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Abstract: Identifying tissue-specific molecular signatures of active regulatory elements is critical
to understanding gene regulatory mechanisms. In this study, transcription start sites (TSS) and
enhancers were identified using Cap analysis of gene expression (CAGE) across endometrial stromal
cell (ESC) samples obtained from women with (n = 4) and without endometriosis (n = 4). ESC TSSs
and enhancers were compared to those reported in other tissue and cell types in FANTOM5 and
were integrated with RNA-seq and ATAC-seq data from the same samples for regulatory activity and
network analyses. CAGE tag count differences between women with and without endometriosis were
statistically tested and tags within close proximity to genetic variants associated with endometriosis
risk were identified. Over 90% of tag clusters mapping to promoters were observed in cells and
tissues in FANTOM5. However, some potential cell-type-specific promoters and enhancers were
also observed. Regions of open chromatin identified using ATAC-seq provided further evidence of
the active transcriptional regions identified by CAGE. Despite the small sample number, there was
evidence of differences associated with endometriosis at 210 consensus clusters, including IGFBP5,
CALD1 and OXTR. ESC TSSs were also located within loci associated with endometriosis risk from
genome-wide association studies. This study provides novel evidence of transcriptional differences
in endometrial stromal cells associated with endometriosis and provides a valuable cell-type specific
resource of active TSSs and enhancers in endometrial stromal cells.

Keywords: endometrial stromal cells; Cap analysis of gene expression; transcription start sites

1. Introduction

Human endometrium, the inner lining of the uterus, is a vitally important reproductive
tissue, essential for fertility and associated with many reproductive disorders [1]. The
endometrium consists of distinct cell types: epithelial cells (luminal and glandular) and
the supporting mesenchymal cells (stromal cells). The tissue undergoes cyclical changes
in cellular composition and gene expression, largely driven by hormonal regulation [2–4].
One associated disease is endometriosis, a common gynaecological disease defined by the
presence of endometrial glands and stroma outside the uterus. The commonly accepted
theory for the origin of cells in lesions is viable endometrial cells being transported in
retrograde menstruation [5]. A major approach to discovering the fundamental mechanisms
and causes of endometriosis is through identification and understanding of changes in
transcriptional regulation associated with disease and the functions of the genetic variants
responsible for the genetic component of the disease. Although genome-wide association
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study (GWAS) results [6] represent a significant breakthrough towards understanding
genetic risk factors for endometriosis, the cellular mechanisms through which these variants
drive the disease remain largely unknown.

Understanding gene expression in endometriosis [3] and endometrial cancer, especially
in the context of fertility-sparing treatment [7], requires analysis of the transcriptional
landscape of several uterine cell types. This approach may help identify disease processes
that are unique to certain cell types but would otherwise be averaged out in bulk tissue
datasets. One study [8] reported that the development of endometriosis may be influenced
by an epigenetic switch that regulates the expression of the GATA isoform in stromal
cells. Gene transcription is controlled by functional interactions between promoters and
enhancers. Identifying active regulatory regions in the genome is critical for understanding
gene regulation and assessing the impact of genetic variation on phenotype. The Cap
analysis of gene expression (CAGE) method is a high-throughput, transcriptome-wide
and unbiased (towards polyA-tailed RNA) approach, well established at mapping the
transcription start sites (TSSs) by capturing the 5′ ends of the transcribed and capped
mRNAs [9]. CAGE employs a cap-trapping method and captures 5′ ends of cDNAs, which
yields short sequences (tags) of 20 nucleotides that can be mapped back to the reference
genome to infer the exact position of the TSSs of captured RNAs. The number of CAGE
tags supporting each TSS reflects the relative frequency of its usage and can be used as a
measure of expression from that specific TSS, reflecting the activities of a promoter or an
enhancer [10]. The functional annotation of the mammalian genome (FANTOM) project [11]
generated CAGE expression measurements across 573 primary cell types and tissues.

To date, there are no publicly available CAGE datasets for endometrium/endometrial
stromal cells. In this study, for the first time, CAGE data were produced from endometrial
stromal cells of endometriosis patients and controls. We built a genome-wide TSS map for
stromal cells and we added a deep ATAC-seq dataset, as well as a total RNA-seq dataset,
to the valuable CAGE resource, forming the most comprehensive genomics regulatory
database of the endometrial stromal cells. We performed integrative analysis across existing
epigenomic datasets to reveal molecular signatures of non-coding stromal cell elements
and differences identified in endometriosis patients.

2. Materials and Methods
2.1. Samples

Endometriotic biopsies were collected via soft curette (Pipelle de Cornier, Labora-
torie CCD, France) from eight women undergoing laparoscopic surgery for suspected
endometriosis. Samples were stored in Complete IMDM media (10% foetal calf serum, 1%
antibiotics/antimycotics (ThermoFisher Scientific, Waltham, MA, USA)) supplemented
with 10% Dimethyl sulfoxide (DMSO) (Thermo Fischer Scientific, Waltham, MA, USA) and
stored at −80 ◦C using the slow-freezing method in a Bicell vessel. The pelvic cavity of
each patient was subsequently examined and any suspected endometriotic lesions were
removed and disease stage reported according to the revised American Fertility Society
staging system (rAFS) [12]. The location of any lesion identified was noted using the
ENZIAN classification [13] (Table 1) and subsequently categorized as either superficial
peritoneal, ovarian or deep-infiltrating endometriosis (DIE) in the base of the pelvis.

The endometrial stromal cells (ESCs) were isolated and purified according to our
published procedure [14,15]. Cells were cultured/passaged as per standard methods with
trypsin/EDTA when approximately 80% confluent. Cells were counted at each passage,
population doubling was determined and only cells that remained within a log phase of
growth were included in the analysis.
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Table 1. Information on clinical parameters for participants included in the CAGE analysis.

Sample ID Case/Control rAFS % ENZIAN & Age BMI Smoking # Infertility *

Sample 1 Case I 0 43 25 0 0

Sample 2 Control 0 0 51 24.3 0 0

Sample 3 Control 0 0 41 24.2 0 1a

Sample 4 Case I A0B2C0 46 20.7 0 0

Sample 5 Case I 0 36 22.9 1 1a

Sample 6 Case II 2B 31 21.3 0 0

Sample 7 Control 0 0 25.7 28.7 n.d. 0

Sample 8 Control 0 0 21.7 17.2 0 0
% rAFS score for endometriosis disease stage for cases were given according to the American Fertility Society
scoring system (12). & ENZIAN scores provide a detailed description of the location and size or severity of the
lesions and were given according to the Enzian classification (13). # Smoking status; 1 = Yes and n.d.= no data.
* Infertility status; 1a = primary and 1b = secondary.

