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Abstract

Indisputably, solar energy, which is by far the most sustainable energy resource, could

be the ultimate solution to global energy demands in the future. The high efficiency

and robustness of the natural photosynthetic apparatus of bacteria, algae, and plants

in comparison to current artificial solar technologies render these systems the ideal

inspiration for how to provide such energy. Bacteriochlorophyll and Chlorophyll aggre-

gates, enclosed by transmembrane protein complexes, are the key building blocks of the

photosynthetic systems. The energy of the absorbed sunlight is transported through

light-harvesting systems and the primary charge separation process, triggered by this

energy, initiates in the reaction center of the photosystem. An atomistic understanding

of the primary photoinduced charge-transfer excitations controlled by these molecular

aggregates, interpretation of their mechanisms, and the determination of their pathway

in the reaction center can be inspiring for designing new photovoltaic and photocat-

alytic devices. Regardless of the great achievements of experimental approaches the

assessment of first-principles quantum mechanical calculations is essential for achieving

such information.

Linear response time-dependent density functional theory (TDDFT) is one of the

main workhorses in most fields of physics and chemistry for calculating absorption spec-

tra due to its reasonable computational cost and its potential for coupling with various

types of methods for treating both solvent and solid-state effects. However, TDDFT

encounters several challenges specifically in predicting charge-transfer excitations in

these systems using (semi)local and even hybrid functionals, due to their non-local

features. This problem is mostly overcome with range-separated hybrid functionals

that significantly improve the prediction of charge-transfer excitations. An alterna-

tive method for studying excited state properties, with a tremendous agreement with

gas phase experiments and higher accuracy theoretical methods, is through Green’s

i



function-based many-body perturbation theory (MBPT) known as GW/BSE method.

This method, which became more popular in recent years, has been successfully applied

to different types of organic molecular systems and has shown a promising trend.

This thesis represents a comprehensive investigation of electronic and optical prop-

erties of molecular building blocks of photosynthetic systems by employing GW/BSE

and state-of-the-art TDDFT approaches. In the first part of this thesis, we addressed

the accuracy of TDDFT and the GW/BSE approach by carrying out a systematic

study of the electronic and excited state structure of various types of Bacteriochloro-

phyll and Chlorophyll monomeric aggregates in combination with several exchange-

correlation approximations. Consequently, we established reliable benchmark data

for the performance of different density functionals in GW/BSE and TDDFT for-

malism in comparison with theoretical and experimental results. In the second part,

I performed a set of calculations for BCL dimers, the smallest complexes in which

charge-transfer excitations between molecules can be observed, to determine the ef-

fective factors on energy and character of these excitations. By means of this work,

we identified the strengths and limitations of our methods and provided design rules

for tailoring charge-transfer excitations in Bacteriochloropyll molecules. Finally, we

studied realistic tetrameric and hexameric models of the reaction center of the pur-

ple bacterium Rhodobacter sphaeroides. The aim of this study was to determine the

charge-transfer pathway and understand the importance of the protein environment on

excitation energies. This study constitutes the first explicit TDDFT calculations on

this reaction center including all six primary pigments and parts of the environment. A

detailed picture of charge-transfer mechanism in this bacterial reaction center and the

impact of direct inclusion of the protein environment on these excitations are provided.

Our calculations confirmed the favorable charge-transfer pathway, supported by recent

experimental studies, and furthermore, determined the lowest forward charge-transfer

state of the system as the starting point of the charge separation process in these

aggregates under the influence of nearby amino acids. Through this work, we paved

the way for further first-principles investigations of the interplay between delocalized

excited states of these pigments and other complex light-harvesting systems.



Kurzdarstellung

Unbestritten ist Solarenergie die nachhaltigste Energiequelle und könnte in Zukunft

die ultimative Lösung für die Deckung des globalen Energiebedarfs darstellen. Die

hohe Effizienz und Robustheit des natürlichen photosynthetischen Apparats von Bak-

terien, Algen und Pflanzen im Vergleich zu aktuellen künstlichen Solartechnologien

machen diese Systeme zur idealen Inspiration für die Bereitstellung von Solarenergie.

Das Rückgrat der Photosynthesesysteme bilden Bakteriochlorophyll- und Chlorophyll-

Aggregate, welche von Transmembran-Protein-Komplexen umschlossen sind. Die En-

ergie des absorbierten Sonnenlichts wird durch Lichtsammelsysteme transportiert, und

der primäre Ladungstrennungsprozess, die Uebertragung dieser Energie ausgelöst wird,

beginnt im Reaktionszentrum des Photosystems. Ein atomistisches Verständnis der

primären photoinduzierten Ladungstransferanregungen, die von diesen molekularen

Aggregaten kontrolliert werden, die Interpretation ihrer Mechanismen und die Bestim-

mung ihres Wegs im Reaktionszentrum können das Design neuer photovoltaischer und

photokatalytischer Technologien statt Geräte inspirieren. Unabhängig von den großen

Fortschritten der experimentellen Ansätze sind Bewertungen der quantenmechanischen

Berechnungen erster Prinzipien unerlässlich, um solche Informationen zu erhalten.

Die zeitabhängige Dichtefunktionaltheorie (TDDFT) ist eine der wichtigstenWerkzeuge

in vielen Bereichen der Physik und Chemie zur Berechnung von Absorptionsspek-

tren aufgrund ihrer vertretbaren Berechnungskosten und ihres Potenzials zur Kop-

plung mit verschiedenen Arten von Methoden zur Behandlung von Loesungsmittel- und

Festkörpereffekten. Allerdings hat die TDDFT bei der Vorhersage von Ladungstrans-

feranregungen in diesen Systemen mit (semi-)lokalen und sogar hybriden Funktionen

aufgrund ihrer nicht-lokalen Eigenschaften einige Herausforderungen zu Näherungen.

Dieses Problem wird größtenteils durch reichweitenseparierte Hybridfunktionale überwunden,

die die Vorhersage von Ladungstransferanregungen erheblich verbessern. Eine alterna-
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tive Methode zur Untersuchung von angeregten Zuständen, die eine hohe Übereinstimmung

mit Gasphasenexperimenten und theoretischen Methoden mit höherer Genauigkeit

aufweist, ist die Vielteilchen-Störungstheorie (MBPT) auf der Basis der Greenschen

Funktionen, bekannt als die GW/BSE-Methode. Diese Methode, die in den letzten

Jahren immer beliebter geworden ist, wurde erfolgreich auf verschiedene Arten von

organischen molekularen Systemen angewendet und hat eine vielversprechende En-

twicklung gezeigt.

Diese Arbeit stellt eine umfassende Untersuchung der elektronischen und optis-

chen Eigenschaften der molekularen Bausteine von Photosyntheticksystemen unter

Verwendung von GW/BSE- und modernsten TDDFT-Ansätzen dar. Im ersten Teil

dieser Arbeit haben wir uns mit der Effizienz von Methoden beschaeftigt, indem wir

eine systematische Studie der elektronischen und angeregten Zustandsstruktur ver-

schiedener Arten von Bacteriochlorophyll- und Chlorophyll-Molekuelen in Kombina-

tion mit mehreren Dichtefunktionalnaeherungen durchgeführt haben. Dadurch haben

wir verlässliche Benchmark-Daten für die Leistung verschiedener Dichtefunktionale

im GW/BSE- und TDDFT-Formalismus im Vergleich zu theoretischen und experi-

mentellen Ergebnissen erhalten. In der zweiten Projektlinie haben wir eine Reihe von

Berechnungen für Bacteriochlorophyll-Dimere durchgeführt, die kleinsten Komplexe,

in denen Ladungstransferanregungen beobachtet werden können, um die effektiven

Faktoren für Energie und Art dieser Anregungen zu bestimmen. Die dimerischen Sys-

teme wurden aus verschiedenen Teilen des Photosynthesesystems von Purpurbakterien

ausgewählt, um verschiedene Regime der intermolekularen Kopplung zu repraesen-

tieren. Zuletzt wechselten wir zu tetrameren und hexameren BCL-Molekülsystemen,

um den Ladungstransferweg und Umwelteinflüsse auf das Anregungsspektrum zu un-

tersuchen, und schlossen explizit in den quantenchemischen Simulationen benachbarte

Aminosäurereste ein. Diese Studie war die erste explizite TDDFT-Berechnung an

einem Reaktionszentrummodell von Rhodobacter sphaeroides, das alle sechs primären

Pigmente und Teile der Umgebung einschloss. Eine detaillierte Darstellung des Ladungstrans-

fermechanismus im bakteriellen Reaktionszentrum und die Auswirkungen der direkten

Einbindung der Proteinumgebung oder der vibronischen Kopplung auf diese Anregun-

gen werden bereitgestellt. Unsere Berechnungen bestätigten den günstigen Ladungstrans-

ferweg, der durch aktuelle experimentelle Studien unterstützt wird, und bestimmten

weiterhin den niedrigsten Vorwärts-Ladungstransferzustand des Systems als Ausgangspunkt

des Ladungstrennungsprozesses in diesen Aggregaten unter dem Einfluss von nahegele-

genen Aminosäuren. Durch diese Arbeit haben wir den Weg für weitere Untersuchun-

gen der Wechselwirkungen zwischen den delokalisierten angeregten Zuständen dieser

Pigmente und anderen komplexen Lichtsammelsystemen geebnet.
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Chapter 1

Introduction

Due to the significant acceleration of energy consumption over the globe, one of the

fundamental challenging areas ahead of humankind is to provide a long-term available

and renewable source of clean energy [1]. Decades of investigation have shown that solar

energy can be an unlimited provenance with boundless potential for these purposes [2].

To estimate the potential of this source, it is instructive to mention that the total

absorbed energy by the earth is more than 116,000 TW (1 TW = 1012 W) while in

2010 the estimated average consumed energy by the modern world and planet life was

only around 100 TW, that is a small fraction of absorbed sunlight [3]. Photosynthetic

organisms through highly efficient processes, harvest solar energy and convert it into

chemical energy. Photovoltaic devices are considered sustainable tools for this process,

although the short-term analyses of the man-made energy-harvesting systems show,

photochemical conversion can be two or three times more efficient than photovoltaic-

driven electrolysis [4]. Meanwhile, in the natural photosynthetic apparatus of bacteria,

algae, or plants the quantum efficiency of energy transfer and charge separation in some

parts of the system are even higher than their man-made counterparts with values near

to 95% [5, 6] and 70% [7], respectively. Despite their current lack of efficiency and

robustness, artificial photosynthetic systems appear to be a promising puzzle piece in

the quest to sustainably meet our energy demands of the future [8–10].

In natural photosynthetic systems, Bacteriochlorophyll (BCL) and Chlorophyll

(Chl) molecules are the main pigments driving the primary excitation and charge-

transfer processes in different types of photosynthesis bacteria. These aggregates,

organized in highly coordinated multichromophoric complexes embedded in protein
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Chapter 1 – Introduction 2

matrices, guarantee an efficient transfer of excitation energy from the light-harvesting

antennae (LH) to the reaction center (RC) where a charge-transfer excitation is trig-

gered. Among different photosynthetic systems, the crystal structure of purple bacteria

and their main features are well-characterized due to the high symmetry of these units

[11–13]. In section 6.1 a complete overview of the mechanism of charge separation

and charge-transfer in these systems along with the introduction of different units

involved in this process is provided. The fundamental description of the electronic

transitions in the RC attracted lots of attention in the past years due to its supreme

role in the development of artificial analogs, solar technologies, or optoelectronic com-

ponents [14]. Although spectroscopic techniques such as two-dimensional electronic

spectroscopy (2DES) have allowed for a good understanding of the basic framework of

these processes, the complexity of the photosynthetic systems resulted in some unan-

swered fundamental inquiries about their main features. Overcoming such problems

and gaining a deeper atomic understanding of the molecular interaction between these

aggregates requires tackling these systems from theoretical points of view. My thesis

focuses on the electronic and excited-state structure of BCL(Chl) complexes found in

the reaction center and light-harvesting apparatus of the purple bacteria.

Quantum mechanical (QM) methods, designed for the computation of excited-states

properties play a pivotal role in the interpretation of experimental results for diverse

types of systems without being overwhelmed by the complexity of the underlying pro-

cesses. Furthermore, the combination of these methods with molecular dynamics and

classical molecular mechanics constructed the ideal tools for the simulation of excitation

processes in large pigment-protein complexes [15–18]. In principle, on atomic levels, the

excited-state properties of these aggregates can be described by the concept of Frenkel

exciton model for strongly bound excitons [19]. In this method, the Hamiltonian of mul-

tichromophoric systems is expressed in terms of the excitations of the single molecules

and the electronic coupling between every two chromophores in the system [16]. In this

regard, numerous types of QM methods, such as semiempirical and wavefunction-based

methods have been used for the calculation of excitation energy and electron coupling

of different types of chromophores [20–23]. However, maintaining a balance between ac-

curacy and computational efficiency can be challenging when simulating such materials

from first principles. For instance, while multireference wavefunction-based methods

are known to be highly accurate for simulating photochemical processes, their applica-

tion is currently limited to toy models of chromophores with small basis functions due

to the high computational cost that scales as O(N5−7) (N = electron number) [24].

As a result, considering higher order excitations and the larger number of molecules in

the system is currently not an option in these methods [24].

Among the single-reference methods, linear-response time-dependent density func-
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tional theory (TDDFT) [25] has become a widely used approach for simulating neutral

and optical excitations. Its adiabatic approximation and favorable cost-accuracy ratio

make it a versatile tool that has been applied to systems ranging from a single chro-

mophore [26] to large photosynthesis pigment-protein complexes [27–29]. Even though

the underlying conceptual framework of TDDFT is exact, in practice its traditional

form is unreliable in the description of long-range charge-transfer excitations [30–32],

doubly excited [33], and Rydberg [34] states as a result of inherently nonlocal nature

of exchange-correlation functional in linear-response TDDFT. This challenge is mostly

surpassed today by defining optimally-tuned range-separated exchange-correlation hy-

brid functionals that split the Coulomb interaction into a long-range and a short-range

contribution. The innovation of this method is based on the so-called range-separation

parameter ω, which controls the length scale of the transition from short-range to long-

range. This parameter should be tuned non-empirically for each particular system for

higher efficiency. The combination of TDDFT method with tuned range-separated hy-

brid functionals has shown great success in capturing the charge-transfer excitations

of molecular systems [30, 35–37] and even with accuracy comparable to higher order

wavefunction methods and experimental results [38–40]. Nevertheless, finding a uni-

versal and transferable separation parameter seems like an unfeasible task. Therefore

searching for an alternative method is still a spending field of research.

The so-called many-body Green’s function GW formalism within Bethe-Salpeter

Equation (BSE) was developed alongside TDDFT to simulate optical excitations. How-

ever, it was not until recent years that GW/BSE gained attention for its ability to pre-

cisely predict the lowest electronically excited-states in organic and metallic molecular

complexes [41–44]. Another interesting aspect of GW/BSE method is attributed to its

remarkable success in the description of charge-transfer excitations [45–48], a feature

shared only with the wavefunction-based approaches and TDDFT with optimally-tuned

range-separated hybrid functionals [49]. The disadvantage of the primary formalism

of GW/BSE method over TDDFT is its computational scaling of O(N5). Nowadays

variant implementations and flavors of this method, that share the same formal scaling

with TDDFT (O(N3−4)), made the simulation of finite size and extended molecular

systems possible [24, 50].

In this thesis, I conducted a comprehensive first-principles investigation of neutral

and charge-transfer excitations in various molecular complexes found in the photosyn-

thesis apparatus. These complexes encompass a wide range of sizes, from individual

BCL (ChL) molecules to hexameric structures, and were extracted from different re-

gions of photosynthetic systems such as LHII and the RC of purple bacteria. To

predict the structural, electronic, and photophysical properties of these aggregates,

I employed linear-response TDDFT and GW/BSE with different types of exchange-
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correlation functionals. The main intention of this thesis is not only to provide an

atomistic understanding of charge-transfer excitations and their preferred pathway in

the RC, but also to evaluate the performance of selected methods in comparison with

wavefunction-based and experimental results.

Chapter 2 and 3 provide an introduction to the TDDFT approach, starting with

its underlying ground-state method, DFT. These chapters cover important perspec-

tives for distinguishing between different types of exchange-correlation approximations,

characterizing neutral and charge-transfer excitations, and discussing the limitations

of standard TDDFT in recognizing these types of excitations. In Chapter 4, the frame-

work of GW method and the basic concepts behind the BSE scheme is reviewed.

The advantages, limitations, and novelty of this method, compared to TDDFT and

wavefunction-based methods, are also discussed comprehensively. In Chapter 5 differ-

ent technical approaches related to the computational set-ups, which are crucial for

maintaining the required accuracy of the calculations, are debated. Chapter 6 summa-

rizes the resulting data and the main conclusions achieved in the course of this thesis,

followed by four publications presented in Chapter 6 including further details.

Publication I and Publication II accessed the accuracy ofG0W0/BSE, and evGW/BSE

methods for describing excitation spectrum of BCL and Chl monomers and small molec-

ular system of ”Methylene blue” by employing different exchange-correlation func-

tionals. Publication III is concerned with the charge-transfer excitations in different

types of BCL dimeric systems - the smallest structural units in which excitations with

intermolecular charge-transfer character can be observed. Building on the insights

gained from previous publications, in Publication IV we investigated the electronic

and excited-state properties of two tetrameric and one hexameric model system of

BCL pigments found in the reaction center of purple bacteria.



Chapter 2

Density Functional Theory

The Density Functional Theory (DFT) is widely used for electronic structure calcula-

tions of various materials due to its simplicity and accuracy for systems with hundreds

of particles. It is considered the dominant modeling method in condensed matter

physics, quantum chemistry, and materials science [51, 52]. Although my thesis is

mostly concerned with excited-states properties of molecular systems based on TDDFT

or GW/BSE methods, it is essential to provide a general overview of the DFT approach

as it forms the basis of these calculations. To keep the balance between brevity and

coherence, I do not provide all the details in this thesis. A comprehensive description

of this method can be found in the literature, such as Refs. [53–57].

The essence of this method is based on certain assumptions for solving the Schrödinger

equation of a many-particle system with the wavefunction Ψ(r1σ1, r2σ2, ..., rNσN) [58].

In the context of Hohenberg-Kohn and Kohn-Sham theorems in DFT, all physical

observables of the N -electron system can be calculated by using an auxiliary non-

interacting stationary system, whose ground-state density, n(r), represents the ground-

state density of the interacting system under consideration. Based on this assumption,

the total energy of the system can be expressed as a function of this density, using a

universal functional. Where the minimization of the total energy with respect to the

density leads to the ground-state energy, E0.

DFT simplifies the calculation of many-body systems by representing all quantities

in terms of the ground-state density, n(r), which depends only on the 3-dimensional

coordinate space r, rather than the original 3N -dimensional many-body wavefunction.

Such simplicity is practically in favor of encountering the many-body systems where

5
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the computational costs of solving the original 3N -dimensional wavefunction equation

easily escalate exponentially to the expensive ”exponential wall” [59]. Moreover, the

spin-dependent formulation of DFT can account for spin-orbit coupling effects by re-

placing total density with the spin density, nσ=↑,↓(r), a feature which can be used in the

case of open-shell systems or systems in a magnetic field. However, for convenience,

the spin variable has been dropped in the formulations of all methods presented in

this thesis as all calculations were performed under the spin-restricted condition. It

should be noted, some conventional fundamental constants appear in the formalism

of quantum chemical methods. To simplify the equations presented in this thesis, I

use the atomic unit system where fundamental constants such as the reduced Planck’s

constant (ℏ), particle masses (m), and electron charge (e) are considered equal to one.

2.1. Schrödinger equation

All physical systems are a complex collection of electrons and nuclei that are attached

to each other by repulsive and attractive Coulomb interactions. The time-dependent

Schrödinger equation, which describes the alteration of a physical system wavefunction

over time, is one of the fundamental equations in physics and the heart of quantum

mechanics. The simple form of this equation in the nonrelativistic time-independent

framework can be written as:

H | Ψ⟩ = E | Ψ⟩ (2.1)

This equation relates the Hamiltonian operator H to the eigenvalue E, through asso-

ciated eigenstates Ψ that are the solution of the above equation [52]. The effective

Hamiltonian can be described as the sum of the kinetic and potential energy of the

particles in which:

[
−1

2
∇2 + U ]Ψ = EΨ (2.2)

By writing the time-independent Schrödinger equation for a system of interacting par-

ticles, including repulsive and attractive Coulomb interaction of electrons and nuclei

we obtain:

[−1

2

∑

i

∇2
i −

∑

I

1

2MI

∇2
I +

1

2

∑

i ̸=j

1

|ri − rj|

+
1

2

∑

I ̸=J

ZIZJ
|RI −RJ |

−
∑

i,I

ZI
|ri −RI |

] Ψ = E Ψ

(2.3)

where ri (RI) are the position of electrons (nuclei) and MI and ZI are the atomic mass

and number of the nuclei, respectively. The notation i/j and I/J run over the number
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of electrons and nuclei (N andM). The many-body wavefunction Ψ(r1, ...rN ;R1, ...,RM)

does not specifically carry any physical meaning and in principle can not be observed

directly. Yet |Ψ(r1, ...rN ;R1, ...,RM)|2 can determine the probability of simultaneously

finding particles 1, .., N/M at the equivalent coordinates r1, ..., rN or R1, ...,RM [52].

Solving the non-relativistic time-independent Schrödinger equation for a system that

includes hundreds of particles is practically impossible due to the high number of com-

ponents in the equation. One approach is to evaluate this equation for a stationary

system under the Born-Oppenheimer (BO) approximation [60]. The BO approxima-

tion assumes that the nuclei, which are much heavier than electrons and move slower,

can be considered fixed in position. As a result, the motion of nuclei can be separated

from that of the electrons, and the wavefunction can be expressed solely in terms of

electron positions:

{−1

2

∑

i

∇2
i +

1

2

∑

i ̸=j

1

|ri − rj|
−
∑

i,I

ZI
|ri −RI |

}Ψ = EΨ (2.4)

where the kinetic energies of the nuclei are excluded and the nuclei Coulomb repulsion

is a constant value, E = Etot − 1
2

∑
I ̸=J

ZIZJ

|RI−RJ | . The first and second terms are the

introduced kinetic energy T and electron-electron repulsion potential U for a many-

body system. The last term represents the electrostatic potential of the nuclei, which

are assumed to be fixed in space and treated as an external potential Vext. As a result,

the many-body Hamiltonian can be expressed as a sum of these terms:

H = T + U + Vext (2.5)

Although the BO approximation simplified the time-independent Schrödinger equation

by separating the nuclear-nuclear potential term, the electronic repulsion potential, U,

causes entanglement between each pair of electron coordinates ri and rj. This entan-

glement makes Eq. 2.4 a complicated partial differential equation, as the wavefunction

depends on the 3N coordinates of all particles in the N -electron system. Since the late

1920s [52], many theories have been proposed to solve this complex problem. One of

these theories is DFT, which is based on the Hohenberg and Kohn theorem.

2.2. Hohenberg-Kohn theorem

The concept of using the electron density distribution as a central factor for calculating

electronic energy was first proposed by Thomas-Fermi’s (TF) theory, shortly after the

introduction of the Schrödinger equation [61]. Even though this approach established

a link between the external potential, Vext(r), and the ground-state density n(r), it
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failed to describe the most general properties of the system, such as chemical binding.

Eventually, the basic concept of Density functional theory, as we know it today was

introduced by Hohenberg and Kohn in 1964 [62]. They proved that for a system of

interacting electrons, the ground-state density n(r) is sufficient to fully characterize

any feature of the system, including ground-state energy and external potential Vext,

while these quantities are a unique functional of this density:

Vext[n(r)] =

∫
n(r)vextd

3r (2.6)

E = E[n(r)]. (2.7)

In this manner, instead of solving the Schrödinger equation in a complicated 3N di-

mension with a dependency on the N -particles wavefunction Ψ(r1,..., rN), one can

define the ground-state energy as a functional of the density, a quantity that depends

only on three specific coordinates n(r). The ground-state density and ground-state

energy of the system can be obtained by minimizing the total-energy functional [57]:

E = min
Ψ→n

⟨Ψ|H|Ψ⟩ = min
Ψ→n

{F [n(r)] + Vext[n]} (2.8)

where notation Ψ → n implies the minimization runs overall positive many-body wave-

functions. By convention, Hohenberg and Kohn called the first term in the equation,

the universal functional F[n] which is defined as:

F [n(r)] = min
Ψ→n

[⟨Ψ[n]|T [n] + U [n]|Ψ[n]⟩]. (2.9)

This is simply the derivation of the kinetic and Coulomb interaction potential asso-

ciated with ground-state density n(r). This formalism establishes the existence and

dependence of this universal functional to the ground-state density, but it does not

specify the explicit form of the universal functional, F[n]. As Hohenberg and Kohn

emphasized in their article, the twist is to accurately calculate this universal func-

tion, a challenge that continues even today. In addition, the many-body form of the

Hohenberg-Kohn equation, Eq. 2.8, is computationally intractable for most systems.

Kohn and Sham proposed a practical solution by introducing a set of non-interacting

reference electrons, which is known today as the standard formulation of DFT.

2.3. Kohn-Sham equations

Kohn and Sham (KS) in 1965 [63] took one step further and assumed there is an

auxiliary non-interacting system that has the exact same density n(r) of the original
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interacting system and built the ground-state density of this N -electron system based

on the non-interacting orbitals ϕi(r) as:

n(r) =
N∑

i=1

fi|ϕi(r)|2. (2.10)

Here fi is the occupation number of orbital i and the sum over this variable will be

equal to the total number of electrons in the system, N =
∑N

i=1 fi.

Back to the definition of F [n(r)] functional (Eq. 2.9), we need to rewrite kinetic

and Coulomb energy terms based on the density of our non-interacting system. First,

one can separate the non-interacting part of kinetic energy from the interacting ones:

T [n] = Ts[n] + Tc[n] (2.11)

where Ts[n] = −1
2

∑N
i=1

∫
ϕ∗
i (r)∇2

iϕi(r)d
3r is the sum of the kinetic energy of each par-

ticle in the non-interacting system with density n(r) and Tc[n] contains the reminder

kinetic energies in the system or the correlation part. Furthermore, the Coulomb in-

teraction can be approximated in terms of classical electrostatic Hartree energy as:

EH [n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| d
3rd3r′ (2.12)

Derived from Eq. 2.11, Kohn and Sham introduced the so-called exchange-correlation

energy (xc), Exc[n], which stands as the unknown exchange and correlation energy of an

interacting system with density n(r). This quantity considers all quantum mechanical

electron-electron interaction effects and is simply the summation of the error made by

the non-interacting part of kinetic energy, Tc[n], and the error of treating the electron-

electron interaction classically:

Exc[n] = (T [n]− Ts[n]) + U [n]− EH [n] = Tc[n] + U [n]− EH [n] (2.13)

Finally, the electronic energy functional can be defined as the sum of all the above

terms:

E[n(r)] = Ts[n] + EH [n] + Vext[n] + Exc[n] (2.14)

Following the same logic as Hohenberg and Kohn theorem we can access the ground-

state density by minimizing this functional with respect to n(r), under minimization

condition δE[n]
δn(r)

= 0:

δTs[n]

δn(r)
+
δEH [n]

δn(r)
+
δVext[n]

δn(r)
+
δEex[n]

δn(r)
= 0 (2.15)
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where functional derivatives of EH [n] and Vext[n] are simply the Hartree potential,

vH(r) =
∫ n(r′)

|r−r′|d
3r′ and the external potential, vext(r), respectively. Also one can

define the exchange-correlation potential vxc(r) as:

vxc(r) =
δEex[n]

δn(r)
. (2.16)

Not all the elements in this equation can be minimized directly, as Ts[n] has only an

orbital functional dependency to the density, yet knowing δn(r)
δϕ∗i (r)

= ϕi(r) from the defi-

nition of density based on the non-interacting orbitals, the Ts[n] also can be rewritten

as:

Ts[n] = −1

2

N∑

i=1

∫
ϕ∗
i (r)∇2

iϕi(r) d
3r (2.17)

The sum of these three terms is called Kohn-Sham (KS) potential, while arbitrary to

the universal functional, the exact form of vxc(r) is unknown:

vKS(r) = vH(r) + vext(r) + vxc(r) (2.18)

By inserting this potential as min
ϕ→n

⟨ϕ|H|ϕ⟩ into Eq. 2.8 we reach a Schrödinger-like

equation of a non-interacting single-particle system or the so-called Kohn-Sham equa-

tion:

[−1

2
∇2
i + vKS(r)]ϕKSi = εiϕ

KS
i (2.19)

The KS formalism is notable for its approach to separating the well-known part of

the universal functional, F [n], from the unknown exchange and correlation potential,

vxc(r). Solving the resulting KS equation requires a series of self-consistence cycles.

Initially, an arbitrary value is assigned to n(r), and equations 2.10 to 2.19 are solved

iteratively until the density values converge to a predefined accuracy, usually on the

order of 10−7 or 10−8 e/Å3.

2.4. Exchange-correlation functionals

Despite the nobility of Kohn-Sham’s theorem in the reduction of the many-particle

problem to a one-particle one, in practice, the equation is insolvable analytically due

to the unknown exact form of exchange and correlation potential, vxc(r). Over the

past few decades, various explicit or implicit density functional approximations have

been developed to estimate the value of Exc[n], which remains a rapidly evolving field

of research. Moreover, many studies show that often the accuracy of chosen functional

has a direct dependence on the system of study. This accuracy is usually measured in



11 2.4 – Exchange-correlation functionals

contrast with more accurate theoretical or experimental data.

One of the oldest approximations for estimating exchange-correlation energy is the

Local Density Approximation (LDA) which is discussed in detail in Hohenberg and

Kohn’s article [62]. The authors proposed that one could use the nearly exact lo-

cal value of density of a homogeneous electron gas to describe the Exc[n] of a non-

homogeneous gas. They assumed, if the ground-state density of the system only varies

slowly in space, then the xc energy will be a local function of this density:

Exc[n] =

∫
n(r)εxc(n(r))d

3r (2.20)

where εxc is the exchange and correlation energy per electron of a uniform electron

gas. The exchange part of the energy of this homogeneous gas has an exactly known

formulation:

ELDA
x [n] = −3

4

(
3

π

) 1
3
∫
n

4
3d3r (2.21)

Contrary to the exchange part, the correlation energy has no analytical form and it

has been calculated through highly accurate numerical Quantum Monte Carlo (QMC)

simulations [64, 65]. By considering different scaling laws and constraints, one can

develop various types of analytical forms to fit the parameters of QMC results. For

this reason, many representations of this energy were proposed in the past decades

[66–69]. All of these variants are conventionally referred to as LDA, as in practice

they yield similar outcomes. The LDA functional is considered the standard approx-

imation for investigating solid systems [70]. However, it has been demonstrated that

this functional performs poorly in different areas of chemistry, especially in the case of

atomic systems [59], due to its overestimation of the molecular bonding of structures

[71]. This method overestimates the bond energies by up to 1eV/bond [72], leading

to unrealistic close-packed structures. The following section will outline the failure

of this functional in describing ground-state and excited-state properties, specifically

charge-transfer excitations.

In 1968, Ma and Brueckner introduced different forms of xc functionals with explicit

dependence on density, called Generalized Gradient Approximation (GGA) [73], which

become a breakthrough to overcome LDA problems. In this functional the Exc[n] not

only depends on electron density at point r but also depends on the local changes of

this density, gradient ∇n(r), as well. The general form of these semi-local functionals

has the following form:

EGGA
xc [n] =

∫
εxc(n(r),∇n(r))d3r (2.22)
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The information of analytical function εxc(n(r)∇n(r)), can be determined in various

ways such as the most common methods proposed by Perdew-Wang 1991 (PW91)

[74], Perdew-Burke-Ernzerhof (PBE) [75], and Becke [76], Lee, Yang, and Parr [77]

(BLYP). The PBE functional attempts to empirically optimize parameters where a

model of the xc hole was constructed to satisfy known exact hole constraints, while

in BLYP the exchange part (introduced by Becke [76]) can be calculated by fitting

few parameters to exchange energies of atoms and the correlation part (proposed by

Lee, Yang, and Parr [77]) can be taken from Colle-Salvetti [78] approach only by

mapping the Kohn-Sham one-particle density matrix into a functional of the density.

GGA functionals significantly improve the value of Ex[n] or Ec[n] [79, 80] and reduce

LDA’s overestimation of the binding energy, to 30% (0.3 eV/bond). Nonetheless,

both functionals, commonly referred to as ”standard” functionals, still suffer from two

significant issues: the absence of a derivative discontinuity and the presence of the

so-called Self-Interaction Error (SIE), which are recognized as two of the fundamental

problems in DFT [70]. In Section 2.5, the origins of these problems and their impacts

on certain quantities calculated using standard functionals are discussed in detail.

In 1993 Becke [81] defined the so-called Hybrid functionals to partially exceed the

limitations of (semi-)local functionals. Nowadays, this type of functionals is known as

one of the most popular and accurate DFT functionals in quantum chemistry. In this

scheme, based on the adiabatic connection approach [82, 83], a fraction of exact (Fock)

exchange energy known as:

Eexact
x = −1

2

∑

ij

∫ ∫
ϕ∗
i (r)ϕ

∗
j(r

′)ϕj(r)ϕi(r′)

|r− r′| d3rd3r′ (2.23)

can be mixed with DFT exchange-correlation energy which leads to the following for-

malism:

EHyb
xc = EDFT

c [n] + (1− α)EDFT
x [n] + αEexact

x , 0 ≤ α ≤ 1 (2.24)

where the mixing coefficient α, as originally Becke suggested, can be fitted empirically

to atomization energies, ionization potentials, and proton affinities for a number of

small molecules [70] or estimated theoretically [84–86]. Further studies showed that in

practice the three-parameter form of this equation is more comprehensive while, the

DFT exchange and correlation energy is a mixture of both LDA and GGA functionals:

EHyb
xc = ELDA

xc [n]+α1(E
exact
x −ELDA

x [n])+α2(E
GGA
x [n]−ELDA

x [n])+α3(E
GGA
c [n]−ELDA

c [n])

(2.25)

Today, by far the most notable hybrid functional for isolated molecules is B3LYP [70,

87], where it uses 81% of Lee, Yang, and Parr (LYP) GGA correlation functional and

only 19% of LDA correlation, while exchange part includes 20% exact exchange energy,
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72% Becke GGA exchange and 8 % LDA exchange [88]. Also one can use BHLYP (or

B-half-and-half-LYP) hybrid functional which has the simple formalism as below:

EBHLY P
xc = ELY P

c + 0.5Eexact
x + 0.5EBecke

x (2.26)

Both these functionals are used in Publication I with much better performance than

LDA functional in comparison with experimental results.

Another compelling subgroup of hybrid functionals that do not utilize fixed frac-

tions of exact and DFT exchange is the Range Separated Hybrid (RSH) functionals.

These functionals mix the two contributions by partitioning the Coulomb operator into

long- and short-range interactions using a soft function, called range separation param-

eter ω, and the standard error function erf(.) [89, 90]. The long-range component is

treated through the exact exchange, while the short-range component is handled using

semi-local exchange [91]. The general form of the electron-electron interaction can be

expressed as:

1

|r− r′| =
1− [α + β erf(ω|r− r′|)]

|r− r′|︸ ︷︷ ︸
short−range

+
α + β erf(ω|r− r′|)

|r− r′|︸ ︷︷ ︸
long−range

(2.27)

where α and β can have any value between 0 and 1 as far as α+β=1 condition can be

applied. Using these parameters the xc reads:

EHyb
xc = αEexact

x,SR + βEexact
x,LR + (1− α)EDFT

x,SR − βEDFT
x,LR + EDFT

c (2.28)

By considering various values for these parameters, we can construct different RSH

functionals, e.g. the branches considering α=0 and β=1 denoted by LC (Long-range

Corrected) while the next part in the label distinguishes the name of semi-local func-

tional. The ω parameter can be determined either empirically [92, 93] or using more

accurate non-empirical approaches known as optimally-tuned RSH (OT-RSH) func-

tionals, which are sensitive to the physical properties of the systems [35, 94, 95]. In

this thesis, I employed LC-PBE or so-called ωPBE based on GGA PBE [75] functional.

To determine the ω parameter, a non-empirical tuning procedure was conducted. Dur-

ing this process, one aims to optimize the ω parameter in such a way that the negative

ionization potential of the neutral and anionic system becomes as close as possible to

the highest occupied molecular orbital (HOMO) eigenvalue as described in Ref.[96]. In

recent years, research has shown that optimally-tuned Range Separated Hybrid (OT-

RSH) functionals can significantly improve the description of ground-state properties,

including the band gap, over all other types of xc functionals, even global hybrid ones.

This improvement has been observed across a wide range of systems including molec-
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ular aggregates [94, 97–100].

2.5. Challenges for standard functionals

In the previous section, we discussed various approaches that have been proposed to

approximate the exact xc potential, and these methods have shown great success in a

wide range of applications. However, despite their success, currently used functionals

(specifically, semilocal and local functionals) suffer from systematic problems that have

been at the heart of many failures within the DFT formalism and at higher levels, within

excited-state approaches built on its ground [101]. Some of these problems can be

attributed to unconventional properties of the exact functional, and some others relate

to the approximate nature of xc functionals. In one way or another, these deficiencies

directly affect the functional’s ability in describing charge-transfer excitations that are

cases of interest in this thesis. Here, I will briefly discuss some of these deficiencies to

provide the necessary background for the methods introduced in the next chapters as

well as for my publications. Further details on these subjects can be found in Ref. [70,

101–104].

The most important formal property of the exact xc functional is associated with

its behavior with respect to fractional numbers of electrons in open systems. In 1982,

Perdew et al. [68] extended the Hohenberg-Kohn theorem and demonstrated that for

a system consisting of N = N0 + λ electrons, where N0 is an integer and 0 ≤ λ ≤ 1,

the exact ground-state energy of the system is linked to the straight-line connection

between the ground-state energies at points N0 and N0 + 1 as also shown in Figure.

2.1:

E(N) = (1− λ)E(N0) + λE(N0 + 1). (2.29)

Therefore the E(N) of a system with non-integer electrons number, varies linearly with

the fractional occupation number. Based on this definition the curve of energy is a

continuous value, however, its derivatives jump discontinuously at integer occupations

[68]. The derivatives are defined as the chemical potential of the open system as

µ = ∂E/∂N , or via the Euler-Lagrange equation of DFT for density n(r) as µ(N) =

δE[n]/δn(r) [68]. Therefore, the chemical potential has the below general form:

µ(N) =





−IP (N0) = lim
λ→0

∂E
∂N

∣∣∣
N0−λ

= lim
λ→0

δE[n]
δn(r)

∣∣∣
N0−λ

, N0 − 1 < N ≤ N0

−AE(N0) = lim
λ→0

∂E
∂N

∣∣∣
N0+λ

= lim
λ→0

δE[n]
δn(r)

∣∣∣
N0+λ

, N0 < N ≤ N0 + 1.
(2.30)

The ionization potential (IP ) and electron affinity (EA) of the N0-electron system

can be defined as −IPi = E0(N0) − Ei(N0 − 1) and −EAa = Ea(N0 + 1) − E0(N0),
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respectively. As will be discussed in more detail in section 4.1, the fundamental gap

is defined as the energy difference required to add an electron to HOMO state of the

neutral system and the energy needed to remove an electron from the LUMO state

of the neutral system, i.e., Efund = IP (N0) − EA(N0). By utilizing the general form

of the total energy in the DFT formalism (Eq. 2.14) and the above relation for the

chemical potential, Efund can be written as the sum of two contributions:

Efund = lim
λ→0

{
δE[n]

δn(r)

∣∣∣∣∣
N0+λ

− δE[n]

δn(r)

∣∣∣∣∣
N0−λ

}

= εN0+1(N0)− εN0(N0)︸ ︷︷ ︸
EKS

+ lim
λ→0

{
vxc(r)

∣∣∣
N0+λ

− vxc(r)
∣∣∣
N0−λ︸ ︷︷ ︸

∆xc

} (2.31)

The first term is known as the KS gap, which is defined as the difference between

the lowest unoccupied and the highest occupied KS eigenvalues at an integer electron

number. This conclusion follows from Janak’s theorem [105], which proves that the

derivative of the total energy with respect to the (fractional) occupation number fi of

the i-th KS orbital (see Eq. 2.10) is equal to the i-th KS eigenvalue, ∂E/∂fi = εKSi .

However, Almbladh and von Barth [106] later demonstrated that εKSi can strictly be

assigned to the HOMO eigenvalue in KS formalism for the exact functional, where its

energy is equal to minus the ionization potential, εHOMO = −IP . The second term in

Eq. 2.31 is known as the derivative discontinuity of xc energy, which describes how the

exchange-correlation potential of the system jumps discontinuously by this constant

while the density remains unchanged [104, 107].

The existence of this quantity is the main source of a long-standing issue in DFT

method known as the band gap problem. Using Eq. 2.30 the fundamental gap Efund,

which is an excited-state property, should be formulated based on two ground-state

calculations on the N and N + 1-electron system as:

Efund = IP (N)− EA(N) = εHOMO(N + 1)− εHOMO(N). (2.32)

However, assuming knowledge of the exact functional, the KS gap, defined as EKS =

εHOMO(N) − εLUMO(N), can be evaluated based on a single ground-state calculation

where the exact same potential describes both occupied and virtual orbitals. Despite

the fact that the HOMO state is equivalent to the ionization energy, the LUMO state

cannot be related to the EA [32], resulting in a difference between the KS gap and the

Efund gap expressed in the form of the derivative discontinuity, ∆xc = εHOMO(N +

1) − εLUMO(N). Since ∆xc can only be evaluated from two separate ground-state

calculations of theN andN+1-electron system, the KS gap never agrees with the Efund
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gap. This gap underestimation in the KS formalism is not a failure of approximate

functionals but is inherent to KS theory. Therefore, finding an ultimate functional

in the KS framework that can accurately predict the fundamental gap from a single

ground-state calculation is intrinsically unattainable [70]. To overcome this problem,

a frequently adopted approach is the generalized Kohn-Sham (GKS) formalism, which

will be explained in Section 2.6.

The second problem related to the derivative discontinuity arises from the approx-

imate nature of xc functionals. For exact functionals, one can assume that the energy

at N0 − 1 or N0 + 1 can be obtained through the derivatives at N0 [108]. However,

this assumption may not hold for approximate density functionals. In the case of local

and semilocal functionals, where the energy is an explicit functional of the density at

each point in space and hence continuous in its gradient, ∆xc is zero. This absence

of the derivative discontinuity leads to incorrect behavior of the total ground-state

energy between integer electron numbers, resulting in curves that are convex instead

of linear [108, 109]. Figure 2.1 schematically illustrates the difference between the ex-

act functional and local/semilocal functionals for fractional numbers of electrons. The

Figure 2.1: Sketch of the ground-state energy as a function of the number of electrons in
the system. The exact exchange curve with its straight line segments and convex behavior
of approximate xc functionals are illustrated with blue and red lines, respectively. Figure
adapted from Ref. [102, 104].

unphysical variation of energy as a function of fractional particle numbers in these

functionals leads to deficiencies of the first-order derivatives for calculating IP and EA

and results in a large deviation from the exact values [108].

A final perspective is given by the self-interaction error (SIE) that was recognized

already in Thomas-Fermi’s theory [61]. The self-interaction error, which arises from

the unrealistic interaction of an electron with itself, is well-understood in one-electron

systems such as the hydrogen atom. By construction, Hartree energy, as expressed

in Eq. 2.12, incorporates the unrealistic classical electron-electron repulsion. Since in
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principle, DFT handles electron-electron interaction exactly, the self-interaction error

in the Hartree term must be fully compensated by the exchange-correlation term,

resulting in Exc[n1e] + EH [n1e] = 0 [70, 104]. This statement only holds for the exact

functional, as it is not possible for approximate (semi)local functionals to fully satisfy

this condition, leading to an overestimation of the electron-electron repulsion energy.

Perdew and Zunger [110] suggested by identifying KS orbitals with electrons, where

ni(r) = fi|ϕ(r)|2 are the orbital densities, the same freedom of one-electron self-

interaction can be extended to a many-electron system for any approximate functional

that known as self-interaction correction (SIC) term:

ESIC
xc [ni] = Eappr

xc [ni]−
N∑

i=1

Eappr
xc [ni, 0] + EH [ni] = 0. (2.33)

Via this modification, the functionals are no longer density-dependent but orbital-

dependent. Therefore, different choices of orbitals, rather than KS ones, lead to dif-

ferent versions of the self-interaction correction. While SIC methods for correcting

(semi)local functional eigenvalues can improve the predicted band gap [103, 111], their

application is computationally expensive due to the consideration of Coulomb integrals

involving the orbitals. It is important to note that the equation mentioned earlier ex-

tends the one-electron self-interaction error, also known as the one-error [111], to a

many-electron system. However, it is not sufficient to completely eliminate or recover

the SIE of an N -electron system. Quantifying the many-electron self-interaction error

for an extended many-particle system is not that simple, but a common way is the use

of the straight-line energy condition as has been defined in Eq. 2.29, where for exact

functional the energy varies linearly with fractional electron number.

In the case of (semi)local functionals, the missing derivative discontinuity problem

resurfaces, as the incorrect convex behavior of these functionals leads to delocalization

of the charge distribution for fractional numbers. This phenomenon is variously referred

to as the ”many-electron SIE” or ”missing derivative discontinuity” error, or simply as

the delocalization error in the literature [112]. These different terms reflect different

aspects of the same principle issue at the core [102]. The artificial spread of electron

density has vital consequences which highlight the limitations of local functional in the

prediction of transition state energies and hence reaction barriers in weakly overlapping

fragments of a system, crucial for the description of long-range charge-transfer states

[32, 70, 112, 113], charge localization and distribution between subsystems [109, 114].

To overcome these limitations, (range-separated) hybrid functionals offer a viable

alternative by incorporating non-local features that can partially mitigate delocaliza-

tion errors. Hartree-Fock theory, which only considers the exact exchange part of the
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energy and ignores the correlation term entirely, can lead to an overestimation of the

energy E(N) even for integer particle values. This results in deviations from linear-

ity in a concave manner, known as the ”localization” error [103]. Hybrid functionals

partially correct for this error by including a fraction of the exact exchange, allowing

for error cancellation of convex and concave components and accounting for long-range

electron-electron correlation effects [112, 113]. Yet, to avoid the localization error and

satisfy Eq. 2.29, the long-range exact exchange should be compatible with the KS

correlation term. One solution is the use of OT-RSH functionals that enforce the ion-

ization potential to be equal to the HOMO eigenvalue through a tuning parameter

ω. Such functionals are particularly suitable for addressing delocalization errors in

complex systems.

2.6. The Generalized Kohn-Sham Scheme

Although the primary practical application of DFT was based on the KS formalism,

most of the ab-initio packages used today, including the one used in this work, operate

based on the generalized KS (GKS) formalism [115]. This is especially true in the case

of hybrid functionals. The reason for this shift is that while some quantities, such as

the total energy, are usually well described by KS eigenvalues, the HOMO-LUMO gap

is drastically underestimated by this method due to the discontinuity contribution of

the exchange-correlation potential, denoted by xc.

