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Abstract 

Most knowledge about species and habitats is in-homogeneously distributed, with biases existing 

in space, time and taxonomic and functional knowledge. Yet, controversially the total amount of 

biodiversity data has never been greater. A key challenge is thus how to make effective use of the 

various sources of biodiversity data in an integrated manner. Particularly for widely used 

modelling approaches, such as species distribution models (SDMs), the need for integration is 

urgent, if spatial and temporal predictions are to be accurate enough in addressing global 

challenges.  

Here, I present a modelling framework that brings together several ideas and methodological 

advances for creating integrated species distribution models (iSDM). The ibis.iSDM R-package is 

a set of modular convenience functions that allows the integration of different data sources, such 

as presence-only, community survey, expert ranges or species habitat preferences, in a single 

model or ensemble of models. Further it supports convenient parameter transformations and 

tuning, data preparation helpers and allows the creation of spatial-temporal projections and 

scenarios. Ecological constraints such as projection limits, dispersal, connectivity or adaptability 

can be added in a modular fashion thus helping to prevent unrealistic estimates of species 

distribution changes. 

The ibis.iSDM R-package makes use of a series of methodological advances and is aimed to be a 

vehicle for creating more realistic and constrained spatial predictions. Besides providing 

convenience functions for a range of different statistical models as well as an increasing number 

of wrappers for mechanistic modules, ibis.iSDM also introduces several innovative concepts such 

as sequential or weighted integration, or thresholding by prediction uncertainty. The overall 

framework will be continued to be improved and further functionalities be added. 
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Introduction: 

Species distribution models (SDM) are the most widely used ecological modelling approaches 

when the aim is to infer, predict and project species assets (or other biodiversity features) in space 

and time (Elith and Leathwick, 2009). These models usually rely on statistical relationships 

between species occurrences and environmental covariates based on the niche concept (Araújo and 

Guisan, 2006; Blonder et al., 2014; Guisan and Thuiller, 2005). Measures and indicators derived 

from SDM outputs are for example commonly used to inform biodiversity survey efforts (Fois et 

al., 2018), identify areas of potential conservation value (Jung et al., 2021) or project the impact 

of changes in land-use, management intensity or climate (Leclère et al., 2020; Leitão et al., 2022; 

Santini et al., 2021). Nevertheless there are calls that inferences made by SDMs should be more 

critically interrogated in terms of the processes and responses they are able to capture (A. Lee‐

Yaw et al., 2022; Evans et al., 2016; Hannemann et al., 2016; Weber et al., 2017), especially since 

- as a data-driven method - SDMs are heavily dependent on the good availability and quality of 

data at adequate scales. 

Accurate estimation of changes in biodiversity requires sufficient monitoring, which however 

can be financially and taxonomically (e.g. required expertise to survey a species) costly. Most 

biodiversity occurrence data are collected opportunistically, often by citizen scientists, and  which 

has resulted in spatial, environmental and temporal biases (Hughes et al., 2021; Meyer et al., 2015). 

Modelling approaches such as SDMs usually reach better performance with well curated or 

systematically collected datasets as response functions stabilize and spurious correlations with 

some covariates are minimized (Hannemann et al., 2016; Smith and Santos, 2020). Yet, the reality 

is that complete or unbiased sampling coverage for any given species and data source is rarely, if 

ever achieved. Instead, scientists and landscape managers usually are left with multiple 

heterogeneous data sources, such as range maps, citizen-science data, structured surveys and 

checklists or species traits (Isaac et al., 2020; Jetz et al., 2019). This has subsequently lead to 

renewed calls for better data integration in biodiversity syntheses across scales (Heberling et al., 

2021). 

Species distribution models are particular sensitive to geographical or environmental biases in 

underlying biodiversity data (Baker et al., 2022; Botella et al., 2020). And although several 

methods have been developed to account to some extent for sampling biases (Chauvier et al., 2021; 

Warton et al., 2013), it can be argued that more information on the biology of a species is usually 

known (for example where a species broadly persist), that what is usually provided as input to an 

ecological model. Historically, SDM approaches have mostly relied on only single data sources 

(e.g. presence-only records from databases such as GBIF). New modelling approaches and 

frameworks have been developed to integrate different data sources into one combined prediction 

(Fletcher et al., 2019; Isaac et al., 2020; Miller et al., 2019). These so-called ‘integrated’ SDMs 

have the promise of providing in many cases more accurate, less biased representations of a species 

niche while also accounting for some of the biases that plague biodiversity datasets. 