2.2. CAGE Sequencing

CAGE data were generated from eight endometriosis stromal cell lines, four of which
were derived from women with endometriosis (cases) and four of them from women
without endometriosis (controls). For a comprehensive analysis of transcription start
sites, we performed two different CAGE protocols, each with its own advantages and
disadvantages, as described below.

Commercial protocol: CAGE libraries were generated via the cap-trapping method
using a commercially available kit from DNAFORM. The resulting libraries were PCR-free,
full-length (un-fragmented) Illumina-compatible libraries containing both polyA and non-
polyA transcripts. The entire process from RNA to final library took eight days and required
5 ug RNA/sample with RIN > 7. The kit contained most of the necessary components for
the entire workflow.

In-house protocol: CAGE libraries were also generated via the cap-trapping method
using an optimized protocol designed and validated in house. This protocol was developed
to increase throughput, decrease processing time and offer the flexibility to run samples
with standard molecular reagents. The in-house protocol shares many common steps with
the commercially available kit from DNAFORM, but it is shorter (taking about five days)
and the protocol has a PCR step to generate higher concentration libraries. The resulting
libraries were full-length (un-fragmented), Illumina-compatible libraries containing both
polyA and non-polyA transcripts that had been minimally amplified by PCR. The entire
process required 5 ug RNA/sample with RIN > 7.

Sequencing, read processing and alignment: Sequencing was performed on an Illu-
mina NextSeq500 with 5% PhiX spike-in using the following configurations: Read1-76 bp,
Index1-6 bp. Loading concentrations for all the samples were 1.6 pM using a modified de-
naturation and dilution protocol for low-concentration libraries. Fastq files were generated
from the sequencing BCL files using fastqc and raw reads were filtered according to quality
using multiqc followed by trimming the reads to remove the ‘N’ base at the 5′ and 3′ ends
using MORAI20140528/bin/trimBaseN package. The resulting reads were then aligned to
the human genome hg38 assembly https://ftp.ensembl.org/pub/release-100/fasta/homo_
sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa (accessed on 25 April 2020)
using BWA v0.7.15. The uniquely mapped CAGE tags with a minimal mapping quality of
10 were used in this study. The BWA SAM-formatted alignments were converted to BAM
format using samtools. The BAM files were then converted to bed files and BigWig files
using bedtools2 v 2.24.0 and samtools.

https://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa
https://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa
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2.3. Identification of CAGE-Defined Transcription Start Sites (CTSS) and Tag Clusters (TC)

The vast number of small CAGE tag sequences demands considerable data processing,
and statistical approaches are required for biological inferences and discoveries. The follow-
up data analysis was based primarily on the annotation of CAGE sequence tags to known
transcripts/genes. CAGE data processing, data formats and analysis methodologies are
not yet standardised, and the scientific community is still working to develop them. CAGE
tags/sequences are aligned to genome sequences using simple computational processes
(called BLAST) and then counted, which provides the frequency of RNA expression. CAGE
expression is measured specifically for each transcription start site (TSS).

TSSs frequently cluster into tag clusters (TC) that represent transcriptionally active re-
gions [9]. CTSS (CAGE-detected transcription start site) is a cluster of CAGE tags that share
the same nucleotide position at their 5′-ends which are defined to reflect a high-resolution
map of each individual TSS/TC (tag clusters), spanning a genomic area indicating a group
of CTSS. TCs describe a larger area, serving as units for identifying potential core promoters.
The shapes of TCs change in a regular manner. In mammalian cells, TCs are often smaller
than 10 basepairs (Sharp TSSs) or hundreds of basepairs wide (Broad TSSs) (Figure 1).
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The uniquely aligned reads from the bed files were provided as input for the CAGEr
pipeline in R [16]. The 5′ end of each read was considered as the single-nucleotide resolution
CTSS, and counts were generated for each position to represent the number of unique tags
starting from that position. These tag counts were normalised to one million reads (TPM),
and CTSS that were within a 20 bp distance were merged to generate TCs. Each TC was
considered as an active transcription start site, as a functional unit of a promoter or as an
enhancer. Prior to clustering, we filtered out low-fidelity TSSs, i.e., the ones supported by
less than 2 normalised tag counts in all of the samples and included only singleton CTSS
which had a normalised signal above three. The TCs from all the samples that were within
100 bp of each other were clustered together into a single set of non-overlapping consensus
clusters to define the promoter regions.

2.4. Correlation of Tag Counts within and between Protocols

We performed Pearson’s correlation for normalised CAGE tag counts per TSS between
the samples separately for commercial and in-house data. For robustness, only TSSs with
at least five tag counts were considered for calculating the correlation coefficient. The
ggcorrplot () function in R was used to plot correlation coefficients between all possible
pairs of samples.

We obtained the mean consensus cluster tag counts for each promoter/gene from all
the samples in each of the commercial and in-house datasets and performed Pearson’s
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correlation to calculate correlation coefficients between same-sample pairs obtained from
the two protocols.

2.5. Merging Data from In-House and Commercial Protocols

To increase TC detection sensitivity, we combined CAGE data from the commercial
and in-house protocols. This approach has been widely applied in integrating CAGE
datasets. Fastq files from the same sample obtained from two protocols were concatenated.
Alignment, mapping, CTSS and TC identification were repeated for the merged files using
the method described above.

2.6. Promoter Shapes

The CAGEr pipeline was used to evaluate endometrial stromal cell promoters pre-
dicted from CAGE clusters. Broad or narrow promoter types were determined by cal-
culating the inter-quantile range of promoter CAGE clusters by assessing the base pair
distance between 10% and 90% of a promoter’s total signal. The shapes of the promoter, as
determined by the depth of the mapped reads and the width of the clusters, are a unique
feature associated with transcriptional regulation activities.