In GKS formalism, instead of mapping the interacting N -electrons system to non-

interacting ones, one may map this original system into an auxiliary partially inter-

acting system. This approach lifts the complexity associated with approximating all

exchange and correlation effects in the KS formalism by partially considering them in

the auxiliary system [70]. This alternative mapping is achieved by defining an orbital-

dependent potential K[ϕ] that satisfies the condition F [n(r)] = min
ϕi→n

K[ϕi], which is

equivalent to Eq. 2.9. In this manner, all density derivatives in Eq. 2.15 are re-

placed with derivatives with respect to the orbitals ϕi, and the generalized Kohn-Sham

equation can be written as:

(O[ϕi] + vext(r) + vR(r))ϕi = εiϕi (2.34)

where O[ϕi] is the orbital-specific operator and vR([n], r) is the ”remainder” local po-

tential [70]. Despite the fact, similar to the original KS approach, in principle the GKS

theory is exact, in practice, it is approximated due to the unknown form of vR([n], r).

Contrary to KS formalism, the GKS potential has no longer a universal form while
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resulting nonlocal O[ϕi] operator, which is usually of Fock-like form, replaces the KS

multiplicative xc potential for all orbitals. The non-multiplicative nature of the po-

tential operator, also called non-locality [102]), helps to emulate the self-energy oper-

ator’s function in many-body perturbation theory (MBPT) by accurately accounting

for exchange and correlation effects and enabling the computation of excitation ener-

gies [116]. Chapter 4 provides a detailed explanation of the features of this operator.

Furthermore, the explicit functional of ϕ instead of density in the xc potential leads

to the elimination or significant diminution of the KS derivative discontinuity in the

GKS gap EGKS, making it closer to the fundamental gap with Efund ∼= EGKS [96,

117]. While the difference between KS and GKS orbitals has a minor impact on most

system quantities, such as total energy or electron density, the HOMO-LUMO energy

gap differs significantly due to the definition of the LUMO energy in the GKS for-

malism. In both schemes, the highest occupied state equals the negative ionization

energy (εHOMO
KS/GKS = −IP (N)). However, the LUMO energy is defined as an excited

electron in the KS theory but interpreted as the negative of electron affinity EA in GKS

scheme [118, 119]. This definition leads to a more meaningful and realistic prediction of

the HOMO-LUMO gap in comparison with the fundamental gap, particularly in cases

where the KS approach with semi-local functionals fails drastically [107, 120]. Figure

2.2 illustrates the energy deviation between Efund, EKS, and EGKS and highlights the

interpretation of exact HOMO and LUMO eigenvalues in KS and GKS formalism.

Figure 2.2: Definition of fundamental gap Efund and DFT gap in KS formalism and their
relation with ionization potential (IP ) and electron affinity (EA). The figure has been
modified from the original version in Ref. [121].

This fact should be stressed out almost all practical Hybrid functionals, which can

be viewed as a special case of the GKS formalism [70], placed inside the realm of this

theory as they use the orbital-specific non-multiplicative exchange potential defined

in Eq. 2.23. The combination of local and nonlocal exchange energy assisted by the

orbital dependency of OT-RSH functionals can yield a correct asymptotic behavior
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of the potential. Furthermore, the percentage of delocalized parts controlled by the

introduced ω parameter can simulate the electrostatic screening effects [30] which can

be crucial for a correct description of particle interactions. An effect that also is

considered inside the GW/BSE theorem and viewed as the strong suit of this method.

In addition, the ω parameter controls the proportion of delocalized components, which

can replicate the electrostatic screening effects [30]. This is an essential factor for

accurately describing particle interactions, which is also taken into account in the

GW/BSE theory and is regarded as a significant advantage of this approach. To sum

up, the weighted combination of exact and semi-local exchange within the OT-RSH

functionals, which is utilized in orbital-dependent GKS theory, is currently regarded as

a promising solution to the band gap problem. This fact is also declared in Publication

I for a single BCL molecule and is illustrated here in Figure 2.3. The density of state

(DOS) structure and more especially HOMO-LUMO gap in GKS formalism with ωPBE

functional is almost identical to more accurate GW calculations while LDA functional

show more than 2 eV deviation from these results.

Figure 2.3: Generalized KS density of states calculated using DFT with LDA (pink), ωPBE
(blue), and GW method (green). The HOMO energies are aligned to zero.

2.7. Calculation of forces and vibrational spectra

Quantum-mechanical methods, such as DFT, focus on the electron motion in a system,

while the atomic nuclei remain fixed in geometry. Vibrational analyses, which consider

the quantum and thermal motions of nuclear particles, are powerful tools for further

identification of the electronic structure in the system. Vibrational modes more often

have a pronounced effect on the neutral and charge-transfer excitations of molecular

systems and can be important in the characterization of each excitation [17, 122].

Recent studies on photosynthetic systems have demonstrated the considerable impact

of electronic-vibrational coupling on defining the character of internal charge-transfer

and electron-density asymmetry of the special pair [123, 124], the robustness of the
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charge separation process in the RC [125], and achieving a more analogous picture of

the ground-state and excited-state between theoretical and experimental results [126].

The dynamical properties and effect of thermally-activated molecular vibrations

can be calculated via different approaches, such as the force constant method. In

this method, an infinitesimal displacement (δ) is applied to the equilibrium geometry

to construct the Hessian matrix based on the second derivatives of the energy with

respect to atomic coordinates [127]. In my work, the Hessian matrix is constructed at

the DFT level of theory. However, due to the large number of matrix elements, these

calculations are much more demanding than a simple DFT ground-state simulation.

The vibrational potential energy, V (R), can be written using a Taylor series expansion:

V (R) = V0 +
∑

i

(
∂V

∂Ri

) Ri +
1

2

∑

ij

(
∂2V

∂Ri∂Rj

) RiRj + ... (2.35)

where ( ∂V
∂Ri

) for equilibrium geometry and Rn is the nuclear Cartesian displacement

coordinates. The V0 is the zero point energy that does not depend on the displacement

coordinates and can be set to zero. Frequently V (R) potential is approximated as the

harmonic potential at the vicinity of an equilibrium point, in terms of mass-weighted

Cartesian displacement coordinates, qi = Ri

√
Mi with Mi being the nuclear masses,

as:

V (R) =
1

2

∑

ij

Kij qiqj (2.36)

where the mass-weighted molecular Hessian, or the harmonic force constant, Kij =

( ∂2V
∂qi∂qj

), contains 3N − 5 (3N − 6) positive values that correspond to the linear (non-

linear) translational and rotational motions of the molecule. However, the harmonic

approximation tends to overestimate the frequencies as it neglects anharmonicity ef-

fects when compared to the experimental data. While molecular dynamics simulations

can capture anharmonicity effects by investigating the alteration of the system along

the dynamical path over a period of time, these calculations are generally more compu-

tationally expensive. Furthermore, the discrepancy between experiment and harmonic

vibration results tends to be uniform, resulting in outcomes that are only proportional

in terms of a scaling factor [128].

The harmonic vibrational frequencies can be determined by solving the equation

ω =
√
Kij, where Kij represents the mass-weighted Hessian matrix. Real (positive)

frequencies are obtained when the structure is located at the minimum of the poten-

tial energy surface, while imaginary (negative) modes appear among the vibrational

frequencies when the structure is located in a transition state. Hence, an accurate

geometry optimization with a higher number of grid points and a more restricted

threshold for finding a dynamically stable state is typically necessary as a prerequisite
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step for vibration simulations. The ability to calculate vibrational frequencies can also

be useful in considering thermal contributions in various ways. In classical distribution,

it is assumed that at the maximum displacement of the oscillator, the kinetic energy

has zero contribution to the potential energy, and therefore the thermal energy of the

system is equal to the potential energy of the mode ω:

KBT =
1

2

∑

ij

Kij qiqj (2.37)

where KB is the Boltzmann constant and T is the desired temperature. Knowing

the harmonic vibrational frequency ωi associated with a particular displacement qi
allows us to simulate the system at a predefined temperature by distorting the equilib-

rium geometry along that mode with an amplitude corresponding to the temperature.

This produces a thermally-activated structure whose excited-state properties can be

calculated using methods like TDDFT or GW/BSE. Vibrational motions and ther-

mal effects typically result in a redshift of the absorption spectra compared to static

vertical excitations. The focus of my work is on studying the alterations in system

properties due to vibrational effects, relative to the equilibrium geometry. To this end,

we represent these effects using the concept of energy difference. The energy difference

between the excitation energy of a dynamic structure and a static one is computed as

∆En = Estatic
n − Edynamic

n , where n is the excitation number. The ∆En energies are

frequently more distinct for low-frequency modes with larger nuclear fluctuations and

higher-order frequencies will be neglected in the excited-state calculations.
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Time-dependent density functional

theory

One of the primary intentions of computational simulations is to precisely predict the

excited-state features. According to the Hohenberg-Kohn theorem, all properties of a

system, including those of its excited-states, can be uniquely determined based on its

ground-state density. However, in practice, the certain link between the ground-state

electron density and reformation of electronic configuration is unknown, making the

DFT method inadequate for interpretation of excited-state. Further developments are

therefore needed to accurately predict optical absorption. One way to achieve this goal

is to observe the evolution of a physical system’s wavefunction over time by solving

the time-dependent many-body wavefunction part of the Schrödinger equation. Yet, as

previously stated, obtaining the exact analytical solution of the time-dependent or time-

independent Schrödinger equation for a many-body system without approximation is

an unsolvable mathematical problem. One rigorous approach for calculating excited-

state properties of various molecular systems with great success in recent decades is

through the time-dependent formulation of DFT theory.

3.1. Time-Dependent DFT

In 1984, Runge and Gross [25] proved that each external potential vext(r, t) with an

initial many-body state Ψ0(t = 0) leads to a unique electron density n(r, t). This

method, which is also known as the time-dependent extension of stationary Hohenberg-

23
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Kohn theorem [62], suggests this one-to-one map can determine the external potential

and all the observable properties of the system by only having the density of the system

at time t while the initial state is fixed [129]. Almost a decade later, Van Leeuwen’s

theorem [130] proved that the time-dependent density n(r, t) of the interacting system

can be replaced with the density of non-interacting particles that change under the

influence of a time-dependent electric field. Describing this local effective potential

as vKS(r, t) leads to the primary formulation of Time-Dependent Density-Functional

Theory (TDDFT), which is an extension of the DFT method to excited states [131].

In this interpretation, the time-dependent Schrödinger equation is rewritten as:

i
∂ϕi(r, t)

∂t
= [−1

2
∇2 + vH(r, t) + vext(r, t) + vxc(r, t))]ϕi(r, t) (3.1)

with n(r, t) =
∑N

i=1 |ϕi(r, t)|2.
In the framework of DFT, the exchange-correlation potential vxc(r,t) accounts for

all the non-trivial many-body effects in the system [129]. In static DFT, vxc potential

is simply a derivation of xc energy as introduced in Eq. 2.16, while in TDDFT such a

definition leads to a contravention with causality in the system under the exchange of

(r, t) and (r
′
, t

′
) [130, 132] which is beyond the scope of this thesis. The time-dependent

exchange-correlation potential, vxc(r,t), is a non-local potential that depends on the

previous densities at time t
′
[70, 133]. It is defined as the functional derivative of

the exchange-correlation action Axc[n] with respect to the density at some boundaries:

vxc(r, t) = δAxc[n]
δn(r,t)

[134]. However, to construct vxc(r,t), one needs to know the time-

dependent exchange-correlation energy Exc(r, t). Despite decades of research, the exact

form of Exc(r, t) remains unknown, and approximations to this potential are still in

their early stages of development [129, 133, 135]. One common alternative approach is

the so-called adiabatic approximation that uses the static xc potential of DFT:

vadiabaticxc (r, t) = vxc(r)|n=n(r,t) = [
δExc[n](r)

δn(r)
]n(t) (3.2)

One of the most practical variations of TDDFT method is carried out through

linear-response theory. As only this particular approach has been used in the cal-

culation of neutral and charge-transfer excitations in my work, here only its layout

will be discussed comprehensively. At the heart of this approximation, a small, time-

dependent external field is applied to the system’s ground-state, and the perturbation

theory is used to analyze the resulting linear changes in density:

n(r, t) = n0(r) + n1(r, t) + ... (3.3)
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where due to the weak perturbative field we can neglect the higher order expansion of

the density and only consider the ground-state n0(r) density and the next term n1(r, t)

[53]. In the context of Van Leeuwen [130] and KS theorems and using time Fourier

transform, we can define n1(r, t) in frequency space as:

n1(r, t) = n(r, t)− n0(r) = δn(r, t) =

∫
χ[n0](r, r

′, ω) δvKS(r
′, ω) d3r′ (3.4)

where χ is the linear response function of a non-interacting system in the ground-state

under external potential δvKS. When using KS orbitals, the representation of χ can

be expressed as:

χKS(r, r
′, ω) =

∞∑

i,j

(fj − fi)
ϕ∗
i (r)ϕ

∗
j(r

′)ϕi(r
′)ϕj(r)

ω − (εKSj − εKSi ) + iη
(3.5)

where εi/j and fi/j are the eigenstates and occupation factors of states i and j, respec-

tively, and η is a positive infinitesimal. One can see the KS response function is purely

a function of KS wavefunctions while χKS poles are located at ω = εi− εj. Now going

back to the definition of KS potential (Eq. 2.18) one can write δvKS:

δvKS(r, ω) = δvext(r, ω) +

∫
δn(r′, ω)

|r− r′| d3r′ +

∫
fxc(r, r

′, ω) δn(r′, ω) d3r′ (3.6)

where the xc kernel, fxc, in the time-domain is defined as:

fxc(r, t) =
δvxc[n0](r, t)

δn(r′, t′)
(3.7)

while vxc is a function of ground-state density n0. Now by plugging Eq. 3.4 to definition

of δvKS we reach to:

χ(r, r′, ω) = χKS(r, r
′, ω) +

∫ ∫
χKS(r, r1, ω)

× [fxc(r1, r2, ω) +
1

|r1 − r2|
] χ(r2, r

′, ω) d3r1 d
3r2

(3.8)

with χ being the response function of the interacting system with a dependency on

the non-interacting KS response function χKS. Occasionally, it is common to pack

the Hartree and exchange-correlation potentials as follows: fHxc(r, r
′
, ω) = 1

|r−r′ | +

fxc(r, r
′
, ω). Recasting this optical response function in Lehmann representation with

a similar formulation as Eq. 3.5 shows, the poles of χ are located at excitation energies

of the system, Ω, while they correspond to the transition frequencies ω. Therefore, the

self-consistent solution of this equation, with an exact fxc, provides optical information



Chapter 3 – Time-dependent density functional theory 26

about the system. In practice solving this equation is numerically cumbersome. In

this regard, using a new derivation of Eq. 3.8, one can reach a non-Hermitian eigen-

value problem, known as Casida formalism [136], that could determine the poles of the

response function, Ω, in the block form of:

(
A B

−B∗ −A∗

)(
Xs

Y s

)
= Ωs

(
−1 0

0 1

)(
Xs

Y s

)
(3.9)

where matrix elements are defined in occupied (i, j) and virtual (a, b) Hilbert space:

S = Si × Sa ⊕ Sb × Sj, while the matrix size depends on this product space [137].

Eigenvalues of the above equation indicate the neutral and charge-transfer excitation

energies of the many-body system, Ω = ω, while eigenvector X and Y , represent the

amplitude or the oscillator strength of excitation i → a and deexcitation a → i. In

this distinct non-symmetric block form, matrix elements A and −A∗, that represent

resonant (i→ a) and antiresonant (a→ i) transitions, and their coupling B and −B∗

define as:

Ajbia = δijδab(εa − εi) + (ia|jb) + (ia|fab|jb) = δijδab(εa − εi) +Kia,jb(ω), (3.10)

Bjb
ia = (ia|jb) + (ia|fab|jb) = Kia,jb(ω). (3.11)

Here, the two-electron integrals are given in Mulliken notation:

Kia,jb(ω) = (ia|fHxc|jb) =
∫ ∫

ϕ∗
i (r)ϕa(r) fHxc(r, r

′, ω) ϕ∗
j(r

′)ϕb(r
′) d3r d3r′ (3.12)

where in KS formalism, εi,j/a,b and wavefunctions ϕi,j/a,b are determined by a previous

self-consistence DFT calculation. By diagonalization of Eq. 3.9, for reducing the size

of the initial matrix, and with considering real-valued KS wavefunctions and fxc, one

can reach a simplified quadratic eigenvalue representation of Casida formalism:

CZ = Ω2
nZ, (3.13)

where the symmetric matrix C and transition density matrices Z define as:

C = (A−B)1/2(A+B)(A−B)1/2, (3.14)

Z = (A−B)1/2(X − Y ) (3.15)

while matrix A − B is a positive definite. Following this formalism, some properties
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such as transition density can be computed through the equation:

γ(r, r′) =
occ∑

i

virt∑

a

[Xia(n) + Yia(n)]ϕ
∗
i (r)ϕa(r

′) =
occ∑

i

virt∑

a

Zia(εa − εi)
−1/2ϕ∗

i (r)ϕa(r
′)

(3.16)

that represents the change of the density matrix corresponding to the excitation n.

This representation of Casida formalism is the common form of the TDDFT method

implemented in different program packages, including those used in this thesis. By

replacing the definition of matrix element A and B we can rewrite the C matrix as:

Cij,ab = (εi − εj)
2δijδabδσ + 2

√
εi − εj

√
εa − εb Kij,ab(ω). (3.17)

In the past decades, various estimations have been suggested for the prediction

of the matrix B or more specifically Kia,jb(ω). In Tamm-Dancoff approximation one

neglects any coupling between two types of excitations by setting matrix B to zero [138].

Simplifying the configuration to AX = ωX eliminates the Y eigenvector while keeping

the definitions of A and X the same as before. Although this approximation simplifies

the represented eigenvalue, still finding the practical estimation for computing fxc in

matrix element, A is a troubling task. One approach is to neglect the dynamical effects

by setting fxc = 0 and only including the Hartree correlation part in the fHxc function,

which is known as the Random Phase Approximation (RPA) [139]. Another widely

used method for estimating fxc is the adiabatic approximation [137], which is explained

in Eq. 3.2. In the frequency-independent representation of fxc(ω → 0), the exact xc

potential can be reached by having a slow variation in time, resulting in a potential

that depends only on the density at time t. The fxc function can be written in this

formalism as:

fxc(r, r
′) =

δ2Exc[n]

δn(r) δn(r′)
(3.18)

where Exc is the static DFT xc energy functional that can have different types as it is

discussed in the previous chapter.

The linear-response TDDFT method, under the adiabatic approximation, has been

widely used for predicting the excitation spectrum of organic or biochromophore molec-

ular systems with sufficient accuracy [26, 140–142]. The TDDFT approach in the con-

cept of Casida formalism offers several advantages, such as access to diverse optical

properties like oscillator strength, the difference between the ground-state and excited-

state density, atomic point charges, and dipole moments. However, the calculated

excitation spectrum strongly depends on the KS orbitals and xc energy functional,

which can lead to underestimation of the results due to the DFT part. Furthermore,

the ”standard” approximations used in TDDFT have a significant drawback: the the-
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ory drastically fails in predicting long-range charge-transfer excitations [31, 32, 113,

143, 144], Rydberg states [34, 145], and double excitations [33]. Charge-transfer ex-

citation plays a crucial role in various energy-conversion processes in photosynthetic

systems and is therefore of great interest in this thesis. In the next section, we will

discuss the nature of this excitation, its features, and the inefficiency of (semi)local

functionals for its prediction.

3.2. Charge-transfer excitation in standard TDDFT

Let us begin by considering a simple model of excited-state intermolecular interac-

tions, which involves two separated molecules, A and B, with a distance of R. In a

dimer system that is excited, [AB]∗, if both the electron and the hole are localized

within the same individual unit, the excitation is called a local excitation, which is

often short-lived. On the other hand, if a significant fraction of the electrons transfers

from an occupied state of molecule A (donor) to an unoccupied state of molecule B

(acceptor), the excitation is identified as a charge-transfer excitation, which is often

long-lived [32, 146]. The orbital occupation diagrams for these two types of excitations

are schematically illustrated in Figure 3.1. In the charge-transfer excitation, the posi-

Figure 3.1: Illustration of classes of excitations.

tive and negative charges located on A and B molecules electrostatically attract each

other, while the charge-transfer state has a 1/R dependence. To understand the failure

of (semi)local functionals in predicting the correct 1/R behavior of charge-transfer ex-

citation, we first assume that the orbitals of molecules A and B have zero or negligible

overlap. Going back to Eqs. 3.10 and 3.11, the (ia|jb) term exponentially vanishes

due to the exponential orbital decay from both equations. The last term within the

exchange-correlation kernel fxc depends on the choice of the xc functional. Unless the

fxc kernel has a singularity in the derivative of the potential with respect to the density,

and can counteract the exponentially decaying orbital overlap based on its non-local
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feature, the matrix elements A and B, and consequently the excitation energy, re-

duce to the Kohn–Sham eigenvalue difference εa − εi [30]. Despite the compensatory

nature of the exact kernel, (semi)local functionals are unable to restore the correct

1/R long-range behavior. This is because, in the case of pure (semi)local functionals,

TDDFT is applied within the adiabatic approximation, where the fxc kernel has no

time-dependency (ω = 0). Moreover, since (semi)local functionals have a local char-

acter, fxc only appears in regions of space where r ≈ r′, and cannot grow rapidly in

regions where the orbital overlap vanishes. These factors make LDA or GGA inade-

quate to compensate for vanishing overlap and diminish the charge-transfer excitation

energy to KS eigenvalue difference. As demonstrated in section 2.5, KS gap encounters

significant problems in the characterization of partial charge-transfer excitation be-

tween weakly overlapping subunits due to the lack of derivative discontinuities and the

presence of SIE. This inefficiency of linear-response TDDFT with standard functionals

is also reported repeatedly in the study of photosynthetic systems [32, 49, 147, 148].

In summary, this method fails to give a correct prediction of charge-transfer excita-

tions. A failure attributed to the mentioned non-local features of TDDFT method, e.g.,

frequency independence of fxc, discontinuity, and more importantly incorrect asymp-

totic behavior of the Coulombic attraction, where fxc decays too quickly (exponentially)

instead of the correct −1/r asymptotic, as has been vastly discussed in the literature

[34, 113, 133, 149, 150].

In recent years, the combination of GKS formalism and RSH or more specifically

OT-RSH functionals containing tuned long-range exact exchange has emerged as a

promising approach to overcome the shortcomings of standard TDDFT in predicting

charge-transfer excitations. This method utilizes the concept of orbital-specific poten-

tials and tuned exact (Fock) exchange to accurately capture the asymptotic behavior of

the Coulombic attraction while minimizing the derivative discontinuity by tuning ω. As

a result, TDDFT has become an intrinsically suitable method for describing this type of

excitation in molecular systems [35–40, 149]. Additionally the performance of TDDFT

method with different functionals is investigated in Publication I and Publication III

for single and dimer Bacteriochlorophyll model systems in comparison with GW/BSE

approach. In the first publication, we established LDA functional fails remarkably in

the prediction of local excitation energy of these monomers while TDDFT with ωPBE

functional lead to much more reasonable description of excitation spectrum, in excel-

lent agreement with GW/BSE approach, multireference wavefunction-based methods,

and experimental data. The same trend is observed in the dimeric system, where the

LDA functional gives a generally incorrect prediction of the entire excitation spectrum

with unrealistic low oscillator strength excitations appearing at very low energies. On

the other hand, ωPBE functional provides the appropriate approximation for fulfilling
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this task with an almost equivalent performance as GW/BSE. Figure 3.2 depicts a

comparison of the excitation spectra of the BCL dimer calculated by the LDA and

ωPBE functionals.
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Figure 3.2: Excitation spectrum of BCL dimer using TDDFT within LDA (top) and ωPBE
(bottom) functionals. Arrows mark low oscillator strength excitations. The shaded areas are
calculated by folding the excitation energies with Gaussian functions with a width of 0.08 eV
as a guide to the eye.
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GW/BSE formalism

The development of DFT in 1965 marked the beginning of a new era in computa-

tional chemistry, and since then, various alternative approaches have been proposed

and continuously improved. However, some of these methods are primarily focused on

ground-state properties and are not suitable for studying electronic excitations, which

is the main focus of this thesis. Other methods, such as algebraic diagrammatic con-

struction (ADC) or coupled-cluster (CC) [151, 152] , have been developed explicitly for

simulating excited states and provide higher accuracy than TDDFT. However, these

methods are computationally expensive and impractical for studying large systems.

Today the real challenge for computational communities is to create a balance between

the accuracy of the simulations and the computational costs.

The so-called many-body Green’s function GW formalism within Bethe-Salpeter

Equation (BSE) strikes a balance between accuracy and computational efficiency and

has become a gold standard for measuring ground-state properties. It is also capable

of accurately predicting excited-state of solids and, more recently, atomic or molecular

systems [24, 44]. The fundamental parameter in the GW is the one-body Green’s

function G. In 1965, the concept of Green’s function GW formalism was introduced by

Hedin [153] in a set of equations known as Hedin’s equations for predicting the electronic

structure of an interacting homogeneous electron gas. However, it took more than a

decade for its success to be demonstrated at the ab initio level of theory. The traditional

form of this method is more computationally demanding compared with TDDFT with

formal scaling O(N5). Nevertheless, the capability of this method in the prediction of

direct charge-transfer excitations, its independence from any external assumptions as

31
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a parameter-free formalism, and the fact the computational cost can be tuned down

to O(N4) or even O(N3) using different suggested derivations of GW approximation

are only a few aspects that yield to raising popularity of this approximation. In the

following subsections, we will explore the MBPT method based on the GW formalism

and compare its drawbacks, limitations, and advantages to those of TDDFT, using the

following literature [24, 135, 154–157].

4.1. Green’s function

Experimentally IP and EA potentials calculate through direct and inverse photoemis-

sion spectroscopy methods, respectively, where one electron separates or adds to the

N -electron system [121, 156]. The charged excitation energy of an N -electron system

with ground-state energy E0(N), can be defined as the difference between these ener-

gies as is mentioned before in section 2.5. More precisely, for an excited-state n, IP for

occupied state energy levels and EA for unoccupied energy levels can be determined

as:

−IPi = εi = E0(N)− Ei(N − 1), (4.1)

−EAa = εa = Ea(N + 1)− E0(N) (4.2)

while ionization potential is below the Fermi level, εi < EF , with i representing all

states of (N -1)-electrons system and EA is at or above the Fermi level, εa ≥ EF , with

indict a being all states of (N+1)-particles system. The fundamental band gap energy

can be defined as the subtraction of EA and IP :

Egap = (Ea(N + 1)− E0(N))− (E0(N)− Ei(N − 1)). (4.3)

For calculating such energy one needs to calculate the total energy E(N) using Schrödinger

equation of the N -electron system: E(N) = ⟨N |H|N⟩ where the ground-states |N⟩ are
many-body eigenstates of the system. The transition of an N -electrons system to an

(N±1)-electrons system, as defined in Eq. 4.2 and 4.1, can be written based on their

eigenstates that are representations of field operators ψ̂(r) in real space:

ψi(r) = ⟨N − 1|ψ̂(r)|N⟩ for εi < EF

ψa(r) = ⟨N |ψ̂(r)|N + 1⟩ for εa ≥ EF
(4.4)

By switching to the Heisenberg representation of field operator ψ̂(r) to include time

dependence we will have [155]:

ψ̂(r, t) = eiHtψ̂(r)e−iHt (4.5)
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Now we can extract information of our interest by introducing the definition of time-

ordered single-particle Green’s function G that is the central operator in MBPT.

Green’s function is the probability amplitude for a particle or hole that is created

at the time t
′
to be detected at time t. This parameter can be calculated based on the

overlap of the initial state with the final state:

G(r, t, r′, t′) = −i⟨N |T (ψ̂(r, t)ψ̂†(r′, t′))|N⟩ (4.6)

where T , or the so-called Dyson time-ordering operator, arranges a series of field op-

erators in order that earlier time apply first on the ground-states |N⟩ and imposes a

change of sign for each exchange of ψ̂(r, t) and ψ̂†(r′, t′).

T [ψ̂(r, t)ψ̂†(r′, t′)] = ψ̂(r, t)ψ̂†(r′, t′) for t > t′,

T [ψ̂(r, t)ψ̂†(r′, t′)] = ±ψ̂†(r′, t′)ψ̂(r, t) for t < t′.
(4.7)

The definition of Green’s function allows describing the process of addition or sub-

traction of an electron from the system and illustrates the propagation of an electron

(t > t
′
, G−) or a hole (t < t

′
, G+). We can rewrite the definition of Green’s function

as:

G(r, t, r′, t′) = −iθ(t− t′)⟨N |ψ̂(r, t)ψ̂†(r′, t′)|N⟩ (4.8)

where θ(t−t′) is the Heaviside step function with the definition θ(t−t′) =




1, if t > t′,

0, if t < t′.

To obtain the energies from the time representation of Green’s function we can simply

apply the Fourier transform of the Heaviside step function by employing Eq. 4.5 as:

θ(ω) =
1

2π

∫ ∞

−∞
dτθ(τ)eiωτ−η|τ | =

i

2π(ω + iη)
(4.9)

that leads to the Lehman representation of Green’s function [155]:

G(r, r′;ω) =
∑

i

ψi(r)ψ
†
i (r

′)

ω − εi − iη
+
∑

a

ψa(r)ψ
†
a(r

′)

ω − εa + iη
(4.10)

where η is a positive infinitesimal. The ψi/a(r), also called “Lehman amplitudes”, are

simply occupied and unoccupied one-particle wavefunctions, defined in Eq. 4.4 that

indicate overlap between the N -electrons system with ith/ath states of (N±1)-particles

system. Here the poles of Green’s function located at ω = εi/a are the real charged

excitation energies of the system. In contrast to DFT, εi, εa have the same values

as they can be measured in direct and indirect photo-electron emission experiments

[24]. Experimentally, instead of directly dealing with G(r, r′, ω), one uses the diagonal
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spectral function A(r, r′, ω) definition. The spectral function, which is the density of

the excited-states, interprets the probability of finding a system in energy ω while one

electron is either added or removed from the system. This function can be defined via

A(r, r′, ω) = 1
π
ImG(r, r′, ω) sgn(EF − ω), as:

A(ω) =
∑

i

ψi(r)ψ
†
i (r

′) δ(ω − εi) +
∑

a

ψa(r)ψ
†
a(r

′) δ(ω − εa) (4.11)

4.2. Dyson’s equations

The extension of introduced one-body Green’s function to a true many-body system

of interacting electrons in an external potential makes this function a powerful tool for

calculating both ground and excited-state properties. The many-body perturbation

expansion of G can be classified by arbitrary Feynman diagrams, which is a graphi-

cal representation of perturbation series [158]. Dyson’s equation [159] summarizes the

Feynman expansions in a particularly compact form by collecting all one-particle irre-

ducible diagrams. Through Dyson’s equation in the definition of the exact many-body

Green’s function, the non-interacting Green’s function, G0, links to the interacting ones

by operator Σ or so-called self-energy as:

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d(3, 4) or G = G0 +G0ΣG (4.12)

Σ represents the complicated correlation of a many-particle system and contains all

electron-electron interactions. In this representation, notations (rt, r′t′, ...) are re-

placed with notations (1,2, ..) for simplicity. For describing our many-body system we

recall the basic definition of time-dependent interacting Hamiltonian, based on filed

operator ψ(r, t) in BO approximation, defined in Section 2.1 as:

∫
ψ†(r, t)H0ψ(r, t) d

3r+
1

2

∫ ∫
ψ†(r, t)ψ†(r′, t)v(r, r′)ψ(r, t)ψ(r′, t) d3rd3r′

︸ ︷︷ ︸
VH

= Eψ(r, t)

(4.13)

where v(r, r′) is the Coulomb interaction (Hartree potential) andH0 is the independent-

electron Hamiltonian including kinetic energy (− ℏ
2m

∇2
i ) and the electron–nuclei poten-

tial (Vext). In the Heisenberg picture, applying definition of H in the commutator part

of equation of motion, i∂ψ(r,t)
∂t

= [ψ(r, t), H], yields to:

i
∂ψ(r, t)

∂t
= [H0(r) +

∫
ψ†(r′, t)v(r, r′)ψ(r′, t) d3r′] ψ(r, t) (4.14)
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The equation of motion can be deduced for Green’s function as:

[i
∂

∂t1
−H0(r)− VH ] G(1, 2)−

∫
Σ(1, 3) G(3, 2) d3 = δ(1, 2) (4.15)

with δ being Dirac’s delta function. Finally, by plugging the definition of Green’s

function from Eq. 4.10 in the equation of motion we reach a single-particle eigen-

value equation referred to as the quasiparticle (QP) equation similar to KS eigenvalue

problem (Eq. 2.19):

[H0(r) + VH(r)] ψ(r) +

∫
Σ(r, r′′, ω) ψ(r′′) d3r′′ = E ψ(r) (4.16)

By using the exact value of the self-energy, Σ, we can construct a many-body equation

that generalizes the one-body eigenvalue equation, allowing us to calculate the entire

spectrum of εi/a. The primary challenge is to express the self-energy as a function

of Green’s function, G. The quantum chemistry community has suggested various

methods for representing this operator, resulting in different types of theories. For

instance, in the ADC(n) methods [160], the self-energy is defined based on bare v(r, r′).

However, one of the most widely used and popular derivations of the self-energy was

proposed by Hedin [153] in a self-contained set of five equations, known as Hedin’s

equations. These equations provide a powerful framework for calculating the self-

energy and understanding the interactions between electrons in many-body systems.

4.3. Hedin’s equations

Hedin introduced a new expansion of self-energy in terms of the screened Coulomb in-

teraction, W (1, 2) where (1,2, ..) represent notations (rt, r′t′, ...). He only considered

partial summation to infinite order of v(1, 2) instead of developing Σ in a power series

of bare Coulomb interaction [153]. These two parameters can describe all the inter-

actions in the system while screened Coulomb interaction represents the electron-hole

attraction and self-energy is the electron-electron repulsion. By applying Schwinger

functional-derivative method [161] Hedin reached a set of integrodifferential equations

called Hedin’s equations:

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d(3, 4) (4.17)

P (1, 2) = −i
∫
G(2, 3)G(4, 2)Γ(4, 2, 3)d(3, 4) (4.18)
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W (1, 2) = v(1, 2) +

∫
v(1, 3)P (3, 4)W (4, 2)d(3, 4) (4.19)

Σ(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2, 3)d(3, 4) (4.20)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3)d(4, 5, 6, 7). (4.21)

The superscript + indicates the addition of a positive infinitesimal to the time (t+1 =

t1+η) to ensure the correct time order of sequences. The third term in the many-body

equation, represented by W(1,2), is the effective potential of electron 1 due to electron

2. When two electrons are in close proximity to each other, the second electron repels

all other nearby electrons, leading to the formation of a positive cloud around each

electron. This positive cloud weakens the interaction between the two electrons com-

pared to the bare Coulomb interaction. Therefore, considering this effect in the term

of screened Coulomb interaction, with a higher convergence rate in the perturbation

expansion, is more reasonable than v(1, 2).

By introducing an external perturbation field, U , that is set to zero afterward, Hedin

considered the variation of Green’s function due to U based on the linear response ap-

proach. This consideration leads to the interpretation of irreducible and reducible

polarizability as P (1, 2) = −i δG(1,1+)
δV (2)

= δn(1)
δV (2)

and χ(1, 2) = −i δG(1,1+)
δU(2)

= δn(1)
δU(2)

, respec-

tively, and representation of 3-point vertex as Γ(1, 2, 3) = −i δG(1,2)
δV (3)

. If we consider V (r)

is the summation over introduced external perturbation filed and Hartree potential as,

V (1) = U(r) + VH(r), P , χ, and Γ simply describe the variation of Green’s function

upon an external field.

4.4. From Hedin’s equations to GW approximation

Going through a full self-consistent cycle from Eq.4.17 to Eq.4.21 governs an exact solu-

tion to the interacting Green’s function of a many-body system. However, the inclusion

of higher-order terms of the vertex function, Γ, which depends on three space-time

points (1,2,3), makes the calculations intractable and difficult to solve. To simplify

the theory, Hedin proposed an alternative solution, where only the first term of the

vertex function is considered, and higher vertex corrections are neglected. This ap-

proximation, often referred to as the Random Phase Approximation (RPA), is given

by Γ(1, 2, 3) = δ(1, 2)δ(1, 3) [162, 163]. By applying this approximation to Hedin’s

differential equations, the self-energy takes on a more straightforward form, Σ = iGW ,
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and the resulting self-consistent equations are known as the GW approximation:

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2)d(3, 4) (4.22)

χ0(1, 2) = −iG(1, 2+)G(2, 1) (4.23)

W (1, 2) = v(1, 2) +

∫
v(1, 3)χ0(3, 4)W (4, 2)d(3, 4) (4.24)

Σ(1, 2) = iG(1, 2)W (1+, 2) (4.25)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (4.26)

where χ0 is the independent electron susceptibility or response function that has been

defined by employing RPA. This function is the main parameter in the definition of

the dielectric function ε−1(1,2):

ε−1(1, 2) = δ(1, 2)

∫
v(1, 3)χ(3, 2) d3 (4.27)

that relates the screened Coulomb interactions to the bare one:

W (1, 2) =
∫
ε−1(1, 3)v(3, 2) d3. The GW approximation is typically solved iteratively,

starting with an initial guess for the Green’s function, G0, and then calculating all pa-

rameters in the order presented in Eq. 4.22 to Eq. 4.26. The iterative process continues

until the interacting Green’s function in Eq. 4.22 converges to a predefined criterion

value. Depending on the number of particles, going through full self-consistent GW

approximation, or so-called scGW , with O(N5) calculation scale, can be computation-

ally demanding and even not affordable. To reduce the computational cost of scGW

calculations, alternative methods have been developed that apply different levels of

self-consistency that yield various flavors of scGW approximation. Here only a few of

these flavors based on their relevance to this thesis will be introduced.

4.5. G0W0 formalism

One of the simplest but meanwhile popular flavors of GW method is one-shot pertur-

bative GW or G0W0. In this approach one terminates the self-consistency after the first

iteration of Dyson’s equations and G0 parameter calculate directly. In this approach is

more common to use KS or HF eigenvalues and orbitals and construct the interacting

Green’s function and χ0 based on them. In KS-DFT framework the G0 and χ0 written

as:

GKS
0 (r, r′, ω) =

∑

i

ϕi(r)ϕ
∗
i (r

′)

ω − εKSi − iη
+
∑

a

ϕa(r)ϕ
∗
a(r

′)

ω − εKSa + iη
(4.28)
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χKS0 (r, r′, ω) = − i

2π

∫
G0(r, r

′, ω + ω′)G0(r
′, r, ω′) dω′

=
occ∑

i

virt∑

a

(fa − fi)
ϕ∗
i (r

′)ϕa(r)ϕi(r)ϕ
∗
a(r

′)

ω − (εKSa − εKSi )± iη

(4.29)

where fi and fa are the occupation factors of states i and a. Subsequently, the screened

Coulomb interaction W0, dynamical dielectric function ε, and the self-energy in RPA

read as:

W0(r, r
′, ω) =

∫
ε−1(r, r′′, ω)v(r′′, r′) d3r′′ (4.30)

ε(r, r′, ω) = δ(r, r′) −
∫
χ0(r

′′, r′, ω)v(r, r′′) d3r′′ (4.31)

Σ(r, r′, ω) =
i

2π

∫
eiηω

′
G0(r, r

′, ω + ω′)W0(r, r
′, ω′) d3rω′ (4.32)

Back to QP eigenvalue Eq. 4.16 and replacing quasiparticle wavefunctions ψ(r) with KS

wavefunction ϕ(r)KS one can reach the QP-energies by solving diagonal QP equation:

εQPs = εKSs + ⟨ϕs|ΣGW (εQPs )− vKSxc |ϕs⟩ (4.33)

where s runs over all occupied and unoccupied states. ΣGW (εQPs ) − vKSxc term repre-

sents the perturbative correction of DFT exchange-correlation potential. As the KS

eigenvalues εKSs should calculate based on a specific exchange-correlation functional,

for example, PBE, it’s more common to label applied G0W0 method as G0W0@PBE to

also refer to the type of xc functional. The correction in G0W0 method can significantly

improve the underestimation of DFT-based band gap and reduce the deviation from

experimental results as also discussed in this thesis and many other studies [164–167].

Despite such an enhancement, the G0W0 results inherently depend on DFT functionals

since the KS wavefunctions and eigenvalues are not updated in any self-consistent cy-

cle. Even by optimizing the initial DFT results using hybrid functionals with a tuned

amount of exact exchange, this dependency cannot be entirely eliminated [168]. There-

fore partial self-consistent techniques with keeping self-consistency in different parts of

GW equations (4.22 to 4.26) are proposed for removing such dependency.

4.6. Partially self-consistent GW

The GW0 approach is an intermediate method that simplifies the scGW formalism by

iterating only the eigenvalue self-consistency on the Green’s function G, while keeping

the χ0 and screened interaction, W , fixed in each iteration. The χ0 and W terms are

the most challenging parts of the scGW formalism [169]. In this approach χ0 and W0
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build directly from Eq.4.28 and Eq.4.29 and self-energy represent as:

Σ(1, 2) = iG(1, 2)W0(1
+, 2). (4.34)

One useful flavor of the scGW method that can mitigate the starting point dependency

is the partial self-consistent eigenvalue method, or the evGnWn approach (n=number

of iterations) [170]. In this method, only the eigenvalues go through a self-consistent

cycle, and these corrected eigenvalues are used to construct the new Green’s function

and screened interaction. In the first step, the non-interacting Green’s function G0

is constructed based on the KS wavefunction, and the QP energies are calculated

using Eq. 4.33. In the second step, the eigenvalues εQPi are injected into Eq. 4.28,

while the wavefunctions remain unchanged. In each iteration, the eigenvalues from

the prior GW cycle are used until the convergence criterion is fulfilled. Although

the evGnWn approach can remove a major part of the starting point dependence and

moderately improve the HOMO-LUMO gap and excitation spectrum compared to the

G0W0 approach [43, 166, 171], it cannot eliminate it entirely [172, 173], as only the real

part of εQPi is iterated, and the KS wavefunctions are not updated self-consistently.

The next recently proposed scheme called quasiparticle self-consistent GW approx-

imation (QSGW) [174], aims to construct the self-consistency in a manner to minimize

the perturbation in MBPT. This method is best formulated in G0W0 framework and

uses its one-body Hamiltonian H0 = − ℏ
2m

∇2
i + Vext as a starting point that updates

in each iteration. By defining an effective one-electron Hamiltonian Heff , determining

the time-evolution of the one-body amplitude for the many-body system [174], we will

have:

Heff (ω) = − ℏ
2m

∇2
i + Vext + VH + Σ(ω). (4.35)

In which one can optimize H0 with respect to ∆V (ω) = H(ω)−H0 value.

It is worth noting that despite the evaluation of partial self-consistent GW methods

in the last decades, many benchmark studies have illustrated that the improvements in

band gap or excitation energies brought by the introduced QSGW or even fully scGW

methods are somehow unrewarding concerning the computational coast for extended

atomic or molecular systems [175–178]. This outcome suggests that simple G0W0 and

evGnWn methods combined with optimal generalized Kohn–Sham starting points are

sufficient for the study of small to immense molecular systems with a smaller scaling

in terms of system size of O(N3−4) [24, 48, 49, 179, 180].
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4.7. Bethe-Salpeter Equation

The introduced GW scheme is not only a compelling method for calculating particle ad-

dition/removal energies but also its formulation based on MBPT can also be used to de-

termine optical or neutral excitations [135]. In the original paper of Bethe and Salpeter

[181] they considered a 4-point vertex function for representing two-particle correlated

electron-hole amplitude, following the linear response method, called L(1, 2, 3, 4). This

vertex function can be represented as:

L(1, 2, 3, 4) = −iδG(1, 2)
δU(3, 4)

(4.36)

where U is a local external perturbation. Reducible polarizability can relate to this

function via χ(1, 2) = L(1, 2, 3, 4) equation. By rewriting the above formulation of L

function in a Dyson-like formalism similar to Eq. 4.21 one can reach to the famous

Bethe-Salpeter Equation:

L(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
L0(1, 2, 3, 4) Ξ

BSE(3, 5, 4, 6) L0(7, 8, 3, 4) d(5, 6, 7, 8)

(4.37)

with L0(1, 2, 3, 4) =
δG0(1,2)
δU(3,4)

= G(1, 4)G(2, 3) being the noninteracting 4-point response

function. The ΞBSE is the generalized BSE kernel that relates to the derivation of

self-energy as:

ΞBSE(3, 5, 4, 6) = v(5.7)δ(5, 6)δ(7, 8) +
δΣ(5, 6)

δG(7, 8)
. (4.38)

To calculate the reducible polarizability χ, which is essential for optical absorption

calculations, one needs to determine the self-energy via ΞBSE. A commonly used

method for self-energy estimation is the screened Hartree-Fock, or the so-called GW

approach with Σ = iG(1, 2)W (1, 2, ω). This GW/BSE combination is preferred over

other approximations due to its more realistic definition of electron-hole interaction

through the W parameter. The BSE kernel in the GW/BSE formalism is represented

as:

ΞBSE(3, 5, 4, 6) = v(5.7)δ(5, 6)δ(7, 8)−W (5, 6)δ(5, 7)δ(6, 8) (4.39)

where higher orders of W expansion have been neglected. In this formulation, W and

self-energy are dynamic by means of their dependence on frequency ω. There are

several ways to treat the frequency dependency in the BSE formalism. For instance,

one can constrain the screened Coulomb interaction W (ω = 0), similar to the TDDFT

approach, to obtain the standard static BSE approximation [182].

One can use a transition product basis ϕi/a in the response functions L to obtain a
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generalized eigenvalue equation that is similar to the Casida formalism (Eq. 3.13) in

TDDFT [121]. In this representation, the electron-hole eigenstates, or the transition

densities of the Casida Hamiltonian, can be written as:

γBSEn (re, rh) =
∑

ia

(X ia
n + Y ia

n ) ϕi(re)ϕ
∗
a(rh) (4.40)

where a/b and i/j are the occupied and virtual states, respectively, and n is the op-

tical excitation number. What distinguishes the GW/BSE formalism from TDDFT

is concealed in the definition of matrix elements A and B in Eq. 3.13. In GW/BSE

method one uses QP eigenvalues, εQP , instead of generalized KS eigenstates, εKS. Fur-

thermore, the kernel matrix element Kia,jb in TDDFT replaces with the definition of

screened Coulomb interaction W. In GW/BSE the resonant transitions from occu-

pied to unoccupied orbitals, Ajbia, and the coupling between resonant and antiresonant

transition, Bjb
ia , represent as:

Ajbia = (εQPa − εQPi )δijδab

+ ⟨ϕa(r)ϕi(r)|v(r, r′)|ϕb(r′)ϕj(r′)⟩
− ⟨ϕa(r)ϕi(r′)|W (r, r′, ω)|ϕb(r)ϕj(r′)⟩,

(4.41)

Bjb
ia = ⟨ϕa(r)ϕi(r)|v(r, r′)|ϕb(r′)ϕj(r′)⟩

− ⟨ϕa(r)ϕi(r′)|W (r, r′, ω)|ϕb(r)ϕj(r′)⟩
(4.42)

while neglect of B and −B∗ blocks, or in other words the electron-hole interaction via

screened Coulomb interaction, leads to Tamm-Dancoff approximation (TDA) [139].