Integrated SDMs were originally proposed as a method to integrate presence-only and 

presence-absence information to account for biases in either (Koshkina et al., 2017). The promise 

of such an approach is that a “high quality” or multiple datasets combined with abundant, but often 
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biased or faulty data, such as citizen science records, can improve overall parameter estimation by 

balancing opposing strengths (quantity against quality). Previous work has shown that integrating 

additional data can improve the precision of species trend estimates (Hertzog et al., 2021), account 

for biases in underlying biodiversity data (Fithian et al., 2015; Pacifici et al., 2019), help the 

prediction of species distributions (Koshkina et al., 2017; Merow et al., 2017; Peel et al., 2019) 

and modify response functions by accounting for prior knowledge of species-environment 

relationships (Hofner et al., 2011). And although there is some evidence that integrated SDMs do 

not necessarily always perform better than standard SDMs using a single data source (Ahmad 

Suhaimi et al., 2021; Simmonds et al., 2020), it is beyond doubt that the necessity for data or 

model-based integration will only increase in the SDM literature in the coming years. 

Much of the development of integrated SDMs has been enabled by thinking of them as 

regression formulations. Assuming exclusively presence-only information about a species is 

available, a species distribution can be inferred through a Poisson process (Renner et al., 2015), 

which is statistically equivalent to the popular Maxent framework (Renner and Warton, 2013). A 

particular advantage of this modelling paradigm is that – rather than creating “pseudo-absence” 

points of a species as required for example by logistic regressions – modellers are able to estimate 

and project the distribution using randomized (or targeted) “background” samples that can be used 

to infer the relative intensity of occurrence (Guillera-Arroita et al., 2014; Warton and Shepherd, 

2010), which comes with fewer assumptions about the true absence of a species, while being 

congruent to logistic regressions (Warton and Shepherd, 2010). Additionally, SDMs inferred from 

a Poisson process easily allow the integration of spatial-explicit priors through offsets (Merow et 

al., 2017, 2016), priors (Fletcher et al., 2019) or model-based bias controls through integration of 

other datasets or by forcing a certain value (such as maximum sampling bias) during the projection 

phase only (Fithian et al., 2015; Phillips et al., 2009; Warton et al., 2013). The paradigm of 

formulating a SDM as a regression formulation has furthermore facilitated the development of 

methods where properties of individual datasets (e.g. presence-only vs presence-absence) are taken 

explicitly into account. These types of model-based integration, theoretically based on joint 

likelihood estimation, are among the most elegant but also computationally demanding types of 

integrated SDMs currently in existence (Doser et al., 2021; Fithian et al., 2015; Isaac et al., 2020; 

Miller et al., 2019). Given these developments, there is a need for an adaptable SDM framework 

that easily allows to integrate the various types of biodiversity information that are out there.  

At this point readers might wonder of the exact gap that yet another statistical SDM 

package is trying to fill, especially given the wealth of software already available to researchers 

(Sillero et al., 2023; Thuiller et al., 2009). Although new R-packages for joint inference using 

multiple likelihoods have become recently available (Doser et al., 2021; Mostert et al., 2022), they 

do not offer all the flexibility of integration outlined by Fletcher et al., such as for the ability to 

add offsets, priors or ensembles (Fletcher et al., 2019). In addition, there does not yet exist a 

software solution that situates a PPM modelling framework in the context of integrated modelling 

while also allowing for scenario projections with typical constraints such as dispersal (Seaborn et 

al., 2020). With the ibis.iSDM package (https://iiasa.github.io/ibis.iSDM/) I intend to fill this gap, 

providing a generic wrapper package to integrate various types of biodiversity information, and in 

a way that is modular and easily expandable with additional functionalities in the future. The 
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package is presented here in terms of its design, structure and key functionality as well as through 

a series of different exemplary use cases for constructing integrated SDMs and scenarios. Less 

emphasis is given here to different parameters and supporting modules since those will be 

incrementally added, and in depth detailed on the help pages of the pages as well as the online 

website. 