2.7. Enhancer Identification

Enhancers are distal regulatory elements that regulate the transcription of their target
genes [17,18]. RNApolII binds to enhancer regions and eRNAs are transcribed bidirection-
ally from active enhancers [19]. Similar to mRNAs, eRNAs are transcribed by RNApolII
and capped in the process, which can be captured by the CAGE method. Enhancers
are transcribed in a cell-type-specific manner [20]. Active enhancers can be detected by
CAGE signals at the two ends of the enhancers [21]. CAGEfightR [22] was used to analyse
the enhancers from our CAGE data. The CTSS coordinates and counts from the CAGEr
pipeline were input as bigwig files into the CAGEfightR program. CTSS appearing in
only a single sample were removed. The remaining CTSS were normalised to tags per
million (TPM) and summed across the samples to yield a pooled CTSS signal. CTSS within
20 bp distance were merged to obtain unidirectional clusters and were required to have
0.3 TPM in at least two samples. Bidirectional clusters were required to have a balance
score ≥ 0.95 and to be bidirectional in at least a single sample with at least ≥ 2 counts
in at least one sample. Enhancers identified were then annotated to genomic locations
(TxDb.Hsapiens.UCSC.hg38.knownGene: Annotation package for TxDb object(s). R pack-
age version 4.1.3). Enhancers annotated to introns and intergenic regions were used in
subsequent analyses.

2.8. Interaction of Transcription Start Sites and Enhancers

TSS-enhancer candidates were identified using the findLinks function from the In-
teractionSet R package by looking for very closely spaced TSSs and enhancers that had a
highly correlated expression within 50 bp distance. This analysis linked promoters and
enhancers which were likely to regulate similar genes/pathways.

2.9. Differential Promoter and Enhancer Expression

Differential expression analyses were performed using the Bioconductor package
DESeq2 [23] in R to build a statistical model and perform contrasts of endometriosis cases
versus controls for consensus cluster tag counts and enhancer counts. Fold changes were
obtained along with their associated p-value. The Benjamini–Hochberg method was used to
control the false-discovery rate (FDR) by adjusting p-values for multiple testing correction.
A promoter or enhancer was defined as significantly differentially expressed if it had a
Benjamini–Hochberg-adjusted (FDR) p-adjusted < 0.05.
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2.10. RNA Extraction and Sequencing

The same eight cell lines were subjected to RNA sequencing. The AllprepRNA Mini
kit was used to extract total RNA from endometrial stromal cells that were actively growing.
Before collecting the mixture in 1.5 mL Eppendorf tubes, Qiagen lysis buffer was added
to the cells directly. RNA was then isolated according to the manufacturer′s instructions
(Qiagen, Redwood City, CA, USA). RNA was treated with a Turbo DNA-free kit (Ther-
mofisher Scientific, USA) and the RNA concentrations and integrity of each sample were
evaluated using the NanoDRopBD-6000 instrument (ThermoFisher Scientific, Waltham,
MA, USA). For RNA sequencing, only samples with an RNA integrity number of >8 were
used. Stranded RNA-seq libraries were generated using the Illumina Tru-Seq Stranded Total
RNA Gold technique, including ribosomal depletion, per the manufacturer′s instructions
(Illumina, San Diego, CA, USA). The Illumina HISeq 4000 was used to sequence libraries
that were pooled. Low-quality sequencing reads and contaminated HiSeq Illuminata
adaptor sequences were trimmed using Trimmomatic v0.36 [24].

2.11. Correlation of CAGE-Seq Data with RNA-Seq Data

The average tag counts annotated to the promoter of each gene were correlated to
count estimates from RNA-seq data in the same samples to evaluate concordance in gene
expression intensities between RNA-seq and CAGE. Pearson’s correlation was used to
estimate the correlation between the log-transformed count data of CAGE and RNA-seq.

2.12. ATAC-Seq Using the Omni-ATAC Protocol from Actively Growing Endometrial
Stromal Cells

Sample preparation: ATAC-seq was performed on the same eight cell lines. Cells
growing in the tissue culture were Trypsinized and the medium was then washed out.
The cells were resuspended in cold PBS and counted. Cell pellets of 50,000 cells were
resuspended in 50 µL of ice-cold ATAC-Resuspension Buffer (0.1% NP40, 0.1% Tween-20
and 0.01% Digitonin) by pipetting up and down three times. This cell lysis reaction was
incubated on ice for 3 min. After lysis, 1 mL of ATAC-seq RSB containing 0.1% Tween-20
(without NP40 or digitonin) was added to wash the cells, and the tubes were inverted
three times to mix. Cells were transported to a pre-chilled (4 ◦C) fixed-angle centrifuge to
pellet the nuclei at 600× g for 10 min. The supernatant was removed with two pipetting
steps (aspirate down to 100 µL with a p1000 pipette and remove final 100 µL with a p200
pipette) and nuclei were resuspended in 50 µL of transposition mix by pipetting up and
down six times. The transposition reaction mixture was then incubated at 37 ◦C for 30 min
in a thermomixer with 1000 r.p.m mixing. The transposed DNA was pre-amplified and
purified by AMPure DNA magnetic beads. Fragmented DNA was eluted in 20.5 µL RSB
containing 10 mM Tris, pH = 7.4. The quality of the libraries was assessed using Bioanalyzer
High-Sensitivity DNA Analysis kit (Agilent, Santa Barbara, CA, USA).

Sequencing, data processing and peak calling: The libraries were pooled and se-
quenced to a mean depth of 80–100 million reads per sample on NovaSeq 50 bp paired
end SP run. The quality of raw reads was checked using FastQC v0.11.7 [25] and MultiQC
v1.6 [26]. Low-quality reads and adapter sequences were trimmed from fastQ files using
Trimmomatic v0.36 [24]. Reads were mapped to the GRCh38 human reference genome
using Bowtie2 v2.3.4.3 [27]. “MarkDuplicates” and “REMOVE_DUPLICATES” functions
from Picard (v2.23.4) were then used to remove duplicate reads. Reads were filtered for
non-unique alignment (MAPQ > 30) and low-quality mapping (-F 1804) using samtools
(v1.1). Using alignmentSieve v3.5, reads were shifted to adjust for the inserted adapter
sequences. Finally, peaks were called using MACS2 v2.2.7.1 [28].