As it has been illustrated before the GW/BSE calculations are performed as a post-

processing step on top of a previous self-consistent DFT run. The (GKS) KS orbitals

will be used to construct the Green’s function and screen Coulomb interaction and

finally, the excitation energies and related oscillator strength calculated from QP eigen-

values via A and B matrix block. Figure 4.1 show the usual workflow of perturbative

GW/BSE calculations which connect the Green’s function to the self-energy through

introduced Hedin’s equations. The GW/BSE method has a rich history, dating back

to its first use in the study of organic molecules in 1990 [24]. However, it is only in

the past two decades that this approximation has become more widely used as the de

facto standard approach for accurate prediction of electronic structure and absorption

spectra of a wide range of materials [156]. The fame of this method is attributed to

several factors, including its favorable scaling with respect to system size, its ability

to be combined with different theories or implemented in different frameworks, and

most importantly, its potential for overcoming the well-known problems of TDDFT

regarding non-locality features. As it is discussed in section 3.2, the standard TDDFT
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Figure 4.1: Workflow of perturbative GW and BSE calculations based on the original
version in Ref. [135].

method fails to correctly describe charge-transfer excitation due to its incorrect asymp-

totic 1/R long-range behavior. However, in GW/BSE formalism the charge-transfer

excitation energy:

ECT = εQPa − εQPi − ⟨ϕa(r)ϕi(r′)|W (r, r′, ω)|ϕb(r)ϕj(r′)⟩ (4.43)

has a correct decay as in long distances by reduction of screened Coulomb potential W

to the bare Coulomb, the last term will not vanish and will keep the asymptotic 1/R

behavior. Despite such success, continuous development and assessment of its accuracy

for different types of molecular systems, in comparison with experiments or higher-level

wavefunction approaches, remains a crucial task. Hope my work by benchmarking the

performance of GW/BSE method for different types of BCL complexes can have a

small contribution to this field of research.
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Numerical implementation

In addition to the importance of developing more advanced computational methods,

the implementation of these approaches can have a crucial role in the ascertainment of

efficiency and accuracy of the results. In practice for the translation of these theories

to codes, one needs to employ scalable algorithms or apply further approximations and

boundaries in numerical calculations. This chapter aims to provide key information on

the fundamental approximations primarily implemented in different software packages.

For all GW/BSE calculations in this thesis, the MOLGW software package [182] was

employed. As the MOLGW software package is specifically designed for GW/BSE cal-

culations, it is not well-suited for efficient parallelization in TDDFT calculations and

may be time-consuming for large molecular systems. In this regard, except 6.3 that

is focused on smaller BCL and Chl monomeric aggregates, we have done the TDDFT

simulations through their implementation in two different codes, TURBOMOLE [183],

and Q-chem [184]. It’s important to note that certain software packages are better

suited for specific tasks, and therefore the choice of software package can aid in the

interpretation of results by providing access to different tools. For instance, TUR-

BOMOLE is particularly efficient at calculating forces on nuclei, making it ideal for

geometry relaxation of structures and vibrational normal mode analyses. However,

to ensure the comparability of results, we maintained consistent computational setups

and employed similar approximations in all of our simulations.

43
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5.1. Basis set and related approximations

The one-particle wavefunction in the KS equation comprises a radial and an angular

component. The KS equation can be solved through iterative numerical calculations,

and the radial part of the wavefunction can be expanded using a set of mathematical

functions referred to as basis functions or basis sets [185]. In this representation, the

wavefunction is expressed as a linear combination of atomic orbitals ϕm(r), which are

centered at each nucleus in the molecule:

ϕm(r) = ΣmCmnφm(r) (5.1)

where molecular orbital expansion coefficients Cmn is determined by arranging the KS

equation in a diagonal matrix-eigenvalue form, known as the Roothaan-Hall equation:

HksC = SCεks (5.2)

that should solve self-consistency where S is the basis function overlap matrix Sµν =

⟨φµ|φν⟩. The Gaussian [186], Slater [187], and plane-wave basis sets [188] are among the

most commonly used representations of basis functions in various software packages.

While the plane-wave basis set, which corresponds to the eigenstates of a homogeneous

electron gas, is typically used within the solid-state community and exhibits superior

performance for periodic systems, it generates a much larger Hamiltonian compared

to local orbitals. In local orbital classification, Slater-type functions are hard to deal

with in three- and four-center integrals such as repulsion integrals [185]. Gaussian-type

orbital (GTO) functions are the most widely used basis sets in the quantum chemistry

community for electronic structure calculations of finite-size systems due to their ef-

ficient integral evaluation. Consequently, all performed calculations in this thesis are

based on the implementation of Cartesian Gaussian-type basis functions in TURBO-

MOLE, Q-CHEM, and MOLGW software packages following the representation below

for the basis functions:

φm(r)
GTO = (x− x0)

nx (y − y0)
ny (z − z0)

nz Σbcbe
−α(r−A)2 (5.3)

where (nx, ny, nz) and α are the angular momentum and decay rate, respectively, while

the atom nucleus is located at coordinate A = (x0, y0, z0). The superiority of Slater-

type orbitals over Gaussian-type orbitals is mainly due to the exponential part of the

basis sets. Slater-type orbitals have an exponential decay behavior of the form e−α(r−A)

that matches the shape of atomic orbitals. In contrast, Gaussian-type orbitals are flat

and differentiable at the nucleus r = 0 and have an incorrect behavior while also falling



45 5.1 – Basis set and related approximations

off more quickly in further distances from the nucleus, r = ∞. The linear combination

of primitive Gaussian functions mentioned above can help mitigate the issue with the

decay behavior of Gaussian-type orbitals. Unfortunately using the Complete Basis Set

(CBS) with an infinite number of primitive Gaussian functions (b→ ∞) is impossible.

Hence, a finite combination of functions, known as contracted Gaussian, must be used

instead. This limitation leads to a size-ranking representation of basis sets, where the

basis sets are categorized based on the number and type of functions included in the

set, as well as the determination of the angular component.

Minimal basis sets are the simplest sets that use only a single basis function for

each atomic orbital in the atom and attempt to approximate Slater-type orbitals using

n primitive Gaussian (b = 1, .., n). However, they lack the flexibility to adapt to differ-

ent molecular environments, and therefore, are usually unsatisfactory for high-accuracy

simulations. To improve accuracy, basis sets can include multiple basis functions corre-

sponding to all atomic orbitals or only the valence space, which plays a more significant

role in most molecular bonding. These basis sets are referred to as split-valence basis

sets, and the number of basis functions considered in the basis set is distinguished by

terms such as ”double zeta” (DZ), ”triplet zeta,” and so on. The next level of increasing

orbital flexibility is achieved by describing the polarization of the electron density of

the atoms using higher order angular momentum functions such as d-type and p-type

functions for heavier and lighter atoms (such as hydrogen and helium), respectively.

These sets are called polarization functions and as the chemical bonds are generally

polarized, consideration of these sets can be paramount for modeling the atomic bond-

ing and consequently structural details. The next addition to the basis sets are diffuse

basis functions that allow the description of electron density further from the nucleus

by extending the tail portion of the atomic orbitals through the addition of small ex-

ponent α to the basis sets [189]. These functions improve the predicted properties

of the anionic systems and EA energy. By convention, the basis sets including both

polarization and diffuse functions considered balanced basis sets. Table 5.1 comprises

a few of the most common basis functions in the quantum chemistry community that

also has been used in my work.

The Pople basis sets [190], shown in the first row, are categorized as split-valence

basis sets, which employ one contracted Gaussian function per core atomic orbital while

using more than one atomic orbital to describe valence orbitals. The DZ group of Pople

basis sets is commonly represented as X−Y ZG, where s and p functions share common

exponents. Here, X represents the number of primitive Gaussian functions included in

core atomic orbitals, and Y and Z indicate the number of primitive Gaussian functions

comprising the first and second valence orbitals, respectively. The addition of polariza-

tion and diffuse functions to non-hydrogen atoms is denoted by the ∗ and + notations
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subclass Basis set

Pople

6-311G 6 primitives in the core and
a triply split valence basis set

6-311G**/6-311G(d,p) polarization functions on all atoms
6-311++G diffuse functions on all atoms

correlation-consistent

cc-pVDZ valence double zeta polarized
cc-pVTZ valence triple zeta polarized

aug-cc-pVTZ augmented versions of cc-pVTZ
within diffuse functions

Karlsruhe
def2-SVP split valence (double zeta) polarized
def2-TZVP valence triple zeta polarized
def2-TZVPP valence triple zeta heavily polarized

Table 5.1: Three subclasses of basis functions as has been introduced in the main
text. For each subclass, a few basis sets along with illustrations of their initials are
represented.

in the set, with the double notation indicating the addition of functions to all atoms.

The second row is dedicated to correlation-consistent basis sets (cc) [191], which are

optimized using extrapolation to correlated (CISD) wavefunctions. In this set, all func-

tions within a set are chosen to yield similar atomic correlation energy as calculated

by the correlated CISD method. The general form of these basis sets is cc − pV XZ,

where −pV refers to polarized and split-valence basis sets, and XZ can be DZ, TZ,

and so on. The prefix aug signifies that one set of diffuse functions is included for

every angular momentum present in the basis. Lastly, the second generation of default

basis sets for the TURBOMOLE package developed by Ahlrichs group is represented

in the last row, known as the Karlsruhe or def2 basis sets [192]. These basis sets are

optimized for response properties and are designed to reproduce dipole polarizabilities

computed by methods such as MP2, and are balanced basis sets. A detailed discussion

on the differences between Gaussian-type basis sets and their performance is beyond

the scope of this thesis, and interested readers are referred to Refs. [189, 193–195].

The choice of basis set has a significant impact on the accuracy and associated

computational cost of the resulting data, particularly in GW/BSE calculations [196–

198]. This highlights the importance of an optimization process to strike a balance

between accuracy and performance prior to theoretical simulations. To achieve this,

one can estimate the CBS result by systematically increasing the number of basis

functions and extrapolating to an infinite-size basis set. Should be noted MOLGW

software package offers such extrapolation to a trained linear regression automatically

for each calculation [182, 198].

Regardless of the type of basis set used, increasing the number of atoms in the sys-
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tem leads to a significant increase in the size of the basis set (Nbasis), resulting in higher

computational and memory costs. Hence, to reduce the runtime of simulations, further

approximations such as the frozen-core approximation or resolution-of-the-identity (RI)

method are often employed. In the frozen core approximation [199, 200], one assumes

that the inner-shells or inactive core electrons do not change their states throughout

the calculations, and thus, their corresponding orbitals can be excluded from the corre-

lation. Numerous benchmark studies have confirmed the high accuracy and efficiency

of this method [201, 202].

The resolution-of-the-identity (RI) method is another commonly used approach

that allows the representation of two-electron four-center integrals (e.g. Eq. 3.12) in

the form of two- and three-center ones [203, 204]. The RI method, in combination with

DFT, is a useful tool for approximating the total electron density in terms of so-called

auxiliary basis functions, in which the expansion coefficients Cmn can be determined

by an optimum Coulomb metric. It is shown the RI-inaccuracy in calculations of

DFT total energy is in order of meV [204, 205] while this method can scale downs the

computational cost in the order of magnitude, usually O(N3) instead of O(N4) [206,

207]. In GW simulations, the RI error in predicting the HOMO and LUMO states can

be slightly larger, but this error can be reduced by using a more comprehensive basis set

[164, 167]. Hence, in many codes, the use of the RI method is strongly recommended,

and in some cases, it is mandatory [208].

In addition to the choice of basis set and discussed approximations, the accuracy of

DFT results is also strongly influenced by the selection of grid points in real space. The

DFT potential will be evaluated on a radial grid and xc integrals will be calculated for

each grid point. The number of grid points per atom is defined on vectors surrounding

the molecule, and the accuracy of the results depends on the size of these grids. While

many software packages have default values for grid size, it is suggested that the user

may need to increase the grid size for certain types of simulations or in case of numerical

integration problems. This is particularly important for simulations such as geometry

optimization and frequency calculations, where the accuracy of the results can be more

sensitive to the choice of grid size due to the specific framework of the method. It is

recommended to specify the mesh range or the number of grid points in the setup of

the calculations or to consult the software documentation to determine the appropriate

grid size for a given simulation.
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5.2. Technical implementation of GW/BSE formal-

ism

This section will describe the technical details of G0W0/BSE formalism when a finite

basis set is used following Ref. [156, 164, 182, 209]. Note that in the rest of this

chapter, we will refer to electron repulsion integrals as below for the sake of simplicity:

⟨ia|jb⟩ =
∫ ∫

ϕi(r)ϕj(r
′)

1

|r− r′|ϕa(r)ϕb(r) d
3rd3r′ (5.4)

Knowing the G0 and W0 formalism from Eq. 4.28 and 4.30, the next step would be

calculating self-energy Σ = iG0W0 to obtain the QP eigenvalue εQPs via Eq. 4.33. The

diagonal matrix elements of the self-energy read as:

Σ(ω) = ⟨ϕ0
s | Σ(ω) | ϕ0

s⟩. (5.5)

The self-energy includes the exchange term as ⟨ϕ0
s | Σ(ω)x | ϕ0

s⟩ = −Σocc
i ⟨si|is⟩ and the

real part of the correlation contribution can be written as:

⟨ϕ0
s | Σ(ω)c | ϕ0

s⟩ =
∑

in

ρsin (r)ρ
si
n (r

′)

ω − εi + Ωn − iη
+
∑

an

ρsan (r)ρsan (r′)

ω − εa − Ωn + iη
(5.6)

where i and a are the occupied and virtual states, respectively, and s runs over all

states. In this formalism the residues ρn(r) are the transition densities as has been

defined in Eq. 4.40. After diagonalization of Eq. 3.13, one can obtain eigenvalues Ωn

and the eigenvectors (Xn, Yn), implemented in ρn(r). Afterward, the self-energy and

εQPs should solve iteratively from the above equation and the diagonal quasi-particle

Eq. 4.33. However, as the correlation part of self-energy is a complex term, most

software packages use a few different techniques to prevent re-calculation of Σ(ω)c. In

the linearized method, by assuming a comparatively small energy difference between

εQPs and ε0s one uses the first-order Taylor expansion of the matrix elements Σ(ω) as

[156]:

εQPs = ε0s + Zs ⟨ϕ0
s|ΣGW (εQPs )− vKSxc |ϕ0

s⟩ (5.7)

where Zs = [1 − ⟨ϕ0
s|∂⟨ϕ

0
s|Σ(ω)|ϕ0s⟩
∂ω

|ω=ε0s |ϕ0
s⟩]−1 is the QP renormalization factors. This

method is most accurate for the states near to HOMO and LUMO.

Another alternative method, known as the graphical solution, considers the crossing

point of the straight line ω−ε0s+vxc−Σx and the correlation part of the self-energy Σc

around ε0s calculated for frequencies ω, as the possible solutions to quasi-particle Eq.

4.33. In MOLGW code both solutions to the quasi-particle equation are computed
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and printed out in the output file.

The iterative self-energy solution is not the only parameter affecting the computa-

tional cost of GW calculations; the matrix size of self-energy is another crucial factor.

The G0 function has Nocc +Nvirt poles at eigenvalues εi/a, while W0 has 2×NoccNvirt

poles within a transition space with a size of Nocc ×Nvirt. Evaluating Σ requires sum-

ming over all these occupied and virtual states, resulting in 2× (Nocc+Nvirt)NoccNvirt

calculations, which is often the computational bottleneck in GW calculations [164].

Furthermore, systematic convergence studies have shown that QP energies converge

slowly with respect to the system size and the number of virtual states [164, 208, 210].

Consequently, QP energies scale poorly with system size, making it more challenging

to obtain accurate results for larger systems. Therefore, it is crucial to strike a balance

between the accuracy of results and computational cost.

When considering a more complete basis set, constructing the coefficient matrix

Cmn from Eq. 5.1 can also pose challenges. The MOLGW package offers several

strategies for truncating virtual states or reducing the dimension of the Cmn matrix.

One simple approach is to exclude higher-energy states from the summation of Green’s

function G0 or screened Coulomb interaction W0, resulting in a smaller Nvirt size, by

determining the exact number of considered states, Nstates, in the calculations in which

Nocc + Nvirt ≤ Nstates. However, the convergence rate of HOMO-LUMO gap as a

function of Nstates in this method is very low, and cutting too many unoccupied states

could lead to a significantly large deviation from the converged values. The second

method for mitigating the matrix size issue is the use of the single-pole approximation

[139]. In this approach, all matrix elements above a predefined NSPA value are treated

as diagonal in the RPA picture, eliminating the need for diagonalization of Cmn blocks

above NSPA.

The last strategy is the so-called optimized virtual orbital subspace method which

simultaneously discards some high energy eigenstates and diminishes the Cmn matrix

size [211]. This approach involves two types of basis sets, a larger and a smaller one,

with total basis functions Nlarge and Nsmall, respectively, to describe the transition

space. At first, the Hamiltonian matrix and eigenstate coefficients CL will be deter-

mined from a previous converged SCF calculation using the larger basis set. Afterward,

the Nocc + Nvirt = Nlarge space will be divided into three subsections as depicted in

Figure. 5.1 and each section will be treated by a different basis set.

The first subspace, including all occupied and a few first virtual states above LUMO,

is described by their expression in the large basis set using CLn coefficient matrix where

n ≤ NS1. Index NS1 represents the total number of states considered in subspace one

which can be defined manually by the user. The second subspace, NS2, includes virtual

states from NS1 + 1 up to Nsmall (NS1 + 1 < n ≤ Nsmall) which will be optimized by
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Figure 5.1: Diagrammatic representation of the various orbital subspaces. Each horizontal
line indicates one electronic state and the color of the line specifies the type of subspaces.
HOMO and LUMO states are shown with dash lines. Optimized subspace identified through
a smaller basis set. Figure adapted from Ref. [211].

applying new eigenvectors coefficients C̃ ′
Ln, that is the projection of small basis set to

the large basis set. It means to obtain the eigenvalues ε and eigenvectors, at first, the

Roothaan-Hall equation introduced in Eq. 5.2, will be solved in the small subspace

within CSn. Next, the coefficient matrix will be brought back to the original large basis

with formalism:

C̃ ′
Ln =

∑

OS

S−1
LOS

cross
OS C̃sn (5.8)

where SLO is the introduced overlap matrix and ScrossOS = ⟨ϕO | ϕS⟩ is the projection

matrix which connects the large basis set |ϕL⟩ to the small basis set |ϕS⟩. This approach
helps to construct a much smaller coefficient matrix that should be solved in the self-

consistent cycle. Finally, the virtual orbitals above Nsmall, Nsmall < n ≤ Nlarge, will

be deserted from the GW calculation [211]. This approach allows for a significant

reduction in the size of the Cmn matrix while maintaining a complete basis set in the

transition space. Additionally, it has been shown to improve the convergence rate of

the QP energies as a function of the number of basis functions used [211].
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Introduction to the publications

6.1. Photosynthetic systems and their main features

In natural photosynthetic systems, a complex molecular mechanism involving various

pigment-protein complexes is responsible for light harvesting and energy conversion

[212]. In the first step, light-harvesting (LH) antennas absorb solar photons and trans-

fer them to a photosynthesis reaction center (RC) with minimal energy loss. The charge

separation initiated in the RC leads to the formation of chemical energy in the form of

NADPH+ and ATP synthase units. This electrochemical energy is consumed during

the conversion of carbon dioxide to carbohydrates, which results in water splitting in

oxygenic photosynthesis or oxidation of other molecules in anoxygenic photosynthe-

sis [213]. While plants, algae, and cyanobacteria carry out oxygenic photosynthesis,

other bacteria perform anoxygenic photosynthesis. Due to the highly symmetrical ar-

chitecture of photosynthetic systems of purple bacteria, and easier growth conditions

of some specific species such as Rhodopseudomonas acidophila and Rhodopseudomonas

sphaeroides, these units have been studied extensively and their structural features are

exceptionally well characterized [11–13]. Despite some disparities in bacterial struc-

tures, energy transduction follows similar principles in these systems. Accordingly, for

the purpose of this thesis only the mechanism of Rh. acidophila and Rh. sphaeroides

bacteria will be discussed here, however further information can be found in Ref. [214,

215].

Bacterial photosynthesis units generally consist of two main types of ring-shaped

light-harvesting (LH) antenna systems, known as LHI and LHII, which are composed

51
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of several chlorophyll (Chl) or bacteriochlorophyll (BCL) pigments and carotenoid

molecules. These pigment molecules are tightly bound to surrounding proteins through

non-covalent interactions. The photosynthesis membranes of purple bacteria absorb

lower energy wavelengths above 500 nm. The protein environment surrounding the

pigments tunes the absorption range, such that BCL molecules in LH systems absorb

infra-red wavelengths above 800 nm, while carotenoids absorb green light around 500

nm [12, 13]. The LHII system consists of two rings of BCL molecules, B850 and B800,

named after their maximum absorption wavelengths. To provide a better insight into

the molecular arrangement in these aggregates the LHII system of Rh. sphaeroides is

represented in Figure 6.1a. The BCL molecules in the inner ring B850 are strongly

coupled, whereas due to the large distance between BCLs in B800 ring, these molecules

are weakly interacting [174, 216]. The energy collected by the B800 ring is transferred

to the B850 array and finally migrates to the LHI antenna, which surrounds the RC

and is commonly referred to as the RC-LHI ”core” complex. Although the structure of

the LHI system is not as well characterized as that of LHII [12, 217], crystallography

analyses show that it includes one ring of highly coupled BCL molecules with a structure

similar to ring B850, and strong absorption at 875 nm [12].

Figure 6.1: (a) Visual representation of LHII complex of Rh. sphaeroides consisting protein
chains network that holds in place(in grey) and two rings of BCL units organized in an inner
and outer shell called rings B850 (in blue) and B800 (in red), respectively. (b) Structural
model of the RC of Rh. sphaeroides including the special pair (P in red), two accessory BCLs
(BA, BB in blue), two bacteriopheophytines (HA, HB in green), two quinones (QA, QB in
purple), and one Fe2+ metal ion. Protein chains are shown in transparent grey. Hydrogen
atoms are omitted for clarity from both panels.

The energy transfer process ends successfully when the energy is trapped by RC

and charge separation initiates. In the bacterial RC of Rh. sphaeroides the key molec-

ular components include two centered strongly interacting BCLs, called special pair

(P ), followed by two accessory BCLs (BA, BB), two bacteriopheophytins (HA, HB),



53 6.2 – Visualization and quantification of charge-transfer character

two quinones (QA, QB), and one Fe2+ metal ion. These pigments are arranged along

two branches, A- and B-branches, based on pseudo-C2 symmetry, with a carotenoid

molecule located near the BB aggregate. The structure of this system, held fixed

by surrounding protein chains, is depicted in Figure 6.1b. During the last decades,

crystallographic and spectroscopic studies on RC aggregates indicated that charge-

transfer states in the A-branch are in much lower energies than those in the B-branch

[122]. This finding suggests that the primary charge-transfer pathway occurs along the

A-branch, which is also known as the active branch. This pathway leads to a final

charge-separated state consisting of the oxidized special pair and the bacteriopheo-

phytin anion, P+H−
A . Within ultrafast timescales of 200 ps and 100 µs, the electron

transfers from the A-branch to the quinone molecules QA and QB, respectively, where

the QB pigment leaves the protein to take part in the chemical reactions [218].

6.2. Visualization and quantification of charge-transfer

character

In section 3.2 the definition of charge-transfer excitation is represented briefly, however,

the quantification of (partial) charge-transfer from local or dark excitations in our the-

oretical calculations is not truly discussed yet. In this regard, here some details about

the evaluation of excited-states character within the population analysis framework are

provided. These information are essential for a better understanding of Publication III

and Publication IV.

Two toolboxes have been used in my work based on the concept of the attach-

ment/detachment analysis of the different densities and decomposition of transition

densities. These can be derived from the frequency-dependent response of the density

matrix within linear-response Casida formalism, Eq. 3.16 and 4.40. The density matrix

contains a wealth of information that can help establish the direction of intermolec-

ular electron transfer in the system and visualize density changes associated with an

excitation.

In the electron-hole picture, the transition density is obtained as the diagonal part

of the density matrix for a transition from the state n into an excited-state m as:

ρn(r) = γnm(re, rh). (6.1)

Where for n = m transition density reduces to state density. In the spirit of these

analyses, the interaction strength of an electronic transition with light and the effi-

ciency of excitation energy transfer can be determined [219]. The transition density
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square, |ρ0n(r)|2 that represents the probability of finding the electron and hole at the

same region, only has non-zero values whenever r = re = rh. By this means, the

transition density vanishes for charge-transfer excitations in which the electron and

hole are located on two different subunits and there is no overlap between the ground

and excited-state. So the absence of transition density can distinguish charge-transfer

excitations from neutral ones. However, only counting the diagonal part of the density

might not give further information about the direction of charge-transfer or even lead

to some miss interpretation of the results in symmetric systems [220]. For these reasons

analyzing the whole matrix as has been suggested by Plasser [220] or using the concept

of difference density matrix can be more useful for the recognition of these excitations

and quantification of their character [219].

The difference between the ground-state density γ00(re, rh) and the density of

excited-state γnn(re, rh) can be defined as ρ∆0n(r) = ∆0n(re, rh) = γnn(re, rh)−γ00(re, rh).
This subtraction has a nonvanishing value for charge-transfer excitations and allows the

visualization of the change of density upon excitation of the system into excited-state

n. It should be stressed out, in general, ρ0n contains areas of positive and negative sign

and its integral over all space has a zero value. Figure. 6.2 shows the visualization of

transition density and different densities of a charge-transfer excitation for BCL dimer.

Figure 6.2: Schematic isosurface picture of the (a) transition density and (b) difference
density of a charge-transfer excited-state. The pink and orange areas correspond to regions
of positive and negative density, respectively.

6.3. Summary of publications

The transfer of charge and energy in LH and RC systems is strongly influenced by the

relative distances and orientations of the BCL aggregates [221]. For this reason, un-

derstanding the mechanism and interaction of these chromophores with each other and

with the surrounding proteins is not possible without the evaluation of their structural

details and spectral properties. X-ray crystallography studies are typically the starting

point for providing such information. BCL molecules found in LHI, LHII, and RC units
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have a similar appearance, with small structural and more apparent orientational dif-

ferences. The chemical structure of these molecules comprises a conjugated porphyrinic

system plane with a Magnesium atom in the center, attached to four functional groups,

namely FG1, FG2, FG3, and FG4, as shown in Figure 6.3. Previous studies have shown

that the functional group FG2, which includes a Carbon chain called the phytyl tail,

mainly has a structural role in fixing these aggregates in the protein environment, and

its effects on excitation energies are negligible [123, 221]. Therefore, the phytyl tails are

often truncated, and a hydrogen atom is used as a substitute to reduce computational

costs.

Figure 6.3: Structure of BCL molecule (PA aggregate). The four functional groups FG1 (in
green), FG2 (in red), FG3 (in pink), and FG4 (in orange) are highlighted. Hydrogen atoms
are omitted for clarity.

The absorption spectra of BCL monomers, irrespective of their structure, exhibit

two distinct bands known as the Q band and the B (or Soret) band. The Q band

comprises of two bright excitations - Qy and Qx, which are located at lower energies,

while the Soret band appears at energies around 3.0 eV, in the near-ultraviolet region.

For multichromophoric systems, the excitation spectrum can be viewed on the basis

of Frenkel-like exciton model, in which excitations are localized on single or two BCL

molecules [15, 19]. In this model, the Hamiltonian of the system is expressed in terms

of the excitations of individual molecules and the electronic coupling between any two

chromophores in the system [16]. This approach allows for simplification compared

to considering the larger system as a whole. In the beginning, many studies within

semi-empirical models, constructed based on Frenkel-excitons Hamiltonians, have par-

ticipated in the prediction of the excitation-energy and charge-transfer dynamics in

large photosynthesis pigment-protein complexes [16, 222, 223].

However, it soon became evident that an accurate representation of the electronic

coupling between BCL aggregates could only be achieved by including higher energy

charge-transfer excitations and their coupling with local Frenkel excitations, which act

as a mediator between localized excitations and the multiexcitonic ones [14, 16, 224,

225]. This indicates the importance of precise first-principles calculations for charge-

transfer excitations and their electronic coupling [16, 226, 227]. Although, high-level
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calculations of charge-transfer excitations are feasible, commonly applied approxima-

tions in the calculation of coupling terms in the effective Hamiltonian are often insuf-

ficient [228–230]. As a result, it is sometimes necessary to treat multichromophoric

systems directly in a supermolecular manner without partitioning them into subunits.

Multi-reference and single-reference wavefunction-based methods have scarcely been

employed in the case of smaller molecular systems. The first couple of lowest excita-

tion energies of BCL and Chl units are calculated using RASPT2, an extension of the

complete active space with second-order perturbation (CASPT2) [23, 231] or within

second-order coupled cluster (CC2) method [232]. The dimeric system is investigated

using configuration interaction single excitation (CIS) [233]. Suomivuori et al. applied

algebraic diagrammatic construction (ADC) for the calculation of vertical excitation

energy of monomeric, dimeric, and tetrameric complexes including nearest amino acid

to the (BCL) Chl molecules [22, 234]. In their recent works [20, 235], Sirohiwal et

al. utilized the wavefunction-based coupled cluster theory with single and double ex-

citations (CCSD) to accurately determine the low-energy excited states of individual

pigments. They compared their results with those obtained using different computa-

tional methods, including semiempirical approaches, CC2, ADC(2), and even TDDFT.

Although these reports represent significant advances in the study of complex biological

molecules, their computational efficiency is still an area of active research. The high

formal scaling of wave function-based approaches (O(N5−7)) limits their applicability

to low-lying excitation energies of single or dimer chromophore models, typically with

relatively small basis sets or by consideration of different approximations such as scaled

opposite spin (SOS) and reduced-virtual-space (RVS).

The ab initio TDDFT and GW/BSE methods offer a potential alternative to

wavefunction-based approaches due to their much more suitable computational scal-

ing of O(N3−4). TDDFT with different types of functionals including RSH ones has

been applied predominantly for the study of BCL and Chl molecular systems and the

accuracy of its approximations and implementations in comparison with wavefunction-

based methods or experiments has been tested tremendously for a variety of biochro-

mophores [26, 27, 32, 148, 236]. In conjunction with model Hamiltonian, molecular

dynamics (MD) and classical molecular mechanics (MM) this method become the most

efficient approach for the simulation of large photosynthesis pigment-protein complexes

including excitation spectrum of whole LHI and LHII systems by considering thermal

and environmental effects [14, 15, 224, 225].

Computational modeling based on DFT and TDDFT has played a crucial role

in unraveling the complex factors that influence charge-transfer excitations and their

pathways in the RC. TDDFT, in combination with the polarizable continuum model

(PCM), has been applied to investigate the effects of the protein environment on natu-
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ral and charge-transfer excitations in dimeric, tetrameric, and hexameric model systems

[237–240]. These studies have established the existence of locally distinct effective di-

electric environments along the A- and B- branches, leading to spectral asymmetries

in the RC and the occurrence of primary electron transfer along the A-branch. In a

study conducted by Sirohiwal et al., the lowest charge-transfer state, strongly influ-

enced by the protein electrostatic matrix, was identified as B+
AH

−
A using TDDFT/MM

calculations for a trimeric model system [28].

The use of molecular dynamics (MD) simulations based on (constrained) DFT has

helped to shed light on the mechanism of primary electron transfer in photosynthetic

systems. In particular, for a trimeric model system consisting of the special pair and

one accessory BCL, nearby Histidines were found to play a crucial role in coupling two

collective low-frequency vibrational modes with asymmetry electron density. Moreover,

the displacement of protons was found to be coupled to the primary electron-transfer

step from the special pair to the accessory BCL [124, 241]. The reasonable formal

scaling of TDDFT also allows explicit consideration of parts of the protein environment

and treating the model system directly in the QM level of theory. For example, the

study of a model system consisting of the special pair and nearby residues has shown

that protein-induced distortions of the special pair geometry lead to an asymmetric

ground-state electron density [123]. Additionally, the excitation spectrum of the special

pair, as well as tetrameric and hexameric model systems including some neighboring

amino-acid residues, has been investigated for different types of purple bacteria, with a

focus on the influence of nuclear motion on the relative energetic positions of different

electronic excitations [27, 242]. Possible improved version:

As discussed previously, in principle the GW/BSE approach has some advantages

over TDDFT and has shown great success, comparable to wavefunction-based meth-

ods, in predicting a large number of optical-electronic excitations [44, 48, 180, 243].

However, its accuracy and functionality still need to be tested for different variations

of this method within diverse functionals and basis sets [168]. While this method has

been used by a growing community of researchers in recent years, its application has

been mainly focused on smaller gas phase organic molecules [48, 244, 245], and only a

few larger molecular complexes have been studied [44, 49, 246]. In my earliest work,

we employed this method for the first time on large monomeric models of LHII and

assessed the performance of GW/BSE in comparison with state-of-the-art TDDFT and

higher-order computational methods. By initiating this path, in favor of new imple-

mentations of GW/BSE formalism with lower formal scaling O(N3), today’s study of

larger biochromophoric systems, such as tetrameric and hexameric models are attain-

able [247]. In recent years the high-speed evaluation of this approach and its interface

with different computational methods in software packages implies the promising future
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of GW/BSE.

Publication I is dedicated to the systematic first-principles study of the electronic

structure and excitations of seven members of the BCL and Chl family. Using several xc

functionals we compared our TDDFT, G0W0/BSE, and evGW/BSE calculations with

mentioned wavefunction-based methods [23, 235] and experimental literature results

[248]. We showed the local LDA functional leads to a completely wrong description

of the absorption spectrum, whereas an OT-RSH functional ωPBE yields a relatively

accurate prediction of excitation energies for both TDDFT and G0W0/BSE methods.

Using ωPBE as the starting point, we obtained G0W0/BSE results that are in good

agreement with the more computationally demanding evGW/BSE method, with de-

viations of less than 40 meV, establishing the efficiency of G0W0@ωPBE/BSE in the

prediction of the absorption spectrum. Furthermore, we illustrated the first bright

excitation, Qy, is overestimated by TDDFT regardless of the choice of xc functional,

whereas the second bright excitation, Qx, is predicted in the same energy range in

all approaches. Finally, for the first three bright excitations of the entire family of

BCL and Chls, GW/BSE provides slightly better agreement with experiment [248]

and quantum-chemical methods [23, 235] as compared to TDDFT.

In Publication II, the evGW/BSE approach is applied to a different type of system

based on our findings from the first paper. Methylene blue molecules are an impor-

tant class of heterocyclic systems with an extensive range of light-assisted applications

as sensitizers for photodynamic therapy, photoantimicrobials, and dye-sensitized solar

cells [249, 250]. Same as BCL and Chl molecules, these applications are highly depen-

dent on the accurate description of light absorption and electronic transitions of these

systems in interaction with surrounding molecules. In the first step, the excited-state

calculations were carried out within TDDFT, G0W0/BSE, and evGW/BSE using both

LDA and ωPBE functionals. Our results followed the same pattern as observed in

Publication I, where the use of the ωPBE functional led to more accurate predictions

of excitation energies for both G0W0/BSE and evGW/BSE compared to TDDFT. The

results followed the same pattern as observed in Publication I while G0W0@ωPBE/BSE

and evGW@ωPBE/BSE calculations led to approximately the same description of ex-

citation energies and a better agreement with experiment [251] compared to TDDFT

with the ωPBE functional.

In the second step, we investigated the influence of solvent by adding nearby water

molecules to the system. The presence of solvent caused the excitation energies to

red-shift to lower energy, leading to values closer to experimental results. Notably, the

optical gap difference between evGW/BSE and TDDFT using the ωPBE functional

decreased from 0.3 eV to 0.1 eV in the solvated structure. This improvement in the

performance of the TDDFT method with the ωPBE functional can be attributed to
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the semilocal term of the functional dominating at larger distances, and dielectric

screening being emulated by selecting the range separation parameter appropriately.

This strategy could be generalized for studying similar systems at a relatively low

computational cost, while still achieving acceptable accuracy within the TDDFT level

of theory.

Turning back to photosynthesis aggregates, in Publication III and Publication IV

the excitation spectrum of the dimeric system extracted from various parts of the pho-

tosynthetic system and a few specific tetrameric, and hexameric models from RC are

investigated. Before demonstrating the main outcome of these simulations it would

be helpful to first understand how to interpret the absorption spectra of a multichro-

mophoric system. As a guide for the rest of the discussion, in Figure. 6.4 the excitation

spectrum of monomeric, dimeric, tetrameric, and hexameric systems is represented. In

a supermolecular system, the coupling of Qy (Qx) excitations from two individual BCL

molecules leads to the appearance of a few bright excitations in the Qy (Qx) energy

range. By convention, these excitations are referred to as Qy (Qx) coupled excitations.

The energy range of these coupled excitations depends on the excitation energy of indi-

vidual BCL aggregates, and the energy gap between the two types of bright excitations

can differ based on the number of chromophores in the model system being considered.

The first panel of Figure 6.4 depicts the excitation spectrum of the PA monomeric

system within the Qy and Qx excitations. The BCL dimers are the smallest structural

units in which intermolecular charge-transfer character can be observed, making them

important for understanding charge-transfer behavior in these chromophores. When

considering the special pair dimeric system, which includes PA and PB molecules,

two coupled Qy and Qx excitations appear in a similar energy range to that of the

monomeric system. The first two bright excitations at the beginning of the spectrum

show the coupled Qy excitations, where the second peak can be attributed to the PA
molecule.

Due to the large size of a BCL dimer, which features more than 300 electrons, the

calculation of the GW self-energy which requires summation over virtual states is com-

putationally demanding. Simulation of dimeric systems using the current implemen-

tation of GW/BSE method in the MOLGW code is on the edge of our computational

limitation. In Publication III we investigated the effective factors on energy and char-

acter of charge-transfer excitations using diverse dimeric systems chosen from the LH2

complex and the RC of purple bacteria, with four different regimes of intermolecular

coupling, ranging from very weak to strongly coupled. To further investigate the effects

of intermolecular coupling on excited-state structures, we also constructed an artificial

dimer inspired by these molecular aggregates, which allowed us to manually control a

wide range of intermolecular coupling strengths.
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Figure 6.4: Excitation spectrum of PA molecule, special pair dimer, A-branch tetramer
structure including nearest amino acid molecules to each chromophore, and bare hexameric
structure using TDDFT with ωPBE functional. For further information about structural
details see main text. Arrows mark dark excitations with charge-transfer (CT) characters.
The shaded areas are calculated by folding the excitation energies with Gaussian functions
with a width of 0.08 eV as a guide to the eye.

Based on our results from the first two articles, the theoretical simulations were

only performed by TDDFT and G0W0/BSE methods with the ωPBE functional war-

ranting sufficient accuracy compared to evGW/BSE approach. The resulting data em-

ulated the monomeric spectra by TDDFT systematically overestimating Qy coupled

excitations, compared to G0W0@ωPBE/BSE. However the charge-transfer excitations

appeared at similar energies in both methods, indicating that the TDDFT method

combined with the RSH functional is adequate for studying charge-transfer excitations

in larger molecular systems such as the aggregates we investigated.

Among the different dimeric systems, the special pair dimer showed the lowest

charge-transfer excitation energy, appearing before the coupled Qx excitations, as

demonstrated in Figure. 6.4. However, further analyses revealed that charge-transfer

excitations were not solely dependent on intermolecular distances but also on the ori-
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entation of functional groups and other carbon chains protruding from the porphyrin

plane in the three-dimensional structure of the BCL molecule. The specific protein en-

vironment surrounding each branch defines the slightly different orientations of these

functional groups, which can influence the charge-transfer excitation energy by up to

∼0.2 eV.

Such an effect can justify the preferred charge-transfer pathway in one of the

branches in the RC compared to the other one. Furthermore, we identified the thermally-

activated vibrational modes with pronounced effects on charge-transfer excitations of

a relaxed dimeric system. The results indicated that the two lowest-frequency modes,

which correspond to a rotational motion of the porphyrin planes of the BCL molecules,

lead to substantial changes in all detected charge-transfer excitations. These significant

effects in the order of ∼0.2 eV suggest that thermally-activated vibrational modes can

mix the charge-transfer excitations with other delocalized and localized excitations of

the system. In conclusion, while our results cannot directly infer charge-transfer mech-

anisms in photosynthetic systems, they provide valuable insights into the design rules

for tailoring charge-transfer excitations in BCLs and similar photoactive molecules.

In the last publication a larger picture of these aggregates, more comparable to

what we have in real photosynthetic systems, is considered. In purple bacteria of

Rhodobacter sphaeroides, charge separation occurs in RCs comprising a hexameric

aggregate consisting of a strongly coupled dimer of two BCL molecules dubbed the

special pair (P), two accessory BCLs (BA, BB), and two bacteriopheophytines (HA,

HB). These molecules, which are arranged along two pseudosymmetric branches, are

tightly surrounded by several protein chains where the primary charge separation reac-

tion only proceeds along the A-branch with a near-unity quantum efficiency [252–254].

Two-dimensional spectroscopic experiments indicate that charge-transfer starts with

an excitation of the special pair P∗ and leads to the charge-separated state P+H−
A via

an ultra-shortlived intermediate P+B−
A [253, 255]. Although this assignment has been

debated by proposing one or both accessory BCLs (B∗
A or B∗) as the initial point of

charge separation pathway [256–259].

In Publication IV, we investigated the electronic and excited-state structure of

the primary pigments in the RC of Rhodobacter sphaeroides using the first-principle

TDDFTmethod with the ωPBE functional. Our aim was to understand charge-transfer

in this reaction center by examining the effects of neighboring amino-acid residues on

the system. However, due to the large size of the hexameric model, adding amino acids

to this system would result in an impractically large number of excited-states that

need to be calculated in order to observe charge-transfer, making it computationally

infeasible. For this reason, we constructed two different types of tetrameric model

systems to fully study the addition of amino acids. The first model consisted of the



Chapter 6 – Introduction to the publications 62

central part of the RC, including the P, BA, and BB molecules, but it did not allow us

to observe all relevant low-energy charge-transfer excitations along one branch due to

the absence of HA and HB chromophores. In this regard, we created the second type of

model systems, namely the A- and B-branch structures, including P, BA, and HA and

P, BB, and HB, respectively. We demonstrated that these A- and B-branch models

reproduced the main features of the hexameric model and probe the effect of adding

amino acids to these models on the relevant charge-transfer states. To the best of our

knowledge, this article constituted the first explicit TDDFT calculations on a reaction

center model of this purple bacteria including hexameric and tetrameric model systems

within parts of the environment.

To assess the influence of the environment on energy and charge-transfer excitations,

we systematically added amino acids to our model systems, similar to the methodology

described in Publication II. This approach enabled us to identify the specific amino

acids that replicate the main (static) effects of the environment, which can be con-

sidered as a ”reasonable minimal environment” for future calculations. The last two

panels of Figure. 6.4 depict the excitation spectrum of A-branch structure including

the nearest amino acids to each BCL molecule, referred to as model system A2 in

Publication IV and the bare hexameric model system without neighboring molecules.

Adding more BCL aggregates to the model system almost completely eliminates the

energy gap between Q-band excitations observed in the monomer and dimer models.

Our analysis of transition and difference densities revealed that contrary to common

assumptions, most of the coupled Q-band excitations are widely delocalized across

several pigments, with some of them spreading over the entire RC model. In all super-

molecular systems, regardless of the included BCL or amino acid molecules, the lowest

internal charge-transfer excitation is attributed to the special pair P−
A P

+
B located in

the middle of Q-band.

This article presents four main findings: Firstly, in bare model systems without any

amino-acid environment, charge-transfer excitations are observed in the form of dark

excitations that begin at∼0.2 eV above the coupledQx excitations. Secondly, a forward

charge-transfer into the A-branch is approximately 0.5 eV lower in energy compared to

an equivalent excitation in the B-branch, which is consistent with the experimentally

observed unidirectional charge-transfer along the A branch. Thirdly, the inclusion

of the protein environment significantly redshifts the coupled Qy and Qx excitation

energies. Finally, there is a significant redshift of the charge-transfer state into the

A-branch, bringing this state to within 25 meV of the coupled Qx excitations. This

suggests that the addition of further parts of the protein environment, in combination

with thermally-activated molecular vibrations, could result in the mixing of the charge-

transfer excitations with the delocalized coupled Qx excitations.
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Our results suggested a mechanism for charge-transfer in this bacterial reaction

center and pave the way for additional first-principles investigations into the interplay

between delocalized excited-states, vibronic coupling, and the impact of the protein

environment on this and other complex light-harvesting systems.
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Glossary

B3LYP A hybrid xc functional, introduced by Becke and Lee, Yang and Par. 12

BLYP xc functional, the exchange part introduced by Becke and the correlation part

proposed by Lee, Yang and Par. 12

BO Referring to Born-Oppenheimer approximation that separates the movement of

nuclei from electrons in the system. 7, 34

DFT Density functional theory. 4–8, 12–15, 17–21, 23, 24, 26, 27, 31, 33, 37, 38, 41,

47, 56, 57

EA Electron affinity. 14–16, 19, 32, 45

GGA Generalized Gradient Approximation. 11–13, 29

GKS generalized Kohn-Sham scheme. 16, 18–20, 29, 41

HOMO Highest Occupied Molecular Orbital. 13, 15, 18–20, 39, 47–50

IP Ionization potential. 14, 16, 19, 32

KS Kohn-Sham, usually referring to the KS scheme, orbitals, eigenvalues, potential,

or equation. 10, 15–19, 25–27, 29, 35, 37–39, 41, 44, 65

LDA Local Density Approximation. 11–13, 20, 29, 30, 58

LUMO Lowest Unoccupied Molecular Orbital. 15, 18–20, 39, 47–50

65
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MBPT Many Body Perturbation Theory. 19, 32, 33, 39, 40

OT-RSH Optimally-tuned range separated hybrid xc functional. 13, 18–20, 29, 58

PBE xc functional of Perdew, Burke and Ernzerhof. 12, 13, 38

QM Quantum mechanic methods such as wavefunction-based methods or TDDFT

and GW/BSE approaches. 2, 57

QP quasi-particle in GW approach. 35, 38, 39, 41, 48–50

RPA Random Phase Approximation. 36–38, 49

RSH Range separated hybrid xc functional. 13, 29, 56, 60

scGW Fully self-consistence GW method. 37–39

SIE Self-interaction error. 12, 16, 17, 29

TDDFT Time-dependent density functional theory. 3–5, 22, 24, 27, 29–32, 40, 41,

43, 56–62

xc exchange-correlation usually referring to functional. 9, 11–16, 18, 19, 24, 25, 27,

28, 38, 47, 58
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[231] André Anda, Thorsten Hansen, and Luca De Vico. “Q y and Q x absorption

bands for bacteriochlorophyll a molecules from LH2 and LH3”. In: The Journal

of Physical Chemistry A 123.25 (2019), pp. 5283–5292.

[232] Nina OCWinter and Christof Hättig. “Scaled opposite-spin CC2 for ground and

excited states with fourth order scaling computational costs”. In: The Journal

of chemical physics 134.18 (2011), p. 184101.

[233] Gregory D Scholes et al. “Ab initio molecular orbital calculations of electronic

couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila”. In:

The Journal of Physical Chemistry B 103.13 (1999), pp. 2543–2553.