 

Modelling framework: 

Design philosophy 

The Integrated model for BiodIversity distribution projectionS (or ibis.iSDM, 

https://iiasa.github.io/ibis.iSDM/) aims to provide a series of convenience functions for fitting 

integrated SDMs. It captures in functionality all the different types of integration, such as 

ensembles, offsets and covariates, priors or joint modelling, outlined by Fletcher et al. (2019), 

while also being specific to the biodiversity type to be estimated. For example presence-only 

biodiversity datasets added to a distribution object are estimated by default through an 

inhomogeneous Poisson point process model (PPM), which assumes that the true number of 

individuals 𝑁(𝑦) can be approximated as relative observation intensity 𝜆 integrated over of an area 

𝐴, e.g. 𝑁(𝑦) ≈ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(∫ 𝜆(𝑠)𝑑𝑠
𝐴

). The intensity 𝜆 can be estimated as log(𝜆𝑠) = 𝛽0 + 𝛽𝑘𝑥𝑠 +

𝜀𝑠 based on thinned observations 𝑠, β being the 1 to 𝑘 coefficients in the model including an 

intercept (𝛽0), x being the covariate values in given area and ε being the model error. Inferring 

environmental suitability through PPMs is usually preferable way if only presence-only data is 

available (Renner et al., 2015; Warton and Shepherd, 2010), although the ibis.iSDM package also 

supports the common practice of adding “pseudo-absence” points to datasets (Figure 4). 

Most code in the ibis.iSDM package is highly modular as the main functionalities have 

been created in an object-oriented way by making use of a tidyverseobject structure (Wickham, 

2016), allowing to retain data and functions contained within each object to facilitate reuse through 

other functions (Figure 1, SI Figure 1). Not only does this facilitate cleaner coding overall, it also 

makes the code more modular with regards to adding datasets or integrating other methods. For 

example, the existing implementation allows to directly add two different dispersal simulators, 

KissMiG (Nobis and Normand, 2014) and MIGCLIM (Engler et al., 2012) to constrain future 

projections (see also scenario section below).  

A typical ibis.iSDM workflow begins with defining a modelling background (e.g. the area 

over which a SDM is to be created) to which biodiversity data or covariates can then be added (SI 

Figure 1). It should be noted that preparation of input data is left to the users and can be easily 

achieved through a range of external packages (Sillero et al., 2023; Zizka et al., 2019). 

Additionally, any other information on biodiversity-relevant data, such as priors and offsets for 

habitat preferences or known areas of occurrence, can also added to the same object (SI Figure 1). 

Finally, after specifying an engine and training the model, the resulting fit can then be interrogated 

and validated (Figure 1) or passed on to construct a ‘scenario’ with different (temporal) predictors. 
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The sections below highlights the package functionalities in more depth and also include 

demonstrations with example code and data for each. 

 

Figure 1: Schematic and typical workflow of the ibis.iSDM package, where biodiversity and 

covariates datasets and combined with a series of auxiliary or optional modules. Through the use 

of different engines, response functions towards certain covariates and species distributions can be 

inferred. Each individual entry (hexagon) has its own function and stores internal data that can be 

accessed in a modular way. Many of the function have multiple variants (indicated by the {*}) 

allowing different data or parameter types to be added. A full list of all functions and examples 

can be found online (https://iiasa.github.io/ibis.iSDM/) and example code can be found in SI 

Figure 1. Icons are created by the authors or are under public domain (CC-0). 

