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The Elastic Effect of Evolving Precipitate Shapes
on the Ripening Kinetics of Tetragonal Phases

FELIX SCHLEIFER, YUEH-YU LIN, UWE GLATZEL, and MICHAEL FLECK

Coherent tetragonal precipitates, such as the Ni3Nb phase c¢¢ found in Ni-base superalloys,
appear as plate-shaped particles. These shapes are the result of anisotropic elastic misfit strains.
We present 3D sharp phase-field simulations that capture this circumstance well due to the
inclusion of the elastic effects from the misfit. These simulations reveal that the ripening
behavior of c¢¢ precipitates deviates significantly from the classical LSW theory of Ostwald
ripening. A ripening exponent of 2 rather than 3 describes the simulated c¢¢ size evolution at
temperatures between 700 �C and 760 �C best. Employing a quantitative distinction argument,
we show that 60 pct of this deviation is attributed to the elastically induced size dependence of
the precipitate shapes. With increasing precipitate size, the minimization of elastic energy leads
to steadily increasing plate aspect ratios. The precipitate ripening kinetics accelerate with
increasing aspect ratio. Fitting the newly received square root time dependence to experimental
data yields a physically conclusive activation energy of ripening close to the activation energy of
Nb diffusion in the alloy.
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I. INTRODUCTION

NICKEL-BASE superalloys show extraordinary
mechanical properties at temperatures above 600 �C
mostly due to precipitation of intermetallic phases.
Niobium-containing alloys, such as the widely used
wrought alloy 718, are primarily strengthened by the
metastable tetragonal c¢¢ phase with stoichiometry
Ni3Nb that is embedded in an fcc solid-solution matrix
phase.[1] The phase precipitates coherently or semi-co-
herently with a strongly anisotropic lattice misfit relative
to the matrix phase. This anisotropy of the misfit causes
the precipitates to form plate-shaped particles.[2] The c¢¢
phase plays an important role in the development of
novel wrought alloys for turbine applications as it can
be used to deliberately inhibit coarsening of c¢ precip-
itates.[3–5] To study the formation of c¢¢ precipitates, a
derivative of the commercial alloy 718 is used that is
referred to as 718 M(odified).[6] After heat treatment,
the microstructure of alloy 718 M consists only of c¢¢
precipitates and the fcc matrix that have both compo-
sitions comparable to the phases found in alloy 718.[7]

The compositions in wt pct of alloy 718 and its
derivative 718 M are given in Table I.
During long-term high-temperature exposure, the

microstructure of Ni-base superalloys coarsens, mean-
ing that the mean precipitate size increases. This effect
plays an important role during the precipitation heat
treatment as well as during service. The adjustment of
heat treatment times provides an indirect design control
on the precipitate size and during service as the
increasing precipitate size ultimately leads to deteriora-
tion of the mechanical properties of the material.
Understanding the mechanism of c¢¢ precipitate coars-
ening allows for the development of computational
models that precisely describe the microstructure for-
mation at elevated temperatures. In the context of
integrated computational materials engineering such
models are key to successful material development and
process optimization.
The experimental temporal evolution of c¢¢ precipitate

sizes during aging has been extensively studied under the
assumption of classical ripening theory.[8–14] The
microstructural evolution of systems with tetragonal
plate-shaped precipitates has been studied using a model
for the nucleation, precipitation, and coarsening of c¢¢
precipitates in alloy 625 developed by Moore et al. The
model reproduces experimental distributions of the
precipitate size and aspect ratio.[15] 2D Phase-field
simulations revealed that aging under load leads to
selective dissolution of c¢¢ precipitates depending on
their orientation.[16]
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From a computational materials science perspective,
the coarsening of microstructures is conveniently stud-
ied using the phase-field method. It provides a versatile
framework to study phase transformations involving
micro-mechanical effects as well as complex materials
chemistry. Therefore, the phase-field method is a pow-
erful tool for mesoscale simulation of microstructure
evolution within the context of integrated computa-
tional materials engineering.[17,18] Important examples
for the application of the phase-field method to the field
of precipitation microstructure evolution, are, for
instance, the investigations of c¢ rafting in nickel-based
superalloys, as recently reviewed by Yu et al.[19] A
particular advantage of the phase-field method in this
respect is its ability to predict the complex shaping of
mechanically interacting particles.[20–22] However, here,
we consider the application of the phase-field method to
the ripening behavior of precipitates involving cubic to
tetragonal transformations.[23,24] In this case, we benefit
from the ability of the method to predict meaningful
particles shapes under the quasi-equilibrium conditions
at realistic precipitate phase fractions.[25,26]

In this work, we investigate the deviation of c¢¢
precipitate ripening behavior in the alloy 718 M from
classical ripening laws. We measure the ripening expo-
nent from conclusive 3D phase-field simulation data.
The observed ripening behavior is validated by com-
parison of activation energies of ripening from experi-
mental aging data to the activation energy of Nb
diffusion. By extending classical ripening laws to include
size-dependent ripening kinetics, we derive an argumen-
tation that allows to quantitatively separate the elastic
effects that influence the ripening exponent.

II. THE c¢¢ PRECIPITATE MICROSTRUCTURE

A. The Size-Dependent c¢¢ Precipitate Shape

Figure 1(a) shows a schematic drawing of the elastic
lattice distortion around a plate-shaped c¢¢ precipitate
caused by the lattice misfit between precipitate phase
and matrix. The misfit is exaggerated by a factor of 20.
The grid is used to visualize misfit strains and does not
necessarily reflect unit cells of the crystal. The aniso-
tropy of the lattice misfit becomes evident when the top
surface of the plate-shaped precipitate with an interface

normal parallel to the crystallographic c
*
direction of the

precipitate phase (Figure 1(b)) is compared to the

circumferential interface of the plate normal to a
*

(Figure 1(c)). The dashed lines indicate the position of
an ideal interface and the dots correspond to lattice sites
that are in the view plane (large dots) or half a lattice
plate behind (small dots). Black dots indicate Ni sites
and white dots indicate Nb sites in the ordered c¢¢ phase.
The gray dots indicate sites that are statistically occu-
pied by the elements that form the unordered fcc matrix.
The structure of the two given interfaces is clearly
distinguishable and is found to show a strongly
anisotropic misfit ec � ea>0 with ec=ea up to a factor
of 60.[27,28] Due to tetragonal symmetry, the lattice misfit
in out-of-plane direction eb is equal to ea.
The morphology of the c¢¢ microstructure is strongly

influenced by the interplay between the elastic lattice
strain due to the misfit and the energy density of the
matrix/c¢¢ interface r. The shape of these precipitates
minimizes the sum of interfacial and elastic energy.[29]

