calculated for a fixed Θ. The idea is that given unknown
Θ and R, the optimisation will be well conditioned if Θ and R are adjusted alternately
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Figure 3.20: The flowchart of the augmented output-error methods (Reproduce from
Reference [154]).

[94]. These steps are then repeated until the convergence criteria are satisfied. These
criteria can be listed as follows:

1. Absolute value of the change in parameters are small. Klein [94] suggested conver-
gence when change in ∆Θ is less than 0.001 Θj, while Jategaonkar [54] suggested
the value to be less than 10−6Θj.

2. Change in the cost J(Θ̂) is small for consecutive iterations:∣∣∣∣∣J(Θ̂k)− J(Θ̂k−1)

J(Θ̂k−1)

∣∣∣∣∣ < 0.001 (3.2.17)

3. Absolute value of the cost gradient are close to zero:∣∣∣∣∣
(
∂J(Θ)

∂Θj

)
Θ=Θ̂k

∣∣∣∣∣ < 0.05 (3.2.18)

4. Changes in R̂ are small: ∣∣∣∣(r̂jj)k − (r̂jj)k−1

(r̂jj)k−1

∣∣∣∣ < 0.05 (3.2.19)

In the case of poor optimisation performance where the cost function value increases
in relation to the previous iteration, simplex methods are used to estimate the next
parameter vector. Simplex method is a direct search method that requires function
evaluations and not the gradient [54]. In general this approach is much slower than
gradient-based methods but more robust and assures convergence. The flowchart of the
oe function is presented in Figure 3.20 as presented in Reference [154]4.

4The output error method is utilise using oe function from SIDPAC library. The oe requires a separate
MATLAB function to calculate the model dynamics.



OUTPUT ERROR METHOD 77

3.2.2 Identification of a Subscale Rigid Body Aircraft

In this example, output error method is applied to a subscale model to estimate parame-
ters related to pitching moment stall hysteresis. The subscale model under test is a 1/12
scaled Hawk model which was tested inside the Cranfield University Weybridge tunnel,
as shown in Figure 3.21. The subscale model is designed to have 4 DoF (roll, heave,
yaw, pitch). However in this test, the model is constrained in roll and heave. It has a
mass of 2.52 kg, mass moment of inertia in the pitch direction of 0.101 kg.m2, and mean
aerodynamic chord of 0.16 m. It is important to mention that the subscale model has
only been geometrically scaled.

Figure 3.21: 1:12 scale Hawk model installed on dynamic rig. Reproduced from Reference
[26].

Wind tunnel test data was collected using a series of doublet inputs at four different wind
speeds. In this example, only test condition at 20 m/s and 30 m/s are considered. Figures
3.22 and 3.23 present the measurement data from the dynamic tests. These measurement
data are the pitch acceleration (measured from vertical acceleration), the angle-of-attack
measurement from the potentiometer at the gimbal and the elevator deflection, which is
measured directly from the tailplane actuator.

Pitch acceleration is calculated from the accelerometer positioned at the nose (labelled
as the sensor pack) and the gimbal (see Figure 3.21), using the following relationship:

q̇ = Θ̈ =
a1 − a2

r
(3.2.20)

where a1 and a2 are the vertical accelerations measured in two different places, and r is
the distance between the accelerometers.

The cross-plot between q̇ and α as presented in Figure 3.22 and 3.23 highlight the hys-
teresis. This is a component of the phenomenon known as dynamic stall [54, 155, 156].

Carnduff et al [157] present a derivation of the linear longitudinal equations of motion
for dynamic wind tunnel tests. However, in the appearance of dynamic stall, a dynamic
stall model as presented by Goman [158] needs to be adopted and added to the equation.
This combination results in the following nonlinear model:
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Iyy
q̄Sc̄

q̇ = CMαα + CMqq
( c̄

2U

)
+ CMδeδe +

dCM
dX

(1−X) (3.2.21)

The difference between the linear and non-linear model is the added term
dCM
dX

(1−X)

which captures the nonlinearity in the pitching moment coefficient. X representes the
empirical flow separation point. The general representation of the unsteady flow to
characterise this separation point is defined as [158]:

τ1
dX

dt
+X =

1

2
[1− tanh (λ (α− τ2α̇− α∗))] (3.2.22)

Here, the transient and quasi-steady aerodynamic effects are represented by τ1 and τ2

respectively, while hysteresis is represented by λ (wing’s static stall characteristics) and
α∗ (the break point corresponding to X0 = 0.5).

As suggested by Jategaonkar [54], a simplified approach was adopted which accounted
only for the quasi-steady stall characteristics by neglecting the transient effects. Thus,
τ1 is set to be zero and eliminates the need for modelling the first order dynamics of X.
And Equation 3.2.22 becomes:

X =
1

2
[1− tanh (λ (α− τ2α̇− α∗))] (3.2.23)

Therefore, the model equation for output error estimations are defined as:

Iyy
q̄Sc̄

q̇ = CMαα + CMqq
( c̄

2U

)
+ CMδeδe +

1

2

dCM
dX

(1− tanh (λ (α− τ2α̇− α∗))) (3.2.24)

q = α̇ (3.2.25)

and the measurement equations, by considering that a1 is effectively zero, are defined as:

a2 = r
q̄Sc̄

Iyy
q̇ (3.2.26)

θ = α + bα (3.2.27)

where bα is the bias α.

The use of output error method requires a set of initial parameter estimates. Here,
these are the flight dynamic coefficients and the initial guess is obtained by finding the
coefficients for the following linear model:

Iyy
q̄Sc̄

q̇ = CMαα + CMqq
( c̄

2U

)
+ CMδeδe (3.2.28)

The initial estimates for the non-linear component were selected from the past work con-
ducted by Fischenberg [156]. λ was set to 15 and τ2 was calculated from the relationship

given for VFW-614 ATTAS aircraft and defined as τ2 = 4.45
c̄

U
. The α∗ value was set

to be 5o as the maximum angle of attack during test never exceeded 15◦, and the initial
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value for
dCM
dX

is set to zero.

The identification results are given in Figures 3.24 and 3.25 and the parameter values
are summarised in Table 3.3. These figures show that the non-linear model with the
added hysteresis model has a better match with the measurements, especially in angle
of attack. It also shows that the residual from the model output and the measurement
decreases with the addition of the nonlinear term. It is worth mentioning that here the
linear model is also identified using output error method for comparison.

The parameter estimation results presented in Table 3.3 show that the estimated parame-
ters are within the expected order of magnitude with relatively small standard deviations.
However, the τ2 parameter which is related to α̇ and represents quasi-steady aerodynamic
effects has a significantly large standard deviation. This implies that this parameter is
insignificant in the estimation process and needs to be dropped. Hence, the proposed
model can be written as follows:

CM = CMαα + CMqq
( c̄

2U

)
+ CMδeδe +

1

2

dCM
dX

[1− tanh (λ(α− α∗))] (3.2.29)

Parameter
Linear Model Nonlinear Models

Θ̂ s(Θ̂) Θ̂ s(Θ̂) Θ̂ s(Θ̂)
V = 20 m/s (t: 24-34 s)

CMα -0.186 0.0013 -0.291 0.002 -0.291 0.002
CMq -11.14 0.186 -9.628 0.109 -9.845 0.097
CMδe -2.013 0.026 -2.168 0.023 -2.205 0.019
dCM
dX

- - 0.0262 0.001 0.0260 0.001

bα (rad) 0.0355 0.0004 0.0324 0.0002 0.0324 0.0002
λ - - 46.80 6.536 50.21 7.162

α∗(rad) - - 0.115 0.0019 0.115 0.002
τ2 - - -0.0178 0.0061 - -

V = 30 m/s (t: 6-12 s)

CMα -0.179 0.003 -0.395 0.007 -0.395 0.007
CMq -19.06 0.529 -13.37 0.218 -13.98 0.149
CMδe -2.991 0.071 -2.575 0.029 -2.520 0.024
dCM
dX

- - 0.0587 0.002 0.059 0.002

bα 0.007 0.0009 -0.009 0.0011 -0.008 0.001
λ - - 17.171 0.816 17.08 0.78

α∗(rad) - - 0.0934 0.002 0.095 0.002
τ2 - - 0.0151 0.004 - -

Table 3.3: Parameter identification results.

Table 3.4 presents the correlation between each parameter. Overall, it shows that the

term CMδe is highly correlated with CMq and α∗, while
dCM
dX

is highly correlated with

CMα and α∗. Furthermore, at the higher velocity the parameter related to the non-linear

terms,
dCM
dX

, α∗, λ, and bα are highly correlated amongst each other. This indicates high

uncertainty at higher velocities and suggests the need for a more comprehensive set of
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Figure 3.22: Measured input and output for Hawk model at 20 m/s.

Figure 3.23: Measured input and output for Hawk model at 30 m/s.
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tests to be able to identify each parameter at the desired quality. Furthermore, the reader
is referred to Reference [26] for a thorough discussion of this work.

Θ V = 20 m/s V = 30 m/s
CMα 1 - - - - - - 1 - - - - - -
CMq 0.027 1 - - - - - 0.167 1 - - - - -
CMδe 0.195 0.676 1 - - - - 0.125 0.865 1 - - - -
bα 0.192 0.100 0.162 1 - - - 0.866 0.238 0.225 1 - - -
dCM

dX
0.586 0.072 0.351 0.204 1 - - 0.988 0.154 0.136 0.906 1 - -

λ 0.210 0.099 0.244 0.111 0.638 1 - 0.850 0.338 0.359 0.928 0.893 1 -
α∗ 0.033 0.224 0.583 0.103 0.768 0.394 1 0.764 0.364 0.472 0.808 0.816 0.940 1

Table 3.4: Correlation matrix based on output error method.

3.2.3 Interior Point Algorithm

The modified Newton-Raphson method as explained in the previous section gives the un-
constrained solution, which means that the solution of the nonlinear optimisation problem
consist of unbounded-variables. In some cases, bounded-variables/constrained parame-
ters might be relevant and especially needed for [54]:

1. Identifying parameters that describe physical effects, such as the Oswald efficiency
factor which is typically less than one,

2. Estimating time delays in the measurement that by definition are greater than zero,
and/or

3. Estimate parameters that can lead to numerical difficulties.

Given a dynamic system, the interior-point algorithm is developed to find the minimum
of a constrained non-linear multivariable function that is specified as5:

min
x
f(x) such that


c(x) ≤ 0
ceq(x) = 0
A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

(3.2.30)

in which b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that
return vectors, and f(x) is a function that returns a scalar.

In the case of aircraft system identification, the constrained non-linear multivariable
problem can be simplified and formulated as:

min
Θ
J(Θ), subject to Θmin ≤ Θ ≤ Θmax (3.2.31)

where J(Θ) is the cost function as given in Equation 3.2.6 for the dynamic systems defined
in Equation 3.2.1.

The basis of this optimisation methodology is a trust-region approach [159], which means
to find x that minimises f(x), the function value is evaluated at the initial condition, then

5The interior point algorithm is utilised within the embedded MATLAB fmincon function.
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moved to a point with a lower function value. In finding the step size ∆x, the function
f(x) is approximated with a simpler function that reflects the behaviour of f around x
within a neighbourhood N . ∆x is computed by minimizing f(x) over the neighbourhood
N . If f(x+ ∆x) < f(x), the new point is updated to x+ ∆x, otherwise the current point
remains unchanged, but N (the region of trust) is reduced and the trial step computation
is repeated.

Based on Equation 3.2.31, a function c(Θ) is defined as an inequality constraint subject
to Θmin ≤ Θ ≤ Θmax. This constraint can then be [54] :

c(Θ)−Θmax ≤ 0

Θmin − c(Θ) ≤ 0 (3.2.32)

which can be simplified into the general form of:

ci(Θ) ≤ 0, i = 1, . . . , p (3.2.33)

with p being the total number of constraints.

Combining Equation 3.2.31 and 3.2.33, this can be related to the following general prob-
lem:

min
x
f(x), subject to h(x) ≤ 0 (3.2.34)

In applying the interior-point approach, this general problem is reformulated through the
use of slack variables si for each constraint h, so that

min
x
f(x), subject to h(x) + s = 0, and s ≥ 0 (3.2.35)

The inequality constraint can be eliminated by introducing a barrier parameter µ(> 0)
to prevent the solution from leaving the feasible region. This results in:

min
x,s

fµ(x, s) = min
x,s

f(x)− µ
p∑
i=1

ln(si), subject to h(x) + s = 0 (3.2.36)

By letting µ converge to zero, the minimum of Equation 3.2.36 will converge to the
minimum of Equation 3.2.35 [160]. The solution of the barrier problem is conducted by
introducing the Lagrangian and re-writing Equation 3.2.36 as:

L(x, s, κh) = f(x)− µ
p∑
i=1

ln si + κTh (h(x) + s) (3.2.37)

where κh is the Lagrangian multiplier associated to the equality constrained. The optimal
solution (x, s) for Equation 3.2.36 is then given by [161]:

∇xL(x, s, κh) = ∇f(x) + AI(x)κI = 0 (3.2.38)

∇sL(x, s, κh) = −µS−1e+ κI = 0 (3.2.39)

where AI(x) is matrix of constant gradient of
(
∇h(1)

I , . . . ,∇h(p)
I

)
, e denotes the vector of
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ones with the same size as g, and S is a diagonal matrix of s.

By default, the fmincon algorithm solves the problem by using direct step (Newton)
method. In the case where direct step does not converge (that is the projected Hessian
is not positive definite), a conjugate gradient step using trust region is used.

The direct step method is defined by considering the Hessian of the Lagrangian fµ:

H = ∇2f(x) +
∑
i

κi∇2hi(x) (3.2.40)

Based on this equation, the direct step (∆x, ∆s) can then be defined as [159]: H 0 JTh
0 SΛ −S
Jh −S I

 ∆x
∆s
−∆κ

 = −

 ∇f − JTh κSκ− µe
h+ s

 (3.2.41)

where Jh denotes the Jacobian of the constraint function h and Λ is a diagonal matrix of
κ.

It is worth mentioning that when utilising the fmincon function, the users are obliged
to build a cost function in a separate file as opposed to the model equation as expected
from the previous modified Newton-Raphson method. In the case of aircraft system
identification, the cost function is usually defined as6

J(Θ,R) =
1

2

N∑
i=1

[z(i)− y(i)]T R̂−1 [z(i)− y(i)] +
N

2
ln |R| (3.2.42)

In this case the covariance matrix R is also calculated via relaxation methods. In addi-
tion to the model parameter x, the function also evaluates the value, gradient and Hessian
of the objective function at the solution point x. Note that fmincon is a gradient-based
method, where the function only works on problems where the objective and constraint
functions are both continuous and have continuous first derivatives.

Example 3.2.1 Comparison of oe and fmincon routine
This example is presented to compare the effectiveness of oe and fmincon functions.
Given the aforementioned dynamic wind tunnel model (see Section 3.2.2), a comparison
of identification results from two different optimisation methods will be presented. The
first method is the Modified Newton-Raphson implemented through oe function from
SIDPAC [94]. The second method is the interior point algorithm implemented via the
MATLAB function fmincon.

In this case, the final equation of Equation 3.2.29 will be used to compare the opti-
misation methods with a similar set of initial parameter estimates as discussed in the
earlier Section 3.2.2. Table 3.5 allows the comparison of estimation results obtained
through the oe and fmincon functionsa. The results show that given similar initial
guess values, both estimation algorithms give almost similar results with comparable
standard deviations.

6The cost function in Equation 3.2.42 is always scalar regardless of the dimension of R.
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Parameter
oe fmincon

Θ̂ s(Θ̂) Θ̂ s(Θ̂)
V = 20 m/s (t: 24-34 s)

CMα -0.291 0.002 -0.291 0.003
CMq -9.485 0.097 -9.488 0.251
CMδe -2.205 0.019 -2.206 0.054
bα (rad) 0.032 0.0002 0.032 0.0003
dCM
dX

0.0226 0.001 0.026 0.002

λ 50.21 7.162 50.31 6.89
α∗(rad) 0.115 0.002 0.115 0.002

convergence time 189.46 s 61.39 s
V = 30 m/s (t: 6-12 s)

CMα -0.395 0.007 -0.395 0.007
CMq -13.98 0.149 -13.99 0.154
CMδe -2.520 0.024 -2.522 0.026
bα (rad) -0.008 0.0011 -0.008 0.001
dCM
dX

0.059 0.002 0.059 0.002

λ 17.08 0.780 17.07 0.765
α∗(rad) 0.095 0.002 0.095 0.002

convergence time 123.87 s 27.47 s

Table 3.5: Comparison of non-linear model parameter obtained using oe and fmincon.

Overall, fmincon has a faster convergence rate compared to the oe algorithm. Nev-
ertheless both algorithms take time to converge and so are not applicable for real-time
estimation. Presented in Figure 3.26 and 3.27 are the changes in parameters per iter-
ation. The convergence rate is inversely proportional to the number of iterations. It
is evident that fmincon converges with fewer iterations compared to the oe function.
However, the oe function allows the user to look into the change of the Hessian ma-
trix for each iteration. On the other hand, the fmincon function only allows the user
to look into the Hessian for the final estimation. Observing changes in the Hessian
matrix is essential because it is effectively an indicator for the accuracy of the iden-
tified parameter. Both in Figure 3.26 and 3.27, for the convergence of oe algorithm,
the standard deviation of each parameter on each iteration is presented. It shows that
as the convergence is approached the uncertainty bound is getting smaller, except for
parameter a1. The fact that uncertainty bounds is getting smaller indicates a better
estimation parameter (as discussed in the following subchapter).
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Figure 3.26: Parameter convergence comparison of oe and fmincon for 20 m/s cases.

Figure 3.27: Parameter convergence comparison of oe and fmincon for 30 m/s cases.

aThe identification procedure was carried out on : Intel(R) Core i5-4590 CPU @3.30 GHz - RAM
8.00 GB.
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3.2.4 Confidence Intervals

One of the most important results from parameter estimation is the statistical accuracy
of estimation results. A common criteria is the standard deviation, which is also known
as the Cramér-Rao bound. The error covariance matrix is approximated by the Fisher
information matrix for maximum likelihood estimation:

M ≡ −E
[
∂2 lnL(Zn; Θ)

∂Θ∂ΘT

]
=

N∑
i=1

∂yT (i)

∂Θj

R̂−1∂yT (i)

∂Θk

(3.2.43)

where the Cramér-Rao inequality indicates the lower bound for the parameter covariance
matrix and satisfies [94]:

σ2
Θ = Cov(Θ̂) ≥M−1

Θ=Θ̂
(3.2.44)

Note that the Cramér-Rao bound tends to decrease with more data points. Furthermore,
since the Cramér-Rao bound reflects the confidence in the estimated parameter, this
criteria can also be used to refine the model structure. Tischler mentioned that large
relative bounds indicate poor identifiability and so parameters with large bounds should
be eliminated (or fixed) in the model structure [95]. Similarly, Jategaonkar emphasises
that estimated parameters can be considered acceptable if the Cramér-Rao bounds satisfy
CRi ≤ 20% [54].

The confidence interval of the estimated parameters are derived from the Gaussian prob-
ability distribution. A common value selected for confidence level is 95% based on the
t-distribution related to 2σ [94]: this means that there is a 95% probability that the true
value of the estimated parameter Θi is inside the confidence interval of [Θ̂i−2σi, Θ̂i+2σi].
However, Jategaonkar suggests using a factor of 5 to 10 for realistic accounting for noise
[54]. This factor is an ad-hoc approach to consider the fact that output error methods
merge process and measurement noises along with deterministic modelling errors, that
in turn corrupt the noise statistics. Another way of dealing with noise is by introducing
coloured residuals [54, 94].

In addition to the confidence interval, the correlation coefficient is also useful to measure
the statistical dependency between parameters. Similar to the idea of confidence interval,
the correlation coefficient is also expected to be small for accurate estimation. The
correlation coefficient is obtained from the off-diagonal terms of the Hessian matrix and
defined as:

ρΘiΘj =
pij√
piipjj

(3.2.45)

Example 3.2.2 The importance of weighting factor R in output error method

This example is presented to underline the importance of the covariance matrix R
on the cost function. A comparison of the different cost functions is done using the
fmincon function, because it allows the user to define the objective function separately.
To start with, a simple cost function with different weighting function W is used to
compare the identification results. Both experimental data sets (20 m/s and 30 m/s),
as given in Section 3.2.2, will be used with the following cost functions:
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JW1(Θ) =
N∑
i=1

[
ν1(i) ν2(i)

]T [ 1 0
0 1

] [
ν1(i) ν2(i)

]
(3.2.46)

JW2(Θ) =
N∑
i=1

[
ν1(i) ν2(i)

]T [ 1 0
0 0.01

] [
ν1(i) ν2(i)

]
(3.2.47)

JR(Θ) =
N∑
i=1

[
ν1(i) ν2(i)

]T
R
[
ν1(i) ν2(i)

]
(3.2.48)

in which ν = zi− yi, z1 is the measurement of α, z2 is the measurement of q̇, and y is
the model output with respect to the measurements.

Comparison results from the different weighting functions is presented in Figure 3.28
and 3.29 for 20 m/s and 30 m/s respectively. The estimated parameters are given in
Table 3.6. More weight on the residual of α is seen to give a closer response with the
estimation results using cost function from Equation 3.2.42. This highlights the impor-
tance of weighting on the maximum likelihood/output-error estimator. Furthermore,
including the weighting function leads to improvements in the model response for α
with minimum impact on the q̇ variable.

Similarly, as presented in Table 3.6, the identified parameter for W2 is closer to the
original cost function used for the output-error estimator. However, the estimate stan-
dard deviations corresponding to the weighting function W2 are very high at 30 m/s.
Therefore, the identification results cannot be trusted even though the results are similar
to the output-error cost function. This further underlines the importance of including
the covariance matrix in the cost function, as the term log |R| suggests that the cost
function will converge as R goes to zero.
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Figure 3.28: Identification results for various cost functions at 20 m/s.
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Figure 3.29: Identification results for various cost functions at 30 m/s.

Parameter
R−1 W1 W2

Θ̂ s(Θ̂) Θ̂ s(Θ̂) Θ̂ s(Θ̂)

V = 20 m/s (t: 24-34 s)

CMα -0.291 0.003 -0.395 0.019 -0.283 0.004
CMq -9.488 0.251 -9.258 0.171 -9.929 0.296
CMδe -2.206 0.054 -1.945 0.056 -2.292 0.018
bα (rad) 0.032 0.0003 0.020 0.002 0.033 0.001
dCM
dX

0.026 0.002 0.066 0.001 0.028 0.004

λ 50.31 6.89 10.67 0.555 39.56 2.744
α∗(rad) 0.115 0.002 0.130 0.006 0.128 0.005

V = 30 m/s (t: 6-12 s)

CMα -0.395 0.007 -0.464 0.210 -0.381 2.600
CMq -13.99 0.154 -12.87 -4.15 -14.35 249
CMδe -2.522 0.026 -2.020 0.731 -2.631 105
bα (rad) -0.008 0.001 -0.007 0.226 -0.007 46.23
dCM
dX

0.059 0.002 -0.071 0.514 -0.055 53.9

λ 17.07 0.765 17.34 31.8 17.43 166
α∗(rad) 0.095 0.002 0.095 0.087 0.099 12.022

Table 3.6: Identification of non-linear model comparison using fmincon function with
various weighting functions.
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3.3 Subspace Identification

The previous section on regression and output-error methods are part of the white-box
model, where the parameters have a physical meaning and a-priori information is needed.
Aircraft system identification mostly deals with white-box models [54]. However, due to
the numerous numbers of measurement and the lack of a-priori information these methods
are not practical for structural model identification.

The most common time domain identification method in the area of modal parameter
identification is called the realisation algorithm [162] which is defined as the “process
of constructing a state space representation from experimental data” [116, 117]. The
subspace method was developed based on the concept of system realisation and is part
of the family of prediction error methods [125].

In this section, the utilisation of subspace identification method is discussed but restricted
to discrete, linear, time-invariant system [126]. The mathematical model representing
such systems is as follows:

xk+1 = Axk +Buk + wk,

yk = Cxk +Duk + vk (3.3.1)

where xk ∈ Rn is the state matrix with order n, yk ∈ Rl is the state output and uk ∈ Rm

is the state input. The state and output measurement noise, wk and vk, are assumed to
be zero mean white noise, with covariances defined as:

E
[(

wp
vp

)(
wTp vTp

)]
=

(
Q S
ST R

)
δpq (3.3.2)

where Q ∈ Rn×n, S ∈ Rn×l, and R ∈ Rl×l. The matrix A ∈ Rn×n is the system
matrix which describes the dynamics of the system through its eigenvalue characteristics,
while the matrix B ∈ Rn×m is the input matrix. The matrix C ∈ Rl×n is the output
matrix which relates the internal states to the measurement, and matrix D ∈ Rl×l is the
feedthrough matrix.

3.3.1 Notation

Subspace identification aims to find an appropriate order n and determine the system
matrices in Equations 3.3.1 and 3.3.2 based on input and output measurements [126].
This method is applicable for both deterministic and stochastic systems. A system is
known as a deterministic system if both process and measurement noises (see Equation
3.3.1), are identically zero. On the other hand the system is known as a stochastic system
where there is no presence of external output uk. In this case, it is not relevant to identify
matrix B and D.