 

Integration 

The ibis.iSDM package supports all types of integration outlined by Fletcher et al. (2019), some 

even in multiple different ways (Figure 2). The decision on which type of integration is preferable 

is specific to the types of data available in a given modelling problem. The easiest form of 
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integration is to simply combine all point datasets (“pooling”) and the package supports pooling 

without and with weights (Figure 2a-b), the latter can for example give higher weight to potentially 

fewer, but more accurate records (Figure 2b). Besides data pooling there is support for creating 

model ensembles (“ensemble(...)”) for instance through means weighted by performance statistics 

(e.g., AUC) from independent data (Guisan and Thuiller, 2005; Valavi et al., 2021). Ensembles 

can also be constructed for model projections (e.g., scenarios up to 2050) as well as for response 

functions (“ensemble_partial(...)”). However often there are not enough data available to reliably 

fit every type of model, especially given the demanding nature of some machine learning 

approaches, and often computation time can be a considerable limitation as well, such as for more 

demanding Bayesian models. The package will raise warnings and highlighted messages in case 

the provided information is not sufficient for inferring a species distribution.  

Not always are there multiple point occurrence datasets available for a given species, 

although rarely are they the only information known about the biology of a species In many cases 

expert information on habitat preferences, or a broad delineation of a species range can also 

provide contextual information about a species (Brooks et al., 2019; Merow et al., 2017). 

Ibis.iSDM supports as another type of integration the addition of expert delineated - or previous 

created  model predictions - as covariates to model objects (Domisch et al., 2016), for example for 

species ranges (“add_predictor_range()”) or elevational limits which transforms an elevational 

covariate into lower and upper bounded variables(“add_predictor_elevationpref()”). Alternatively, 

such information could also be added through offsets that affect a regression fit and similar 

methods (e.g. “add_offset_range()” or “add_offset_elevation()”) have been implemented in the 

package (Merow et al., 2017, 2016). Specific to each individual engine (defined as algorithmic 

approach for inference and projection, see below) there is also support for adding priors on the 

coefficients towards certain covariates via “add_priors(...)”. Priors are usually specified either 

directly on the coefficients (magnitude and sign) or its direction using for example monotonicity 

constraints (e.g. specifying that a certain variable have to be positive, Figure 2g). Many priors can 

be particularly useful to avoid non-sensical response functions (Hofner et al., 2011), for example 

when owing to differences in grain a known forest-associated species does show the intended 

directional response towards this variable.  

Extending Fletcher et al., there are also options to use dataset specific weights or factor 

interactions to account for differences in included datasets (Leung et al., 2019). All these types of 

integration are also supported for inference on single datasets or can be used in sequential 

estimation.. For example a potential use case easily enabled by ibis.iSDM could be to first fit a 

model using one biodiversity data source and specific set of covariates such as broad climatic data, 

and then use the output of the resulting prediction as an offset to estimate the distribution with a 

different biodiversity or covariate data. Lastly, integration is also possibly through a dedicated 

model that combines multiple presence-only and presence-absence datasets together through a 

joint likelihood in a Bayesian setting (Fithian et al., 2015; Fletcher et al., 2019; Koshkina et al., 

2017). These models are usually the most computationally intensive, but also the most elegant as 

all integration is done through dataset specific likelihoods (Figure 2h). 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



7 
 

 

Figure 2: The suitable habitat estimated with a SDM can vary depending on how different datasets 

are integrated as shown for the European ground squirrel (Spermophillus citellus). The available 

information for the species is combined either by a) data pooling, b) data pooling but with dataset 

specific weights, c) mean ensemble of different models, d) sequential estimation, e) inclusion of 

its range as predictor or f) as an offset, g) use of auxiliary climatic limits and priors or h) integrated 

estimation through joint likelihoods. All code and data with covariates to recreate the figures can 

be found in the supplementary materials. 