The elastic bulk driving force of the precipitate shape
formation leads to the plate shape as it favors interface
formation normal to the crystallographic direction of

the largest misfit, the c
*
-direction. The equilibrium

precipitate shape is an oblate spheroid.[2] This is a

sphere that is compressed along the c
*
-direction by a

factor of A, the aspect ratio. At high precipitate volume
fractions elastic interaction between precipitates leads to
deviation from the spheroidal shape.[25,30] The

Table I. Composition of Alloys 718 and 718 M in Wt Pct

Alloy Al Ti Cr Fe Co Ni Nb Mo

718 0.5 0.9 18 18 (bal.) 0.3 54.8 5.0 3.0
718 M — — 18 16 (bal.) — 58.0 5.0 3.0

Fig. 1—The anisotropic matrix/c¢¢ interface. (a) lattice misfit strains around a c¢¢ precipitate exaggerated by a factor of 20. (b) Crystallographic
structure of the top interface normal to c

*
and (c) of the circumferential interface normal to a

*
.
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precipitate size is usually described by the plate diameter
that is twice the major radius M of the precipitate as
shown in Figure 1(a). To describe the precipitate size
independently of the precipitate shape, the equivalent
radius R is used. It is defined as the radius of a sphere
with the same precipitate volume. Major radius and
equivalent radius are related via M3 ¼ R3A.[31]

Reduction of interfacial energy causes the precipitates
to be compact while reduction of elastic energy leads to
the formation of the plate shape. The ratio between the
bulk elastic driving force and the interfacial energy is
size dependent and thus the tendency towards plate
formation depends on the precipitate size. The shape
formation of smaller precipitates is mostly driven by
interface reduction and therefore the precipitates tend to
be more spherical when the interfacial energy is assumed
to be isotropic. When c¢¢ precipitates grow, the volume
increases faster than the interfacial area and thus

interfaces normal to c
*

become more favorable. This
leads to an increasingly pronounced plate shape with
increasing precipitate size. The aspect ratio A of the
plate-shaped particles is a function of the dimensionless
ratio Q between the elastic energy scale of the system
and the interfacial energy scale.[28] In the special case of
c¢¢ precipitates in the alloy 718, this ratio can be
sufficiently approximated by

Q ¼ C
p
44 � e2c
r

R; ½1�

where R is the equivalent radius of the precipitate, C
p
44 is

the shear modulus of the precipitate phase, r is the
isotropic interfacial energy density, and ec is the largest
entry of the anisotropic eigenstrain tensor that repre-
sents the lattice misfit.[30] This is because the anisotropy
in the elastic energy imposed by an c/c¢¢ interface is
proportional to the squared ratio between the large and
the small misfit. As such it dominates the other
anisotropic driving forces for shape formation that are
the anisotropy of the interfacial energy, anisotropy of
interface mobility, and inhomogeneity of the elastic
constants by orders of magnitude.[30] The ratio Q can
also be understood as a dimensionless precipitate size,
normalized by a characteristic length scale
L ¼ r= C

p
44e

2
c

� �
.[32] Between 700 �C and 760 �C, we find

the following values, ec ¼ 30 9 10–3,[28]

C
p
44 ¼ 100 GPa,[33] and r ¼ 0.18 J m�2.[31] This leads

to L ¼ 2 nm. The size-dependent precipitate shape is
now defined by the aspect ratio A Qð Þ.

B. Ostwald Ripening of c¢¢ Precipitates
Figure 2 shows scanning electron microscopy images

of the matrix/c¢¢ microstructure in a single crystal of
alloy 718 M.[25] The samples are etched to reveal the full
precipitates. The increase of precipitate size and aspect
ratios is distinctively visible. The determined mean plate
diameters after 2, 6, and 10 hours of aging are 40, 80,
and 100 nm, respectively.

Over long durations of increased temperature, Ost-
wald ripening is the dominating cause of microstructure
coarsening. When the precipitate phase is close to the
equilibrium phase fraction, the growth of precipitates is
driven by the reduction of the total interface area.
Assuming isotropic interfacial energy density r and no
lattice misfit, the Gibbs–Thomson effect leads to an
increase of the Nb diffusion potential lNb in the matrix
around the phase boundary via

DlNb / rj; ½2�

where j is the local curvature of the interface.[34] In
the case of spherical precipitates, j is the inverse
radius of the precipitate. This increase of the diffusion
potential leads to a mass flow of Nb from small pre-
cipitates with large j to larger ones. Small precipitates
dissolve and larger ones grow on their behalf. The
classical description of Ostwald ripening is the LSW
theory in the form of

R tð Þ3�R t0ð Þ3/ t� t0; ½3�

where R is the arithmetic mean of the radius R of all
precipitates in the system at the time t.[35,36] R t0ð Þ is the
mean radius at the reference time t0. The original
solution to Ostwald ripening considers spherical parti-
cles and thus the radius (or diameter) of the particles is
the appropriate choice to measure the particle size.
Particle sizes of strongly anisotropic shapes, such as c¢¢
precipitates, can be defined differently. Equation [3] or
related descriptions for microstructural evolution of c¢¢
are often applied to either the plate diameter[8] or to an
equivalent radius of a sphere with the same volume as
the precipitate.[15,37,38]

The temporal evolution of R is governed by a cube
root function

R tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K t� t0ð Þ þ R t0ð Þ33

q
; ½4�

where K is the ripening coefficient. K is a function of the
diffusivity and solubility of the precipitate forming
elements in the matrix phase, the interfacial energy
density, and temperature.[35,36] It is determined as the

slope of a plot of R
3

over t. The root like time
dependence of the precipitate size is visible in Figure 2
as the increase in precipitate size is much more pro-
nounced between Figures 2(a) and (b) (after 2 and
6 hours) than between (b) and (c) (6 and 10 hours).
The ripening kinetics are strongly temperature depen-

dent due to their diffusional nature. The temperature
dependence of the ripening kinetics is dominated by the
temperature dependence of the diffusivities of the
alloying elements. The temperature dependence of the
solubility of the elements in the matrix phase and the
interfacial energy density are non-zero but are less
pronounced than the temperature dependence of the
diffusivities. The temperature dependence of the ripen-
ing coefficient K can be expressed as

KT / exp � ER

RGT

� �
; ½5�
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with ER being the activation energy of ripening and RG

being the universal gas constant. The activation energy
of ripening ER is measured from the slope of a plot of
ln(KT) over the inverse temperature T�1:[8] The
observed activation energy of ripening is a direct
consequence of the activation energy of diffusion that
describes the mobility of the alloying elements. A
physically meaningful activation energy of ripening is
therefore identical to the activation energy of diffusion
of the elements that form the precipitates. Activation
energies of diffusion of the alloying elements in alloy
718 M from the mobility database MobNi4[39] are given
in Table II together with experimental activation
energies of Nb diffusion in alloy 718.