2.13. Overlap of ESC CAGE Tag Clusters with ESC ATAC-Seq Peaks

CAGE-detected tag clusters were overlapped with ATAC-seq peaks generated in the
same samples using BEDtools intersect [29]. Our approach is a stringent method to define
regulatory genomic regions, where both CAGE and ATAC-seq signals are present.
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2.14. Overlap of ESC Consensus Clusters with FANTOM5 and ENSEMBL Databases

Human transcription start site CAGE peaks data generated from 573 tissues and cell lines
were obtained from FANTOM5 https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_
latest/extra/CAGE_peaks_expression/hg38_liftover+new_CAGE_peaks_phase1and2.bed.gz
(accessed on 30 June 2021). ENSEMBL TSS annotations for the human genome (ENSEMBL
annotation version hg38) were obtained from ENSEMBL-Biomart. CAGE-detected consen-
sus clusters were overlapped with human TSS from FANTOM5 and ENSEMBL TSS using
the intersect BEDtools function -u for unique overlap.

2.15. Overlap of ESC Consensus Clusters with Endometriosis GWAS Signals

Endometriosis GWA meta-analysis summary statistics were available from Sapkota et al.
2017. CAGE-detected consensus clusters were overlapped with the SNPs reaching nominal
significance (p < 1 × 10−5) in the GWAS using -u (unique) function in BEDtools. To account
for the promoter region, genomic windows of 2 kb were extended on either side of the
consensus clusters and overlapped with the GWAS signals using the intersect function
in BEDtools. By mapping GWAS signals to promoter and enhancer regions, as well as
genes regulated by these regulatory regions, we expected to find potential mechanisms of
significant SNPs that were not within the protein-coding regions.

2.16. Pathway Analysis

To gain greater biological insight on differentially expressed consensus clusters and
consensus clusters that were not annotated to FANTOM5 data, we used clusterProfiler [30],
which has the ability to analyse and visualize data for enrichment analysis. Gene lists
included those identified from the differential consensus cluster expression analysis and
those annotated to the potential ESC specific consensus clusters not present in FANTOM5.
Benjamini–Hochberg-corrected p-values of <0.05 were considered significant enrichment.

3. Results
3.1. Comparing Quality of the Commercial and In-House CAGE Sequencing Protocols

Raw tag counts were normalised to quantify the expression from each individual TSS
and to enable comparison between multiple samples. Tag counts ranged from 10–20 million
for the commercial protocol and 5–9 million for the in-house protocol (Table 2). The CAGEr
package was used to count the number of CAGE-detected transcription start sites (CTSS
normalised to the sequencing depth) in each sample processed using the in-house and
commercial protocols. It was observed that the number of CTSS counts obtained from in-
house protocol samples (mean = 95,000) were more than the commercial protocol samples
(mean = 75,000) (Figure 2a). The relationship between CAGE tag counts in different samples
of each protocol was assessed using Pearson’s correlation to calculate correlation coefficients
(r2) between all pairs of samples. Samples processed using the commercial protocol were
highly correlated, r2 ≥ 0.8, as were those processed using the in-house analysis, r2 ≥ 0.8.

Table 2. Number of CAGE tag counts obtained in each sample (women with endometriosis = cases;
women without endometriosis = controls) from commercial and in-house protocols.

Sample ID Case/Control Commercial In-House

Sample 1 Case 13,878,668 7,424,199

Sample 2 Control 11,976,955 6,373,486

Sample 3 Control 10,337,586 6,380,118

Sample 4 Case 13,202,981 6,579,239

Sample 5 Case 14,025,009 5,394,546

Sample 6 Case 14,100,380 7,617,671

Sample 7 Control 16,107,917 9,768,981

Sample 8 Control 20,367,598 7,825,180

https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks_expression/hg38_liftover+new_CAGE_peaks_phase1and2.bed.gz
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks_expression/hg38_liftover+new_CAGE_peaks_phase1and2.bed.gz
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Figure 2. CAGE-identified transcription start sites (CTSS) and genomic distribution of CAGE tags
of endometrial stromal cells obtained from commercial and in-house protocols. (a) CTSS count
comparisons between commercial (orange) and in-house (blue) protocols of CAGE data. X-axis
represents sample numbers of endometrial stromal cell lines and Y-axis represents number of CTSS
counts; (b) genomic distribution of CAGE tags of endometrial stromal cells obtained from commercial
and in-house protocols.

3.2. Genomic Distribution of CAGE-Defined Transcription Start Sites (CTSS)

To investigate the genomic distribution of CAGE tags, CTSS were annotated to the
human hg38 reference genome https://ftp.ensembl.org/pub/release-100/fasta/homo_
sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa (accessed on 25 April 2020).
Distribution of CTSS counts across all the samples and between the two protocols were
found to have similar genomic distribution (Figure 2b). As anticipated, the majority (>80%)
of CTSS were annotated to promoter regions, followed by an average of 10% annotated to
exons, 5% annotated to introns and 2% intergenic.

3.3. Identification of ESC Promoter Elements

TSSs in close proximity give rise to functionally equivalent sets of transcripts and are
the elements of the same promoter/enhancer. As such, to understand the transcriptional
activity of a promoter, CTSS were clustered into tag clusters (TCs). An average of 8313 tag
clusters were identified using the commercial protocol and 7770 tag clusters from the in-
house protocol. To compare genome-wide transcriptional activity across the samples and to
perform expression profiling, tag clusters were aggregated from all the samples into a single
set of non-overlapping consensus clusters. Consensus clusters observed from in-house
and commercial protocols were 6588 and 7136, respectively. These consensus clusters were
annotated to genes. The relationship between consensus cluster tag counts obtained from
different samples in each protocol was assessed using Pearson’s correlation to calculate
correlation coefficients between all pairs of samples. Consensus cluster tag counts from
samples processed using the commercial protocol were highly correlated (r2 ≥ 0.8) with
counts from samples processed using in-house protocol.

Despite the use of two protocols in generating the CAGE data from ESCs, results of
downstream analyses were consistent between both the protocols. Considering the cost
and time, our inhouse protocol generated equivalent results to the commercial protocol but
in a shorter time and for less cost.

3.4. Concordance between Sequencing Technologies

To determine if expression of TSSs, as estimated by the CAGE data, is consistent with
overall gene expression in ESCs, tag counts were correlated for each gene for the single

https://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa
https://ftp.ensembl.org/pub/release-100/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa
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consensus clusters (annotated to genes) with RNA-seq data generated from the same eight
ESC lines. It was observed that consensus cluster counts were significantly (p = 2.2 × 10−16)
positively correlated (cor = 0.334) with RNA-seq data annotated to the same genes.