Subspace identification algorithm utilises the observability and controllability matrices
for identification. A system is observable if the initial state value can be determined using
the measurement of output yk over a finite interval of time [163]. Mathematically, this
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problem is captured by the observability matrix Γi:

Γi ,


C
CA
CA2

. . .
CAi−1

 (3.3.3)

The matrix pair {A,C} are considered to be observable if the rank of Γi is equal to n.
On the other hand, a state is said to be controllable if the input can affect the state [163].
For a deterministic system, the reversed extended controllability matrix is defined as:

∆i ,
(
Ai−1B Ai−2B . . . AB B

)
The matrix pair {A,B} are considered to be controllable if the vector ∆i is linearly inde-
pendent [163] and so a system is controllable if every state in the system is controllable.
However, it is worth noting that controllable modes can either be stable or unstable [126].

Now that the observability matrix has been defined, steps that involve the Toeplitz and
Hankel matrix can be discussed. These matrices play an important role in the subspace
identification methods, in which the Toeplitz matrix consist of the B and D matrices of
the system. The lower block triangular Toeplitz matrix Hi is defined as:

Hi ,


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

. . . . . . . . .
. . . . . .

CAi−2B CAi−3B CAi−4B . . . D

 ∈ Rli×mi (3.3.4)

Furthermore, the Hankel matrix plays a vital role in the application of subspace identifi-
cation methods. The example of the Hankel matrix for the measured input is as follows:

U0|2i−1 ,



u0 u1 u2 . . . uj−1

u1 u2 u3 . . . uj

. . . . . . . . .
. . . . . .

ui−1 ui ui+1 . . . ui+j−2

ui ui+1 ui+2 . . . ui+j−1

ui+1 ui+2 ui+3 . . . ui+j

. . . . . . . . .
. . . . . .

u2i−1 u2i u2i+1 . . . u2i+j−2


,

(
U0|i−1

U0|2i−1

)
,

(
Up
Uf

)i

i

j

“past”

“future”
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,



u0 u1 u2 . . . uj−1

u1 u2 u3 . . . uj

. . . . . . . . .
. . . . . .

ui−1 ui ui+1 . . . ui+j−2

ui ui+1 ui+2 . . . ui+j−1

ui+1 ui+2 ui+3 . . . ui+j

. . . . . . . . .
. . . . . .

u2i−1 u2i u2i+1 . . . u2i+j−2


,

(
U0|i

Ui+1|2i−1

)
,

(
U+
p

U−f

)i+1

i-1

j

“past”

“future”

where U0|2i−1, U0|i−1, U0|i denotes the subscript of the first and last element of the first
column in the Hankel matrix. The subscript p stands for “past”, while the subscript f
stands for “future”, and the symbols + and - stand for the addition and subtraction of
one block row respectively.

Based on the definition of the Hankel matrix for the input design, the output block
Hankel matrix Y0|2i−1, Yp, Yf , Y

+
p , and Y −f are defined similarly. Then, the block Hankel

matrix consisting of input and output can be described as:

W0|i−1 ,

(
U0|i−1

Y0|i−1

)
,

(
Up
Yp

)
= Wp

Note that the example given here only consider a single input. Thus, for m number of
inputs, the total number of rows for U0|2i−1 matrix will be 2mi. Given all data samples,
the number of columns (j) is typically equal to N − 2i+ 1, where N is the total number
of data points.

The subspace identification algorithm is based on the assumption that the matrix pair
{A,C} is observable and the matrix pair

{
A,
[
B,Q1/2

]}
is controllable. All modes in

the system are excited by either external input or process noise [126]. In the application
of subspace identification and the establishment of the Hankel matrix, Overschee [126]
suggested that the number of block rows i of the Hankel matrix should be larger than the
maximum order of the system ( i > n). However, for the application to flexible aircraft,
Bucharles and Vacher [120] suggested the use of a square Hankel matrix to reduce the
effect of noise.

3.3.2 Oblique Projection Algortihm

There are several algorithms behind the subspace identification methods. Amongst the
classical ones are:

1. The Canonical Variate Analysis (CVA), based on weighted Singular Value Decom-
position (SVD) and principal angle analysis [164],

2. Multivariate Output Error State Space (MOESP) which is based on orthogonalisa-
tion [165], and

3. Numerical algorithms for Subspace State Space System Identification (N4SID) which
is based on oblique projection [166].
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Figure 3.30: Oblique projection illustration for subspace identification method.

A thorough comparison between these algorithms can be found in References [167, 168].
The adopted subspace identification algorithm for this research work is based on the
previous work and functions developed by Van Overschee and De Moor [126], which were
extended in N4SID.

Consider the discrete system as presented in Equation 3.3.1. By utilising the observabil-
ity, controllability and the Toeplitz matrix, the matrix input-output equations can be
presented as:

Yp = ΓiXp +HiUp (3.3.5)

Yf = ΓiXf +HiUf (3.3.6)

Xf = AiXp + ∆iUp (3.3.7)

Now, Oi is defined as the oblique projection where:

Oi=Yf/Uf Wp (3.3.8)

The problem can be illustrated graphically as shown in Figure 3.30. In the vector space,
consider a vector of HiUf and ΓiXf . From the definition in Equation 3.3.6, the summa-
tion of both vectors yields a vector denoted as Yf . On the other hand, consider that the
avaliable data were Yf , Uf which in line with vector HiUf , and vector Wp. By decom-
posing the vector Yf along Uf and vector Wp, it resulted in Oi. The graphic proof that
Oi is equal with vector ΓiXf is presented in Figure 3.30.

Using the SVD technique, the oblique projection can be defined as follows:

W1OiW2 =
(
U1 U2

)( S1 0
0 0

)(
V T

1

V T
2

)
= U1S1V

T
1 (3.3.9)

The order of the system is dependent on the singular values of S, and now the extended
observability matrix can be determined as:

Γi = U1S
1/2
1 (3.3.10)

As presented in Equation 3.3.3, the first l rows of the observability matrix is the C matrix,
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and so it can be easily extracted from the previous relation. Furthermore, by manipu-
lating Γ, the matrix A can be calculated by utilising least-squares from the following
relationship: 

CA
CA2

. . .
CAi

 = A


C
CA
. . .

CAi−1

 (3.3.11)

For a stochastic system, matrices A and C represent the whole system. However, de-
terministic systems are not complete before the B and D matrices are identified. The
identification is conducted by taking Equation 3.3.6 and multiplying it by Γ⊥i and U †f ,
which leads to:

Γ⊥i YfU
†
f = Γ⊥i ΓiXfU

†
f + Γ⊥i HiUfU

†
f

Γ⊥i YfU
†
f = Γ⊥i Hi (3.3.12)

Defining L = Γ⊥i and M = Γ⊥i YfU
†
f , Equation 3.3.12 can be rewritten as:

M = LHi (3.3.13)

and given the definition of matrix Hi in Equation 3.3.4, and defining the observability
matrix without the last l row, Γi. Equation 3.3.12 can be rewritten as:

M1

M2
...
Mi

 =


L1 L2 . . . Li−1 Li
L2 L3 . . . Li 0

. . . . . .
. . . . . . . . .

Li 0 . . . 0 0


(
Ii 0
0 Γi

)(
D
B

)
(3.3.14)

Thus, matrix B and D can also be extracted using linear regression.

This algorithm is implemented within the MATLAB function subid which is part of the
function provided by Reference [126]. This function works for both the deterministic
and stochastic system. For a more comprehensive mathematical derivation for the subid

algorithm, readers are referred to References [126, 166].

It is also worth noting that Kalman filters play a vital role for this algorithm. In subid

algorithm, the terminology of Xf in the previous equations changes into X̃i which is ef-
fectively the Kalman filter state sequence. The underlying assumptions for this algorithm
are as follows:

1. The deterministic input u is uncorrelated with process and measurement noise.

2. Process and measurement noise are not identically zero.

3. Input uk is persistently excited of order 2i; meaning that the input covariance
matrix Ruu has a rank of 2mi, given m is the number of input, and i is number of
block rows. The input covariance matrix is define as:

Ruu=
[
U0|2i−1U

∗
0|2i−1

]
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3.3.3 Stabilisation Diagrams

The algorithm presented in the previous section shows the importance of the OLS method
in solving the subspace identification problems. However, in this case, the model order
is typically overestimated to remove bias and to capture all relevant dynamics [118, 119,
169]. In practice, stabilisation diagrams have been used intensively as a standard tool
for modal identification [162, 170]. The basic idea behind stabilisation diagrams is to
identify a modal based on a set of experimental data with increasing model order number
n (n being degrees-of-freedom and described as the pole location of the system matrix
in the root-locus diagram). Van de Auweraer [169] stated that “on an extensive range
of problems, pole values of the physical eigenmodes always appear at a nearly identical
frequency, while mathematical poles tend to scatter around the frequency range”.

The stabilisation diagram consists of frequency (pole position) on the X-axis and the
system order on the Y-axis. By visualising the pole location on each model order, one can
fix the model order number n and at the same time distinguish between the physical poles
and mathematical poles. Due to the existence of the mathematical poles, stabilisation
diagrams are more comprehensive than defining the optimal order only from singular
values (in a deterministic case, or principal angle analysis in a stochastic case) like in
other algorithms.

Typical stability criteria for visualising the stabilisation diagram for nth order number
are defined as follows [169, 170] :

1. the difference in the frequency is less than 1%:

∆ω =
| ωi − ωi−1 |

ωi−1

< 0.01 (3.3.15)

2. the difference in the eigenvector is less than 2%:

∆MAC = 1− | ΦT
i Φi−1 |2

(ΦT
i Φi)

(
ΦT
i−1Φi−1

) < 0.02 (3.3.16)

3. the difference in damping is 5%:

∆ζ =
| ζi − ζi−1 |

ζi−1

< 0.05 (3.3.17)

where the frequency, damping and mode shapes of the structure are calculated from:

A = ΨΛΨ, Λ = diag(λi) ∈ C l×n, i = 1, . . . , n (3.3.18)

ωi =
| ln(λi) |

∆t
, i = 1, . . . , n (3.3.19)

ζi =
real (λi)

| ln(λi) |
, i = 1, . . . , n (3.3.20)

Φ = CΨ (3.3.21)

and MAC is known as Modal Assurance Criteria, which compares the similarity between
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two eigenvector (Φi and Φj) as follow:

MAC =
| ΦT

i Φj |2

(ΦT
i Φi)

(
ΦT
j Φj

) (3.3.22)

Where a value of MAC close to 1 indicates a correct pairing of the modes. Furthermore,
according to Ewins [170] a MAC value between 0.9 - 1 is obtained for well-correlated
modes and a value of 0.1 is an indication of uncorrelated modes.

Example 3.3.1 Structural Properties Identification from a Ground Vibra-
tion Test
In this example, the subspace algorithm is used to identify the structural properties
of an aluminium plate from GVT. This work aims to highlight the advantages and
disadvantages of using the subspace approach with in an experimental setup.

The structure under test is a 90 cm long, 20 cm wide and 3 mm thick aluminium plate,
clamped on one end and free on the other end. A stinger connecting the plate and a
shaker is used to give external excitation. Figure 3.31 presents the test setup of the
plate.

Figure 3.31: GVT setup for aluminium plate.

Figure 3.32: Position of the stinger and accelerom-
eter.

A stochastic input with frequency ranging from 1 Hz to 100 Hz was chosen as the
excitation input to the aluminium plate. The test was conducted numerous times,
with combinations of sensor locations and external excitations. However, this example
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only presents the experimental results in which the accelerometers were placed evenly
along the length of the plate (as shown in Figure 3.32). The frequency response of the
accelerometer signals given the stochastic input is presented in Figure 3.33.

By utilising the subspace algorithm on the experimental data, the model order and the
identified pole locations can be displayed through a stabilisation diagram. There is no
exact method for selecting the number of rows in the Hankel matrix. However, the

number of the row should be less than
N + 1

4m
, where N is the number of data points

and m is the number of inputs. Furthermore, Bucharles [120] suggested the use of a
square Hankel matrix to minimise the effects of noise. To assess this, two stabilisation
diagrams with two different number of row Hankel matrix (i = 10 and i = 30) are
compared and presented in Figures 3.34 and 3.35. The figures show an overlay of pole
location with the frequency response of the tip accelerometer. The stable poles that
align with the peaks of the frequency response represent the physical poles.
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Figure 3.33: Frequency response of the accelerometer based on the experimental re-
sults.

In Figure 3.34 the blue circles represents stable poles, the × represent unstable poles,
and the dot represents the non-pair poles. For the sake of simplicity, Figure 3.35 only
presents the stable poles. The maximum identified number of order is proportional to
the number of row in the Hankel matrix (i) and the number of input (m), and so for
ten rows of Hankel matrix the maximum order number is 50. In comparison, Figure
3.35 shows more stable poles especially at lower frequencies. On the contrary, as the
number of rows in the Hankel matrix increases, the number of mathematical poles tend
to grow as well. With an increasing number of poles, a routine that carefully picks
the exact pole location that represents the physical poles is crucial. The physical pole
location is essential for future analysis, not only to identify the modal frequencies and
system damping but also for the identification of eigenvectors.
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Figure 3.34: Stabilisation diagram for aluminium plate for i = 10.

Figure 3.35: Stabilisation diagram for aluminium plate for i = 30.

Figure 3.36 presents the comparison of the theoretical and identified mode shapes based
on the stabilisation diagram given in Figure 3.35, and the number order of 26. The
figure shows that the identification results cannot detect the first mode shape, due to the
location of the stinger which is not so close to the clamp and so not sufficiently excited
for the first mode to be detected. Furthermore, the legend represents the identified
frequencies. The numbers show less than 3 % difference between the theoretical and
measured frequencies.
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Figure 3.36: Comparison of theoretical and identified mode shapes (— : theoretical
mode shapes, −−: identified mode shapes).

3.4 Summary

This chapter has explored system identification methodologies applied to rigid aircraft
flight dynamics through regression and output error methods. It has also considered
structural problems through the subspace identification method using data from a simple
experiment. It was further confirmed that for full-scale aircraft small inputs lead to
small perturbations in flight dynamics variables, making linear methods such as OLS
appropriate for identifying aeroderivatives. On the other hand, for subscale aircraft
with inappropriate inertia and mass scaling, small inputs were found to excite non-linear
phenomena such as dynamic stall. Due to such non-linear dynamics, the OLS method
is no longer suitable and instead the output-error method is more suited to identify
a relevant non-linear model. This chapter also emphasised the importance of sensor
placement and ensuring synchronised collection and filtering of sensor data. The following
chapter applies the aforementioned identification method for aeroelastic system.



CHAPTER4
Identification of Aeroelastic Systems

The work discussed in this chapter presents some use-cases where system identification
methods are applied to characterise flexible aircraft. These demonstrates that there are
several ways to identify an aeroelastic system. The focus has been put on two differ-
ent identification methods applied to simulation results, to highlight respective limita-
tions and possible applications. The chapter starts with the definition of the simulation
framework and the aircraft of interest, and then continues with identification using a
quasi-steady modelling approach, before demonstration with a generalised approach.

4.1 CA2LM Framework

The modelling and simulation framework used for identification purposes is known as
the Cranfield Accelerated Aircraft Loads Model (CA2LM ) [142, 143]. Developed in
MATLAB/Simulink, the framework provides an environment for a loosely coupled aero-
dynamic and structural dynamics simulation of a generic large transport aircraft. This
framework was originally developed to assess the handling qualities of a flexible aircraft
with active loads control [143] and has been utilised to evaluate pilot-in-the-loop simula-
tions [171, 172]. Later, this simulation framework was updated to accommodate a high
aspect ratio wing aircraft and used to assess the handling qualities of flexible aircraft
[142]. The framework is also equipped with a spoiler model used to study gust load
alleviation [173]. A folding wingtip model has also been added to the framework and a
detailed description of the mechanism is available in References [27, 174, 175]. In this
section, the CA2LM framework is used to simulate the Cranfield University AX-1 aircraft.
The aircraft configuration is given in Figure 4.1; The red dots on the figure represent the
beam element structural model of the aircraft.

In brief, Figure 4.2 presents the workflow of the CA2LM framework. Control inputs
available in the framework consist of elevator, rudder and aileron. The output of the
framework is the aircraft rigid body dynamics calculated at the centre of gravity as well
as the displacements, velocities and accelerations for each structural node. The core of the
simulation is the aeroelastic forces and moments calculation that is connected with the

101
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Figure 4.1: AX-1 aircraft configuration (Reproduced from Reference [27]).

6 DoF equations of motion. These are calculated through the loosely coupled structural
dynamics and aerodynamic modules.

Figure 4.2: CA2LM framework architecture.
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Aircraft 1st symmetric mode
at 6.9 rad/s

Aircraft 1st asymmetric mode
at 6.9 rad/s

Aircraft 2nd symmetric mode
at 7.4 rad/s

Aircraft 2nd asymmetric mode
at 12 rad/s

Aircraft 3rd asymmetric mode
at 13.6 rad/s

Aircraft 3rd symmetric mode
at 14.7 rad/s

Figure 4.3: Illustration of the structural mode shapes of the AX-1 aircraft.
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4.1.1 Structural Dynamics Model

In general, the structural model can be written in the well-known form using the general
displacement d as the state basis, and can be expressed in terms of a mass matrix [M ],
a damping matrix [C] and a stiffness matrix [K]:

[M ]d̈ + [C]ḋ + [K]d = F (4.1.1)

where F is the external applied forces that can be in the form of aerodynamic loads,
gravitational force, and thrust. Solving the structural equation directly in a simulation
framework is computationally expensive. Therefore, in the CA2LM framework the modal
approach is adopted by introducing mode shape Φ defined as:

d = Φη (4.1.2)

where η are the generalised coordinates. Using this relation, Equation 4.1.1 can be
transformed into:

η̈ =
1

〈m〉
(
ΦTF − 〈2mζω〉 η̇ +

〈
mω2

〉
η
)

(4.1.3)

where 〈m〉 is the generalised mass, ω is the natural frequency, and ζ is the damping ratio.
In CA2LM , the damping ratio is assumed to be 3% for all modes; a typical assumption
made in industry [143, 176]

The generalised velocity can be obtained by integrating the generalised acceleration η̈
with respect to time, and integrating the generalised velocity provides the generalised
displacement. Furthermore, using the relation in Equation 6.2.6, and assuming that the
mode shapes do not change with respect to time, the generalised displacement, velocity,
and acceleration can be transformed into nodal displacement, velocity and acceleration
as follows:

d = Φη (4.1.4)

ḋ = Φη̇ (4.1.5)

d̈ = Φη̈ (4.1.6)

This gives linear and angular displacements as well as linear and angular velocities of
each structural node as an output of the structural dynamics block.

For AX-1 aircraft the structural dynamics are simplified by only considering 12 modes.
Andrews [143] argued that this provided a realistic compromise between computational
cost and model fidelity [143]. The first six structural modes of the aircraft and their
respective frequencies are presented in Figure 4.3.

4.1.2 Aerodynamics Model

The aerodynamic forces and moments are calculated based on the position of each aero-
dynamic strip from the output of the structural block. The aerodynamic forces and
moments are represented by the lift, drag and pitching moment coefficients, which are
functions of Mach and Reynolds numbers. Here, the aerodynamic coefficients consist of
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steady and unsteady components. A typical approach for modelling unsteady aerody-
namics (typically used for flutter calculations) is via the Theodorsen function [177], which
was developed considering a two-dimensional flat plate in inviscid and incompressible flow
undergoing pitching and plunging. Theodorsen separated the non-circulatory part of the
velocity potential from the circulatory part [17, 177, 178], as follows:

CL =
π

2

[
ḧ+ α̇− a

2
α̈
]

︸ ︷︷ ︸
Non-Circulatory

+ 2πC(k)

[
α + ḣ+

1

2
α̇

(
1

2
− a
)]

︸ ︷︷ ︸
Circulatory

(4.1.7)

where a is the pitch axis location of the aerofoil with respect to half chord (pitch about
the leading edge corresponds to a = -1 and a = 1 for trailing edge [179]), and C(k) is the
Theodorsen function which is dependent on the reduced frequency k.

The circulatory and non-circulatory contributions are part of the unsteady aerodynamics,
and can explained as follows [17, 177, 180]:

• Non-circulatory also known as an apparent mass, is the term that represents
the instantaneous change in the boundary conditions due to the acceleration of the
aerofoil. The acceleration creates the pressure difference, causing the aerofoil to
carry the surrounding air [143]. This term is essential for the calculation of control
surface flutter at higher reduced frequencies [48]. The non-circulatory term decays
rapidly with time [181], and is dependent on the instantaneous rate of change [182].
It can be approximated mathematically through a time constant [183]. However,
for incompressible flow cases this term dies away instantaneously and therefore,
does not need to be considered [143].
• Circulatory describes the lift and moment term due to flow vorticity [48] which

is essential for calculating the lifting force. This term expresses the loading that
builds up quickly and asymptotes to the steady-state values [183]. The change of
lift for the circulatory function is proportional to the total lift obtained from the
penetration of a sharp edge gust [180].

However, instead of using the Theodorsen model directly, an indicial model is utilised in
CA2LM [184, 185]1. The indicial function consists of the circulatory and non-circulatory
term and is given in a state space formulation2, and normalised to Mach number [186].
The total aerodynamic forces and moments are calculated using modified strip theory
[143, 187].

4.2 Quasi-Steady Approach

A way of understanding an aircraft’s flight dynamics characteristics is through the force
and moment coefficients, also known as aerodynamic derivatives. Etkin stated that there
are two kinds of aerodynamic derivatives: ones which represent the rigid-body motion,
and others that appear in the added equations of elastic degrees of freedom [188]. In

1Alternative solution rather than the indicial model can be utilisation of aerodynamic lag [19], or
extending the Theodorsen’s lift calculation for unsteady aerodynamics by formulating aeroelastic angle-
of-attack for the combined chordwise, flapwise bending and torsion [133].

2Reader is referred to Reference [143] for the state space representation of the indicial model
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the first case, the aircraft is considered as a point mass, and only in the second case
the structural deformations are introduced. As mentioned in Section 2.2.4, there are
six different ways to observe aeroelasticity [110, 131]. In this section only two of these
will be further elaborated upon: 1) the quasi-steady approach through the rigid body
equations and 2) modal truncation through the added elastic degrees of freedom. The
choices between the approach based on the separation between the frequency of the rigid
body mode and the structural mode. However, for particular applications, such as in
the use of a flight simulator where the aeroelastic effects are typically not included, the
quasi-steady approach can be a viable means of capturing airframe flexibility effect. It is
also the cheapest formulation in terms of computational cost [131].

The assumption within the quasi-steady approach is that the structure reaches its equi-
librium deformation instantaneously, neglected the unsteady aerodynamic effects [90]. In
this case, the effect of structural flexibility is embedded within the rigid body coefficients.
In 1970, Roskam developed a formulation for defining the longitudinal stability deriva-
tives of elastic aircraft based on rigid body coefficients for application in the early design
phase [189]. Here, the added term for elastic stability derivatives consists of zero mass and
inertia effects. Both terms are functions of structural influence coefficient and dynamic
pressure. A similar approach was also used by Jategaonkar who modelled aeroelasticity
through the ‘flex factor’ which was a function of dynamic pressure and Mach number
[54, 90].

In this section, the CA2LM framework is used to identify the effect of structural deforma-
tion and quantify the structural influence coefficient of the generic flexible aircraft, known
as AX-1. The aerodynamic coefficients of interest are those where the wing flexibility
effects are significant. Related to the lateral and longitudinal dynamics of the aircraft,
the coefficients of interest are: rolling moment due to roll rate (roll damping) Clp , aileron
effectiveness Clδa , and the lift slope CLα , as well as the pitch stiffness CMα and pitching
moment due to the pitch rate (pitch damping) CMq is also of interest. The aerodynamic
coefficient for the rigid configuration is then compared to a comparable large aircraft
(Boeing 747) which is taken from Reference [190].

4.2.1 Simulation Set-Up

A set of simulations covering 44 flight conditions was conducted to capture the effect
of flexibility on various stability and control derivatives (see Figure 4.4). These flight
points capture quite a range of dynamic pressure and Mach number (see Table 4.1).
In this study, the simulations were only conducted for one mass case, which was 80%
Maximum Take-Off Weight (MTOW) with the centre of gravity at around 25% of the
mean aerodynamic chord.

For lateral identification, an aileron pulse input is used to excite the dynamics of the
aircraft. The aileron is then modified to give a symmetric doublet input which is used
to excite the longitudinal dynamics of the aircraft. The reason behind the symmetric
aileron input is that the aileron is expected to excite the wing symmetric modes more
effectively than the elevator [101]. Furthermore, as both dynamics respond in a different
frequency, a low frequency characterised by the time constant for lateral dynamics, and
a slightly higher frequency for the short period mode, the input was designed differently
so that it can captures the dynamics of interest.
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Figure 4.4: Flight condition of interest.

Minimum Maximum

Altitude (m) 50 7000
TAS (m/s) 140 230

Mach 0.41 0.74
q̄ (Pa) 9.3× 103 1.8× 104

αb (◦) −1 3
Re 2× 106 4× 106

Table 4.1: Flight condition vari-
ables.

