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Control Layer Security: A New Security Paradigm
for Cooperative Autonomous Systems

Weisi Guo, Zhuangkun Wei, Oscar Gonzalez, Adolfo Perrusquía, Antonios Tsourdos

Abstract—Autonomous systems often cooperate to ensure safe
navigation. Embedded within the centralised or distributed co-
ordination mechanisms are a set of observations, unobservable
states, and control variables. Security of data transfer between
autonomous systems is crucial for safety, and both cryptography
and physical layer security methods have been used to secure
communication surfaces - each with its drawbacks and depen-
dencies.

Here, we show for the first time a new wireless Control Layer
Security (CLS) mechanism. CLS exploits mutual physical states
between cooperative autonomous systems to generate cipher keys.
These mutual states are chosen to be observable to legitimate
users and not sufficient to eavesdroppers, thereby enhancing the
resulting secure capacity. The CLS cipher keys can encrypt data
without key exchange or a common key pool, and offers very
low information leakage. As such the security of digital data
channels is now dependent on physical state estimation rather
than wireless channel estimation. This protects the estimation
process from wireless jamming and channel entropy dependency.
We review for first time what kind of signal processing techniques
are used for hidden state estimation and key generation, and the
performance of CLS in different case studies.

Index Terms—Cybersecurity, wireless communication, control
theory, estimation, autonomous systems

I. INTRODUCTION

Autonomous systems (AS) cover a broad range of platforms
that have various degrees of autonomy, typically in control
(stabilizing movement) and navigation (completing a mission
objective). ASs that require control and navigation include but
are not limited to autonomous vehicles, aerial drones, robots,
and maritime vessels. Typically ASs cooperate together to
achieve a common purpose, or have to cooperate because
they share a common space (e.g., a road or air corridor).
Examples of cooperative ASs include platoon driving, swarm
robotics, collision avoidance, and formation flying. In all these
cooperative cases, ASs observe each other via direct sensing
or data exchange to achieve synchronized behaviors.

A. Review of Cybersecurity

Cybersecurity for wireless communications is essential to
secure the knowledge exchange between ASs and with other

This work is supported by the Engineering and Physical Sciences Research
Council [grant number: EP/V026763/1].
Weisi Guo, Zhuangkun Wei, Oscar Gonzalez, Adolfo Perrusquía, Antonios
Tsourdos are with the School of Aerospace, Transport, and Manufacturing,
Cranfield University, MK43 0AL, UK.
Weisi Guo is also with the Alan Turing Institute, London, NW1 2DB, UK.
Corresponding author: weisi.guo@cranfield.ac.uk.

stakeholders. Examples of wireless data transfer include: sen-
sor data collected by ASs to map an environment, Position-
Navigation-Timing signals to ensure safe navigation, and fed-
erated gradient knowledge between ASs and a hub. Several
wireless security approaches exist and we attempt to summa-
rize them below in different categories. We then differentiate
the proposed CLS from them.

1) Cryptography to Post-Quantum Cryptography: Cryptog-
raphy relies on mathematical and computational complexity
to generate and distribute asymmetric/symmetric cipher keys
[1]. The challenge lies in the lack of theoretical information
theory-based guarantee, as most of the algorithms leverage
the complexity of mathematical problems, e.g., the integer
factorization problem, the discrete logarithm problem, and the
elliptic-curve discrete logarithm problem, of which, however,
all could be solved by an eavesdropper (Eve) equipped with a
powerful quantum computer [2].

Indeed, post-quantum cryptography is being actively studied
to overcome secret keys cracked by a super quantum com-
puter. However, in the resource and computational limited
AS network, e.g., the drone network, cryptography-based key
computation, and key exchanges will lead to huge computa-
tional complexity and communication overhead. Instead, our
proposed CLS provides a lightweight pathway to generate
symmetric cipher keys, which are more suitable for the AS
network.

2) Distributed Ledger Technology: Distributed Ledger
Technology (DLT) covers a range of consensus-based security
measures suitable for tracking the provenance and usage
of data. DLT protocols between ASs generally require ei-
ther heavy computation (proof-based) or high data exchange
overhead (voting-based). As such, they are often unsuitable
when the wireless channel is congested, or/and when there
is very little delay tolerance (tactile AS controls need sub-
ms agreement), and/or when the computational resources are
limited on ASs.