[234] Carl-Mikael Suomivuori et al. “Absorption shifts of diastereotopically ligated

chlorophyll dimers of photosystem I”. In: Physical Chemistry Chemical Physics

21.13 (2019), pp. 6851–6858.



Glossary 86

[235] Abhishek Sirohiwal et al. “Accurate computation of the absorption spectrum

of chlorophyll a with pair natural orbital coupled cluster methods”. In: The

Journal of Physical Chemistry B 124.40 (2020), pp. 8761–8771.

[236] Yihan Shao et al. “Benchmarking the performance of time-dependent density

functional theory methods on biochromophores”. In: Journal of chemical theory

and computation 16.1 (2019), pp. 587–600.

[237] Huseyin Aksu et al. “Explaining Spectral Asymmetries and Excitonic Charac-

ters of the Core Pigment Pairs in the Bacterial Reaction Center Using a Screened

Range-Separated Hybrid Functional”. In: The Journal of Physical Chemistry B

123.42 (2019), pp. 8970–8975.

[238] Huseyin Aksu et al. “On the Role of the Special Pair in Photosystems as a

Charge Transfer Rectifier”. In: The Journal of Physical Chemistry B 124.10

(2020), pp. 1987–1994.

[239] Terry J Frankcombe. “Explicit calculation of the excited electronic states of the

photosystem II reaction centre”. In: Physical Chemistry Chemical Physics 17.5

(2015), pp. 3295–3302.

[240] Koji Mitsuhashi et al. “Nature of asymmetric electron transfer in the symmetric

pathways of photosystem I”. In: The Journal of Physical Chemistry B 125.11

(2021), pp. 2879–2885.

[241] Thomas J Eisenmayer et al. “Proton displacements coupled to primary electron

transfer in the Rhodobacter sphaeroides reaction center”. In: The Journal of

Physical Chemistry B 117.38 (2013), pp. 11162–11168.

[242] Maeve A Kavanagh et al. “A TDDFT investigation of the Photosystem II reac-

tion center: Insights into the precursors to charge separation”. In: Proceedings

of the National Academy of Sciences 117.33 (2020), pp. 19705–19712.

[243] Fabien Bruneval, Samia M Hamed, and Jeffrey B Neaton. “A systematic bench-

mark of the ab initio Bethe-Salpeter equation approach for low-lying optical

excitations of small organic molecules”. In: The Journal of Chemical Physics

142.24 (2015), p. 244101.

[244] Jeffrey C Grossman et al. “High accuracy many-body calculational approaches

for excitations in molecules”. In: Physical Review Letters 86.3 (2001), p. 472.

[245] Murilo L Tiago et al. “Neutral and charged excitations in carbon fullerenes from

first-principles many-body theories”. In: The Journal of chemical physics 129.8

(2008), p. 084311.



87 Glossary

[246] Maurizia Palummo et al. “Ab initio electronic and optical spectra of free-base

porphyrins: The role of electronic correlation”. In: The Journal of chemical

physics 131.8 (2009), 08B607.

[247] Arno Förster and Lucas Visscher. “Quasiparticle Self-Consistent GW-Bethe–

Salpeter Equation Calculations for Large Chromophoric Systems”. In: Journal

of chemical theory and computation 18.11 (2022), pp. 6779–6793.

[248] Leenawaty Limantara et al. “Effects of nonpolar and polar solvents on the Qx

and Qy energies of bacteriochlorophyll a and bacteriopheophytin a”. In: Photo-

chemistry and photobiology 65.2 (1997), pp. 330–337.

[249] Alexandra B Ormond and Harold S Freeman. “Dye sensitizers for photodynamic

therapy”. In: Materials 6.3 (2013), pp. 817–840.

[250] Zu-Sheng Huang, Herbert Meier, and Derong Cao. “Phenothiazine-based dyes

for efficient dye-sensitized solar cells”. In: Journal of Materials Chemistry C

4.13 (2016), pp. 2404–2426.

[251] Jacob C Dean et al. “Broadband transient absorption and two-dimensional elec-

tronic spectroscopy of methylene blue”. In: The Journal of Physical Chemistry

A 119.34 (2015), pp. 9098–9108.

[252] Colin A Wraight and Roderick K Clayton. “The absolute quantum efficiency

of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas

spheroides”. In: Biochimica et Biophysica Acta (BBA)-Bioenergetics 333.2 (1974),

pp. 246–260.

[253] Fei Ma et al. “Vibronic coherence in the charge separation process of the Rhodobac-

ter sphaeroides reaction center”. In: The Journal of Physical Chemistry Letters

9.8 (2018), pp. 1827–1832.

[254] Martin A Steffen, Kaiqin Lao, and Steven G Boxer. “Dielectric asymmetry in

the photosynthetic reaction center”. In: Science 264.5160 (1994), pp. 810–816.

[255] Andrew Niedringhaus et al. “Primary processes in the bacterial reaction cen-

ter probed by two-dimensional electronic spectroscopy”. In: Proceedings of the

National Academy of Sciences 115.14 (2018), pp. 3563–3568.

[256] Marion E van Brederode et al. “On the efficiency of energy transfer and the

different pathways of electron transfer in mutant reaction centers of Rhodobacter

sphaeroides”. In: Photosynthesis research 55 (1998), pp. 141–146.

[257] Huilin Zhou and Steven G Boxer. “Probing excited-state electron transfer by

resonance Stark spectroscopy. 1. Experimental results for photosynthetic reac-

tion centers”. In: The Journal of Physical Chemistry B 102.45 (1998), pp. 9139–

9147.



Glossary 88

[258] Libai Huang et al. “Cofactor-specific photochemical function resolved by ultra-

fast spectroscopy in photosynthetic reaction center crystals”. In: Proceedings of

the National Academy of Sciences 109.13 (2012), pp. 4851–4856.

[259] Su Lin et al. “Excitation wavelength dependent spectral evolution in Rhodobac-

ter sphaeroides R-26 reaction centers at low temperatures: the Q Y transition

region”. In: The Journal of Physical Chemistry B 102.20 (1998), pp. 4016–4022.



List of publications

Pub.1 Assessment of the ab Initio Bethe–Salpeter Equation approach for the low-Lying

excitation energies of Bacteriochlorophylls and Chlorophylls

Zohreh Hashemi and Linn Leppert

The Journal of Physical Chemistry A, 125, 2163-2172 (2021)

Pub.2 First principles theoretical spectroscopy of methylene blue: Between limitations

of time-dependent density functional theory approximations and its realistic de-

scription in the solvent

Thiago B. de Queiroz, Erick R. de Figueroa, Mauŕıcio D. Coutinho-Neto, Cleiton
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ABSTRACT: Bacteriochlorophyll and chlorophyll molecules are
crucial building blocks of the photosynthetic apparatus in bacteria,
algae, and plants. Embedded in transmembrane protein complexes,
they are responsible for the primary processes of photosynthesis:
excitation energy and charge transfer. Here, we use ab initio many-
body perturbation theory within the GW approximation and
Bethe−Salpeter equation (BSE) approach to calculate the
electronic structure and optical excitations of bacteriochlorophylls
a, b, c, d, and e and chlorophylls a and b. We systematically study
the effects of the structure, basis set size, partial self-consistency in
GW, and the underlying exchange−correlation approximation and
compare our calculations with results from time-dependent density
functional theory, multireference RASPT2, and experimental
literature results. We find that optical excitations calculated with GW+BSE are in excellent agreement with experimental data,
with an average deviation of less than 100 meV for the first three bright excitations of the entire family of (bacterio)chlorophylls.
Contrary to state-of-the-art time-dependent density functional theory (TDDFT) with an optimally tuned range-separated hybrid
functional, this accuracy is achieved in a parameter-free approach. Moreover, GW+BSE predicts the energy differences between the
low-energy excitations correctly and eliminates spurious charge transfer states that TDDFT with (semi)local approximations is
known to produce. Our study provides accurate reference results and highlights the potential of the GW+BSE approach for the
simulation of larger pigment complexes.

■ INTRODUCTION

Electronic excitations form the foundation of some of the most
fundamental natural processes. In photosynthesis, plants, algae,
and bacteria convert solar energy into chemical energy,
utilizing a cascade of coupled energy and charge transfer
excitations that are performed by pigment−protein complexes
with high quantum efficiency. Bacteriochlorophyll (BCL) and
chlorophyll (CL) molecules are among the most important
building blocks of these pigment−protein complexes.1 They
are responsible for the absorption and transfer of excitation
energy and for the charge separation necessary for establishing
a proton gradient that eventually drives the synthesis of
chemical energy in plants and bacteria.2 Accurately calculating
the electronic structure and excitations of these molecules from
first principles is the prerequisite for understanding their
interactions with each other and with the surrounding proteins
and, consequently, energy and charge transfer in natural
photosynthesis.
BCL and CL molecules constitute a family of substituted

tetrapyrroles with varying absorption properties depending on
conjugation and the number and nature of substitutions. CL a
and b are present in plants and green algae, whereas green

bacteria mostly rely on BCL c, d, and e for excitation energy
transfer and BCL a for concentrating excitations close to the
reaction center of the photosynthetic unit.3 BCL a is also the
main pigment in purple bacteria, whose light harvesting
apparatus and reaction center are among the most thoroughly
studied natural light-harvesting systems.4 The optical excitation
spectrum of these pigments possesses two characteristic
absorption bands: (1) the Q band in the visible part of the
spectrum, composed of excitations Qy and Qx with high- and
low-oscillator strength, respectively and (2) the B (or Soret)
band in the near ultraviolet.
In the field of finite organic and biological molecular

systems, neutral excitations and optical spectra are predom-
inantly calculated using time-dependent density functional
theory (TDDFT). In conjunction with model Hamiltonian
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approaches, TDDFT has been employed for the simulation of
large photosynthetic pigment−protein complexes.5,6 The
accuracy of its approximations and implementations has been
tested for a variety of biochromophores.7,8,47 However,
TDDFT’s standard approximations are inadequate for
describing long-range charge transfer excitations9 and high-
energy Rydberg states10 due to self-interaction errors and an
incorrect asymptotic behavior. Exchange−correlation (xc)
functionals that contain long-range exact exchange, such as
optimally tuned range-separated hybrid functionals (OT-
RSH), can be employed as a remedy in such cases,11,12 but
the use of such functionals requires a tedious per-system tuning
procedure.
Multireference wavefunction-based methods have scarcely

been used for molecules as large as BCL and CL. Vertical
excitation energies of CL a, based on ADC(2) and different
coupled cluster approaches show a spread of ∼0.4 eV, strongly
depending on the method, basis set, and structural model used
in these calculations.13 −15 In 2016 and 2019, Anda et al.
reported multistate RASPT2/RASSCF excitation energies of
several BCL units within the light-harvesting system 2 of a
purple bacterium.16,17 A RASPT2 approach was also combined
with electrostatic embedding of fixed-point charges to simulate
the effect of the protein environment on excitation energies of
the same system by Segatta et al.18 While these reports
constitute important advances in the use of wavefunction-
based methods for complex biological molecules, they were
performed with relatively small basis sets and show a
dependence on the choice of the restricted active space (RAS).
The ab initio Bethe−Salpeter equation (BSE) approach,

when rigorously based on many-body Green’s function theory,
is an alternative method for describing neutral excitations of
correlated many-electron systems.19 It is based on a framework
of charged excitation energies that correspond to electron
addition and removal energies and that are most frequently
calculated within the GW approximation. The GW+BSE
approach has been shown to be successful in predicting the
optical spectra of bulk solids20,21 and low-dimensional
materials.22 In recent years, it has also begun to be applied
to finite systems, such as small molecules,23−25 and larger
molecular complexes,26−28 for which its accuracy has been
shown to be comparable to single-reference wavefunction
methods for both localized and charge transfer excitations,29 at
a substantially reduced computational cost.
In this article, we assess the accuracy of the ab initio GW

+BSE approach for the Qy, Qx, and the first bright B excitation
of several members of the BCL and CL family and the
chemically closely related bacteriochlorin (BC) molecule. We
compare two different approaches for approximating the
electronic self-energy Σ = iGW: (1) G0W0, a one-shot method,
in which the zeroth-order Green’s function G0 and screened
Coulomb interaction W0 are constructed from a DFT
eigensystem and directly used to correct DFT eigenvalues
perturbatively and (2) partially self-consistent GW (evGnWn),
in which the corrected eigenvalues are used to iteratively
recalculate G and/or W until self-consistency is reached. We
compare our results to TDDFT calculations with the local
density approximation (LDA), two global hybrids and an OT-
RSH functional, with RASPT2 literature results,16,17 and with
experimental data.30,31

We find that the GW+BSE approach used in a partially self-
consistent manner results in excitation energies in the visible
and near-ultraviolet within less than 100 meV from experiment

for the entire family of pigments studied here. Our results are
almost completely independent of the DFT eigensystem used
as an input for the GW+BSE calculations. In fact, even a simple
and computationally inexpensive LDA starting point leads to
excellent agreement with experiment and eliminates spurious
charge transfer excitations between Qy and Qx that TDDFT
with (semi)local functionals produces. Contrary to TDDFT,
GW+BSE also correctly predicts the energy difference between
the two Q-band excitations, a crucial prerequisite for
understanding the coupling of excitations in systems consisting
of more than one pigment. Finally, we show that differences
between evGnWn+BSE and state-of-the-art TDDFT calcula-
tions using an OT-RSH functional can be explained almost
entirely based on differences in how electron−hole interactions
are described by the xc kernel of TDDFT and the BSE kernel,
respectively. Eigenvalue differences as computed with evGnWn
and DFT with an OT-RSH functional are almost identical.
The remainder of this article is structured as follows: we

start by briefly reviewing the GW+BSE approach and report
computational details and numerical convergence. We then
show the effect of different DFT starting points and partial self-
consistency on the excitation energies of the BC molecule.
After this, we discuss our results for BCL a, b, c, d, and e and
CL a and b, followed by a comparison with literature results
and an in-depth discussion of differences between our GW
+BSE and TDDFT results for BCL a.

■ METHODS
GW+BSE Approach. In Green’s function-based many-

body perturbation theory, the calculation of charged
excitations, corresponding to electron removal and addition
energies, is based on knowledge of the exact interacting single-
particle Green’s function G, which can, in principle, be
computed from a set of self-consistent integro-differential
equationsHedin’s equationslinking G to the electronic
self-energy Σ, the screened Coulomb interaction W, the
irreducible polarizability χ, and the vertex function Γ.32 The
lowest-order expansion of Σ with respect toW leads to the GW
approximation, in which the electronic self-energy Σ = iGW.33

Quasiparticle (QP) eigenvalues can be obtained by solving
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here, Vion is the ionic potential, VH is the Hartree potential, and
εn
QP and φn

QP are QP energies and wavefunctions, respectively.
To avoid the high computational cost of a self-consistent

solution of eq 1, the GW approach is commonly used within a
one-shot scheme, in which G0 and W0 are constructed from a
(generalized) Kohn−Sham (gKS) eigensystem obtained from a
preceding DFT calculation. We use the notation G0W0@gKS
to refer to G0W0 based on the gKS eigensystem (φn

gKS;εn
gKS)

computed with the xc functional Exc
gKS. In this approach, QP

corrections are calculated to first order in Σ as

V( )n n n n n
QP gKS gKS QP

xc
gKSε ε φ ε φ= + ⟨ |Σ − | ⟩ (2)

where Vxc is the xc potential, and it is assumed that φn
QP ≈ φn

gKS.
While the G0W0 approach has been used with much success,

in particular, for the calculation of band gaps and band
structures of solids, a well-known and well-documented
dependence on the gKS eigensystem used to construct G0
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and W0 limits its predictive power.34−36 Partial self-consistency
in the QP eigenvalues can often mitigate this problem. In
eigenvalue self-consistent GW, the gKS eigenvalues used to
construct G and/or W are replaced with those from the output
of a prior GW step; the self-energy corrections are then iterated
until the QP eigenvalues converge. This approach, which we
call evGnWn in the following (n refers to the number of
iterations), has been shown to remove much of the starting
point dependence for a range of different systems.37,38

The BSE is an equation for the two-particle electron−hole
Green’s function and allows for the calculation of the
polarizability including electron−hole interactions through
the screened Coulomb interaction W. In practice, the BSE is
usually solved by neglecting the frequency dependence of W.
Within this static approximation, it can be written in a form
equivalent to Casida’s equations of TDDFT

i
k
jjj

y
{
zzz
i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

A B
B A

X
Y

X
Y

s

s s

s

s− − = Ω
(3)

where Ωs represents neutral excitation energies and (X
s, Ys) the

corresponding eigenvectors.19 A and −A represent resonant
and antiresonant transitions that can be expressed as

A ia jb W( ) 2( ) ( 0)ia
jb

a i ij ab ij
abQP QPε ε δ δ ω= − − | + = (4)

and that are coupled through B and −B, defined as

B ia bj W2( ) ( 0)ia
jb

ij
ab ω= − | + = (5)

for singlet excitations. In these expressions, i and j are occupied
and a and b are unoccupied states and (ia|bj) stands for

ia bj r r r r
r r

r r( ) d d ( ) ( )
1

( ) ( )i a j b
QP QP QP QP∬ φ φ φ φ| = ′ | − ′| ′ ′

(6)

Note that φi
QP = φi

gKS, whenever the G0W0 or evGnWn
approaches are used to construct A and B.
Computational Details. Our calculations of charged and

neutral excitations were performed using the GW+BSE and
TDDFT implementation in the open-source MOLGW
software package (version 2B), which relies on Gaussian
basis functions.39 We used the frozen-core approximation
throughout, which changes excitation energies by less than 1
meV. We also employed the resolution-of-the-identity (RI)
method, in order to reduce the calculation of four-center
integrals to two- and three-center integrals. For BCL a, the RI
changes the QP highest occupied molecular orbital
(HOMO)−lowest unoccupied molecular orbital (LUMO)
gap by less than 50 meV using a 6-31G basis set and
BHLYP as a starting point, but we expect the effect of the RI to
be even smaller for the larger basis sets used in the remainder
of this article.40 To further reduce the computational cost of
the evaluation of the GW polarizability, we use the single-pole
approximation (see the Supporting Information for details).
The Tamm−Dancoff approximation, which corresponds to
neglecting the B matrix elements in eq 3 is not used as it
consistently increases both GW+BSE and TDDFT results by
∼0.3 eV, in agreement with previous findings.6,27

We tested the influence of the Gaussian basis set size on
HOMO−LUMO gaps and Qy and Qx excitations of BCL a
(using a structure from ref 16) with G0W0@BHLYP+BSE,
considering seven different basis sets, namely, the Pople basis
sets 6-31G, 6-311G, 6-311++G**, and 6-311++G(2d,2p),
combined with the DeMon auxiliary basis set,41 and the

Karlsruhe basis sets def2-SVP, def2-TZVP, and def2-TZVPP
and their corresponding auxiliary basis sets.42

Figures 1 and S2 show the convergence of the HOMO−
LUMO gap and Qy and Qx excitation energies as a function of

the inverse number of basis functions, 1/Nbasis for GW+BSE
and TDDFT, respectively (raw data are presented in Tables S1
and S2). We find that the HOMO−LUMO gap depends
significantly more on 1/Nbasis than Qy and Qx excitation
energies and that TDDFT results are less sensitive to the
choice of the basis set than GW+BSE. Based on these tests, we
use the 6-311++G(2d,2p) basis set for all calculations reported
in the following. We estimate the error in the GW(+BSE)
HOMO−LUMO gap and the Qy and Qx excitation energies by
linearly extrapolating to an infinite basis set. By excluding the
very small 6-31G and 6-311G basis sets from these fits, we
obtain extrapolated values of 3.57 eV for the HOMO−LUMO
gap, 1.11 eV for Qy, and 1.81 eV for Qx. We conclude that
using the 6-311++G(2d,2p) basis set for all further
calculations, we likely overestimate GW(+BSE) HOMO−
LUMO gaps and Qy and Qx excitation energies by ∼0.1 eV
with respect to the complete basis set limit. Conversely, the use
of the single-pole approximation leads to a similar under-
estimation of the HOMO−LUMO gap and the Qy and Qx
excitations, resulting in a fortuitous cancellation of errors.
We test the effect of different xc functionals on our TDDFT

and GW+BSE results. We use the LDA, two global hybrid
functionals (B3LYP and BHLYP), and the range-separated
hybrid (RSH) functional ωPBE. In RSH functionals, the
Coulomb repulsion is separated into a short-range part and a
long-range part, for numerical convenience expressed as

r
r

r
r

r
1 1 erf( ) erf( )ω ω= − +

(7)

Figure 1. Convergence as a function of the number of basis functions
1/Nbasis for (a) HOMO−LUMO gap and (b) Qy and Qx excitation
energies, calculated with G0W0@BHLYP+BSE. Dashed lines represent
a linear fit.
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where ω is called the range separation parameter. The ωPBE
functional uses PBE exchange in the short range and the exact
exchange energy in the long range, allowing for a self-
interaction-free description at large electron−electron dis-
tances. We obtain the range separation parameter ω through
the tuning procedure outlined in ref 43, in which ω is chosen
such that the HOMO eigenvalue is as close as possible to the
negative ionization potential both for the neutral and anionic
system. Consequently, and by construction, the resulting
HOMO−LUMO gap is a very good approximation to the
fundamental gap of the neutral molecule. We use the Q-Chem
code and a 6-31G(d,p) basis set for the tuning.44 The tuned
range separation parameters for all systems discussed in the
following can be found in Table S3.

■ RESULTS AND DISCUSSION
Bacteriochlorin. To validate our methodological setup and

investigate the starting point dependence of the G0W0
approach and the effect of eigenvalue self-consistency on our
calculated HOMO−LUMO gaps and excitation energies, we
start by examining the BC molecule, for which GW+BSE
results have been reported in ref 27. We use a BC structure
from ref 27 and denote the lowest energy excitations Qx and
Qy, according to the direction of their transition dipole
moments. Table 1 contains our calculated HOMO−LUMO

gaps, Qx and Qy excitation energies, and oscillator strengths
using TDDFT and several flavors of the GW+BSE approach.
We find that, as expected, (generalized) Kohn−Sham
HOMO−LUMO gaps show a large dependence on the xc
functional, with LDA, B3LYP, and BHLYP leading to a
significantly lower HOMO−LUMO gap and ωPBE leading to
a HOMO−LUMO gap similar to the HOMO−LUMO gap
calculated with G0W0 and eigenvalue-self-consistent evGnWn.
In turn, Qy and Qx excitation energies from TDDFT are
considerably less dependent on the xc functional than
HOMO−LUMO gaps. In agreement with previous studies,
we find that TDDFT overestimates the experimental values for

Qx and Qy by up to ∼0.4 eV, depending on the xc functional.27

TDDFT with the OT-RSH ωPBE is in best agreement with
experiment, overestimating it by ∼0.2 eV for both excitations.
We further find that G0W0@LDA+BSE underestimates Qx by
0.4 eV and Qy by 0.6 eV, whereas the use of a BHLYP and
ωPBE starting point results in excitations within 0.1 eV of the
experimental results. In accordance with prior studies, we
observe that most of the starting point dependence of the
G0W0+BSE results is inherited from the starting point
dependence of the HOMO−LUMO gaps.25

In order to investigate the effect of eigenvalue self-
consistency in the GW+BSE approach, we tested the effect
of updating the eigenvalues in the construction of G only
(evGnW0) and of both G and W (evGnWn). Eigenvalue self-
consistency in G alone only slightly changes the results as
compared to G0W0. In contrast, full eigenvalue self-consistency
largely eliminates the starting point dependence. In particular,
using an LDA starting point results in excitation energies
within 0.1 eV from experimentsimilar to the ωPBE starting
point, but at considerably reduced computational cost. In
Table S4, we report similar results for the more complex
pigment BCL a. In the remainder of this article, we therefore
focus primarily on eigenvalue self-consistent results based on
LDA and ωPBE starting points.

Excitation Energies of Bacteriochlorophylls and
Chlorophylls. Next, we turn to reporting the vertical
excitation energies of several members of the BCL and CL
family of pigments. All structures were obtained from ref 45
and geometry-optimized using DFT as implemented in the
Turbomole code with a def2-TZVP basis set and the B3LYP xc
functional.46 Atomic coordinates of all relaxed structures can
be found in the Supporting Information. We used both LDA
and ωPBE starting points for our evGnWn+BSE and ωPBE for
our TDDFT calculations. Unlike the Qx excitation of BCL a
and b, which has significant oscillator strength, the Qx
excitation of BCL c−e is dark. Following ref 8, we therefore
also compare our calculations with experimental results for the
higher-energy B band.31 We report the vertical excitation
energies and corresponding oscillator strengths of the first six
excitations of all pigments in Tables S6 and S7. In these
calculations, we included a total of 20 excitations, in order to
ensure that the higher lying excitations are well converged.
Table 2 demonstrates that evGnWn+BSE is in excellent

agreement with experiment for the entire family of BCL and
CL molecules. The MAE is about 50 meV for the Qy and Qx
and between 100 and 200 meV for the B excitation. Our
evGnWn+BSE results also accurately reflect the spectral shifts of
the Qy excitation when comparing different BCL pigments with
each other. For example, the BCL b molecule differs from BCL
a through an ethyliden side group, which shifts the Qy
excitation by 40 meV to the red. This red shift is perfectly
reproduced in our GW+BSE calculations. This is the first main
result of this study. The second one is that our results are
essentially independent of the DFT eigensystem used as an
input for the GW+BSE approach: a computationally
inexpensive LDA starting point results in the same level of
agreement with experiment as the more tedious ωPBE
calculation that involves a system-dependent tuning procedure
for the range separation parameter ω. This is in stark contrast
to TDDFT. TD-LDA leads to spurious excitations with charge
transfer character in between Qy and Qx, as well as slightly
above Qx, depending on the structure, as discussed below and
in the literature.47 TDDFT with the optimally tuned ωPBE

Table 1. HOMO−LUMO Gaps, Qx and Qy Excitation
Energies (in eV), and the Corresponding Oscillator
Strengths, Γx and Γy, for BC Calculated with the 6-311+
+G(2d,2p) Basis Set

method xc functional H-L gap Qx Γx Qy Γy

TDDFT LDA 1.38 2.04 0.18 2.39 0.03
B3LYP 2.17 2.06 0.23 2.51 0.04
BHLYP 3.27 1.93 0.28 2.55 0.04
ωPBE 4.38 1.87 0.23 2.42 0.05

G0W0+BSE LDA 4.15 1.21 0.09 1.67 0.04
B3LYP 4.36 1.44 0.14 1.97 0.04
BHLYP 4.56 1.67 0.19 2.23 0.05
ωPBE 4.59 1.64 0.19 2.26 0.05

evGnW0+BSE LDA 4.31 1.41 0.13 1.97 0.04
B3LYP 4.43 1.54 0.16 2.12 0.05
BHLYP 4.56 1.66 0.19 2.24 0.05
ωPBE 4.57 1.62 0.18 2.27 0.04

evGnWn+BSE LDA 4.42 1.51 0.17 2.21 0.05
B3LYP 4.55 1.63 0.19 2.24 0.05
BHLYP 4.60 1.69 0.20 2.27 0.05
ωPBE 4.56 1.61 0.18 2.26 0.04

Expa 1.60 2.30
aData for bacteriopheophorbide from refs.31,27
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results in good agreement with experiment for all three
excitations, albeit with slightly higher MAEs of 170, 50, and
250 meV for Qy, Qx, and B, respectively.
In Figure 2, we plot the difference between our calculated

results and experiment, averaged over all three excitations, to
further highlight qualitative differences between evGnWn+BSE
and TDDFT. For BCL a and BCL b, evGnWn+BSE, on
average, underestimates experiment by ∼100 meV, whereas the
average TDDFT deviation is close to zero, because TDDFT
slightly overestimates the Qy and Qx excitations but under-
estimates the B excitation of these pigments. For all other BCL
and the two CL molecules studied here, we consistently find
that the average deviation of evGnWn+BSE is significantly
smaller than that of TDDFT. Similar to our results for the BC
molecule and to other benchmark studies of complex organic
molecules,6 TDDFT tends to overestimate all three excitations
by between 200 and 300 meV. evGnWn+BSE is in much closer
agreement with experiment for these pigments, on average,
overestimating their excitation energies by less than 100 meV.
We stress again that these results are independent of the DFT
starting point, whereas our TDDFT results rely on a per-
system tuning procedure.
Our results are in excellent agreement with correlated

excited-state methods for those systems for which such studies
have been reported, primarily CL a and BCL a. ADC(2)
excitation energies of the first three excitations of CL a
reported by Suomivuori et al. are 1.97, 2.11, and 2.95 eV,
within ∼0.1 eV of our evGnWn@LDA+BSE results.13 In

another study by the same authors, the ADC(2) Qy excitation
energy of histidin-ligated BCL a was reported to be 1.46 eV,
again within ∼0.1 eV of our results, although it should be
noted that the structures of ligated and free-standing BCL a
slightly differ, leading to excitation energy differences of 10−30
meV at the ADC(2) level.14 Furthermore, Sirohiwal et al. used
a pair-natural orbital coupled cluster approach to study CL a
and reported Qy and Qx excitation energies of 1.75 and 2.24
eV, respectively, for CL a, also within ∼0.1 eV of our GW+BSE
results for these excitations.15

Not only the absolute energies of Qy and Qx excitations are
important for understanding and predicting excitation energy
and charge transfer in photosynthetic systems but also their
relative energy difference, ΔQx−Qy

, plays a role, in particular, in
coupled systems of several pigment units. It is therefore
reassuring that evGnWn+BSE predicts ΔQx−Qy

in very good
agreement with experiment, with a deviation of only 10 meV
for BCL a, BCL b, and CL a and 120 meV for CL b for the
LDA starting point and a slightly larger deviation of, on
average, 60 meV for the ωPBE starting point. TDDFT based
on ωPBE tends to underestimate ΔQx−Qy

, by, on average, 110
meV for these four pigments. For BCL a, we also show in
Table 3 that ΔQx−Qy

strongly depends on the xc functional used
in the TDDFT calculations, primarily because of the strong
dependence of the Qx excitation on the amount of exact
exchange, which can be seen by comparing the results based on
the LDA (0% of exact exchange), B3LYP (∼23%), and BHLYP

Table 2. Qy, Qx and First B Band Excitation Energy of BCLs and CLs Calculated Using a 6-311++G(2d,2p) Basis Seta

GW@LDA+BSE GW@ωPBE+BSE TD-ωPBE expb

molecule Qy Qx B Qy Qx B Qy Qx B Qy Qx B

BCL a 1.52 2.08 3.25 1.50 2.10 3.16 1.75 2.16 3.33 1.60 2.15 3.46
BCL b 1.48 2.07 2.95 1.45 2.09 3.05 1.69 2.15 3.19 1.56 2.14 3.37
BCL c 1.85 2.05 2.94 1.84 2.11 3.02 2.05 2.21 3.21 1.88 2.89
BCL d 1.90 2.15 2.94 1.89 2.21 3.05 2.08 2.29 3.19 1.90 2.93
BCL e 2.01 2.04 2.78 1.96 2.13 2.88 2.10 2.23 3.02 1.92 2.72
CL a 1.85 2.13 2.91 1.86 2.19 3.02 2.06 2.29 3.16 1.87 2.14 2.88
CL b 1.95 2.17 2.79 1.93 2.20 2.85 2.10 2.29 2.97 1.92 2.26 2.72
MAE 0.05 0.06 0.12 0.04 0.05 0.17 0.17 0.05 0.25

aGW+BSE results are based on eigenvalue self-consistent evGnWn.
bExperimental results in diethyl ether from ref 8.

Figure 2. Colored bars denote the average difference between calculated and experimental excitation energies for evGnWn@LDA+BSE (blue),
evGnWn@ωPBE+BSE (red), and TDDFT (green) with ωPBE. The dots represent the maximum deviation in each case.
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(50%). As before, evGnWn+BSE is in excellent agreement with
experiment and almost independent of the underlying xc
functional.
The experimental results reported in Tables 2 and 3 are

based on measurements in diethyl ether, whereas our
calculations are for gas-phase molecules. To approximately
account for the effect of the solvent, we extracted experimental
reference values for Qy and Qx excitations from a study by
Limantara et al.,30 in which electronic absorption spectroscopy
was used to obtain Qy and Qx for a large number of nonpolar
and polar solvents at room temperature. This study reports
regression lines for Qy and Qx excitations of BCL a as a
function of R(n) = n2 − 1/n2 + 2, where n is the refractive
index of the solvent. The extrapolated values for n = 1
(vacuum) are 1.68 eV (nonpolar) and 1.67 eV (polar) for the
Qy and 2.25 eV (nonpolar) and 2.21 eV (polar) for the Qx
excitation. Based on these regression parameters, we estimate
that the experimental reference values in Table 2 lie ∼50−70
meV below the gas-phase excitation energies. We also
calculated the Qy and Qx excitation energies of BCL a with
TDDFT (using ωPBE), approximating solvent effects with the
COSMO approach as implemented in Turbomole. We used a
dielectric constant of 4.33ε0 corresponding to the value in
diethyl ether. COSMO red-shifts the Qy and Qx excitation
energies by 70 and 50 meV, respectively, supporting our
estimate. We conclude that solvent effects are smallwithin
the numerical accuracy of our GW+BSE calculationsand do
not change our main conclusions. Note that we also neglect
the effects of temperature and the 0−0 vibrational energy
contribution in our comparison with experimental results.
Exact agreement of our calculated results with experiment is
therefore not expected.
Bacteriochlorophyll a. In the remainder of this paper, we

will use the BCL a molecule as a case study to compare to
available computational literature results for this pigment,
discuss the origin of differences between our evGnWn+BSE and
TDDFT results, and comment on the effects of the choice of
structure on excitation energies.
Comparison with RASPT2. For the Qy and Qx excitations of

BCL a, we compare our GW+BSE and TDDFT calculations to
multistate, second-order perturbation theory (RASPT2)
calculations by Anda et al.16,17 For this comparison, we use
the molecular geometry reported in ref 16, which is a BCL a
unit from the light-harvesting system LH2 of Rhodoblastus
acidophilus. This structure was extracted from an experimental
X-ray crystallographic structure of the LH2 complex (unit 302
within the structure 1NKZ in the RCSB Protein Data Bank).48

The phytyl tail was truncated and replaced by a hydrogen
atom, and no further geometry optimization was carried out. In

the following, we will call this structure “A”. Our geometry-
optimized version of “A”, which we relaxed using DFT as
implemented in the Turbomole code with a def2-TZVP basis
set and B3LYP,46 will be called “R”. A visual comparison
between “A” and “R” is shown in Figure 3. The large

differences that we observe between these two structures are
unsurprising, given that we perform our geometry optimiza-
tions without taking into account the protein environment in
which BCL a “A” is embedded in vivo. Table 4 shows our GW

+BSE and TDDFT results for “A” in comparison with the
RASPT2 excitation energies from refs.16,17 We find, as before,
that when eigenvalue self-consistency is used in GW, HOMO−
LUMO gaps and Qy and Qx excitation energies differ by a
maximum of 0.1 eV. Most notably, however, our GW+BSE
excitation energies substantially differ from those calculated
with RASPT2, with Qy 0.4 eV and Qx 0.5 eV lower than the
RASPT2 result.
We find that about half of this difference can be traced back

to the use of a smaller basis set (ANO-RCC-vDZP) in ref 16.
Repeating our evGnWn@LDA+BSE calculation with the same
basis, we obtain excitation energies of 1.38 eV for Qy and 2.18
eV for Qx. In line with previous studies, we also find that
TDDFT with global hybrid functionals (B3LYP and BHLYP)
results in similar excitation energies to RASPT2 for the Qy
excitation.17,49 We hypothesize that this agreement is
fortuitous. The optimally tuned RSH functional ωPBE has
been shown to better describe singlet excitation energies of a

Table 3. Difference between Qx and Qy Excitation Energies
(in eV) Using TDDFT and evGnWn+BSE for BCL a

method xc functional ΔQx−Qy

evGnWn+BSE LDA 0.57
B3LYP 0.54
BHLYP 0.54
ωPBE 0.59

TDDFT LDA 0.25
B3LYP 0.40
BHLYP 0.64
ωPBE 0.43

exp8 0.55

Figure 3. Overlay of structures “A” (red) and “R” (blue) in (a) top
view and (b) side view.

Table 4. HOMO−LUMO Gaps and Qy and Qx Excitation
Energies (in eV) for BCL a Structure “A”

method/basis set
xc

functional
H-L
gap Qy Qx

evGnWn+BSE/6-311++G(2d,2p) LDA 3.62 1.17 1.90
B3LYP 3.67 1.19 1.90
BHLYP 3.72 1.23 1.92
ωPBE 3.68 1.16 1.91

evGnWn+BSE/ANO-RCC-vDZP LDA 3.76 1.38 2.18
TDDFT/6-311++G(2d,2p) LDA 0.92 1.59 1.99

B3LYP 1.60 1.64 2.17
BHLYP 2.61 1.57 2.34
ωPBE 3.70 1.48 2.02

RASPT2/ANO-RCC-vDZP 1.61 2.40
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wide variety of organic compounds as compared to global
hybrid functionals50−52 and is more than 0.1 eV lower in
energy than the RASPT2 Qy excitation energy. Similar trends
have also been shown for CL a, where DFT-based multi-
reference CI, just as TDDFT with global hybrid functionals,
tends to overestimate experiment by ∼0.2 eV for the Qy and Qx
excitation.53 All in all, given that comparisons with
experimental data are complicated for an in vivo structure
such as “A”, we consider it most likely that our GW+BSE
calculations underestimate the excitation energies of structure
“A” by ∼0.1 eV, similar to our results for gas-phase BCL a
(Table 2). The remaining deviations could be attributed to the
multireference character of the Qy excitation

16 and the choice
of the RAS.
We also note that our GW+BSE results reproduce the

energetic order and relative energy differences of the Qy
excitation of other BCL units within the LH2 ring that
RASPT2 predicts, when using the ANO-RCC-vDZP basis set.
However, the use of the significantly larger 6-311++G(2d,2p)
basis leads to substantially larger excitation energy differences
between these units (Table S7). Finally, it is worth mentioning
that our GW+BSE calculations reproduce the relatively large
energy difference ΔQx−Qy

≈ 0.8 eV that RASPT2 predicts,
whereas TDDFT excitation energy differences are much less
sensitive to details of the structure, with ΔQx−Qy

≈ 0.5 eV (using
ωPBE) similar to the gas-phase structure of BCL a. We
speculate that a geometry optimization of structure “A” within
its protein environment would result in a smaller ΔQx−Qy

for
both RASPT2 and GW+BSE.
Role of the Electron−Hole Kernel. We find that the

difference between GW+BSE and TDDFT excitation energies
can be traced back almost entirely to differences in how
electron−hole interactions are described in both schemes. The
Qy excitation is primarily (∼90%) a HOMO → LUMO
transition, and the HOMO−LUMO gaps, as calculated with
DFT-ωPBE and evGnWn@ωPBE, differ by only 0.02 meV
(Table 3). In fact, the density of states (DOS) in the energy
range relevant for both the Qy and the Qx excitations based on
evGnWn@ωPBE and DFT-ωPBE eigenvalues are almost
identical (see Figure 4). To further test our hypothesis, we
construct the statically screened Coulomb interaction Wij

ab (see
eq 4) and solve the BSE based on a DFT-ωPBE eigensystem
(instead of first computing QP eigenvalues using eq 2). We
obtain values for the Qy and Qx excitation that are only 20 meV
higher and 40 meV lower than the full GW+BSE solution,
respectively, for structure “A”. Similarly, for structure “R”, the
results are within less than 10 and 50 meV for the Qy and Qx
excitation, respectively. This observation confirms that differ-
ences between the GW+BSE and TDDFT excitation energies
are primarily due to differences in the xc and the BSE kernel.
Generally, the overestimation of excitation energies that we
observe with TDDFT is in line with results for other organic π
chromophores such as rhodamine and rosamine54 and of
phenothiazine dyes,55 for which it has been linked to an
insufficient treatment of differential electron correlation
between the ground and excited states by most TDDFT xc
kernels.56

Charge Transfer Excitations with TD-LDA and GnWn@LDA
+BSE. Finally, motivated by the excellent performance of
evGnWn@LDA+BSE, we compare G0W0@LDA+BSE, evGWL-
DA+BSE, and TD-LDA results for structures “A” and “R” of
BCL a. Figure 5 shows the excitation spectrum calculated at

these levels of theory. TD-LDA’s severe underestimation of
charge transfer excitations is well known9 and leads to spurious
excitations with charge transfer character at energies between
Qy and Qx for BCL a.47 Our comparison of structures “A” and
“R” shows that while the energy of Qy and Qx is changing only
slightly when TD-LDA is used, the relative position of these
spurious low-oscillator strength excitations depends strongly
on the structure. G0W0@LDA+BSE results in a very different,
albeit no more reassuring, picture. For both structures, the first
excitation already appears at energies below or around 1 eV
and its oscillator strength is considerably lower than with TD-
LDA; for structure “A”, the oscillator strength of Qy is even
lower than that of Qx. For structure “R”, excitations 2, 3, and 4
have similar, very low, oscillator strength. However, already at
the G0W0@LDA+BSE level, no charge transfer excitations are
found between Qy and Qxa consequence of the inherent
nonlocality of the BSE kernel. Finally, for both structures,
eigenvalue self-consistency pushes all excitations to signifi-
cantly higher energies and results in a quantitatively correct
description of Qy and Qx.
Inspection of the DOS calculated with DFT-xc, G0W0@xc,

and GnWn@xc (xc = LDA, ωPBE) shown in Figure 4 is
instructive for understanding the contribution of eigenvalue
differences to the TDDFT and GW+BSE excitation energies.
The G0W0@LDA DOS underestimates the HOMO−LUMO
gap and the energy difference between the HOMO and
HOMO − 1. In contrast, there is virtually no difference
between the HOMO, HOMO − 1, and LUMO energies as
calculated with DFT-ωPBE, G0W0@ωPBE, evGnWn@ωPBE,
and evGnWn@LDA. As expected, the DFT-LDA DOS is
markedly different, not only underestimating the HOMO−
LUMO gap but also significantly underestimating the energy
differences between the HOMO − 1, HOMO − 2, and
HOMO − 3. Notably, the spurious dark states between Qy and
Qx that TD-LDA predicts have significant contributions from
transitions involving these lower occupied states.

Figure 4. (Generalized) Kohn−Sham (green), G0W0 (red), and
evGnWn (blue) DOS calculated using the LDA and ωPBE. The
HOMO energies are aligned to zero.
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■ CONCLUSIONS

In this article, we performed a systematic first-principles study
of the electronic structure and excitations of seven members of
the (bacterio)chlorophyll family, which we validated through
comparison with calculated and experimental literature results.
The GW+BSE approach, when used in a partially self-
consistent fashion, is in excellent agreement with experiment
for excitations in the visible and near-ultraviolet part of the
spectrum. GW+BSE also correctly predicts the energy
difference between the low-energy Qy and Qx excitations of
these pigments, relevant for the description of the coupling
between pigment complexes, present in the light harvesting
units and reaction centers of plants and bacteria and crucial for
excitation energy and charge transfer. Most importantly, our
results are almost entirely independent of the DFT
eigensystem used as an input for the GW+BSE calculations.
A computationally inexpensive LDA starting point leads to
similar results as a more involved optimally tuned ωPBE
starting point.
It should be noted that the GW approach, despite its

implementation using Gaussian basis functions and the use of
the RI approximation in MOLGW and other codes, remains a
major bottleneck of these calculations due to its O(N4) scaling
with system size. Furthermore, our results highlight that the
GW approach, more so than DFT, requires careful
convergence with respect to the basis set size. This limits its
applicability to systems with a few (B)CL pigments at most,
until algorithms with better scaling become more widely
available.57−59 Our study joins a growing number of results,
demonstrating that the GW+BSE approach can accurately
predict neutral excitations of complex molecules without
empirical parameters.29 With new approaches for combining
GW+BSE with large-scale molecular mechanics simulations28

and polarizable continuum embedding60 emerging, an accurate

prediction of excitation energy and charge transfer in complex
molecular environments is within reach.
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Convergence of Single Pole Approximation

In the single pole approximation (SPA), all matrix elements of the RPA polarizability larger than

NSPA are considered diagonal. Figure S1 a and b show the HOMO-LUMO gap and Qy and Qx

excitation energies as a function of NSPA. Dashed lines correspond to a fit with the function:

f (NSPA) =
a

NSPA −N0
+b,

where a, b, and N0 are fit parameters. Using this fit, we estimate the error due to using a finite

NSPA by identifying the asymptote b with the band gap extrapolated to infinite NSPA. This leads to

an underestimation of the HOMO-LUMO gap, the Qy and the Qx excitation by 40 meV, 10 meV,

and 70 meV, respectively, using G0W0@BHLYP+BSE for structure ’A’ (see Figure S1).
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Figure S1: a) HOMO-LUMO gaps and b) Qy and Qx excitations energy (in eV) for BCL a structure
’A’ calculated using the 6-311++G(2d,2p) basis set and G0W0@BHLYP+BSE as a function of the
number of states explicitly used in the calculation of the polarizability.
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Basis set convergence

Table S1: HOMO-LUMO gaps and Qy and Qy excitation energies (in eV) for BCL a structure
’A’ calculated with G0W0@BHLYP+BSE for different basis sets.

Basis set functions aux. functions HOMO-LUMO gap Qy Qx

6-31G 503 1728 3.93 1.37 2.01
6-311G 733 1728 3.88 1.34 1.99
ANO-RCC-vDZP 852 1728 3.78 1.26 1.95
def2-SVP 852 2784 3.80 1.25 1.92
6-311++G** 1308 1728 3.71 1.20 1.89
6-311++G(2d,2p) 1657 1728 3.69 1.18 1.87
def2-TZVP 1686 4158 3.67 1.17 1.85
def2-TZVPP 1990 4728 3.67 1.17 1.85

Table S2: HOMO-LUMO gaps and Qy and Qy excitation energies (in eV) for BCL a structure
’A’ calculated with TD-BHLYP for different basis sets.

Basis set functions aux. functions HOMO-LUMO gap Qy Qx

6-31G 503 1728 2.67 1.60 2.30
6-311G 733 1728 2.72 1.58 2.30
def2-SVP 852 2784 2.66 1.54 2.27
6-311++G** 1308 1728 2.61 1.57 2.35
6-311++G(2d,2p) 1657 1728 2.61 1.57 2.34
def2-TZVP 1686 4158 2.57 1.49 2.24
def2-TZVPP 1990 4728 2.61 1.51 2.28
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Range separation parameters from optimal tuning procedure

Table S3: Optimized range separation parameters ω obtained from tuning procedure as
outlined in Ref. 1.

molecule ω (a−1
0 )

BC 212
BCL a ’A’ 163
BCL a ’R’ 168
BCL b 166
BCL c 166
BCL d 162
BCL e 164
CL a 168
CL b 162
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Calculated excitation energies of BCL a ’A’

Table S4: HOMO-LUMO gaps, Qy and Qx excitation energies (in eV) and oscillator strengths
Γi for BCL a structure ’A’ calculated with the 6-311++G(2d,2p) basis set.