4.2.2 Identification Results

Before the application of quasi-steady identification, let us go back and look at the equa-
tions of motion that represent a flexible aircraft as developed by Waszak and Schmidt
[132]. As an example, consider the small perturbation lateral dynamics of the flexible
aircraft that can be presented as follows:

Ixxṗ− Ixz ṙ = L̄0 + L̄p
pb

2U
+ L̄r

rb

2U
+ L̄ββ + L̄δaδa︸ ︷︷ ︸

rigid

+
∞∑
i=1

L̄ηiηi +
∞∑
i=1

L̄η̇i
η̇ib

2U︸ ︷︷ ︸
flexible

(4.2.1)

Here, the left hand side of the equation represents the rotational motion around the x-
axis, which is identical to the conventional rigid-body equations of motion. Meanwhile,
the right hand side represents the aerodynamic forcing functions that consist of the rigid-
body and elastic degrees of freedom. The elastic degree of freedom is represented by the
generalised structural stiffness and damping. The assumption here is that the variation
of inertia due to the flexibility is negligible. By assuming a quasi-steady approach, the
premise is that the change in the shape due to the flexibility is captured within the rigid
body terms (in this case is L̄p and L̄δa). Therefore, Equation 4.2.1 is simplified as follow:

Ixxṗ− Ixz ṙ = L̄0 + L̄∗p
pb

2U
+ L̄∗r

rb

2U
+ L̄∗ββ + L̄∗δaδa (4.2.2)

in which L̄∗i represents the rigid body coefficient with flexibility effect. A similar approach
is also used for the longitudinal dynamics. A comprehensive explanation on how rigid
body dynamics can capture the flexibility effect is elaborated in the following sections.

Lateral Coefficients

As mentioned earlier, the lateral dynamic is excited through the aileron pulse input. In
total 88 simulations were conducted for simulating both rigid and flexible structure. In
this case, a longer aileron input was intentionally used to capture roll dynamics. Figure
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4.5 presents the time history for both rigid and flexible structure at velocity of 180 m/s
and altitude of 15,000 ft. The figure shows that both rigid and flexible aircraft is excited
using a similar aileron pulse input of 5-degree amplitude. However, when the aircraft has
a flexible structure, the response of the aircraft in terms of the amplitude of the roll rate
and roll angle is reduced. Moreover, an inverse response of the tip deflection of the wing
is seen indicating that the input is exciting the asymmetric aeroelastic mode.

Figure 4.5: Time history of lateral motion from aileron input.

Giving the quasi-steady assumption as mentioned before, the identification of lateral
coefficient is based on Equation 4.2.2. Due to the simplicity of the model equation,
OLS method is chosen to identify the aerodynamics derivatives of interest. Here, the
measurement equation is defined as:

z = ṗ− Ixz
Ixx

ṙ (4.2.3)

while the regressor matrix and parameter vector are given as:

X =


b

2U
p(1)

b

2U
r(1) ∆β(1) ∆δa(1)

...
...

...
...

b

2U
p(N)

b

2U
r(N) ∆β(N) ∆δa(N)

 (4.2.4)

Θ̂ =
[
L̄p L̄r L̄β L̄δa

]T
(4.2.5)

Figure 4.6 presents the comparison between the simulation results and the model output
of the roll dynamics for both rigid and flexible structure aircraft. The comparison between
the simulation and identification results for the rigid structure shows a relatively good
match, with a residual in an order of magnitude lower which is caused by the numerical
error. On the contrary, for the aircraft with a more flexible structure, the residual is in
the same order of magnitude as the identification results cannot capture the oscillation
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Rigid structure Flexible structure

Figure 4.6: Roll identification for rigid and flexible structure.

of the measured variables for the flexible structure configuration.

As mentioned previously, the assumption used here is that the most significant aeroelastic
effects on roll dynamics are to be captured within the change in the roll damping value
Clp and the change in the aileron effectiveness value Clδa , which is a function of local
aerodynamics and given as follows [145]:

L̄p = −ρU
∫ b/2

0

[
∂Cl(y)

∂α
+ Cd(y)

]
c(y)y2dy (4.2.6)

L̄δa = −ρU2∂Clδa (y)

∂α

∫ y2

y1

c(y)ydy (4.2.7)

where y is the lateral coordinate, y1 and y2 define the spanwise positions of the aileron
and c̄(y) is the local chord at y 3. Furthermore, the identified parameters are converted
to non-dimensional terms using the following relation:

Cli =
Ixx
q̄Sb

L̄i; i = p, r, β, δa (4.2.8)

Figure 4.7 presents the comparison of the identified Clp value for the rigid and flexible
structure as a function of dynamic pressure and the angle of attack. Here it is worth
mentioning that the variance of the identified variables are less than 2%, highlighting the
exceptional quality of the estimation process. The explanation for the Clp coefficient as
elaborated in References [145] is as follows: when the aircraft experiences perturbations in
the rolling moment with a positive angular acceleration of p, the wing perceives an induce
component of velocity normal to the spanwise coordinate. Meaning that the down-going
wing (in positive roll rate is the starboard wing), has a small increase of incidence, and vice
versa the starboard has a small decrease of incidence. These decreases in the lift create

3Note that the assumption in the L̄δa equation is that the aileron effect is only effective on the specific
spanwise position of the aileron. Meaning that there is no aerodynamic effect due to aileron on the nearby
spanwise position. In reality, there is an interference effect which is ignored by the equation.
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Figure 4.7: Identification of Clp results for rigid and flexible aircraft.

a rolling moment in the opposite direction (restoring moment). The aircraft undergoes
the disturbing and restoring rolling moment until a steady roll rate is establishes. This
restoring rolling moment is referred to as “damping in roll”.

The identification results for the rigid structure are comparable to those of a similar air-
craft configuration obtained from experiments as presented in Reference [190]. However,
the absolute value of the coefficient is smaller when flexibility is introduced, meaning that
the restoring rolling moment from the flexible wing structure is less than the restoring
moment created by the rigid body structure. The fact that the restoring moment is de-
creasing means that the increase/decrease of the wing incidence due to the manoeuvre
is lower as the flexibility of the wing adapts to the perturbation. Looking back into
Equation 4.2.6, the source of the decreasing value might also come from the Cd(y) terms
which varies due to wing flexibility.

Figure 4.8: Identification of Clδa results for rigid and flexible aircraft.
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The comparison of the Clδa value for both rigid and flexible structure is presented in
Figure 4.8, again as the function of dynamic pressure q̄ and angle of attack α. This
coefficient presents a straightforward relation between the deflection of the aileron and
the rolling moment it creates. Again, the Clδa value for rigid structure shows comparable
results in relation to data for similar aircraft configurations in Reference [190]. Here,
structural flexibility provides smaller aileron effectiveness, meaning that the change of
lift distribution is lower when the wing is flexible. This fact leads to a similar conclusion
with the change in the roll damping, which is that wing flexibility allows the structure to
respond to the perturbation and creates lower change in the lift distribution.

Longitudinal Coefficients

The symmetric aeroelastic modes are of importance for the longitudinal case. Hence, the
simulation framework was modified to allow symmetric aileron deflection. In this case, a
doublet symmetric aileron input with the frequency around 1 Hz was used to excite the
longitudinal dynamics of the aircraft. Due to the limitation of the actuator dynamics, it
was not possible to excite the aileron at a higher frequency. Figure 4.9 presents the time
history of the longitudinal dynamics at a velocity of 180 m/s and altitude of 15,000 ft.

Figure 4.9: Time history of longitudinal motion from symmetric aileron input.

The time histories of the longitudinal dynamics show that by introducing flexibility the
overall response, in terms of the aircraft angle of attack and pitch-rate (α and q), have
a lower amplitude relative to the rigid body aircraft. A phase change is also observed
in Figure 4.9, between the response from the flexible and rigid structure. It is also of
interest to see the tip deflection of the aircraft’s wing, in which the left and right wing
tips are deflected in the same sense, indicating the input excites the symmetric structural
wing mode.

An assumption of capturing the aeroelastic effect within the rigid body dynamics is
applied in this section as well. As the input design is excited the SPPO mode, a similar
approach as previously presented in Section 3.1.2 is used. Therefore, the model equation



112 IDENTIFICATION OF AEROELASTIC SYSTEMS

for the application of the OLS method is defined as follows:

q̇ = Mαα +Mq
qc̄

2U
+Mδasδas (4.2.9)

ẇ − qU = Lαα + Lδasδas (4.2.10)

where δas is symmetric aileron input.

Similar with the lateral coefficient identification, for the application of OLS method, the
measurement equations are define as:

z1 = q̇

z2 = ẇ − qU (4.2.11)

while the regressor matrix and parameter vector are given as:

X1 =


α(1)

c̄

2U
q(1) ∆δas(1)

...
...

...

α(N)
c̄

2U
q(N) ∆δas(N)

 ; Θ̂1 =
[
Mα Mq Mδas

]T

X2 =

 α(1) ∆δas(1)
...

...
α(N) ∆δas(N)

 ; Θ̂2 =
[
Lα Lδas

]T
Here, there are only three coefficients of interest for the longitudinal dynamics (typical for
the SPPO mode) namely the aircraft lift slope Lα, pitch stiffness Mα and pitch damping
Mq.

In this case, the most significant contribution of the Lα coefficient comes from the wing
planform and can be estimated as follows:

Lα =
1

2
ρU2

∫ b/2

−b/2

∂CL(y)

∂α
α(y)c̄(y)dy (4.2.12)

For an aircraft with a flexible structure the local angle of attack at a particular section
can be defined as a combination of the α at steady state, the local camber twist angle
and the local elastic distortion angle [189].

Meanwhile, the pitch stiffness coefficient can be calculated as function of the lift slope
with the following relationship:

Mα =
1

2
ρU2Sc̄CMα (4.2.13)

and assuming linear aerodynamic condition, the derivatives CMα , can be rewritten as:

CMα =
dCM
dCL

dCL
dα

(4.2.14)

where the term
dCL
dα

is the non-dimensional coefficient of Lα is as explained in Equation
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4.2.12.

The last term of interest is the pitch damping coefficient Mq. The most significant
contribution for this coefficient comes from the tailplane rather than the wing component.
Reference [145] explains this coefficient as follows: “ when the aircraft experiences a small
perturbation in pitching DoF, the tailplane experiences a normal velocity component due
to the rotation about CG, which changes the local incidence of the tail. The change in the
local incidence of the tail, changes the lift force of the tail. Hence, this force translated to
the CG and creates pitching disturbance in the opposite direction”.

Figure 4.10: Identification of longitudinal coefficient for the aircraft with rigid structure.

Figure 4.11: Identification of longitudinal coefficient for the aircraft with flexible struc-
ture.

Figure 4.10 and 4.11 presents the comparison of the simulation and identification results
for both aircraft configuration with the rigid and flexible structure respectively. The
measurement output on the figures are referred to Equation 4.2.11. All the comparison
between the simulation output and the model output from identification process show
matches with residuals of an order of magnitude lower. Also, the identified coefficient
value is also comparable with a similar aircraft, except for CMα which is almost twice
higher [190]. The identification results for all the coefficient are presented in Figure 4.12,
4.13 and 4.14 for both the rigid and flexible aircraft.
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Figure 4.12: Identification of CLα for aircraft with rigid and flexible structure.

Figure 4.13: Identification of CMα for aircraft with rigid and flexible structure.

All results show that by using a rigid body approach, the flexible aircraft has a lower
identified coefficient value when compared to the rigid aircraft. The changes in the CLα
value is almost comparable with the changes in the CMα , in which for the flexible case
the coefficient is around 0.8 times smaller than the rigid case.

On the other hand, it is argued that the CMq value is mostly affected by the tailplane.
However, Reference [189] explains that on elastic aircraft there are two acting loads:
the aerodynamic and inertial loading. Therefore, the stability derivatives for aeroelastic
aircraft are formulated in two categories. The first is due to the aeroelastic effect in
the absence of the inertial force (mass derivatives), while the second consist of stability
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Figure 4.14: Identification of CMq for aircraft with rigid and flexible structure.

derivatives solely due to inertial forces (inertial derivatives). Interestingly, for the coef-
ficient of pitching moment that depend on the pitch rate, Roskam showed the following
formulation:

CMqflex
= CMqĒ

+ CMqI
(4.2.15)

in which the subscript Ē represents the mass derivatives, while the subscripts I represents
the inertial derivatives. These inertial derivatives do not appear in the definition of lift
slope and pitch stiffness coefficients, and this is most probably the source of the shift in
the identified CMq value for the flexible structure configuration.

4.2.3 Application of the Correction Model

In this section, the method presented earlier is used to asses the handling quality of a
flexible aircraft, particularly those which equipped with wingtip devices, using a flight
simulator [27]. Having the right database and the effective methodology [29] can lead
to an insight of the handling quality of the vehicle. To do so, a fast reduced order
model is needed. For flight simulator application, it is common to model the flaps and
undercarriages using a correction factor approach to add to to the clean wing aerodynamic
properties [191]. The same concept is adopted here, which is to build a database based
on a correction factor to quantify the effect of morphing wingtip for a flight simulator
application.

For identification purposes, a set of simulations were conducted using the CA2LM frame-
work for 44 flight conditions, which consist of two wingtip sizes (hinge line at 10% and
20% wing semispan) with seven wingtip deflection Υ (0o to 30o, with 5o increment in
a symmetric manner). The simulation was also conducted for both rigid and flexible
configuration. The illustration of the wingtip folding is presented in Figure 4.15.
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Figure 4.15: Illustration of morphing wingtip device.

a1 a2 a3 a4 a5 a6 a7

Clp
rigid - - -1.137 -1.677 0.079 0.250 -0.184

flexible -0.134 −1.65× 10−5 -0.174 - - 0.095 -

b1 b2 b3 b4 b5 b6 b7

Clδa
rigid - - -1.133 0.296 0.087 0.065 -

flexible -0.179 −2.67× 10−5 - - - - -

Table 4.2: Prediction model derivation.

A global model which can capture the flexibility effect as a function of dynamic pressure q̄
[90], wingtip size ς, as well as wingtip deflection Υ is generated using MOF method which
allows the inclusion of model structure determination process to help identify the most
suitable model structure. The idea of developing a global model is adapted from work
by Grauer and Morelli [151]. The following relationships are defined for identification
purposes:

CΥ
lp = CΥ=0

lp rigid

(
1 + ∆Clp(Υ, ς, q̄)

)
(4.2.16)

CΥ
lδa

= CΥ=0
lδa rigid

(
1 + ∆Clδa (Υ, ς, q̄)

)
(4.2.17)

where the correction factors are defined as:

∆Clp(Υ, ς, q) = a1 + a2q +
(
a3Υ + a4Υ2

)
ς + a5Υ + a6Υ2 + a7Υ3 (4.2.18)

∆Clδa (Υ, ς, q) = b1 + b2q +
(
b3Υ + b4Υ2

)
ς + b5Υ + b6Υ2 + b7Υ3 (4.2.19)

The baseline used here is the set of identified coefficients for the rigid configuration with
zero wingtip deflection. Thus, for identification purposes the measurement output is
defined as:

z =
CΥ
lp
− CΥ=0

lp rigid

CΥ=0
lp rigid

(4.2.20)

The MOF method requires clear definitions of the order and polynomial dependencies of
the variables. Here, the maximum order of the variables is 3, where only Υ is allowed
to have a cubic term dependency. The identified coefficient as defined in Equations
4.2.18 and 4.2.19 are presented in Table 4.2. The identified coefficients and the predicted
coefficients can be compared in Figures 4.16 and 4.17.
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Figure 4.16: Matching plot for roll damping model.
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Figure 4.17: Matching plot for aileron effectiveness model.

Given the global prediction model, a validation of the prediction model is conducted using
Equation 4.2.2 based on the values obtained from the prediction model. A comparison of
the simulation results from the CA2LM framework and the prediction model is presented
in Figure 4.18. These results correspond to a flight condition with a velocity of 180 m/s
(TAS) and an altitude of 10,000 ft. The input is an aileron pulse input for 5 seconds. It
is worth mentioning that this flight condition is not part of the data set being used to
develop the prediction model.

For the same input, the responses of both the prediction model and the CA2LM frame-
work are in agreement. However, a slight deviation after the initial input is observed
for the rigid structure, due to the differences in the degree of freedom involved in the
two simulations: CA2LM framework is based on 6-DoF while the prediction model is a
simple 1-DOF rolling moment equation neglecting lateral-directional coupling. However,
the changes in aerodynamic derivatives are small for aircraft with flexible structures, as
this configuration is more adaptable to perturbation. Furthermore, the difference comes
from the sideslip angle, which in this case is treated as an input for both models and
plays a significant role in the rigid body dynamics [28].

Overall, these results highlight the effectiveness of parameter estimation methods in
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building a polynomial correction model to capture morphing wingtip and flexibility. As
this polynomial formulation is easier to implement in a flight simulator environment for
pilot-in-the-loop simulations without requiring physics-based models, as implemented in
the more complex CA2LM framework.

 : 0 deg

 : 30 deg

Validation for rigid model ς = 20%.

 : 30 deg

 : 0 deg

Validation for flexible model ς = 20%.

Figure 4.18: Validation of global wingtip model.

4.3 Generalised Approach

In the previous section, the CA2LM simulation framework was used to identify and com-
pare flexible and rigid body aircraft using a quasi-steady approach, meaning that the
flexibility effects were captured within the traditional rigid body coefficients. However,
for explicit representation of aeroelastic effects a more generalised approach is needed.
Here, a generalised model as developed by Waszak and Schmidt can be used [132]. The
assumption underlying this modelling approach is that the structural deformation is small
and the variance in the aircraft mass properties (such as centre of gravity and moments
of inertia) due to flexibility are negligible. Furthermore, to solve the equations of motion,
the structural deformations are represented via a finite set of orthogonal eigenmodes or
modeshapes.

By adopting a generalised model, it is possible to observe both the rigid body and flexible
body (generalised) derivatives of interests. These derivatives can give insight into the
stability of the system through its eigenvalue for a particular flight condition. Therefore,
it is also of interest to assess the change of the derivatives as a function of speed.

The objective of this section is to present a method for identifying aircraft aeroelastic
modes through the use of multisine inputs and multivariate orthogonal functions [153].
The argument here is that by observing the change of aeroelastic derivatives in the time
domain, the shift in damping and frequency of each eigenmode can be identified and
used to assess system stability. By utilising the MOF approach, one can observe the
change in the frequency and damping of the system as a function of airspeed [153]. It
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should be noted that, since this approach solves the identification problem through the
optimal model structure, in some cases the parameter of interest may be discarded from
the model. For instance, if the parameter that is discarded is a variable related directly to
the natural frequency of the system, the resulting model will not provide any meaningful
insight.

4.3.1 Input Design

Here, the traditional flight test approach is used to excite aircraft dynamics. The pro-
cess involves starting at trim condition, exciting the modes through the control surfaces
and repeating at increasingly higher airspeeds. The input design is carefully chosen to
excite the airframe over a range of frequencies that cover the dynamic modes of interests,
particularly for parameter estimation.

In this section, the aeroelastic modes of interest are limited to the longitudinal dynamics.
These modes are expected to be in the range of 0.2 to 2 Hz. Following the realisability
consideration (as discussed in Chapter 2), the elevator is chosen to excite the modes
rather than symmetric aileron deflection as in the previous section. This is due to the
higher bandwith available on the elevator actuators.

Although a typical input type adopted for flutter envelope expansion programs is fre-
quency sweep [192], here the potential of using orthogonal multi-sine inputs is explored
[94] with a frequency range of 0.2 to 2 Hz (due to actuator bandwidth limitations). How-
ever, this input is within the range of the short period mode as well as the first two
structural modes, which means that this input can effectively excite the modes and the
corresponding model parameters. Figure 4.19 shows the input design both in time and
frequency domains for the elevator. The time duration of the input is 15 seconds.
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Figure 4.19: Elevator input in the time and frequency domain.

The simulation was conducted for speeds ranging from 160 m/s to 240 m/s at an altitude
of 20,000 ft. The simulation results provide 6 DoF rigid body data at the centre of gravity.
On the other hand, the structural model allows the user to observe the displacement,
velocity and acceleration of the structural nodes. In an experimental flight test, the rigid
body mode data can be obtained from the inertial measurement unit (IMU), while the
acceleration of the nodes can be obtained by having distributed accelerometers on the
aircraft structure [101].
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Figure 4.20: Simulation results for 190 m/s airspeed.

An example of aircraft response due to the input is presented in Figure 4.20. The figure
shows the time history of the change in the aircraft velocity, the normal acceleration and
the pitch rate for the given elevator input. Furthermore, the figure also shows the normal
acceleration of the wingtip station highlighting the effects on the flexible structure. Here,
the symmetric elevator deflections are seen to excite the symmetric wing bending modes
around 2 Hz.

4.3.2 Identification Procedure

As evident in Figure 4.20, the input can be seen to excite the longitudinal modes, in
particular the short period mode as shown by the change in the normal acceleration and
pitch rate. The negligible change in airspeed shows that the phugoid mode has not been
excited. On the other hand, the input only excites the symmetric structural mode (see
Figure 4.3 for the illustration of the first six flexible modes), as shown by the comparison
between the left and right wingtip acceleration.

The variables of interest here are not only the aerodynamics and generalised coefficients,
but also their contribution in identifying the damping and frequency of the aeroelastic
modes. Aeroelastic mode damping is of especial interest as its reduction in damping of
an aeroelastic mode can be an indication of flutter. Past study has been conducted to
identify the change in aeroelastic mode damping and frequency using the MOF method.
However, using this method certain cases were found where the algorithm ignored a
significant coefficient which was related to the frequency and damping of the system
especially at higher velocities [153]. For this reason it is preferable to use the output
error method in the identification of aeroelastic modes.

By assuming a small perturbation model and ignoring the lateral-directional terms, the
equations of motion representing the short period and the first three flexible modes as
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adopted from References [132] can be expressed as follows:

m(Ẇ − qU − g cos θ) = Z0 + Zw + Zqq + Zδe +
3∑
j=1

F j
Zηj
ηj +

3∑
j=1

F j
Zη̇j
η̇j + ZT (4.3.1)

Iy q̇ = M0 +Mww +Mqq +Mδe +
3∑
j=1

M j
ηj
ηj +

3∑
j=1

M j
η̇j
η̇j +MT

(4.3.2)

θ̇ = q (4.3.3)

m1[η̈1 + 2ζ1ω1η̇1 + ω1
2η1] = Q1

0 +Q1
ww +Q1

qq +Q1
δe +

3∑
j=1

Q1
ηj
ηj +

3∑
j=1

M1
η̇j
η̇j (4.3.4)

m2[η̈2 + 2ζ2ω2η̇2 + ω2
2η2] = Q2

0 +Q2
ww +Q2

qq +Q2
δe +

3∑
j=1

Q2
ηj
ηj +

3∑
j=1

M2
η̇j
η̇j (4.3.5)

m3[η̈3 + 2ζ3ω3η̇3 + ω3
2η3] = Q3

0 +Q3
ww +Q3

qq +Q3
δe +

3∑
j=1

Q3
ηj
ηj +

3∑
j=1

M3
η̇j
η̇j (4.3.6)

The first two equations represent the rigid body mode, while the last three represents the
flexible body mode. Here m is the total mass of the aircraft, mj is the generalised mass
for the j-th aeroelastic mode, and ηj represents the generalised coordinate. On the right
hand side of the equation, Qj represents the generalized force for the j-th mode, while
FZ and M represent the force in Z direction and moment around y-axis respectively. T
represents the force and moment due to thrust.

A critical part in identifying the aeroelastic components of such a system is to specify
the generalised coordinates, η. A common approach is to use mode shapes, which can
be validated using GVT [48]. Here, the elastic deformation at position (x, y, z) on the
structure is denoted by d can be written as :

d(x, y, z, t) = Φ(x, y, z)η(t) (4.3.7)

where Φ is the mode shape or eigenfunction associated with the generalised coordinate. In
this case, assuming that the mode shape is known, the generalised coordinate is calculated
using the following relationship:

η(t) = Φ(x, y, z)−1d(x, y, z, t) (4.3.8)

Furthermore, assuming linear time invariant structure in which Φ is not a function of
time, the velocity and acceleration of the generalised mode can also be defined as:

η̇(t) = Φ(x, y, z)−1ḋ(x, y, z, t) (4.3.9)

η̈(t) = Φ(x, y, z)−1d̈(x, y, z, t) (4.3.10)

Figure 4.21 shows the measured acceleration of the structure, in which af is the acceler-
ation at the center of fuselage, awt is the acceleration at the node located on the tip of
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Figure 4.21: Transformation from structure to modal acceleration.