The LSW theory of Ostwald ripening is valid only
under certain conditions. The LSW theory assumes
negligible precipitate volume fraction and thus no
interaction between precipitates via the depletion fields
around them. Also, no coalescence of precipitates is
considered. The precipitates are assumed to be spherical.
Deviation from these assumptions do not change the
qualitative time dependence of the precipitate size
evolution but rather increases the ripening coefficient
and changes the shape of the precipitate size distribu-
tion.[42] Under the assumption of the classical LSW cube
root time dependence, extraordinarily high activation
energies can be observed[43,44] as well as a strong scatter
of the determined ripening coefficients.[8] These inco-
herencies indicate short comings of the LSW theory for
c¢¢ size development. Abnormally high activation
energies can be explained by delayed homogenous
nucleation of c¢¢.[43]

The LSW theory is also only valid for stress-free
systems. Elastic misfit strains caused by coherent pre-
cipitation of ordered phases can significantly change the
ripening behavior of intermetallic phases in alloys such
that the cube root time dependence of the LSW theory
does not hold.[45] A generalized approach to describe the
time evolution of arbitrarily defined precipitate sizes S 2
M;R½ � is to assume an apparent ripening exponent
n � 3 such that

S tð Þn�S t0ð Þn¼ K t� t0ð Þ ½6�

with the ripening coefficient K that has the dimension of
a length to the n-th power over time. The ripening
exponent n distinguishes between ripening behaviors of
systems, while the coefficient K is a measure for the
kinetics of systems that behave equally. A ripening
exponent of 2.3 was found to describe the ripening
behavior of cuboidal c¢ precipitates in 2D simulations of
a Ni-base superalloy with high precipitate volume
fraction.[45] A reduction of the ripening exponent due
to misfit stresses is reported.[46] When trans-interface
diffusion, and not bulk diffusion, is ripening rate
controlling, the ripening exponent is found to be
n ¼ 2.[47] The deviation from n ¼ 3 becomes increasingly
pronounced when elastic effects become increasingly
dominant.[32] The observation that lattice misfit stresses
reduce the ripening exponent is independent of the
precipitate shapes.
Kim & Voorhees modeled the ripening behavior of

spheroidal precipitates in a stress-free system and found
that, assuming constant aspect ratios, the ripening
exponent of 3 is conserved. This is in good agreement
with the finding that the ripening exponent of 3 is also
conserved for cuboidal precipitates.[48] Non-spherical
precipitate shapes alone do not lead to a deviation of the
ripening exponent. However, an increase of the ripening
coefficient K with increasing aspect ratio A was observed
for cylindrical precipitate shapes[49,50] and for spheroidal
precipitates[38] relative to spherical precipitates of the
same volume. Cubic precipitates with isotropic misfit
exhibit a shape transition from cubes to cuboidal plates
at low volume contents.[51] Coarsening of systems of
cuboidal plates with phase-field models revealed devia-
tions from classical ripening behavior. Especially the

Table II. Activation Energies of Diffusion for the Alloying
Elements in Alloy IN718M

Element Alloy ED in kJ mol�1 References

Nb 718 237 40
Nb 718 257 41
Nb 718 M 258 39
Cr 718 M 278 39
Fe 718 M 286 39
Mo 718 M 281 39

Fig. 2—Ripening of c¢¢ precipitates in alloy 718 M. SEM images after (a) 2, (b) 6, and (c) 10 hours of aging at 730 �C. Adapted from
reference,[25] under the terms of the Creative Commons CC BY license.
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time evolution of plate radius and thickness differs
significantly.[52,53] The mean equivalent radius of the
precipitates increases with an exponent of 2.4.[53] Ana-
lytically it can be shown that the mean plate radius of
plate-shaped melt inclusions also increases with a
reduced exponent of 2.4 due to local stresses.[54]

With an increasing precipitate aspect ratio, the total
mean curvature of the interface increases compared to
the curvature of a spherical particle with equal volume.
This is a purely geometrical effect. When the precipitate
shape is caused solely by an anisotropy of the interfacial
energy, rather than anisotropic misfit strains, the inverse
effect can be observed.[38] Needle-shaped precipitates
also show the inverse effect of inhibited growth kinetics
compared to spherical precipitates.[50]

Considering the size dependence of the precipitate
shape, namely of the aspect ratio of plate-shaped
precipitates, together with the shape dependence of the
ripening coefficient, significant deviation from the clas-
sical ripening behavior is observed.[31] When the aspect
ratio increases during ripening, the ripening kinetics are
accelerated. This causes an ever-increasing ripening
coefficient.[26] This effect was observed in 3D phase-field
simulations of c¢¢ ripening. The mean precipitate size
does not increase with an exponent of 3 but rather with
a decreased exponent.[31] This effect is induced by the
elastically induced shape formation of the precipitates
and is clearly separable from the effect that elastic
stresses have on the ripening behavior independently of
the precipitate shape.

III. METHODOLOGY

The ripening behavior of the c¢¢ phase in Ni-base
superalloys is studied using sharp phase-field simula-
tions together with controlled, ex-situ aging experi-
ments. An experiment has the advantage, that it
naturally provides fully realistic precipitate microstruc-
ture evolution. However, in the ex-situ experiment it is
not possible to get continuous information on the
evolutionary state of the same particular area of the
material microstructure. Every data point corresponds
to a distinct aging experiment with a distinct sample.
The aging has to be interrupted and each sample has to
be prepared for subsequent scanning electron micro-
scopy (SEM) analysis. In contrast to this, the 3D sharp
phase-field simulations do allow the time-continuous,
in-situ access to the evolution of a particular microstruc-
tural state.