3.5. Transcriptional and Regulatory Elements Are Supported by ATAC-Seq Data

Tag clusters and enhancers identified from CAGE were overlapped with the chromatin
accessibility data profiled using ATAC-seq. It was observed that almost 90% of the tag
clusters and enhancers fall in open chromatin regions (Table 3).

Table 3. Overlap of CAGE tag clusters with ATAC-seq data of endometrial stromal cells.

Sample_ID Case/Control Number of
Tag Clusters ATAC-Seq Peaks

No. of Tag Clusters
Overlapping with
ATAC-Seq

Sample 1 Case 8343 114583 6688

Sample 2 Control 8337 138093 6933

Sample 3 Control 8327 125615 6869

Sample 4 Case 8346 116957 6860

Sample 5 Case 8319 137215 7005

Sample 6 Case 8346 121518 6913

Sample 7 Control 8389 122149 6834

Sample 8 Control 8403 122214 6802

3.6. Differential Expression of Promoters between Endometriosis Cases and Controls

Given the consistency between the two CAGE protocols, and to maximise read depth
for further analysis, the data from the two methods were combined and re-analysed. An
average of 8351 tag clusters (Table 4) and 7125 consensus clusters were generated from
the merged data and the genomic distribution of CTSS counts was consistent with that
observed for the commercial and in-house data separately. As expected, we observed two
distinct populations of promoters, defined as sharp (interquartile range < 10 bp) and broad
promoters (interquartile range > 10 bp) (Figure 3).

Table 4. Number of CAGE tag clusters identified in each sample after merging commercial and
in-house analysis data.

Sample ID Case/Control Tag Clusters

Sample 1 Case 8343

Sample 2 Control 8337

Sample 3 Control 8327

Sample 4 Case 8346

Sample 5 Case 8319

Sample 6 Case 8346

Sample 7 Control 8389

Sample 8 Control 8403

Differential expression analysis resulted in 210 consensus clusters which were sig-
nificantly differentially expressed between endometriosis cases and controls following
correction for multiple testing (FDR-adjusted p-value < 0.05) (Table 5 and Figure 4a). After
Bonferroni correction for multiple testing (p < 7.01 × 10−6), 53 out of 210 consensus clusters
remained significant (Table 5 and Figure 4a). Eight consensus clusters annotated to the gene
insulin-like growth factor binding protein-5 (IGFBP5) and two annotated to Caldesmon 1
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(CALD1) had significantly lower expression in cases compared to controls. Consensus
clusters associated with genes for oxytocin receptor (OXTR) (Figure 4c) and pregnancy-
specific beta-1-glycoprotein 4 (PSG4) also had lower expression in endometriosis cases in
comparison with controls.
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Table 5. List of 53 consensus promoters differentially expressed in women without endometriosis
and with endometriosis following Bonferroni correction for multiple testing (p < 7.02 × 10−6).

Chr Start End Strand TPM # Annotation Genes Log2FC p-Value FDR *

chr2 216694838 216694915 − 13.00 promoter IGFBP5 3.05 3.00 × 10−16 2.13 × 10−12

chr3 8769610 8769628 − 26.97 promoter OXTR 2.65 2.24 × 10−15 7.93 × 10−12

chr2 216695547 216695559 − 1476.3 promoter IGFBP5 2.59 5.23 × 10−14 1.24 × 10−10
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Table 5. Cont.

Chr Start End Strand TPM # Annotation Genes Log2FC p-Value FDR *

chr5 147906536 147906541 − 10.87 promoter C5orf46 3.62 1.29 × 10−12 2.29 × 10−9

chr14 101964571 101964575 + 44.23 promoter DYNC1H1 1.00 6.75 × 10−12 9.57 × 10−9

chr5 98773661 98773701 + 41.68 promoter RGMB 1.35 1.23 × 10−10 1.45 × 10−7

chr19 43205633 43205648 − 108.38 promoter PSG4 3.74 1.89 × 10−10 1.92 × 10−7

chr4 186726665 186726728 − 28.46 promoter FAT1 1.58 2.54 × 10−10 2.25 × 10−7

chr2 216676450 216676709 − 80.13 exon IGFBP5 2.47 3.49 × 10−10 2.75 × 10−7

chr4 114364911 114364951 − 27.86 unknown 2.37 8.15 × 10−10 5.78 × 10−7

chr2 216674321 216674452 − 20.13 exon IGFBP5 2.76 1.67 × 10−9 1.08 × 10−6

chr1 218345334 218345346 + 76.83 promoter TGFB2 2.44 3.02 × 10−9 1.78 × 10−6

chr7 134711476 134711515 + 34.95 unknown 1.45 3.99 × 10−9 2.17 × 10−6

chr9 78297122 78297161 + 36.46 promoter PSAT1 −1.94 6.68 × 10−9 3.38 × 10−6

chr3 188212669 188212713 + 37.34 promoter LPP 1.858 1.19 × 10−8 5.62 × 10−6

chr7 134646835 134646861 + 29.33 promoter BPGM 0.95 1.91 × 10−8 8.47 × 10−6

chr2 216695059 216695140 − 8.79 promoter IGFBP5 2.65 3.88 × 10−8 1.62 × 10−5

chr4 94451901 94451973 + 109.58 promoter PDLIM5 0.83 5.87 × 10−8 2.31 × 10−5

chr6 26021572 26021654 + 23.35 promoter −1.43 6.45 × 10−8 2.40 × 10−5

chr5 40679914 40679919 + 5.58 promoter PTGER4 −1.22 7.21 × 10−8 2.55 × 10−5

chr16 3065631 3065641 + 6.75 promoter IL32 2.33 9.46 × 10−8 3.19 × 10−5

chr9 72953039 72953073 − 30.88 promoter ALDH1A1 −2.26 2.21 × 10−7 7.13 × 10−5

chr6 131949556 131949569 − 4.73 exon CCN2 1.85 2.71 × 10−7 8.33 × 10−5

chr17 80260832 80260882 + 19.59 promoter AC124319.1 1.02 2.94 × 10−7 8.69 × 10−5

chr12 56315875 56316039 − 86.96 promoter AC073896.1;
CNPY2 -0.44 3.73 × 10−7 0.00010