Figure 4.22: Sensor position for aeroelastic identification (red: 3 DoF accelerometer and
3 DoF gyroscope, black: control surface).
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the wing (port and starboard), and awm represents the acceleration at the node on the
middle of the wing (port and starboard), as presented in Figure 4.224. Using the relation
as expressed in Equation 4.3.10, the modal accelerations are calculated and presented as
η̈1, η̈2 and η̈3. In utilising the output error method, it is relatively straightforward to
translate the equation of motion into the state-space form. The state space matrix that
represented the aircraft dynamics for identification purposes is defined as :[

ẋR
ẋη

]
=

[
AR CηR
CRη Aη

] [
xR
xη

]
+

[
BR

Bη

]
u (4.3.11)

AR and Aη are the matrices related to rigid body motion and the aeroelastic modes
respectively. CηR is the coupling characteristics that shows the contribution of the aeroe-
lastic mode to the rigid body, and similarly CRη shows the contribution of the rigid body
to the aeroelastic mode. Similarly, BR and Bη show the contribution of control inputs to
the rigid body and aeroelastic modes respectively. Here, as the model is only limited to
the short period mode, the rigid body modes are represented by:

[xR] =
[
w q θ

]
(4.3.12)

and the flexible modes are given by:

[xη] =
[
η1 η̇1 η2 η̇2 η3 η̇3

]
(4.3.13)

Hence, Equation 4.3.11 can be expanded as:

∆ẇ
∆q̇

∆θ̇
∆η̈1

∆η̇1

∆η̈2

∆η̇2

∆η̈3

∆η̇3


=



Z̃w Z̃q −g sin θ0 Z̃η̇1 Z̃η1 Z̃η̇2 Z̃η2 Z̃η̇3 Z̃η3

M̃w M̃q 0 M̃η̇1 M̃η1 M̃η̇2 M̃η2 M̃η̇3 M̃η3

0 1 0 0 0 0 0 0 0

Q̃1
w Q̃1

q 0 Q̂1
η̇1

Q̂1
η1

Q̃1
η̇2

Q̂1
η2

Q̃1
η̇3

Q̂1
η3

0 0 0 1 0 0 0 0 0

Q̃2
w Q̃2

q 0 Q̃2
η̇1

Q̃2
η1

Q̂2
η̇2

Q̂2
η2

Q̃2
η̇3

Q̃2
η3

0 0 0 0 0 1 0 0 0

Q̃3
w Q̃3

q 0 Q̃3
η̇1

Q̃3
η1

Q̃3
η̇2

Q̃3
η2

Q̂3
η̇3

Q̂3
η3

0 0 0 0 0 0 0 1 0





∆w
∆q
∆θ
∆η̇1

∆η1

∆η̇2

∆η2

∆η̇3

∆η3


+



Zδe
Mδe

0
Q1
δe
0
Q2
δe
0
Q3
δe
0


[δe]

(4.3.14)

where:

Z̃i =
Zi
m

(4.3.15)

M̃i =
Mi

Iy
(4.3.16)

Q̃j
i =

Qj
i

mj

, i = w, q, η1, η2, η3, η̇1, η̇2, η̇3 (4.3.17)

Q̂j
η̇j

= Q̃j
η̇j
− 2ζjωj (4.3.18)

Q̂j
ηj

= Q̃j
ηj
− ωj2, j = 1, 2, 3 (4.3.19)

4In industry flutter testing is done with multi accelerometers. Some of these are located on the control
surfaces to investigate control surface flutter, while some others are placed in the engine area.
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and the model output is defined as:


∆ẇ
∆q
∆η̈1

∆η̈2

∆η̈3

 =


Z̃w Z̃q −g sin θ0 Z̃η̇1 Z̃η1 Z̃η̇2 Z̃η2 Z̃η̇3 Z̃η3

0 1 0 0 0 0 0 0

Q̃1
w Q̃1

q 0 Q̂1
η̇1

Q̂1
η1

Q̃1
η̇2

Q̂1
η2

Q̃1
η̇3

Q̂1
η3

Q̃2
w Q̃2

q 0 Q̃2
η̇1

Q̃2
η1

Q̂2
η̇2

Q̂2
η2

Q̃2
η̇3

Q̃2
η3

Q̃3
w Q̃3

q 0 Q̃3
η̇1

Q̃3
η1

Q̃3
η̇2

Q̃3
η2

Q̂3
η̇3

Q̂3
η3





∆w
∆q
∆θ
∆η̇1

∆η1

∆η̇2

∆η2

∆η̇3

∆η3


+


Zδe
0
Q1
δe

Q2
δe

Q3
δe

 [δe]

(4.3.20)

4.3.3 Identification Results

The output-error methods being used to identify the rigid body as well as the aeroelastic
coefficients in this section rely on the modified Newton-Raphson method5. Equations
4.3.14 and 4.3.20 are used as the model for the optimisation routine for output error
method. And in total there are 45 coefficients that need to be identified.

As mentioned earlier, the application of output error methods needs a set of initial
conditions. Here, the initial conditions are calculated using the OLS method. Table 4.3
presents the comparison of identified parameters from the OLS and output error method
for an airspeed of 190 m/s. Furthermore, Equations 4.3.14 and 4.3.20 are utilised to
compare the response of the output matrix based on the identified parameter. Using the
equations as mentioned earlier the output from the identified parameter based on both
OLS and OE method are compared with the simulation results, which are presented in
Figures 4.23 to 4.27. Overall, the figures show that the output error method gives superior
results when compared to the OLS method. This becomes evident when inspecting the
magnitude of the residual ν. For the rigid body dynamics (Figures 4.23 and 4.24), the
residuals from both methods are almost similar and of the same order of magnitude.

However, for the identification of the generalised mode (Figures 4.25 to 4.27), it is shown
that the OLS methods has a tendency of a phase shift at a longer time step. The phase
shift resulted in a higher residual for the OLS method. On the other hands, the output
error methods have the residual in an order of magnitude lower. On the other hand,
for both cases, the matching of simulation and identification results for the third flexible
mode is quite poor with residuals almost at the same order of magnitude (see Figure
4.27). The poor identification of mode 3 is most likely because the input did not insert
enough energy at the particular frequency, as the input excitation is limited from 0.2 to
2 Hz while the third structural mode was expected to be at around 2.3 Hz.

Following the procedure in Equation 4.3.7, the identified generalised acceleration can be
used to calculate the acceleration of a specific node of the aircraft. Figure 4.28 shows
the comparison between the node acceleration based on the simulation results and the
identification results. The figure shows the acceleration at the node in the middle of the
fuselage, middle of the wing, and the tip of the wing as noted in Figure 4.22.

5Newton-Raphson is a gradient based optimisation technique, as elaborated in Chapter 3.2
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Figure 4.23: Identification of vertical speed at 190 m/s.
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Figure 4.24: Identification of pitch rate at 190 m/s.
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Figure 4.25: Identification of the 1st generalised mode at 190 m/s.
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Figure 4.26: Identification of the 2nd generalised mode at 190 m/s.
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Figure 4.27: Identification of the 3rd generalised mode at 190 m/s.

Figure 4.28: Transformation from modal to structural acceleration.
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Least Squares Estimation

Parameter Values and relatives standard deviation
w q η̇1 η1 η̇2 η2 η̇3 η3

Z̃i -0.411 190 -0.007 0.090 0.016 -0.803 -0.016 1.582
(0.351) (0.85) (0.011) (0.083) (0.012) (0.089) (0.012) (0.169)

M̃i -0.034 -0.209 0.002 0.053 0.001 -0.065 0.012 0.068
(0.006) (0.151) (0.002) (0.015) (0.002) (0.016) (0.002) (0.030)

Q̃1
i 17.712 54.833 -1.764 -60.628 1.182 11.516 -0.275 -8.553

(0.277) (6.692) (0.085) (0.659) (0.093) (0.701) (0.093) (1.340)

Q̃2
i -8.44 53.68 0.171 0.363 -0.788 -55.71 -2.084 -15.62

(0.296) (7.14 ) (0.091) (0.703) (0.099) (0.748) (0.099) (1.430)

Q̃3
i 11.74 212.56 -2.668 -12.99 2.125 18.68 -2.702 -194.5

(0.979) (23.62) (0.301) (2.326) (0.329) (2.474) (0.328) (4.729)

Output Error Estimation

Parameter Values and relatives standard deviation
w q η̇1 η1 η̇2 η2 η̇3 η3

Z̃i -1.058 186 0.084 1.655 0.018 -1.039 -0.048 0.372
(0.276) (6.66) (0.089) (0.709) (0.091) (0.711) (0.059) (0.698)

M̃i -0.030 0.076 -0.004 0.061 0.008 -0.035 0.021 0.044
(0.012) (0.294) (0.004) (0.031) (0.004) (0.035) (0.004) (0.079)

Q̃1
i 17.451 58.518 -2.559 -63.891 2.134 12.749 0.554 -10.452

(0.850) (29.61) (0.163) (1.822) (0.183) (1.753) (0.290) (4.589)

Q̃2
i -10.99 57.44 0.255 7.093 -0.722 -65.79 -2.692 -18.41

(0.383) (12.65) (0.092) (0.843) (0.085) (0.906) (0.113) (1.656)

Q̃3
i 19.45 176.08 -1.948 -36.30 1.084 36.40 -5.345 -271.2

(3.292) (0.903) (0.380) (6.233) (0.369) (6.069) (0.278) (3.501)

Table 4.3: Identified aeroelastic parameters at velocity 190 m/s.

Nevertheless, as presented in Table 4.3 the identified parameters from both the OLS and
output error method are in the same order of magnitude. Moreover, the table presents
the confidence intervals of each identified parameter (2σ). Here, some of the identified
parameters have a confidence interval in the same order of magnitude of the identified
parameter, which indicates that the parameter is not well identified and can be removed
from the model equation. However, some of these parameters are important in estimating
the characteristics of the system. Furthermore, to simplify the estimation process, as
well as to make it consistent, these parameters are retained in the system matrix and
considered in calculating the damping and frequency of the system. Figure 4.29 shows
the change in the system pole locations as a function of airspeed, clearly showing how
certain structural modes become less stable as velocity increases.

The figure shows that there are four pole pairs of the system, representing four dynamic
response modes, namely the SPPO, aeroelastic mode 1, aeroelastic mode 2 and aeroelastic
mode 3. The figure also shows a shift in the pole location as a function of airspeed. Here,
two significant shifts are visible: where one of the pole locations moves towards the more
negative real axis value while the other is moving towards the positive real axis value
indicating reduction in damping.

The identified parameter as given in Table 4.3 are used to build the system matrix as
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Figure 4.29: Location of system poles (The pole position at (0,0) is due to the relation
of q = θ̇).

given in Equation 4.3.14. Here, the A matrix is of interest because it contains information
of system stability characteristics through its eigenvalues and eigenvectors, defined as:

det (A− λiI) = 0

(A− λiI) Φi = 0 (4.3.21)

where λi is the eigenvalue (pole location) and Φi is the eigenvector of the system. The
eigenvalue usually consists of a real and imaginary number, thus the natural frequency
ωi and damping ratio ζi can be extracted as follows:

λi = a + bi

ωi = |λi| =
√

a2 + b2 (4.3.22)

ζi = − cos(< λi) =
−a

|λi|
(4.3.23)

However, the identified value inside the matrix A should also consider the parameter
uncertainty bounds. These uncertainty bounds should be considered to calculate the
uncertainty of the identified damping and frequency, which shows the quality of the
resulting identified model parameter. A previous study of calculating the uncertainty
bounds in frequency and damping for frequency domain identification is given in Reference
[103]. In this work, the uncertainty bounds based on time domain identification will be
calculated using delta method. This method is an adaptation of work by Döhler et al.
[193] which derive uncertainty bounds for identified modal frequency and damping based
on subspace identification methods applied to discrete systems. In this case, the delta
method is used to characterise the uncertainty bounds of the eigenvalue of a continuous
system based on the uncertain parameters need to build the matrix A.
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Considering a vector of identified variables as f(θ̂), the delta methods suggest that the
covariance of f(θ̂) can be approximated by [193]:

cov
(
f(θ̂)

)
≈ Jfcov(θ̂)JTf (4.3.24)

in which Jf is the sensitivity matrix given as the first derivatives of the f(θ̂).

Let us begin by considering the sensitivity of the system modal frequency and damping.
Given these are a function of the real and imaginary components of the corresponding
eigenvalue, the sensitivity with respect to the real and imaginary components can be
expressed as follows:

δω

δa
=

a

|λi|
;

δω

δb
=

b

|λi|
(4.3.25)

δζ

δa
=
−b2

(|λi|)3 ;
δζ

δb
=

ab

(|λi|)3 (4.3.26)

or in matrix form, this can be expressed as:[
Jωi,λi
Jζi,λi

]
=

1

|λi|3

[
|λi|2 0

0 1

] [
Re(λi) Im(λi)
−Im(λi)

2 Re(λi)Im(λi)

]
(4.3.27)

in which Jωi,λi is the sensitivity of ωi to λi, while Jζi,λi is the sensitivity of ζi to λi.
Given, the eigenvalues are functions of the identified A matrix, let λi, Φi, and χi be i -th
eigenvalue, left eigenvector and right eigenvector of A, as follows:

AΦi = λiΦi, χ∗iA = λiχ
∗
i (4.3.28)

where ∗ denotes the complex-conjugate transpose. Then, the sensitivity of the eigenvalues
can be defined as:

∆λi = Jλi,Avec(∆A) (4.3.29)

∆Φi = JΦi,Avec(∆A) (4.3.30)

in which ‘vec’ is the column-stacking vectorisation operator. Here, we are only interested
in the sensitivity of the eigenvalues:

Jλi,A =
1

χ∗iΦi

(
ΦT
i ⊗ χ∗i

)
(4.3.31)

where ⊗ denotes the Kronecker product. Furthermore, by defining λi as the i-th eigen-
value of A, Döhler et al. [193] define the following relationship:

∆ωi = Jωi,Avec(∆A) (4.3.32)

∆ζi = Jζi,Avec(∆A) (4.3.33)

where: [
Jωi,A
Jζi,A

]
=

[
Jωi,λi
Jζi,λi

] [
Re (Jλi,A)
Im (Jλi,A)

]
(4.3.34)
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Combining equation 4.3.34 and 4.3.27, the perturbation on frequency and damping as a
function of A is defined as:

cov

([
ωi
ζi

])
=

[
Jωi,A
Jζi,A

]
cov(vec(A))

[
Jωi,A
Jζi,A

]T
(4.3.35)

in which the cov(vec(A)) is a diagonal matrix of covariances for related parameters.
However, the A matrix does not only consist of the identified variables but also has known
constants of ones and zeros. In this case, these values are included in the calculation in
which the respective uncertainties are set to zero.

Based on Equation 4.3.35, the standard deviation of the identified damping and fre-
quency can be calculated from the square root of the diagonal matrix. The damping
and frequency based on the identified A matrix, as well as the variance of the identified
damping and frequency, is given in Table 4.4. Moreover, Figure 4.30 and 4.31 show the
changes in the modal frequencies and dampings as a function of the airspeed.

Frequency Values and relatives standard deviation
160 m/s 170 m/s 180 m/s 190 m/s 200 m/s 210 m/s 220 m/s 230 m/s 240 m/s

mode 1 7.046 7.795 7.929 8.787 8.115 8.627 9.215 7.431 7.552
(0.138) (0.142) (0.237) (0.229) (0.226) (0.280) (0.201) (0.053) (0.054)

mode 2 7.546 7.486 7.464 7.494 7.456 7.442 7.572 8.283 9.170
(0.014) (0.022) (0.025) (0.025) (0.027) (0.036) (0.026) (0.471) (0.302)

mode 3 16.392 16.422 16.384 16.436 16.809 17.091 17.066 17.367 17.677
(0.127) (0.116) (0.166) (0.287) (0.144) (0.186) (0.282) (0.269) (0.384)

Damping Values and relatives standard deviation
Ratio 160 m/s 170 m/s 180 m/s 190 m/s 200 m/s 210 m/s 220 m/s 230 m/s 240 m/s

mode 1 0.311 0.254 0.259 0.182 0.226 0.184 0.048 0.046 0.036
(0.025) (0.023) (0.026) (0.024) (0.023) (0.024) (0.023) (0.014) (0.004)

mode 2 0.040 0.037 0.038 0.038 0.039 0.039 0.030 0.116 0.022
(0.012) (0.003) (0.004) (0.003) (0.004) (0.005) (0.003) (0.035) (0.058)

mode 3 0.086 0.094 0.126 0.170 0.108 0.112 0.179 0.143 0.177
(0.008) (0.008) (0.010) (0.016) (0.010) (0.011) (0.013) (0.012) (0.019)

Table 4.4: Identified modal parameters as a function of velocity.

As expected the aeroelastic frequency of interest is around the structural frequency (es-
pecially at the lower airspeed). As presented in Table 4.4, the identified aeroelastic fre-
quency for mode 1 and mode 2 is quite close, which is in line with the structural mode at
zero velocity at 7.31 and 7.8 rad/s respectively. However, behaviour of the aerodynamic
forces are expected to change and so affect the aeroelastic modes. Overall, the figures
show that the confidence interval of the identified frequency is less significant than the
confidence interval of the identified damping. Furthermore, the damping of the modes
exhibits significant variations to change in airspeed.

One of the many challenges in presenting the results is to define the identified frequency
and damping of the modes and relate it to the particular modal characteristics. Here,
the eigenvector has an important role. The MAC as elaborated previously in Chapter
3.3 has been utilised to track the change in the eigenvector for the respected eigenvalue.
The eigenvector at a particular airspeed is compared to those at the lowest airspeed and
compared with those with the highest MAC.
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Figure 4.30: Frequency of the identified aeroelastic mode.

Figure 4.31: Damping of the identified aeroelastic mode.

Figure 4.31 clearly shows that the uncertainties in the identified modal parameters of
mode 2 and 3, are increasing as airspeed increases. Furthermore, mode 1 has a higher
uncertainty in the identified modal characteristics compared to the other modes. De-
spite the high uncertainty in the identified damping characteristics mode 1 has a higher
damping ratio compared to mode 2. However, it is of interest to observe the change of
damping as well as its confidence interval. From Figure 4.31 it can be seen that there is
a possibility of negative damping for mode two at the speed of 240 m/s, which can be an
indication of instability and flutter.
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4.4 Summary

An aeroservoelastic simulation framework has been used with various parameter estima-
tion methods to extract aerodynamic and aeroelastic derivatives. The first study illus-
trates a method for quantifying the effects of wing flexibility on flight dynamics using the
simple OLS method. The resulting model can easily be implemented in flight simulators
and used for assessing handling qualities. However, this method provides little insight
into the structural dynamics of the airframe which is needed for identifying aeroelastic
phenomena such as flutter. This limitation was addressed by adopting the output error
approach for identifying flutter margins using the same flexible aeroservoelastic simu-
lation model. Furthermore, the delta method was used for calculating the uncertainty
bounds on the estimated model characteristics as a function of airspeed and therefore,
providing conservative flutter speeds. The following chapter now moves away from sys-
tem identification and focuses on dynamic scaling methods for developing subscale models
suited to dynamic testing.
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CHAPTER5
Similitude and Dimensional Analysis

In developing a subscale model, it is essential to understand the concept of similitude.
This concept is used to relate the measurements from one system to describe the behaviour
of another similar system [46]; the application of similitude through the use of non-
dimensional numbers is known as dimensional analysis. The concept of dimensional
analysis comes from Greek concepts of geometric similarity, ratio and proportion [44].
Depending on the observations of interest, similitude requirements can be of geometric,
kinematic and dynamic similarity. The concept of similitude is essential in designing the
subscale model to ensure that the model can represent the full-scale dynamics.

5.1 Buckingham Π Theorem

The underlying principle of dimensional analysis is captured within the Buckingham
Π theorem. It states that “any complete physical relationship can be represented as
one subsisting between a set of independent non-dimensional product combinations of
the measures of the physical quantities concerned” [43]. This theory shows that the full
model of n dimensional parameters can be expressed as a combination of k measures
of physical quantities (known as repeating variables) and therefore, there are (n − k)
non-dimensional quantities. This theorem is based on dimensional homogeneity, that is
that the dimensions of the left-hand and right-hand sides of an equation should be the
same. The proof of this theorem is beyond the scope of this thesis, however, the reader
is referred to References [43, 44] for an in depth discussion and detailed mathematical
derivations.

When applying this theorem, the standard basic dimensions are those of mass, length
and time; denoted as M, L and T respectively. Its application can be summarised as
follows [46]:

• List all the dimensional parameters (n) that are involved in the problem and express
them in basic dimensions.

135
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• Select the repeating variables (k). The number of these variables needs to be
equal to the number of the reference dimensions. The combination of the repeating
variables should be able to represent the reference dimension (M, L and T ).

• Form the Π terms of the non-repeating variables (n − k) by the product of the
repeating variables.

In a scenario where not all of the similarity requirements are satisfied, the model is then
called the distorted model. Distorted models are common in experimental testing due to
the limitations of test facilities. A classic example is when Reynolds and Froude numbers
are involved [46]. The distorted model is still useful although the interpretation of the
model is more difficult. As mentioned by George E.P. Box, “all models are wrong, but
some are useful”.

5.2 Test Case : 2-DoF Aeroelastic Model

In this section, the principle of similitude is applied to a two DoF non-linear aeroelastic
model to evaluate the implications of scaling factors on physical and dynamic properties.

Figure 5.1: Two DoF aeroelastic system.

The 2-DoF aeroelastic model of interest is presented in Figure 5.1. This model is free
to pitch and plunge through a spring-damper configuration with aerodynamic lift force
and pitching moment acting as the external drivers. Here, positive plunge is moving
downwards, in the opposite direction of the lift force, while positive pitch angle is in
the same direction as the positive pitching moment. An adaptation of the non-linear
2-DoF aeroelastic equation of motions from References [58, 194] is used to assess the
scaling methodology and evaluate the cause and effect of a distorted model. Wan and
Cesnik stated that a linear scaling factor is applicable for a non-linear model1 [66]. Thus,
an attempt to scale down the 2-DoF non-linear model has been made, however, when
it comes to assessing the distorted model effect, non-linearity adds extra complexity,
especially when investigating the relationship between the system states.

Here, a 2-DoF linear model is developed based on the aforementioned non-linear aeroe-
lastic equation of motion. Furthermore, to observe the importance of a constant term in
the non-dimensionalisation process, a gravitational force has been added to the equation.

1The non-linear model of interest in Reference [66] contains geometric non-linearity, where the stiffness
of the structure changes depending on its deformation. This case is similar to the 2-DoF aeroelastic
model, in which the stiffness is dependent on the α value.
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By having the added terms and the modification, the equations of motion representing
the 2-DoF model can be expressed as follows:[

m mxαc1/2

mxαc1/2 Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh 0
0 kα

] [
h
α

]
=

[
−L
M

]
+

[
mg
0

]
(5.2.1)

in which h represents the plunge motion and α represents the pitching motion, while L
and M are the aerodynamic force and moment respectively. Note that this model was
developed for a two dimensional aerofoil with unit span. Therefore, the wing area can be
simplified to S ' 2c1/2. Hence, the aerodynamic force and moment can be defined as:

L = ρU2c1/2CLα

[
α +

ḣ

U
+

(
1

2
− a
)
c1/2

α̇

U

]
+ ρU2c1/2CLββ (5.2.2)

M = ρU2c2
1/2
CMα

[
α +

ḣ

U
+

(
1

2
− a
)
c1/2

α̇

U

]
+ ρU2c2

1/2
CMβ

β (5.2.3)

where a is the length between elastic axis to midchord positive towards leading edge as
percentage of the half chord length (c1/2). Other system parameters are presented in Table
5.1.

Parameter Value Units Description

c1/2 0.135 m Semi chord
m 12.3870 kg Wing mass
Iα 0.065 kg.m2 Mass moment of inertia about elastic axis
xα 0.2467 - Normalized to c1/2

a -0.6 - Distance from mid chord to elastic axis, normalized to c1/2

ρ 1.225 kg/m3 Air density
b 1 m Wing span
CLα 2π /rad Aerofoil lift coefficient due to α
kh 1422.2 N/m Stiffness coefficient for plunging motion
kα 282 N/s2 Torsional stiffness
CLβ 3.358 /rad Lift coefficient in respect to control surface deflection
ch 82.29 N.s/m Damping coefficient for plunging motion
cα 3.6 N.s/rad Damping coefficient for pitching motion
CMα -0.6280 /rad Aerofoil moment coefficient
CMβ

-0.6350 /rad Moment coefficient due to control surface deflection
U 20 m/s Wind speed

Table 5.1: System parameters and definition.

5.2.1 Scaling Requirements

Scaling requirements must be defined and the parameters of interest need to be identified
when defining the similitude relation. Based on Equation 5.2.1, the parameters of interest
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and corresponding dimension are as follows:

m
.
=M Iα

.
=ML2 ch

.
=MT −1 cα

.
=ML2T −1

kh
.
=MT −2 kα

.
=ML2T −2 L

.
=MLT −2 M

.
=ML2T −2

α̇
.
= T −1 α̈

.
= T −2 µ

.
=MLT −1 g

.
= LT −2

c1/2

.
= L ρ

.
=ML3 U

.
=MT −1 (5.2.4)

There are 15 dimensional parameters (n = 15) and three repeating variables (k = 3)
which results in 12 non-dimensional quantities. Furthermore, it is preferable to choose
the repeating variables that are easy to control. In the case of wind tunnel experiments,
the maximum allowable size, velocity and air density are dictated by the wind tunnel
facility. Therefore, c1/2, U and ρ are chosen as the repeating variables, that represent the
geometric size, velocity and air density. This relation gives the non-dimensional unit as:

Π1 = Π1 (m, ρ, U, c1/2); M0L0T 0 =M
(
M
L3

)a(L
T

)b
(L)c

Π1 =
m

ρc3
1/2

(5.2.5)

Applying the above terms to other variables leads to:

Π2 = Π2 (Iα, ρ, U, c1/2) =
Iα
ρc5

1/2

(5.2.6)

Π3 = Π3 (ch, ρ, U, c1/2) =
ch

ρUc2
1/2

(5.2.7)

Π4 = Π4 (cα, ρ, U, c1/2) =
cα

ρUc4
1/2

(5.2.8)

Π5 = Π5 (kh, ρ, U, c1/2) =
kh

ρU2c1/2

(5.2.9)

Π6 = Π6 (kα, ρ, U, c1/2) =
kα

ρU2c3
1/2

(5.2.10)

Π7 = Π7 (L, ρ, U, c1/2) =
L

ρU2c2
1/2

(5.2.11)

Π8 = Π8 (M,ρ, U, c1/2) =
M

ρU2c3
1/2

(5.2.12)

Π9 = Π9 (α̇, ρ, U, c1/2) =
α̇c1/2

U
(5.2.13)

Π10 = Π10 (α̈, ρ, U, c1/2) =
α̈c2

1/2

U
(5.2.14)

Π11 = Π11 (g, ρ, U, c1/2) =
gc1/2

U2
(5.2.15)

Π12 = Π12 (µ, ρ, U, c1/2) =
µ

ρUc1/2

(5.2.16)

The list of the scaling variables point towards the non-dimensional parameters that must
be considered to ensure that an experiment on a subscale model can represent the full
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scale behaviour. These variables are common in the subscale model development. Π1

and Π2 are known as the mass and inertia ratio, and Π5 and Π6 are the stiffness similar-
ities that represent bending and torsional stiffness respectively. On the other hand, the
aerodynamic force and moment coefficients are represented by Π7 and Π8, while Π9 and
Π10 represent the dependency on time. Π9 is also known as the reduced frequency.