A. Sharp Phase-Field Modeling of Microstructure
Evolution

Just as usual phase-field models, the sharp phase-field
model is based on the definition of the phase-field
parameter u, to locally discriminate the phase state of
the material. A numerical value of u ¼ 0 corresponds to
the matrix phase, u ¼ 1 corresponds to the precipitate
phase and all values in between are possible within the
diffuse interface regions, located in between the two
phases. The sharp phase-field model overcomes spurious

grid friction, grid pinning as well as substantial amounts
of grid anisotropy, which all together seriously limit the
resolution efficiency of the conventional phase-field
models.[55] The important novelty of the sharp phase-
field model is that it is formulated in terms of an entirely
discrete theory, taking into account the discrete nature
of the numerical solution.[56] We start from the ideal
interface profile with phase-field values ui at discrete
sites in the computational grid i

ui ¼
1

2
tanh iDxþ xoð Þ þ 1ð Þ: ½7�

Here, Dx is the physical grid spacing of the discretiza-
tion, x0 is the position of the interface between two
numerical grid points. The interface is defined as the
point (in higher dimensions the iso-surface) where
u ¼ 1=2.
Let the discrete grand potential be defined as the sum

over all numerical grid points with their respective

Cartesian coordinates x
*

i

X ¼ Dx3
X

i

xint x
*
i

� �
þ xbulk x

*
i

� �
: ½8�

The isotropic interfacial contribution xint consists of
two terms. The first assigns an energy amount to the
squared magnitude of the gradient of the phase field
and thus causes a widening of the phase boundary. The
second term is a double-well potential p with minima at
0 and 1. Thus, wide interfaces are energetically
penalized, and the interface width approaches 0. To
obtain a constant, defined interface, both terms are
suitably weighted. The result for the interface contri-
bution is

xint ¼
r
r0

1

2
~rui

		 		2þp uið Þ
� �

; ½9�

where r is the physical isotropic interfacial energy den-
sity and r0 is a reference interfacial energy density,
which results from the definition of the potential p and
the gradient term. The essence of the sharp phase-field
model is a specifically modified potential landscape,
which is easily integrated into our previous finite dif-
ference phase-field implementations.[26,30] The follow-
ing potential is obtained:

p uið Þ
p0

¼ 4ui 1� uið Þ
Dxð Þ2

þ 1� tanh2 Dxð Þ
Dxð Þ2� tanh2 Dxð Þ

� ln 1� tanh2 Dxð Þ
1� tanh2 Dxð Þ 1� 2uið Þ2�

 !

: ½10�

The discrete gradient operator is defined as

~rui

		 		2¼
X3

j¼1

3qj
wj j Dxð Þ2

Xwj

k¼1

u x
*

i þ x
*

jk

� �
� ui

� �2
; ½11�

where the index j indicates the neighborhood shell (1st,
2nd, and 3rd neighbors), qj is the weighting factor of

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 54A, MAY 2023—1847



shell j , and wj is the coordination number of this shell,

i.e., w1 ¼ 3, w2 ¼ 6 , and w3 ¼ 4:[55,56] For the weighting
factors

P
qj ¼ 1 holds. The index k is a numerator over

the wj neighbors within a shell and x
*

jk is the direction

vector to the k-th neighbor in the j-th shell. The
following parameters where found to provide minimized
spurious anisotropy: q1 ¼ 0.4130, q2 ¼ 0.1539 and
r0 ¼ 0.2945.[55] This sharp phase-field formulation on
a simple cubic computational grid provides a dimen-
sionless interface profile width of 2 and globally restores
translational invariance in 100 directions of the compu-
tational grid.[55]

The bulk energetic contributions to the grand poten-
tial density of Eq. [8] are the local elastic strain energy

xel u; u
*

� �
and the chemical energy xch u; lð Þ. The

corresponding state variables are the displacement field

u
*

and the Nb diffusion potential field l. The latter
works well with the sharp phase-field formulation as it is
continuous across the interface. To consider phase-de-
pendent volume contributions to the local energy
density, the interpolation function h uð Þ ¼ 3u2 � 2u3 is
used. The anisotropic misfit is modeled as an eigenstrain

e
*
0 ¼ ea; ea; ecð Þ of the precipitate phase. The tensors

of elasticity C of both phases are anisotropic. The
local strain state e is derived from the displacement
field that is solved in every time step of the simula-
tion.[57] The elastic contribution to the phase-field
energetics is then

xel ¼
1

2
e� e0ð ÞC e� e0ð Þ; ½12�

where e0 and C are the phase-dependent elastic param-
eters interpolated with h uð Þ:

The diffusional nature of the microstructure develop-
ment is reflected in the chemical bulk energy contribu-

tion xch u; lð Þ ¼ h uð Þxc00

ch þ h 1� uð Þxc
ch. The grand

potential landscape of the considered phases a 2 c; c00ð Þ
as a function of the local concentration of Nb c x

*
i

� �
is

approximated parabolically as follows:

xa
ch ¼

1

2
c� Xað Þ2va þ Ya � lc: ½13�

The coordinates of the vertex of the parabola are Xa
and Ya. The thermodynamic factor va can be under-
stood as the inverse solubility of Nb in the phases.[45]

These phase-dependent parameters couple directly to
CALPHAD thermodynamics.[57] The last term in
Eq. [13] comes from the Legendre transformation from
Gibbs energy to grand potential energy.[57] The local
concentrations can be calculated from the diffusion
potential field via

c x
*

i

� �
¼ vað Þ�1l x

*

i

� �
þ Xa: ½14�

The temporal evolution equations of the phase field,
the diffusion potential field, and the displacement field
are derived directly from the discrete grand canonic
potential functional by means of variational principles
as

@u
@t

¼ � 2MIF

3Cn
dX
du

; ½15�

@

@t

dX
dl

� �
¼ MNbr rlð Þ; ½16�

dX
dui

¼ @

@xi

@xel

@eij
¼ 0; ½17�

where MNb is the mobility of Nb and a function of the
diffusivity DNb and of the thermodynamic factor va. MIF

is the mobility of the interface that is chosen to be 3DNb

to ensure diffusion-limited phase-field kinetics. The
evolution equations are given explicitly in the work of
Mushongera et al.[45] and Fleck et al.[57]

3D simulations are used to investigate the ripening
behavior of the c¢¢ phase at 730 �C. The simulation setup
is chosen to reflect the aging experiments of Figure 2.
Simulations were conducted on a numerical grid of 1603

grid points which corresponds to a physical length of the
simulation domain of 640 nm (Dx ¼ 4 nm). The numer-
ical time step is 0.01 s. The simulations are initialized
with 300 precipitates randomly distributed in space at an
equilibrium volume content of 10 pct.[58] Periodic
boundary conditions are applied to the phase field and
the diffusion potential field. The elastic displacement
field is subjected to plane-deformation boundary condi-
tions that do not impose spurious external strain.[30,31]

The necessary material data are given in Table III. The
interfacial energy density was calibrated to reproduce
experimental precipitate shapes and the diffusivity was
calibrated to reproduce experimental ripening kinetics at
730 �C.[31] The tensor of elasticity of the two considered
phases has 3 and 6 independent entries which reflects the
cubic symmetry of the matrix and the tetragonal
symmetry of the precipitate phase, respectively. Ther-
modynamic input data are taken from the databases
TCNi8 and MobNi4.[39]

