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Incidental vertebral fracture
prediction using neuronal
network-based automatic spine
segmentation and volumetric
bone mineral density extraction
from routine clinical CT scans
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Technical University of Munich, Munich, Germany, 8Munich School of BioEngineering, Technical
University of Munich, Munich, Germany
Objectives: To investigate vertebral osteoporotic fracture (VF) prediction by

automatically extracted trabecular volumetric bone mineral density (vBMD)

from routine CT, and to compare the model with fracture prevalence-based

prediction models.

Methods: This single-center retrospective study included patients who

underwent two thoraco-abdominal CT scans during clinical routine with an

average inter-scan interval of 21.7 ± 13.1 months (range 5–52 months).

Automatic spine segmentation and vBMD extraction was performed by a

convolutional neural network framework (anduin.bonescreen.de). Mean vBMD

was calculated for levels T5-8, T9-12, and L1-5. VFs were identified by an expert

in spine imaging. Odds ratios (ORs) for prevalent and incident VFs were

calculated for vBMD (per standard deviation decrease) at each level, for

baseline VF prevalence (yes/no), and for baseline VF count (n) using logistic

regression models, adjusted for age and sex. Models were compared using

Akaike’s and Bayesian information criteria (AIC & BIC).

Results: 420 patients (mean age, 63 years ± 9, 276 males) were included in this

study. 40 (25 female) had prevalent and 24 (13 female) had incident VFs.

Individuals with lower vBMD at any spine level had higher odds for VFs (L1-5,

prevalent VF: OR,95%-CI,p: 2.2, 1.4–3.5,p=0.001; incident VF: 3.5, 1.8–6.9,

p<0.001). In contrast, VF status (2.15, 0.72–6.43,p=0.170) and count (1.38,

0.89–2.12,p=0.147) performed worse in incident VF prediction. Information
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criteria revealed best fit for vBMD-based models (AIC vBMD=165.2; VF

status=181.0; count=180.7).

Conclusions: VF prediction based on automatically extracted vBMD from routine

clinical MDCT outperforms prediction models based on VF status and count.

These findings underline the importance of opportunistic quantitative

osteoporosis screening in clinical routine MDCT data.
KEYWORDS

osteoporosis, osteoporotic fractures, bone density, tomography, x-ray computed,
artificial intelligence
1 Introduction

Osteoporosis is a systemic disease that primarily affects bone

and is characterized by a quantitative and qualitative decrease in

bone substance (1). As a result of impaired bone stability, patients

with osteoporosis frequently suffer vertebral (fragility) fractures

(VFs), which are associated with a drastic reduction in quality of

life and life expectancy (2). Approximately 50% of women and

20% of men experience at least one disease-related fracture

during their lifetime, and individuals with a single VF have a

12.6-fold increased risk of further fractures in the future (3–10).

Therefore, the history of fractures is queried with the FRAX®
questionnaire (http://www.shef.ac.uk/FRAX), an instrument

specifically designed to calculate the risk for future VFs (11).

However, because clinically silent VFs frequently stay

unrecognized, the risk of VFs in those individuals may be

drast ical ly underest imated (12). This emphasizes the

paramount importance of early-stage diagnosis of osteoporosis

and identification of individuals at risk for VFs.
The reference standard for the diagnosis of osteoporosis is given

by measurements of bone mineral density by dual X-ray

absorptiometry, but the technique’s lower costs and broader

availability compared with quantitative computed tomography

(CT) are bought by poorer discrimination capabilities between

individuals with and without VFs (13–17). In addition, both dual

X-ray absorptiometry and dedicated quantitative CT for the

purpose of diagnosing osteoporosis require exposure to ionizing

radiation and involve additional organizational effort (18–20).

Opportunistic bone densitometry uses imaging data acquired as

part of routine clinical practice to determine bone mineral density

and is becoming increasingly important as diagnostic CT scans

proliferate. While prediction of incident VFs appears feasible in

routine CT, region-of-interest segmentation, correction for

intravenously administered contrast media, and conversion of

Hounsfield Units (HU) to bone mineral density have, until

recently, required significant manual effort (21–25). Newly

developed deep learning-based tools enable automatic extraction

of volumetric bone mineral density (vBMD) from routine clinical

CT with specific correction for intravenous contrast phase and

specifics of the used CT scanner and protocol (14, 22–26).
02
However, the performance of models based on automatically