3) Physical Layer to Graph Layer Security: Physical layer
security (PLS) broadly covers a range of techniques in ex-
ploiting physics mechanisms to secure data. This includes
the quantum key distribution (QKD), which leverages the
quantum mechanisms (e.g., entanglement and indeterminacy)
to create linked quantum states of two legitimate parties for
shared secret key generation [3]. The limitation of QKD is
the high cost of the devices for quantum entanglement and
state measuring, and the prerequisite of existing authenticated
channels. This then blocks its usage on lightweight ASs, e.g.,
drone networks.

Another lightweight PLS leverages the physical attributes
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TABLE I
COMPARISON BETWEEN DIFFERENT CRYPTOGRAPHY, PHYSICAL LAYER SECURITY AND PROPOSED CONTROL LAYER SECURITY APPROACHES

Cryptography Physical Layer Security Graph Layer Security Control Layer Security
Central Security

Idea
Use Common Key
Pool to Generate

Keys

Use Mutual Wireless Features to
Generate Distributed Keys

Use Mutual Physical
Sensor Data to Generate

Distributed Keys

Use Mutual Cooperative AS
States to Generate
Distributed Keys

Key Generation:
Feature Source

Common Key Pool Wireless Channel Physical Sensor Reading Dynamic States of ASs

Key Reciprocity Guaranteed via
Common Key Pool

V. Strong for most EM materials and
channels

Strong for connected
systems

Strong for cooperative ASs

Key Dynamics
& Uniqueness

Limited to
Common Key Pool

Depends on channels (Strong for
urban areas and mobile, Weak for

aerospace)

Depends on demand
cycles

Strong for multi-task
autonomy

Attack Vectors
& Leakage

Key Pool Security
determines overall

security

Cooperative Eves can estimate
legitimate channel, Jamming can

decrease channel estimation accuracy

Depends on knowledge
of underlying physical

network

Unobservable state
estimation determines

leakage

of the radio channel to secure data. At the most basic
level, keyless security can be achieved using dynamic beam
steering/forming [4] or drone-controlled reconfigurable in-
telligent surface (RIS) [5], rotation modulation to distort
the constellation, and fingerprinting individual antennas [6].
More recently, advances in generating cipher keys using radio
channel properties have enabled more secure channels without
relying on a common key pool such as cryptography methods
[7]–[9]. However, as PLS derives its security from the very
radio channel it is trying to protect, it remains sensitive to
jamming, high noise, poor channel entropy or reciprocity,
and poor channel estimation quality issues. As such, the
limitation of channel based PLS lies in the prerequisite of
the reciprocal channel randomness, which will not hold in
adversarial scenarios, e.g., jamming, pilot spoofing, and CSI
attacks.

Graph Layer Security (GLS) advances PLS to common
sensed network states to encrypt digital data [10]. For example,
two robots monitoring a sewage network can use commonali-
ties in water flow to generate decentralized cipher keys. This
removes the channel estimation dependency of PLS, pushing
the burden to physical sensor accuracy. However, ASs do not
usually share a common physical network (e.g., water or gas
pipelines), and any air-flows between them cannot be a reliable
reciprocal source of common physics to generate cipher keys.
As such, we must seek other common states to exploit.

B. Gaps in Security Capability for Cooperative ASs
Cooperative ASs operating in close formation often need to

make rapid decisions together over a secure channel. There is
often a large disparity between the computation capability of
an AS platform vs. a powerful premeditated external attacker.
This makes current cryptography and DLT approaches not
always suitable. These indeed motivated the rapid advances in
PLS in recent years, where keyless and key-based PLS have
been combined to secure ASs. However, PLS remains sensitive
to channel properties and we give some examples where it
becomes challenging. For example, (1) airborne platforms
typically do not have high entropy channels making PLS
keys very static [11], and (2) increasing use of reconfigurable
intelligent surfaces (RIS) with non-reciprocal reflection prop-
erties can inadvertently undermine or maliciously attack the
legitimate PLS secured channel [12].