To evaluate elastic effects on the ripening behavior,
we conduct two comparable simulations: One that
accounts for the elastic misfit strains and the other with
vanishing eigenstrains in all directions. In the latter case,
the precipitates are almost perfectly spherical. Only in
the very rare case of particle coalescence or near particle
coalescence with a strong depletion of Nb in the
surrounding matrix around, we observe for a short
period of time transient non-spherical shapes.[31] When
the anisotropic misfit is considered, the precipitates
exhibit the expected plate shape. Precipitate size and
aspect ratio are measured from the phase field with high
precision by the method of second-order moments.[31]
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B. Ex-Situ Aging Experiments

Aging experiments were carried out with alloy 718 M,
which only includes the cubic matrix phase and the
tetragonal c¢¢ precipitate phase.[6,7] The carefully pro-
duced samples allow for direct comparison to the
phase-field model as no additional phases are present
that might interact with the c¢¢ phase or that might work
as Nb sink. Pre-alloyed ingots were produced in an arc
melting furnace under 500 mbar argon atmosphere,
using pellets of the pure elements with> 99.99 pct
purity. The material was cast as a single crystal in a
proprietary Bridgman investment casting furnace (built
by chair of Metals and Alloys, University of Bayreuth,
Germany) with a spiral grain selector[25] and was
subsequently homogenized for 24 hours at 1150 �C
followed by water quenching. This treatment effectively
dissolves Nb segregations and avoids precipitation of
other phases.[7] After the solution heat treatment, the
samples were aged for 2, 6, and 10 hours at 700 �C,
730 �C, and 760 �C to study the time and temperature
dependence of c¢¢ size evolution.

Samples for scanning electron microscopy (SEM)
were mechanically ground, polished with silica suspen-
sion, and the matrix phase was electrolytically etched
with phosphoric acid solution (3 pct H3PO4) at 5 V.
Microstructure images were taken with a SEM 1540EsB
(Zeiss, Germany) with a column-near secondary elec-
tron detector (Z-contrast). By means of image segmen-
tation and analysis of the second-order moments of the
precipitates c¢¢ precipitate shapes and sizes are precisely
measured in a way that allows consistent comparison to
3D simulation data.[31] To ensure applicability of this
method the samples are oriented with one crystallo-
graphic 001-direction of the single crystal parallel to the
electron beam. To measure precipitate sizes and aspect
ratios, the images were binarized with a neural network
trained on images of c¢¢ precipitates. The binary images
were then analyzed using the method of second-order
moments.[31] Precipitates that touch the boundary of the
image are not fully visible, and are excluded from the

analysis. For every aging time and temperature, the
arithmetic means over the precipitate size measures R
and M were calculated.

IV. RESULTS AND DISCUSSION

A. Simulation Results

Figure 3 shows the simulated matrix/c¢¢ microstruc-
ture at four time steps. Figure 3(a) and (e) shows the
randomly generated initial microstructure consisting of
spheres and ellipsoids with an aspect ratio of 3,
respectively. In both cases, the mean volume of the
precipitates is equal. In Figures 3(a) through (d), the
spherical shape of the simulation without elastic driving
forces is clearly visible. Figure 3 (e) through (h) shows
the microstructure with plate-shaped morphology dur-
ing the same simulated aging time. The initial condition
reflects the artificially generated microstructure that is
lost quickly due to a strong energetic preference in
particle arrangement[30] and due to the formation of a
size distribution that is typical for precipitate ripening.
The simulations of aging are limited to a time interval,
where in both simulations the existence of over 90 pre-
cipitates is guaranteed. This yields 4.5 hours of simu-
lated of 3D ripening data. Simulation of longer times is
possible but more costly as they require larger simula-
tion domains.
Figure 4(a) shows the mean precipitate size from the

two simulations of c¢¢ ripening at 730 �C as a function of
the simulated aging time t. For the plate-shaped
precipitates, we compare two common measures of the
precipitate size. In blue, we show the mean major radius
M that is half the plate diameter. In red, we show the
mean equivalent radius R of a sphere with the same
volume as the precipitate. This latter measure is inde-
pendent of the precipitate shape and represents the mass
of a precipitate more precisely than M. Both size
measures are graphically explained in the inset to

Table III. Phase-dependent Material Data for Phase-Field Simulation of c¢¢ Ripening at 730 �C

Material Parameter Value References

Lattice Misfit
ea 1.2 9 10–3 28
ec 30 9 10–3

Elastic Constants of the Matrix Phase
C11 200 GPa 30
C12 150 GPa
C44 90 GPa

Elastic Constants of the Precipitate Phase
C11 245 GPa 33
C33 265 GPa
C12 150 GPa
C13 130 GPa
C44 100 GPa
C66 90 GPa

Interfacial Energy Density
r 0.18 J m�2 31

Nb Diffusivity
DNb 2.5 9 10–17 m2 s�1 31

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 54A, MAY 2023—1849



Figure 4(a). The equivalent radius R of a precipitate is
calculated directly from the precipitate volume. The
major plate radius M and the aspect ratio A are
calculated from best-fit ellipsoids.[31]

Figure 4(b) shows the c¢¢ phase fraction over the
simulated aging time. After initialization, the phase
fraction drops due to the Gibbs–Thomson effect because
the diffusion potential field is initialized homoge-
neously.[45] The starting time t0 is chosen such that the
initial period of equilibrium microstructure formation is
not included in the simulated aging to avoid bias from
the initial conditions. The equilibrium phase fraction of

10.2 pct taken from the Calphad input data is shown as
a dashed gray line. For both simulations, we find a
relatively constant phase fraction. This is an important
measure to show that in this simulation only the
long-term coarsening by Ostwald ripening is
observed.[26] Both simulations show fractions that are
slightly lower than the equilibrium phase fraction due to
the surface pressure of the precipitates. With decreasing
interfacial area this deviation vanishes. The simulation
with plate-shaped precipitates due to elastic misfit
strains shows stronger deviation from the equilibrium
phase content due to increased interfacial area and due

Fig. 4—(a) Mean precipitate size of plate-shaped and spherical c¢¢ precipitates with apparent ripening exponents n. (b) Evolution of the c¢¢ phase
fraction during the simulation.

Fig. 3—Simulated 3D microstructure at different aging times. (a) to (d) without and (e) to (h) with consideration of elastic misfit strains.
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to the elastic driving force that additionally acts on the
interface.