extracted opportunistic vBMD measurements to predict VFs, in

contrast to established models that account for fracture status and

number, is still unclear. Therefore, the aims of this study were to (i)

determine cross-sectional associations between opportunistic

vBMD and prevalent VFs, (ii) investigate whether vBMD,

baseline VF status, and VF count are associated with imminent

VFs, and (iii) compare the newly developed vBMD-based fracture

prediction models with models based on baseline VF status

and number.
2 Materials and methods

2.1 Study cohort

The institutional ethics committee approved this study and,

because of its retrospective nature, waived the requirement for

written informed consent. Individuals eligible for participation were

retrospectively identified via our institution’s picture archiving and

communication system. All individuals had received two thoraco-

abdominal multi-detector CT scans at a single site for the purpose

of oncologic staging during the six-year inclusion period (Figure 1).

For each subject, the first scan was considered “baseline” and the

second scan was considered “follow-up”. The time interval between

both scans had to be at least 5 months.

All scans were manually reviewed for complete coverage of the

thoraco-lumbar spine, and subjects with bone metastases, other focal

bone lesions of the spine, foreign material implants in the spine with

adjacent beam hardening artifacts, or severe motion artifacts were

excluded. In addition, all subjects taking bone-active drugs (e. g.

bisphosphonates, corticosteroids) or with an established bone disease

other than osteoporosis or osteopenia prior to their respective

baseline scan were identified and excluded by medical record review.
2.2 CT acquisition parameters

All scans were acquired using our institute’s multi-detector CT

scanner (Somatom Sensation Cardiac 64; Siemens Healthineers)
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with 64 detector rows. Tube voltage was set to 120 kVp and the

average tube load was 200 mAs. As all scans were performed for

oncologic staging, barium-based oral contrast medium was taken

approximately 1 h prior to the exam by each individual (Barilux

Scan; Sanochemia Diagnostics). For the same reason, all scans were

acquired in early venous contrast-phase, performed 70 s after

intravenous administration of an iodine-based contrast agent

(Fresenius Pilot C; Fresenius Kabi). Intravenous contrast was

dose-adjusted for body-weight (≤ 80 kg: 80 ml; 80 kg - 100 kg:

90 ml; > 100 kg: 100 ml) and applied at a flow-rate of 3.0 ml/s.

Sagittal views of the spine were reformatted for each scan (slice

thickness of 3 mm) using a standard bone kernel.
2.3 Automated vertebral body
segmentations and BMD measurements

In each scan, the vertebrae of the thoraco-lumbar spine (T1-L5)

were automatically labeled and segmented using a convolutional neural

network (CNN)-based framework (https://anduin.bonescreen.de),

trained on publicly available data (14, 24–29). The tool is based on a

deep learning algorithm and creates individual masks for the cortical

and trabecular vertebral body compartments as well as laminar regions,

facet joints, and processes (Figure 2). For the purpose of quality

assurance, a neuroradiologist specialized in spine imaging manually

reviewed all automated segmentations and corrected them, as necessary

(27). Simultaneously, the neuroradiologist further identified and

excluded single vertebrae with Modic-type sclerotic endplate changes

and intraosseous venous malformations according to the ACR

guidelines for quantitative CT (https://www.acr.org/-/media/ACR/

Files/Practice-Parameters/qct.pdf).

Based on the aforementioned segmentation masks, trabecular

density of each vertebral body was measured in HU. Following

asynchronous calibration using a commercially available phantom

(QRM QSA-717 Phantom; Quality Assurance in Radiology and

Medicine GmbH), HU-to-vBMD conversion was performed using a

linear equation model (slope = 0.63). Automated correction for the
Frontiers in Endocrinology 03
contrast phase was achieved by implementation of a two-

dimensional DenseNet model (26).
2.4 VF assessment and cohort definitions

Each subject’s baseline and follow-up scans were manually

reviewed for VFs by two readers in consensus (N.S. and M.D.,

with 9 and 4 years of experience, respectively), adopting a method

previously published by Bauer et al. (30). Specifically, VFs were

defined as vertebral compression fractures falling into the

subcategories A1-4 according to the AO/OTA classification

system, and the fracture count was noted for baseline scans (31).