Alice

Bob

2. Cooperative 
Control in Task

1. Observable State 
Exchange

Eve

6. Information 
Leakage to Eve 

(MI: Unobservable, 
Observable)

3. Distributed 
Key Generation

3. Distributed 
Key Generation

4. Key Consolidation & 
Privacy Amplification

5. Secure 
Communications

7. Repeat Tasks to 
Create Dynamic Keys

2. Cooperative 
Control in Task

Fig. 1. Control Layer Security: cooperative actions between legitimate ASs
(Alice & Bob) allow them to use their states to find common features that
can create distributed mutual cipher keys.

C. Contribution and Organisation

The contribution of our work is that this is the first re-
view paper that proposes the idea of control layer security
(CLS), which aims to generate mutual control states (common
randomness) between cooperative autonomous systems for
symmetric cipher key generation. Compared to QKD and PLS,
CLS is premised on the control layer cooperation, and thereby
does not require either extra devices and a secured channel
(QKD needed), or the reciprocal channel randomness (PLS
needed), which are hard to be satisfied by lightweight ASs in
an adversarial environment.

The paper is organized in the following sections:
1) Review and comparison of related technologies ranging

from cryptography, physical layer security (PLS), and
graph layer security (GLS);

2) Introduce the control theory, signal processing, and
communication theory mechanisms of CLS - including
observable and unobservable autonomous system states,
feature extraction, and key generation;

3) Demonstration of CLS across different autonomous
system mission tasks and environments, with different
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eavesdropper attack scenarios;
4) Discussion of CLS and future research directions;

II. CONTROL LAYER SECURITY OF AUTONOMOUS
SYSTEMS

Control layer security requires the legitimate nodes (ASs)
to be cooperative in the control layer, so that they can
have mutual states for symmetric cipher key generation.
The cooperative control exists for a wide range of tasks,
e.g., rescuing searching, platoon driving, formation flight,
swarm tasking...etc, which are the potential scenarios in which
CLS can generate cipher keys to secure their communication
streaming. An overall algorithm flow of CLS is shown in
Figure 1. In this section, we show that both simple to complex
cooperative control (from linear controllers to reinforcement
learning) can enable ASs to have mutual states. Some of these
mutual states are unobservable to an outside eavesdropper and
only observable to the ASs themselves. We begin with an
introduction to dynamic AS models (with controllers) and state
feature extraction.

A. Observable and Unobservable States

In general, dynamic systems can be expressed as an evolu-
tion equation of states X:

Xk+1 = AXk +BUk,Yk = CXk; (1)

where A is the evolution matrix that models the dynamics
of the vehicle, and U is an autonomous control signal with
transformation matrix B. Within the state vector X, there can
be a range of observable and unobservable states (examples
given in Table II and visualization in Figure 2). Here, we
can see that depending on the sensor used and the range
of the state observation channel, there is a range of: (1)
directly observable, (2) partially observable (requires noisy in-
ference/calculation), and (3) unobservable states. For close for-
mation flight between cooperative ASs, the state observation
channel between legitimate ASs is short and LoS-dominated.
However, the channels between some Eves and Alice/Bob
can be much longer and possibly NLoS based. Therefore, we
can potentially select visual sensors between Alice and Bob
using Position, Roll, Pitch, and Yaw as observable states; and
knowing that Eve using Radar or Radio techniques cannot
(easily) observe these states.

B. Cooperative Control

For cooperative control, other ASs must have visibility of
certain states. In this case, we also define only observable
states as Y, which is a transformation of the X via the
observation matrix C.

For CLS, legitimate ASs should be cooperative in the
control layer. They either have a centralized controller with
combined objective function (e.g., cooperative control), or
have distributed controllers in their ends involving others’
observable states. The cooperative design aims to generate
highly correlated unobservable states at Alice and Bob (two
legitimate ASs). This can be achieved by adding to their

Fig. 2. Example of Alice and Bob flight trajectory’s resulting state space
evolution that acts as features for CLS cipher key generation.

objective functions the cooperative components which involve
other’s observable states (e.g., the x, y, z positions). In this
way, they will have correlated but unobservable states (e.g.,
their yaw angles are unobservable due to the geometric shape
of a quadcopter). The symmetric cipher keys can then be
generated at their ends using the correlated states.

It is noteworthy that the objective functions can be the ones
from the linear quadratic regulator (LQR), the model predic-
tive control (MPC), and also the reward functions in deep
reinforcement learning, all of which can be combined with
the cooperative control components for generating correlated
states for symmetric key generations.