 

Different engines 

The backbone of any SDM modelling are the algorithm used for inference which in ibis.iSDM are 

called “engines”. To this date ibis.iSDM supports a total of 7 different engines for inferring or 

projecting the relative habitat suitability of biodiversity features. Those can broadly be classified 

into engines using either regressions and or non-parametric machine learning approaches and 

being frequentist or Bayesian in nature. Engines supported are regularized elastic net regressions 

through the glmnet package as also used by the maxnet package (Friedman et al., 2010; Phillips et 

al., 2017), Bayesian regularized “Spike-and-Slab” regressions with the BoomSpikeSlab package 

(Scott, 2022), Bayesian additive regression trees through dbarts (Carlson, 2020; Dorie, 2022), 

monotonic gradient descent boosting via mboost (Hofner et al., 2011; Hothorn et al., 2022), 

Extreme Gradient Boosting through xgboost (Chen et al., 2023), Bayesian spatial regressions with 

INLA and inlabru (Bachl et al., 2019; Lindgren and Rue, 2015) and general Bayesian regressions 

with stan (Gabry and Češnovar, 2022; Stan Development Team, 2022). The glmnet, stan and 

Bayesian regularized regressions only support linear response functions, while the other engines 

can also make use of non-linear estimation.  

Although some engines support only linear response functions, non-linearity can be 

introduced through specific transformations of covariates such as hinge, threshold, quadratic or 

product derivates, as done in the popular maxent/maxnet modelling approach (Merow et al., 2013; 

Phillips et al., 2017). Functionalities to create such derivates are readily available when adding 

covariates to a distribution model (see SI Figure 1 and code examples in the supplementary 

materials). Each of the different engines support different types of integration, with some engines 
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being more flexible than others. For example, priors on coefficients can in some cases only 

constrain the directionality of response functions (Hofner et al., 2011), and in other cases also the 

magnitude of expected changes in relation to environmental covariates. An comparative overview 

of the capacities of each engine can be found online (  https://iiasa.github.io/ibis.iSDM/l ). 

 

Model evaluation 

Model evaluation through independent or withhold data is a critical part of the construction of 

species distribution models (Elith and Leathwick, 2009; Valavi et al., 2021). SDMs can be 

‘validated’ in both a discrete and continuous way, with the former having been criticized for being 

dependent on thresholds applied to predictions of suitable habitat (Lawson et al., 2014; Liu et al., 

2013). The ibis.iSDM package supports both continuous and discrete validation methods via the 

“validate()” function. Continuous validations use error metrics (e.g. RMSE) to infer prediction 

precision (Jung, 2022), while discrete validations can be calculated on a-priori mapped thresholded 

distributions with a range of different options from binary to normalized estimation (Figure 4c). 

The identification of best thresholds for discrete validation can be achieved through heuristic 

searches for local optima in prediction performance measures (Márcia Barbosa et al., 2013). 

Estimated distributions can thus be validated ("validate()", SI Figure 1) with independent or 

withheld data in a wide range of settings. The ibis.iSDM package does not yet support standard 

approaches such as spatial or spatial-temporal cross splitting (using for example the blockCV 

package, (Roberts et al., 2017)) directly in the modelling framework, and users should consider 

this aspect separately in their individual cases as part of the data preparation.  

Lastly it should be highlighted that many commonly applied validation approaches are not 

necessarily appropriate when several different sources of information exist and best practices in 

the validation of integrated SDMs are still an open research topic as also highlighted by (Isaac et 

al., 2020). This is since (a) the consideration of all available data is one of the main points of 

model-based integration, (b) appropriate validation metrics are less straight-forward than for single 

datasets as biases and sampling methods can differ, and (c) any validation dataset might not 

represent the niche and environmental parameters estimated by the integrated model. For example, 

the standard practice of withholding parts of the training data for validating a model often means 

that both training and testing data suffer from the same spatial and environmental biases (Baker et 

al., 2022). If, however prior knowledge of the biology of a species is integrated in a SDM through 

a prior or offset, thus “nudging” or constraining response functions towards a more sensible 

outcome and ultimately different prediction, the use of any (biased) withheld data would likely 

indicate a reduced predictive performance compared to a model without such priors. One idea 

could be to validate SDMs not only based on their spatial predictions, but also on the magnitude 

and direction of their response functions (Smith and Santos, 2020). Certainly, more conceptual 

work is needed to design appropriate validation schemes for integrated SDMs. 