Fractures were classified as ‘prevalent’ if they were present at the

baseline scan and ‘incident’ if they were not present at the baseline

scan, but at the follow-up scan, i. e., occurred between baseline and

follow-up scans. Four cohorts were defined, based on fracture

status: ‘no prevalent VF’, ‘prevalent VF’, ‘no incident VF’, and

‘incident VF’. Baseline fracture status did not affect inclusion in the

fracture incidence cohorts.
2.5 Statistical analyses

All statistical tests were performed using STATA v13.1 software

(StataCorp LLC) with a two-sided level of significance of p < 0.05.

Mean trabecular vBMDwas calculated for three compartments (T5-

8, T9-12, and L1-5). Age and sex are both well-known predictors of

VFs and osteoporosis, therefore we investigated cohort differences

(no prevalent VF’ vs. ‘prevalent VF’ and ‘no incident VF’ vs.

‘incident VF’) using t-tests for age and chi-squared as well as

Fisher’s exact tests for sex. If cohort differences were statistically

significant (p < 0.05), we included the variables as predictors in our

multivariate analyses to address confounding. Furthermore, cohort

differences in vBMD at each level were investigated using t-tests.

First, multivariate logistic regression models were used to

determine the association between vBMD at each of the three
FIGURE 1

Flow chart depicting the process of patient in- and exclusion.
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vertebral levels (T5-8, T9-12, and L1-5) and prevalent VFs. Further,

the association between the VF count at baseline and vBMD (T5-8,

T9-12, and L1-5) was investigated using multivariate linear

regression models. In the second part of the analysis, associations

between the predictors vBMD (T5-8, T9-12, and L1-5), baseline VF

status (yes/no), and baseline VF count and the outcome of incident

VFs were also determined using multivariate logistic regression

models. Prevalent VF status was stepwise added to all vBMD-based

models in the secondary analysis to investigate any confounding.

To simplify model comparisons, all models were also calculated

per standard deviation (SD) decrease in vBMD using odds ratio

(OR)SD, coefficient (Coef)SD, and 95%-confidence intervals (CISD).

Finally, in order to determine and compare the model fit, Akaike’s

and Schwarz’s Bayesian information criteria (AIC & BIC) were

calculated for models predicting incident fractures. AIC & BIC are

both model performance measures, that aid in model selection, as

they reflect how well the individual model represents the data.

Lower AIC and BIC values indicate a better fit (32).
3 Results

3.1 Cohort characteristics

In summary, we identified 1431 individuals who underwent two

thoraco-abdominal multi-detector CT scans at the defined scanner for

the purpose of cancer staging in the six-year time period. Of those, 1011

were excluded due to bone metastases, use of bone-active medication,

and/or hematological diseases other than osteoporosis, diagnosed prior

to the baseline scan. Lastly, 420 individuals were eligible for inclusion

(276 male, 65.7%). The average age at baseline was 62.9 ± 9.3 years

(range 39 to 88 years) and the average inter-scan interval between

baseline and follow-up scans was 21.7 ± 13.1 months (range 5 to 52

months). Comprehensive information on demographics of each cohort

and fracture distribution is presented in Table 1.
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Prevalent VFs were detected in 40 out of 420 individuals (9.5%),

and individuals with prevalent fractures had lower vBMD compared

to those without (p ≤ 0.001) (Figure 3A). Of all individuals with

prevalent VFs, 14 had multiple VFs for a total of 66 fractures.

Twenty-four individuals (5.7%) suffered incident compression

fractures during the follow-up interval, and the cohort with

incident fractures had significantly lower vBMD than the cohort

without (p < 0.001) (Figure 3B). Outliers in vBMD measurements

(shown in Figures 3A, B) were on average 50.6 years old and did not

show a clear sex predominance (60% male), when compared to the

entire cohort. In non-fractured individuals, the highest rate of outliers

was found at the T5-8 level (n = 8; 2%), while only one measurement

outlier was found for patients with a prevalent fracture (L1-L5

vBMD). Manual review of outliers’ MDCT scans and charts did

not reveal underlying bone diseases or artifacts.
3.2 Associations between baseline vBMD
and prevalent VFs

Across sexes, VF prevalence was similar (male: 10.4%, female:

10.7%, p = 0.92 and 1.00), but individuals with VFs were older than

those without (67.3 ± 9.8 years vs. 62.5 ± 9.2 years, p = 0.002)

(Table 1). Thus, to account for confounding, multivariate analyses

included age as a predictor.