1) Formation Control: In classic formation control, for
the cooperative control between Alice a and Bob b, we
are interested in designing reward functions J such that we
maximize the joint reward between (see Figure 3a):

1) task completion measured by the states of Alice X(a)

2) mutual task completion measured by the joint states of
Alice X(a) and Bob Y(b)

Here, the reward function in ASs is time-varying from one
micro-task to the next (e.g., following lanes, overtaking ve-
hicles, collision avoidance...etc.). At the east task, we can
then optimize J per time step using a variety of autonomous
controllers, varying from linear control (e.g., LQR, propor-
tional–integral–derivative controllers), to reinforcement learn-
ing control.

2) Model Predictive Control: A popular approach to tackle
the task of cooperative and/or formation control is Model
Predictive Control, in which at each time step, it optimizes
the future control actions (and as a result, their trajectories
and observable states Y) of each agent according to the cost
function. Several variants of this type of control have been
studied, focusing mostly on centralized, decentralized, and
distributed solutions for UAV Swarms, with the latter being
one of the most dominant given its enhanced performance
when compared to its decentralized counterpart, as well as its
modular/reliable framework when compared to the centralized
solution. This allows a stronger long-term correlation of the
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TABLE II
STATE CHANNEL MODEL: OBSERVABLE AND UNOBSERVABLE STATES FOR AUTONOMOUS SYSTEMS (ASS)

Range & Channel Observable States Partially Observable
States (Calculated)

Unobservable
States

Ultrasonic Sensor
(kHz)

V. Short (m), LoS Position Velocity Acceleration, Roll,
Pitch, Yaw

Visual / IR Sensor
(THz)

Short & Medium (km),
LoS

Position, Roll,
Pitch, Yaw

Velocity Acceleration

Radar / Lidar
(6-300 GHz)

Medium to V. Long
(<1000 km), LoS

Position, Velocity Acceleration Roll, Pitch, Yaw

Radio Transponder
(27-2400 MHz)

Long (100s km), NLoS Position Velocity Acceleration, Roll,
Pitch, Yaw

Fig. 3. Control Layer Security: (a) cooperative control between legitimate ASs (Alice & Bob) uses observable features Y, which is a subset of full features
X; and (b) cooperative control enables correlated X that in turn can use a sliding window to identify strongest features FX that (c) create reciprocal cipher
keys between Alice & Bob. (d) This in turn has a low leakage rate to Eve as Eve can only obtain features from observable states FY in different types of
attack scenarios.

full-state features X between Alice and Bob, thus ensuring
stronger cipher key generation.

An important assumption for the distributed framework is
that the agents exchange partial (or in some cases complete)
information about their states and trajectories which in turn
allows the other agents to become aware of the current trajecto-
ries that are being planned. This results in consistency between
the optimization problems solved by the various agents, which
in turn improves the convergence and stability of the overall
solution, and therefore of their correlated actions. At this point,
it should be mentioned that MPC is often used as a "high-
level" planner where only virtual control variables are used,
as discussed in [13]. Thus, by exchanging only these high-
level control actions, prevents the estimation of the full state
as discussed later in section III-B3, which in turn allows the
use of the proposed framework.

3) Game Theory-Based Control: Another effective way to
model the cooperation between multiple ASs is by means

of game theory techniques. In game theory, the interaction
between agents’ behaviors is determined by a set of local
decisions based on partial information of each other. The
cooperative architecture depends on the nature of the problem
and can be modeled either as multiplayer games or multi-
agent interactions where several players (control inputs) or
agents (e.g., Alice and Bob) interact with each other to
optimize different objective functions in either a centralized or
distributed plant. A complete explanation of these techniques
can be found in [14].

One common feature of the game theoretical control for-
mulations is the assumption that each agent has access to the
full state of the system, that is, C is an identity matrix of
appropriate dimension. However, novel reinforcement learning
architectures have been developed for a single agent to obtain
optimal control policies using only partial states measurements
Y [15]. The only condition to verify is that the observability
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matrix
O = [C⊤, (CA)⊤, ..., (CA

K−1
)⊤]⊤ (2)

has full rank. Otherwise, the unobservable states must be stable
or, in other words, the AS is detectable.