Method xc functional HOMO-LUMO gap Qy Γy Qx Γx

G0W0+BSE

LDA 3.54 1.03 0.14 1.44 0.04
B3LYP 3.81 1.30 0.22 1.77 0.09
BHLYP 4.04 1.51 0.30 2.05 0.10
ωPBE 4.00 1.46 0.29 2.06 0.10

evGnWn+BSE

LDA 3.98 1.50 0.32 2.07 0.12
B3LYP 4.03 1.53 0.32 2.07 0.11
BHLYP 4.08 1.55 0.32 2.09 0.11
ωPBE 4.04 1.49 0.30 2.09 0.10

TDDFT

LDA 1.18 1.84 0.31 2.09 0.06
B3LYP 1.91 1.89 0.38 2.29 0.11
BHLYP 2.97 1.81 0.44 2.45 0.12
ωPBE 4.08 1.75 0.37 2.18 0.10
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Calculated excitation energies of BCL a – e and CL a and b

Table S5: Energies and oscillator strengths Γi of the first six excitations of BCLs and CLs
calculate with TDDFT using ωPBE with ω as in Table S3.

Molecule Q1 Γ1 Q2 Γ2 Q3 Γ3 Q4 Γ4 Q5 Γ5 Q6 Γ6

BCL a 1.75 0.34 2.16 0.10 2.98 0.00 3.02 0.00 3.17 0.00 3.33 0.20
BCL b 1.69 0.32 2.15 0.06 2.99 0.00 3.01 0.00 3.10 0.00 3.19 0.61
BCL c 2.05 0.16 2.21 0.05 3.03 0.00 3.21 0.62 3.31 0.09 3.35 0.17
BCL d 2.08 0.18 2.29 0.04 3.13 0.07 3.19 0.48 3.26 0.10 3.36 0.01
BCL e 2.10 0.10 2.23 0.02 3.02 0.61 3.05 0.53 3.06 0.20 3.15 0.00
ChL a 2.06 0.20 2.29 0.03 3.16 0.26 3.22 0.03 3.24 0.31 3.34 0.06
ChL b 2.10 0.14 2.29 0.00 2.97 0.50 3.07 0.75 3.10 0.09 3.16 0.01

Table S6: Energies and oscillator strengths Γi of the first six excitations of BCLs and CLs
calculated with evGnWn@ωPBE with ω as in Table S3.

Molecule Q1 Γ1 Q2 Γ2 Q3 Γ3 Q4 Γ4 Q5 Γ5 Q6 Γ6

BCL a 1.50 0.29 2.10 0.11 3.16 0.10 3.25 0.42 3.29 0.00 3.37 0.00
BCL b 1.45 0.27 2.09 0.07 2.85 0.01 3.05 0.74 3.33 0.01 3.45 0.02
BCL c 1.84 0.18 2.11 0.03 3.02 0.82 3.21 0.75 3.23 0.00 3.41 0.01
BCL d 1.89 0.20 2.21 0.03 3.05 0.82 3.29 0.70 3.40 0.05 3.40 0.02
BCL e 1.96 0.13 2.13 0.01 2.88 0.76 2.95 0.67 3.11 0.00 3.31 0.00
ChL a 1.86 0.21 2.19 0.02 3.02 0.67 3.25 0.83 3.34 0.03 3.38 0.00
ChL b 1.93 0.18 2.20 0.00 2.85 0.71 2.98 0.72 3.28 0.01 3.30 0.00
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Excitation energies of different BCL a units in the LH2 ring

Table S7: Qy and Qx excitation energies (in eV) for three BCL a units from the light harvest-
ing 2 ring of Rhodoblastus acidophilus. RASPT2 results are taken from Ref. 2.

Method and basis unit Qy Qx

evGnWn+BSE
6-311++G(2d,2p)

302 1.17 1.90
303 1.31 2.01
306 1.25 2.04

evGnWn+BSE
ANO-RCC-vDZP

302 1.38 2.18
303 1.44 2.16
306 1.38 2.19

RASPT2
ANO-RCC-vDZP

302 1.61 2.40
303 1.66 2.38
306 1.61 2.38
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ABSTRACT

Methylene blue [3,7-Bis(di-methylamino) phenothiazin-5-ium chloride] is a phenothiazine dye with applications as a sensitizer for photody-
namic therapy, photoantimicrobials, and dye-sensitized solar cells. Time-dependent density functional theory (TDDFT), based on (semi)local
and global hybrid exchange-correlation functionals, fails to correctly describe its spectral features due to known limitations for describing
optical excitations of π-conjugated systems. Here, we use TDDFT with a non-empirical optimally tuned range-separated hybrid functional
to explore the optical excitations of gas phase and solvated methylene blue. We compute solvated configurations using molecular dynam-
ics and an iterative procedure to account for explicit solute polarization. We rationalize and validate that by extrapolating the optimized
range separation parameter to an infinite amount of solvating molecules, the optical gap of methylene blue is well described. Moreover, this
method allows us to resolve contributions from solvent–solute intermolecular interactions and dielectric screening. We validate our results by
comparing them to first-principles calculations based on the GW+Bethe–Salpeter equation approach and experiment. Vibronic calculations
using TDDFT and the generating function method account for the spectra’s subbands and bring the computed transition energies to within
0.15 eV of the experimental data. This methodology is expected to perform equivalently well for describing solvated spectra of π-conjugated
systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029727., s

I. INTRODUCTION

Phenothiazine dyes, such as methylene blue [MB, 3,7-Bis
(di-methylamino) phenothiazin-5-ium chloride], are a technologically

important class of π-conjugated heterocyclic molecules. They cover
an extensive range of light assisted applications as sensitizers for
photodynamic therapy,1,2 photoantimicrobials,3 and dye-sensitized
solar cells.4 These applications involve light absorption and
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electronic transitions in the molecule, which are strongly influ-
enced by surrounding molecules and the medium in which these
molecules are solvated.2,5 It is therefore important to describe the
electronic structure and dynamics of this class of molecules in
realistic environments accurately.2

Density functional theory (DFT) and time-dependent DFT
(TDDFT) have been extensively employed for such studies since
they are, in principle, exact theories while computationally effi-
cient.6–13 Low-lying valence states of organic compounds of inter-
mediate size are usually well described by exchange-correlation
(xc) functionals within the local density approximation (LDA)7 and
generalized gradient approximation (GGA, also called semilocal
approximation)14 as well as by their linear combination with non-
local Fock-like exact exchange (EXX), the global hybrids15,16 (see,
for instance, Ref. 17). However, these “standard TDDFT approxi-
mations,” i.e., LDA, GGA, and global hybrid xc-functionals, yield
significant deviations for π–π∗ valence transitions of some sets of π-
conjugated systems in comparison to experimental and theoretical
reference data,18–24 which is a statement that is also valid for MB25

and other related compounds.26,27 The failure of standard TDDFT
for intermediate or large π-conjugated systems has been the subject
of an extensive number of studies.18,21–23,28,29

From the perspective of molecular topology, open chain
π-conjugated systems can be categorized as either polyenes or
polymethines.18 Polyenes demonstrate π-density alternation in the
bonds, but the structure is based on their σ-skeleton (alternating
double and single bonds).18,29 Polymethines, just as cyanine dyes,
show similar alternating π-bonds but with the highest alternat-
ing density in the atomic positions.18,29 MB can be regarded as a
carbocyanine related compound. Additionally, MB is expected to
present even higher electron delocalization of the π-electrons in the
ground state, in comparison to other phenothiazine dyes, due to the
presence of two strongly electron-donating dimethyl-amino groups
located diametrically alongside the molecule.5

For polymethines, the lowest allowed excitation is composed
of a single electronic configuration, well characterized by a single-
particle HOMO–LUMO transition.18,30 Yet, standard TDDFT sub-
stantially overestimates the transition energies.18,31,32 These systems
exhibit excited state charge densities that differ significantly from
the ground state densities.18,29 This error was later recast in terms
of the very small magnitude of the exchange-correlation response
kernel integrals.33,34 This is a feature that is badly described by lin-
ear response TDDFT since the xc kernel is calculated as the func-
tional derivative of the xc potential at the ground state density (in
principle, an exact linear response formulation if time propagated,
but time-independent in the adiabatic approximation).35,36 Similarly
to the polyene case, pure GGAs perform slightly better than their
corresponding hybrids.33

Besides the errors caused by the approximations described
above (as compared to reference calculation methods), there are also
errors arising from the incorrect and unrealistic description of the
medium (as compared to experimental data).25 In fact, electron-hole
interactions can be significantly weakened by the effect of dielectric
screening on the Coulomb potential.37 For instance, the correct pre-
diction of the S0–S1 transition energy in azobenzene derivatives in
comparison to experimental data from calculations with the GW and
Bethe–Salpeter equation (GW + BSE) requires the consideration of
solvent polarization effects (dielectric screening).38 Intermolecular

interactions also play a role. From the infrared absorption spectrum
of MB in the gas phase in comparison to its hydrated crystalline
state,39 it was proposed that the functional group aside N+(CH3)2
is H-bonding to a water molecule. Again, standard TDDFT approx-
imations are ill-equipped for describing such effects since they
can produce electron density delocalization errors and overesti-
mate intermolecular interactions.33,40 Finally, these approximations
are not designed to appropriately describe the long-range dielectric
screening,41–43 scaling incorrectly at long distances [decaying faster
than −(1/R), where R is the electron–hole distance].44–46

More recently, (semi)local approximations have been com-
bined with EXX using the error function [erf(ωr)] in the Coulomb
operator. In these range-separated hybrid (RSH) functionals, a range
separation parameter, ω, scales short- and long-range exchange
terms such that (semi)local terms dominate at short range and EXX
at long range [in this particular format, referred as the long-range
corrected (LRC) functional].47–49 This tempered mix of (semi)local
and EXX takes advantage of the good performance of predomi-
nantly (semi)local hybrid functionals for describing valence transi-
tions15 while ensuring the correct asymptotic of the potential (−1/R),
thereby improving preceding approximations in many respects.47–51

The range separation parameter can be empirically optimized47,52,53

or tuned from first principles, by choosingω such that the eigenvalue
of the Kohn–Sham frontier orbital located in the solute approaches
the ionization energy.54,55 The optimally tuned (OT) RSH function-
als have been used with great success for the prediction of charge-
transfer excitations for a variety of complex molecular systems,56–58

intermolecular interactions,59 and dielectric screening.55,59 In fact,
the introduction of the non-local EXX term at long range in the
RSH seems to be appropriate for introducing the correct field-
counteracting behavior due to the environment. For instance, polar-
izabilities and second hyperpolarizabilities are correctly predicted
using this approach.60

In this article, we report first principles OT-RSH TDDFT calcu-
lations for the low-lying excited states of MB in vacuum and water,
aiming to describe the system realistically while gaining insight into
the limitations of state-of-the-art TDDFT. We employed the RSH
functional ωPBE (PBE exchange at short range)49 optimally tuned
for MB optimized in vacuum and solvated by water molecules.
We circumvent problems associated with RSH tuning for solvated
molecules by analyzing the orbital localization involved in the func-
tional tuning. Furthermore, we rationalize and demonstrate that the
spectroscopic features of MB represented in its aqueous medium are
well characterized by the OT-RSH functional. We show that this
is a consequence of the increased short-to-long GGA/EXX inter-
change distance in solution (ω−1), leading to higher weights of
semilocal GGA exchange in the description of the MB molecule
while treating the solvent by a balanced mix of semilocal and EXX
at long range. Furthermore, we show that the zero-point vibra-
tional energy shifts the spectrum to lower energies relative to ver-
tical transitions and that vibronic contributions are responsible for a
shoulder at higher energy (in comparison to the maximum absorp-
tion). As reference data, we use a partially self-consistent GW + BSE
approach with the optimally tuned ωPBE as the starting point (as
benchmarked in Refs. 61 and 62) in addition to experimental data.
Thus, we present an inexpensive TDDFT methodology to describe
accurately the absorption spectrum of this important organic
dye in an aqueous solution, which can be extended to describe
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excited states of other π-conjugated systems in a complex chemical
environment.

II. METHODS

The details of the generation of the molecular configurations,
molecular dynamics, calculation of vibrational spectrum, and cal-
culation of excited states with TDDFT and GW + BSE and the
data obtained are listed in the supplementary material. We also
discuss our strategy for optimally tuning the RSH in explicit sol-
vated systems, basis set convergence, and starting point issues in the
GW + BSE calculations in the supplementary material.

The geometries and vibronic spectrum were obtained from
DFT/B3LYP/def2-SV(P) calculations (theory/xc-approximation/
basis set) followed by molecular dynamics simulations [isothermal–
isobaric (NPT) ensemble with T = 298 K and P = 1 atm]. The
ground and excited state vibrational spectra were computed using
analytical and numerical second derivatives.63,64 The structures for
excited state calculations were obtained from MD frames and labeled
according to their MD step after reaching thermal equilibrium and
the number of solvating water molecules (in parenthesis), namely,
MB-01(20), MB-13(20), MB-19(13), MB-27(20), MB-31(23),
MB-38(26), and MB-46(21). These structures were generated with
a solvation cutoff of 3.2 Å, where solvation cutoff is the maximum
distance between an MB atom and an atom in the water molecule
selected for the calculations. The structure MB-31 was taken as a
representative structure and progressively solvated with additional
cutoffs of 3.8 Å, 4.0 Å, 4.2 Å, 4.4 Å, 4.5 Å, 4.6 Å, 4.8 Å, 5.0 Å, 5.2 Å,
and 5.4 Å, corresponding to 46, 58, 59, 67, 70, 71, 76, 84, 93, and
101 water molecules, respectively. The excited states were calculated
from (i) TDDFT calculations with the functionals xPBEx + (1− x)
EXX + PBEc, 0 ≤ x ≤ 1, with the 6-31G(d,p) as basis set, (ii) TDDFT
with the ωPBE and 6-31G(d,p) as functional and basis set, and
(iii) eigenvalue self-consistent GnWn + BSE/ωPBE/6-311++(2d,2p)
(method/starting point/basis set).

III. RESULTS

A. Ground state properties

MB and solvent configurations were obtained using an itera-
tive procedure to account for solute polarization described in detail
in the supplementary material. We employ a protocol to induce the
solvent perturbation on the solute by generating an average solvent
electrostatic potential (ASEP) developed initially by Sánchez and
co-workers.65,66 We follow a sequential QM/MM iterative proce-
dure similar to the one proposed by Coutinho et al.67,68 to generate
converged solvent configurations in equilibrium with induced solute
polarization for fixed solute geometries. In their procedure, solvent
effects are included using point changes whose configurations come
from Metropolis Monte Carlo simulations while solute charges are
computed using the CHELPG algorithm.69 An iterative procedure is
used, where at each iteration a new set of solute CHELPG charges
is obtained at distinct sampled solvent configurations. They have
applied their method for the calculation of condensed phase spectra
of several systems with encouraging results.70–72

Solvated MB displays a strong increase in dipole moment in
the water when compared to vacuum, going from 2.55 D to 4.23 D
as computed by our iterative procedure. A strong charge separation
matches the increase of the dipole moment of the molecule, where
the central nitrogen acquires a strongly negative charge compared to
its vacuum value. CHELPG values increase from −0.60e to −0.91e.
As expected, solute–solvent interactions are affected, resulting in a
larger number of hydrogen bonds between the central nitrogen and
water. These interactions are present in most configurations sam-
pled from molecular dynamics and in the configurations selected for
spectroscopic studies.

B. Excited states of the isolated MB by exploring
global hybrid functionals: Assignment of the failures
and the OT-RSH proposal

As we expect that standard TDDFT cannot describe the optical
gap of MB well, we try to map possible error sources by calculat-
ing the first excited state transitions (S0–S1 and S0–T1), adding EXX
stepwise in the hybrid functional. Figure 1 shows the S1 and T1 exci-
tation energies calculated with TDDFT as a function of EXX/PBEx
admixture for MB-31(0), as well as calculated from the GnWn + BSE
method [ΔE(S0–S1) = 2.25 eV and ΔE(S0–T1) = 1.00 eV] and the
experimental maximum absorption of MB in water (1.87 eV).73 The
experimental value taken in water does not represent the optical
gap of the molecule in the gas phase, but solvent effects are not
expected to exceed 0.1 eV–0.4 eV (see below). Thus, the optical gap
of the molecule in the gas phase should be around 2.0 eV–2.3 eV,
suggesting that GnWn + BSE can be regarded as the reference data
(also rationalized in Refs. 61 and 62). The S0–S1 transition energy
approaches the GnWn + BSE and the experimental values as the

FIG. 1. S0–S1 and S0–T1 transition energies for MB-31(0) as a function of PBE
exchange and exact Fock exchange admixture in the TDDFT approximation
[Ex = xPBEx + (1-x)EXX] and in comparison to GnWn + BSE calculations and
the experimental maximum absorption of MB in water.
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GGA portion increases, going from 2.87 eV when Ex = EXX to
2.32 eV when Ex = PBEx. Simultaneously, S0–T1 increases from the
unrealistic value of ≈0.1 eV when Ex = EXX to the reasonable value
of ≈1.2 eV when Ex = PBEx. Yet, either TDDFT or GW + BSE esti-
mates for the S0–T1 transition are considerably underestimated, in
comparison with reference data (1.75 eV using CASPT2),74 due to
triplet instabilities.75–78

The superior performance of pure GGAs over HF indicates
that charge transfer is not a dominant feature and that the tran-
sition could be of double excitation character (when error can-
cellations occur for GGAs).23 However, the overestimation of the
optical gap resembles the case of the cyanine dyes,18,33,34 when the
dynamical correlation is important, as well as the fact that the pure
GGAs outperform their associated hybrids.33 We could calibrate
the global hybrid functional with high portions of GGA and pro-
ceed further to study the influence of the solvent in the optical
gap of MB. However, besides the lack of generality of such pro-
cedure, from previous studies, we learn that the optimally tuned
RSH can describe well intermolecular interactions59,79 and dielectric
screening,55 differently from global hybrids.59 Furthermore, short-
contact intermolecular interactions with solvent molecules could
lead to an increase in the charge-transfer character of the first excited
state, another feature that is well described by RSH functionals in
contrast to hybrid functionals,79 especially if constructed with large
portions of GGA.

Figure 2 shows the electron–hole pair of the natural transi-
tion orbitals (NTOs) of MB-31(0) for the S0–S1 transition from
TDDFT/ωPBE calculations. The transition is almost entirely repre-
sented by a HOMO–LUMO transition (> 90%) and described by
the electron migration from the whole molecule to the central sul-
fur and nitrogen atoms, an apparent valence excitation with little
intramolecular charge transfer character. The TDDFT/ωPBE cal-
culations estimate the S0–S1 and S0–T1 transitions at 2.54 eV and

FIG. 2. NTO isosurface densities of the most significant electron–hole pair (⩾ 90%)
of S1 for MB-31(0). Carbon atoms are represented in green, nitrogen in blue, sulfur
in yellow, and hydrogen in white.

1.22 eV, respectively. These transitions are off by ≈0.3 eV in com-
parison with GnWn + BSE, slightly worse than the pure PBE and
desired accuracy (within ≈0.1 eV).

We anticipate that the inferior performance of the OT-RSH
with respect to the GGA will be attenuated or removed when
inserting solvent effects. The optimal ω for the solvated structures
tends to be smaller since the frontier orbitals tend to be more
delocalized.43 Thus, the distance where the fraction of EXX is larger
than the PBE exchange increases, such that a larger contribution to
the energy of MB comes from the GGA exchange potential.43 For
instance, according to the optimal ω values, the GGA/EXX inter-
change distance for the isolated molecule is at 1.3 Å and for the
fully solvated system at 1.7 Å [taken from erf(ωoptr0) = 1/2, see ω
optimization below]. Furthermore, the OT-RSH is indicated for
explicitly solvated systems because GGAs tend to overestimate elec-
tron density delocalization while EXX tends to underestimate it,
such that the OT-RSH temper these limits showing small delocal-
ization errors.33

C. Excited states from TDDFT/ωPBE
and the contributions from intermolecular
interactions and dielectric screening

Table I lists the TDDFT/ωPBE transition energies of the first
excited states with respective oscillator strengths for singlets of
all configurations (note that triplet transitions are forbidden in
our calculations due to the lack of spin–orbit coupling). Figure 3
illustrates the transitions in comparison with the experimental
data. The excited states with strong oscillator strength (∼0.5) are
always localized in MB, topologically similar to the transition of
the isolated molecule, as noted by their electron–hole pair from
the NTOs [see representative NTOs in Fig. 4-left for MB-31(101)].
The singlet transitions with low oscillator strength are of a mixed
charge transfer character, described by the electron donation from
a water molecule nearby the sulfur atom of MB [represented
in Fig. 4-right for MB-31(101)]. For most of the configurations,
this excitation is about 0.1 eV–0.4 eV distant from the excitation
localized in MB, and its oscillator strength is limited to 10−2. Inter-
estingly, for the configuration MB-31(23), this excitation is the low-
est one and shows increased oscillator strength, 0.07, and it is much
closer, in energy, to the one located in MB (ΔE = 0.036 eV). This
indicates that there might be a coupling between S1 and S2, such
that S1 increases in oscillator strength, pulling the absorption band
to lower energies (similar to the coupling reported in Ref. 80).
Note that by taking into consideration the structures generated
with a solvent cutoff of 3.2 Å with 20–21 solvent molecules, the
dispersion in the optical gap is about 0.3 eV, which is related to
small molecular distortions and distinct solvent configurations (sim-
ilarly to the configurational variances when collecting the exper-
imental data, but here limited to a small number of sampling
configurations).

After looking at the optical gap dispersion of MB due to dis-
tinct molecular arrangements and a variation of intermolecular
interactions, we look at MB-31 as a representative configuration to
investigate the influence of intermolecular interaction and dielectric
screening in the first excited states. Thus, structures with various
distance cutoffs with respect to solvent molecules were generated
and the optimization parameter was calculated as a function of the
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TABLE I. First excited states and oscillator strengths (O.S.) for MB structures as calculated by the TDDFT/ωPBE method.
Note that ωEA is used for all calculations except for MB-31(101), in which ωext

solv was used instead, which is the optimal ω
extrapolated to a completely solvated system.

Molecule ωopt (×10−3 a−1
0 ) S1 (eV) O.S.S1 S2 (eV) O.S.S2 T1 (eV) T2 (eV)

MB-01(20) 182 1.6316 0.0008 2.3508 0.4767 1.0563 1.6293
MB-13(20) 182 2.3099 0.7991 2.4412 0.0181 0.9131 1.6807
MB-19(13) 191 2.3813 0.8285 2.5467 0.0014 0.9977 1.8134
MB-27(20) 182 2.5791 0.8002 2.6941 0.0056 1.2580 1.9027
MB-38(26) 179 2.2398 0.6958 2.3912 0.0009 0.8197 1.6489
MB-46(21) 179 1.9670 0.0055 2.3705 0.7052 1.0959 1.6642

MB-31(0) 203 2.5432 0.8694 2.7871 0.0063 1.2233 1.9838
MB-31(23) 179 2.1800 0.0701 2.2160 0.6484 0.7460 1.7490
MB-31(101) 150 2.1527 0.7135 2.3240 0.0079 0.8199 1.6509

number of solvent molecules. The optimization parameter could be
represented by a mono-exponential decay as the number of solvent
molecules (n) increases, described asω(n) = ω0 exp(−n/δ) + ωext

solv,
where ω0 is the optimal ω of the bare structure, δ is a system depen-
dent fitting parameter, and ωext

solv is the optimal ω when extrapolat-
ing the optimization to the fully solvated structure (“bulk” water).55

Interestingly, the exponential decay of the parameter ω as a function
of the solvation shell number is not only observed for weakly inter-
molecular interacting systems, as demonstrated in Ref. 55 but also
for a system of polar molecules prone to intermolecular interaction.

FIG. 3. Excited state spectra for MB-31(0), in green; MB-01(20), MB-13(20),
MB-27(20), and MB-46(21), in red; MB-31(23), in magenta; and MB-31(101), in
blue, as calculated by the TDDFT/ωPBE method, and experimental data, in black.

Using ωext
solv in TDDFT/ωPBE calculations, one can account for the

long-range dielectric screening of the media in the description of
the excited states.55,81 Figure 5 shows a good agreement between the
approximate curve and the ΔSCF-calculated ω(n), which resulted in
an ωext

solv value of 0.150 a−1
0 .

The comparison between the optical gap of MB as calculated
from the GnWn + BSE and TDDFT/ωPBE methodologies is illus-
trated in Fig. 6. The S0–S1 transition of MB-31(23) from the
GnWn + BSE calculation is at 2.05 eV, indicating a decrease in
0.2 eV due to intermolecular interactions and local screening.
TDDFT/ωPBE predicts the S0–S1 transition of MB-31(23) at 0.36 eV
below the transition for the isolated molecule. The OT-RSH is more
influenced by the explicit solvation because the range separating
parameter decays rapidly by including the first coordination shell,
and the lowering of the parameter emulates long-range dielectric
screening.55 For instance, ω decays from 0.203 to 0.179 a1

0 by includ-
ing the first coordination shell (88% of ω0), reaching 0.150 a1

0 when
the parameter is extrapolated to fully solvated structure (74% of ω0).

FIG. 4. NTO isosurface densities of the most significant electron–hole pair (⩾90%)
of the S1 and S2 transitions for MB-31(101) as calculated by the TDDFT/ωPBE
method. Carbon atoms are represented in green, nitrogen in blue, sulfur in yellow,
oxygen in red, and hydrogen in white.
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FIG. 5. Optimal ω as a function of the number of water solvent molecules
surrounding MB-31 and exponential decay fits.

Moving to the fully solvated structure, one notes an additional shift
to the lower energy of about 0.03 eV, with all results indicating
a modest contribution from long-range dielectric screening in the
first excited singlet state. This is expected since MB is considered
a dye with a small solvatochromic shift.5,82 Note that the calcula-
tion of MB-31(101) results in a S0–S1 with a deviation of 0.28 eV to
higher energies in comparison to experimental data. Vibronic and
zero point corrections shift this value further down, as described in
Sec. III D.

The performance of TDDFT for cyanine dyes has been previ-
ously analyzed as follows:33 An electronic transition with a strong
HOMO–LUMO character in the adiabatic approximation is approx-
imately given by the HOMO–LUMO gap (εL−εH), added by the
Coulomb electron–electron repulsion term and xc kernel integrals.33

For instance, for the two-level model HOMO–LUMO transition in
the Tamm–Dancoff approximation,33

ETDDFT
S1 = (εL − εH) + 2[LH∣r−1

12 ∣LH] + [LH∣ f ααxc + f αβxc ∣LH], (1)

where the second term on the right-hand side of the equation is
a two-electron repulsion integral and the third term is the xc lin-
ear response kernel (f xc) integral (L and H refer to the HOMO

FIG. 6. Diagram of the first excited state for MB-31(0) and MB-31(23) as cal-
culated from the GnWn + BSE and TDDFT/ωPBE methods, in addition to the
TDDFT/ωPBE calculation for MB-31(101), and experimental data.

and LUMO Kohn–Sham orbitals, respectively, and α and β are spin
labels). The HOMO–LUMO gap is the dominant positive term, the
electron–electron Coulomb repulsion term is typically small but
positive, and the xc kernel integrals are generally negative.

The HOMO–LUMO gap for MB-31(0) as calculated from
DFT/ωPBE is 4.5 eV (similar to the other configurations). Thus, the
last term of the above equation, the xc kernel integrals, should be
sufficiently large (and negative) in order to lower the optical gap in
the direction of the reference data (EGW+BSE

S1 = 2.25 eV). The fact that
the TDDFT/ωPBE results are generally overestimating those of the
GnWn + BSE is similar to what has been observed for cyanine dyes,
and has been attributed to too small contributions of the xc response
kernel integrals.33,34

D. Vibronic contributions

Another question regarding the absorption spectrum of MB
is related to the shape of the envelope, in particular the cause of
the line broadening and the shoulder between 625 nm and 606 nm
(1.98 eV and 2.04 eV, or 16 000 cm−1 and 16 500 cm−1, respec-
tively) (Fig. 7). Within the generating function method,83,84 the 0–0
transition occurs at

ΔE0−0 = ΔEadia − E0
ZPV + E1

ZPV , (2)

where ΔEadia is the adiabatic excitation energy, and the last two
terms are the zero-point vibrational energy (ZPV) in the ground

FIG. 7. Comparison between the calculated vibronic absorption spectrum in the
gas phase and the experimentally measured spectrum in water.73 Computed spec-
tra have been downshifted by 0.5 eV (4046 cm−1) to align the main band of the
broad spectrum with the experimental λmax value. 00

0 denotes the 0–0 transition.
In the other peak assignments, the mode number according to Table S2 (supple-
mentary material) is given with subscripts indicating its ground state vibrational
quantum number and superscripts indicating its excited state vibrational quantum
number of the transition; all other modes have both zero as initial and final quantum
numbers.
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and excited states, respectively. The 0–0 transition (denoted 00
0 in

Fig. 7) serves as the reference point for the vibronic structure. Since
the excited state ZPV energy (8.458 eV) is smaller than the ground
state ZVP (8.532 eV), the 0–0 transition (2.351 eV) lies 0.16 eV
below the TDDFT/B3LYP/def2-SVP adiabatic excitation energy of
2.424 eV. When applying a line broadening with a lifetime of 1000
au (red in Fig. 7), the peak maximum is shifted 0.019 eV to the
blue, relative to the 0–0 transition using a lifetime of 100 000 au
(blue in Fig. 7). In general, line broadening could be caused by
conformational isomers85,86 or by vibronic bands.83 Our vibronic
spectra calculations, including Duschinsky effects, show that both
line broadening and the dominant shoulder are due to the vibronic
effects. Furthermore, the line broadening is mainly caused by three
vibrational modes, mode 11, mode 19, and mode 40, shown in Fig. 8
(Multimedia view)—(Table S2 lists all vibrational transitions in the
supplementary material). By assigning modes 11 and 19 as the main
causes for the broadening, our calculations are partially consistent
with previous calculations of Franck–Condon factors by Dean and
co-workers based on the displaced harmonic oscillator model; how-
ever, mode 40 was not identified by their work.73 In addition, several
peaks with minor intensity (<0.1 in Fig. 7) contribute to broadening
and were not included in previous spectral simulations.73 Regarding
the dominant shoulder above 625 nm (16 000 cm−1), our calcula-
tions show that it is mainly due to mode 68 and its combinations
with modes 11 and 13 (Fig. 7).

We also computed the vibronic spectrum using the ωPBE
xc-functional [6-31G(d,p) basis set and ω =0.203a−1

0 ] but within the
displaced harmonic oscillator approximation because we could not
determine the full Duschinsky matrix from the output. However,
since the Duschinsky matrix for MB is close to unity, the approx-
imation made is small. The ωPBE vibronic spectrum compares
well to the TD-B3LYP spectrum (see the supplementary material).

FIG. 8. Dominant excited state vibrational normal modes and their fre-
quencies calculated by TDDFT/B3LYP/def2-SVP. Multimedia views:
https://doi.org/10.1063/5.0029727.1; https://doi.org/10.1063/5.0029727.2; https://
doi.org/10.1063/5.0029727.3; https://doi.org/10.1063/5.0029727.4

As expected, the vibrational features are relatively insensitive to
the xc-functional approximation. In addition, we computed the
TD-B3LYP/TDA vibronic spectrum. Vibrational frequencies in the
excited state are very similar in TD-B3LYP and TD-B3LYP/TDA,
but some peak intensities are different in the two spectra due to dif-
ferences in the Duschinsky matrix (see the supplementary material).
This shows that the TDA affects the computation of the vibrational
modes in the excited state.

IV. CONCLUSIONS

We present a strategy to predict the optical gap of MB in water
using an optimally tuned range-separated hybrid functional for fully
solvated structures within TDDFT. The addition of a realistic solvent
environment, dielectric screening effects, and vibronic corrections
are essential for bringing the results close to experiments. Solva-
tion effects, which we take into account explicitly, are responsible
for lowering the optical gap by about 0.2 eV–0.4 eV, resulting in an
overestimation of the experimental data by 0.2 eV–0.3 eV depending
on the structure used. Vibronic effects and zero-point corrections
shift the adiabatic value down in energy by 0.16 eV, as estimated
by TDDFT/B3LYP calculations. The overestimation then decreases
to only ∼0.15 eV with respect to experimental data. Vibronic cal-
culations also show that in-plane mode 68, with a large compo-
nent in ring CH bending, and mode 11 are responsible for the
vibronic subband that is very characteristic of MB’s UV spectra in
solution.

The optical gap difference between GnWn + BSE and
TDDFT/ωPBE is reduced from 0.3 eV to 0.1 eV by going from
the isolated MB to the solvated structure. The improvement in the
performance of TDDFT/ωPBE for the solvated structure occurs
because the semilocal term of the functional takes over at larger
distances, and dielectric screening is emulated by choosing the
range separation parameter appropriately.55 Since semilocal func-
tionals are reported to treat better π-conjugated systems (although
due to error cancellations),20,23,33 we expect that such a strategy
might be generalized, permitting to study these important systems
at relatively low computational cost and with acceptable accuracy.
The combination of the methodologies employed in this study is
going to be relevant for the description of the absorption spectra of
π-conjugated systems, especially in solution or in other chemical
environments.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about molecular
configurations, vibronic spectra calculations and illustrative movies
of the relevant vibrational modes, optimal tuning of the RSH func-
tional and TDDFT calculations, GW + BSE calculations: start-
ing point dependence and basis set convergence, and tables with
data obtained in the optimal tuning of the RSH functional and
GW + BSE calculations, and the vibronic modes.
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S2

S1. Methods

A. Molecular configurations

We have used molecular dynamics simulations in the isothermical-isobaric (NPT) ensemble with T = 298 K and
P = 1 atm to generate solvent configurations. In order to enhance solvent sampling and reduce the number of
QM calculations, we used multiple solvent geometries at each sequential QM/MM step. In our procedure, solvent
molecules of the system are represented by point charges superposed around the solute scaled by 1/n with respect to
their original values. We have used in our procedure n=8, that is, eight superposed solvent configurations collected
every 200 ps at each QM iteration. Because the solvent configurations are statistically uncorrelated, a relatively small
number of iterations is sufficient to give convergent results for the atomic charges, dipole and solvent distribution.

The simulated system consisted of a cubic cell containing MB plus an anion chloride (Cl-) immersed in 4000 water
molecules. The water molecule was represented by simple point charge (SPC) potential.[1] Parameters for MB are
taken from the Gromos 53a6 force field.[2] All MD calculations were performed using GROMACS package version
4.5.[3, 4] using velocity rescaling[5] and Parrinello-Rahman schemes[6] for keeping temperature and pressure constant.
Long range electrostatic was treated using Particle Mesh Ewald.[7]

At each iterative step, the system was allowed to equilibrate for 5 ns before the collection of solvent configurations.
All QM calculations for determining CHELPG charges were performed using the Orca code version 3.0.3[8] the B3LYP
functional and def2-TZVP basis set.[9] The solvent configurations (MD frames) used for computing the spectra were
generated in a final simulation after obtaining converged solute (MB) dipole and charges. After a 10 ns equilibration,
individual MD frames were collected every 500 ps for a total of 50 frames. From this sampling, we sorted 7 MD frames
for the spectroscopic studies.

B. Vibronic Spectra Calculations

All vibronic spectra calculations were carried out with TURBOMOLE V7.3.[10] Ground and excited states equi-
librium structures were optimized using the B3LYP functional and the def2-SVP basis set, within the Tamm-Dancoff
approximation (TDA) and full linear response (discussed in the manuscript). The ground and excited state vibrational
spectra were computed using analytical and numerical second derivatives, respectively, as implemented in the aoforce
and Numforce modules.[11, 12] Based on the ground and excited state structures and their vibrational spectra (Adi-
abatic Hessian model), the vibronic absorption spectrum was computed within the harmonic approximation, using
the full Duschinsky matrix to obtain the vibronic fine structure of the absorption spectrum using the radless module
[13–15]. For vibronic spectra, the generating function was propagated for about 10000 au in time. To obtain similar
line widths as in the experimental spectrum, a lifetime broadening of 1000 was applied. For the assignment of vi-
bronic transition a lifetime of 100000 au was used to resolve the vibrational fine structure of the spectrum. Illustrative
movies of the vibronic modes 11, 19, 40, and 68 are also available. We also performed these calculations with the
ωPBE/6-31G(d,p) (ω = 0.203a−10 ); here we employed the displaced harmonic oscillator approximation, in which the
Duschinsky matrix is set to unity. This was necessary, because we could not determine the Duschinsky matrix from
the Qchem output. However, since the Duschinsky matrix for MB is close to unity, the approximation made is small.

C. Optimal tuning of the RSH functional and TDDFT calculations

Ground state and excited state calculations were performed by solving the (generalized) Kohn-Sham DFT equations
self-consistently and from linear-response TDDFT by solving the Casida equations,[16, 17] respectively, with the 6-
31G(d,p) basis set for all atoms (the selected basis set provides transition energies within less than 0.1 eV in comparison
to the complete basis set, as illustrated in Fig. S3). Some calculations were performed using the Generalized Gradient
Approximation (GGA) xc functional of the energy as derived by Perdew, Burke, and Ernzerhof (PBE)[18] combined
with some portion of EXX, as conceived for global hybrid functionals.[19, 20] The xc energy (and their associated
functionals) is chosen as Exc = xPBEx + (1-x)EXX + PBEc, 0 ≤ x ≤ 1 (note that for x = 1 the functional is
equivalent to the PBE, for x = 0.75 is equivalent to the PBE0,[19, 20] and for x = 0 it is given by EXX + PBEc).

In addition, the calculations were performed with the RSH functional ωPBE,[21] which contains PBEx at short
range, EXX at long range, and PBEc at all ranges. The optimal range separation parameter (ω) was initially
determined for each system following the established tuning procedure[22–24] of choosing ω such that the calculated
first ionization energies (IP (i)) and the HOMO eigenvalues (εiHOMO) of the cationic (i=N-1 electrons) and the neutral
(i=N electrons) species agree in modulus as closely as possible (recall that MB is a cation in its most stable form with
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a chloride as counter ion). The first ionization energies, i.e, ionization potential (IP) and electron affinity (EA), are
calculated from the total energy differences (∆SCF). We have demonstrated that for conventional organic systems
the optimal ω values are practically equal for both constraints (-εN−1HOMO = IP or -εNHOMO = EA),[25–27] but for
explicitly solvated systems there might be occasions where the frontier Kohn-Sham orbitals are located at different
molecules.[28] In particular, one of these orbitals could be located in the target molecule (the solute) and the other
in one of the solvent molecules.[28] In that case, the RSH functional is tuned to correctly describe the excited states
of the solvent or the solute, depending on which criterion is applied (-εN−1HOMO = IP or -εNHOMO = EA). Fig. S1
shows the functions JIP

2 (ω) = IP(ω) + εN−1HOMO(ω) and JEA
2 (ω) = EA(ω)+εNHOMO(ω) for the structures MB-13(20),

MB-46(21), MB-31(23), and MB-31(101). For MB-13(20) both functions converge similarly to equivalent optimal ω
values: ωIP = 0.171 a−10 and ωEA = 0.181 a−10 when the difference functions are minimal. This is characteristic for
an ω optimization in solvated systems when only one molecule is inspected, i.e., HOMO(N-1) and HOMO(N) are
both located in one specific molecule. In this case, the orbitals are located in the target molecule of the study, MB,
and not in one of the solvent molecules, as noted in Fig. S2a) (note that generally HOMO(N) can be represented by
LUMO(N-1)). For MB-46(21), JIP

2 (ω) and JEA
2 (ω) behave differently, resulting in quite different optimized ω values:

ωIP = 0.201 a−10 and ωEA = 0.179 a−10 . This inconsistent tuning is associated to Kohn-Sham frontier orbitals of
completely different nature. Indeed, the HOMO(N-1) of MB-46(21) structure is located in a water molecule while
LUMO(N-1) is located mostly on MB, as noted in Fig. S2b). Same statements are valid by comparing the results of
the structures MB-31(23) and MB-31(101), as noted in Fig. S1c) contrasted to Fig. S2c) and Fig. S1d) contrasted
to Fig. S2d). Interestingly, this fluctuation in the HOMO(N-1) localization is not only noted between structures of
different MD frames, but it also depends on the solvation shell size. In order to circumvent possible tuning ambiguities
we have previously employed the concept of the Absolutely Localized Molecular Orbitals (ALMO),[28–30] but this
strategy is not appropriate for systems with significant solvent-solute interactions. Thus, we are taking advantage of
the permanent localization of the LUMO(N-1) in MB for all structures (not shown) to use the minimization of the
JEA
2 (ω) as the only optimization criterion. Table S1 in the Supplementary Material lists the optimal ω and quantities

of comparison in the RSH functional optimization, i.e., εN−1HOMO, IP(N-1), ε
N
HOMO, and IP(N) when ω=ωEA.

These calculations were performed requesting singlet and triplet transitions in the Q-Chem chemistry package.[31]
All isosurface densities were plotted using molden[32] and vmd[33] plotting packages, with a density factor of 0.015.
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FIG. S1. Difference functions JIP2 = IP + εN−1
HOMO, J

EA
2 = EA + εNHOMO, and global difference function (J2(ω) = [JIP2 (ω)2 +

JEA2 (ω)2]1/2) for the structures a) MB-13(20), b) MB-46(21), c) MB-31(23), and d) MB-31(101).
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a)

HOMO(N-1)

LUMO(N-1)

b)

HOMO(N-1)

LUMO(N-1)

c)

HOMO(N-1)

LUMO(N-1)

d)

HOMO(N-1)

LUMO(N-1)

FIG. S2. Isosurface densities of the HOMON−1 and LUMON−1 for the structures a) MB-13(20), b) MB-46(21), c) MB-31(23),
and d) MB-31(101). Only for these calculations ω tuning was obtained from the minimization of the global difference function
(J2(ω) = [JIP2 (ω)2 + JEA2 (ω)2]1/2). Carbon atoms are represented in green, nitrogen in blue, sulfur in yellow, oxygen in red,
and hydrogen in white.

D. GW+BSE calculations: starting point dependence and basis set convergence

We calculated the excitation spectrum of MB using first principles Green’s function-based many-body perturbation
theory within the GW+BSE approach as a reference for our TDDFT calculations. We start by using a one-shot
G0W0 approach in which the electronic self energy Σ0 = iG0W0, where G0, the zeroth-order one-particle Green’s
function, and W0, the zeroth-order screened Coulomb interaction, are constructed from a generalized Kohn-Sham
(gKS) eigensystem. G0W0 quasiparticle (QP) eigenvalues are then calculated as a perturbative correction to the xc
potential used in the preceding DFT calculations using εQP

i = εgKS
i +〈ϕgKS

i |Σ0(εQP
i )−vxc|ϕgKS

i 〉. In this approximation,
it is assumed that ϕQP

i ≈ ϕgKS
i . Neutral excitations are then calculated by solving the Bethe-Salpeter equation (BSE).

For details on the GW and BSE approaches, the reader is referred to Ref. 34 and 35. We performed these calculations
using an implementation of the GW+BSE approach in the molgw software package.[36] molgw relies on local atomic
orbital basis sets and makes use of the resolution-of-the-identity approximation, which results in errors of less than
10meV when a sufficiently large basis set is employed.[37] We further use the frozen core approximation, which changes
excitation energies by less than 1 meV. The first excitation is converged to within 0.1 meV when accounting for the
first ten excitations in our BSE calculations.

GW+BSE calculations are sensitive to the choice of basis set. We show the convergence of the S0-S1 excitation of
MB-31(0) in Fig. S3, and observe a shift of more than 0.1 eV when going from the 6-311G to the 6-311++(2d,2p)
basis set. Using the quadruple basis set def-QZVP changes the S0-S1 excitation by less than 10 meV. All further
GW+BSE calculations were therefore performed with the 6-311++(2d,2p) basis set.

The G0W0 approach suffers from a well-documented dependence on the gKS eigensystem used to construct Σ0.[38–
40] We show that this is the case for MB in Fig. S4, where we compare the S0-S1 excitation of MB-31(0) using
G0W0@LDA and G0W0@ωPBE. G0W0@LDA results in a S0-S1 excitation with far too low oscillator strength, that
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FIG. S3. G0W0@ωPBE+BSE calculations of the first excited state for the MB-31(0) molecule using different basis sets compared
to experimental data.

underestimates the experimental value by almost 0.4 eV, whereas G0W0@ωPBE overestimates experiment by ∼0.3 eV.
In contrast, the TDDFT results based on the LDA and ωPBE, respectively, differ by only ∼0.2 eV, although it should
be noted that the TDLDA result underestimates the oscillator strength of the S0-S1 excitation considerably. The
starting point problem of G0W0 has been shown to be mitigated for many systems by using the QP eigenvalues to
update G and W self-consistently and re-calculate εQP

i until self-consistency has been reached. In the following, we
call this eigenvalue self-consistent approach GnWn. Fig. S4 demonstrates that eigenvalue selfconsistency drastically
changes the result based on the LDA, but only slightly affects the ones based on ωPBE. Using the GnWn approach,
these excitations differ by less than 0.1 eV. In the following we use GnWn@ωPBE results as reference for our TDDFT
calculations.
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FIG. S4. First excited state of the MB-31(0) molecule using TDDFT, G0W0/BSE, and GnWn/BSE methods for two different
functionals, LDA and ωPBE compare to experimental data. In all the calculations, 6-311++(2d,2p) basis set has been used
based on following discussion.
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S2. Tables with data obtained in the optimal tuning of the RSH functional and GW+BSE calculations, and
the vibronic modes using different methods.

TABLE S1. HOMO eigenvalues, first ionization energies, and differences between these quantities for the the optimal ω for
solvated MB structures. The structures are labeled according to the MD frame step and number of solvating water molecules
(in brackets). Note that the difference between HOMO eigenvalues and ionization energies are written in meV. The optimal ω
is chosen by enforcing only -εNHOMO = EA.

Molecule ωopt
(x10−3 a−1

0 )
εN−1
HOMO
(eV)

IP(N-1)
(eV)

|∆N−1
IP+ε|

(meV)
εNHOMO
(eV)

IP(N)
(eV)

|∆N
IP+ε|

(meV)

MB-01(20) 182 -8.6980 8.9623 264 -4.2310 4.2327 2

MB-13(20) 182 -9.3015 9.2451 56 -4.5858 4.5923 6

MB-19(13) 191 -9.3524 9.3425 10 -4.5353 4.5342 1

MB-27(20) 182 -9.2676 9.4642 196 -4.7299 4.7333 3

MB-38(26) 179 -8.9219 8.8796 42 -4.3210 4.3239 3

MB-46(21) 179 -8.4908 8.7295 239 -4.0014 4.0051 4

MB-31(0) 203 -10.011 9.9721 39 -4.858 4.8592 1

MB-31(23) 179 -8.6811 8.6081 73 -4.1113 4.1128 1

MB-31(46) 170 -8.3439 8.4497 106 -4.1822 4.1782 4

MB-31(58) 167 -7.6637 8.3225 659 -4.0826 4.0807 2

MB-31(59) 164 -7.8935 8.2740 380 -4.0321 4.0343 2

MB-31(67) 163 -7.8085 8.2852 477 -4.0526 4.0451 7

MB-31(70) 161 -8.0577 8.3177 260 -4.0393 4.0431 4

MB-31(71) 161 -7.9478 8.3160 368 -4.0572 4.0590 2

MB-31(76) 161 -8.0625 8.3102 248 -4.0478 4.0456 2

MB-31(84) 158 -7.5994 8.2847 685 -4.0894 4.0939 4

MB-31(93) 158 -7.7610 8.1080 347 -3.8389 3.8346 4

MB-31(101) 154 -7.7717 8.1385 367 -3.9021 3.9074 5

GW+BSE

MB-31(0) 203 -9.7958 — — -4.6186 — —

MB-31(23) 179 -8.7970 — — -4.1129 — —
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FIG. S5. Comparison between vibronic spectra computed by TD-B3LYP and ωPBE (ω = 0.203a−1
0 ). The ωPBE spectrum

was computed using the displaced harmonic oscillator approximation, since the Duschinsky matrix could not be determined.
The 0-0 band was shifted to zero; intensities are given relative to the intensities of their respective 0-0 band.