However, the non-dimensional damping terms as given by Π3 and Π4 are not typical for
structural scaling. The reason behind this is because most scaling laws for an aeroelastic
system do not consider structural damping in the equations of motion [65, 66, 71], or
model it as functions of mass and stiffness matrices, for example the Rayleigh damp-
ing formulation [50]. Damping coefficient is a characteristic of the material being used.
Therefore, the scaling laws of material damping relate to the material properties and the
level of excitation [195]. Nevertheless, the test case presented in this subchapter is a
theoretical model with a constant damping value that emphasises the need for consider-
ing the Π term for structural damping. Furthermore, Π11 is also known as the Froude
number and it is important when gravity effects need to be accounted. Π12 represents
the Reynolds number, which accounts for essential viscous effects. The fact that viscos-
ity does not appear in the equations of motion (Equation 5.2.1) may be a reason for a
distorted model [196].

5.2.2 Non-dimensional Equations of Motion

Even though the idea of developing scaling requirements is simple, the practical appli-
cation becomes somewhat complicated. Say that the subscale model has been through
experimental testing, the question is then how to relate the results with the full scale
model. More importantly, how to be sure that the subscale model theoretically repre-
sents the full scale model. To overcome this issue, non-dimensional equations of motion
are developed and used. Consider the equation of motion as presented in Equation 5.2.1
and then substitute Equation 5.2.3 into Equation 5.2.1. This yields:[

m mxαc1/2

mxαc1/2 Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]
+

[
kh 0
0 kα

] [
h
α

]
=[

Lḣ Lα̇
Mḣ Mα̇

] [
ḣ
α̇

]
+

[
0 Lα
0 Mα

] [
h
α

]
+

[
Lβ
Mβ

] [
β
]

+

[
mg
0

]
(5.2.17)

where

Lḣ = −ρUc1/2CLα (5.2.18)

Lα̇ = −ρUc2
1/2
CLα̇ (5.2.19)

Mḣ = ρUc2
1/2
CMα (5.2.20)

Mα̇ = ρUc3
1/2
CMα̇

(5.2.21)

Lα = −ρU2c1/2CLα (5.2.22)

Mα = ρU2c2
1/2
CMα (5.2.23)

Lβ = −ρU2c1/2CLβ (5.2.24)

Mβ = ρU2c2
1/2
CMβ

(5.2.25)
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and

CLα̇ = CLα
(

1

2
− a
)

(5.2.26)

CMα̇
= CMα

(
1

2
− a
)

(5.2.27)

The adoption of the scaling methodology from Reference [69], shows that the state vector
needs to be non-dimensionalised by half of the chord (c1/2) using the following relationship:{

ḧ
α̈

}
=

[
c1/2 0
0 1

]{
ḧ/c1/2

α̈

}
(5.2.28)

Now defining:

T =

[
c1/2 0
0 1

]
(5.2.29)

the coefficient matrix can be uniformly dimensionalised by pre-multiplying the Equation
5.2.25 by TT such that:[

mc2
1/2

mxαc
2
1/2

mxαc
2
1/2

Iα

] [
ḧ/c1/2

α̈

]
+

[
chc

2
1/2

0
0 cα

] [
ḣ/c1/2

α̇

]
+

[
khc

2
1/2

0
0 kα

] [
h/c1/2

α

]
=[

Lḣc
2
1/2

Lα̇c1/2

Mḣc1/2 Mα̇

] [
ḣ/c1/2

α̇

]
+

[
0 Lαc1/2

0 Mα

] [
h/c1/2

α

]
+

[
Lβc1/2

Mβ

] [
β
]

+

[
mgc1/2

0

]
(5.2.30)

Notice that now the coefficient matrices have a single unit of kgm2. Substitution of
Equation 5.2.25 into 5.2.30, and dividing by mc2

1/2
results in:

[
1 xα

xα
Iα
mc2

1/2

] [
ḧ/c1/2

α̈

]
+

 ch
m

0

0
cα
mc2

1/2

[ ḣ/c1/2

α̇

]
+

 kh
m

0

0
kα
mc2

1/2

[ h/c1/2

α

]
=

ρU2c2
1/2

mc2
1/2

( c1/2

U
CLα

c1/2

U
CLα̇

c1/2

U
CMα

c1/2

U
CMα̇

[ ḣ/c1/2

α̇

]
+

[
0 CLα
0 CMα

] [
h/c1/2

α

]
+

[
CLβ
CMβ

] [
β
])

+

[
g/c1/2

0

]
(5.2.31)

Π9 and Π10 represent the time dependency of the system dynamics. This emphasizes
the need to look at the system in non-dimensional time. On the other hand, the natural
frequency of the plunge motion ωh can be defined from the relation between the stiffness
and mass as follows:

ω2
h =

kh
m

(5.2.32)
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Furthermore, by defining the non-dimensional time as τ = ωht, the dynamics with respect
to the non-dimensional time can be expressed as:

x̊ =
dx

dτ
=

dx

d(ωht)
=

1

ωh

dx

dt
=

1

ωh
ẋ (5.2.33)

˚̊x =
d2x

dτ 2
=

dxdx

d(ωht)d(ωht)
=

1

ω2
h

d2x

dt2
=

1

ω2
h

ẍ (5.2.34)

Substituting the non-dimensional time into Equation 5.2.31 and division by ω2
h leads to: 1 xα

xα
Iα
mc2

1/2

[ ˚̊h/c1/2

˚̊α

]
+

[
c̃h 0
0 c̃α

] [
h̊/c1/2

α̊

]
+

[
1 0

0 k̃α(α)

] [
h/c1/2

α

]
=

ρU2c2
1/2

mc2
1/2
ω2
h

( c1/2

U
CLαωh

c1/2

U
CLα̇ωh

c1/2

U
CMαωh

c1/2

U
CMα̇

ωh

[ h̊/c1/2

α̊

]
+

[
0 CLα
0 CMα

] [
h/c1/2

α

]
+

[
CLβ
CMβ

] [
β
])

(5.2.35)

+

[
g/c1/2ω

2
h

0

]
where

c̃h =
ch
kh
ωh (5.2.36)

c̃α =
cα
khc2

1/2

ωh (5.2.37)

k̃α(α) =
kα
khc2

1/2

(5.2.38)

Introducing the Π relation as defined earlier, as

Π1 =
ρc3

1/2

m
(5.2.39)

Π9 =
ωhc1/2

U
(5.2.40)

The constant on the right hand side of the equation, can be rearranged as:

ρU2c2
1/2

mc2
1/2
ω2
h

=
ρc2

1/2

m

U2

c2
1/2
ω2
h

(5.2.41)

g

c1/2ω2
h

=
gc2

1/2

c1/2U2

U2

c2
1/2
ω2
h

(5.2.42)

Note that in this case, a two dimensional aerofoil is being considered where the span is
assumed to be 1 unit length. Thus, the wing surface area S, which used to build the

non-dimensional aerodynamic coefficient is now consider as 2c1/2. Therefore, the term
ρc2

1/2

m

is having a dimension of
ρc2

1/2
b

m
, in which b is the wingspan and considered as 1. Thus,
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ρc2
1/2

m
' Π1, and Equation 5.2.36 can be rearranged into2:

[
1 xα

xα
Iα
mc2

1/2

] [
˚̊h/c1/2

˚̊α

]
+

[
c̃h 0
0 c̃α

] [
h̊/c1/2

α̊

]
+

[
1 0

0 k̃α(α)

] [
h/c1/2

α

]
=

Π1

Π2
9

([
CLαΠ9 CLα̇Π9

CMαΠ9 CMα̇
Π9

] [
h̊/c1/2

α̊

]
+

[
0 CLα
0 CMα

] [
h/c1/2

α

]
+

[
CLβ
CMβ

] [
β
])

+

[
Π11/Π

2
9

0

]
(5.2.43)

Note that the non-dimensional time is not only affected by the dynamic rate but also
should be considered for the control surface input. Therefore, the input design must be
done considering of τ instead of t, using the relation ∆τ = ωh∆t. Furthermore, as Froude
number is a requirement, the velocity scaling now is dependent on the geometry scaling
(Sg = S2

v).

5.2.3 Scaling Results for 2-DoF Model

Based on the previous discussion of non-dimensional equation of motion, the following
subchapter illustrate the usefulness of non-dimensional equations of motion in developing
a subscale model. Based on the Π requirements, the relation between the independent
and dependent scaling factors is presented in Table 5.2. This table presents three different
models:

1. Model A is the baseline model with no scaling of the independent variables param-
eters (as given in Table 5.1).

2. Model B is the model which has the scaling based on the air density, representing
different altitude in the flight envelope.

3. Model C is the model which is four times smaller in geometry with the same Froude
number, resulting in a 50% scaling in velocity compared to the baseline.

Figures 5.2 and 5.3 present the time and frequency response comparisons between the
three different scaling parameters from similar initial conditions. Figure 5.2 presents the
dimensional response while Figure 5.3 presents the non-dimensional response compari-
son. Figure 5.2 shows that the change in the independent variables regarding the air
density (different flight altitude) did not affect the transient dynamics or the steady state
response. This fact is in contrast with the intuitive expectation that the steady-state re-
sponse will be shifted due to the different lift and pitching moment. However, the change
in the aerodynamic force is compensated by the change in the structural properties. This
shows that one subscale model with a particular structural property can only represent a
particular flight condition. However, Model C, which is four times smaller than the actual

2The Π theory is based on a non-dimensional analysis, therefore
ρc2

1/2

m
' m

ρc2
1/2

' Π1.
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Scaling factor Model A Model B Model C

Independent scaling factor :
Geometrical scaling Sg 1 1 1/4

Velocity scaling SU 1 1 1/2
Air Density scaling Sρ 1 1/2 1

Dependent scaling factor :
Mass scaling Π1 1 1/2 1/64

Inertia scaling Π2 1 1/2 1/1024
Damping scaling Π3 1 1/2 1/32

Torsional damping scaling Π4 1 1/2 1/512
Bending stiffness scaling Π5 1 1/2 1/16
Torsional stiffness scaling Π6 1 1/2 1/256

Frequency scaling Π9 1 1 2

Table 5.2: Ideal relation between dependent and independent scaling factor.

model and flies at half of the speed, shows differences in both the transient dynamics as
well as the steady state response. The difference in the transient dynamics is due to the
difference in the frequency; the smaller the size, the higher the frequency response. On
the other hand, the difference in the steady-state dynamics is proportional to the size
difference which illustrates the different aerodynamic loading.

For the case where there are changes in the transient and steady-state dynamics, the non-
dimensional equation of motion is useful. By comparing the response in a non-dimensional
terms, it is easier to compare the response of two different models and ensure similitude.
For example, in Figures 5.3 it is clear that all responses belong to a similar model even
though the frequency response function shows slight differences in the amplitudes. The
differences emphasise that the two models are similar but not the same, even considering
kα further emphasises this point.

Figure 5.4: Comparison of time response and pole position of dimensional and non-
dimensional systems.

It is also interesting to see the comparison of the response from the dimensional equa-
tion and the non-dimensional equation in Figure 5.4. Here, the response from the non-
dimensional equation is converted using c1/2 for the length scale and Π9 for the time scale.
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Both responses present similar steady-state values. However, the transient response is
effected by a phase shift and slightly lower damping ratio. Mathematically the source
of this comes from the fact that normalising the model with frequency, changes the pole
and zero location of the system, which impacts system’s damping. The difference in
the response also emphasises the fact that some manipulation is needed to relate both
dimensional and non-dimensional responses.

5.3 Parameter Variation Study

The main reason for using the non-dimensional equation of motion is to prove that the two
models are similar. Here, the non-dimensional equations of motion are used to analyse
the causal and effect of a distorted model through parameter variation study.

For this purpose, the Equation 5.2.43 is modified by removing the input matrix and
added initial aerodynamic force and moment. Thus, Equation 5.2.43 becomes:

[
1 xα

xα
Iα
mc2

1/2

] [
∆̊h̊/c1/2

∆̊α̊

]
=

 Π1

Π9
CLα − c̃h

Π1

Π9
CLα̇

Π1

Π9
CMα

Π1

Π9
CMα̇ − c̃α

[ ∆h̊/c1/2

∆α̊

]
+

 −1
Π1

Π2
9

CLα

0
Π1

Π2
9

CMα − k̃α(α)

[ ∆h/c1/2

∆α

]
+

[
Π11/Π

2
9

0

]
+

[
CL0

CM0

]
(5.3.1)

the ∆ here is used to show the perturbed value from its initial condition, while CL0 and
CM0 are the lift force and pitching moment at the initial condition which define as:

CL0 = CLαα0 (5.3.2)

CM0 = CMαα0 (5.3.3)

where α0 is the initial incidence angle setting.

There are four distorted models to be discussed in the following section, which includes
the mismatched in the Froude number, aerodynamic characteristics, mass moment of
inertia, and structural damping value.

Froude Number Distortion

In the case when the gravitational force is essential, the Froude number is a criteria
needs to match. However, the consequences of matching the Froude number is that
the velocity scaling is now dependent on the geometry scaling. It is worth noted that
geometry, velocity and air density scaling are the independent variables which determine
the dependent parameter such as the structural stiffness scaling. Figure 5.5 presents the
comparison of a model that is scaled correctly and a model that scaled for a higher Froude
number. Here, the higher Froude number obtained from a higher velocity scaling (1.5
times higher), which then translated to higher structural stiffness as presented in Table
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5.3 as a distorted model. Thus, the system has a lower amplitude response, and this is
apparent in the steady-state response in plunging motion. However, as the frequency is
normalised, the response of both states are still at a similar frequency.

Figure 5.5: Distorted model in Froude number.

Parameter Units Model A Scaled Model Distorted Model 1

c1/2 m 0.135 0.540 0.540
U m/s 20 40 60
ρ kg/m3 1.225 1.225 1.225
m kg 12.387 792.768 792.768
Iα kg.m2 0.065 665.6 665.6
kh N/m 1422.2 22755 51199
kα N/s2 282 72192 162432
ch N.s/m 82.29 2633.3 3949.9
cα N.s/rad 3.6 1843.2 2764.8
CLα /rad 2π 2π 2π
CMα /rad -0.628 -0.628 -0.628
CL0 - 0 0 0
CM0 - 0 0 0

The distorted model 1 are having the independent scaling factor of Sg=4, SU=4,
Sρ=1. The dependent scaling factor are then calculated based on those independent
scaling factor as presented on Table 5.2. Note that for ideal scaling, SU=2.

Table 5.3: Parameter for distortion in Froude number study.

The fact that it has lower amplitude response means that in the linear area, the distorted
model is still useful. This fact emphasises the statement by Ouellette [67] that the
Froude number is less significant for short period mode and structural dynamics. On the
contrary, when non-linearity at higher amplitude exist, the model can react differently,
emphasising the statements by Wan and Cesnik [66], which highlights the importance of
Froude number similarity. By looking at Figure 5.5, especially the time history of h̃, it
can be seen that the difference in Froude number impacts the steady-state response.
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Distortion in Aerodynamic Coefficient

One of the consequences of not matching Reynolds and Mach number is the difference
in the aerodynamic coefficients [46]. Therefore, a study of the distorted model in aero-
dynamic coefficient given in Figure 5.6 as a comparison between Model A and distorted
model that differ in the lift and moment coefficient (1.5 times higher). Here, the distorted
model 1 is having ideal scaling relation with the actual model, except for the aerodynamic
coefficient value as presented in Table 5.4. Noted that the change is on the aerodynamic
slope and even the value is changing, it still assumed to be around the linear region and
considered to be constant.

Figure 5.6: Distorted model in lift coefficient.

Parameter Units Model A Scaled Model Distorted Model 1
c1/2 m 0.135 0.540 0.540
U m/s 20 40 40
ρ kg/m3 1.225 1.225 1.225
m kg 12.387 792.768 792.768
Iα kg.m2 0.065 665.6 665.6
kh N/m 1422.2 22755 22755
kα N/s2 282 72192 72192
ch N.s/m 82.29 2633.3 2633.3
cα N.s/rad 3.6 1843.2 1843.2
CLα /rad 2π 2π 3π
CMα /rad -0.628 -0.628 -0.942
CL0

- 0 0 0
CM0

- 0 0 0
The distorted model 1 are having the independent scaling factor of Sg=4, SU=2,
Sρ=1. The dependent scaling factor are then calculated based on those independent
scaling factor as presented on Table 5.2

Table 5.4: Parameter for distortion in aerodynamic coefficient study.

Figure 5.6 shows that the non-dimensional time response of Model A and the distorted
model in aerodynamic coefficient is almost similar, except for the change in the aerody-
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namic force and moment, which has higher amplitude. Counterintuitive with the relation
in Equation 5.3.1, where the change in CLα and CMα are effecting the unsteady param-
eter. The comparison of the scaled model shows that in this case, the structural forces
are dominant compares to the aerodynamic forces.

Distorted model in the Mass Moment of Inertia Value

It is possible that during the manufacturing process, the subscale model has errors in the
mass distribution, which leads to a higher mass moment of inertia. Figure 5.7 presents
the comparison of Model A and a distorted subscale model that has a different mass
moment of inertia value (1.5 times higher), as given in Table 5.5.

Figure 5.7: Distorted model in Iα value.

Parameter Units Model A Scaled Model Distorted Model 1
c1/2 m 0.135 0.540 0.540
U m/s 20 40 40
ρ kg/m3 1.225 1.225 1.225
m kg 12.387 792.768 792.768
Iα kg.m2 0.065 665.6 998.4
kh N/m 1422.2 22755 22755
kα N/s2 282 72192 72192
ch N.s/m 82.29 2633.3 2633.3
cα N.s/rad 3.6 1843.2 1843.2
CLα /rad 2π 2π 2π
CMα /rad -0.628 -0.628 -0.628
CL0

- 0 0 0
CM0

- 0 0 0
The distorted model 1 are having the independent scaling factor of Sg=4, SU=2,
Sρ=1. The dependent scaling factor are then calculated based on those independent
scaling factor as presented on Table 5.2, except for Π6 which is 384, ideally 256.

Table 5.5: Parameter for distortion in mass moment of inertia coefficient study.
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The figure shows that the change in inertia value directly affects the angle of attack
response, with a small effect on the plunge response. Time histories show that the α of
model A is more damped than the distorted model. Also the frequency response of the
distorted model is greater than model A.

Distorted model in the Structural Damping Value

Another possibility of uncertainties in the model property is the structural properties,
such as the structural damping value. Figure 5.8 presents a case study of a distorted
model, where the structural damping value is higher than expected (1.5 times more) as
presented in Table 5.6.

Figure 5.8: Distorted model in damping.

The figure shows that due to higher damping, the response of the system has a smaller
amplitude response and settled faster. In the case where transient dynamics is essential
to observe, in flutter case, for example, an attempt of having a model with comparable
damping characteristics is important.
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Parameter Units Model A Scaled Model Distorted Model 1
c1/2 m 0.135 0.540 0.540
U m/s 20 40 40
ρ kg/m3 1.225 1.225 1.225
m kg 12.387 792.768 792.768
Iα kg.m2 0.065 665.6 665.6
kh N/m 1422.2 22755 22755
kα N/s2 282 72192 72192
ch N.s/m 82.29 2633.3 3949.9
cα N.s/rad 3.6 1843.2 2764.8
CLα /rad 2π 2π 2π
CMα /rad -0.628 -0.628 -0.628
CL0

- 0 0 0
CM0

- 0 0 0
The distorted model 1 are having the independent scaling factor of Sg=4, SU=2,
Sρ=1. The dependent scaling factor are then calculated based on those independent
scaling factor as presented on Table 5.2, except for Π3 and Π4 which is 1.5 times
higher than the ideal factor.

Table 5.6: Parameter for distortion in damping coefficient study.

Discussion of the Results

The parameter variation study as presented earlier, shows the non-dimensional time re-
sponse of a distorted model compared with the actual model. Since the model consist of
many parameter, the study also try to show the dependency of some parameters to the
dynamic characteristics of the model. To analyse the dependence of each parameter the
Equation 5.3.1 is then translated into state-space form as follows:
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(5.3.4)

Which can be simply written as:
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 (5.3.5)
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where

 Lḣ Lα̇ Lh Lα
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The value of these elements can be quantified using the least square approach on Equation
5.3.5 based on the following relations:

˚̊α = Lα̊α̊ + Lαα + L̊hh̊/c1/2 + Lhh/c1/2 + LC (5.3.8)

˚̊h/c1/2 = Mα̊α̊ + Mαα + M̊hḣ+ Mhh/c1/2 + MC (5.3.9)

in which α̈, ḧ, α̇, ḣ, α and h can be obtained from the time response measurement of the
simulated time response. And Lα̇, Lα, Lḣ, Lh, LC , Mα̇, Mα, Mḣ, Mh, and MC are the identified
parameter that builds the system matrix.

By estimating this parameter for both the ideal and distorted case, one can compare the
results and used it to adjust the parameter in the distorted model to match as close as
possible to the ideal case. The identified parameter of the ideal model, as well as the
distorted model as discussed earlier are given in Table 5.7.

Parameter Ideal Model Distorted Model
Froude Aero Coef. Inertia Damping

LC 0.65 0.29 0.65 0.64 0.65
Lα̊ -0.68 -0.68 -0.70 -0.67 -1.00
Lα -1.02 -1.02 -1.02 -1.01 -1.02
L̊h 0.08 0.08 0.05 0.04 0.14
Lh 0.31 0.31 -0.01 -0.01 0.31
MC -0.06 -0.02 -0.06 -0.04 -0.06
Mα̊ 0.06 0.06 0.06 0.04 0.08
Mα 0.09 0.09 0.09 0.06 0.09
M̊h -0.53 -0.53 -0.52 -0.35 -0.79
Mh -3.83 -3.83 -3.81 -2.53 -3.83
ω̃1 1.01 1.01 1.01 1.01 1.01
ω̃2 1.96 1.96 1.96 1.59 1.95
ζ1 0.334 0.334 0.347 0.335 0.489
ζ2 0.136 0.136 0.134 0.109 0.204

Table 5.7: Identified parameter for ideal and distorted model.

Table 5.7 also presents the non-dimensional frequency and damping of the system based
on the eigenvalue calculation of the identified A matrix. The calculated non-dimensional
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frequency and damping are used as a basis in building a dimensionally scaled model.
In this case, two models are considered to be dynamically scaled if the non-dimensional
frequency and damping are within a considerable range. The range of similarity is unique
depending on the needs of the experiment. Here, the frequency is expected within 5%
range, where the damping is still considered similar within 25% range.

From the four cases of the distorted model, it shows that the distortion in Froude number
has a similar dynamic response with the ideal case which is supported by the exact number
of the identified parameter that builds the state matrix. However, it does differ in the
value of LC , which suggest a different static response, as showed previously in Figure 5.5.
Adjusting the value related to LC can result in matching both static and dynamic response
of both models. As showed in Equation 5.3.7, the adjustment of the static response is
possible by adding L0 value. Physically this is conducted by having a different angle of
attack setting, as mentioned in Equation 5.3.3. Figure 5.9 and Table 5.8 presents the
comparison of time response and the parameter value respectively for both the ideal and
distorted model 2. Distorted model 2 is the distorted model in Froude number with
adjusted initial value. Noted that the distorted model 2 is the adjusted model from the
distorted model 1 (as presented in Figure 5.5).

Figure 5.9: Distorted model in Froude number with changes in L0 value.

On the other hand, for the distorted model in the aerodynamic coefficient, the results in
Table 5.7 shows that the change in the frequency and damping value were less than 5%.
Suggesting that, in this case, the distorted model in the aerodynamic coefficient has a
negligible effect on the non-dimensional time response and no adjustment needed to the
distorted model. However, the fact that no change needed in the aerodynamic coefficient
distortion might be a unique case and needs to be checked for other flight conditions.