C. Feature Extraction
All legitimate ASs must have a feature extraction algorithm

to translate states X into features FX that can be used for key
generation. Like PLS and GLS, the CLS-based control layer
features from states that meet several criteria simultaneously:

1) Reciprocity: Here, the states of Alice and Bob must be
correlated via the aforementioned cooperative control.
Not all states that exist need to be reciprocal, as some
cannot be observed or are not used in cooperative
control. Feature extraction from states must therefore
leverage those states that are reciprocal. CLS does not
need their referenced trajectories to be correlated for
the symmetric key generation, as their state feature
correlation is generated by cooperative control designs.

2) Dynamic and Random: Here, the states must be time-
varying and control a degree of randomness in order to
avoid Eve successfully performing a brute-force attack.
In reality, what this means for the ASs, is that we can
naturally expect noise in 3 forms: (1) dynamic change
of environment, (2) observation noise in C, and (3)
reward function variations from task to task. Note that
the randomness will not be compromised even with
repeated tasks, where their real-time states are still with
randomness given the time-varying environment (e.g.,
noisy IMU, gyro, and GNSS measurements, dynamic
dragging effect, etc).

3) Uniqueness: Here, we assume that given a long run of
sequential tasks between a group of ASs, this sequence
and the states within these ASs (given the above random
conditions) make it unique.

4) Low State Leakage: Whilst the above 3 requirements
ensure successful and high-quality key generation,
a strong eavesdropper (Eve) can still observe these
states/features. In order to reduce the key leakage rate,
we must ensure that we use observable states Y such
that the leakage between Y and X is minimized. In the
cooperative control case, we do so by minimizing this
leakage via both the selection of states via C, as well
as the time-varying reward function J design.

For the actual feature extraction, one of the ways one can
do it is to extract the state vector X from Alice and Bob in
a distributed manner. One of the challenges unique to ASs, is
that the trajectory dynamics can be very smooth sometimes,
leading to long runs of state values with very little change.
One way to solve this problem is by embedding sequential
states as a matrix and calculating the mutual information (MI)
such that the intrinsic value of features around state Xk−N/2

is evaluated (see Figure 3b):

MI




X
(a)
k
...

X
(a)
k−N

 ;


X

(b)
k
...

X
(b)
k−N


 , (3)

and the state sequences with the highest MI are used for
features.

Indeed the non-legitimate ASs could have the feature extrac-
tion algorithm, but their states (as the inputs for the feature
extraction algorithm) are not correlated with the legitimate
pair, as the legitimate pair does not involve the states of non-
legitimate ASs in their controller. Also, the analysis on the
possibility to steal/estimate the unobservable of legitimate ASs
are provided in Section III B.

The complexity of the feature extraction algorithm depends
on how correlated the states of the legitimate pair are. For
the result in Fig. 4, the correlated states of two UAVs are
their yaw angles, which are extracted directly as the common
features. So, in this way, a UAV only equipped with basic
IMU and gyro sensors can easily extract its yaw angle as the
common feature, which has been ensured as correlated by the
cooperative controller design.

D. Key Generation

After feature extraction, we can create the symmetric secret
keys as per traditional PLS techniques - see Figure 1 and 3c.
This is namely the steps of: key consolidation and privacy am-
plification, secure communications, and then following tasks
with new or repeated references. This is all whilst dealing with
the unique challenges of AS dynamics, namely: (a) cooperative
control has transition phases that constantly revolve around
stable and unstable regimes, where the degree of correlation
of states and features is closely related to mutual stability,
and (b) the observation sampling must be sufficiently high to
capture the state evolution.

For CLS key generation process, there is no need for key
exchange. The state exchange is the basic step for distributed
cooperative controls (e.g., model predictive control MPC), to
ensure the awareness of others’ observable states by each AS.
This state-sharing process indeed leads to extra communica-
tion overhead in an AS network, but there is no difference
with existing cooperative control regulations/protocols, e.g.,
Automatic Dependent Surveillance–Broadcast (ADB-S).