From Figure 4(a) it becomes evident that the lattice
misfit has a significant influence on the ripening behav-
ior. The increase in precipitate size after 4 hours of
aging is considerably larger when the elastic effects are
considered. When the major radius M of the plates,
rather than an equivalent radius R, is measured, we
again observe increased precipitate growth. The size
dependence of the precipitate shapes is implicitly visible
as R tð Þ and M tð Þ drift farther apart over time, meaning
that the difference between the major radius M and
equivalent radius R of the particles, and thus the aspect
ratio A, increases.

To quantitatively grasp the changing ripening behav-
ior, we give values for the apparent ripening exponent n
as introduced in Eq. [6]. This quantity is determined by
a least-square fit of Eq. [6] to the curves in Figure 4(a)

with a fixed S t0ð Þ taken directly from the data and with
t0 ¼ 0. The results of the fits are given in Table IV.

For the ripening of spherical precipitates, we find an
apparent ripening exponent of n ¼ 2:8. The expected
value according to the LSW theory is 3. We conclude
that the observed deviation of 0.2 is the precision with
which the presented phase-field model allows to measure
ripening exponents. This difference can be attributed to
the fact that the original LSW theory does not account
for finite volume contents and coalescence of precipi-
tates. The phase-field model used in this work does not
discriminate translational variants of the ordered phase.
Coalescence of precipitates of different translational
variants grow together under the formation of an
anti-phase boundary. As this is not reflected in the used
model, the rate of coalescence is overestimated. This
higher rate of precipitate coalescence might cause the
observed deviation from the exponent of 3. Further
limitations of the methodology are the assumed isotropy
of the interfacial energy and the single-variant
microstructure of the simulation setup. Experimental
observations indicate that ripening behavior is not
influenced by the presence or dissolution of orientation
variants of c¢¢ at constant volume fraction.[59]

For ripening of plate-shaped precipitates, the appar-
ent ripening exponents n ¼ 2.0 and 1.7 are found. These
are significantly lower compared to the ripening expo-
nent of spherical precipitates considering the uncertain-
ties discussed above. The difference between n ¼ 2.0 and
1.7 is attributed to the increasing aspect ratio that leads
to steadily increasing difference between the major
radius of the plates and the equivalent radius. The
temporal increase in the major radius thus exhibits less
pronounced deceleration. The difference between

n ¼ 2.8 and 2.0 is attributed to elastic effects from
misfit strains.
Figure 5 shows the size dependence of the precipitate

aspect ratios in the ripening simulations. The mean

aspect ratio A of the precipitates is plotted as function of
their mean equivalent radius R. The shape transition is
illustrated by ellipses with aspect ratios and sizes to
scale. For the spherical precipitates in the simulation
without consideration of the misfit strains, the aspect
ratio is always around unity. The mean aspect ratio of
the plate-shaped precipitates increases with increasing
precipitate size. The slope of the curve decreases with
increasing precipitate size. This is in good accordance to
observations of the shape of single precipitates[2,8] and
precipitates in regular arrangements.[30] In the range
from 10 to 30 nm equivalent radius, and 25 to 105 nm
plate diameter, respectively, the mean aspect ratio can
be approximated by least-square fitting a power law as

A � 0:72Q
0:74

; ½18�

where Q ¼ R=L is the dimensionless precipitate size.
Figure 6 shows the diffusion potential of Nb at the

phase boundary between matrix and c¢¢ precipitates. The
diffusion potential is inhomogeneous due to the
Gibbs–Thomson effect at curved interfaces (see
Eq. [2]). High potentials are shown in red and lower

Table IV. Results of fitting Eq. [6] to the simulated precipitate size over time from Fig. 4(a)

Lattice Misfit Strain Definition of Precipitate Size S Coefficient of Ripening K S t0ð Þ in nm Ripening Exponent n

ec � ea; eb>0 major radius M 2 � 10–17 m1.7 s�1 12.4 1.7
equiv. radius R 7 � 10–20 m2.0 s�1 10.5 2.0

ea; eb; ec ¼ 0 sphere radius R 3 � 10–26 m2.8 s�1 10.5 2.8

Fig. 5—Mean aspect ratio A of the precipitates as a function of the
mean precipitate equivalent radius R for spherical and plate-shaped
precipitates as measured from the 3D simulations with a power-law
fit. The shape transition is depicted by ellipses.
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potentials are blue. Ripening happens via diffusion from
red interfaces towards blue interfaces. Figure 6(a) shows
the distribution of the diffusion potential field at the
interface of the spherical precipitates. The potential is
significantly increased when precipitates are very small.
This is due to the higher curvature j of the interface of
smaller precipitates as shown in Eq. [2]. Figure 6(b)
shows three magnified precipitates with an even distri-
bution of the interfacial potential. Figure 6(c) shows the
interfacial diffusion potential in the case of plate-shaped
precipitates. Smaller precipitates again show increased
potential relative to larger ones so that a diffusional flow
occurs that causes ripening. However, as emphasized in
Figure 6(d), due to strongly inhomogeneous curvature
of the interfaces, the diffusion potential is also dis-
tributed inhomogeneously along the interface. The
lowest potentials are found on concave interfaces that
form during the coalescence of precipitates. The ripen-
ing behavior in a system of strongly non-spherical
precipitates is complex and the diffusion potential does
not necessarily only coincide with the local curvature
but depends also on the neighboring precipitates. This
visualization illustrates the influence that the precipitate
shape has on the ripening behavior.

B. Separation of the Elastic Effects that Influence
the Precipitate Ripening Behavior

When the lattice misfit, and thus elastic stresses in
precipitates and matrix, is considered in the phase-field
model, the observed ripening exponent drops from 2.8
to 2.0. This elastic effect on the ripening behavior can be
separated into one part that is independent of the
precipitate shape and into a shape-dependent effect. The
first part has been discussed in the previous contribu-
tions.[52–54] The latter is due to the size dependence of
the precipitate shape that is depicted in Figure 5. With
increasing precipitate size, the aspect ratio of the
precipitates increases which again leads to increased
curvature of the interfaces and thus to accelerated

ripening kinetics. It is not directly possible to separate
the strength of both effects separately from phase-field
simulations. In a spatially fully resolved model, both
effects always occur together. For this reason, the
argumentation on how the effect of size-dependent
precipitate shapes influences the observed decrease of
the apparent ripening exponent is based on the ripening
law in Eq. [6]. The ripening law is extended to include
size-dependent ripening kinetics. Equation [6] is formu-
lated as a differential equation such that