Through all vertebral levels, lower vBMD was associated with

higher odds for prevalent VFs and ORs increased gradually in a

cranio-caudal direction (Table 2): vBMD at the lumbar spine (L1-5)

was the strongest predictor of prevalent VFs (ORSD = 2.21, 95%-

CISD = 1.38 – 3.51, p = 0.001). A greater number of prevalent VFs

was also strongly associated with lower vBMD across all vertebral

levels: the strongest association was again found for the lumbar

spine, but a cranio-caudal increase in coefficients was not observed

(L1-5: CoefSD = -0.103, 95%-CISD = -0.166 – 0.039, p = 0.002)

(Table 3 and Figure 4A).
FIGURE 2

Steps of automated vertebral body segmentation, as performed by the convolutional neural network framework. From left to right: Automated
vertebral body detection and labeling. Segmentation of vertebral components, including posterior elements (sagittal and coronal view). Separation of
cortical and trabecular bone. Three-dimensional reconstruction of segmented vertebra.
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3.3 Incident fracture prediction by baseline
vBMD, VF status, and VF count

Females had a higher VF incidence rate than males (9.9% vs.

4.1%, p = 0.035 and 0.045, for chi-squared and Fisher’s exact test,

respectively), and individuals suffering incident VFs were older

compared to those, who did not have incident VFs (67.1 ± 8.7 years

vs. 62.7 ± 9.3 years, p = 0.02) (Table 1). Thus, sex and age were both

treated as confounders and included as predictors in all following

multivariate models.
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Although odds for incident VFs were greater in individuals with

prevalent VFs and a higher VF count at baseline, multivariate

models for both of these variables did not reach statistical

significance (VF status: ORSD = 2.15, 95%-CI = 0.72 – 6.43, p =

0.170; VF count: OR = 1.38, 95%-CI = 0.89 – 2.12, p = 0.147)

(Table 4). Contrasting these findings, models based on

opportunistic vBMD measurements showed that, through all

considered vertebral levels, individuals with lower vBMD had

significantly greater odds for incident VFs (T5-8, T9-12, L1-5:

ORSD range = 1.48 – 3.54, p ≤ 0.001, respectively), and all
BA

FIGURE 3

(A, B) Boxplots visualizing volumetric bone mineral density measurements (vBMD) at the T5-8, T9-12 and L1-5 level for the (A) ‘no prevalent VF’ and
‘prevalent VF’ cohorts and (B) ‘no incident VF’ and ‘incident VF’ cohorts. Throughout all levels, vBMDs in the ‘prevalent VF’ and ‘incident VF’ cohorts
were significantly lower compared to their counterpart without VFs (p ≤ 0.001).
TABLE 1 Cohort characteristics.

Variable unit no prev. VF prev. VF p* no inc. VF inc. VF p*

Age (years) mean ± SD
range

62.5 ± 9.2
39 – 88

67.3 ± 9.8
44 – 82

0.002 62.7 ± 9.3
39 – 88

67.1 ± 8.7
41 – 79

0.023

Follow-up (months) mean ± SD
range

21.6 ± 13.1
5 – 51

21.9 ± 13.8
5 – 52

0.903 21.8 ± 13.3
5 – 52

19.4 ± 10.1
6 – 41

0.380

Sex m n (%) 250 (65.8) 26 (65.0) 0.920 265 (66.9) 11 (45.8) 0.035

f n (%) 130 (34.2) 14 (35.0) 131 (33.1) 13 (54.2)

vBMD T5-8 mean ± SD 132.6 ± 40.7 110.6 ± 40.0 0.001 132.5 ± 40.5 97.4 ± 37.2 <0.001

(mg/cm3 CaHA) T9-12 mean ± SD 126.8 ± 38.2 105.4 ± 34.1 0.001 126.5 ± 38.0 95.9 ± 31.5 <0.001

L1-5 mean ± SD 121.1 ± 35.6 96.2 ± 29.9 <0.001 120.7 ± 35.3 87.5 ± 29.5 <0.001
frontie
*t-test for continuous variables (age, vBMD), chi2 for nominal variables (sex).
SD, Standard deviation; prev. VF, prevalent vertebral fracture; inc. VF, incident vertebral fracture; vBMD, volumetric bone mineral density; CaHA, calcium hydroxy-apatite.
TABLE 2 Prevalent VF prediction by vBMD.

ORSD 95%-CISD OR 95%-CI p

vBMD T5-8 1.60 1.10 – 2.32 1.01 1.00 – 1.02 0.015

vBMD T9-12 1.70 1.13 – 2.56 1.01 1.00 – 1.02 0.011

vBMD L1-5 2.21 1.38 – 3.51 1.02 1.01 – 1.04 0.001
r

All models are adjusted for age and sex.
vBMD, volumetric bone mineral density; VF, vertebral fracture OR, Odds ratio; 95%-CI, 95%-confidence interval.