III. CONTROL LAYER SECURITY (CLS): PERFORMANCE
AND DEMONSTRATION

A. Information Leakage between Unobservable and Observ-
able States

As mentioned previously, the information shared between
legitimate ASs Alice and Bob are their mutually observable
states Y, which we assume is also observable by Eve Y

(e)
k

(even if Eve is further away and/or have greater observation
noise). What we show is that the mutual information (MI)
between legitimate users presented in Equation 3 is much
stronger than between Eve and legitimate users. This is due
to 2 reasons embedded in the design of CLS:

1) Information Loss in Observation Matrix C: Eve cannot
recover all states X from observable states Y as the
observation matrix C is not reversible. This is true even
with the AS dynamic model and the control model is
known, as all the real-time values of X are not known
to Eve;
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2) Information Loss in Cooperative Control Reward J : Eve
cannot recover all states X from observable states Y
even with the AS dynamic model and the control model
as the controller is designed such that Y only partially
contributes to future values of X.

As such, we can see from Figure 3d that a low leakage rate
to Eve is achieved as Eve can only obtain features from
observable states FY in different types of scenarios discussed
below.

B. Attack Vectors and AS Scenarios
After the elaboration of the CLS-based secret key genera-

tion, we study how secure the proposed key is, in the face of
different types of Eves. Here, the Eves aim to reconstruct the
control-layer common features of Alice and Bob, i.e., FX , and
then regenerate their cipher keys based on these features. To
evaluate the security performance of the proposed CLS-based
secret key, we consider three types of Eves, with the increase
of the knowledge of Alice’s and Bob’s observable states and
systems.

1) Brute-Force Eve (Type-1): The brute-force Eve is as-
sumed to be the simplest Eve without any knowledge of
Alice’s and Bob’s systems, i.e., Eq. (1), nor their observable
states Y (e.g., 3D positions and velocities in Table. II). In
this case, the control-layer extracted common features at Alice
and Bob cannot be estimated by Eve, and so do the generated
cipher keys relied upon.

2) Model-Free Eve (Type-2): Model-Free Eve refers to
Eves that can obtain the observable states of Alice and Bob
Y (e.g., the 3D positions and the speeds shown in Table.
II). In this case, Eve will use the observed states as the
legitimate features to reconstruct the cipher keys. As stated
in the feature extraction part (Section II. C. 4)), minimizing
leakage between observable and unobservable states serves as
the vital solution to prevent such observable state-based Eve.
This can be pursued (naturally & artificially) by the following
3 aspects:

1) (Passively) The correlation coefficient between Eve’s
observed states Y(e) and Alice’s and Bob’s state X is
naturally weakened by the observing noise, even worsen
with the increase of observing distance from legitimate
ASs to Eve, as it induces larger estimation error from
noisy observations.

2) (Passively) The information loss from Eve’s observed
state Y(e) to legitimate state X further reduces and its
determined secret key leakage rate. For example, there
exists a multiple-to-one mapping from the unobservable
pitch, roll, and yaw angles to Eve’s observed trajectories
(e.g., going forward can be pursued either by direct
pitch angle controlling or by clockwise yawing and
rolling). This renders the difficulty for Eve to obtain
the legitimate secret keys leveraging Alice’s and Bob’s
unobservable yaw states.

3) (Artificially) As is expressed the correlation of Eve’s
observed and legitimate states, the idea to minimize is to
artificially and jointly optimize (i) the observing matrix,
and (ii) the cooperative reward objectives J to minimize
the selected entries of the covariance matrix.

3) Kalman Filter Eve (Type-3): We next consider a strong
Eve with (i) the knowledge of AS’s dynamic & control model,
i.e., Eq. (1), and (ii) the observable states of Alice and Bob.
Notably, these assumed prerequisites of Eve are extremely
strong (even if guessing the modeling and intention is a
separate research flow), but we will show that even so, Eve
still cannot estimate the CLS-based secret key generated at
Alice and Bob.

From Eve’s perspective, the derivation of the secret key can
be converted to estimate Alice’s and Bob’s dynamic states
via the observed states. This can be generally pursued by (i)
estimating the initial state, and (ii) taking the estimated initial
states and observations into the sequential state estimation
algorithms (e.g., Kalman filter or Bayesian filter) for further
state acquisition.