@

@t
R

k
� �

¼ fK R
� �

; ½19�

where the ripening coefficient is a function fK of the
mean precipitate size R. The exponent k governs the
ripening behavior at every time step independently of
the effect of non-constant ripening kinetics. The expo-
nent k thus includes the reduction of the ripening
exponent due to misfit stresses but not due to the
elastically induced size dependence of the precipitate
shape. It is independent of the precipitate shape.
To include the non-constant ripening kinetics, we

describe the ripening coefficient fK as a power-law size
dependence with an exponent m

fK / R
m
: ½20�

This size dependence of the ripening kinetics is a
direct consequence of the anisotropic lattice misfit of the
precipitates. To elucidate this fact, we separate the
relation in Eq. [20] into two separate dependencies. The
first contribution is the size dependence of the precip-
itate shape that is caused by the interplay between
interfacial and elastic contributions. This size depen-
dence is observable in Figure 5 as the steady increase of
the mean aspect ratio

A / R
a ½21�

Fig. 6—Nb Diffusion potential at the interfaces of (a) and (b) spherical precipitates (c) and (d) Plate-shaped precipitates. (b) and (d) show
representative distributions of the diffusion potential along precipitate interfaces.
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with a � 0:74 as given in Eq. [18].
The second contribution to the size dependence of the

ripening kinetics is a shape dependence of the ripening
kinetics. This effect is a consequence of the inhomoge-
neous curvature that all non-spherical precipitates
exhibit. The Gibbs–Thomson effect is inhomogeneously
strong at different points on a precipitates surface as it is
demonstrated in Figure 6. The shape dependence of the
ripening coefficient is also described by a power-law
relation as a function of the mean aspect ratio

fK / A
b
: ½22�

Kozeschnik et al. found b ¼ 2=3 in the case of
cylindrical precipitates with a constant aspect ratio.[50]

Boyd and Nicholson report a linear dependence on the
aspect ratio for plate-shaped particles that have a plate
radius equal to the radius of a sphere.[8,49] Both findings
are identical when the condition of equal precipitate
volumes rather than equal radii is met.

The size dependence of the ripening kinetics is the
nested relation of the size dependence of the precipitate
shape in Eq. [21] and the shape dependence of the
ripening kinetics in Eq. [22] such that we find

fK / A
b ¼ R

a� �b¼ R
ab
: ½23�

The exponent m in Eq. [20] can then be defined as the
product of a and b.

Under the assumption of a power-law size dependence
of the ripening coefficient, we find the following solution
to Eq. [19]:

R tð Þ k�mð Þ�R t0ð Þ k�mð Þ¼ k�m

k
Ct ¼ Kt: ½24�

Equation [24] is equivalent to the proposed heuristic
approach in Eq. [6] with the apparent ripening exponent

being n ¼ k�m and t0 ¼ 0. This means that ripening
with ever-increasing coefficient of ripening is equivalent
to ripening with a decreased exponent of ripening. Note
that in Eq. [24] mass is only conserved when R is the
equivalent radius of spheres with the same volume as the
precipitates.
The elastically induced size dependence of the ripen-

ing kinetics is expressed as two nested power-law
relations with exponents a and b that together form
the relation given in Eq. [20] with m ¼ ab. The power-
law relation between fK and R fulfills the requirements
that the ripening coefficient is steadily increasing with
precipitate size. For the limit of spherical precipitates
(A ! 1), a power-law yields unphysically inhibited
ripening kinetics. This approach is therefore only valid
for precipitates with a pronounced plate shape.
From Eq. [24] it becomes evident that a ripening

coefficient that increases with the precipitate size (m>0)
lowers the apparent ripening exponent n. From Eq. [18]
we already have a well-defined power-law approxima-
tion for the size dependence of the mean aspect ratio
with a ¼ 0.74. To quantitatively grasp the decrease of
the ripening exponent n ¼ k�m due to the size-depen-
dent precipitate shape, we now investigate the exponent
m. Due to the lack of a general description of the shape
dependence of the ripening kinetics for shapes, we take
b ¼ 2=3 as the shape dependence of the ripening
coefficient. We thus find an exponent of size dependence
m ¼ ab ¼ 0.5.
The difference between the ripening exponent of

spherical precipitates without elastic misfit strains and
the ripening exponent with consideration of these strains
is around 0.8 (see Figure 4(a)). We explain more than
60 pct of the deviation of the ripening exponent by the
elastically induced effect that the size-dependent precip-
itate shape has on the ripening kinetics. The remainder
of the deviation from a ripening exponent of 3 is due to
the effect of elastic misfit stresses that reduce the
ripening exponent k independent of the precipitate
shape.[45,46,53] In accordance with the findings in

Fig. 7—(a) Experimental ripening data. Fits with n = 2 and 3 are given for each temperature. (b) Plot of ln KTð Þ over the inverse temperature
for n = 2, 2.5 and 3. The activation energies of ripening ER are given for each assumed ripening exponent n.
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Figure 4(a), the exponent is k ¼ 2:5. This is in good
agreement with the reported value of 2.4 in a system
with plate-shaped cubic precipitates with isotropic
misfit.[53] Considering the uncertainty of b, the exponent
that governs the shape dependence of the ripening
kinetics, we can state that the shape effect on the
ripening behavior is of the same magnitude as the elastic
effect that is shape-independent and is thus necessary to
consider when modeling the Ostwald ripening behavior
of plate-shaped tetragonal precipitates.

To assess the deviation between the ripening exponent
of 1.7 that governs the temporal increase of the major
radius M of the plates and the exponent of 2.0 that
governs the evolution of the equivalent radius R of the
precipitates, we assume an idealized precipitate shape of
an oblate spheroid. In this case, the equivalent radius R
and the major radius M are connected via

M
3 ¼ A � R3

.[31] Given the relation between A / R
0:74

from Eq. [18] we find M
3 / R

3:74
which, solved for R,

yields a relation R / M
0:8
. When R

2
increases linearly

with time, M
1:6

will increase linearly with time as well.
Within the accuracy of the measurement of the ripening
exponents and considering the assumption of well-dis-
tributed perfect ellipses, this explains the lowered
ripening exponent that was observed when the major
radius M and not the equivalent radius R of the
precipitates is evaluated. Accordingly, the exponent of
ripening for the plate thickness M=A is 4, which is in
very good agreement with the previous findings for
plate-shaped misfitting precipitates.[53]

C. Activation Energy of Ripening

Figure 7(a) shows experimentally observed mean
precipitates sizes over a time of 8 hours at three
temperatures T ¼ 700 �C, 730 �C, and 760 �C. The time
is chosen such that another 2 hours of initial aging have
passed to only observe Ostwald ripening at equilibrium
c¢¢ volume fraction and not the precipitation of c¢¢ from
the supersaturated matrix (2 to 10 hours of aging in
Figure 2). The data point with the smallest precipitate
size at 700 �C is shown in brackets as the measured
value is very close to the resolution of the SEM images.
It is excluded from further analysis. To test the
postulated square root time dependence of the precip-
itate ripening behavior, that was extracted from simu-
lation data in Figure 4(a), we fit Eq. [6] to data from the
aging experiments with fixed apparent ripening expo-
nents n. For every temperature, two fits of Eq. [6] with
n ¼ 2 and n ¼ 3 are shown. All fits have a coefficient of
determination above 0.98.