SD indicates values per standard deviation decrease in CaHA.
sin.org
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findings withstood the additional adjustment for baseline VF status

(Table 5) (Figure 4B).

Model comparisons showed similar fit of models based on VF

status and count (VF status: AIC = 181.0, BIC = 197.1; VF count:
Frontiers in Endocrinology 06
AIC = 180.7, BIC = 196.9). Fit of vBMD-based models was superior

compared to models based on baseline VF status and VF count, and

the model based on vBMD for L1-L5 fitted best (AIC = 165.2,

BIC = 181.4).
TABLE 3 Correlation of vBMD and prevalent VF count at baseline.

CoefSD 95%-CISD Coef 95%-CI p

vBMD T5-8 -0.083 -0.145 – -0.022 -0.002 -0.004 – -0.001 0.008

vBMD T9-12 -0.073 -0.134 – -0.012 -0.002 -0.004 – 0.000 0.020

vBMD L1-5 -0.103 -0.166 – -0.039 -0.003 -0.005 – -0.001 0.002
frontier
All models are adjusted for age and sex.
vBMD, volumetric bone mineral density; VF, vertebral fracture; Coef, Coefficient; 95%-C, 95%-confidence interval.

SD indicates values per standard deviation decrease in CaHA.
BA

FIGURE 4

(A, B) Volumetric bone mineral density (vBMD) at the L1-5 level plotted against the time between baseline and follow-up scan in months.
(A) Patients with prevalent VFs (black squares) were predominantly observed in the lower vBMD range, compared to patients without prevalent VFs
(light-grey triangles). (B) Analogously, patients with incident VFs (black squares) were predominantly observed in the lower vBMD range, compared
to patients without incident VFs (light-grey triangles).
TABLE 4 Incident VF prediction by prevalent VF status and -count.

OR 95%-CI p AIC BIC

VF prevalence 2.15 0.72 – 6.43 0.170 181.0 197.1

VF count 1.38 0.89 – 2.12 0.147 180.7 196.9
All models are adjusted for age and sex.
VF, vertebral fracture; OR, Odds ratio; 95%-CI, 95%-confidence interval; AIC, Akaike’s information criterion; BIC, Bayesian information criterion.
TABLE 5 Incident VF prediction by vBMD.

ORSD 95%-CISD p OR 95%-CI AIC BIC

vBMD T5-8 2.45* 1.48 – 4.07 < 0.001 1.02 1.01 – 1.03 168.6 184.8

2.38** 1.43 – 3.96 0.001 1.02 1.01 – 1.03 170.2 190.4

vBMD T9-12 2.58* 1.47 – 4.54 0.001 1.03 1.01 – 1.04 170.3 186.4

2.50** 1.41 – 4.40 0.002 1.02 1.01 – 1.04 171.7 191.8

vBMD L1-5 3.54* 1.82 – 6.86 < 0.001 1.04 1.02 – 1.05 165.2 181.4

3.42** 1.75 – 6.70 < 0.001 1.03 1.02 – 1.05 166.9 187.1
*Models are adjusted for age and sex.
**Models are adjusted for age, sex and baseline VF status.
vBMD, volumetric bone mineral density; VF, vertebral fracture; OR, Odds ratio; 95%-CI, 95%-confidence interval; AIC, Akaike’s information criterion; BIC, Bayesian information criterion.

SD indicates values per standard deviation decrease in CaHA.
sin.org
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4 Discussion

This study investigated whether opportunistic vBMD

measurements obtained by an automated CNN-based

framework predict future VFs and compared the developed

prediction models with established models, which are based on

VF prevalence. The major finding was that VF prediction using

opportunistic vBMD-based models was found to be superior to

prediction based on prevalent VFs. This may highlight the

potential role of systematic, opportunistic vBMD assessments in

addressing the current challenges of osteoporosis treatment

and diagnosis.

While the overall prevalence rate of VFs was similar in females

(10.7%) and males (10.4%), a strong imbalance was observed in VF

incidence: females suffered 54.2% of VFs, although they represented

only 34.3% of the cohort. These findings underline the well-known

observation that females are at higher risk of osteoporosis and

associated fractures, particularly during the post-menopause

decades of life (8, 9, 33, 34).