chr18 45967267 45967330 − 21.44 promoter EPG5 0.838 4.59 × 10−7 0.00012

chr2 216675681 216675683 − 2.52 exon IGFBP5 2.85 4.70 × 10−7 0.00012

chr15 63042680 63042756 + 659.91 promoter TPM1 0.86 4.96 × 10−7 0.00012

chr2 216676128 216676131 − 3.19 exon IGFBP5 3.59 5.28 × 10−7 0.00012

chr7 134867737 134867770 + 7.57 exon CALD1 1.49 6.20 × 10−7 0.00014

chr5 178204530 178204537 + 114.22 promoter HNRNPAB −0.75 7.73 × 10−7 0.00017

chr9 38392671 38392799 + 44.95 promoter ALDH1B1 1.954 9.92 × 10−7 0.00021

chr9 5510498 5510556 + 16.50 promoter PDCD1LG2 1.149 1.25 × 10−6 0.00026

chr3 156674590 156674634 + 27.80 promoter TIPARP 0.93 1.29 × 10−6 0.00026

chr8 23404118 23404156 − 732.82 promoter LOXL2;
ENTPD4 0.823 1.43 × 10−6 0.00028

chr12 29783910 29783922 − 17.55 promoter TMTC1 −1.76 1.55 × 10−6 0.00029

chr8 41309471 41309474 − 3.24 promoter SFRP1 −2.64 1.53 × 10−6 0.00029

chr5 139293674 139293754 + 75.81 promoter MATR3 -0.53 1.61 × 10−6 0.00029

chr5 84384380 84384483 − 19.82 promoter EDIL3 1.62 1.89 × 10−6 0.00034

chr20 50190829 50190835 + 51.41 promoter CEBPB −0.855 2.31 × 10−6 0.00040

chr11 62546749 62546845 − 101.41 promoter AHNAK 1.031 2.43 × 10−6 0.00041

chr7 134928752 134928863 + 21.03 exon CALD1 0.99 2.80 × 10−6 0.00047

chr11 117204261 117204391 + 42.70 exon TAGLN 0.93 2.98 × 10−6 0.00047

chr5 141969105 141969137 + 6.875 promoter RNF14 1.66 2.95 × 10−6 0.00047

chr10 32957884 32957980 − 58.70 promoter ITGB1 1.192 3.16 × 10−6 0.00049
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Table 5. Cont.

Chr Start End Strand TPM # Annotation Genes Log2FC p-Value FDR *

chr20 63696646 63696657 + 16.99 promoter
RTEL1-
TNFRSF6B;
TNFRSF6B

1.405 3.96 × 10−6 0.00060

chr1 109687817 109687847 + 4.17 promoter GSTM2;
GSTM1 5.476 4.47 × 10−6 0.00067

chr16 71358723 71358731 + 93.20 promoter CALB2 2.51 4.96 × 10−6 0.00073

chr2 30231709 30231716 + 7.77 promoter LBH 1.24 5.44 × 10−6 0.00078

chr2 216695357 216695370 − 52.35 promoter IGFBP5 2.43 5.64 × 10−6 0.00079

chr2 216372053 216372078 − 6.62 promoter MARCHF4 1.08 5.83 × 10−6 0.00080

chr1 78004920 78004954 + 30.40 promoter DNAJB4;
GIPC2 1.31 5.90 × 10−6 0.00080

chr9 116153791 116153813 + 44.29214 promoter PAPPA 1.59 6.49 × 10−6 0.00086

# TPM—tags per million; * FDR—false discovery rate.
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Figure 4. (a) Volcano plot for differential expression analysis of consensus clusters/promoters (from
merged) between endometriosis controls and cases; (b) pathway analysis for 210 FDR significant
consensus clusters; (c) top 14 differentially expressed consensus clusters in cases and controls obtained
from the merged data.
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To gain further understanding into the biological mechanisms underlying the con-
sensus clusters, pathway analysis was performed using the 210 significantly differentially
expressed consensus clusters using gene ontology databases (Figure 4b). This revealed sig-
nificantly enriched processes involved in focal adhesion (p = 3.8 × 10−7) and cell substrate
adhesion (p = 4.22 × 10−7).

Annotations of consensus clusters to the genes IGFBP5, CALD1 and OXTR, and their
overlap with open chromatin and ensemble regulatory regions, are shown in Figure 5.
The majority of clusters annotated to IGFBP5 were located in the 3′ and 5′ UTR regions
overlapping regions of open chromatin and predicted promoter and enhancer regions
(Figure 5a). IGFBP5 clusters differentially expressed between cases and controls were
located in promoters and enhancers. Clusters annotated to the CALD1 gene were observed
in the 5′ UTR, promoter and open chromatin regions near exonic regions. The differentially
expressed clusters between cases and controls were found to overlap with enhancers
and promoters. Only one cluster was discovered to be differently expressed between
cases and controls in the 5′ UTR region of the OXTR gene, which overlapped with the
promoter region.

3.7. Predicted Enhancers and Differential Expression Analysis between Endometriosis Cases
and Controls

Using the CAGEfightR package, 1561 enhancers were identified. Of the 1561 predicted
enhancers, 1081 and 480 enhancers were annotated to intron and intergenic regions, re-
spectively. Following interaction analyses, 1176 predicted enhancer–TSS interactions were
found where expression of a TSS and nearby enhancer was significantly correlated; how-
ever, none of the 1176 interactions remained significant following correction for multiple
testing (FDR < 0.05).

Differential expression analysis resulted in two enhancers which were significantly
differentially expressed between endometriosis cases and controls following correction for
multiple testing (FDR adjusted p-value < 0.05) located in the intergenic region nearby to
the genes LINC02547 and HTR1D.

3.8. ESC-Specific Promoters and Enhancers

To determine if consensus clusters identified in ESC were consistent with previously
reported TSSs and enhancers, consensus clusters identified in this study were compared
with human TSS data from FANTOM5. The FANTOM5 dataset consisted of 1,048,125 TSSs
from 573 tissues and cell types. It was observed that 96.5% (6880) of the CAGE consensus
clusters overlapped with the FANTOM5 TSSs. The remaining 244 consensus clusters that
did not overlap with the FANTOM5 data were annotated to 194 genes, some of which
were found to have multiple promoters; for example, there were eight novel promoters
annotated to COL4A2, six to MALAT1, five to MYH9 and two to IGFBP5 genes. Of the
244 consensus clusters, 31 were found to be annotated to unknown promoters. Pathway
analysis for the 194 genes revealed significantly enriched processes involved in focal
adhesion (p = 1.34 × 10−27) and cell substrate adhesion (p = 1.34 × 10−27).