The results of the ripening simulation shown in
Figure 4(a) have a significantly stronger potential to
reveal the ripening behavior of c¢¢ as they provide a
continuous time series. A similarly dense set of ex-situ
experimental data that allows conclusive determination
of the ripening exponent requires immensely high
reproducibility of the aging and subsequent quenching.
Aging experiments over significantly longer times can
help discriminate the ripening behavior but will be prone

to the formation of interfacial dislocations and trans-
formation of c¢¢ to the stable d phase. Both effects will
significantly alter the ripening behavior beyond the
effects discussed in this work. Similar uncertainty with
direct comparison of experimental data under varying
ripening exponents is reported for ripening of c¢ precip-
itates.[47] From the present experimental approach, it is
therefore not directly possible to conclusively argue
whether a ripening exponent of n ¼ 2 or n ¼ 3 is more
justified.
The validity of the square root time dependence over

the cube root can, however, be supported by the
observed activation energy of ripening. The ripening
coefficients K are obtained from least-square fits of
Eq. [6] with different assumed ripening exponents n.
Figure 7(b) shows plots of KT over the inverse temper-
ature for assumed ripening exponents n ¼ 2, 2.5, and 3.
The slopes in this plot correspond to the activation
energy of ripening. Assuming a ripening behavior
governed by an apparent ripening exponent of n ¼ 3,
the activation energy of ripening is 407 ± 36 kJ mol�1.
This value is of the same magnitude as the activation
energies of diffusion in the alloy (see Table II), and we
can thus conclude that the ripening is indeed diffusion
controlled. The value is significantly larger than the
activation energy of diffusion of Nb given in Table II
that controls the ripening kinetics of c¢¢. This leads to the
conclusion that modeling the ripening behavior of c¢¢
precipitates with a ripening exponent of 3 is not
physically conclusive.
When a smaller ripening exponent is assumed, we

observe that the activation energy of ripening is
decreasing. At n ¼ 2 the activation energy drops to
292 ± 33 kJ mol�1. This value is significantly closer to
the activation energy that is reported for Nb in alloys
718 and 718 M. This observation indicates that an
exponent smaller than 3 provides a more conclusive
description of the ripening behavior.

V. SUMMARY AND CONCLUSION

We studied the ripening behavior of tetragonal phases
that appear as coherent plate-shaped precipitates in a
cubic matrix on the example of c¢¢ precipitates in alloy
718 M. 3D sharp phase-field simulations of Ostwald
ripening were conducted with and without explicit
consideration of elastic misfit strains in the material.
The observed precipitate morphology is plate shaped or
spherical, respectively. Plate-shaped particles exhibit a
pronounced size dependence of their shape that causes
the size-dependent ripening kinetics. By extending clas-
sical ripening laws to include a size-dependent ripening
coefficient, we illustrated how the elastic misfit strains
influence the ripening behavior of c¢¢. The following
conclusions are drawn:

1. The c¢¢ ripening behavior deviates significantly from
the classical LSW theory. The apparent ripening
exponent in 3D simulations is as low as 1.7
compared to the classically assumed value of 3. A
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difference of 0.8 is entirely caused by elastic effects
when a non-zero lattice misfit is considered.

2. The simulation results are consistent to experimen-
tally observed ripening behavior. Data from aging
experiments are evaluated assuming different ripen-
ing exponents. It is revealed that exponents smaller
than 3, as predicted by the simulations, yield
significantly more conclusive activation energies of
ripening.

3. Between 700 �C and 760 �C, the Ostwald ripening
of c¢¢ precipitates with plate diameters between 25
and 105 nm is best described by R tð Þ2�R t0ð Þ2¼
K t� t0ð Þ; where R is the mean equivalent radius of
the precipitates. The activation energy of ripening is
292 kJ mol�1.

4. The size dependence of the precipitate shapes causes
a size dependence of the ripening kinetics. This
elastically induced effect leads to the discussed
reduction of the ripening exponent. 60 pct of the
difference between the exponents is attributed to
this shape effect. An additional difference of 0.3 is
caused solely by the choice of measure of the
precipitate size.
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8. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y.
Guédou, J.F. Uginet, and P. Héritier: Mater. Sci. Eng. A, 2008,
vol. 486, pp. 117–22.

9. X.S. Xie, J.X. Dong, and M.C. Zhang: MSF, 2007, vol. 539–543,
pp. 262–69.

10. J. He, S. Fukuyama, and K. Yokogawa: J. Mater. Sci. Technol.,
1994, vol. 17(3), pp. 302–08.

11. C. Slama, C. Servant, and G. Cizeron: J. Mater. Res., 1997, vol.
12, pp. 2298–316.

12. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall.
Trans., 1992, vol. 23A, pp. 2015–8.

13. D. Jianxin, X. Xishan, and Z. Shouhua: Scr. Metall. Mater., 1995,
vol. 33, pp. 1933–40.

14. Y.-F. Han, P. Deb, and M.C. Chaturvedi: Met. Sci., 1982, vol. 16,
pp. 555–62.

15. I.J. Moore, M.G. Burke, and E.J. Palmiere: Acta Mater., 2016,
vol. 119, pp. 157–66.

16. N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang, M.J.
Mills, and Y. Wang: Acta Mater., 2014, vol. 65, p. 270.

17. M.R. Tonks and L.K. Aagesen: Annu. Rev. Mater. Res., 2019, vol.
49, pp. 79–102.

18. D. Tourret, H. Liu, and J. LLorca: Prog. Mater. Sci., 2022, p.
100810.

19. Z. Yu, X. Wang, F. Yang, Z. Yue, and J.C.M. Li: Crystals, 2020,
vol. 10, p. 1095.

20. M. Holzinger, F. Schleifer, U. Glatzel, and M. Fleck: Euro. Phys.
J. B, 2019, vol. 92, p. 208.

21. B. Bhadak, R. Sankarasubramanian, and A. Choudhury: Metall.
Mater. Trans. A, 2018, vol. 49A, pp. 5705–26.

22. B. Bhadak, R.K. Singh, and A. Choudhury: Metall. Mater. Trans.
A, 2020, vol. 51A, pp. 5414–31.

23. V. Vaithyanathan, C. Wolverton, and L.Q. Chen: Phys. Rev. Lett.,
2002, vol. 88, p. 125503.
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