Lumbar spine vBMD was most valuable for predicting incident

VFs. Odds for incident VFs were increased 3.5-fold in individuals

with a vBMD of -1 SD compared with the rest of the cohort. These

results are comparable to previous studies that reported ORs of 2-6

or hazard ratios of 2.5-4.4 per SD vBMD decrease, respectively (14,

22, 35–37). However, previous studies focusing on vBMD

measurements at the lumbar spine were limited by their smaller

cohort sizes of 84-105 individuals (14, 22, 35). In contrast,

Therkildsen et al. investigated 1487 patients but manually derived

vBMD measurements from noncontrast-enhanced cardiac CTs

covering only the thoracic spine and (36). While Johannesdottir

et al. additionally analyzed lumbar vBMD at the L1-2 level, the

authors’ approach with manual quantitative CT measurements

limited to specific vertebrae was still inherently different from

ours (37). The current approach combines the strengths of a

larger cohort of 420 subjects, automated opportunistic vBMD

extraction and vBMD extraction from the thoracic and

lumbar spine.

A number of studies have previously investigated risk factors for

imminent VFs and found that prevalent VFs are a strong predictor

thereof (3–7). This finding is addressed in the FRAX® tool (http://

www.shef.ac.uk/FRAX), which queries fracture history in a

dedicated question and includes it as an independent risk factor

in the fracture risk calculation (11). Although individuals with

prevalent VFs were more likely to suffer incident VFs than those

without prevalent VFs with an OR of 2.15, the fracture-based

models did however not reach statistical significance. This

observation was confirmed by AIC and BIC: Both tests yielded

lower scores for vBMD-based models, suggesting a superior fit (38).

While in clinical practice, assessing fracture history through

anamnesis is uncomplicated and provides valuable insights into

bone stability and should therefore be performed whatsoever,

vBMD-based fracture prediction models may particularly be

useful in individuals with silent (i.e., clinically unrecognized)

fractures (12).
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We need to acknowledge some limitations of our present study.

All scans were performed with a single scanner, which may lead to

questions whether our findings are reproducible using other

scanners. Previous studies that investigated the tool used for

automatic vBMD extraction have addressed this question and

showed that findings between scanners were indeed comparable,

when appropriately calibrated (14, 22, 24). Another limitation of

this study is the cohort composition. As mentioned above, more

than half of the included individuals were males, despite the

observation that females are more frequently affected by

osteoporosis and VFs. This problem may have been avoided by

frequency matching for sex (and age). However, this would have

reduced our cohort size, which we intended to avoid. Further,

frequency matching may induce new bias, as the cohorts may

become too similar, which affects the observable effect size (39,

40). Instead, we decided to address this topic by including both

variables (sex and age) as confounders in our multivariate analysis,

where still statistically significant differences between the cohorts

with and without VFs were found. While we did find vBMD outliers

in our data (Figures 3A, B), we could not identify underlying

confounders. On one side, vBMD measurements with

asynchronous external calibration are known to be influenced by

spine positioning in relation to the gantry due to x-ray field

inhomogeneities and differences in beam hardening dependent on

the scanner’s isocenter (41, 42). On the other side, chart data on

bone active medications may be incomplete, introducing a possible

bias to our findings. The inclusion criteria for this study may have

resulted in a mainly oncologic patient population. Although we

ruled out bone metastases during chart and imaging review,

oncologic patients are nonetheless known to be at increased risk

of bone loss and subsequent fractures, which limits the

generalizability of our findings to non-oncologic populations.

While our study highlights the potential role of opportunistic

vBMD measurements in VF pred ic t ion , dua l x- ray

absorptiometry remains the gold standard for the diagnosis of

osteoporosis and is implemented into current fracture prediction

tools, like FRAX® (11, 19). However, MDCT scan numbers have

drastically increased over the past 20 years (43). Therefore,

opportunistic vBMD measurements gain increasing relevance,

particularly for patients at risk of bone loss, like oncologic patients.

Prediction of VFs based on opportunistic vBMD assessments

with an automated CNN-based framework is feasible and could

particularly improve fracture prediction and detection in individuals

receiving regular CT scans for oncologic staging. Moreover, vBMD

was a stronger predictor of imminent VFs than fracture history.

Opportunistic vBMD measurements from an automated framework

for vertebral body segmentation and vBMD extraction could

therefore enable fracture prevention measures.
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