Furthermore, the results of the identified distorted model parameter show that distorted
model in the mass moment of inertia and structural properties has a different dynamic
response compare to the ideal scaled model. The distorted model in the mass moment of
inertia changes the frequency response of 19%, while the distorted model in the structural
damping changes the damping response of the model for more than 40%.
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Parameter Units Model A Scaled Model Distorted Model
1 2

c1/2 m 0.135 0.540 0.540 0.540
U m/s 20 40 60 60
ρ kg/m3 1.225 1.225 1.225 1.225
m kg 12.387 792.768 792.768 792.768
Iα kg.m2 0.065 665.6 665.6 665.6
kh N/m 1422.2 22755 51199 51199
kα N/s2 282 72192 162432 162432
ch N.s/m 82.29 2633.3 3949.9 3949.9
cα N.s/rad 3.6 1843.2 2764.8 2764.8
CLα /rad 2π 2π 2π 2π
CMα /rad -0.628 -0.628 -0.628 -0.628
CL0 - 0 0 0 0.345
CM0 - 0 0 0 0

Table 5.8: Parameter for distortion in Froude number study.

In the case of the distorted model in the mass moment of inertia, Table 5.7 shows that
the non-dimensional frequency of the second mode was smaller than expected. The
fact that the frequency response is different also presents in the non-dimensional time
histories, Figure 5.7. The identified parameter at Table 5.7 shows that most of the
different parameter were those that related to M parameter. In this case, it will be easier
to adjust the parameter that closely related with this M parameter, which is stiffness and
mass properties. As the distorted model has a more significant mass moment of inertia
properties than expected, added more mass would only increase the mass moment of
inertia properties and resulted in a much more different frequency. Thus, it is preferable
to adjust the stiffness properties, in this case, the rotational stiffness (kα). Trial and error
can be conducted to adjust the distorted model so that it has a closer non-dimensional
frequency response.

Figure 5.10: Distorted model in Iα value with changes in kα value.
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Parameter Units Model A Scaled Model Distorted Model
1 2

c1/2 m 0.135 0.540 0.540 0.540
U m/s 20 40 40 40
ρ kg/m3 1.225 1.225 1.225 1.225
m kg 12.387 792.768 792.768 792.768
Iα kg.m2 0.065 665.6 998.4 998.4
kh N/m 1422.2 22755 22755 22755
kα N/s2 282 72192 72192 108288
ch N.s/m 82.29 2633.3 2633.3 2633.3
cα N.s/rad 3.6 1843.2 1843.2 1843.2
CLα /rad 2π 2π 2π 2π
CMα

/rad -0.628 -0.628 -0.628 -0.628
CL0

- 0 0 0 0
CM0

- 0 0 0 0

Table 5.9: Parameter for distortion in mass moment of inertia coefficient study.

Figure 5.10 and Table 5.9 presents the comparison of time response and the parameter
value respectively for both the ideal and adjusted model which has different mass moment
of inertia value. Noted that the distorted model is labelled as distorted model 1 (as
presented in Figure 5.7), while the adjusted distorted model labelled as distorted model 2
(as given in Figure 5.10). The distorted model 2 is having a more comparable frequency
response, although it has a different damping response. The inability to match all the
characteristics is a trade-off one should consider when developing a dynamic subscale
model.

The last case of the distorted model is the distortion of the damping properties, in which
the material properties of the subscale model can be the source of the distortion. Table
5.7 shows that the distorted model in the damping properties has a more comparable
frequency response. However, it damped faster than the ideal model. Furthermore, from
the identified parameter, it can be seen that almost all the identified parameter is similar
except the parameter that is related to α̇ and ḣ. Here, the mass properties will be used
to adjust the distorted model to have a closer response with the ideal scaled model.

Parameter Units Model A Scaled Model Distorted Model
1 2

c1/2 m 0.135 0.540 0.540 0.540
U m/s 20 40 40 40
ρ kg/m3 1.225 1.225 1.225 1.225
m kg 12.387 792.768 792.768 1030.6
Iα kg.m2 0.065 665.6 665.6 865.3
kh N/m 1422.2 22755 22755 22755
kα N/s2 282 72192 72192 108288
ch N.s/m 82.29 2633.3 3949.9 3949.9
cα N.s/rad 3.6 1843.2 2764.8 2764.8
CLα /rad 2π 2π 2π 2π
CMα /rad -0.628 -0.628 -0.628 -0.628
CL0 - 0 0 0 0
CM0

- 0 0 0 0

Table 5.10: Parameter for distortion in damping coefficient study.

The mass properties are chosen as an adjusted variable because the non-dimensional
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Figure 5.11: Distorted model in damping with changes in mass properties.

frequency is comparable with the ideal model, therefore no adjustment needed in stiffness
properties. Furthermore, the static response of both models is also similar, meaning that
no initial incidence setting needs to be adjusted. Table 5.10 presents the parameter
comparison of the ideal model, the distorted model in damping coefficient (denote as
distorted model 1), and the distorted model with update mass properties (denote as
distorted model 2). The comparison of the non-dimensional time response for distorted
model 1 and the ideal scale model is presented earlier in Figure 5.8, while the comparison
between the distorted model 2 and the ideal scale model is given in Figure 5.11. Figure
5.11 shows that by updating the mass properties, the damping response of the distorted
model 2 was closer to the ideal scaled model, altough the static response in height is
differ.

The study of the distorted model is essential for developing a subscale model. In reality,
the cause of the distorted model may come from the manufacturing error, uncertain
in the material properties, or physical limitation. As some of these uncertainties can
not easily be quantified, the adjustments needed for correcting the model is relying on
experimental test and engineering intuition. However, it is preferable to adjust the model
which is physically more accessible, such as changing the mass properties, adjusting the
initial condition, or changing the stiffness properties. The study also shows that changing
one of the parameters can impact the other parameter, therefore a trade-off needs to be
considered.

5.4 Summary

The work discussed in this chapter demonstrates the importance of using non-dimensional
terms for the analysis and assessment of scaling effects, and moreover it also emphasises
the adjustments needed to compensate for distorted models where key similitude require-
ments are not met. The following problems that must be considered when developing
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and interpreting test results from subscale models were highlighted:

• The non-dimensional formulation of the equation of motions is critical for developing
and comparing the dynamics of subscale models.

• Comparison of the dynamic behaviour of different subscale models and full-scale
aircraft must be based on non-dimensional time and non-dimensional frequency.

• Potential compromises in matching Froude number and/or aerodynamic coefficients
for subscale models can be addressed through small modifications in key test pa-
rameters. For example via adjustments in angle-of-attack to ensure similar lift
coefficients.

A simple theoretical model of a 2DoF pitch plunge aerofoil has been the use-case for this
investigation and the study has provided insight into the fundamental trade-offs needed
to satisfy the requirements for similitude. However, practical aspects of applying this
theoretical scaling approach are discussed in the following chapter.
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CHAPTER6
HAR Wing Subscale Design

In this chapter, the concept of similitude is used to develop a subscale model of a High
Aspect Ratio (HAR) wing. The work reported in this chapter is part of the BEAm
Reduction and Dynamic Scaling (BeaRDS ) programme which aims to introduce the use
of dynamically scaled models at the conceptual or early design stage. Here the focus is
to develop a process for designing, manufacturing and testing dynamically scaled HAR
wings [23] that are known to pose significant aeroelastic challenges.

Figure 6.1: HAR wing scaling process.

159
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The work looks more at the application of scaling laws and the development of theoretical
models as prediction tools. The workflow reflects the methods used in developing subscale
models and is shown in Figure 6.1. This chapter begins with a definition of the full-scale
wing design, the assumptions behind the design development and the expected behaviour.
These are followed by the derivation of the scaling laws required for the development of the
subscale model. This chapter also provides a description of the fully coupled aeroelastic
model used to compare the dynamic response of both the full scale aircraft and subscale
models. The theoretical model is also used to evaluate the potential problem in developing
a subscale model. The chapter continues with the development of the physical subscale
model and associated challenges1, along with the experimental validation through GVT
and static wind tunnel testing. The chapter concludes by detailing the lessons learnt.

6.1 Conceptual Full-Scale Wing Design

The conceptual wing used for this study is known as XB-2 (eXperimental BeaRDS 2)
and is presented in Figure 6.2. This figure also presents the axes system used when
developing the model. The XB-2 wing is a simple and idealistic high aspect ratio wing
with 0o sweep angle at 25% of the chord, aspect ratio of 18.8, and a mean aerodynamic
chord of 2.75 meters. The wing has a half-span of 24 meters and it utilises the NACA
23015 aerofoil profile. It has been optimised to cruise at 190 m/s and 35,000 ft [197]. The
XB-2 is equipped with two spoilers and an aileron and designed such that the elastic axis
is located around the aerodynamic centre in order to minimise the torsional aerodynamic
loads.

Figure 6.2: BeaRDS (XB-2) full-scale design.

This wing is designed for an aircraft similar to the Airbus A-320 which has a target
MTOW of around 73,500 kg. Torenbeek estimated that the total wing weight is around
12% of MTOW [198]. Thus, the half-span wing mass was designed to be 4410 kg and was
distributed linearly such that the first structural mode (in bending) occurred at around
0.7 Hz (see Figure 6.3). Theoretically, this first structural mode is close to the aircraft’s
short period pitch oscillation mode, indicating that there could be coupling between the
rigid body modes and the aeroelastic modes. The wing is designed to be flexible, yet
with deflections lower than 20% span so that wing deformation can be predicted using

1The physical subscale model is expected to represent the theoretical subscale model as part of vali-
dating the design process, especially those components related to nonlinear dynamic behaviour. However,
due to the limitations of manufacturing processes the physical subscale model did not fully represent the
theoretical subscale model. In this case, experiments using the physical subscale model can be used to
validate the theoretical model being developed.
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Figure 6.3: XB-2 Structural mass distribution (blue:node, red:lumped mass).

a linear approach. The reader is referred to References [197, 199] for a more thorough
discussion on the XB-2’s conceptual full-scale design methodology. A brief summary of
XB-2 specifications is given in Table 6.1.

Parameter Symbol Units A320 XB-2

Operating Weight Empty OWE kg 42,100 42,100
Maximum Take-Off Weight MTOW kg 73,500 73,500
Maximum Payload Weight Wpay kg 20,400 20,400
Cruise Altitude h m 11,280 11,280
Cruise Velocity U∞ Ma 0.78 0.6

Aerofoil BAC 449 NACA
Thickness ratio t

c - 0.113 0.150
Lift at zero AoA Cl0 - 0.208 0.125
Zero lift AoA α0 rad 0.031 -0.022

Span b m 34.09 48.00
Aspect Ratio AR - 9.5 18.8
Reference area Sref m2 122.4 122.4
Sweep (LE) ΛLE rad 0.471 0.026
Sweep ( c4) Λ c

4
rad 0.436 0.000

Root Chord cb m 6.10 3.78
Streamwise cb position xb m 12.55 -
Tip Chord ct m 1.62 1.32
Streamwise ct position lt m 20.35
Taper Ratio λ - 0.240 0.350
Mean Aerodynamic Chord c̄ m 4.29 2.75

Table 6.1: Specification of XB-2 aircraft concept in comparison with the A320 aircraft.

A beam model was developed to represent the structural dynamics and it consisted of 25
nodes where each node has 6 DoF: three translational and three rotational. An in-house
structural dynamic code based on Timoshenko beam element theory [200] was used to
develop the structural model of the full-scale wing. The beam model also consisted of
distributed lumped masses as shown in Figure 6.3. The mass distribution ensured that
there was enough separation between the first bending and the first torsional mode.
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Figure 6.4: Mode shape of the theoretical full-scale wing.
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Furthermore, NASTRAN [176] was used to validate the in-house tools as well as to ob-
serve the structural characteristics (such as modal frequencies and shapes) of the full-scale
wing. Figure 6.4 illustrates the first four mode shapes of the full-scale wing. Furthermore,
for experimental purposes, NASTRAN was also used to predict the flutter speed of the
model. Also, the mass and stiffness matrices obtained from NASTRAN is then used as
inputs for a theoretical framework model (BeaRDSTM ) to predict the behaviour of the
conceptual full scale model. As BeaRDSTM will be used to predict the full scale model,
validation work of BeaRDSTM is of importance. The validation work is presented in much
later section via the subscale model, however it will be limited to the static case.

6.2 Theoretical Subscale Model Development

This section discusses the development of the subscale model based on the conceptual full-
scale wing as presented earlier. The subscale model was developed through the application
of the scaling process presented in Figure 6.5. Here, the scaling laws were applied to define
the structural characteristics of the subscale model, while the aerodynamics were scaled
down through the selection of a suitable flight condition. A theoretical framework was
also developed to compare the theoretical aeroelastic response of the full-scale wing and
the subscale model.

Figure 6.5: Flowchart of the scaling process.

Various names are going to be used in the following discussion for assigning the subscale
model, and for clarity the reader is referred to the Table 6.2.

Name Configuration / Note
Conceptual model ver.1 Initial model / scaled down from XB-2
Spar-Skin Manufactured spar and skin
Conceptual model ver.2 20% more weight from ver.1
Conceptual model ver.3 Updated from ver.2 / adopting spar and skin
SSM Manufactured spar, skin and lumped masses
Wind Tunnel Manufactured spar, skin, lumped mass and rod

Table 6.2: Evolution of the subscale model.
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The illustration of the subscale model development is presented in the flowchart given in
Appendix C.

6.2.1 Theoretical Framework

A fluid-structure interaction framework known as BeaRDS Theoretical Model (BeaRDSTM )
was developed to observe the aeroelastic response of the wing design. The motivation
behind the development of the theoretical framework was the need for:

1. checking the scaling procedures to ensure similitude between the theoretical subscale
model and the full-scale wing and,

2. a tool to design the experiments for system identification purposes.

The framework architecture was based on the CA2LM framework [142, 143] as mentioned
in Chapter 4.1. However, while the CA2LM framework accommodates the full aircraft
configuration (see Figure 4.2), BeaRDSTM only considers the wing constrained at the root.
Figure 6.6 presents the workflow of the BeaRDSTM and it illustrates the main difference
between CA2LM and BeaRDSTM . It is evident that the BeaRDSTM ignores the 6 DoF
equations of motion.

Figure 6.6: Workflow of BeaRDSTM , simplification from CA2LM framework (gray).

The input to BeaRDSTM are the control surfaces (in this case aileron and spoiler) and
atmospheric disturbance. The output of the BeaRDSTM is the structural response as well
as the aerodynamic forces and moments along the wing. The simulation framework needs
initialisation data which contains flight conditions, such as velocity, air density and the
initial angle of attack relative to the root, as well as the structural properties such as the
mass and stiffness of the structure.

The structural and aerodynamic blocks are the main module of BeaRDSTM . However,
to accommodate differences in wing geometry and flight conditions, several adjustments
were needed and these are detailed below:
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Structural Dynamics Model

BeaRDSTM solves the structural dynamic equation in modal form and requires the mass
[M ] and stiffness [K] matrices as inputs. The framework also allows automatic reading
of the mass and stiffness matrices from NASTRAN ‘.o4’ files. The only fundamental
difference between BeaRDSTM and the CA2LM framework is the definition of the structural
damping coefficient. In the CA2LM framework the damping coefficient is fixed as 3%,
while in BeaRDSTM the damping matrix [C] is a function of the stiffness matrix [50], as
follows:

[C] = λ [K] (6.2.1)

where λ is a constant of proportionality. In the case of the full-scale wing λ was chosen
to be 0.013 [197], and this number was scaled accordingly for the subscale model.

Aerodynamics Model

Overall, only minor adjustments from CA2LM framework were made to develop the aero-
dynamics block of BeaRDSTM . The adjustment included the change in the number of
aerodynamic strips, the aerodynamic look-up table data and the change in the indi-
cial model. For simplification, the location of the aerodynamic strips in BeaRDSTM were
adjusted to be similar with the structural nodes. This leads to 25 equally distributed
aerodynamic strips along the semi-span2. To calculate the aerodynamic forces, the aero-
dynamics block reads data from a set of look-up tables. As this wing has a different
geometrical shape from the AX-1, an aerodynamic data set for the relevant aerofoil was
generated by Carizzales et al. using AVL [202]. The aerodynamic coefficient data, as
functions of Mach and Reynolds numbers, are presented in Appendix A. A significant
adjustment was made to the aerodynamic indicial model for the subscale model. As the
flight condition chosen from the subscale model allows for the incompressible flow as-
sumption, the model assumes that the indicial angles change instantaneously. Therefore,
the apparent mass (non-circulatory term) is not essential [143], and the time constant
coefficient in the original CA2LM model was ignored3. However, for the full-scale wing
no changes in the aerodynamic indicial model were made.

6.2.2 Scaling Law

The simplified aeroelastic equations of motion can be written concisely as follows:

[M ] d̈ + [C] ḋ + [K] d︸ ︷︷ ︸
structure

= [Ak] d + [Ac] ḋ + [Am] d̈︸ ︷︷ ︸
aerodynamics

(6.2.2)

2CA2LM framework has 25 aerodynamic strips along the wing semi-span in a cosine distribution, the
difference in the distribution of the aerodynamic strips might affected the accuracy of the wing model
[201]

3The reader is referred to Chapter 4.1 as well as Reference [143] for a comprehensive discussion on
the aerodynamic model
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where d is the state vector that represents 6 DoF:

d = [ x y z φ θ ψ ]T (6.2.3)

while [M ] is the mass matrix that consists of mass Sm and inertia SI for each node. [K] is
the structural stiffness that consists of bending and torsional stiffnesses. The right hand
side of the equation represents the aerodynamic force, Ak, Ac, and Am which are the
aerodynamic stiffness, damping and mass respectively. Both aerodynamic stiffness and
damping contribute to the overall aerodynamic forces and moments. In this equation the
gravitational contribution is ignored. It should be noted that the half wing configuration
is constrained at the root and consequently no rigid body dynamics can be observed.

Solving Equation 6.2.2 using a direct solver method in MATLAB is computationally
expensive due to sparse system matrices that require extremely small time steps. To
overcome this issue, the generalised method as presented in Equation 4.3.7 is preferable.
Here, a similar approach of non-dimensional mode shapes as discussed in Chapter 5.2.2
is utilised, by defining:

d =


b 0 0 0 0 0
0 b 0 0 0 0
0 0 b 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 d̄ = T d̄ (6.2.4)

where

d̄ =
{
x̄ ȳ z̄ φ θ ψ

}
(6.2.5)

and

d̄ = Φ̄η̄ (6.2.6)

Therefore, Equation 6.2.2 can be transformed into modal coordinates such that:

〈m〉 ¨̄η + 〈2mζω〉 ˙̄η +
〈
mω2

〉
η̄ = [ak] η̄ + [ac] ˙̄η + [am] ¨̄η (6.2.7)

where the left hand side of the equation are diagonal matrices of:

〈m〉 = Φ̄TT T [M ]T Φ̄ (6.2.8)

〈c〉 = Φ̄TT T [C]T Φ̄ = 〈2mζω〉 (6.2.9)

〈k〉 = Φ̄TT T [K]T Φ̄ =
〈
mω2

〉
(6.2.10)

Furthermore, using the similitude relation as presented in Chapter 5, the non-dimensional
equation of motion in the modal form is defined as:

〈m̄〉̊ ˚̄η + 〈2m̄ζω̄〉˚̄η +
〈
m̄ω̄2

〉
η̄ =

π2

π2
9

(
[āk] η̄ + π9 [āc]˚̄η + π2

9 [ām ]̊ ˚̄η
)

(6.2.11)

where π2 =
I

ρb5
and π9 =

ωb

U
is the inertia ratio and reduced frequency respectively. The
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diagonal elements of 〈m̄〉 and 〈ω̄〉 are the non-dimensional modal mass and frequency
with respect to the first mode shape.

In developing the scaling laws, the similitude relations based on the repeating variables
must be defined. The similitude relations consider geometry, velocity and air density,
and these are dictated by the limitation of the wind tunnel. Based on the wind tunnel
characteristics (Cranfield 8x6 Low-Speed Tunnel [203], see Table 6.3) and the full-scale
wing (see Figure 6.2), the scaling laws have the following impact:

1. Given the subscale model is built for a wind tunnel experiment, it should be devel-
oped by considering the dimensions of the test section. Also, by taking into account
the boundary layer of the tunnel wall, the scaled wing should only occupy a max-
imum of 90% of the test section. Since, this limitation dictates the geometrical
scaling relation, the chosen geometrical scale is 1:16.

2. Air density based scaling takes into account the flight condition being considered
for the full-scale aircraft, and its simulation in the wind tunnel. By considering the
ISA atmosphere for the scaled model and cruise condition of the full-scale aircraft
at 35,000 ft, this gives an air density ratio of 3.23:1.

3. Although the equations of motion do not consider the gravitational effect, implying
that Froude number similarity is not important. However, matching Froude number
is still considered in this case study because it dictates the relation between velocity
and geometrical scaling. The velocity scale is given as square-root of the geometrical
scale, resulting in a velocity scale of 1:4.

Test Section : 2.4 m x 1.8 m
Mach number : 0.15 (max)
Flow Speed : 5 – 50 m/s
Reynolds number : 3.6 ×106 /m
Dynamic Pressure : up to 1.5 kN/m2

Temperature : Ambient Temperature

Table 6.3: Specification of Cranfield 8x6 low speed tunnel (Obtained from Reference
[203]).

Table 6.4 presents the independent scaling laws that consist of length, air density and ve-
locity. These dictate the dependent scaling laws such as mass, inertia, structural stiffness
(bending and torsional) and non-dimensional time.

The assumption in the development process has been that the non-dimensional aerody-
namic properties (aerodynamic coefficients) are kept constant by maintaining a similar
aerodynamic shape. This assumption is, in fact, neglecting the importance of Reynolds
number effect to the aerodynamic coefficients as previously explained in Section 2.1.1.
However, as it is challenging to satisfy the Reynolds number similarity, here the forces
and moments acting on the subscale model are assumed to be proportional to those of
the full-scale wing; thus, reducing the aeroelastic problem to a structural problem.

The mass and stiffness matrices, as given in Equation 6.2.2, represent the structural
problem. Note that the damping matrix is assumed to be a function of mass and stiffness
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Scaling Factor
Dimension Unit π Scaled Model Full Scale

Length L Sg 1 16
Air Density ML−3 Sρ 3.23 1
Velocity LT −1 SU 1 4

Mass M S̃M = SρS
3
g 1 163

Inertia ML2 S̃I = SρS
5
g 1 165

Structural Stiffness MT −2 S̃K = SρS
2
USg 1 79.33

Torsional Stiffness ML2T −2 S̃G = SρS
2
US

2
g 1 2.03×104

Non-dimensional time T S̃T =
Sg
SU

4 1

Proportional Structural Damping T −1 S̃λ =
SU
Sg

1 4

Table 6.4: Scaling factor used for BeaRDS .

and it will be scaled accordingly. However, it is worth mentioning that due to the various
units in the state matrix (see Equation 6.2.4), the contents of the mass and stiffness
matrices correspond to these dimensions. For example, the mass matrix given by [50, 143]:

[M ] =


m
0 m
0 0 m Symmetric
0 mz my Ix
mz 0 −mx −Ixy Iy
−my −mx 0 −Ixz −Iyz Iz

 (6.2.12)

The diagonal terms of the mass matrix are in kg and kgm2, while some of the off-diagonal
terms (mx, my, and mz) are in kgm. Similarly, the variables that build the stiffness
matrix have three different dimensions. Therefore, by utilising the T matrix as defined
in Equation 6.2.4, the mass and stiffness matrices are transformed into:[

M̃
]

= T T [M ]T (6.2.13)[
K̃
]

= T T [K]T (6.2.14)

By doing so, the mass matrix is now in the uniform dimension of kgm2 and similarly the
stiffness matrix is in the dimension of kgm2/s2. This simplifies the process needed to
scale down the whole matrix using the following relation:[

M̃sc

]
= S̃I

[
M̃
]

(6.2.15)[
K̃sc

]
= S̃KS̃

2
G

[
K̃
]

(6.2.16)

in which
[
M̃sc

]
and

[
K̃sc

]
are the mass and stiffness matrices for the subscale model with

consistent units, while S̃I , S̃K , and S̃G are detailed in Table 6.4.

Furthermore, the application of the scaling factors in Table 6.4 yield the geometrical
definition of the scaled model as presented in Table 6.5. It is worth noting that the
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Parameter Symbol Units XB-2 xb-2
Cruise Altitude h m 11,280 0

Air Density ρ kg/m3 0.3796 1.225
Cruise Velocity U m/s 190 47.5
Aspect Ratio AR - 18.8 18.8

Semi span b m 24 1.5
Reference area Sref m2 122.4 0.478

Sweep (LE) ΛLE rad 0.026 0.026
Sweep ( c

4
) Λ c

4
rad 0.000 0.000

Root Chord cb m 3.78 0.236
Tip Chord ct m 1.32 0.083

Taper Ratio λ - 0.350 0.350
Mean Aerodynamic Chord c̄ m 2.75 0.172

Aerofoil - - NACA 23015 NACA 23015
Aerofoil - - NACA 23015 NACA 23015

Reynold Number (c̄) Re - 4.39 ×107 6.87×105

Mach Number Ma - 0.5584 0.14
Estimated Mass m kg 4410 3.42

1st Bending Freq. ωη1 rad/s 4.4 17.4
2nd Bending Freq. ωη2 rad/s 21.7 86.9
1st Lagging Freq. ωη3 rad/s 22 87.9
1st Torsion Freq. ωη4 rad/s 38.3 154

Table 6.5: Dimension of the full-scale XB-2 model and subscale xb-2 model.

table also presents the Reynolds and Mach number for the subscale model, as well as the
expected structural frequencies.