FIG. S6. Comparison between vibronic spectra computed by TD-B3LYP and TD-B3LYP/TDA. The 0-0 band was shifted to
zero; intensities are given relative to the intensities of their respective 0-0 band.
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Ground state Excited state

Mode waven. intensity Mode waven. intensity Mode waven. intensity Mode waven. intensity

number cm−1 km/mol number cm−1 km/mol number cm−1 km/mol number cm−1 km/mol

7 32.62 2.49444 61 1145.97 0.05276 7 35.93 2.18636 61 1139.27 251.70709

8 48.48 0.00174 62 1146.30 0.04520 8 60.37 1.33764 62 1140.61 18.76891

9 64.88 0.00115 63 1164.46 214.18245 9 69.52 1.67171 63 1144.79 0.09102

10 72.00 0.00128 64 1172.85 1.60115 10 82.95 2.77010 64 1168.29 1.27271

11 107.61 1.80565 65 1198.10 100.31962 11 108.03 2.78140 65 1170.22 27.57472

12 126.48 0.11593 66 1201.21 1.60391 12 128.67 1.80126 66 1199.30 12.89473

13 133.96 1.58656 67 1264.89 89.79430 13 151.93 0.48959 67 1224.36 35.21499

14 145.92 0.01246 68 1265.39 33.77028 14 172.85 2.14338 68 1231.97 35.59200

15 147.37 0.00687 69 1272.00 145.03768 15 177.36 5.09230 69 1254.96 35.34025

16 160.21 0.03303 70 1299.97 1.20312 16 185.77 0.51109 70 1267.41 16.61986

17 194.32 0.00931 71 1339.41 0.01409 17 192.79 2.23800 71 1284.16 24.58755

18 200.06 0.01252 72 1369.99 1208.23423 18 219.61 1.69389 72 1321.44 33.42083

19 218.84 1.11502 73 1388.32 202.87967 19 235.31 4.15622 73 1352.88 187.46696

20 243.55 0.03635 74 1398.52 8.41905 20 239.91 0.05023 74 1362.10 53.82935

21 264.51 0.00170 75 1428.65 10.02048 21 270.03 3.98374 75 1379.61 47.79040

22 284.82 0.94924 76 1440.20 202.46864 22 284.48 8.04489 76 1391.92 10.39520

23 305.72 9.12996 77 1442.64 3.40780 23 300.72 12.85729 77 1424.84 2.47289

24 359.75 0.01710 78 1451.24 863.89536 24 356.63 3.34779 78 1439.73 2.35686

25 360.74 0.48146 79 1469.05 0.09104 25 372.90 0.73856 79 1442.86 5.33164

26 395.63 11.41958 80 1469.08 0.00911 26 391.41 0.17387 80 1451.75 4.54267

27 447.47 1.61742 81 1477.06 8.70909 27 423.92 0.13914 81 1460.47 107.73978

28 448.74 4.98582 82 1480.40 146.57744 28 442.87 5.55212 82 1465.46 8.45670

29 457.73 25.45765 83 1482.53 21.28475 29 443.57 4.59288 83 1465.64 41.51534

30 475.99 0.52319 84 1482.64 37.11102 30 447.47 1.73573 84 1468.43 24.94209

31 477.26 0.00058 85 1484.99 316.82385 31 462.05 13.56093 85 1478.87 30.81844

32 496.99 0.06894 86 1486.34 4.65228 32 492.99 2.72720 86 1480.95 27.38900

33 508.10 0.04605 87 1494.97 98.88641 33 505.67 16.44133 87 1481.54 33.31572

34 530.41 2.05891 88 1508.12 3.60847 34 526.13 3.07028 88 1492.37 21.49054

35 556.31 22.16259 89 1520.64 1.35109 35 560.89 2.45015 89 1495.49 21.45472

36 608.85 2.24517 90 1524.96 8.48848 36 599.32 4.84580 90 1504.54 16.49147

37 629.47 0.00101 91 1535.11 1263.65194 37 602.05 1.34125 91 1511.81 1.87962

38 645.41 5.23614 92 1535.81 52.15088 38 623.42 4.96509 92 1520.22 23.80514

39 684.25 40.44541 93 1570.02 46.12627 39 672.68 5.51344 93 1544.66 478.64768

40 685.91 0.11705 94 1579.19 62.45484 40 679.06 5.61251 94 1570.79 153.17464

41 760.96 0.00036 95 1663.37 1138.54255 41 715.74 0.52238 95 1606.32 194.54461

42 782.19 2.06854 96 1687.96 27.31605 42 764.16 0.50359 96 1650.19 171.53217

43 790.10 0.04582 97 3010.24 15.82116 43 775.32 2.92744 97 2987.79 12.12868

44 806.40 21.72491 98 3010.38 38.21927 44 803.39 1.99044 98 2999.02 8.24824

45 848.40 15.10732 99 3018.52 128.52852 45 832.09 10.93994 99 2999.44 40.13544

46 849.32 0.95068 100 3019.16 18.85811 46 850.53 10.06292 100 3012.82 22.95651

47 872.61 3.30036 101 3081.04 8.94260 47 858.28 37.24984 101 3052.98 16.25365

48 877.57 76.48977 102 3081.31 8.90397 48 862.15 0.94813 102 3061.06 13.78649

49 879.48 0.02195 103 3089.61 10.48404 49 878.30 23.62913 103 3066.45 16.38538

50 903.47 188.43333 104 3090.16 10.69693 50 901.55 52.13532 104 3079.65 12.18481

51 974.92 3.55134 105 3151.85 0.29548 51 976.01 21.03951 105 3148.84 4.44016

52 976.05 25.71580 106 3152.61 0.28630 52 979.60 2.41438 106 3153.02 0.10226

53 1018.98 0.00086 107 3164.32 11.26620 53 1004.92 1.05524 107 3160.88 17.62976

54 1019.58 0.00002 108 3164.75 10.09953 54 1012.31 1.33702 108 3165.58 6.45796

55 1051.14 33.18246 109 3207.17 0.36917 55 1030.69 8.14196 109 3202.38 0.22325

56 1078.18 23.79465 110 3207.44 0.21888 56 1079.97 5.40183 110 3207.96 6.09447

57 1078.63 23.08644 111 3218.40 1.75007 57 1081.51 26.54792 111 3212.27 7.27758

58 1085.04 0.04023 112 3218.45 0.22316 58 1082.88 6.77970 112 3223.87 12.47266

59 1125.59 0.00152 113 3236.38 1.14525 59 1107.92 0.01935 113 3231.28 1.30047

60 1125.98 0.00091 114 3236.89 1.13779 60 1127.17 13.73492 114 3241.26 3.64280

TABLE S2. Vibrational frequencies computed by TDB3LYP/def2-SVP.
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Ground state Excited state

Mode waven. intensity Mode waven. intensity Mode waven. intensity Mode waven. intensity

number cm−1 km/mol number cm−1 km/mol number cm−1 km/mol number cm−1 km/mol

7 28.65 2.57100 61 1115.33 0.04900 7 33.15 2.93800 61 1118.35 0.02700

8 47.32 0.00100 62 1115.34 0.24200 8 42.00 0.00000 62 1118.36 0.13900

9 59.40 0.09800 63 1146.96 375.98400 9 64.37 0.10000 63 1141.58 618.38500

10 60.50 0.04500 64 1156.04 1.34200 10 71.84 0.00000 64 1156.56 1.22000

11 104.01 1.74600 65 1177.20 132.86300 11 105.36 1.59500 65 1177.74 177.54300

12 109.77 0.07000 66 1181.41 0.21900 12 118.46 0.00500 66 1182.83 0.05200

13 115.67 2.82900 67 1254.66 304.53800 13 126.17 3.70400 67 1250.82 579.37800

14 132.81 0.40600 68 1259.65 20.18200 14 146.72 0.00800 68 1268.36 14.59500

15 145.56 0.00200 69 1260.71 8.76400 15 158.01 0.00000 69 1271.12 32.84200

16 159.32 0.38900 70 1278.94 2.72600 16 169.55 0.18200 70 1279.93 8.38500

17 187.96 0.00600 71 1319.43 0.12400 17 187.67 0.02000 71 1291.27 1.23800

18 192.96 0.01700 72 1348.73 2049.80400 18 201.70 0.00600 72 1332.11 3685.26200

19 215.74 1.55500 73 1374.82 8.86600 19 222.56 1.63900 73 1372.96 337.24800

20 239.52 0.05400 74 1388.05 8.35300 20 238.64 0.06600 74 1382.19 0.11400

21 250.50 0.00000 75 1416.21 283.08000 21 255.49 0.00100 75 1392.24 14.50900

22 276.10 1.09400 76 1417.52 3.48700 22 275.89 1.10300 76 1409.97 0.97700

23 283.91 10.19800 77 1420.09 3.65100 23 287.07 9.58700 77 1420.76 2.20700

24 336.62 0.00600 78 1424.35 1476.61600 24 346.47 0.01400 78 1420.85 31.64500

25 351.73 1.23800 79 1455.39 5.05300 25 350.49 3.20100 79 1451.35 220.79000

26 387.54 16.83400 80 1456.50 0.21600 26 387.16 19.64500 80 1456.14 0.13300

27 424.84 0.71700 81 1456.63 0.87100 27 439.98 1.10900 81 1456.20 0.65400

28 440.83 4.48500 82 1461.04 182.41500 28 441.74 3.95800 82 1457.08 6.86800

29 450.65 33.94000 83 1467.54 331.14100 29 449.62 37.45200 83 1457.61 188.72100

30 456.78 0.00000 84 1470.81 29.81000 30 463.56 0.00300 84 1467.35 1.75800

31 459.27 1.23200 85 1471.00 6.48200 31 470.46 0.77400 85 1470.31 8.04900

32 487.14 0.01600 86 1471.51 14.43200 32 487.02 0.00800 86 1470.36 39.38800

33 500.10 0.01200 87 1478.42 214.81900 33 502.52 0.01800 87 1479.02 53.22500

34 517.03 1.68700 88 1494.34 0.76400 34 521.15 1.14900 88 1486.34 0.81300

35 544.50 37.65200 89 1508.73 8.77200 35 545.62 43.70100 89 1499.23 38.85700

36 597.46 0.03400 90 1512.65 11.34500 36 597.69 1.54300 90 1501.41 5.80000

37 597.80 1.89600 91 1521.25 1196.99700 37 598.57 0.00100 91 1515.38 84.82000

38 618.11 4.24900 92 1527.91 9.78400 38 620.86 4.09300 92 1536.40 19.62900

39 673.93 50.86400 93 1565.83 125.09800 39 675.18 39.38300 93 1544.27 337.89100

40 674.78 0.07100 94 1573.55 62.06900 40 677.73 0.07500 94 1553.03 56.64100

41 714.00 0.00000 95 1653.67 1352.27600 41 714.31 0.00000 95 1632.00 1626.55200

42 743.34 0.61700 96 1678.87 35.60800 42 745.73 0.78900 96 1659.59 38.02600

43 773.85 1.38000 97 3003.47 13.91600 43 773.80 1.32900 97 2991.22 16.16300

44 801.45 25.85600 98 3003.58 41.14400 44 799.15 29.31600 98 2991.35 43.94400

45 808.81 0.43500 99 3011.92 142.64800 45 809.28 0.31300 99 3000.49 149.64300

46 811.61 0.00900 100 3012.38 1.77600 46 811.59 0.00500 100 3000.97 1.98700

47 830.06 112.60800 101 3074.77 3.30100 47 830.38 0.43700 101 3057.63 7.10300

48 830.15 3.02600 102 3074.77 13.24600 48 830.53 115.03400 102 3057.64 11.37900

49 862.63 2.76700 103 3085.38 7.90700 49 866.09 2.18900 103 3069.34 6.78800

50 886.72 317.36200 104 3085.52 8.89600 50 887.89 259.62300 104 3069.38 11.78500

51 967.75 0.61700 105 3139.49 0.51100 51 974.38 4.30500 105 3138.42 0.33900

52 968.24 13.80500 106 3139.58 0.52600 52 974.40 6.43800 106 3138.43 0.44000

53 976.07 0.28200 107 3149.08 8.30700 53 975.14 0.36000 107 3147.75 13.41000

54 976.57 0.00100 108 3149.18 5.99300 54 975.58 0.00100 108 3147.77 2.53100

55 1038.49 156.74400 109 3180.73 0.77500 55 1044.36 200.60800 109 3179.31 0.96100

56 1061.00 21.06800 110 3180.90 0.66700 56 1067.85 25.56500 110 3179.46 0.76300

57 1061.13 17.19900 111 3191.14 1.31200 57 1067.92 12.61200 111 3187.45 1.54800

58 1076.09 0.05900 112 3191.24 0.25700 58 1079.44 0.17500 112 3187.50 0.02800

59 1100.62 0.19100 113 3205.16 0.93200 59 1105.36 0.14400 113 3204.73 0.85200

60 1100.67 0.09000 114 3205.38 0.84900 60 1105.41 0.05100 114 3204.76 0.70300

TABLE S3. Vibrational frequencies computed by ωPBE/6-31G(d,p) (ω = 0.203a−1
0 ).
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Excited state

Mode waven. intensity Mode waven. intensity

number cm−1 km/mol number cm−1 km/mol

7 38.84 1.85149 61 1136.77 275.12760

8 66.71 0.26478 62 1147.20 0.00072

9 78.04 0.12484 63 1149.43 0.00299

10 88.75 0.05248 64 1157.68 88.49210

11 108.59 3.86044 65 1169.24 54.74580

12 131.61 0.30637 66 1188.05 62.44944

13 153.64 0.01551 67 1205.15 3.62013

14 179.63 1.10763 68 1239.08 1.89099

15 185.29 1.72916 69 1261.93 90.54299

16 190.98 0.06877 70 1269.13 0.62355

17 194.12 0.09149 71 1289.93 4.25036

18 236.09 0.14158 72 1307.66 2.60590

19 238.78 0.68574 73 1362.24 314.90506

20 263.99 0.29484 74 1368.24 191.88322

21 266.48 0.00496 75 1392.85 3.72158

22 285.89 2.56904 76 1406.43 0.70205

23 303.13 9.56485 77 1435.42 13.76488

24 355.31 0.22019 78 1442.26 3.55033

25 369.69 0.02935 79 1447.91 16.97764

26 387.96 0.88582 80 1453.96 3.01010

27 420.24 0.05837 81 1457.64 204.34114

28 436.31 4.29935 82 1465.27 0.00738

29 442.82 21.31266 83 1470.77 3.40197

30 449.00 0.01845 84 1472.05 22.84521

31 466.21 9.53510 85 1477.96 24.24084

32 493.98 4.16556 86 1479.95 47.21093

33 505.50 8.51089 87 1485.71 8.41641

34 526.23 3.94858 88 1491.03 0.45420

35 556.86 1.65936 89 1503.03 167.45052

36 591.21 3.30674 90 1504.27 1.06986

37 598.83 0.30066 91 1517.38 12.42691

38 611.94 5.73389 92 1521.56 2.23913

39 657.23 3.42401 93 1548.64 404.07686

40 685.26 0.28920 94 1594.75 259.81368

41 687.46 0.37513 95 1605.91 764.50423

42 757.31 0.50372 96 1653.03 77.03806

43 777.71 7.42674 97 2988.33 18.64282

44 800.18 11.97069 98 2998.30 7.40754

45 831.26 3.76585 99 3003.84 27.64394

46 842.42 2.88004 100 3013.70 70.43175

47 847.00 35.56174 101 3049.89 6.36440

48 851.40 17.39089 102 3059.98 14.64360

49 877.39 24.73482 103 3070.63 11.33010

50 900.79 98.48625 104 3081.34 12.21993

51 948.88 22.87369 105 3150.88 0.66556

52 976.89 25.41785 106 3154.37 1.76040

53 990.68 1.37810 107 3162.67 12.87123

54 1002.26 0.47071 108 3165.53 9.40334

55 1010.34 0.01933 109 3199.94 0.14141

56 1077.82 4.59158 110 3207.72 0.41638

57 1086.44 34.52656 111 3213.01 1.54738

58 1087.08 9.54707 112 3225.88 2.97900

59 1123.16 0.00778 113 3232.33 3.44001

60 1131.59 0.00547 114 3243.39 7.93598

TABLE S4. Vibrational frequencies computed by TD-B3LYP/TDA/def2-SVP.
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Abstract
Photoinduced charge-transfer excitations are key to understand the primary processes of natural
photosynthesis and for designing photovoltaic and photocatalytic devices. In this paper, we use
Bacteriochlorophyll dimers extracted from the light harvesting apparatus and reaction center of a
photosynthetic purple bacterium as model systems to study such excitations using first-principles
numerical simulation methods. We distinguish four different regimes of intermolecular coupling,
ranging from very weakly coupled to strongly coupled, and identify the factors that determine the
energy and character of charge-transfer excitations in each case. We also construct an artificial
dimer to systematically study the effects of intermolecular distance and orientation on
charge-transfer excitations, as well as the impact of molecular vibrations on these excitations. Our
results provide design rules for tailoring charge-transfer excitations in Bacteriochloropylls and
related photoactive molecules, and highlight the importance of including charge-transfer
excitations in accurate models of the excited-state structure and dynamics of Bacteriochlorophyll
aggregates.

1. Introduction

Photoinduced charge-transfer excitations are of central importance to the primary processes of natural
photosynthesis and for photovoltaic and photocatalytic applications [1, 2]. In organic semiconductors,
charge-transfer excitations are believed to be important intermediates between excited states localized on
donor molecules and charge-separated electron–hole states on acceptor and donor units, respectively, even
though the exact mechanism of charge-separation is debated [3–12]. In photosynthesis, the efficient
conversion of solar energy into chemical energy is achieved by structurally complex aggregates of
Bacteriochlorophylls (BCL), Chlorophylls, and other pigment molecules embedded in transmembrane
proteins that modulate their structure and function. These pigment-protein complexes form light-harvesting
complexes and reaction centers (RCs) that are responsible for photon absorption, excitation-energy transfer,
and charge-separation. Their main operating principles are well-understood due to a wealth of
crystallographic and spectroscopic studies complemented by numerical modeling using semi-empirical and
first-principles approaches [13–22].

In purple bacteria, charge separation occurs in RCs comprising a hexameric aggregate of four BCLs and
two Bacteriopheophytins, tightly surrounded by several protein chains [23–25]. The primary four BCL
molecules of this RC are shown in figure 1(a), highlighting the so-called special pair, a strongly-coupled
dimer of BCLs called PA—PB in the following. Charge separation in the bacterial RC is initiated by a series of
energy- and charge-transfer excitations that involve the special pair and proceed along the A branch, the
photoactive of the two pseudo-symmetric branches the RC consists of [19, 26–28]. In figure 1(b), we have
highlighted the A-branch dimer PA—BA that has been speculated to be involved in the primary

© 2023 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Crystal structure of BCL aggregates in the RC and light-harvesting II (LHII) complex of the purple bacteria Rhodobacter
sphaeroides and Rhodoblastus acidophilus, respectively. Dimers of BCLs are highlighted in color using (a) pink for the special pair
PA—PB, (b) orange for the A branch dimer PA—BA, (c) red for a dimer from the B800 and blue for a dimer from the B850 ring of
the LHII complex. Hydrogen atoms are omitted for clarity.

charge-separation step, although this assignment is debated in the literature [29–32]. Excitation energy
reaches the RC through a cascade of excitation-energy transfer processes that are initiated in the light
harvesting II (LHII) complex, consisting of two rings of BCL molecules dubbed B850 and B800, respectively,
and shown in figure 1(c). Neighboring BCLs in the B800 ring are only weakly coupled and excitation-energy
transfer is well-described by Förster dipole-dipole coupling [33]. In the B850 ring, neighboring BCL
molecules are closer and intermediate between the weakly coupled B800 and the strongly coupled
special-pair BCLs.

The excited states that are believed to be responsible for excitation-energy transfer in and between the
light-harvesting complexes and the RC, are commonly thought of as Frenkel-like excitons that are spatially
relatively localized on one or two BCL molecules [34]. Semi-empirical models based on Frenkel-exciton
Hamiltonians have played an important role in modeling the excitation-energy and charge-transfer
dynamics in large photosynthetic pigment-protein complexes [35–37]. However, for a reliable and predictive
representation of the electronic coupling between adjacent pigments, charge-transfer excitations need to be
included in these model Hamiltonians [36, 38–41], calling for accurate first-principles calculations of such
excitations.

For computationally efficient first-principles methods such as time-dependent density functional theory
(TDDFT), charge-transfer excitations were long considered a major challenge due to their inherently
nonlocal nature, i.e., the spatial separation of the occupied and virtual orbitals contributing to these
excitations [42]. TDDFT with optimally-tuned range-separated hybrid functionals is a viable solution to this
problem, and has been used to predict excited states of molecular systems and solids with great success
[43–49]. In these exchange-correlation functionals, the presence of long-range exact exchange leads to
asymptotically correct potentials. Additionally, a parameter controlling the length scales of exact and
semilocal exchange can be used to tune the energies of the highest occupied and the lowest unoccupied
orbitals to correspond to the negative of the ionization potentials and the electron affinity, respectively,
within the conceptual framework of generalized Kohn–Sham theory [50]. Both conditions are crucial for
accurately capturing charge-transfer excitations within linear-response TDDFT [51] and have been extended
to solvated molecular systems [47, 52] and solids [49].

An alternative approach for calculating charge-transfer excitations of is the GW+Bethe-Salpeter
equation (GW+BSE) approach [53, 54]. While this method was initially primarily applied to solids, recent
years have witnessed a multitude of studies that have demonstrated the accuracy and predictive power of the
GW+BSE method for small molecules [55–57] and larger molecular complexes [58–62]. In particular, we
[63] and others [62] benchmarked the accuracy of the GW+BSE approach against experiment and
wavefunction-based methods and found excellent agreement for the Qy and Qx excitations of a range of BCL
and Chlorophyll molecules. We showed that eigenvalue self-consistent GW calculations and one-shot G0W0

calculations where the zeroth-order single-particle Green’s function G0 and screened Coulomb interaction
W0 were constructed from a DFT eigensystem obtained with an optimally-tuned range-separated hybrid
functional lead to the best results. TDDFT with an optimally-tuned hybrid-functional performed slightly
worse and tended to overestimate the energy of the Qy excitations, in agreement with previous studies [58].

2
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In this article, we report a systematic first-principles study of charge-transfer excitations in BCL
dimers—the smallest structural units in which excitations with intermolecular charge-transfer character can
be observed. Two types of BCL dimers constitute our model systems in this study: The first class of dimers
(discussed in section 3.1) are extracted from the LHII complex and RC of purple bacteria. We note that the
excitation energies that we calculate for these systems will be different from those in vivo, where electrostatic
and dielectric effects of the protein environment and coupling with other pigments leads to different
excitations and affects locally excited and charge-transfer states differently [34, 64–66]. Our goal is to
elucidate the factors that determine the energy and character of these excitations, in particular their mixing
with the coupled Qy and Qx excitations of the dimers. We treat these dimers as representative of four
different regimes of intermolecular coupling resulting in distinct charge-transfer properties: 1. The B800
dimer is very weakly coupled with Qy and Qx excitations resembling those of the monomeric units and
high-energy charge-transfer excitations due to vanishing orbital overlap. 2. The A-branch dimer is more
strongly coupled and exhibits one charge-transfer excitation corresponding to electron transfer from PA to
BA. We use the notation P+

A B−
A to indicate the direction of charge-transfer in the following. This

charge-transfer excitation is∼0.4 eV higher in energy than the coupled Qx excitations. 3. The B850 dimer is
even more strongly coupled. The lowest-energy charge-transfer excitation mixes with the coupled Qx

excitations and another charge-transfer state appears at slightly higher energies. 4. Finally, the special pair is
the most strongly coupled case with three charge-transfer excitations mixing with the coupled Qx excitations.
Additionally, we construct an artificial BCL dimer and systematically study the effects of intermolecular
distance and orientation on charge-transfer excitations. We also estimate the effect of molecular vibrations
on charge-transfer excitations. We do this by calculating the vibrational normal modes of a dimeric system
and determining the change of excitation energies for structures distorted along normal modes. This allows
us to identify vibrational modes with pronounced effects on charge-transfer excitations. Finally, we comment
on differences and similarities between TDDFT with an optimally-tuned range separated hybrid functional
and the GW+BSE approach.

2. Computational methods

2.1. First-principles methods and computational details
For all calculations reported in this article, we used TDDFT as implemented in TURBOMOLE version 7.5 [67]
and the GW+BSE approach as implemented in MOLGW version 3.0 [68]. Briefly, in the linear-response
formulation of both methods the excitation energies Ωn can be obtained by solving the matrix eigenvalue
equation CZ=Ω2nZ, where C is

Cijσ,klτ = (εiσ − εjσ)
2δijδjlδστ + 2

√
εiσ − εjσ

√
εkτ − εlτKijσ,klτ (1)

and the indices i,k refer to occupied, j, l to virtual orbitals and σ,τ to spin-indices. Differences between
TDDFT and the GW+BSE approach enter equation (1) in two distinct ways: 1. Through the differences
between virtual and occupied orbital energies εiσ − εjσ which are obtained from a (generalized) Kohn–Sham
calculation in TDDFT and from the GW approach in GW+BSE. 2. Through the kernel matrix element
Kijσ,klτ , which depends on the exchange-correlation kernel fxc,σ—the functional derivative of the
exchange-correlation potential—in TDDFT, and on the screened Coulomb interactionW, typically
evaluated in the random phase approximation and at zero frequency, in the BSE approach [69–72].

Here we use the optimally-tuned range-separated hybrid functional ωPBE for our TDDFT calculations.
We use a range-separation parameter ω = 0.171 a−10 , based on tuning for a single BCL amolecule performed
by Schelter et al [73]. The optimal-tuning procedure follows the recipe by Stein et al and ensures that the
HOMO eigenvalue corresponds to the ionization potential and the LUMO eigenvalue corresponds to the
electron affinity of the molecule [74]. We do not perform a new tuning procedure for the dimers for general
reasons: Using the same ω for each dimer allows us to compare the electronic and excited state structure of
these systems on the same footing. Furthermore, optimal tuning of conjugated systems of increasing size
leads to artificially low values of ω and, thus, a dominance of semilocal exchange at long range, which
deteriorates the description of charge-transfer excitations [47, 75].

For our GW+BSE calculations we use a ‘one-shot’ G0W0 approach in which we construct the
zeroth-order single-particle Green’s function G0 and the screened Coulomb interactionW0 from DFT
eigenvalues and eigenfunctions calculated using the same ωPBE as described above. This approach leads to
excellent agreement with experimental excitation energies and reference values from wavefunction-based
methods for a range of BCL and Chlorophyll molecules [63]. Range-separated hybrid functionals have been
shown to lead to accurate charge-transfer excitations for larger molecular complexes as well [58, 76]. In all
calculations we used a def2-TZVP basis set, and the frozen core and resolution-of-the-identity
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Figure 2. Schematic isosurface picture of the difference density of an excited state. The red and blue areas correspond to regions of
positive and negative density, respectively. We integrate the difference density over volumes associated with each molecule to
quantify how much charge is transferred as a result of the excitation (see main text).

approximations (with the DeMon auxiliary basis set [77]). We did not apply the Tamm-Dancoff
approximation in any of the results reported in this paper. In our G0W0 calculations, we used the optimized
virtual subspace method by Bruneval with an aug-cc-pVDZ basis set for the reduced virtual orbital subspace
[78]. With these settings, our excitation energies are converged to within 40 meV. Further details on our
convergence tests can be found in section 2.2 and in the Supplemental Material (SM).

For evaluating the character of the excited states, we calculated their transition and difference densities
which are both derived from the density matrix γii(r, r ′) = N

´

Ψi(r, r2, r3, . . . , rn)Ψ
i(r ′, r2, r3, . . . , rn)dr2 . . .

drn, where N is the number of electrons andΨi is the generalized Kohn–Sham excited-state wavefunction,
here constructed from a sum of Slater determinants of generalized Kohn–Sham orbitals with coefficients
from linear-response TDDFT or the BSE. The ground state density is n0(r) = γ00(r, r ′). The density of
excited state i is ni(r) = γii(r, r ′). The difference density is obtained by subtracting ni from n0, and allows to
visualize the change of density upon excitation of the system into excited state i, as schematically shown in
figure 2. The transition density is obtained as the diagonal part of the density matrix for a transition from the
ground state into an excited state i as ρ0i(r) = γ0i(r, r ′), and is particularly useful for determining the
interaction strength of electronic transitions with light and efficiencies of excitation energy transfer. For
charge-transfer excitations there is no overlap between ground and excited state, thus the transition density
vanishes. We therefore use the difference density for visualizing charge-transfer excitations and quantifying
their charge-transfer character [79]. Note that for the identification of charge-resonance excitations,
i.e., excitations without a net charge transfer which can be described as linear combinations of forward and
backward charge transfers of equal weight, direct analysis of the transition density matrix is a more useful
tool [80]. In the following, we define charge-transfer excitations as those with a net shift of charge with
respect to the ground state.

To quantify the magnitude of charge transfer we integrated over subsystem difference densities. For this
purpose, we subdivided the volume containing the difference densities of the dimer into subsystem volumes,
each containing one pigment. Our aim is to assign each grid point of the difference-density grid to its closest
pigment molecule. For achieving this, we used the distances between grid points and each molecule’s atomic
coordinates (including hydrogen atoms), as previously done in [64].

Finally, to obtain a mode-resolved picture of the effect of thermally-activated vibrations (section 3.3), we
relaxed a dimer structure using the B3LYP approximation for the exchange-correlation functional and
def2-TZVP basis set, and evaluated its normal modes and frequencies. Using the harmonic approximation,
we related the amplitude of these normal modes with the thermal energy of a molecule. Thus, we distorted
the dimer structure along its lowest-frequency normal modes at a temperature of 300 K. In this manner, we
generated 60 distortions of the dimer, that we then studied using TDDFT calculations using the ωPBE
functional. All these calculations were performed using the tools provided in the TURBOMOLE package.

2.2. Convergence ofG0W0+BSE calculations
We carefully tested that our GW+BSE results are converged. Due to the large size of a BCL dimer, featuring
more than 300 electrons, the calculation of the GW self-energy which requires summation over virtual states
is computationally demanding. We therefore used the optimized virtual subspace method implemented in
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Figure 3. Convergence of GW (a) HOMO-LUMO gap and (c) energy of the first excited state of BCL amonomer as a function of
the number of basis functions. Blue data points correspond to calculations in which the same basis set is used for the occupied
orbitals and the virtual subspace. Red points correspond to calculations using the optimized virtual subspace method. Lines are
fits to these data points. Convergence of the HOMO-LUMO gap and energy of the first excited state is shown in panel (b) and
(d) for the B850 dimer, respectively. Here, green corresponds to using the same basis set for the occupied orbitals and the virtual
subspace and pink to calculations using the optimized virtual subspace method.

the MOLGW code, in which a reduced virtual orbital subspace represented by a comparably small basis set is
used to evaluate the GW self-energy [78].

We start by testing the convergence of the HOMO-LUMO gap, and the Qy and Qx excitations of a BCL a
monomer with respect to basis set size without the optimized virtual subspace method (table S1). In
agreement with our previous results [63], we find that the def2-TZVP basis set deviates by less than 10 meV
from the considerably larger aug-cc-pVTZ basis. We proceeded by calculating the convergence of the Qy and
Qx excitations of the BCL monomer as a function of the number of virtual orbitals Nvirt included in the
evaluation of the GW self-energy using the def2-TZVP basis (figure S1). We find that for Nvirt = 500 both
excitations are converged to within 80 meV from the limit of infinite Nvirt . Based on these findings we
continued by evaluating the effect of using a smaller basis set for the virtual subspace [78]. The results for the
HOMO-LUMO gap and the Qy excitation are plotted in figures 3(a) and (c), and show that the optimized
virtual subspace method leads to an underestimation of the HOMO-LUMO gap and the Qy excitation energy
as compared to the conventionalmethod in which the same basis set is used for all orbitals. We find that using
the aug-ccpVDZ basis for the optimized virtual subspace in conjunction with Nvirt = 500 leads to a
fortuitous error cancellation and results in a HOMO-LUMO gap and Qy and Qx excitation energies that are
within less than 50 meV of the results obtained with the conventional method and Nvirt →∞ (figure S2).

For the dimer, we therefore chose Nvirt = 1000 and the same strategy for determining the optimized
virtual subspace. We find very similar results for the convergence of the HOMO-LUMO gap and the first
bright coupled Qy excitation shown in figures 3(b) and (d). All GW+BSE results reported in this paper are
therefore based on calculations using the def2-TZVP basis set for the occupied orbitals and the aug-ccpVDZ
basis for the optimized virtual subspace.

2.3. Construction of the model systems
We constructed our model systems from the x-ray crystallographic structures of the purple bacteria
Rhodobacter sphaeroides (structure ID 1M3X in the Protein Data Base) [81], Rhodoblastus acidophilus
(structure ID 1NKZ [82]). In all structures, we replaced the phytyl tail with hydrogen. Hydrogen atoms not
resolved in the experimental crystal structure were added using AVOGADRO and their positions were optimized
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while keeping the rest of the structure fixed. These geometry optimizations were performed using TURBOMOLE
and the B3LYP exchange-correlation functional. The RC dimers PA—PB and PA—BA (figures 1(a) and (b))
were constructed using structure 1M3X while the B800 and B850 ring dimers (figure 1(c)) were extracted
from 1NKZ. These molecules correspond to ID numbers BCL307 and BCL309 for the B800, and BCL302
and BCL303 for the B850 ring. Note that the resolution of x-ray crystal structures of protein complexes is
often not high enough to resolve the internal structure of the chromophores. Therefore, internal coordinates
(such as bond lengths) can be unreliable, and care should be taken when comparing calculations to
experiment [83]. We illustrate this effect in figure S3, where we compare TDDFT spectra based on the x-ray
crystal structures with those based on constrained relaxations of the B800 and the B850 dimers. Geometry
optimization leads to significant changes in the excitation energies, in particular a blueshift of the Qy

excitation and charge-transfer states. Nonetheless, in section 3.1, we present results based on unrelaxed
crystal structures, since qualitatively the results are the same.

To study the effect of structure in more detail, we additionally constructed an artificial dimer consisting
of two exactly equivalent relaxed BCL amolecules (using molecule PA) that we initially oriented in the same
way as the special-pair dimer PA—PB by aligning their transition dipole moments (as calculated with
TDDFT) with those of PA and PB, respectively. We are providing all relevant structure files necessary to
reproduce the results of this article in the SM.

3. Discussion and results

3.1. Charge-transfer excitations in RC and LHII dimers
We start by comparing the excitation spectrum of the four dimeric systems shown in figures 1(a)–(c) using
TDDFT and GW+BSE. The energies and oscillator strengths of the first 15 excitations of each system can be
found in table S3 and S4. The spectra are shown in figures 4(a) and (b), respectively, and allow for several
observations. First, we find that TDDFT and GW+BSE predict qualitatively very similar spectra. The most
striking difference appears for the B800 dimer, for which the coupled Qy excitations calculated with TDDFT
are∼0.3 eV higher in energy than with GW+BSE while all other excitations are at similar energies. This
observation is consistent with our results for single BCL amolecules for which TDDFT with optimally-tuned
ωPBE consistently overestimates the Qy excitation energy by∼0.3 eV [63] and therefore leads to an
underestimation of the Qy—Qx energy difference as compared to experiment. Interestingly, this
overestimation as compared to GW+BSE, while still present, is less pronounced for the other three dimers
and seems to decrease with increasing intermolecular coupling. Our results are in qualitative agreement with
previous calculations (see table S5), but a comparison is complicated by the use of different structural
models, exchange-correlation functionals and basis sets.

Second, we find several dark excitations for all four systems, predicted at very similar energies with
TDDFT and the GW+BSE approach. We analyze the charge-transfer character of these excitations by
calculating their difference densities and integrating over subsystem difference densities as described in
section 2.1. The energy and character of these dark excitations considerably differs for our four dimers. For
the B800 dimer, we find three dark excitations, E5, E6, and E7,∼0.7 eV above the coupled Qx excitations
which are almost degenerate. The difference densities (figure S4 and table 1) do not indicate any
charge-transfer character for these excitations—their charge distribution is primarily localized on only one
BCL in each excitation, and looks similar to those of the monomeric system. Charge-transfer excitations can
be found at around 3.0 eV, consistent with the large distance of 20 Å between the B800 molecules, measured
as the distance between their centers of masses.

The molecules PA and BA of the A-branch dimer are∼13 Å apart, leading to stronger intermolecular
coupling and the appearance of a charge-transfer state in the energy range considered here. Figure 4 shows
that for this system the coupled Qy and Qx excitations are split and the first dark excitation is∼0.3 eV higher
in energy than the second coupled Qx excitation. Contrary to the B800 dimer, this dark excitation has clear
charge-transfer character (table 1) and corresponds to P+

A B−
A . The character of the two following dark states

is unchanged as compared to B800 apart from a redshift.
In the B850 dimer with∼11 Å distance, the stronger intermolecular coupling leads to a further redshift

of the dark excitations. We find that a dark state mixes with the coupled Qx excitations leading to
charge-transfer character in E3. The second charge-transfer excitation, E6, appears∼0.2 eV above the first
one, in the vicinity but energetically well-separated from the coupled Qx excitations.

The excitation spectrum of the special-pair dimer is yet different. Due to the strong intermolecular
coupling of the two molecules which are only 9 Å apart, three charge-transfer excitations appear at relatively
low energies. The first one is lower in energy than the first coupled Qx excitation and corresponds to P+

A P−
B ,

whereas the other two are above the coupled Qx excitations and correspond to P−
A P+

B and P+
A P−

B , respectively.
Note that due to the overestimation of the coupled Qy excitations by TDDFT, GW+BSE predicts the energy
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Figure 4. Excitation spectrum of B800, A-branch, B850, and SP dimers using (a) TDDFT with ωPBE and (b) the
G0W0@ωPBE+BSE approach. Arrows mark dark excitations without (D) and with (CT) charge-transfer character. The shaded
areas are calculated by folding the excitation energies with Gaussian functions with a width of 0.08 eV as a guide to the eye.

Table 1. Difference density integrated over subsystem volumes. The first two excitations, i.e. E1 and E2, are not included since their
difference densities integrate to zero in all studied systems.

Dimer Molecule label

Charge distribution

E3 E4 E5 E6 E7

B800
B307 0 0 0 0 0
B309 0 0 0 0 0

A-branch
PA 0 0 −0.97 0 0
BA 0 0 0.97 0 0

B850
B302 −0.83 0 0 0.86 0
B303 0.83 0 0 −0.86 0

SP
PA −0.69 0 0 0.83 −0.76
PB 0.69 0 0 −0.83 0.76

gap between the coupled Qy excitations and CT1 to be twice as large as TDDFT. Nonetheless, since the
qualitative features of all four excitation spectra and the charge-transfer character of all excitations is similar,
we use TDDFT for all further calculations and report GW+BSE results in the SM.

3.2. Charge-transfer excitations in artificial dimer
The dimeric systems extracted from the RC and LHII crystal structures discussed in section 3.1, differ in
their distance, relative orientation, and the structural details of the two molecular subunits comprising the
dimer. To disentangle these effects, we therefore proceeded by performing TDDFT calculations for an
artificial dimeric system constructed as discussed in section 2. The structural parameters that define the
distance and relative orientations of this dimer are shown in figure 5. We measure the distance between the
molecules r as the distance between their centers of masses R1 and R2, i.e. r = |r|= |R1−R2|. Their relative
orientation is defined by three angles α, β, and γ. The first angle, α, is a rotation around the normal vector of
the plane spanned by the Qy and Qx transition dipole moments of a single molecule, i.e. it is approximately
perpendicular to the porphyrin-ring plane. The second rotation axis, associated with β, corresponds to
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Figure 5. Structure of artificial dimer based on two identical PA molecules. We highlight four functional groups FG1 (in green),
FG2 (in red), FG3 (in pink), and FG4 (in orange). Hydrogen atoms are omitted for clarity.

Figure 6. (a) Absorption spectra of artificial dimer with r = 9Å (blue), r = 11Å (red), and r = 13Å (green). Arrows mark
excitations with charge-transfer character. The shaded areas are calculated by folding the excitation energies with Gaussian
functions with a width of 0.08 eV as a guide to the eye. (b) The excitation energy of the first two charge-transfer (CT1 and CT2)
excitations and the first four dark states (D1–D4) as a function of r. The color scale represents the charge-transfer character of
each excitation based on the absolute value of the integrated subsystem difference densities. (c)∆R (see main text) as a function
of the rotation angle α (top), β (middle), and γ (bottom). Blue lines are periodic fits and serve as a guide to the eye. The color
scale corresponds to the change in energy∆E of CT1 as compared to the unrotated reference structure.

r= R1−R2. The third rotation, γ, is around the axis given by the cross product of r and the normal vector of
the Qy—Qx plane. For our further discussion, we also distinguish between the four functional groups FG1,
FG2, FG3, and FG4, highlighted in figure 5.

We start by investigating the effect of changing the distance r between the molecules PA1 and PA2, fixing
the relative orientation of the molecules such that it corresponds to the one found in the special-pair dimer.
Figure 6(a) shows the excitation spectra of dimers separated by 9, 11, and 13 Å, corresponding to the
center-of-mass difference found in the special pair, the B850 dimer, and the A-branch dimer of section 3.1,
respectively. Note that distances smaller than 9 Å are not possible for the artificial dimer due to overlap
between the FG3 functional groups. Decreasing the center-of-mass difference leads to a redshift and splitting
of the coupled Qy excitations accompanied by a redistribution of oscillator strength between the two
excitations, in accordance with expectations from Kasha’s exciton theory [84]. The effect on the coupled Qx

excitations cannot be discussed without also considering the higher-energy charge-transfer excitations. The
latter are redshifted when going from 13 to 11 Å, and mix with the coupled Qx excitations at 9 Å, similar to
the situation in the special-pair dimer. The corresponding charge distributions based on subsystem integrals
of difference densities are shown in table 2 and demonstrate that for the system at r = 9Å, all excitations in
the energy-range of the coupled Qx excitations and the higher energy dark states exhibit charge-transfer
character. We classify E4, which is in the energy range of the coupled Qx excitations and corresponds to
transfer of half an electron from PA1 to PA2 as a partial charge-transfer state in figure 6(a). Our results are
qualitatively similar when using the GW+BSE approach, as shown in figure S6 and consistent with our
discussion in section 3.1.

These trends are even more apparent in figure 6(b), where we plot the energy of all dark excitations as a
function of distance and indicate their charge-transfer character in color. In the energy range considered
here, there are four dark excitations without charge-transfer character which are essentially independent of
distance and are only redshifted and acquire substantial charge-transfer character at relatively small r. The
two charge-transfer states exhibit a significant distance dependence and are red-shifted by almost 1 eV with
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Table 2. Charge distribution on each molecule in the artificial dimer upon excitation as calculated by integration over subsystem
difference densities. The first two excitations, i.e. E1 and E2, are not included since their subsystem difference densities integrate to zero.

r (Å) Molecule

Charge distribution

E4 E5 E6 E7 E8

9 PA1 −0.48 0.21 0.28 −0.62 −0.63
PA2 0.48 −0.21 −0.28 0.62 0.63

11 PA1 0 −0.96 0.96 0 0
PA2 0 0.96 −0.96 0 0

13 PA1 0 0 0 −0.99 0.99
PA2 0 0 0 0.99 −0.99

decreasing r but lose some of their charge-transfer character at the smallest distance where they start mixing
with the coupled Qx excitations.

For investigating the effect of the relative orientation of the two molecules, we fixed the intermolecular
distance at 13 Å. Shorter distances were not possible due to overlap of functional groups for some
orientations. Since rotations around the angles α, β, and γ do not commute, we treat them separately from
each other, i.e. we first consider rotations around α for fixed β and γ, then rotations around β for fixed α
and γ, and finally rotations around γ for fixed α and β. For each structure, we determine the smallest
intermolecular distance between every two individual atoms in PA1 and PA2, R. The difference between R in
the reference (unrotated) structure from each rotated structure,∆R = Rref −Rrot, as a function of rotation
angle, is shown in figure 6(c). Since charge-transfer excitations CT1 and CT2 follow similar trends, we only
show the change in energy of CT1 upon rotation in figure 6(c). Negative (positive) values of
∆ECT1 = ECT1

ref − ECT1
rot correspond to a redshift (blue-shift) of the excitation energy.

Rotations around α and β correspond to orientations with smaller R than in the reference structure.
Consequently, we observe increased intermolecular coupling and hence a redshift of the charge-transfer state
by up to∼0.2 eV. For the structure for which we observe the largest effect (corresponding to a β rotation of
120 degrees), it is primarily the relative orientation and distance of carbon chains determining the
intermolecular coupling (figure S8(a)). For many of the other structures that show pronounced redshifts, we
find that the functional groups of the two BCLs highlighted in figure 5 are in close spatial proximity (see
figure S8(b) for an example). In contrast, the rotation around the angle γ results primarily in structures with
positive∆R and a blueshift of the charge-transfer excitation by up to∼0.1 eV. We note that in the majority
of structures rotated around γ, the functional groups FG1, FG2, and FG4 are far apart from the second BCL.
However, for some structures, overlap between FG2 and the second BCL molecule led to unrealistic
structures that were excluded from figure 6(c). Overall, the γ rotation primarily leads to geometries with
weaker intermolecular coupling and an overall blueshift in energy of the charge-transfer excitation.

3.3. Vibrational effects on charge-transfer excitations
Excitations of different spatial localization and character are known to be affected in different ways by
molecular vibrations [85]. Our goal here is to provide a mode-resolved picture of excitation energy changes
in a BCL dimer due to thermally-activated vibrations, following earlier work by Hele et al [86]. For this
purpose, we started from the crystal structure of the special-pair dimer and performed a full geometry
optimization using the def2-TZVP basis set and B3LYP exchange-correlation functional. In the absence of
the protein environment and other co-factors, no external force fixes PA and PB in the parallel configuration
they have in vivo. Consequently, the relaxed structure differs considerably from the special-pair structure,
and is more akin to the A-branch dimer. Since our aim is to provide a qualitative picture, we proceed with
this structure which is dynamically stable, i.e. without imaginary frequencies. We note, however, that the
excitation spectrum of the relaxed dimer, shown in figure 7(a), differs from the spectra discussed so far. In
particular, the spectrum displays a charge-transfer state CT1 at∼1.6 eV (see also table S9). This state mixes
with the coupled Qy excitations and corresponds to the transfer of 0.78 of an electron from PA to PB (see
table S10). A second charge-transfer state CT2 mixes with the coupled Qx excitations, while the third one,
CT3, is energetically well-separated from the Q-band excitations at∼2.7 eV.