 

Fitting and constraining projections in space and time 
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One of the objectives of species distribution modelling is to project the likely distribution or 

suitable habitat of a species into presence, past and future. In the simplest case SDM projections 

are usually made by multiplying the coefficients obtained from a previously fitted model with a 

matrix of (future) predictors (Elith et al., 2010; Thuiller et al., 2009). Such projections can be 

useful for making future projections and often show acceptable realism in independent assessments 

(Morán-Ordóñez et al., 2017; Soultan et al., 2022). Yet, such naïve projections assume that species 

are in equilibrium with their environment and often – but not always – neglect factors such as 

biotic interactions, adaptation and dispersal (Araújo and Guisan, 2006; Elith et al., 2010).  

The ibis.iSDM package can project the distribution of biodiversity assets to different time 

periods, by supplying future covariates as multi-dimensional array using the “stars” R-package 

(Pebesma, 2022). Future projections can be defined via the “scenario(model)” function which 

requires a previously fitted ibis.iSDM model. After a scenario of projections has been created it 

can be summarized through a range of metrics (Figure 3a). Similar as during the model inference, 

predictor transformations and thresholds can be flexibly added (see supplementary materials). 

After a scenario has been created, different summary methods and metrics of change can be 

obtained which are useful in model-based projections of biodiversity indicators (Leclère et al., 

2020). As with other functions of the package, users should understand the implications of adding 

certain constraints to a model projection and apply reasoning and biological knowledge as 

appropriate.  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



10 
 

 

Figure 3: Future projections of suitable habitat for a virtual species up to the year 2095, with 

each scenario being run without or with certain constraints related to dispersal, barriers or niche 

limitations. (a) Shows the projected average suitable habitat from 2015 to 2095 (10 year steps) 

for various scenarios that include constraints. (b) Change in thresholded suitable habitat between 

2015 and 2095 for a scenario without any constraints (blue line in a). The colour of grid cells 

indicates which areas have been gained, lost or remained stable between the start and end date. 

(c) Shows an ensemble of all projections in a) for the year 2095, with higher values indicating 

higher suitability. All code and data with covariates to recreate the figures can be found in the 

supplementary materials. 

Most SDMs tend to either overfit (leading to a prediction that reproduces the data) or 

indicate areas as suitable habitat that might be unreachable for the species or not suitable owing to 

other non-considered factors (see Figure 2). A common and practical way to partly address such 

issues is to constrain the projection to a certain area or neighbourhood, although model-based 

integration can also act as a constraint on the parameter space (Miller et al., 2019; Peel et al., 2019). 

Besides the incorporation of spatial constraints during the model parametrization, such as by 

adding projection limits (“distribution(…, limits = layer)”) (Cooper et al., 2018) or the inclusion 

of spatial covariates or autocorrelation (“add_spatial_latent()”) (Domisch et al., 2019), there are 

furthermore ways to specifically constrain future projections. The ibis.iSDM package here 

currently considers dispersal, barrier and adaptability constraints that can be added to a projection 

scenario. 
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Adding biological informed constraints to projections of correlative SDMs can be seen as 

another form of data integration, and the resulting “hybrid” SDMs have been shown to perform 

well compared to non-constrained SDM when projecting to novel conditions (Zurell et al., 2016). 

The most common constrains added to SDMs are those that limit or enable the dispersal of 

populations at the margins of a distribution emulating distinct colonization events (Seaborn et al., 

2020). The ibis.iSDM package supports simple linear and negative exponential dispersal kernel 

that limit dispersal events to certain distances per time step (Figure 3a), as well as more 

sophisticated simulators based on cellular automata such as the popular MIGClM (Engler et al., 

2012) or KISSMig R packages (Nobis and Normand, 2014). Constraints can also be added on 

suitable habitats, corridors or known boundaries that prevent an expansion of a species (Cooper et 

al., 2018) or on the extent to which a species is able to adapt its niche (Bush et al., 2016). Similar 

as for inference, the modular structure of scenario objects and ability to add constraints enables 

convenient expansion of the package (see also development plans).  

Other innovations in the ibis R-package 

There are several other smaller innovations in the ibis R-package, which to our knowledge have 

never been considered or provided in similar form in a SDM framework. Besides having an object-

based specification for integrated SDMs (Figure 1), the use of Bayesian SDMs for estimation also 

allows for example to visualize not only the mean predicted suitability of a species, but also the 

pixel-based uncertainty as calculated from a single model posterior, which can be summarized in 

statistical moments such as standard deviation or the coefficient of variation (Figure 4). 