6.2.3 Theoretical Comparison

Theoretical models in MATLAB/Simulink were used to compare the aeroelastic response
of the full-scale (XB-2) wing and the subscale (xb-2) model to assess the effects of scal-
ing. If the subscale model was scaled correctly, a comparable aeroelastic response was
expected. This section starts by first comparing the structural dynamics and continues
with the comparison of aeroelastic response through the BeaRDSTM .

Structural Comparison

The structural model was scaled down based on the relations given in Table 6.4 and by
applying Equations 6.2.15 and 6.2.16. The comparison between the structural matrix of
the full-scale wing and subscale model was achieved by analysing the structural char-
acteristics in terms of mode shapes and the natural frequencies. In this case, the eig

function from MATLAB library was used for extracting the eigenvector (mode shape)
and eigenvalue (frequency) from mass and stiffness matrices.

Comparison of the first four modal frequencies is presented in Table 6.6. The conse-
quences of length and velocity scaling is that the frequency of the subscale model is four
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times higher than that of the full-scale model for all modes. Moreover, the table also
shows the comparison of the mode shapes in terms of MAC values.

Mode Shape Frequency [rad/s] MAC
Full-scale Subscale Φ Φ̄

1st Bending 4.4 14.4 0.383 1.0
2nd Bending 21.7 86.9 0.222 1.0
1st Lagging 22 87.9 0.334 1.0
1st Torsion 38.3 154 0.976 1.0

Table 6.6: Comparison of modal properties.

The MAC is a quantitative metric that allows us to compare the similarity between
models. As mentioned in Chapter 3, the MAC value of 1 means that the two mode
shapes are identical, while 0 implies that there is no similarity. In this case, dimensional
mode shapes (Φ) and non-dimensional mode shapes (Φ̄) are compared, where:

d = Φη, d =
{
x y z φ θ ψ

}
(6.2.17)

d̄ = Φ̄η̄, d̄ =
{
x̄ ȳ z̄ φ θ ψ

}
(6.2.18)

The main difference here is that Φ has dimensions of meter and rad/deg, while Φ̄ is non-
dimensional. The translational components have been non-dimensionalised with respect
to the characteristic length (b). Comparing the dimensional mode shape of the full-scale
and subscale model it is evident that the MAC value is very low (less than 0.5) for the first
three mode shapes and almost 1 for the torsional mode. Even though, after considering
Figure 6.7, the first four mode shapes of the subscale model are comparable with the full-
scale model as given in Figure 6.4. However, when comparing the non-dimensional mode
shapes the MAC value is exactly one, meaning that the two non-dimensional mode shapes
are in-fact identical. The fact that the mode shape is identical when it is normalised to
the characteristic length emphasises the importance and the application of dimensional
analysis in structural dynamics.

Aeroelastic Comparison

For an aeroelastic system, the aerodynamic characteristics are of importance. As men-
tioned earlier, the aerodynamic characteristics of the full-scale wing and the subscale
model are different because both models operate at different Reynolds and Mach num-
bers. Figure 6.8 allows the comparison of results obtained from BeaRDSTM for the subscale
and the full-scale wing as a function of the Froude number. The design Froude number
is found to be 12.4 based on the semi-span b used as the characteristics length. The use
of semi-span is convenient for presenting the static tip deflection in percentage. Both
models exhibit a similar behaviour in which both the total lift and pitching moment coef-
ficient increase with angle-of-attack. However, it is also evident that the subscale model
produces smaller aerodynamic forces and moments. The difference in aerodynamic coef-
ficients is the consequence of not being able to match the required Reynolds and Mach
numbers. However, the change in the aerodynamic forces and moments also affects the
static deflection and the static twist angle. As shown in Figure 6.8, the tip deflection of
the subscale model for a similar angle of attack is less than the expected full-scale model.
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Figure 6.7: Structural mode shape of the theoretical subscale model.
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Figure 6.8: Static response comparison as a function of Froude number.

Figure 6.9: Comparison of the force and moment distribution along the semispan.
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Moreover, it is also of interest to investigate the spanwise distribution of the aerodynamic
loading and its effect on the static shape as presented in Figure 6.9. The flight condition
represented in this figure is the target speed, which is at Froude number 12.4 (190 m/s
at 35,000 ft for full-scale model and 47.5 m/s at 0 ft for the subscale model). However,
as mentioned earlier, the subscale model tends to have a smaller tip deflection due to
lower aerodynamic forces and moments. Considering this as a static problem, Chapter
5 mentioned that adding initial force L0 can solve the difference in the static deflection,
which can be obtained by adding α0. Therefore, in Figure 6.9, the subscale model is
simulated for 6 degrees (designed α) and 7-degree angle-of-attack. The figure shows
that by setting the angle-of-attack one degree higher than expected, the lift distribution
between the full-scale and subscale model are almost comparable. However, the necessary
change in the pitching moment distribution cannot be achieved solely via this change.
Although small, differences in the pitching moment have secondary order affects on the
static wingtip deflection. Also, the difference in the twist angle is less than 1 degree and
therefore it can be deemed negligible.

6.3 Physical Subscale Model Development

In the previous section, the full-scale wing and the development of its theoretical subscale
model were discussed. For clarity reasons, the theoretical full-scale and subscale model
later is noted as a full-scale conceptual and subscale conceptual model. The work in the
following section discusses the physical development of the subscale conceptual model.

6.3.1 Spar and Skin Design

The idea behind the physical subscale design is that the xb-2 model can be built by
combining independently designed spar and skin, where the spar is designed to match
the structural stiffness and the skin is designed to provide the aerodynamic shape. The
skin was made using PolyJet printing technology and a proof-of-concept study of this
technology was conducted using the xb-1 wing design [24]. The use of PolyJet print-
ing is essential in the development of an aeroelastic subscale model as this method can
change the conventional manufacturing method in developing an aeroelastic subscale
model. Conventionally, gaps between pods are needed to allow the aeroelastic subscale
models to freely deform; the use of PolyJet printing helps to eliminate the need for such
gaps by printing a flexible material between pods, without affecting the stiffness proper-
ties of the model. An assessment of the effects of the 3-D PolyJet printing technology
to the overall stiffness of the model is given in Appendix B. The results show that by
printing rigid and elastic pods alternately, a consistent aerodynamic shape is obtained
and less than 5% influence is added to the overall stiffness of the model [24].

Spar Design

The structural definition of the subscale model was presented earlier along with the
structural characteristics and its comparison to the full-scale design. Here, a spar was
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optimised and developed to match the stiffness matrix of the theoretical subscale model.
The optimisation method for the development of the spar model was performed by Pon-
tillo et al. and the reader is referred to References [23, 173] for an in-depth discussion.
However, some key considerations were:

1. The total length of the subscale model is expected to be 1.5 meters, however, to
give some space for the skin attachment, the spar is layed out to have a length of
1.45 m.

2. The spar is designed to match bending stiffness (EIxx) and in-plane stiffness (EIzz),
which is dictated by the stiffness matrix of the theoretical subscale model.

3. The wing shape constrains the width of the spar. Therefore, to match the stiffness,
the cross-sectional area of the spar is varied over the outer half of the span.

4. The spar is built using aluminium to be as light as possible, and it should be noted
that the matching of the mass distribution was ignored for the optimisation routine.

5. For experimental purposes (ground/wind tunnel testing), a clamp was manufac-
tured at the root section.

Figure 6.10: Final spar design with cross section.

The CAD model of the final spar design is presented in Figure 6.10, showing the optimised
spar cross-section. The structural characteristics of the spar obtained from the CAD
model are transformed into NASTRAN using beam elements. This model consists of 25
nodes with the first three nodes constrained in all DoF to replicate the clamp section. It
is worth mentioning that the total mass of the spar was expected to be around 0.65 kg
which is less than 25% of the total target weight.
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Target Model Spar Model
Mode 1 1st Bending - 17.4 rad/s 1st Bending - 35.2 rad/s
Mode 2 2nd Bending - 86.9 rad/s 1st Lagging - 177 rad/s
Mode 3 1st Lagging - 87.9 rad/s 2nd Bending - 204 rad/s
Mode 4 1st Torsion - 154 rad/s 1st Torsion - 415 rad/s

Total Mass 3.42 kg 0.65 kg

Table 6.7: Frequency comparison of the target sub-scale and spar model.

The dynamic response of the spar model was analysed using NASTRAN solver SOL103.
Table 6.7 shows the comparison of modal frequencies for the target subscale model and
the spar design. Since the spar has less mass than the target model, the natural frequency
of the spar is expected to be much higher than the target model. However, once the skin
is attached, the spar and skin combine have a higher mass that leads to lower natural
frequency.

Skin Design

As the spar was designed to match the stiffness, the skin provides the aerodynamic shape
of the subscale model. The wing design was done by Pontillo [173] for which the following
key features were considered:

1. The skin has to be printed with the shape of NACA 23015.

2. The thickness of the skin shell is 2 mm, except at the leading and trailing edge of
the wing which is not hollow to reinforce the aerodynamic profile (see Figure 6.11).

3. The skin is designed to allow enough flexibility to bend without buckling. So, digital
ABS was used for the rigid part and agilus was used for the elastic part as used in
Reference [24]. A thin elastic-pod was printed in between two rigid pods to ensure
the flexibility under load.

4. Distributed pillars were printed along with the skin for attachment to the spar (see
Figure 6.11). These pillars also allow the transfer of aerodynamic load to the spar.

5. The skin is printed in a modular fashion as presented in Figure 6.12. The modular
design provides the flexibility to modify the design (such as added wingtip devices)
as well as to mitigate costs due to damage [24].

6. Some windows are located on the skin to allow access to the spar, pillars and
instrumentation systems. These windows are located on the wide rigid pods that
include space for control surfaces.

7. A pocket was designed at the wing tip to place additional mass, a passive flutter
suppression mechanism.

The CATIA model of the skin is presented in Figure 6.12. The purple colour shows the
control surface locations, while the pink colour highlights the location of the elastic pods.
All elastic pods have a length of 1 cm and the length of the rigid pod is varied depending
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Figure 6.11: Cross-sectional cut of the skin.

Figure 6.12: Wing design.

on the location of the control surfaces and windows. Cross-sectional material properties
are extracted from CAD model, such as weight, CG location and the mass moments of
inertia. These properties are added as lumped masses to the NASTRAN spar model.
The position of the skin and its CG locations in the chordwise and spanwise directions
are shown in Figure 6.13. For clear referencing, the NASTRAN model of the spar (and
skin) will be addressed from now on as FE model. The target model was designed such
that the location of the lumped masses were as close as possible to the quarter chord line.
In practice, the CG of the skin was found to be more towards the trailing edge at around
40% chord.

The total weight of the skin was expected to be around 1.5 kg, making the total mass

Figure 6.13: Center of gravity position of the skin and spar.



PHYSICAL SUBSCALE MODEL DEVELOPMENT 177

of the subscale wing 2.18 kg, lower than the total target mass of 3.42 kg. The weight of
the spar and skin are deliberately lower than the target to allow space for added mass
due to joints, instrumentation systems as well as servo actuators. Moreover, this allows
some space to distribute lumped masses needed to match the targeted frequencies and
mode shapes. The NASTRAN model is used to predict the structural behaviour of the
spar and skin configuration, and the results are presented in Table 6.8.

Conceptual Subscale Model FE Spar Model FE Spar-Skin Model

Mode 1 1st Bending - 17.4 rad/s 1st Bending - 35.2 rad/s 1st Bending - 19.5 rad/s
Mode 2 2nd Bending - 86.9 rad/s 2nd Bending - 177 rad/s 1st Torsion - 50.6 rad/s
Mode 3 1st Lagging - 87.9 rad/s 1st Lagging - 204 rad/s 1st Lagging - 99.2 rad/s
Mode 4 1st Torsion - 154 rad/s 1st Torsion - 415 rad/s 2nd Bending - 102 rad/s

Total Mass 3.42 kg 0.65 kg 2.18 kg

Table 6.8: Comparison of modal frequencies and shapes.

As expected, combining the spar and skin reduced the structural frequencies. However,
the predicted frequencies were still slightly higher than the targeted frequencies. These
differences were adjusted by placing lumped masses along the wing. This also allows to
match the total target wing weight.

Furthermore, the addition of the skin shifted the overall CG towards the trailing edge
and consequently changed the chordwise moment of inertia. This reduced frequency of
the torsional mode for the spar-and-skin configuration when compared to the conceptual
model. In fact, the torsional mode replaced the second bending mode (see Table 6.8).
Having such a configuration inside the wind tunnel can lead to flutter at a lower velocity.

6.3.2 Conceptual Design Update

The initial Spar-Skin model resulted in less mass compared to the total target mass,
but a higher mass moment of inertia value (Iyy) relative to the conceptual design, as
shown in Figures 6.144. The consequences of having a lighter model resulted in higher
dynamic frequency in bending and lagging, while the higher Iyy value affected the dynamic
frequency of the torsional mode. The shift of the torsional mode frequency towards the
first bending mode frequency reduced flutter margin that is highly undesirable.

Now, as mentioned in Chapter 5, a distorted model in the mass moment of inertia
resulted in a different angle-of-attack response. One of the solutions to this problem is by
increasing the torsional stiffness. However, changing the torsional stiffness is not possible
as this means changing the manufactured spar configuration.

The remainder of this research work aims to use the manufactured Spar-Skin model
for wind tunnel experiments. Therefore, the conceptual model needs to be updated by

4It is of interest to look at the mass (and inertia) at y=1.26 m. The FE Spar-Skin model shows a
higher mass value. This is because of the aileron which was physically printed as solid and consequently
shifted the CG to the trailing edge. Furthermore, the Iyy distribution of the concept model is not realistic
as in practice this expected to be a quadratic distribution from root to tip.
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Figure 6.14: Comparison of mass and inertia distribution of the conceptual model and
the FE Spar-Skin model.

increasing its mass by 20%5. This results in a total target mass of 4.27 kg instead of 3.42
kg and therefore, a lower structural frequency as presented in Table 6.10. This model
will now be referred to as conceptual model ver.2. The mass and inertia distributions of
both conceptual models are shown in Figure 6.15. The yellow bars represents the first
conceptual model, while the red bars is the conceptual model ver.2 which is now the new
target model. For comparison purposes, the mass and inertia distributions of the FE
Spar-Skin model is also presented with the blue bars.

Ideally, to match the structural response as closely as possible with that of the conceptual
design, lumped masses need to be optimally placed along key spanwise and chordwise
position along the wing. Optimisation routines, such as those used in Finite Element

5The increment of 20% mass conducted by increasing the mass of each lumped mass by 20%, which
will affect the static deflection of the conceptual design aircraft. The number is chosen to give enough
flexibility in terms of modifying the already manufactured spar and skin, without much affecting the
underlying assumption of the full-scale wing development.
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Figure 6.15: Comparison of the updated conceptual model and the FE Spar-Skin model.

Conceptual Model Conceptual Model v.2

Mode 1 1st Bending - 17.4 rad/s 1st Bending - 15.7 rad/s
Mode 2 2nd Bending - 86.9 rad/s 2nd Bending - 77.5 rad/s
Mode 3 1st Lagging - 87.9 rad/s 1st Lagging - 78.1 rad/s
Mode 4 1st Torsion - 154 rad/s 1st Torsion - 148 rad/s

Total Mass 3.42 kg 4.27 kg

Table 6.9: Structural frequency of the conceptual model ver.2.

Model Updating methods [204, 205] are thus needed prior to manufacturing. However,
since the spar and skin were already manufactured, a compromise had to be made. As a
result the lumped masses were used to match only the first bending mode and ensuring
a flutter speed above 60 m/s.

The initial attempt to match the first bending frequency is by ensuring that the mass
and Iyy distribution are as close as possible to the conceptual model ver.2. This was done
by calculating the size and location of the lumped mass in the chordwise direction (x)
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for each node6 as follows :

∆mi = mt
i −ms

i (6.3.1)

∆Iyyi = Iyy
t
i − Iyy

s
i (6.3.2)

if ∆Iyyi < 0, xi = 0

∆Iyyi > 0, xi =

√
∆Iyyi
∆mi

(6.3.3)

for which mt
i, m

s
i are the target mass and spar-and-skin mass at grid i respectively, while

Iyy
t
i, Iyy

s
i are the mass moment of inertia at grid i respectively. The value x is the position

in chordwise direction defined from 25% chord, for which negative x represents leading
edge direction and positive x is in the trailing edge direction. The position of the lumped
mass is also calculated in the z-direction by considering the thickness of the skin without
changing the aerodynamic shape. Note that this optimisation is an idealistic approach
and the arising limitations will be addressed later.

However, as this configuration can also be considered as a conceptual model, for brevity
it will be referred to as conceptual model ver.3. This model will be the basis of the target
model being manufactured. This conceptual model is evaluated by modelling the lumped
masses in NASTRAN and using SOL 103 to obtain the structural characteristics. Table
6.10 presents the respecting mode shape and frequencies of the conceptual model ver.3,
while the mass and inertia distributions are presented in Figure 6.16. Note that in some
nodes the Iyy value will still remain large.

Conceptual Model Conceptual Model ver.2 Conceptual Model ver.3

Mode 1 1st Bending - 17.4 rad/s 1st Bending - 15.7 rad/s 1st Bending - 16.3 rad/s
Mode 2 2nd Bending - 86.9 rad/s 2nd Bending - 77.5 rad/s 1st Torsion - 48 rad/s
Mode 3 1st Lagging - 87.9 rad/s 1st Lagging - 78.1 rad/s 2nd Bending - 82.3 rad/s
Mode 4 1st Torsion - 154 rad/s 1st Torsion - 148 rad/s 1st Lagging - 83.8 rad/s

Total Mass 3.42 kg 4.27 kg 4.21 kg

Table 6.10: Structural frequency of the target, updated target sub-scale model ver.2, and
updated target sub-scale model ver.3.

The NASTRAN model has then been used to determine flutter modes using SOL 145.
In this case, the aerodynamic shape is calculated assuming it to be a flat plate. Figure
6.17 presents the variation of damping and frequency for the conceptual design ver.3 with
respect to velocity. The figure shows that the first six aeroelastic modes are stable until
70 m/s, which indicates that the flutter speed is more than 70 m/s7. Therefore, it can be
concluded that this model can be tested safely inside a wind tunnel (the tunnel maximum
velocity is 50 m/s). Note that, the target design of the wing has now moved to conceptual
design ver.3.

6The 1.5 meter wingspan is divided into 25 equal nodes for FE model development.
7The damping values in the figure are obtained from NASTRAN. In NASTRAN, the flutter is cal-

culated using PK method [176], where the equation of motion is written such that negative damping
illustrate stability.
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Figure 6.16: Evolution of the updated conceptual model.

Figure 6.17: Flutter speed prediction of conceptual model ver.3.
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6.3.3 Wind Tunnel Subscale Model

The manufactured spar and skin has limited physical space for further modifications due
to the load transfer pillars and instrumentation system. Moreover, applying Equation
6.3.3 in optimising the lumped mass position results showed that some of these should
be positioned on the grid point which is physically impossible. Therefore, high density
brass was used for manufacturing the actual lumped mass and an attempt was made to
position the masses such that the result was close to the conceptual design ver.3.

Figure 6.18: CATIA wind tunnel model (yellow represents the lumped masses, pink
highlights the position of the rod).

The manufactured Spar-Skin model was hence updated with lumped brass-massed and is
now referred to as Spar-Skin-Mass (SSM) configuration. However, transferring the SSM
model to NASTRAN resulted in a lower flutter velocity than the conceptual model ver.3
(around 30 m/s, as evident in Figure 6.21). Therefore, on top of the SSM model, a 72
cm cylindrical rod was mounted to the spar to increase torsional stiffness. This rod has
a diameter of 10 cm with 1 mm thickness and was located near the root, as shown in
Figure 6.18. This rod also impacted the bending flexibility of the subscale model. The
final model tested inside the wind tunnel is the spar-skin-mass-rod configuration. In
the following text, the configuration of spar-skin-mass-rod will be called the wind tunnel
model, and the CATIA model of the configuration has been presented in Figure 6.18.

The NASTRAN model was updated based on the lumped mass and rod configuration
to represent the FE SSM model and the FE wind tunnel model. Modal frequencies and
shapes are compared in Table 6.18. It is clear that by placing the lumped masses the
change in the bending frequency is negligible, but the torsional mode has moved to a
higher frequency. Although there is enough separation between the first bending and
torsion modes for the FE SSM model, the flutter speed is still quite low at around 30
m/s. On the other hand, adding the rod to the spar increases the torsional rigidity,
confirmed by the fact that now the torsional mode has replaced the second bending mode
and it occurs at a much higher frequency (evident in Table 6.18). The mode shape of
the wind tunnel model is given in Figure 6.19. Furthermore, flutter prediction on the
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Mode 1 at 24 rad/s (bending)

Mode 2 at 85.8 rad/s (bending)

Mode 3 at 109.8 rad/s (torsion)

Mode 4 at 117.6 rad/s (lead-lag)

Figure 6.19: Structural mode shapes of the FE wind tunnel model.
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FE wind tunnel model results in a flutter speed of around 47.5 m/s. Thus, the FE wind
tunnel model was made safe for wind tunnel testing at speed below 45 m/s. However,
the FE model is based on numerous assumptions and simplifications. Such as, ignoring
the lumped masses due to instrumentation system, pre-defining structural damping and
simplifying the aerodynamic model. In the next section, the FE model will be validated
using GVT.

Conceptual Model ver.3 FE SSM FE wind tunnel

Mode 1 1st Bending - 16.3 rad/s 1st Bending - 16.1 rad/s 1st Bending - 24.0 rad/s
Mode 2 1st Torsion - 48 rad/s 1st Torsion - 63.9 rad/s 2nd Bending - 85.8 rad/s
Mode 3 2nd Bending - 82.3 rad/s 2nd Bending - 77.8 rad/s 1st Torsion - 109.8 rad/s
Mode 4 1st Lagging - 83.8 rad/s 1st Lagging - 81.7 rad/s 1st Lagging - 117.6 rad/s

Total Mass 4.21 kg 3.91 kg 4.09 kg

Table 6.11: Structural frequency comparison of updated and manufactured model.

Figure 6.20: Flutter speed prediction for the SSM configuration.

Figure 6.21: Flutter speed prediction for the FE wind tunnel configuration.
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6.4 Experimental Validation

6.4.1 Structural Validation

A GVT was carried out to validate the FE model of the previous configurations of spar,
Spar-Skin, as well as the final wind tunnel model. Overall, the GVT was carried out with
the use of random-on-random (RoR) vibration over a frequency range of 1 to 50 Hz. The
excitation was introduced to the spar structure via a stinger that was attached to the
underside of the spar root. The spar was mounted to a rigid structure using the designed
clamping fixture at the spar root. The structural dynamics were characterised by using
five uni-axial accelerometers. The test set-up is presented in Figure 6.22.

Instrumentation set-up Test bench

Figure 6.22: Example of the GVT setup for spar configuration.

To ensure that the desired target modes were captured as accurately as possible, a sensor
placement approach based on error minimisation (developed by Weber [107]) was used.
This methodology aims to minimise the total error between theoretical and experimental
mode shapes by minimising the following cost function:

J =

√√√√ 1

n

m∑
i=1

n∑
j=1

(Φij − Φ̂ij)2 (6.4.1)

where Φ is the numerical mode shape, Φ̂ is the sensor mode shape, m is the number
of target mode shapes to be considered and n is the number of nodal points. Each
mode shape was treated with equal importance essential for recovering experimental
mode shapes of interest. As uni-axial accelerometer were used, only the bending modes
could be identified from the GVT test results through subspace identification methods
as presented earlier in Chapter 3.
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Spar Only Configuration

A compromise had to be made during the manufacturing of the spar. The total length of
the spar which is 1.45 m was difficult to machine in one piece. Therefore, the spar was
manufactured in two equal halves and welded together afterwards. To ensure that the
welding seam did not fatigue during the structural testing, a bridge was fixed around the
welding joint (see Figure 6.23). This resulted in an update to the developed NASTRAN
model by where the additional support was modelled as a lumped mass. Results showed
that the change in frequency as well as mode shape were negligibly small.

Figure 6.23: Bridged spar.

Figure 6.24: Stabilisation diagram of the Spar configuration.

The stabilisation diagram of the GVT results is presented in Figure 6.25. Which shows
three clear peaks of frequency response obtained from the accelerometer at the tip of the
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Figure 6.25: Identified mode shape from GVT on the spar (— : theoretical mode shape,
−−: identified mode shape).

spar. Based on this diagram, a model order of 30 was chosen and the corresponding mode
shapes and frequencies are shown in Figure 6.25. The comparison between the natural
frequencies from the experimental results and the FE model is given in Table 6.12. The
table also shows the comparison of mode shape in terms of MAC (as mentioned previously
in Chapter 3 and 4.3). The difference between the FE model and the identified frequencies
are less than 15%, while the MAC shows that the mode shapes are almost identical.

Spar Model Differences Damping ratio
Theoretical Experimental Freq. MAC GVT

1st Bending 35.2 rad/s 33.1 rad/s 5% 0.999 0.34 %
2nd Bending 177 rad/s 171 rad/s 12 % 0.993 0.09 %
1st Lagging 204 rad/s - - - -
1st Torsion 415 rad/s - - - -
3rd Bending 551 rad/s 523 rad/s 5 % 0.967 0.16 %

Table 6.12: Comparison of numerical spar and manufactured spar frequency.