We calculate the vibrational normal modes of the relaxed dimer using the same basis set and
exchange-correlation functional but with a very fine grid for the quadrature of the exchange-correlation
energy. We then generate 60 structures by distorting the relaxed reference structure along each of the 60
lowest-frequency normal modes. We assume a classical distribution to approximate the amplitude of these
distortions at T = 300 K and generate one distorted structure per mode corresponding to a positive
distortion amplitude. The excitation spectrum of each distorted structure is then calculated with TDDFT as
before, i.e. with ωPBE with ω= 0.171 a−10 . We define the excitation energy change of excitation n as
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Figure 7. (a) Absorption spectrum of relaxed dimer. Arrows mark the first three charge-transfer excitations. (b) Excitation-energy
change |∆E| as a function of normal-mode frequency for CT1, CT2, and CT3. (c) Visualization of the first two normal modes
which correspond to intermolecular rotations (see main text).

∆En = En
ref − En

dis. Here we focus on how molecular vibrations affect charge-transfer excitations, but note that
∆E for the coupled Qy and Qx excitations can also be substantial as shown in figure S9.

While∆E can be either positive or negative, depending on the direction of the distortion mode, we show
|∆E| of the charge-transfer excitations CT1, CT2, and CT3 in figure 7(b). We find that high-frequency modes
correspond to intramolecular vibrations such as C–C and C–H stretch modes, which are not thermally
activated and only have a small effect on the energy of the three charge-transfer states. In contrast,
low-frequency modes correspond to intermolecular vibrations that change the orbital overlap between
neighboring molecules and thus have a more substantial impact. In particular, we find that the two
lowest-frequency modes lead to substantial changes in all three charge-transfer states. Both modes
correspond to a rotational motion of the porphyrin planes of the BCL molecules with respect to each other as
indicated in figure 7(c). The first mode leads to a redshift of all three excitations which is with∼0.2 eV most
pronounced for CT1, the second one leads to a smaller blueshift of CT1 and CT3 and a slight redshift of CT2.
These results qualitatively agree with our results in section 3.2, suggesting that thermally-activated
vibrational modes can significantly affect the energy of charge-transfer excitations affecting their
charge-transfer character and mixing with other delocalized and localized excitations of the system.

4. Summary and conclusions

In summary, we have presented a systematic first-principles study of charge-transfer excitations in BCL
dimers. Our model systems are inspired by molecular aggregates found in the LHII complex and RC of
purple bacteria and cover a wide range of intermolecular coupling strengths, and consequently, excited-state
structures. Charge-transfer excitations can be found in a wide range of energies, primarily depending on
intermolecular distance and orientation. BCL molecules have a complex three-dimensional structure with
several functional groups, a long phytyl tail, and other carbon chains protruding out of the porphyrin plane.
In vivo, i.e. within the evolutionary-optimized protein networks of the photosynthetic apparatus, the protein
environment determines the distance, orientation, and structural details of these aggregates. Furthermore,
the protein environment indirectly affects the excited state structure and dynamics of BCL aggregates
through dielectric screening and electrostatic effects [64, 87–95]. Therefore our results can not directly be
used to infer charge-transfer mechanisms in photosynthetic systems. Nonetheless, they provide an intuitive
understanding and design rules for tailoring charge-transfer excitations in BCLs and similar photoactive
molecules. Furthermore, they explicitly confirm the importance of charge-transfer excitations for a correct
description of the Q-band excitations of BCL aggregates [40]. We hope that our results inspire future
calculations of the excited-state structure and dynamics of pigment-protein complexes and chromophore
aggregates based on model Hamiltonians, that include charge-transfer excitations.

Furthermore, we have compared our results based on TDDFT with the optimally-tuned ωPBE functional
to calculations using the GW+BSE approach. While charge-transfer excitations appear at very similar
energies with both approaches, coupled Qy excitations are systematically overestimated by TDDFT as
compared to the GW+BSE approach. Previous studies suggest that Qy excitation energies from GW+BSE
are in better agreement with wavefunction-based methods and experiment than TDDFT with ωPBE [62, 63].
However, accurate benchmarks for larger molecular aggregates are missing and we therefore do not think
that a clear recommendation for using GW+BSE instead of TDDFT is warranted. Nonetheless, with
advances in code implementation [68, 96, 97] and in the combination of GW+BSE with discrete and
polarizable continuum models [98, 99] and other QM/MMmethods [100], GW+BSE calculations of large
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molecular aggregates are becoming computationally feasible, demonstrated in a recent study by Förster et al
[62]. Further study of the accuracy and predictive power of TDDFT, with exchange-correlation functionals
that capture the nonlocal nature of charge-transfer excitations for such aggregates is necessary.
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1. Convergence Studies

1.1. Basis Set Convergence

We tested the convergence of our results with respect to the basis set size by calculating the
first 15 excitations of a BCL a monomer using 8 different basis sets. The HOMO-LUMO
gap and Qy and Qx excitation energies as a function of basis set size are listed in Table S1
and Table S2 for G0W0@ωPBE+BSE and TDDFT with the ωPBE exchange-correlation
functional, respectively. The HOMO-LUMO gap and Qy and Qx excitation energies calculated
with the def2-TZVP basis set differ by less than 10 meV from the more complete aug-cc-
pVTZ basis set.

Basis set # basis functions HOMO-LUMO gap Qy Qx

6-311G 733 4.21 1.62 2.20
cc-pVDZ 852 4.10 1.53 2.11
6-311G* 968 4.09 1.52 2.11

TZVP 1164 4.07 1.52 2.10
6-311++G** 1308 4.07 1.52 2.10
def2-TZVP 1686 4.06 1.51 2.09
cc-pVTZ 1946 4.06 1.52 2.08

aug-cc-pVTZ 3040 4.05 1.51 2.10

Table S1: HOMO-LUMO gaps and Qy and Qx excitation energies (in eV) for BCL a
monomer calculated with the G0W0@ωPBE+BSE method for different basis sets.

Basis set # basis functions HOMO-LUMO gap Qy Qx

6-311G 733 4.16 1.83 2.23
cc-pVDZ 852 4.10 1.78 2.20
6-311G* 968 4.09 1.77 2.19

TZVP 1164 4.07 1.76 2.18
6-311++G** 1308 4.06 1.74 2.17
def2-TZVP 1686 4.06 1.73 2.16
cc-pVTZ 1946 4.07 1.74 2.17

aug-cc-pVTZ 3040 4.06 1.73 2.16

Table S2: HOMO-LUMO gaps and Qy and Qx excitation energies (in eV) for BCL a
monomer calculated with TDDFT using the ωPBE exchange-correlation functional for
different basis sets.
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1.2. Convergence With Respect To Virtual Orbital Subspace

We reduced the computational cost of our G0W0+BSE calculations by excluding the high-
energy virtual states in the calculation of the GW self-energy. Figure S1 shows the
convergence of the Qy and Qx excitation energies of the BCL a monomer as a function of
the number of virtual states (Nvirt) G0W0+BSE method and using the def2-TZVP basis set.
Dashed lines correspond to a fit with the function f (Nvirt) =

a
Nvirt+b + c, where a, b, and c

are fit parameters. Using these fit parameters we estimated extrapolated values of the Qy and
Qx excitations for Nvirt → ∞. The Qy and Qx excitation energies at Nvirt = 1000 are within
less than 20 meV from the extrapolated values at Nvirt → ∞. For Nvirt = 500, the excitation
energies are overestimating the extrapolated values by ∼80 meV.

Figure S2 demonstrates the error cancellation between using Nvirt = 500 and the
optimized virtual subspace scheme (see main text) with the def2-TZVP basis set for the
occupied orbital subspace and 6-31G, 6-311G, TZV, 6-311++G**, TZVP and aug-ccpVDZ
basis sets for the reduced virtual subspace used for the evaluation of the GW self-energy.
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Figure S1: Qy and Qx excitation energies (in eV) for BCL a monomer calculated using the
def2-TZVP basis set and G0W0@ωPBE+BSE as a function of the number of states explicitly
used in the calculation of the GW polarizability.
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Figure S2: Qy and Qx excitation energies (in eV) for BCL a using G0W0@ωPBE+BSE,
Nvirt = 500, and the def2-TZVP basis set for the occupied orbital subspace as a function of
different basis sets describing the virtual orbital subspace. The dashed line corresponds to
values obtained with Nvirt = 1000 and without the optimized virtual subspace scheme.

2. Additional Data

2.1. Comparison with Literature

Comparison of the first two low-lying bright excitation energies obtained in this work with
previous data sets are presented in Table S5.

2.2. Additional GW/BSE and TDDFT Data for Artificial Dimer

Figure S6 depicts the excitation spectra of the artificial dimer with r = 9,11,13 Å calculated
using the G0W0@ωPBE+BSE method. The excitation energies of the first 15 excitations for
these systems using TDDFT with ωPBE and G0W0@ωPBE+BSE are reported in Table S6
and Table S7 along with their oscillator strengths.

2.3. Effect of Structural Relaxation

Structural relaxation can have significant effects on excitation energies. We demonstrate this
in Figure S3 by comparing the TDDFT spectra calculated using a def2-TZVP basis and the
ωPBE functional based on X-ray crystal structures of the B800 and B850 dimers without
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B800 A-branch B850 SP
# Energy (eV) Energy (eV) Energy (eV) Energy (eV)
1 1.495 (0.56) 1.624 (0.23) 1.404 (0.61) 1.551 (0.58)
2 1.504 (0.06) 1.653 (0.45) 1.502 (0.10) 1.649 (0.05)
3 2.049 (0.01) 2.020 (0.14) 1.967 (0.00) 1.811 (0.08)
4 2.050 (0.12) 2.059 (0.11) 1.996 (0.00) 1.900 (0.09)
5 2.636 (0.00) 2.421 (0.00) 2.030 (0.12) 2.011 (0.16)
6 2.717 (0.00) 2.608 (0.00) 2.163 (0.00) 2.174 (0.01)
7 2.743 (0.00) 2.634 (0.00) 2.610 (0.00) 2.319 (0.00)
8 2.756 (0.00) 2.722 (0.00) 2.710 (0.00) 2.556 (0.00)
9 2.988 (0.00) 2.759 (0.00) 2.746 (0.00) 2.619 (0.00)

10 2.999 (0.00) 2.764 (0.00) 2.786 (0.00) 2.630 (0.00)
11 3.067 (0.00) 2.963 (0.02) 2.809 (0.00) 2.674 (0.00)
12 3.069 (0.00) 2.982 (0.00) 2.833 (0.00) 2.739 (0.00)
13 3.070 (0.00) 2.995 (0.00) 2.884 (0.00) 2.883 (0.02)
14 3.100 (0.34) 2.997 (0.00) 2.940 (0.00) 2.966 (0.01)
15 3.110 (0.86) 3.026 (0.01) 3.023 (0.01) 2.987 (0.01)

Table S3: Energies and oscillator strengths (in brackets) of the first 15 excitations of the
B800, A-branch, B850 and SP dimers calculated using TDDFT with ωPBE.

and with constrained optimization of the structure. We tested two types of constrained
optimization, in both cases using a def2-TZVP basis set and the B3LYP exchange-correlation
functional: In the first optimization, we fixed the central Mg and neighboring N atoms, and in
the second one the central Mg and the functional group FG2, which corresponds to the phytyl
tail of BCL. Both constraints lead to very similar structures and thus excitation spectra, shown
in panels (a) and (b) in Figure S3 for the B800 and the B850 dimer, respectively.

These constrained optimizations show that, as expected, the excitation energies differ
quantitatively from our results for the unrelaxed crystal structures. However, structural
relaxation does not change the main message of our paper: The B850 dimer is representative
of an intermediate coupling regime, where charge-transfer excitations appear in the vicinity
of the coupled Qx excitations and may mix with those depending on details of structure (and
additional environment and temperature effects in vivo).

3. Difference Densities

The difference densities of the first 10 excitations are shown in Figure S7. Table S8 lists the
integrals over subsystem difference densities as described in the main text.
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B800 A-branch B850 SP
# Energy (eV) Energy (eV) Energy (eV) Energy (eV)
1 1.273 (0.43) 1.416 (0.19) 1.200 (0.46) 1.385 (0.52)
2 1.281 (0.05) 1.445 (0.36) 1.286 (0.07) 1.465 (0.04)
3 2.039 (0.05) 2.002 (0.16) 1.894 (0.00) 1.807 (0.02)
4 2.041 (0.09) 2.059 (0.13) 1.975 (0.02) 1.889 (0.10)
5 2.506 (0.00) 2.413 (0.00) 2.021 (0.12) 1.999 (0.18)
6 2.550 (0.00) 2.695 (0.00) 2.088 (0.01) 2.174 (0.01)
7 2.777 (0.00) 2.741 (0.00) 2.620 (0.00) 2.397 (0.00)
8 2.796 (0.01) 2.760 (0.00) 2.765 (0.00) 2.644 (0.00)
9 2.807 (0.00) 2.771 (0.00) 2.798 (0.00) 2.679 (0.00)

10 2.987 (0.15) 2.832 (0.00) 2.822 (0.00) 2.711 (0.00)
11 2.994 (1.09) 2.893 (0.00) 2.852 (0.00) 2.725 (0.00)
12 3.042 (0.00) 2.944 (0.00) 2.898 (0.02) 2.767 (0.00)
13 3.046 (0.00) 3.037 (0.02) 2.970 (0.25) 2.910 (0.00)
14 3.048 (0.00) 3.053 (0.00) 3.005 (0.17) 3.012 (0.01)
15 3.065 (0.00) 3.273 (0.52) 3.021 (0.07) 3.078 (0.00)

Table S4: Energies and oscillator strengths (in brackets) of the first 15 excitations of the
B800, A-branch, B850, and SP dimers calculated using the G0W0@ωPBE+BSE approach.
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Dimer G0W0@ωPBE+BSE TD-ωPBE literature
E1 E2 E1 E2 E1 E2

B800 1.27 1.28 1.49 1.50 1.40a, 1.89b 1.41a, 1.90b

B850 1.20 1.29 1.40 1.50 1.32a, 1.80b 1.43a, 1.98b

SP 1.39 1.47 1.55 1.65 1.53c, 1.87d 1.62c, 1.92d

Table S5: Comparison of the first two excitation energies (in eV) of our calculations and
literature results for dimeric systems extracted from B800, B850 and SP. Our own GW/BSE
and TDDFT excitation energies are calculated using a def2-TZVP basis and the ωPBE
functional as a starting point for G0W0 and in TDDFT, respectively, while literature values
are calculated at different levels of theory.
aResults from Ref. [1], starting from the same crystal structure as we used (PBD id: 1NKZ),
but relaxed and thermalized using molecular dynamics. Excitation energies are calculated
using QM/MMPOL calculations with TDDFT/CAM-B3LYP/6-31G(d) for the QM part.
bResults from Ref. [2], using the crystal structure without optimization, and calculated using
the CIS approach and a 3-21G* basis set.
cResults from Ref. [3]. Suomivuori and et al. calculated excitation energy of SP and the
coordinating Histidine residues using a crystal structure from Rhodobacter sphaeroides (PBD
id: 3I4D) at RVS-LT-SOS-ADC2/def2-TZVP level of theory.
dResults from Ref. [4] using TDDFT with ωPBE (ω=0.15) and 6-31G** basis set in
combination with polarizable continuum model (PCM). The structure of the SP dimer is
relaxed by employing the ωB97X-D functional and the 6-31G** basis set with PCM.
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Figure S3: (a) TDDFT spectra of B800 dimer using the crystal structure with PDB id
1NKZ (red) and after constrained optimization (green and blue), (b) TDDFT spectra of B850
using a crystal structure from Ref. [5] (magenta), the 1NKZ crystal structure (red), and after
constrained optimization (green and blue).
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B800 - E3 B800 - E4 B800 - E5 B800 - E6 B800 - E7

A-branch - E3 A-branch - E4 A-branch - E5 A-branch - E6 A-branch - E7

B850 - E3 B850 - E4 B850 - E5 B850 - E6 B850 - E7

SP - E3 SP - E4 SP - E5 SP - E6 SP - E7

Figure S4: Difference densities of excitations E3 – E7 calculated using TDDFT with ωPBE
for B800, A-branch, B850 and SP dimers. Here and in the following, positive isovalues
(blue) correspond to areas of decreased electron density (holes) and negative isovalues (red)
correspond to areas of increased electron density (electrons).
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GW+BSE - E1 GW+BSE - E2 GW+BSE - E3 GW+BSE - E4

GW+BSE - E5 GW+BSE - E6 GW+BSE - E7

TDDFT - E1 TDDFT - E2 TDDFT - E3 TDDFT - E4

TDDFT - E5 TDDFT - E6 TDDFT - E7

Figure S5: Transition densities of excitations E1 – E7 for SP dimer
calculated using G0W0@ωPBE+BSE and TDDFT with ωPBE, respectively.
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Figure S6: Absorption spectra of artificial dimers with r = 9,11,13 Å calculated using the
G0W0@ωPBE+BSE approach. Arrows mark excitations with charge-transfer characters. The
shaded areas are calculated by folding the eigenvalues with Gaussian functions with a width
of 0.08 eV as a guide to the eye.
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9 Å 11 Å 13 Å
# Energy (eV) Energy (eV) Energy (eV)
1 1.555 (0.63) 1.617 (0.75) 1.628 (0.76)
2 1.641 (0.04) 1.668 (0.05) 1.674 (0.06)
3 1.901 (0.08) 1.999 (0.07) 2.012 (0.07)
4 1.941 (0.02) 2.025 (0.18) 2.026 (0.19)
5 2.011 (0.13) 2.297 (0.00) 2.568 (0.00)
6 2.031 (0.08) 2.337 (0.00) 2.572 (0.00)
7 2.444 (0.00) 2.569 (0.00) 2.594 (0.00)
8 2.516 (0.00) 2.573 (0.00) 2.624 (0.00)
9 2.564 (0.00) 2.689 (0.00) 2.692 (0.00)

10 2.565 (0.00) 2.691 (0.00) 2.694 (0.00)
11 2.659 (0.00) 2.842 (0.00) 2.974 (0.01)
12 2.679 (0.00) 2.886 (0.00) 2.974 (0.01)
13 2.900 (0.01) 2.980 (0.03) 2.990 (0.01)
14 2.968 (0.01) 2.984 (0.01) 2.992 (0.00)
15 3.008 (0.00) 3.022 (0.00) 3.163 (0.00)

Table S6: Excitation energies and oscillator strengths (in brackets) of the first 15 excitations
of the artificial dimer with r = 9,11,13 Å calculated using TDDFT with ωPBE.

9 Å 11 Å 13 Å
# Energy (eV) Energy (eV) Energy (eV)
1 1.419 (0.61) 1.415 (0.60) 1.419 (0.61)
2 1.462 (0.04) 1.462 (0.04) 1.462 (0.04)
3 1.985 (0.08) 1.977 (0.08) 1.985 (0.08)
4 2.001 (0.21) 2.006 (0.20) 2.001 (0.21)
5 2.590 (0.00) 2.297 (0.00) 2.590 (0.00)
6 2.620 (0.00) 2.339 (0.00) 2.620 (0.00)
7 2.672 (0.00) 2.659 (0.00) 2.672 (0.00)
8 2.673 (0.00) 2.667 (0.00) 2.673 (0.00)
9 2.710 (0.01) 2.703 (0.01) 2.710 (0.01)

10 2.712 (0.01) 2.708 (0.01) 2.712 (0.01)
11 2.953 (0.00) 2.801 (0.00) 2.953 (0.00)
12 2.961 (0.00) 2.922 (0.00) 2.961 (0.00)
13 3.147 (0.01) 2.948 (0.00) 3.147 (0.01)
14 3.198 (0.01) 2.981 (0.00) 3.198 (0.01)
15 3.224 (0.00) 3.296 (0.04) 3.224 (0.00)

Table S7: Excitation energies and oscillator strengths (in brackets) of the first 15 excitations
of the artificial dimer with r = 9,11,13 Å calculated using the G0W0@ωPBE+BSE approach.
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9Å - E1 9Å - E2 9Å - E3 9Å - E4 9Å - E5

9Å - E6 9Å - E7 9Å - E8 9Å - E9 9Å - E10

11Å - E1 11Å - E2 11Å - E3 11Å - E4 11Å - E5

11Å - E6 11Å - E7 11Å - E8 11Å - E9 11Å - E10

13Å - E1 13Å - E2 13Å - E3 13Å - E4 13Å - E5

13Å - E6 13Å - E7 13Å - E8 13Å - E9 13Å - E10

Figure S7: Difference densities of the first 10 excitations of artificial dimers with r =

9,11,13 Å calculated using TDDFT with ωPBE.

Figure S8: Artificial dimer with rotation angles (a) β=120◦ and (b) α=250◦ that lead to the
first and second largest red shift in the excitation energy of CT1, respectively.
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r (Å) molecule charge distribution
E4 E5 E6 E7 E8 E9 E10

9
PA1 -0.48 0.21 0.28 -0.62 -0.63 0 0
PA2 0.48 -0.21 -0.28 0.62 0.63 0 0

10
PA1 0 -0.89 0.90 0 0 -0.85 0
PA2 0 0.89 -0.90 0 0 0.85 0

11
PA1 0 -0.96 0.96 0 0 0 0
PA2 0 0.96 -0.96 0 0 0 0

12
PA1 0 -0.98 0.98 0 0 0 0
PA2 0 0.98 -0.98 0 0 0 0

13
PA1 0 0 0 -0.99 0.99 0 0
PA2 0 0 0 0.99 -0.99 0 0

14
PA1 0 0 0 0 0 -0.99 0.99
PA2 0 0 0 0 0 0.99 -0.99

15
PA1 0 0 0 0 0 -0.99 0.99
PA2 0 0 0 0 0 0.99 -0.99

21
PA1 0 0 0 0 0 -0.99 0.99
PA2 0 0 0 0 0 0.99 -0.99

Table S8: Difference densities of E4 – E10 integrated over subsystem volumes calculated
using TDDFT with ωPBE for artificial dimer as a function of r.

# Energy (eV)
1 1.585 (0.02)
2 1.678 (0.25)
3 1.748 (0.42)
4 2.074 (0.06)
5 2.128 (0.10)
6 2.171 (0.03)
7 2.734 (0.00)
8 3.010 (0.00)
9 3.041 (0.00)

10 3.066 (0.00)
11 3.146 (0.00)
12 3.167 (0.00)
13 3.203 (0.11)
14 3.227 (0.00)
15 3.244 (0.03)

Table S9: Energies and oscillator strengths (in brackets) of the first 15 excitations of relaxed
dimer calculated using TDDFT with ωPBE.
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dimer molecule charge distribution
E1 E2 E3 E4 E5 E6 E7

SP
PA 0.78 0 0 0 0 -0.63 0.88
PB -0.78 0 0 0 0 0.63 -0.88

Table S10: Difference density integrated over subsystem volumes of the charge-transfer
excitations of relaxed dimer calculated using TDDFT with ωPBE.

Figure S9: Excitation energy change, |∆E|, as a function of normal mode frequency for the
coupled (a) Qy and (b) Qx excitations.
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1) Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany

2) MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

My contribution

167

https://pubs.aip.org/aip/jcp/article/158/19/195102/2890498/Delocalized-electronic-excitations-and-their-role


168

S. Volpert is the lead contributor to this publication. S. Volpert and J. M. Foerster

were involved in the molecular structure preparation. I. Schelter designed tools for the

data analyses such as scripts for calculating the excited states difference densities based

on output from q-chem. M. R. G. Marques performed the vibrational calculations.

S. Kümmel and L. Leppert supervised the study. The main results included in this

publication are presented in three sections. The computational study presented in

section B was carried out by S. Volpert. S. Volpert also produced preliminary results

for section C. All simulations that are presented in the final version of the manuscript

were produced by me. I also prepared all figures and tables in the main text, some based

on an earlier draft of the paper by S. Volpert, and the majority of the supplementary

material. L. Leppert, S. Volpert, and I wrote the first draft of the article, and all

authors were involved in scientific discussions and finalizing the manuscript.




View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  MAY 15 2023

Delocalized electronic excitations and their role in
directional charge transfer in the reaction center of
Rhodobacter sphaeroides 
Special Collection: 2023 JCP Emerging Investigators Special Collection

Sabrina Volpert; Zohreh Hashemi; Johannes M. Foerster; ... et. al

J. Chem. Phys. 158, 195102 (2023)
https://doi.org/10.1063/5.0139691

Articles You May Be Interested In

Modelling the bacterial photosynthetic reaction center. V. Assignment of the electronic transition observed
at 2200 cm−1 in the special-pair radical-cation as a second-highest occupied molecular orbital to highest
occupied molecular orbital transition

J. Chem. Phys. (July 2003)

Biohydrogen Production from Tofu Wastewater with Glutamine Auxotrophic Mutant of Rhodobacter
sphaeroides

AIP Conference Proceedings (February 2008)

Quantum chemical study of π–π stacking interactions of the bacteriochlorophyll dimer in the
photosynthetic reaction center of Rhodobacter sphaeroides

J. Chem. Phys. (June 2002)

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://p

u
b

s
.a

ip
.o

rg
/a

ip
/jc

p
/a

rtic
le

-p
d

f/d
o

i/1
0

.1
0

6
3

/5
.0

1
3

9
6

9
1

/1
7

4
9

3
1

4
2

/1
9

5
1

0
2

_
1

_
5

.0
1

3
9

6
9

1
.p

d
f



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Delocalized electronic excitations and their role
in directional charge transfer in the reaction
center of Rhodobacter sphaeroides

Cite as: J. Chem. Phys. 158, 195102 (2023); doi: 10.1063/5.0139691
Submitted: 22 December 2022 • Accepted: 16 March 2023 •
Published Online: 15 May 2023

Sabrina Volpert,1 Zohreh Hashemi,1 Johannes M. Foerster,1 Mario R. G. Marques,1 Ingo Schelter,1

Stephan Kümmel,1 and Linn Leppert1 ,2,a)

AFFILIATIONS
1 Institute of Physics, University of Bayreuth, 95440 Bayreuth, Germany
2MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

Note: This paper is part of the 2023 JCP Emerging Investigators Special Collection.
a)Author to whom correspondence should be addressed: l.leppert@utwente.nl

ABSTRACT

In purple bacteria, the fundamental charge-separation step that drives the conversion of radiation energy into chemical energy proceeds
along one branch—the A branch—of a heterodimeric pigment–protein complex, the reaction center. Here, we use first principles time-
dependent density functional theory (TDDFT) with an optimally-tuned range-separated hybrid functional to investigate the electronic and
excited-state structure of the six primary pigments in the reaction center of Rhodobacter sphaeroides. By explicitly including amino-acid
residues surrounding these six pigments in our TDDFT calculations, we systematically study the effect of the protein environment on energy
and charge-transfer excitations. Our calculations show that a forward charge transfer into the A branch is significantly lower in energy
than the first charge transfer into the B branch, in agreement with the unidirectional charge transfer observed experimentally. We further
show that the inclusion of the protein environment redshifts this excitation significantly, allowing for energy transfer from the coupled
Qx excitations. Through analysis of transition and difference densities, we demonstrate that most of the Q-band excitations are strongly
delocalized over several pigments and that both their spatial delocalization and charge-transfer character determine how strongly affected
they are by thermally-activated molecular vibrations. Our results suggest a mechanism for charge-transfer in this bacterial reaction center and
pave the way for further first-principles investigations of the interplay between delocalized excited states, vibronic coupling, and the role of
the protein environment in this and other complex light-harvesting systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139691

I. INTRODUCTION

In natural photosynthesis, the energy of sunlight is con-
verted into chemical energy in highly efficient excitation- and
charge-transfer processes.1 Absorption of light happens primarily
in antenna complexes, which funnel the excitation energy toward
the reaction center (RC), where a charge-separation step initiates
a cascade of electron-transfer processes resulting in a proton gra-
dient that drives the biochemical reactions of photosynthesis. In
purple bacteria such as Rhodobacter sphaeroides, the fundamen-
tal design principles of these pigment-protein complexes are well

understood due to a wealth of experimental and computational
techniques that give access to detailed structural and spectroscopic
information.2–9 In this respect, the bacterial RC can also be under-
stood as a model system for the RC of more complex photosynthetic
organisms because its structure is highly conserved across bacteria,
algae, and plants.10 Its main building blocks, shown in Fig. 1, are
arranged along two pseudosymmetric branches A and B and con-
sist of a strongly coupled dimer of two bacteriochlorophyll (BCL)
molecules dubbed the special pair (P), two accessory BCLs (BA,
BB), two bacteriopheophytins (HA, HB), and two quinones (QA, QB)
embedded in a transmembrane protein matrix.

J. Chem. Phys. 158, 195102 (2023); doi: 10.1063/5.0139691 158, 195102-1
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FIG. 1. Proposed charge-separation pathways7,15,19–22 and structural model of the
RC of Rhodobacter sphaeroides, including the special pair (P in red), two acces-
sory BCLs (BA, BB in blue), and two bacteriopheophytins (HA, HB in green). Protein
chains are shown in transparent gray. Hydrogen atoms are omitted for clarity.

Despite the similar, but not exactly symmetric, structure of the
A and B branches, it is well-established that the primary charge
separation reaction only proceeds along the A branch with near-
unity quantum efficiency.11–13 The ultrafast timescales on which
the primary energy- and charge-transfer processes occur in the
RC, in combination with broad overlapping absorption peaks orig-
inating from the coupling of multiple pigments and their protein
environments, have posed significant challenges to spectroscopic
techniques. Two-dimensional electronic spectroscopy (2DES) has
become one of the primary experimental techniques for studying the
bacterial RC7,14–16 and other photosynthetic systems.17,18 For the RC
of Rhodobacter sphaeroides and similar RCs, 2DES has been used to
propose models for the kinetics of the primary charge separation. In
these models, it is usually assumed that charge separation is initiated
through the excitation of P (denoted as P∗), leading to a charge-
transfer intermediate P−AP+B , which is followed by a charge-separated
state P+H−A via an ultra-shortlived intermediate P+B−A ;7,15 however,
alternative charge-separation pathways have been suggested as well,
for example, starting from an excitation localized on one or both
accessory BCLs, i.e., B∗A or B∗19–22 (Fig. 1).

Computational modeling has played an important role in help-
ing to unravel the intricate factors affecting excitation and charge
transfer in the antenna complexes and the RC. Calculations based
on model Hamiltonians and advances in the semiempirical mod-
eling of long- and short-range coupling between chromophores
have allowed for the simulation of excitation processes in large
pigment-protein complexes.23–25 However, also computationally
more demanding first-principles calculations, primarily based on
(time-dependent) density functional theory (TDDFT), have been
employed to study systems of growing complexity and size. The
focus of many studies has been the origin of the unidirectionality

of the charge-separation process in bacterial RCs and photosystem
II of plants.

For the RC of photosystem II, a large model system was used
by Frankcombe, including four (truncated) chlorophyll molecules,
two pheophytin molecules, and two plastoquinone molecules
using TDDFT and a polarizable continuum model (PCM) to
account for effects of the protein environment.26 Later, Sirohi-
wal et al. reported TDDFT calculations using a range-separated
hybrid functional on chlorophyll monomers, dimers, and trimers
of the photosystem II RC showing that the lowest-energy charge-
transfer excitation corresponds to B+AH−A and is strongly affected
by protein electrostatics.27 Low-energy charge-transfer excita-
tions were also reported by Kavanagh et al. in TDDFT cal-
culations using a hexameric model of the photosystem II RC,
which included parts of the protein environment explicitly. Sim-
ilarly, Förster et al. observed an excitation with a partial B+AH−A
charge-transfer character using the GW + Bethe-Salpeter Equation
approach.28

For the RC of Rhodobacter sphaeroides, (TD)DFT calculations
including the special pair and some of its neighboring amino-acid
residues were reported in 2011 by Wawrzyniak et al. and indi-
cated that protein induced distortions of the special pair geometry
lead to an asymmetric ground-state electron density.29 A simi-
lar model system was employed by Eisenmayer et al., who per-
formed molecular dynamics simulations based on constrained DFT
and showed that the electron-density asymmetry is dynamical and
coupled to a low-frequency vibrational mode related to the rota-
tion of a histidine residue close to BA.30 Later, Eisenmayer et al.
included the BA in their constrained DFT simulations showing
the coupling of proton displacements to the primary electron-
transfer step from P to BA.31 Aksu et al. combined TDDFT with
a tuned range-separated hybrid functional with PCM and showed
that spectral asymmetries arise from locally different dielectric
environments along the A and B branches.32 The initial charge-
transfer excitations of P were also studied by Aksu et al., employ-
ing the same methodology.33 (TD)DFT calculations by Mitsuhashi
et al., in which the environment of P together with either BA or
BB was represented using a QM/MM/PCM scheme, further indi-
cated that the lowest unoccupied molecular orbital (LUMO) of
BA is lower in energy than the LUMO of BB, suggesting that
BA is the primary electron acceptor.34 Another study, in which
some of the same authors used a diabatization scheme to evalu-
ate electronic couplings between P and BA and BB, respectively,
pointed to the particular importance of a tyrosine residue close
to BA as being responsible for the directionality of charge trans-
fer.35 Brütting et al. investigated the primary charge separation step
in the quasi-symmetric reaction center of Heliobacterium modes-
ticaldum, with an emphasis on revealing the influence of nuclear
motion on the relative energetic positions of different electronic
excitations.36

To the best of our knowledge, explicit TDDFT calculations
on a reaction center model of Rhodobacter sphaeroides, including
all six primary pigments and parts of the environment, have not
been reported yet. Furthermore, while previous studies have pro-
vided detailed insight into the effects of the protein environment
and molecular vibrations on excited states, little attention has been
directed at the delocalized, correlated multi-particle nature of these
excitations. One may wonder whether these characteristics can be
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properly captured by TDDFT, as the wave functions obtained in
TDDFT have no rigorous physical meaning. We here show, how-
ever, that one can analyze the excitations reliably based on transition
densities and difference densities, i.e., quantities that have a solid
foundation in TDDFT.

To this end, we use TDDFT with an optimally-tuned range-
separated hybrid functional to study a hexameric model of the
RC, including the primary pigments, i.e., the special pair P, the
accessory BCLs BA and BB, and the bacteriopheophytins HA and
HB. We also explicitly model the effect of close-lying amino-acid
residues on the excited states by including them in our TDDFT
calculations. We clarify which amino acids are responsible for sig-
nificant changes in excited-state energies and compare our results
with QM/MM calculations. Our calculations show that a distinction
between localized excitations on the one hand and charge-transfer
excitations on the other hand is of limited usefulness to under-
stand the excited state structure of this system of strongly coupled
pigments. Instead, we find excitations without charge-transfer char-
acter that are delocalized across several pigments and that cannot
readily be classified as coupled excitations of individual monomeric
units. Partial charge-transfer states between the special pair pig-
ments (P−AP+B ) are low in energy, mix with these delocalized states,
and are a consequence of the strong coupling between the pigments.
The lowest-energy charge-transfer state that transfers an electron
into the A branch can clearly be classified as B−AH+A and is sig-
nificantly lower in energy than charge-transfer into the B branch.
This is in agreement with previous first-principles calculations on
the photosystem II reaction center but not in line with experi-
mental reports suggesting charge-transfer through an intermediate
P+B−A state. The B−AH+A excitation is ∼20 meV higher in energy than
the highest-energy Q-band excitations. Although we cannot rule
out that including further parts of the environment might lower
its energy further, such a small energetic separation suggests that
the vibrational modes of the pigments and/or the environment
could couple this charge-transfer state to the delocalized Q-band
excitations.

II. COMPUTATIONAL METHODS
A. Structure of model systems

All our calculations are based on the experimental crystal struc-
ture of the wild-type RC of Rhodobacter sphaeroides with Protein
Data Bank file ID 1M3X.3 The pigment–protein complex has two
main protein chains called L- and M-chains, which form the back-
bone of the A and B branches, respectively. We are interested in the
primary charge-transfer process and, therefore, have included P, BA,
BB,HA, andHB in all our computational models. For approximating
the effect of the protein environment on energy- and charge-transfer
excitations, we added amino-acid residues explicitly to our model
structures, as described in more detail in Sec. III B. Hydrogen
atoms are not resolved in the experimental crystal structure and are,
therefore, added with the module HBUILD in CHARMM37 and ener-
getically optimized using the CHARMM force field38 as described in
Ref. 39. In all model systems, we cropped the phytyl tails of the
BCL molecules and saturated the carboxyl group with a hydrogen
atom. Using a methyl group to saturate the phytyl tail does not
change the main conclusions of this paper, as shown in Fig. S1 of the
supplementary material. Furthermore, we cut the bonds between the

amino-acid residues and the polypeptide chains between Cα and Cβ

and saturated them with hydrogen atoms.

B. TDDFT calculations
We performed linear-response TDDFT (LR-TDDFT) calcu-

lations using Q-CHEM, version 5.2.2.40 Vibrational normal modes
were calculated with TURBOMOLE version 7.541,42 and QM/MM
simulations with ORCA version 5.0.2.43 We used the Pople basis
set 6-31G(d,p) for which the Qy and Qx excitation energies of a
single BCL a molecule are converged to within 50 meV.39 We
also tested the accuracy of the basis set for the special pair P, as
discussed in the supplementary material (Table S1). The exchange-
correlation energy is approximated using the optimally-tuned ωPBE
functional,44 which has been shown to properly capture the cou-
pling between BCLs39 and to be on par with Green’s function-
based many-body perturbation theory for a wide range of single
chromophores.45,46 Range-separated hybrid functionals have also
been demonstrated to accurately describe electrochromic shifts due
to the protein environments of various biochromophores in an
extensive benchmark of DFT approximations by Sirohiwal et al.47

In the optimally-tuned ωPBE functional, the range–separation para-
meter determines the length scale at which short-range semilocal
exchange goes over into exact long-range exchange. Such functionals
significantly improve the description of charge-transfer excitations48

and lead to excellent agreement with experimental photoemission
spectroscopy for a broad range of systems, from molecules to
solids.49–55 In the optimal-tuning procedure, the range–separation
parameter ω is varied such that the difference between the HOMO
eigenvalue εHOMO and the negative ionization potential of both
the neutral and the anionic system is minimized.56 Here, we use
ω = 0.171a−10 based on tuning for one BCL a performed by Schelter
et al.39 We confirmed that the deviation of the ionization poten-
tials from −εHOMO of P and of a single BCL a with coordinating
histidine is negligible, and we do not perform a separate tuning
procedure for each of our model systems. This approach is also
supported by more general arguments: Using the same ω for each
model system allows us to compare the electronic and excited state
structures of our model systems on the same footing. Further-
more, optimal tuning of conjugated systems of increasing size leads
to artificially low values of ω and, thus, a dominance of semilo-
cal exchange at long range, which deteriorates the description of
charge-transfer excitations,53,57 as shown for model structures of
increasing size in Fig. S2. For our LR-TDDFT calculations, we
used the Casida approach and did not make the Tamm–Dancoff
approximation (TDA) unless otherwise noted. We provide further
information regarding the numerical convergence of our calcu-
lations in the supplementary material. Details of our QM/MM
LR-TDDFT calculations with ORCA can also be found in the
supplementary material.

C. Classification of charge-transfer excitations
Since the transition density vanishes for charge-transfer

states, we calculated the difference density Δni = ni − n0 between
the excited (ni) and the ground-state density (n0) for every
excitation i. The excited-state density ni is calculated as the
diagonal part of the excited state density matrix γii(r, r′)= N ∫ Ψi(r, r2, r3, . . . , rN)Ψi(r′, r2, r3, ⋅ ⋅ ⋅ , rN)dr2 . . . drN , where N is
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the number of electrons and Ψ
i is the approximate excited-state

wavefunction that consists of a sum of Slater determinants of
generalized Kohn–Sham orbitals with coefficients obtained from
LR-TDDFT.58 There is no formal guarantee that this wavefunc-
tion is equal to the exact excited-state wavefunction. However,
it has been shown that eigenvalues and orbitals from accurate
exchange-correlation potentials are an ideal basis for describing
molecular excitations,59 and the Kohn–Sham Slater determinant
can be rigorously interpreted as the zeroth-order approximation
to the true wavefunction in Görling–Levy perturbation theory.60

For organic molecular systems, it has been found that approximat-
ing the true wavefunction by the Kohn–Sham Slater determinant
is often justified. This is seen, e.g., in the successful interpretation
of photoemission data using Kohn–Sham wavefunctions61,62 and
the great success of the concept of natural transition orbitals.63 To
quantify the magnitude of charge transfer, we integrated over sub-
system difference densities. For this purpose, we subdivided the
volume containing the difference densities of our full model sys-
tems into subsystem volumes, each containing one pigment. Note
that P is separated into PA and PB to enable the characteriza-
tion of internal charge-transfer states of type P+AP−B . Our aim is
to assign each grid point of the difference-density grid to its clos-
est pigment molecule. To achieve this, we tested two methods
for assigning grid points to subsystem volumes: In method 1, we
used the distances between grid points and each molecule’s atomic
coordinates (including hydrogen atoms). In method 2, we used
distances between grid points and each molecule’s geometrical cen-
ter of gravity. Both methods result in the same trends, although
the absolute values of the integrated subsystem densities differ
slightly.

III. RESULTS AND DISCUSSION

In the following discussion, our aim is to elucidate a mecha-
nism for charge-transfer in the RC of Rhodobacter sphaeroides and
to probe the effect of explicitly including amino-acid residues in the
vicinity of the primary pigments. We start with a hexameric model
system in Sec. III A consisting of P, BA, BB, HA, and HB. If amino
acids are added to this system, the number of excited states that
needs to be calculated to observe charge-transfer is too large to be
computationally feasible. We, therefore, use two different types of
model systems to study the addition of amino acids: in Sec. III B, we
construct a tetrameric model system consisting of P, BA, and BB. We
systematically add amino acids to establish the minimal model nec-
essary to account for the static effects of the protein environment.
However, this model does not include the bacteriopheophytins HA

and HB and, therefore, does not allow us to observe all relevant low-
energy charge-transfer excitations. In Sec. III C, we, therefore, use
models of the A and B branches, including P, BA, HA, and P, BB,
HB, respectively. We show that the A and B branch structures repro-
duce themain features of the hexameric model (Sec. III A) and probe
the effect of adding amino acids to these models on the relevant
charge-transfer states.

Since our goal is to isolate the direct electronic effects of the
amino-acid environment on the excited states, we do not perform
geometry optimizations for each model system. In other words,
differences between the excitation spectra of our model systems

can be fully attributed to the electronic effects of the amino-acid
environment and are not related to additional structural effects.

A. Absorption spectrum and excited state character
of the bare hexameric RC model

We start our discussion by inspecting the absorption spectrum
of a hexameric model of the RC based on the crystal structure as
described in Sec. II A andwithout including any parts of the environ-
ment, as shown in Fig. 2(a). For this model, we were able to calculate
16 excitations, which correspond to the energy range depicted in
Fig. 2(a). This energy range is dominated by Q-band excitations,
i.e., excited states that originate from the coupling of the Qy and Qx

excitations of the individual BCL and bacteriopheophytinmolecules.
However, because of the spatial proximity of these pigments in the
RC, not all excitations can clearly be classified as coupledQy orQx, as

FIG. 2. (a) LR-TDDFT absorption spectrum of the bare hexameric RC model.
Arrows mark excitations with low/vanishing oscillator strength and (partial) charge-
transfer character. The shaded areas are calculated by folding the excitation
energies into Gaussian functions with a width of 80 meV as a guide to the
eye. (b) Difference densities of the four charge-transfer excitations in this energy
range. Isosurface values correspond to −0.0001a−3

0
(red) and 0.0001a−3

0
(blue),

respectively.
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apparent from their transition densities shown in Fig. S3. These tran-
sition densities also show that the majority ofQ-band excitations are
spatially strongly delocalized across several pigments, with some of
them spreading over the entire RCmodel. This is the first main result
of our study. A list of excitation energies, oscillator strengths, and
spatial character as determined from the transition densities (and
difference densities in the case of charge-transfer excitations) can be
found in Table I. In this table and in the rest of the text, the notation(PBH)∗ corresponds to an excitation delocalized across P, BA, BB,
HA, and HB, while P+AP−B denotes a charge-transfer excitation from
PA to PB.

We find four excitations with charge-transfer character in
this energy range. The difference densities of these excitations are
depicted in Fig. 2(b) (all other difference densities for this structural
model can be found in Fig. S4). Here and in the following, posi-
tive difference density values indicate a region of space in which the
electron density (i.e., negative charge density) increases as a conse-
quence of the excitation (shown in blue), whereas negative values
indicate regions of space in which the electron density decreases
(shown in red). Numerical values based on the integration of dif-
ference densities as described in Sec. II C are listed in Table S3. The
three charge-transfer excitations within the special pair, correspond-
ing to P+AP−B and P−AP+B arise as a consequence of the strong coupling
of PA and PB. In particular, the first P−AP+B excitation mixes strongly
with other excitations at ∼1.85 eV and, therefore, exhibits partial
charge-transfer character, in which 0.69 of an electron is transferred
from PA to PB. Strikingly, we also find a charge-transfer excitation
from BA to HA in this energy range. This is the lowest-energy pure
charge-transfer state we find in our calculations (0.99 of an electron
is transferred from BA toHA). The secondmain result of our study is
that the appearance of this charge-transfer state at ∼2.3 eV is a con-
sequence of the spatial arrangement of the pigments in the bacterial
RC alone. We will discuss how the energy of this state is affected by
including environmental effects in Sec. III C.

TABLE I. Excitation energies (in eV), oscillator strengths, and spatial
delocalization/charge-transfer character of the first 16 excitations of the bare
hexameric RC model structure.

No. Energy Oscillator strength Character

1 1.56 0.83 (PBH)∗
2 1.63 0.36 (PBHB)∗
3 1.67 0.33 (PBH)∗
4 1.71 0.15 (PBH)∗
5 1.80 0.30 (BHB)∗
6 1.84 0.29 (PBAH)∗
7 1.85 0.07 P−AP+B
8 1.92 0.10 (PBH)∗
9 2.04 0.18 (PBH)∗
10 2.08 0.02 (PBBHB)∗
11 2.08 0.13 (PBH)∗
12 2.09 0.23 (PBHA)∗
13 2.14 0.20 (PBHB)∗
14 2.19 0.02 P+AP−B
15 2.33 0.00 B−AH+A
16 2.34 0.00 P−AP+B

B. Effect of the protein environment
on a tetrameric RC model

The importance of the protein environment and its impact on
charge transfer were recognized already in early studies of the bac-
terial RC.64–66 Proposals for how the surrounding proteins affect
charge transfer in the RC have primarily included asymmetries in the
dielectric environment and in the protein electrostatic fields that A
and B branch cofactors experience.65,67–70 Our goal here is to explic-
itly include parts of the protein environment in our LR-TDDFT
calculations to elucidate which amino-acid residues electronically
couple to the primary RC pigments. For this purpose, we start by
studying tetrameric models of the RC, including the special pair P
and the accessory BCLs BA and BB, and systematically increase the
number of amino-acid residues in our calculations.