Traditionally, uncertainty has been assessed as variation among different models in an ensemble 

(Thuiller et al., 2019) as also supported by the “ensemble()” function in ibis.iSDM. This however 

captures exclusively uncertainty among models, opposed to the uncertainty introduced by the data 

and inferred response function (Hao et al., 2020; Thuiller et al., 2019), which is usually in the 

investigator’s main interest when capturing uncertainty. Here the ibis.iSDM provides some plotting 

functionalities to visualize more than one moment from a posterior of a single model (Figure 4b).  
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Figure 4: Single Poisson process model (PPM) of a virtual Scandinavian species using Bayesian 

regularized regression. (a) Shows the predicted λ of the PPM summarized as mean from the 

posterior. (b) Bivariate visualization of both the mean and the coefficient of variation from the 

model posterior. Areas shown in blue have large suitability (expressed as λ) while also having 

low relative variation. (c) Predictions from b) that have been thresholded to maximize the mean 

and minimize the coefficient of variation. This form of threshold avoids the separation of areas 

that are too uncertain to be considered suitable (indicated by arrows). Shown are three different 

output formats where the remaining values have either been threshold, binned into percentiles or 

normalized. All code and data with covariates to recreate the figures can be found in the 

supplementary materials. 

Similarly, having a pixel-based uncertainty for individual models also allows to create novel types 

of thresholds. For example, the ibis.iSDM package allows with the option ‘min.cv’ to identify those 

grid cells that have a high mean suitability, but also low uncertainty (Figure 4b). A number of other 

threshold methods are available, for example by maximizing validation statistics such as the Area 

under the Curve (AUC) or True Skill Statistics (TSS) using the “modEvA” R-package (Márcia 

Barbosa et al., 2013), or by thresholding with the minimum presence values (e.g. the minimum 

value across occurrence points), fixed or percentile values. Finally, all suitability predictions 

subject to thresholds can be created in binary, categorical percentile and normalized outputs 
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(Figure 4c). Thresholding to a normalized or percentile characterization of the distribution retains 

some of the detail of the projected suitability distribution, while also removing uncertain areas and 

noise.  

A general paradigm of the ibis.iSDM framework is to support data type specific modelling, 

e.g. presence-only records are by default always inferred as originating from a Poisson point 

process. However, there might be use cases where it is more convenient, faster or better explainable 

to create pseudo-absences points similar as in most of the SDM literature (Phillips et al., 2009; 

Valavi et al., 2021). Functionalities have been added to specify how pseudo-absence should be 

added to available occurrence records, such as by sampling them randomly, within a buffer, outside 

a zonal layer or expert range, or by using a target background (Phillips et al., 2009; Ranc et al., 

2017) using the occurrence of other, closely related species (a common practice that can be 

considered as an integration of external information as well). In a simple comparison of different 

approaches using presence-only records of the Iberian frog Discoglossus galganoi (Figure 5), I 

find that sampling pseudo-absences outside an expert-range and using human population density 

as bias correction performs best (AUC = 0.989, TSS = 0.978), outperforming even targeted 

background sampling (AUC = 0.940, TSS = 0.88). Although this simple demonstration should not 

serve as a comprehensive assessment, it again demonstrates the value of using additional sources 

of biodiversity information for the construction of SDMs. 

 

Figure 5: Validating different practices of pseudo-absence generation using the Iberian frog 

Discoglossus galganoi as model species. (a) Showing measures of the area under the curve 

(AUC) and true skill statistic (TSS) calculated on withheld data for models using different 

practices of pseudo-absence generation in ibis.iSDM. Horizontal lines indicate 5% improvement 

steps. Simulations include pseudo-absence generation through random, distance, minimum 

convex polygons, zonal, range and co-generic targeted background creation. (b) Weighted mean 

ensemble prediction of individual models, with larger values indicating higher habitat suitability 

for the species. All code and data with covariates to recreate the figures can be found in the 

supplementary materials. 