The difficulty of the Kalman filter-based Eve lies in the
multiple-to-one mapping from the initial states to the obser-
vations, rendering the under-determined problem given by the
observability matrix. An intuitive example is that there are
multiple combinations of unobservable yaw, pitch, and roll
angles that can map to the same AS’s trajectory (which is
observed by Eve), making her difficult to estimate them via
the observed trajectory. This, on the other hand, provides an
insight to defend Type-3 Eve, i.e., the design of the control
signal should make the conditional number of O large.

C. Security KPIs & Overhead Metrics

The evaluation process includes the security KPIs, the over-
head analysis, and the computational analysis. The security
KPIs are as same as PLS and QKD, given that they all deal
with cipher key generation. These include the secret key rate
(SKR) as the difference between the mutual information of the
common features to the leakage entropy, the key disagreement
rate (KDR) before reconciliation, and the p-value for the cipher
key randomness check.

The main overhead metrics are from the cost of the con-
troller’s input, i.e., UT

kUk in Eq. (1) to illustrate how large
this value is compared to the controller without CLS. The
next metric will be the store and computational complexity for
CLS common feature extraction. Then, other overhead costs
are the same as the PLS and the QKD, for key quantization,
key reconciliation and privacy amplification.

The computational complexity contains the complexities
of (i) CLS to provide common states, (ii) key quantization
from common features to binary key, (iii) key reconciliation,
and (iv) privacy amplification process. Here, all steps of (ii)-
(iv) are the same as those of PLS and QKD, and therefore
with the same computational complexity. The computational
complexity analysis of (i) depends on which cooperative con-
troller is used. For example, linear controllers (e.g., LQR) can
provide explicit expressions of the input control variables, i.e.,
Uk, whose complexity is mainly spent on the computations
of the Riccati function. The MPC that requires solving the
constrained quadratic objective function in each controlling
time step should be considered as what algorithms are used
(e.g., interior point method). The deep reinforcement learning
(DRL) with already trained actor neural network should be
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Fig. 4. Control Layer Security in action: key generation over time with optimal feature quantization to ensure strong secrecy performance against Type-2
and Type-3 Eves.

considered by the number of neurons and layers and the
exact complexity of the activation function. Ongoing training
onboard DRL should be considered as which DRL is used
(e.g., DQN, DDPG, PPO) and the on/off policy for training.

D. Example Results of CLS in Action

Here in Figure 4 we show how keys are generated from
common features between Alice and Bob during a real for-
mation flight (visualized in Figure 2). For the test set in Fig.
4, Alice and Bob are set as two geometrically symmetrical
quadcopters. The state vector of each quacopter is the stacked
12 states, i.e., the xyz positions, the xyz velocities, roll, pitch,
yaw, and the rates of roll, pitch and yaw. The dynamic and
control model is the widely used linearized quadcopter model.
We assume that the 3D xyz-positions can be observed with
observing errors. And the corresponding xyz-velocities can be
computed via the differences. For the control signal design
of each UAV (e.g., Alice), we design the cooperative term
via Alice’s whole states and the observed 3D xyz-positions of
Bob. Then, this cooperative term is added to the LQR objective
function, which by solving, will derive the control signals that
lead to correlated yaw angles (unobservable by others given
the geometrical symmetry) between Alice and Bob. Then, the
key generation step is pursued by the optimized upper and
lower quantization thresholds.

It is illustrated that the features and cipher keys generated
by Alice and Bob share both commonality and randomness,
rendering the difficulty for a brute-force Eve to guess/estimate.
Then, in Figure 4, we test the proposed CLS in the face of
both Type-2 (model-free) and Type-3 (Kalman-filter) Eves. It
is shown that neither of them can successfully guess/infer the
cipher keys, despite Type-3 having the predictive flight physics
model of Alice and Bob.

The reasons behind the security performance of our pro-
posed CLS are categorized into three aspects. First, the
common features between Alice and Bob are induced by

cooperative control, which creates the involvement of each
other’s states and leads to highly correlated states for further
cipher key generation. Second, for Type-2 Eve that tries to
steal the legitimate common features by Alice’s and Bob’s
observable states, the small information leakage to the selected
and unobservable states of Alice and Bob gives rise to the low
correlation between the features of Type-2 Eve and legitimate
ASs. Third, for the Kalman-filter-based Eve with knowledge
of dynamic & control model and Alice’s and Bob’s observable
states, the under-determined challenge to estimate the initial
state from the observable states prevent it from obtaining the
legitimate features and further the cipher keys relied upon. As
such, the results provide a first glance on the potential of the
concept of CLS to secure the communications of ASs, which
serves as a promising candidate in scenarios where PLS and
GLS cannot hold their prerequisites.