Spar and Skin Configuration

As mentioned earlier, the skin was designed to hold the aerodynamic shape while having
minimum impact on the overall stiffness. However, since the aileron was printed as a
solid, it introduced significant inertial effects. Furthermore, the ailerons were designed to
be fixed once assembled. Thus, an initial GVT test for the Spar-Skin configuration was
carried out with the aileron and spoiler removed as shown in Figure 6.26. For the GVT
of the Spar-Skin configuration, the accelerometers were placed at similar locations as for
the previous test.

Figure 6.27 presents the stabilisation diagram for the GVT results of the Spar-Skin config-
uration, in comparison to the frequency response function obtain from the accelerometer
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Figure 6.26: Spar and skin GVT setup.

at the tip. Except for the first peak at relatively low frequency (around 21 rad/s), the
higher frequencies exhibit a rather noisy response but a clear stable pole can be observed
at around 90 rad/s. In this case 30 was also chosen as the order number for identification
purposes and the identified frequencies and respective mode shapes are given in Figure
6.28 and summarised in Table 6.13. It is clear that the first mode, which is the first bend-
ing frequency, is well identified with only 10% error and MAC value almost 1. However,
for the higher modes, there are some discrepency between the identify mode shape and
the theoretical mode shape. This is emphasising the fact that the NASTRAN model is
not well representing the physical model that being tested, especially since the aileron
and spoiler is not being installed during GVT testing. Furthermore, the results from the
GVT also suggest that due to the mass distribution, except for the first mode, it is clear
if the other modes are not a pure bending mode.

Figure 6.27: Stabilisation diagram from the GVT of the spar and skin.
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Figure 6.28: Identified mode shape from the spar and skin configuration (— : theoretical
mode shape, −−: identified mode shape).

Spar and Skin Model Differences Damping ratio
Theoretical Experimental Freq. MAC GVT

1st Bending 19.5 rad/s 21.6 rad/s 10% 0.999 1.7 %
Mode 2 50.6 rad/s - - - -
Mode 3 99.2 rad/s 96 rad/s 2% 0.838 21 %
Mode 4 102 rad/s 118.5 rad/s 16% 0.650 1.9 %

Table 6.13: Comparison of numerical and manufactured spar and skin configuration.

Wind Tunnel Model Configuration

One of the objectives of testing the wind tunnel configuration is to validate the FE model
in order to validate the flutter prediction. On top of the Spar-Skin configuration, this
configuration now includes the lumped masses and rod, as well as the control surfaces,
such as aileron and spoiler. The accelerometer is attached to the skin using double-sided
tape at the same location as the previous test, except for those at 1.2 m from the root.
Only 4 accelerometers were used in total.

Figure 6.29 presents the wind tunnel model configuration, and it shows some of the
locations of the brass lumped masses which were attached to the spar the rod, as well as
the attachment point of the skin to the spar. Here the aileron is fixed at 0 ◦.

Figure 6.308 presents the stabilisation diagram of the wind tunnel model and the fre-
quency content of the accelerometer located near the tip. Overall, there are three ob-
servable frequency peaks. These peaks are in-line with the identified stable poles. Figure
6.31 presents the corresponding identified frequencies and mode shapes. It is interesting
to observe the effect of the added cylinder rod, which switches the order of the bending
and torsional mode. This mode switch affects the predicted flutter frequency.

8Noted that the data presented in this figure has higher sampling rate compared to the previous
configuration, resulting in more noisy data.
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Figure 6.29: Wind tunnel model setup.

Figure 6.30: Stabilisation diagram from the GVT of the FE wind tunnel model.

In comparison to the previous spar and skin model, the identified mode in the wind tunnel
configuration is much clearer. The first and second bending of the wind tunnel model
were identified within less than 15% discrepancy and a MAC value of 0.99 as shown in
Table 6.14. This level of agreement between the experimental and the FE mode allowed
this model to be tested inside the wind tunnel.

6.4.2 Static Wind Tunnel Tests

Static wind tunnel testing for the subscale model was conducted to validate the simulation
framework, known as BeaRDSTM . The experiments were conducted in the Cranfield 8x6
wind tunnel facility. The wing was mounted vertically from the top of the tunnel (see
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Figure 6.31: Identified mode shape from the FE wind tunnel model (— : theoretical
mode shape, −−: identified mode shape).

Wind Tunnel Model Differences Damping ratio
Theoretical Experimental Freq. MAC GVT

1st Bending 24 rad/s 20.4 rad/s 14% 0.992 5.8 %
2nd Bending 85.8 rad/s 88.3 rad/s 3% 0.991 4.2 %
1st Torsion 109.8 rad/s - - - -
1st Lagging 117.6 rad/s - - - -

Table 6.14: Comparison of theoretical and experimental modes for the wind tunnel model.

Figure 6.33), and a balance allowed the measurement of the aerodynamic forces (lift and
drag). The test matrix for the static wind tunnel model was designed to cover airspeeds
from 20 m/s to 40 m/s, to avoid the predicted flutter speed of 47.5 m/s. This covers the
chord based Reynolds number range of 2.3 ×105 to 4.6 ×105. Furthermore, the angle of
attack varied from -2 to 6 degrees. The experiments provide a total of 25 measurement
points and these data points are compared to BeaRDSTM predictions.

The theoretical predictions of aeroelastic static response from BeaRDSTM is presented in
Figure 6.32. The figure shows the variation of CL, CM and the respective tip deflections
and twist angles. All these responses are presented as a function of Froude number, to
remain consistent with the comparisons in Section 6.2.3. It is worth mentioning that
after the loop in the wing design, the wind tunnel model is stiffer than the conceptual
model, especially with the added rod which not only contributes to the increased torsional
stiffness but also to the bending stiffness of the wing. The increase of stiffness results in
a much lower tip deflection. The maximum tip deflection was found to be around 5%
of the wing semi-span, as opposed to the first conceptual design which was around 20%
deflection.

A total of 122 data points (see Table 6.15) at different angles of attack and various
airspeeds have been collected. The comparison of the total lift, as a function of the
Froude number and α is presented in Figures 6.34. The figure shows that the measured
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Figure 6.32: BeaRDSTM prediction for the static wind tunnel experiments.

Run α Wind Tunnel Velocity, U (m/s)
Run 01 -2 ◦ 20 25 30 35 40 35 30 25 20
Run 02 -2 ◦ 20 25 29.9 35 39.9 35 30 25 20
Run 03 -2 ◦ 20 25 30 35 40
Run 05 6 ◦ 20 25 30 35 40 34.9 30 25 20
Run 06 4 ◦ 20 25 30.1 35 39.9 35 30 25 20
Run 07 2 ◦ 20 25 30 35 40 35 30.1 25 20
Run 08 0 ◦ 20 25 30 35 40 34.9 30 25 20
Run 09 -2 ◦ 20 25 30 34.9 40 34.9 30 25 20
Run 10 6 ◦ 20 25 29.9 35 39.9 35 30.1 25 20
Run 11 4 ◦ 20 25 30 35 40 35 30 25 20
Run 12 2 ◦ 19.9 25 30 34.9 40 35 30.1 25 19.9
Run 13 0 ◦ 19.9 25 30 34.9 40 35 30 25.1 20.1
Run 14 -2 ◦ 20.1 24.9 30 34.9 40 35 30.1 25.1 19.9

Table 6.15: Wind tunnel test matrix.

lift forces and the simulated lift forces are within the same order of magnitude, and
overall, BeaRDSTM predictions show a similar trend with the experiment measurement.
The comparison between the BeaRDSTM prediction and the data points from the wind
tunnel experiments is presented in Figure 6.34.

A non-dimensional comparison between the prediction and experimental results was also
made (as shown in Figure 6.35). In particular, CL0 and CLα was obtained using a simple
OLS method through the following standard expression:

CL = CL0 + CLαα (6.4.2)

where CL is the lift coefficient, CL0 is the lift coefficient at α = 0, CLα is the lift slope



SUMMARY 193

Figure 6.33: The xb-2 wing inside the wind tunnel facility (left: wind speed 0 m/s, right:
wind speed 40 m/s).

and α is the angle-of-attack. By utilising OLS the measurement equation was defined as:

z = CL + ν (6.4.3)

where ν represents the measurement noise and the regressor matrix and parameter vector
are given as:

X =

 1 α(1)
...

...
1 α(N)

 (6.4.4)

Θ̂ =
[
CL0 CLα

]
(6.4.5)

The variation of CLα for various Reynolds numbers was calculated based on the experi-
mental results and then compared with the predictions from BeaRDSTM (see Table 6.16).
Errors remaining lower than 10% provide a degree of validation of BeaRDSTM code.

6.5 Summary

The work carried out in this chapter presented the challenges in developing a conceptual
aeroelastic subscale model, especially highlighting the difficulties in weight and inertia
scaling, while using novel 3-D PolyJet printing technology. It has been shown that using
a subscale model as proof-of-concept can be a significant challenge since a more detailed
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Figure 6.34: Comparison of the total lift forces between wind tunnel and BeaRDSTM results
(×: BeaRDSTM , • wind tunnel).

Velocity Re Lift Coefficient CLα (/◦) %
BeaRDSTM Wind tunnel results error

20 m/s 2.32 ×105 0.044 0.048 ± 0.0007 8 %
25 m/s 2.89 ×105 0.043 0.046 ± 0.0004 6.5 %
30 m/s 3.47 ×105 0.043 0.044 ± 0.0002 2.3 %
35 m/s 4.05 ×105 0.042 0.043 ± 0.0005 2.3 %
40 m/s 4.63 ×105 0.041 0.042 ± 0.0015 2.4 %

Table 6.16: Comparison of CLα value between BeaRDSTM and wind tunnel results.

configuration is needed when manufacturing. This work emphasises the following as the
key lessons learned in developing a HAR wing subscale model:

• The spar location at 25% chord can be considered to be very optimistic. It is
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Figure 6.35: Comparison of CL with as a function of α.

preferable to locate the spar at the elastic axis (around 40% chord) rather than the
aerodynamic center.
• 3D PolyJet printing results in a skin mass distribution, that must be considered

during spar optimisation. For example, the spar may need to be designed with
higher torsional rigidity.
• For an idealistic conceptual design, iteration loops are needed to update the con-

ceptual model. In this case clearer design requirements are needed.
• In practice, increasing the torsional rigidity (for example by having an additional

rod), resulted in the switching of the first torsional mode with the second bending
mode. This also affected the overall stiffness of the wing that led to lower structural
flexibility.
• The weight contribution of a small section should not be underestimated for subscale

model development. For example, the solid printed aileron section was found to have
a significant impact on the structural behaviour of the wing.
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CHAPTER7
Conclusions & Further Work

The development of technology demonstrators has always been a significant component
of aircraft development. However, very few of these have been a close dynamically scaled
version of the final design. The lack of dynamically scaled demonstrators is a symptom of
the challenging nature of applying the concepts of similitude to manufacture a representa-
tive scaled vehicle. Dynamic scaling itself is a hard design problem and the interpretation
of the consequent results has its own challenges [138] and requires engineers to have a
strong understanding of dimensional analysis.

The use of subscale models through dynamic scaling as part of the aircraft design process
is common practice in the aerospace industry. However, today this process employs a
range of subscale models where each is designed and used for a very specific purpose. For
example, geometrically scaled models are used for wind tunnel testing and aeroelastic
scaled models for flutter tests. These models provide the designer with a means of risk
mitigation and increased confidence in their designs and thus, help avoid problems much
later in the development process. On the other side, the practice of SID has been essential
for design validation through dynamic experiments, especially flight tests. So combining
dynamic testing using subscale models and processing test results using SID can be a
beneficial tool to test the proof-of-concept at the early design stage. It can reduce the
overall cycle time for development, which is especially important for a novel design.
The work presented in this thesis is set within this context and aimed to develop a
methodology to investigate the behaviour of aeroelastic systems by combining subscale
modelling techniques with the field of system identification.

The current practice of subscale modelling is presented in Chapter 1. This chapter
also presented the context of this work and its aim and objectives in more detail. The
detailed technical conclusions can be found at the end of the chapter. However, the top
level learning points from this thesis can be listed as follows:

• Although developing appropriately scaled dynamic models require careful study and
numerous trade-offs, novel manufacturing techniques such as PolyJet printing can
be a solution in developing a flexible subscale model. This technique allows a single
printed model, which eliminates the needs of gap between section and ensure the
continuity of the surface.

197



198 CONCLUSIONS & FURTHER WORK

• The experimental testing of a subscale model requires significant care, especially
in terms of experimental design (input design), because inappropriate inputs can
easily excite the non-linear dynamics of such models when compared to the full
scale vehicle.

• In identification of flexible aircraft, the OLS method is not as effective as the OE
method. OE method is needed especially for observing the structural behaviour of
the aeroelastic vehicle. However, OLS method can be a useful algorithm to provide
initial guess for the OE approach. It should also be noted that the accurate iden-
tification of structural dynamics may require another method such as the subspace
identification.

• Although the last chapter did not completely link dynamic scaling and system iden-
tification, it did highlight the practical trade-offs and compromises needed in the
development of dynamically scaled models and the challenges faced when approach-
ing the testing phase.

7.1 Recommendation of Further Work

The work described and discussed in this thesis relies on a number of assumptions. The
main conclusions can be strengthened further by addressing these assumptions via the
following future work items:

• A dynamic test inside the wind tunnel model will give insight into the aeroelastic
behaviour of the subscale model through system identification, such as those given
in Chapter 4. Combination of subspace identification and output error method can
be used for identification of model dynamics.

• The current theoretical framework being developed for the subscale model ignores
the stall conditions and since a subscale model is prone to stall at a lower angles of
attack (as shown in Chapter 3), a theoretical framework developed to capture this
phenomena will be useful.

• In the current framework, the Lift forces are calculated as perpendicular to the
freestream velocity. However, when the wing is bends due to structural flexibility,
the Lift forces should be perpendicular with the aerofoil section, creating follower
forces along the spanwise direction. This effect has not been considered in the
current framework. An improvement of the framework to consider this force will
allow more accurate aeroelastic modelling.

• The scaling laws are developed by simplifying the aeroelastic problem into a struc-
tural problem and ignores the difference in aerodynamic behaviour. Considering
the differences in aerodynamic behaviour can lead to a more comprehensive opti-
misation process in developing the subscale model.

• The development of subscale model needs to consider the mass contribution of skin
from the beginning, and by doing so, this will result in a more optimised spar design
and has more torsional stiffness.
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• The use of the PolyJet printing technology has been presented and the NASTRAN
FE model has been shown to provide close results to the experimental results.
However, to further understand the impact of structural damping due to the skin,
a specific test is needed.

• The identification of structural modes through GVT was conducted using accelerom-
eters placed at specific locations along with the spar. These sensor positions only
allow the identification of the bending mode. A more suitable structural iden-
tification setup is needed to validate the manufactured model by identifying the
remaining modes.

• The identification of structural modes through GVT was conducted using uni-axial
accelerometers, more robust sensors that can capture more combined modes such
as the use of 6 DoF sensors, or a Fibre-Bragg gratings will be of interest to gain
more insight into the structural properties.

7.2 Dissemination of Results

7.2.1 Journal Articles

• Regressor Time-Shifting to Identify Longitudinal Stability and Control
Derivatives of the Jetstream 3102
Sezsy Yusuf, Mudassir Lone, Alastair Cooke, Nicholas Lawson, Aerospace Science
and Technology, 69:218-225, 2017
The Jetstream 31 G-NFLA aircraft is used as a national flying laboratory test ve-
hicle for flight dynamics research and teaching purposes. It has been the subject of
much theoretical and experimental modelling and therefore, the need for generating
validation data through flight testing is critical. In this paper, the aircraft’s short
period pitch oscillation mode characteristics are identified using data from sixteen
flight tests. An identification procedure based on the least squares method and
reduced order state-space model is used and the need for pre-processing regressors
due to the effects of sensor location and instrumentation delays is highlighted. It
has been shown that time-shifting the regressors based on relative locations of the
angle of attack vanes and the inertial measurement unit results in significant re-
ductions in uncertainty bounds of the estimated aeroderivatives and also a model
that provides a closer match to flight test data. The estimated models are validated
using separate flight test data and the variations in aeroderivatives over a range of
airspeeds and centre of gravity positions are also presented.

• Parameters Estimation Methodology for the Nonlinear Rolling Motion
of Finned Cylindrical Body
Momtaz Abadir, Sezsy Yusuf, Alessandro Pontillo, Mudassir Lone, Aerospace Sci-
ence and Technology, 84:787-798, 2019
Identification of nonlinear roll dynamics of finned cylindrical bodies is a critical
step when assessing free motion stability and trajectories of aerially dispensed mu-
nitions or decoys. In this paper the authors present a parameter estimation process
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that focuses on identifying nonlinear aerodynamic models that characterise the roll
dynamics of a cylindrical body with wrap around fins using data from a series of
dynamic wind tunnel tests. This is a three step approach that combines ordinary
least squares, stepwise regression and the augmented output-error method, and it
is initially tested using simulation data corrupted by white Gaussian noise and then
applied to the wind tunnel data. Roll and roll rate dynamics were captured through
a series of high angle of attack free-to-roll tests carried out at an airspeed of 35 m/s
corresponding to a Reynolds number of 800,000. The results and discussion in this
paper demonstrate how simulation can be used to develop and mature a system
identification routine followed by its assessment through wind tunnel test data. It
is shown that high order nonlinear models with up to 14 terms can be parameter-
ized to provide high levels of agreement with roll and roll rate dynamics observed
in the dynamic wind tunnel tests.

• Identification of In-Flight Wingtip Folding Effects on the Roll Charac-
teristics of a Flexible Aircraft
Gaétan Dussart, Sezsy Yusuf, Mudassir Lone, Aerospace,6,63:1-27, 2019
Wingtip folding is a means by which an aircraft’s wingspan can be extended, allow-
ing designers to take advantage of the associated reduction in induced drag. This
type of device can provide other benefits if used in flight, such as flight control
and load alleviation. In this paper, the authors present a method to develop re-
duced order flight dynamic models for in-flight wingtip folding which are suitable
for implementation in real-time pilot-in-the-loop simulations. Aspects such as the
impact of wingtip size and folding angle on aircraft roll dynamics are investigated
along with failure scenarios using a time domain aeroservoelastic framework and
an established system identification method. The process discussed in this paper
helps remove the need for direct connection of complex physics based models to
engineering flight simulators and the need for tedious programming of large look-
up-tables in simulators. Instead it has been shown that a generic polynomial model
for roll aeroderivatives can be used in small roll perturbation conditions to simulate
the roll characteristics of an aerodynamic derivative based large transport aircraft
equipped with varying fold hinge lines and tip deflections. Moreover, the effects of
wing flexibility are also considered.

7.2.2 Conference Papers

1. Application of Multivariate Orthogonal Functions to Identify Aircraft Flutter Modes
Sezsy Yusuf, Octavio Chavez, Mudassir Lone, AIAA Atmospheric Flight Mechanics
Conference, AIAA SciTech Forum, Grapevine, 2017

2. Modelling Framework for Handling Qualities Analysis of Flexible Aircraft
Vilius Portapas, Sezsy Yusuf, Mudassir Lone, Ettiene Coetzee, AIAA Modeling and
Simulation Technologies Conference, Grapevine, 2017.

3. Flexible High Aspect Ratio Wing: Low Cost Experimental Model and Computa-
tional Framework
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Alessandro Pontillo, David Hayes, Gaétan Dussart, Guillermo Lopez, Martin Car-
rizales, Sezsy Yusuf, Mudassir Lone, AIAA Atmospheric Flight Mechanics Confer-
ence, Kissimmee, 2018.

4. Effect of Wingtip Morphing on the Roll Mode of a Flexible Aircraft
Gaétan Dussart, Sezsy Yusuf, Mudassir Lone, AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Kissimmee, 2018.

5. Method to Assess Lateral Handling Qualities of Aircraft with Wingtip Morphing
Gaétan Dussart, Sezsy Yusuf, Vilius Portapas, Guillermo Lopez, Mudassir Lone,AIAA
Atmospheric Flight Mechanics Conference, Kissimmee, 2018.

6. Aeroelastic Scaling for Flexible High Aspect Ratio Wings
Sezsy Yusuf, Alessandro Pontillo, Simone Weber, David Hayes, Mudassir Lone,
AIAA Scitech 2019 Forum, San Diego, 2019.

7. High Aspect Ratio Wing Design Using the Minimum Exergy Destruction Principle
David Hayes, Alessandro Pontillo, Sezsy Yusuf, Mudassir Lone, James Whidborne,
AIAA SciTech Forum, San Diego, 2019.
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APPENDIXA
BeaRDSTM Aerodynamic Look-Up Table

The following aerodynamic data were the look-up tables used within the aerodynamic
blocks of BeaRDSTM theoretical framework. The data represents s NACA-23015 aerofoil,
and consists of CLα , CM at CL = 0, α at CL = 0, and CD at CL = 0.

Full Scale

Subscale

Figure A.1: CLα data.
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Full Scale

Subscale

Figure A.2: CM at CL = 0 data.

Subscale

Full Scale

Figure A.3: α at CL = 0 data.
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Subscale

Full Scale

Figure A.4: CD at CL = 0 data.
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APPENDIXB
Manufacturing Proof-of-Concept: xb-1

A prototype, known as xb-1, was developed and manufactured as a learning process in
developing a flexible wing using 3-D PolyJet printing technology. One of the objectives is
to evaluate the skin effect on a spar and skin configuration of the model. For this purpose,
a GVT was carried out for spar only and spar with skin configuration. Hereafter, the spar
only configuration is denoted as skin-off, while spar and skin configuration is denoted as
skin-on configuration. Off-the-shelf IMUs were used to collect acceleration data during
the GVT. It is worth noting that the length of the spar is 805 mm, while the length of
the skin is 840 mm. The sensor positions for the skin-off test is presented in Figure B.1,
while the sensor position for skin-on configuration is given in Figure B.2. Noted that only
two of the IMUs were located in a comparable positions (IMU 2 and IMU 3 for skin-off
is similarly located with IMU 1 and IMU 3 of the skin-on configuration). While IMU
4 were placed as near as possible to the tip by considering the physical limitation (size
of the spar in the skin-off configuration, and the attachment of the skin for the skin-on
configuration)

Figure B.1: IMU positions for skin-off
configuration.

Figure B.2: IMU positions for skin-on con-
figuration.

During the excitation, the spar was constrained at the rectangular shape of the spar
(bolted to the shaker). A deterministic input using a sine sweep that covers the frequency
range of 2 to 60 Hz, as well as random noise was used to excite the wing, from which
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the structural characteristics of the wing configuration were extracted. The frequency
response from each of the sensor during sinusoidal sweep test for both skin-on and skin-
off configuration are given in Figure B.3 and B.4.
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Figure B.3: Frequency response function for skin-off configuration.
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Figure B.4: Frequency response function for skin-on configuration.

The frequency response shows that the highest amplitude is obtained from IMU 4 that is
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skin-off skin-on
Total Mass

(gram) 316 687
Mode 1

Frequency (Hz) 5.29 3.04
Damping (%) 0.86 4.31

Mode 2
Frequency (Hz) 22.21 14.32
Damping (%) 0.66 10.97

Table B.1: Identification of the modal properties from GVT results.

Prediction GVT result difference
mode 1 3.60 3.04 15.5%
mode 2 15.11 14.32 5.2%

Table B.2: Identified frequencies.

located close to the tip. Overall, the frequency response for skin-on configuration is lower
than of the skin-off configuration, both in frequency and the amplitude. The skin-on
configuration have a wider resonant peak and lower amplitude response compared to the
skin-off configuration, indicating that the skin introduces more damping to the system.
The frequency and damping was identified using subspace identification method [126]
and given in Table B.1. However, due to the limited excitation frequency and limited
measurement system, only the first two bending modes could be captured on the xb-1.

The premise of xb-1 work is based on the assumption that the skin does not add any
stiffness to the wing, while introducing more mass to the system. The weight of the skin
is doubled the weight of the spar. Using the simple relation of:

ω =

√
k

m
(B.0.1)

considering two systems has similar stiffness, previous equation can be rearranged into:

k =
ω2

1

m1

=
ω2

2

m2

(B.0.2)

or

ω1

ω2

=

√
m2

m1

(B.0.3)

Considering ω1 as the frequency response of the skin-off configuration, and ω2 as the
frequency of the skin-on configuration, the shift in frequency response is assume to be

equal to

√
m2

m1

=

√
687

316
= 1.47. The frequency of the skin-on configuration is expected

to be 1.47 smaller than the skin-off configuration.

A comparison of the predicted frequencies based on mass and identified frequency from
the GVT are presented in Table B.2. Resulting in a less than 20% difference, it can be
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concluded that the change of stiffness due to skin is minimal. This study shows that
the use of PolyJet printing leads to less than 5% influence to the overall stiffness of the
model[24]. Furthermore, the identified mode shape matrix is presented in Figure B.5 for
skin-off configuration, and Figure B.6 for skin-on configuration.

1st bending 2nd bending

Figure B.5: Identified mode shape for the skin-off configuration (•: identification results,
-: theoretical).

1st bending 2nd bending

Figure B.6: Identified mode shape for the skin-on configuration (•: identification results,
-: theoretical).
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Flowchart of Subscale Model Development
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