Next steps and further development plans: 
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New advances and literature on how to integrate different data in SDM frameworks continue to be 

published every year. This R-package aims to offer support for multiple types of data integration, 

but it does not claim to be the single modelling framework to integrate all different approaches, 

and other packages to fit SDMs might be more useful for specific use cases (Sillero et al., 2023). 

Yet, the package is in continuous development and will be gradually improved as time allows. 

Since many of the functions to fit or project SDMs in this package are designed as modular in 

nature, there are imminent opportunities for expanding the package with new constraints and 

integration options.  

There are many methodological ways to integrate different data in (spatial) regression 

model and projections. For example, in a public health context Arambepola et al. have developed 

methods to combine polygon and point estimates via disaggregation regressions so as to downscale 

critical health related indicators in the absence of finer resolved information (Arambepola et al., 

2022). Such approaches naturally connect to the design philosophy of the ibis.iSDM package and 

similar approaches could be applied to range maps and presence-only records. Other newly 

developed R-packages allow to infer species occupancy by integrating structured survey with 

presence-only records, innovatively also making use of nearest-neighbour gaussian process 

regressions for spatially constrained occupancy models (Doser et al., 2021). Integrated modelling 

could also be used to incorporate occurrence of multiple different species using for example factor 

interactions (Leung et al., 2019), multi-nominal predictions using for example convolutional 

neural networks (Deneu et al., 2021) or co-occurrences through jSDM frameworks where feasible 

in the context of data integration (Ovaskainen et al., 2017, 2016). Integrated SDMs are likely the 

most useful in situations where only limited high quality data exist, as most more advanced 

modelling techniques are quite demanding with regards to the minimum amount of data required 

(Merow et al., 2014). Nevertheless, further work is necessary to comparatively assess the 

performance and accuracy of different types of integration such as those outlined in this work. 

Integrating data into SDMs can be beneficial to increase the biological realism of 

predictions. However, especially when making future predictions, SDMs have a number of short-

comings, for example by relying on the assumption that species or habitats are in equilibrium with 

their environment (Elith et al., 2010). One way to account for such conditions is to make SDMs 

temporally explicit, so that response functions are spatially and temporally varying (Soriano‐

Redondo et al., 2019), which can help to make better short to medium term forecasts. Another 

option is to make explicit assumptions through pre-defined processes in mechanistic SDMs, where 

specific species-environment relationships and the demographic structure and spatial placement of 

current and future populations can be simulated (Briscoe et al., 2019).  

Mechanistic SDM approaches have long been recognized as being particular useful for 

projections into unknown and non-equilibrium environments (Briscoe et al., 2019; Kearney and 

Porter, 2009), or for estimating factors related to demography or the dispersal of individuals, which 

makes them particularly useful for conservation management problems that go beyond the 

conservation of suitable habitats (Zurell et al., 2022). In the ibis.iSDM package there are already a 

few dispersal simulators implemented (see scenario section above) and there furthermore plans to 

allow for seamless integration with the rangeShifter eco-evolutionary platform (Bocedi et al., 
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2021). Another idea is to enable support for dedicated equations, for example for population 

growth or microclimatic thresholds (Schouten et al., 2020), and integrate them into inference and 

projections (Talluto et al., 2016). Yet, given the data needs and parameter demands for most 

mechanistic SDMs, and the influence they can have on simulation outcomes, the use of fully 

mechanistic SDMs will likely remain to limited to specific case studies and model species. 

Nevertheless, the consideration of further mechanistic modelling approaches can be seen as an 

important step towards more integrated models. 
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 Most biodiversity data are biased and of heterogeneous origin and types. 

 A species distribution modelling framework is presented in the form of an R-package. 

 The ibis.iSDM package is highly modular and enables linear and non-linear inference and 

projections of species distributions. 

 Various forms of integration are supported, and their use demonstrated through examples. 

 Additional functionalities allow the creation of unconstrained and constrained spatial-temporal 

scenarios. 

 Advances and challenges in model-based integration are highlighted. 
Jo

ur
na

l P
re

-p
ro

of

Journal Pre-proof