The time consumption to process CLS is within the control
interval, i.e., 0.02s in our simulation. In this way, the raw
secret key rate is proportional to 0.02s, which, although slower
than the data communication rate, can be increased by privacy
amplification techniques (which also serve as the last step for
other symmetrical key generation, e.g., PLS, QKD).

IV. FUTURE WORKS

A. Compatibility with Widely Used Controllers

Future work will focus on other forms of cooperative control
discussed in this paper such as Deep Reinforcement Learning
and Game Theoretic Control, but also consider other state
features which can offer lower leakage rates to Eve. We will
continue also Eve’s research to develop new attack vectors,
and build physical demonstrators to showcase to the IEEE
community.

B. Scalability Issue

How scalability affects CLS may require further studies.
Currently, the CLS-based key is an end-to-end cipher key,
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generated by the cooperative control of two legitimate nodes
(Alice and Bob). In this view, whether the involvement of other
legitimate nodes into the cooperative control framework affects
the Alice-Bob cipher key will be a worthwhile study. Another
interesting topic would be how to generate CLS-based group
cipher keys to encrypt the networked communication stream-
ing. This may require more sophisticated control designs to
generate unobservable states that possess high correlations by
a group of legitimate nodes.

C. Authentication Challenges

It is noteworthy that the concept of CLS cannot replace
the authentication process. For example, if a spoofing Carlos
aims to pretend as Alice, then Bob and Carlos will use each
other’s observable states for CLS process, and this leads to the
result that Bob will have the symmetric secret keys with Carlos
other than Alice. Nevertheless, CLS can be used to help the
identification process. For instance, instead of observing the
observable states of each other, legitimate Alice and Bob can
broadcast their observable states encrypted by their previously
generated CLS-based cipher keys. In this way, they will receive
the correct observable states of each other, other than the states
of the spoofing Carlos who does not access to the CLS keys
to encrypt his spoofing states.

D. Information-Theoretic Security

One critical branch of the future work lies in the design
and proof of the information-theoretic security of CLS (i.e.,
unconditional security). For currently, the CLS is implemented
on the cooperative control of the geometric symmetry quad-
copters, whose yaw angles are hard to be estimated by GNSS
or imaging-based Eves, and thereby serve as the unobservable
states for cipher key generation. Indeed, if Eve is very close to
one legitimate quadcopter, it may be possible to estimate the
changes in the yaw angle by image processing techniques,
which may break the information-theoretic security. This
should be further studied especially via real experiments, by
taking into account the image resolution, the sampling time-
interval, and the physical safe distance (for now we are using
the air-gear 450 quadcopter, which does not allow any object
to be close at 1m or there will be a destroy of the propellers).

V. DISCUSSIONS AND CONCLUSIONS

The rapid advances in networked ASs working in cooper-
ative formations with data sharing mean new cybersecurity
methods have to be developed for them. When we consider
existing cryptographic methods, we are naturally concerned by
superior computational attackers and there have been many
cases of this. This post-quantum cryptography issue indeed
motivated the rapid advances in PLS in recent years. However,
PLS remains sensitive to attackers (e.g., jamming, pilot spoof-
ing) that destroy its prerequisite wireless channel properties
(e.g., reciprocity challenged by new intelligent meta-surfaces).
In this review, we propose a new cybersecurity mechanism
called control layer security (CLS). The idea of CLS is
to exploit the correlated and unobservable states between
cooperative ASs to generate cipher keys.

We demonstrated this idea with a pair of UAVs using
cooperative formation flight. We showed that even if Eve
has full knowledge of observable states and systems cannot
estimate the unobservable states and the secret key relied
upon, due to the multiple-to-one mapping from unobservable
states (pitch, roll, and yaw angles) to the observable states (3D
trajectory). This demonstrates a promising candidate to secure
the communications of ASs, especially in the adversarial radio
environment with attackers that destroys the prerequisite for
current PLS schemes.
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