Enhancers identified in the ESC were compared with previously reported enhancers
from the FANTOM5 to determine if results were consistent. The FANTOM5 dataset
consisted of 63,285 enhancers. It was found that 60% of the ESC enhancers overlapped with
FANTOM5 enhancers.

3.9. Comparison of ESC CAGE Data with ENSEMBL TSS Annotation

CAGE-detected consensus clusters were evaluated against ENSEMBL TSS annotations
for the human genome (ENSEMBL annotation version hg38). Out of 7125 consensus clusters
that were within the regions, only 2948 matched perfectly with the ENSEMBL TSS annotations.
After extending the regions by 100 bp either side, an average of 4293 tags overlapped.



Cells 2023, 12, 1736 14 of 22
Cells 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

 

 
Figure 5. Maps of the chromosomal positions and gene context with consensus CAGE clusters an-
notated to the genes IGFBP5 (a), CALD1 (b) and OXTR (c), highlighting the overlap of cage clusters, 
open chromatin and Ensembl regulatory features. CAGE clusters are denoted by peaks on the CAGE 
clusters track. CAGE clusters in green were significantly differentially expressed following multiple 
testing correction (FDR p < 0.05) between endometriosis cases and controls, while clusters in purple 

Figure 5. Maps of the chromosomal positions and gene context with consensus CAGE clusters
annotated to the genes IGFBP5 (a), CALD1 (b) and OXTR (c), highlighting the overlap of cage clusters,
open chromatin and Ensembl regulatory features. CAGE clusters are denoted by peaks on the
CAGE clusters track. CAGE clusters in green were significantly differentially expressed following
multiple testing correction (FDR p < 0.05) between endometriosis cases and controls, while clusters
in purple were not annotated in FANTOM5. ATAC-seq signals are displayed as red peaks, and the
corresponding narrow peak call is indicated by the red bars underneath the peaks. In the Ensembl
regulatory features track, the following features are depicted as rectangular blocks with promoters
(green), enhancers (brown), CTCF binding sites (blue) and open chromatin (pink). Where multiple
features are clustered and would only be distinguished by enlarging the scale, these regions are
denoted by dark green rectangular blocks.

3.10. Evidence of Transcriptional Elements in Endometriosis Risk Regions

Consensus clusters and enhancers from endometrial stromal cells were overlapped
with endometriosis risk SNPs. None of the consensus clusters or enhancers mapped to
known GWAS signals. By extending the genomic window around the consensus clus-
ters by 2 kb to account for the promoter region, consensus clusters were found to over-
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lap 11 endometriosis-associated SNPs across 6 genomic regions (Table 6), including gene
regions near FGD6, ARL14EP and CDC42 (Figure 6).
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Figure 6. Maps of the chromosomal positions and gene context with consensus CAGE clusters and
overlap with endometriosis risk SNPs in genomic regions for the CDC42 region (a), FGD6/VEZT
region (b) and ARL14EP region (c). Location of SNPs significantly associated with endometriosis
from GWAS studies are shown on the GWAS SNPs track with the corresponding SNP IDs. The
promoter region of each gene is denoted by the grey-shaded area on the figures and demonstrates the
overlap between CAGE clusters (peaks on the CAGE cluster track), open chromatin (red peaks on the
ATAC-seq track with corresponding narrow peak call shown by the dark red bar underneath) and
Ensembl promoter features shown in green on the Ensembl regulatory features track.
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Table 6. Overlap of endometriosis GWAS SNPs within 2 kb genomic window from the identified
CAGE tag clusters.

Chr BP SNP p-Value Allele Gene Region

chr1 22051787 rs725158 4.88 × 10−16 a CDC42

chr1 22052387 rs3754496 4.99 × 10−16 a CDC42

chr2 215433073 rs1250244 8.93 × 10−8 c FN1

chr7 137345599 rs161335 4.67 × 10−6 t next to PTN

chr11 30322210 rs3858429 5.45 × 10−8 t XR_931152.2

chr11 30323044 rs4071558 5.62 × 10−8 t near ARL14EP

chr11 30323178 rs4071559 5.60 × 10−8 t ARL14EP

chr12 95216444 rs7310833 8.07 × 10−9 a FGD6

chr12 95217365 rs6538617 3.60 × 10−6 t FGD6

chr12 95217409 rs6538618 6.68 × 10−9 t FGD6

chr17 44898335 rs35653192 9.15 × 10−6 a EFTUD2

4. Discussion

Gene transcription is controlled by functional interactions between promoters and en-
hancers [31]. Identifying tissue-specific molecular signatures of active regulatory elements
is critical to understanding gene regulatory mechanisms. A comprehensive understanding
of factors affecting the regulation of transcription in the endometrium and endometrial
cell types is important for the accurate analysis and interpretation of differential gene
expression data from endometrium across biological and disease contexts because the
endometrium is the likely source of cells initiating endometriotic lesions. In this study, for
the first time, CAGE data were generated from endometrial stromal cells of endometrio-
sis patients and controls to map genomic regulatory regions, including promoters and
enhancers in endometrial stromal cells and the location of endometriosis risk loci within
genomic regulatory regions.

Profiling TSSs using CAGE in eight endometrial stromal cells identified a consensus
set of ~7000 reproducible TCs (or promoters) and 1500 enhancers, consistent with numbers
of previously identified TCs from human pancreatic islets [32]. ESC TCs were enriched
to occur in stromal cell promoter states and ATAC-seq peaks, which reflects the expected
chromatin landscape at regions where transcription initiation occurs. Theoretically, it
is understood that gene expression data obtained from different technologies should be
consistent if they measure the same outcomes. CAGE-profiled gene expression measured in
this study was comparable with the RNA-seq data from the same samples, as evidenced by
a significant positive correlation. However, as expected, the genes with low expression were
poorly quantified with CAGE profiling, and this probably reflects the modest sequencing
depth in these samples [33]. Using CAGE, the FANTOM consortium has mapped TCs across
multiple tissue and cell types from mice and humans [11]. Comparison of endometrial
stromal cell TCs with those identified from FANTOM5 data showed a high degree of
concordance and revealed that 6.3% of TCs were potentially stromal-cell-specific.