We construct four model systems, as shown in Fig. 3(a): model
system M1 consists of the four BCL molecules PA, PB, BA, and BB.
For a direct analysis of the influence of the closest lying amino
acids, the histidine molecules that coordinate each of the BCLs
(HIS M202, HIS M182, HIS L173, and HIS L153) were included
in model system M2. Our largest model system, M4, contains all
amino acids in a radius of 3 Å around the BCLs. These 32 amino
acids were determined by constructing spheres with a radius of 3 Å
around each atom of the four BCL molecules (excluding hydro-
gen atoms and the phytyl tail). A complete list (Table S4) and all
structure files can be found in the supplementary material. We
calculated the electronic density of states (DOS) of these model
systems and found two occupied states localized on amino acids
TRP M157 and MET L248, respectively, energetically close to the
highest occupied molecular orbital of M4 (see Figs. S5 and S6).
However, a model system M∗3 consisting of the four primary BCL
molecules, the coordinating histidines, and these two amino acids
features an electronic DOS distinctly different from that ofM4 (Fig.
S7). We therefore additionally included the two main symmetry
breaking amino acids PHE M197 and HIS L168 as suggested by
Eisenmayer et al.31 to construct model system M3 with a DOS in
very good agreement with the DOS of M4 in the relevant energy
range.

The LR-TDDFT Q-band spectra ofM1–M4 comprising the ten
lowest-energy excitations are shown in Fig. 3(b) and Tables S5 and
S6. The first four excitations of these model systems can be seen
as arising from a coupling of the Qy excitations of P, BA, and BB.
We provide a detailed analysis of the origin of these excitations
in the supplementary material (Figs. S9–S11). Inspection of their
transition densities (Fig. S9) shows that only the first excitation
is localized on P, while excitations 2–4 are coupled Qy excitations
spread across all four BCLs. Among the following six excitations of
M1, 5, 6, and 7 can clearly be assigned to P. Two of these excitations
(6 and 7) have coupled Qx character; excitation 5 has Qy charac-
ter, but integration over the difference density corresponding to this
state also shows substantial charge-transfer character. States 8 and
9 of M1 are Qx excitations associated with BA and BB. Excitation
10 of M1 is nearly dark and corresponds to a P+AP−B charge-transfer
state.

Inclusion of the histidines in M2 hardly affects the first four
excitations. Only when further amino-acid residues are added do we
observe a noticeable redshift: the first excitation of M4 is 40 meV
lower in energy than that of M1. The character of these excitations
is not changed by the environment. The average difference density
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FIG. 3. (a) Representation of model systems M1, M2, M3, and M4 as described in the main text. (b) Absorption spectra of M1 − M4 in the energy region where coupled
Qy and Qx excitations are expected. Red arrows mark excitations with charge-transfer character. (c) Energy of dark excitations (zero oscillator strength) of M1 − M3 and

difference densities of selected charge-transfer excitations of M1. The red surface of the difference density shows the isovalue −0.0001a−3
0

and the blue surface shows

0.0001a−3
0

.

of excitations 1–4 is barely affected by the addition of the environ-
ment, as shown in Fig. S12. We observe more significant energy
differences for the next six excitations. Excitations withQx character
are redshifted by ∼100 meV through addition of the coordinating
histidines, and the coupled Qx excitations of P are redshifted by
another 20 meV for model system M3, while the Qx excitations of
the accessory BCLs are stable. We note that the significance of the
coordinating histidines for these excitations can also be seen in the

difference density (Fig. S12). In systems M2–M4, there is a clear
transfer of positive charge from P to the coordinating histidines.

The energy of the (partial) charge-transfer excitations 5 and 10
of M1 is also affected by adding the protein environment. Excita-
tion 5 of M1 is redshifted by ∼60 meV and becomes excitation 6
in M4, and excitation 10 is redshifted by ∼100 meV. The magni-
tude of charge transfer is only slightly affected by the addition of the
environment. The amount of charge transferred from PA to PB in
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excitation 5 of M1 decreases slightly when adding the environment
while in excitation 10 it remains the same. Overall, the charac-
ter of excitations 5–10 is only slightly affected by the amino-acid
environment, as can be seen in Fig. S13, which shows the average dif-
ference density of excitations 5–10 for systemsM1–M4. Importantly,
Fig. 3(b) demonstrates that the spectrum ofM4 is very similar to that
of M3 with the same order of states and only a small global redshift
as compared to M3. We, therefore, conclude that the eight amino
acids considered in M3 reproduce the main (static) effects of the
amino-acid environment. Therefore, they constitute a “reasonable
minimal environment” that should be explicitly included in future
calculations.

At energies above the Q-band and below the Soret band, which
starts at ∼3 eV,10 we observe a range of dark states with charge-
transfer character. Here, we only discuss five states in this energy
region that lead to a clear charge transfer between different BCL
molecules. The energy and difference densities of these states are
shown in Fig. 3(c). (Integrated) difference densities of all states are
shown in Fig. S14 and Table S7. Due to the large size ofM4, we only
calculated 12 excitations with high numerical accuracy for this sys-
tem. Since the effects of the environment are well-represented byM3,
as shown before, we do not discuss the charge-transfer excitations of
M4 in detail. However, Tables S5 and S6 show that the energies of
the charge-transfer excitations 11 and 12 of M3 and M4 are in very
good agreement.

In similarity to the findings for our hexameric model of the RC,
we find a P−AP+B excitation in M1-M3 (excitation 11). The addition
of the histidines redshifts this state by 80 meV, while the additional
amino acids inM3 lead to a blueshift of 26 meV. The 12th excitation
corresponds to P−B+A . This state is redshifted by 120 meV through
the addition of histidines, while further amino acids blueshift the
excitation back by 110 meV. The energy gap between P−B+A and
the next charge-transfer excitation is substantial: ∼130 meV in M1,∼210 meV in M2, and 85 meV in M3. In the 13th excitation of
M1, we observe a backward charge transfer from the B branch cor-
responding to P+B−A . The first forward charge transfer into the B
branch (P+B−B ) occurs at ∼2.6 eV, i.e., at significantly higher ener-
gies than P−B+A . The addition of amino acids affects this excitation
in a similar way as P−B+A . These calculations show that the inclusion
of a (static) protein environment in the system studied here changes
excitation energies substantially but hardly affects the character and
spatial delocalization of states. For our tetrameric model systems,
addition of the protein environment also does not lead to a mixing
of Q-band excitations and experimentally relevant charge-transfer
states.

To probe the effect of structural fluctuations on the energy of
the excited states, we also calculated the normal mode spectrum
of model system M1 in TURBOMOLE using the B3LYP functional
and def2-SVP basis sets. We then distorted the structure along
each of the normal modes with a distortion amplitude correspond-
ing to 300 K and calculated the LR-TDDFT excitation spectra in
QCHEM with ωPBE as before. The high-frequency modes of M1

correspond to intramolecular vibrations such as C–C and C–H
stretch modes, which are not thermally activated and only have a
small effect on the energy of the delocalized excitations that we
are interested in here. We, therefore, only calculated the effect of
normal mode distortions on excitation energies for wavenumbers
below 85 cm−1. Low-frequency modes correspond to intermolecular

vibrations that change the orbital overlap between neighboring
BCL molecules and are thus expected to have a more substantial
effect on the excitation energies of delocalized and charge-transfer
excitations.71

Our results, shown in Fig. S15, confirm this intuitive picture:
The first excitation, corresponding to a coupled Qy excitation of P,
exhibits mode-dependent energy changes of up to 20 meV, while
excitations 2–4 are much less sensitive to these distortions with
energy changes of ≲10 meV in line with their spatial delocalization
across BA and BB, which are far apart. A similar observation holds
for the coupled Qx excitations of P, BA, and BB. On the other hand,
excitations with (partial) charge-transfer character between neigh-
boring molecules are highly sensitive to low-frequency vibrations,
exhibiting excitation-energy changes of up to 30 meV for charge
transfer between PA and PB and up to 50 meV for charge trans-
fer between P and BA or BB. These excitation-energy changes can
result in both red- and blueshifts, as shown in Fig. S15. Nonetheless,
our analysis indicates that the inclusion of inter- and intramolecu-
lar vibrations does not change our overall result that, in a tetrameric
model of the bacterial RC, charge-transfer excitations into the A-
branch are energetically well-separated from theQ-band excitations.
A more complete picture of the effect of thermal fluctuations could
be obtained through a statistical analysis of the excitation spectra of
structure “snapshots” from molecular dynamics simulations. Such
simulations were performed for the RC of Heliobacterium modesti-
caldum in Ref. 36. There, it was found that the excitation energies
changed quantitatively, but the conclusions about the relative order-
ing of the excitations based on the ensemble-averaged excitation
spectrum agreed with the conclusions that were drawn based on a
single spectrum.

Finally, we tested whether the inclusion of further parts
of the protein environment through a QM/MM scheme would
change our main conclusions. Figures S16 and S17 show the full
LR-TDDFT spectrum and the TDA spectrum of M1 with and
without the QM/MM environment. Inclusion of the QM/MM
environment leads to changes in the absorption spectrum of
comparable size as in our explicit model M4. In particular, we
also observe a redshift of the first charge-transfer excitation of∼200 meV. However, the redshift of the coupled Qy and Qx exci-
tations due to the protein environment is smaller in the QM/MM
model, and some of the detailed changes in the partial and
full charge-transfer excitations are also not captured by the MM
environment.

C. Effect of environment on A and B
branch excited states

Due to the large size of the hexameric model of the RC dis-
cussed in Sec. III A (494 atoms), an LR-TDDFT calculation includ-
ing the relevant charge-transfer states for a structural model that also
includes significant parts of the protein environment as performed
for the tetrameric model in Sec. III B is computationally not feasible.
The largest hexameric RC model that we could run full LR-TDDFT
calculations for includes the coordinating histidines close to PA, PB,
BA, and BB (as inM2) plus two leucines close toHA andHB. Table S2
shows that including these amino-acid residues has similar effects as
those observed in Sec. III B, but the calculation of more than the first
13 excitations was not feasible for this system.
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However, given the large spatial separation between the A- and
B-branch accessory BCLs and bacteriopheophytins, we can assume
that parts of the spectrum of the full RC arise as combinations of
the A-branch and B-branch excitations, respectively. To test this
assumption, we constructed two further structural models, A1 and
B1, shown in Fig. 4(a), comprising P, BA, and HA for the A branch
and P, BB, and HB for the B branch, respectively. We compare the
excitation spectrum of the hexameric model with that of A1 and B1,
respectively, in Fig. 4(b). As expected, excitations associated with P
appear in all three spectra, albeit at different energies (e.g., the first
excitation and the charge-transfer states P−AP+B and P+AP−B ). On the
other hand, excitations that are localized on the A- or B-branch can
clearly be assigned to eitherA1 or B1. In particular, in our calculation
of the spectrum of A1, we find the charge-transfer state B−AH+A at the
same energy (∼2.3 eV) as in our hexameric model. We can therefore
study the effect of adding amino acids to the energy of this and other
relevant charge transfer states using our structural models A1 and B1

as a starting point.

A comparison of the excitation energies of the relevant charge-
transfer states in the A- and B-branch is shown in Fig. 4(c) and listed
in Tables S9 and S10. The B−AH+A state is significantly lower in energy
than B−BH+B , in agreement with the experimentally observed direc-
tionality of charge-separation along the A-branch. By adding the
coordinating histidines and leucines in model systems A2 and B2,
both states are redshifted by more than 100 meV. Charge-transfer
states from P to BB and P to BA are significantly higher in energy,
in particular after the addition of the coordinating histidines and
leucines. Adding further amino-acid residues (listed in Table S11),
in analogy withM3 in Sec. III B, leads to a further redshift of B−AH+A ,
bringing this charge-transfer state within 25 meV of the coupled
Qx excitations (see Table S9). It is, therefore, likely that the addi-
tion of further parts of the protein environment in concert with
thermally-activated molecular vibrations could lead to a mixing of
this and other charge-transfer states and the delocalized coupled Qx

excitations. This is supported by earlier studies using polarizable
continuum models, which suggest that differences in the dielectric

FIG. 4. (a) Structures of model systems A1 (P + BA + HA) and B1 (P + BB + HB). (b) Absorption spectra of A1, B1, and the full hexameric model system (P + BA + BB + HA+ HB) in the energy region where coupled Qy and Qx excitations are expected. Red arrows mark excitations with charge-transfer character. (c) Energy of dark excitations
(zero oscillator strength) in A1, B1 and A2, B2. The latter correspond to A1 and B1, respectively, but in addition include the coordinating histidines and leucines.
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environment lead to a stabilization of charge-transfer excitations in
the A branch in comparison with the B branch.32

IV. SUMMARY AND CONCLUSIONS

Our first principles calculations show a pronounced effect of
the protein environment on the electronic structure and excited
states of the six primary pigments comprising the RC of Rhodobac-
ter sphaeroides. By systematically adding relevant amino acids in
the vicinity of these chromophores, we find a significant redshift
of the coupled Qy and Qx excitations. Charge-transfer excitations
are observed in the form of dark excitations starting at ∼200 meV
above the coupled Qx excitations. These charge-transfer states
are strongly affected by direct inclusion of the protein environ-
ment with energy changes of up to ∼0.2 eV. However, contrary
to the coupled Qy and Qx excitations, the protein environment
affects charge-transfer states of different characters differently. In
particular, the lowest-energy charge transfer state in our calcula-
tions corresponds to B−AH+A and is significantly lower in energy
than other excitations that move charge into the A branch. It is
also almost 500 meV lower than an equivalent excitation in the
B-branch. The B−AH+A excitation is redshifted by the inclusion of
close-lying amino-acid residues and can mix with the coupled Qx

excitations.
Our calculations suggest that charge-transfer along the RC

A branch of Rhodobacter sphaeroides is energetically favored and
demonstrate the complex excited state landscape of the RC’s chro-
mophores. Analyzing the transition and differences densities of
the excited states allows for several conclusions. While most of
the Q-band excitations can be understood as a consequence
of the coupling of Qy and Qx excitations of the special pair BCLs
P and the accessory BCLs BA and BB, the close spatial proxim-
ity of these molecules leads to strong coupling, mixing in (partial)
charge-transfer states of the type P−AP+B at relatively low energies.
Furthermore, only the first high-oscillator strength excitation of
the spectrum can be interpreted as a coupled Qy excitation of the
special pair. All other excitations are strongly delocalized, some of
them with significant transition density on all six primary pigments.
The presence of strongly delocalized excited states corresponding
to both energy- and charge-transfer excitations is relevant because
delocalized excitations are expected to be more strongly affected
by thermally activated molecular vibrations than localized excita-
tions, as shown previously by Alvertis et al. for the oligo-acene
series.71 In our study, we have approximately shown this effect
by calculating the exciton renormalization energies of tetrameric
model structures distorted along vibrational normal modes.
Based on our own calculations and previous literature,30,31,34,35

we expect yet more pronounced effects for larger structural
models that also include the vibronic coupling to the protein
environment.

Finally, our calculations allow us to comment on the interpre-
tation of experimental spectroscopy of pigment-protein complexes
like the bacterial RC. Our results suggest that because of the delo-
calized nature of energy- and charge-transfer excitations in these
systems, the assignment of spectroscopic features to linear combi-
nations of localized excitations on individual pigments is not always
justified. Care should be taken when modeling the strongly coupled
pigments of the bacterial RC in terms of their constituting elements.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional convergence
data, excitation energies, difference densities, and transition densi-
ties not shown in the main text, a discussion of the spectral origin
of the coupled Qy and Qx excitations, details on the QM/MM cal-
culations, results for vibrationally excited structures, and structure
files.
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I. FURTHER INFORMATION ON METHODS

A. Convergence Tests

We tested how well our results converged with respect to the basis set size by calculating the

first 15 excitations of P with the basis set 6-31G(d,p) and the bigger basis set 6-311G(d,p). The

excitation energies, shown in Table S1, differ by less than 30 meV and the smaller basis set leads

qualitatively to the same spectrum.

P 6-31G(d,p) P 6-311G(d,p)

Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.)

1 1.611 (0.574) 1.585 (0.580)

2 1.716 (0.055) 1.689 (0.056)

3 1.873 (0.093) 1.858 (0.084)

4 1.946 (0.101) 1.924 (0.103)

5 2.061 (0.167) 2.041 (0.169)

6 2.234 (0.017) 2.211 (0.018)

7 2.347 (0.001) 2.342 (0.001)

8 2.494 (0.000) 2.519 (0.000)

9 2.553 (0.001) 2.583 (0.001)

10 2.648 (0.002) 2.635 (0.003)

11 2.693 (0.007) 2.677 (0.006)

12 2.745 (0.001) 2.732 (0.001)

13 2.891 (0.019) 2.882 (0.025)

14 2.927 (0.009) 2.939 (0.003)

15 3.005 (0.018) 2.993 (0.028)

TABLE S1: The excitation energies of P with the Pople basis sets 6-31G(d,p) and 6-311G(d,p).

To check convergence of the eigenvalues of the Casida matrix equation of TDDFT, we used the

smallest model system M1 and calculated 20 and 30 excitations with a convergence criterion of

10−6 and 10−7, respectively. The excitation energies differed by up to 8 meV in the comparison of

20 and 30 excitations with a convergence criterion of 10−6 for the eigenvalues. When we set the

S2



value to 10−7, the deviations were smaller with a maximum deviation of ∼1 meV. We therefore

used a criterion of 10−7 for all calculations. For M1 and M2 we calculated 30 excitations, for M3 20

excitations. For M4 we could only calculate ten excitations due to technical limitations of Q-CHEM

that prevented successful TDDFT calculations for a system this large.

To check if at least the first CT excitation that shifts an electron from BB to P is stable under

inclusion of larger parts of the environment, we calculated twelve excitations with TURBOMOLE,

using the same basis set and equivalent convergence critera as in our Q-CHEM calculations. The

excitation energies calculated with TURBOMOLE differ by less than 10 meV from the Q-CHEM

results as shown in Table S4.
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FIG. S1: The spectra of M1 to M3 with the phytyl tail cropped in the ester link and saturated with

a methyl group.

We also checked the effect of the saturation of the BCLs phytyl tail on our findings. For this

purpose, we calculated model systems M1 to M3 with a methyl group at the corresponding end.

The spectra shown in figure S1 are slightly different from those saturated with hydrogen, but the

environment still has a very similar impact on the character and energy of these excited states.
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B. Choice of Range-Separation Parameter

We have used the same range-separation parameter ω in all calculations for general reasons:

Using the same ω for each system allows us to compare the electronic structure of all model sys-

tems on the same footing. Furthermore, it was shown, for example in Ref.s 1 and 2 that using the

optimal tuning procedure for conjugated molecular systems of increasing size leads to artificially

low values of ω and thus a dominance of semilocal exchange at long range and a deterioration of

the description of charge-transfer excitations. This can be seen in the Figure S2, in which we show

the absorption spectra of a single BCL plus histidine (Figure S2(a)), the two BCLs of the special

pair (Figure S2(b)) and the four BCLs of our model system M1 (Figure S2(c)). In each panel, we

compare the absorption spectrum of the system calculated with ω = 0.171 a−0 1 (used throughout

our manuscript) with that obtained using the optimal tuning procedure for each system3. These

parameters are ω = 0.162 a−0 1 (BCL + His), ω = 0.130 a−0 1 (special pair P), ω = 0.114 a0 − 1

(tetrameric model M1). This comparison shows that the "optimal" ω decreases with increasing

system size leading to increasing differences between the spectra obtained with the ”tuned” and

the “untuned” functional. As expected, smaller values of ω lead to a dominance of semilocal

exchange at the long range which leads to a spurious stabilization of charge-transfer excitations

which are appearing at increasingly lower energies with increasing system size.

FIG. S2: Absorption spectra of (a) BCL-His, (b) P, and (c) M1. The upper panel spectra are

calculated with ωPBE using an "optimally" tuned ω value for each structure while the lower

panel spectra were calculated using the same ω = 0.171a−1
0 based on tuning for a gas-phase

BCL a molecule4.
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II. ADDITIONAL RESULTS AND DISCUSSION

A. Additional Information on the Bare Hexameric RC Model

1. Excitation Energies

RC RC+His

Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.)

1 1.5615 (0.83) 1.5703 (0.81)

2 1.6341 (0.36) 1.6358 (0.36)

3 1.6733 (0.33) 1.6748 (0.32)

4 1.7176 (0.15) 1.7186 (0.13)

5 1.8014 (0.30) 1.7962 (0.29)

6 1.8431 (0.29) 1.8324 (0.10)

7 1.8528 (0.07) 1.8391 (0.24)

8 1.9275 (0.10) 1.8676 (0.09)

9 2.0489 (0.18) 1.9435 (0.14)

10 2.0856 (0.02) 1.9781 (0.09)

11 2.0870 (0.13) 1.9882 (0.09)

12 2.0968 (0.23) 2.1235 (0.17)

13 2.1466 (0.20) 2.1493 (0.23)

14 2.1931 (0.02)

15 2.3373 (0.00)

16 2.3421 (0.00)

TABLE S2: The excitation energies of the hexameric RC model without and with the

coordinating histidines and leucines.
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2. Transition Densities and Difference Densities

Both the transition and difference densities can be derived from the density matrix γ ii(r,r′) =

N
∫

Ψi(r,r2, . . . ,rN)Ψi(r′,r2, . . . ,rN)d3r2...d3rN , where N is the number of electrons and Ψi is

the excited state wavefunction, here constructed from a sum of Slater determinants of generalized

Kohn-Sham orbitals with coefficients from linear-response TDDFT. The ground state density is

n0(r) = γ00(r,r) The density of excited state i is ni(r) = γ ii(r,r). The difference density is ob-

tained by subtracting ni from n0, and allows to visualize the change of density upon excitation of

the system into excited state i.

The transition density is obtained as the diagonal part of the density matrix for a transition from

the ground state into an excited state i ρ0i(r) = γ0i(r,r) and is particularly useful for determining

the interaction strength of electronic transitions with light and efficiencies of excitation energy

transfer5. For charge-transfer excitations there is no overlap between ground and excited state,

thus the transition density vanishes. Therefore, the difference density is a more useful tool for

visualizing charge-transfer excitations and quantifying their charge-transfer character.
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(a) t1 of RC (b) t2 of RC (c) t3 of RC (d) t4 of RC

(e) t5 of RC (f) t6 of RC (g) t7 of RC (h) t8 of RC

(i) t9 of RC (j) t10 of RC (k) t11 of RC (l) t12 of RC

(m) t13 of RC (n) t14 of RC (o) t15 of RC (p) t16 of RC

FIG. S3: The transition densities t1 to t16 of the hexameric RC model. The red surface of the

transition density shows the isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 . The

A-branch is located on the right-hand side.
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(a) ∆n1 of RC (b) ∆n2 of RC (c) ∆n3 of RC (d) ∆n4 of RC

(e) ∆n5 of RC (f) ∆n6 of RC (g) ∆n7 of RC (h) ∆n8 of RC

(i) ∆n9 of RC (j) ∆n10 of RC (k) ∆n11 of RC (l) ∆n12 of RC

(m) ∆n13 of RC (n) ∆n14 of RC (o) ∆n15 of RC (p) ∆n16 of RC

FIG. S4: The difference densities 1 to 16 of RC. The red surface of the difference density shows

the isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 . The A-branch is located on the

right-hand side.
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FIG. S5: Occupied (left panel) and unoccupied (right panel) DOS of model systems M1 to M4.

Colored impulses mark eigenvalues. The shaded areas are calculated by folding the eigenvalues

with Gaussian functions with a width of 0.08 eV as a guide to the eye.

(a) HOMO-8 of M4 (b) HOMO-7 of M4

FIG. S6: The orbitals localized on TRP M157 (a) and MET L248 (b). The red surface shows the

isovalue -0.001a−3/2
0 and the blue surface shows 0.001a−3/2

0 .
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FIG. S7: Occupied (left panel) and unoccupied (right panel) DOS of model systems M∗
3 and M4.

Colored impulses mark eigenvalues.

B. Additional Information on Tetrameric Models M1 – M4

1. List of Amino Acids in M4

2. Electronic Density of States

3. Assignment of Excitations of Tetrameric Model

The lowest-energy excitations of single BCL a molecules are the Qy excitation at ∼1.6 eV

and the Qx excitation at ∼2.1 eV with approximately perpendicular transition dipole moments6.

Therefore, the first excitations of our tetrameric model systems are expected to arise from a cou-

pling of the Qy and Qx excitations of the four RC BCL a molecules. Following Ref. 7, we start

by dividing model systems M1 and M2 into subsystems and comparing their absorption spectra to

those of P (P+HIS) and the BA-BB dimer (BA+HIS-BB+HIS) in Figure S8. To assign the character

of these excitations, we calculated transition densities of all systems (Figures S8, S9, and S10).

Figure S8 and Figure S9 show that the first two excitations of P are coupled Qy excitations with

characteristics of a J-aggregate featuring one bright excitation (parallel transition dipole moments)

and one excitation with smaller oscillator strength (antiparallel transition dipole moments). The

two BCL a of the special pair P are only 7.5 Å apart (measured as the distance between the central

Mg ions). Short-range coupling, therefore, dominates the interaction of this "supermolecule". The

distance of BA and BB is with 21.4 Å much larger. Consequently, we find one Qy excitation on

each BCL with similar oscillator strength and low coupling (Figure S10). Comparison with the

full spectrum and the transition densities of M1 shows that only the first excitation is localized on

P while excitations 2 to 4 are coupled Qy excitations spread across all four BCLs.
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∆ni BCL RC ∆ni BCL RC ∆ni BCL RC ∆ni BCL RC

∆n1

PA 0

∆n5

PA 0

∆n9

PA 0

∆n13

PA 0

PB 0 PB 0 PB 0 PB 0

BA 0 BA 0 BA 0 BA 0

BB 0 BB 0 BB 0 BB 0

HA 0 HA 0 HA 0 HA 0

HB 0 HB 0 HB 0 HB 0

∆n2

PA 0

∆n6

PA 0

∆n10

PA 0

∆n14

PA 0.90

PB 0 PB 0 PB 0 PB -0.90

BA 0 BA 0 BA 0 BA 0

BB 0 BB 0 BB 0 BB 0

HA 0 HA 0 HA 0 HA 0

HB 0 HB 0 HB 0 HB 0

∆n3

PA 0

∆n7

PA -0.69

∆n11

PA 0

∆n15

PA 0

PB 0 PB 0.69 PB 0 PB 0

BA 0 BA 0 BA 0 BA -0.99

BB 0 BB 0 BB 0 BB 0

HA 0 HA 0 HA 0 HA 0.99

HB 0 HB 0 HB 0 HB 0

∆n3

PA 0

∆n8

PA 0

∆n12

PA 0

∆n16

PA -0.83

PB 0 PB 0 PB 0 PB 0.83

BA 0 BA 0 BA 0 BA 0

BB 0 BB 0 BB 0 BB 0

HA 0 HA 0 HA 0 HA 0

HB 0 HB 0 HB 0 HB 0

TABLE S3: The integral values over the spaces of the 4 BCLs and 2 Bacteriopheophytins of the

difference densities calculated with method 1 defined in the main text. Values smaller than 0.01

are set to 0.
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name chain sequence number

TYR L 128

LEU L 131, 154

PHE L 146, 181

HIS L 168, 153, 173

VAL L 157

THR L 160

MET L 174, 248

SER L 178, 244

ILE L 177

ALA L 245

TYR M 210

LEU M 156, 160, 183, 196

PHE M 197

HIS M 182, 202

THR M 186

SER M 190

ILE M 179, 206, 284

ALA M 207

ASN M 187

TRP M 157

TABLE S4: The 32 amino acids included in M4.

To analyze the influence of the histidines on the first ten excitations, we perform a similar

division into subsystems for M2. We show the spectrum of M2 and the corresponding subsystems

P+HIS and BA+HIS-BB+HIS in Figure S8.
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FIG. S8: (a) Absorption spectra of P, M1 and BA-BB and (b) Absorption spectra of P+HIS, M2

and BA+HIS-BB+HIS. Black arrows mark excitations with vanishing oscillator strength.

4. Excitation Energies, Transition Densities and Difference Densities

With Q-CHEM, the calculation of 10 excitations was possible for our largest model system

M4. We therefore performed an additional calculation with TURBOMOLE which allowed for the

calculation of 12 excitations. Table S6 shows that Q-CHEM and TURBOMOLE result in very similar

excitation energies for the first 10 excitations.
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M1 M2 M3

Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.) En.[eV](Osc.Str.)

1 1.596 (0.792) 1.605 (0.783) 1.584 (0.790)

2 1.664 (0.223) 1.666 (0.224) 1.655 (0.203)

3 1.697 (0.400) 1.698 (0.391) 1.690 (0.442)

4 1.737 (0.074) 1.738 (0.067) 1.725 (0.105)

5 1.867 (0.077) 1.837 (0.067) 1.818 (0.071)

6 1.932 (0.084) 1.884 (0.075) 1.890 (0.079)

7 2.050 (0.167) 1.945 (0.141) 1.926 (0.125)

8 2.092 (0.118) 1.981 (0.105) 1.973 (0.104)

9 2.104 (0.133) 2.006 (0.111) 2.005 (0.109)

10 2.226 (0.018) 2.232 (0.014) 2.148 (0.027)

11 2.332 (0.002) 2.252 (0.005) 2.278 (0.002)

12 2.393 (0.000) 2.272 (0.000) 2.383 (0.000)

13 2.520 (0.001) 2.484 (0.000) 2.439 (0.006)

14 2.538 (0.000) 2.546 (0.001) 2.468 (0.000)

15 2.547 (0.000) 2.593 (0.000) 2.555 (0.000)

16 2.565 (0.000) 2.616 (0.000) 2.586 (0.001)

17 2.585 (0.001) 2.644 (0.000) 2.623 (0.001)

18 2.609 (0.000) 2.645 (0.002) 2.629 (0.005)

19 2.632 (0.001) 2.658 (0.000) 2.654 (0.000)

20 2.706 (0.006) 2.661 (0.007) 2.661 (0.000)

21 2.728 (0.000) 2.669 (0.002)

TABLE S5: The excitation energies of M1-M3.
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M4 (Q-Chem) M4 (Turbomole)

Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.)

1 1.556 (0.860) 1.556 (0.861)

2 1.622 (0.185) 1.621 (0.184)

3 1.657 (0.475) 1.656 (0.467)

4 1.632 (0.103) 1.691 (0.101)

5 1.809 (0.085) 1.800 (0.080)

6 1.886 (0.076) 1.885 (0.088)

7 1.916 (0.105) 1.914 (0.090)

8 1.953 (0.105) 1.949 (0.104)

9 1.986 (0.105) 1.982 (0.104)

10 2.125 (0.029) 2.118 (0.030)

11 2.279 (0.002)

12 2.376 (0.004)

TABLE S6: The excitation energies of M4. 10 excitations calculated with Q-Chem and 12

excitations calculated with Turbomole.
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(a) t1 of M1 (b) t2 of M1 (c) t3 of M1 (d) t4 of M1

(e) t5 of M1 (f) t6 of M1 (g) t7 of M1 (h) t8 of M1

(i) t9 of M1 (j) t10 of M1

FIG. S9: The transition densities t1 to t10 of M1. The red surface of the transition density shows

the isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 . The spatial orientation of t8 to t10

was changed for reasons of clarity. However, in all plots, BA is on the left hand side.
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(a) t1 of P (b) t2 of P (c) t3 of MP (d) t4 of P

(e) t5 of P (f) t6 of P

FIG. S10: The transition densities t1 to t6 of P. The red surface of the transition density shows the

isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 .

(a) t1 of BA-BB (b) t2 of BA-BB (c) t3 of BA-BB (d) t4 of BA-BB

FIG. S11: The transition densities t1 to t4 of BA-BB. The red surface of the difference density

shows the isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 . BA is the upper left BCL.
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(a) ∆n1 of M1 (b) ∆n1 of M2 (c) ∆n1 of M3 (d) ∆n1 of M4

(e) ∆n2 of M1 (f) ∆n2 of M2 (g) ∆n2 of M3 (h) ∆n2 of M4

(i) ∆n3 of M1 (j) ∆n3 of M2 (k) ∆n3 of M3 (l) ∆n3 of M4

(m) ∆n4 of M1 (n) ∆n4 of M2 (o) ∆n4 of M3 (p) ∆n4 of M4

(q) ∆n5 of M1 (r) ∆n5 of M2 (s) ∆n5 of M3 (t) ∆n5 of M4

(u) ∆n6 of M1 (v) ∆n6 of M2 (w) ∆n6 of M3 (x) ∆n6 of M4

FIG. S12: The difference densities 1 to 6 of M1-M4. The red surface of the difference density

shows the isovalue -0.0001a−3
0 and the blue surface shows 0.0001a−3

0 .
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(a) ∆n7 of M1 (b) ∆n7 of M2 (c) ∆n7 of M3 (d) ∆n7 of M4

(e) ∆n8 of M1 (f) ∆n8 of M2 (g) ∆n8 of M3 (h) ∆n8 of M4

(i) ∆n9 of M1 (j) ∆n9 of M2 (k) ∆n9 of M3 (l) ∆n9 of M4

(m) ∆n10 of M1 (n) ∆n10 of M2 (o) ∆n10 of M3 (p) ∆n10 of M4

(q) ∆n̄2−4 of M1 (r) ∆n̄2−4 of M2 (s) ∆n̄2−4 of M3 (t) ∆n̄2−4 of M4

(u) ∆n̄5−10 of M1 (v) ∆n̄5−10 of M2 (w) ∆n̄5−10 of M3 (x) ¯∆n5−10 of M4

FIG. S13: The difference densities 7 to 10 and the average difference densities 2-4 and 5-10 of

M1-M4. The red surface of the difference density shows the isovalue -0.0001a−3
0 and the blue

surface shows 0.0001a−3
0 .
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(a) ∆n11 of M2 (b) ∆n12 of M2 (c) ∆n13 of M2 (d) ∆n14 of M2 (e) ∆n21 of M2

(f) ∆n11 of M3 (g) ∆n12 of M3 (h) ∆n14 of M3 (i) ∆n15 of M3 (j) ∆n16 of M3

FIG. S14: The difference densities of the CT excitations of M2 and M3, which are not shown in

the main text. The red surface of the difference density shows the isovalue -0.0001a−3
0 and the

blue surface shows 0.0001a−3
0 .
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∆ni BCL M1 M2 M3 M4

∆n1

PA −0.15 (−0.12) −0.13 (−0.11) −0.10 (−0.09) −0.08 (−0.07)
PB 0.15 (0.12) 0.13 (0.11) 0.10 (0.09) 0.07 (0.07)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n2

PA 0 (0) 0 (0) 0 (0.01) 0 (0.01)
PB 0 (0) 0 (0) 0 (−0.01) 0 (−0.01)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n3

PA 0 (0) 0 (0) −0.01 (0) 0 (0)
PB 0 (0) 0 (0) 0 (0) 0 (0)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n4

PA 0 (0) 0 (0) 0 (0) 0 (0)
PB 0 (0) 0 (0) 0 (0) 0 (0)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n5

PA −0.76 (−0.59) −0.06 ( −0.04) −0.03 (−0.04) −0.03 (−0.03)
PB 0.76 (0.59) 0.06 (0.04) 0.03 (0.04) 0.03 (0.03)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n6

PA −0.07 (−0.05) −0.74 (−0.57) −0.67 (−0.51) −0.57 (−0.44)
PB 0.07 (0.05) 0.74 (0.57) 0.67 (0.51) 0.57 (0.44)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n7

PA 0 (0) −0.05 (0.04) −0.14 (−0.10) −0.25 (−0.19)
PB 0 (0) 0.05 (0.04) 0.14 (0.10) 0.25 (0.19)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n8

PA 0 (0) 0 (0) 0 (0) 0 (0)
PB 0 (0) 0 (0) 0 (0) 0 (0)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n9

PA 0 (0) 0 (0) 0 (0) 0 (0)
PB 0 (0) 0 (0) 0 (0) 0 (0)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

∆n10

PA 0.92 (0.72) 0.73 (0.57) 0.90 (0.69) 0.89 (0.67)
PB −0.92 (−0.72) −0.74 (−0.57) −0.90 (−0.69) −0.90 (−0.67)
BA 0 (0) 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0) 0 (0)

TABLE S7: The integral values over the spaces of the 4 BCLs of the difference densities which

are not shown in the main text calculated with method 1 defined in the main text. Values in

brackets are calculated with method 2. All values smaller than 0.01 are set to 0.
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BCL M1 M2 M3

P−
A P+

B

PA −0.84 (−0.67) −0.68 (−0.54) −0.86 (−0.69)
PB 0.84 (0.67) 0.67 (0.54) 0.86 (0.69)
BA 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0)

P−B+
A

PA −0.94 (−0.90) −0.94 (−0.90) −0.92 (−0.87)
PB −0.06 (−0.09) −0.06 (−0.09) −0.08 (−0.12)
BA 1.00 (0.99) 1.00 (0.99) 1.00 (0.99)
BB 0 (0) 0 (0) 0 (0)

P+B−
B

PA 0.07 (0.14) 0.07 (0.13) 0.11 (0.17)
PB 0.91 (0.84) 0.77 (0.71) 0.87 (0.80)
BA 0 (0) 0 (0) 0 (0)
BB −0.99 (−0.98) −0.84 (−0.84) −0.98 (−0.97)

P−B+
B

PA −0.45 (−0.45) −0.43 (−0.43) −0.35 (−0.36)
PB −0.55 (−0.54) −0.56 (−0.56) −0.65 (−0.63)
BA 0 (0) 0 (0) 0 (0)
BB 0.99 (0.99) 0.99 (0.99) 1.00 (0.99)

P+
A P−

B

PA 0.84 (0.67) 0.88 (0.71) 0.75 (0.57)
PB −0.84 (−0.67) −0.88 (−0.71) −0.75 (−0.57)
BA 0 (0) 0 (0) 0 (0)
BB 0 (0) 0 (0) 0 (0)

TABLE S8: Integrated difference density of the charge-transfer excitations for subsystem charge

densities PA, PB, BA, and BB as calculated with method 1 defined in the main text. The values in

brackets are calculated with method 2.
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5. Effect of Molecular Vibrations

We note that our calculation of the vibrational normal modes of M1 produces a number of

imaginary modes, as expected for an experimental crystal structure which does not correspond to

a local minimum of the DFT potential energy surface. We therefore do not average over all modes

to obtain a more complete picture of the vibrational renormalization8. Nonetheless, our calcula-

tions provide a mode-resolved picture of the effect of thermally-activated molecular vibrations on

excitations of different character.
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FIG. S15: Mode-resolved picture of excitation energy renormalization due to structural distortion

along vibrational normal modes. Left: Coupled Qy excitations, where excitation 1 can be

assigned to P and we average over excitations 1 – 3, Middle: Coupled Qx excitations and internal

charge-transfer excitations of P, corresponding to excitations 5 – 10, Right: Charge-transfer

excitations 11 – 13.

6. QM/MM Calculations

The QM/MM calculation was carried out using the pDynamo interface version 1.8.0 in combi-

nation with Orca version 5.0.29,10. The protein environment was introduced in these calculations

using point charges. For these calculations, we used the ωB97 exchange-correlation functional,

since ωPBE is not implemented in Orca. ωB97 was shown to correctly predict reaction center site

energy shifts with TDDFT11. However, we find that it underestimates the coupled Qy excitations

by ∼300 meV as compared to our calculations using optimally-tuned ωPBE (see Figure S16). Fur-

thermore, the two internal partial charge transfer excitations that are part of the group of coupled

Qx excitations (excitations 5 and 10 of M1 in the main text), appear at significantly higher energies
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in these spectra. Employing the TDA (Figure S17) leads to a picture more in line with our ωPBE

calculations, which we attribute to a fortuitous cancellation of errors. For both the full TDDFT and

the TDA calculation, the effect of the MM environment on the excitations energies is qualitatively

similar to our calculations with explicit inclusion of the environment. The main difference is that

the redshift of the coupled Qy and Qx excitations induced by the MM environment is substantially

smaller than that from the explicit model.
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FIG. S16: TDDFT absorption spectrum of M1 without and with QM/MM environment,

calculated using the ωB97 functional as implemented in ORCA. Arrows mark dark states with

vanishing oscillator strength.
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FIG. S17: TDA absorption spectrum of M1 without and with QM/MM environment, calculated

using the ωB97 functional as implemented in ORCA. Arrows mark dark states with vanishing

oscillator strength.
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C. Additional Information on A-branch and B-branch model systems An and Bn

1. Excitation Energies

A1 A2 A3
Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.) En.[eV](Osc.Str.)

1 1.5827 (0.76) 1.5908 (0.75) 1.5669 (0.70)
2 1.6384 (0.37) 1.6397 (0.36) 1.6319 (0.42)
3 1.6981 (0.02) 1.7013 (0.02) 1.6804 (0.03)
4 1.8017 (0.31) 1.7966 (0.30) 1.7756 (0.32)
5 1.9306 (0.01) 1.8409 (0.07) 1.8206 (0.08)
6 1.9369 (0.11) 1.9383 (0.11) 1.9239 (0.14)
7 2.0528 (0.17) 1.9645 (0.06) 1.9589 (0.00)
8 2.0855 (0.04) 1.9862 (0.08) 1.9927 (0.07)
9 2.0963 (0.23) 2.0853 (0.17) 2.0395 (0.09)
10 2.1085 (0.04) 2.1059 (0.03) 2.0749 (0.18)
11 2.3238 (0.00) 2.1527 (0.00) 2.0999 (0.00)
12 2.4277 (0.00) 2.3577 (0.00) 2.3369 (0.00)
13 2.5177 (0.00) 2.4122 (0.00) 2.4171 (0.00)
14 2.5429 (0.00) 2.4494 (0.00) 2.4571 (0.00)
15 2.5479 (0.00) 2.5630 (0.00) 2.4666 (0.00)
16 2.5671 (0.00) 2.5942 (0.00)
17 2.5761 (0.00) 2.6289 (0.00)
18 2.5823 (0.00) 2.6555 (0.00)
19 2.6878 (0.00) 2.6648 (0.00)
20 2.7034 (0.00) 2.6902 (0.00)

TABLE S9: The excitation energies of A1 −A3 systems.

B1 B2
Exc. En.[eV] (Osc.Str.) En.[eV](Osc.Str.)

1 1.5462 (0.58) 1.5515 (0.55)
2 1.6673 (0.24) 1.6699 (0.26)
3 1.7156 (0.28) 1.7165 (0.25)
4 1.7903 (0.13) 1.7919 (0.11)
5 1.8439 (0.28) 1.8289 (0.14)
6 1.9245 (0.10) 1.8396 (0.24)
7 2.0533 (0.17) 1.9471 (0.14)
8 2.0867 (0.10) 1.9748 (0.10)
9 2.1260 (0.19) 2.1214 (0.18)

10 2.2697 (0.00) 2.1723 (0.00)
11 2.2884 (0.01) 2.3127 (0.01)
12 2.3452 (0.00) 2.4741 (0.00)
13 2.4878 (0.00) 2.5407 (0.00)
14 2.6067 (0.00) 2.5619 (0.00)
15 2.6105 (0.00) 2.5743 (0.00)
16 2.6671 (0.00) 2.6139 (0.01)
17 2.6826 (0.00) 2.6636 (0.00)
18 2.7307 (0.00) 2.6768 (0.00)
19 2.7587 (0.00) 2.7038 (0.00)
20 2.7645 (0.00) 2.7140 (0.00)

TABLE S10: The excitation energies of B1 and B2 systems.
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2. List of Amino Acids in A3 system

FIG. S18: A2 and A3 systems

name chain sequence number
HIS L 152, 167, 172
PHE L 120
VAL L 240
LEU L 237
MET L 247
TRP L 99
HIS M 482
PHE M 477
LEU M 494
TRP M 532
TYR M 490

TABLE S11: The 13 amino acids included in A3.
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∆ni BCL A1 A2 A3 ∆ni BCL A1 A2 A3

∆n1

PA 0 0 0
∆n9

PA 0 0 0
PB 0 0 0 PB 0 0 0
BA 0 0 0 PB 0 0 0
HA 0 0 0 PB 0 0 0

∆n2

PA 0 0 0
∆n10

PA -0.73 -0.78 0
PB 0 0 0 PB 0.73 0.78 0
BA 0 0 0 BA 0 0 0
HA 0 0 0 HA 0 0 0

∆n3

PA 0 0 0
∆n11

PA 0 0 0
PB 0 0 0 PB 0 0 0
BA 0 0 0 BA -0.99 -0.99 -0.99
HA 0 0 0 HA 0.99 0.99 0.99

∆n4

PA 0 0 0
∆n12

PA 0.80 0.80 0.78
PB 0 0 0 PB -0.80 -0.80 -0.78
BA 0 0 0 BA 0 0 0
HA 0 0 0 HA 0 0 0

∆n5

PA -0.71 0 0
∆n13

PA -0.12 -0.14 -0.75
PB 0.71 0 0 PB -0.88 -0.86 0.75
BA 0 0 0 BA 0.99 0.99 0
HA 0 0 0 HA 0 0 0

∆n6

PA 0 0 0
∆n14

PA -0.74 -0.81 0
PB 0 0 0 PB 0.74 0.81 0
BA 0 0 0 BA 0 0 0
HA 0 0 0 HA 0 0 0

∆n7

PA 0 0.53 0
∆n15

PA 0 0 0
PB 0 -0.53 0 PB 0 -0.15 0
BA 0 0 0 BB 0 -0.84 0
HA 0 0 0 HB 0 0.99 0

∆n8

PA 0 0 0
∆n16

PA
PB 0 0 0 PB
BA 0 0 0 BB
HA 0 0 0 HB

TABLE S12: The integral values over the spaces of the 4 BCLs of the difference densities which

are not shown in the main text calculated with method 1 defined in the main text. All values

smaller than 0.01 are set to 0.

3. Integration over difference densities
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∆ni BCL B1 B2 ∆ni BCL B1 B2

∆n1
PA 0.32 0.33

∆n9
PA 0 0

PB -0.32 -0.33 PB 0 0
BB 0 0 BB 0 0
HB 0 0 HB 0 0

∆n2
PA 0 0

∆n10
PA 0.49 0.80

PB 0 0 PB -0.49 -0.80
BB 0 0 BB 0 0
HB 0 0 HB 0 0

∆n3
PA 0 0

∆n11
PA -0.64 -0.93

PB 0 0 PB 0.64 0.93
BB 0 0 BB 0 0
HB 0 0 HB 0 0

∆n4
PA -0.59 -0.57

∆n12
PA 0.06 0.06

PB 0.59 0.57 PB 0.93 0.93
BB 0 0 BB -0.99 -0.99
HB 0 0 HB 0 0

∆n5
PA 0 0

∆n13
PA 0 0

PB 0 0 PB 0 0
BB 0 0 BB 0 0
HB 0 0 HB 0 0

∆n6
PA 0.13 0.12

∆n14
PA 0 -0.27

PB -0.13 -0.12 PB 0 -0.72
BB 0 0 BB 0 0.99
HB 0 0 HB 0 0

∆n7
PA 0 0

∆n15
PA 0 0

PB 0 0 PB 0 0
BB 0 0 BB 0 -0.99
HB 0 0 HB 0 0.99

∆n8
PA 0 0

∆n16
PA

PB 0 0 PB
BB 0 0 BB
HB 0 0 HB

TABLE S13: The integral values over the spaces of the 4 BCLs of the difference densities which

are not shown in the main text calculated with method 1 defined in the main text. All values

smaller than 0.01 are set to 0.
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