Despite the small sample size, there was evidence of endometriosis case–control dif-
ferences at 210 consensus clusters. Of the 210 consensus clusters showing differential
expression, 53 promoters passed Bonferroni correction, including genes (IGFBP5, OXTR
CALD1) previously associated with endometriosis [15,34,35]. Of particular interest is the
differential expression of several TCs for IGFBP5. IGFBP5 is one of a family of binding
proteins involved in the regulation of insulin-like growth factor (IGF) signalling. Of the
15 consensus TCs observed for this gene, 13 TCs showed FDR-significant differential expres-
sion between endometriosis cases and controls. It was observed that 5 out of 284 TCs which
were not annotated to FANTOM5 data belonged to IGFBP5. IGFBP5 showed consistently
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low expression in endometrial stromal cells obtained from endometriosis patients. IGFBP5
is selectively expressed in the proliferative phase of human endometrium, indicating that
IGFBP5 may play a role in promoting endometrial cell proliferation [36]. Previous studies
suggest that IGFBP5 is influenced by oestrogen and is consistently overexpressed in en-
dometriotic tissue [37]. Differential expression of IGFBP5 in bulk endometrial tissue was
not observed [3,4]. However, a recent study [38] found that IGFBP5 was significantly down-
regulated in a sub-population of stromal fibroblasts that was associated with endometriosis
cases. Discrepancies in the level of expression of IGFBP5 between eutopic and ectopic
endometrial tissue and in endometrial cell types is consistent with reports that IGFBP5 is
expressed in a wide range of cell types but exhibits a broad range of biological functions
depending on the context [38]. Studies have shown that IGFBP5 can both positively and
negatively regulate IGF signalling in different cell types and tissues and similarly it has
been shown to both inhibit and promote cell survival, proliferation and migration [38]. The
potential for dysregulation of IGFBP5 to influence cell survival and proliferation highlight
this gene as a good candidate for endometriosis.

Twelve consensus clusters were identified for CALD1 in endometrial stromal cells, six
consensus clusters showed significantly low expression in women with endometriosis com-
pared to women without endometriosis. The CALD1 gene encodes the protein caldesmon
found in the cytoskeleton and plays an important role in smooth muscle contraction and
relaxation, as well as cellular functions, such as proliferation, adhesion and cell motil-
ity [39,40]. CALD1 isoforms have also been associated with tumour malignancy in several
cancers [41–44]. Previous studies have shown increased expression of the CALD1 gene in
endometriotic tissue obtained from women with endometriosis; however, they also report a
significantly lower expression of the caldesmon protein in eutopic endometrium of women
with endometriosis, which is consistent with the lower levels of expression observed in
this study [40,45,46]. It has been hypothesised that low levels of caldesmon protein in
eutopic endometrium may increase the motility and invasiveness of the endometrium
via the inability of the protein to bind to actin and inhibit the activity of actomyosin AT-
Pase [40]. Alternatively, caldesmon activity is also negatively regulated by calmodulin
(CALM2), which has increased expression in ectopic lesions alongside CALD1. Increased
expression of CALM2 may also prevent caldesmon from binding to actin, allowing lesions
to have a greater invasive potential [40]. The potential role of CALD1 in endometriosis
pathogenesis in both the context of eutopic and ectopic endometrial cell types warrants
further functional investigation.

This study also supports an association between the variation in expression of OXTR
and endometriosis. One of the consensus clusters for OXTR was significantly different
between women with and without endometriosis. Oxytocin and its receptor appear to play
an important role in the regulation of contractions in the uterus [47]. OXTR is expressed in
the smooth muscle cells and epithelial cells in the uterus and endometriotic lesions [48]. We
show that OXTR is also expressed in stromal cells. Studies have shown variable expression
of OXTR across the menstrual cycle [3,35,49] and in response to endometrial pathologies,
including endometriosis, adenomyosis and recurrent implantation failure [35,50,51].

CAGE identified 1561 elements showing enhancer activity located in intron and
intergenic regions. Transcribed enhancers were identified across a wide variety of human
cells and tissues from the analysis of the FANTOM5 dataset [21]. In this study, 60% of
the identified enhancers overlapped with the FANTOM5-identified enhancers. Potential
tissue/cell-type-specific enhancers identified in this study may provide valuable insights
into regulatory elements that play a distinct role in endometrial structure, function and
disease. Ninety-three percent of the CAGE-defined enhancers were enriched in the open
chromatin regions, providing further evidence for the presence of potential cell-type-
specific enhancers.

Endometriosis is driven by both genetic and environmental factors. A significant
breakthrough in genetic research on endometriosis came through GWAS, where 27 genomic
risk regions have been identified [6]. However, many implicated variants are classified as
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non-coding and their significance can be realized only when the associated DNA sequence
variants in the tissues relevant to endometriosis are determined. There was no evidence
that risk variants associated with endometriosis risk were located within tag clusters or
enhancers in endometrial stromal cells; however, there is evidence that functional sites
regulating the activity of promoters are concentrated within a few thousand bases of the
TSS [52]. Analysis of SNPs with regulatory effects on the expression of neighbouring genes
shows that most variants with a significant effect are located within 2 kb of a TSS [52].
Considering the length of these regulatory regions, 11 GWAS SNPs were found to overlap
within the 2 kb genomic window of the identified consensus clusters (Table 5). A few of the
important gene regions identified here were near FGD6, ARL14EP and CDC42. In relation
to endometriosis, several studies have reported association of endometriosis risk with
increased expression of VEZT and FGD6 [3,4]. Both VEZT and FGD6 play an important role
in plasma membrane, cell adhesion and cytoskeletal remodelling, which are important in
lesion formation [53,54]. A recent study suggests the evidence of bidirectional promoters for
VEZT and FGD6 [4]. The RNA-seq data revealed that both FGD6 and VEZT were expressed
in endometrial stromal cells, although VEZT was expressed at a higher level than FGD6.
From the CAGE data, consensus clusters were only detected for VEZT in this investigation.
The absence of FGD6 expression may be attributed to insufficient sequencing depth.

Active TSSs in ESCs in the FSHB endometriosis risk locus were also identified. The
region upstream of the promoter of FSHB (follicle-stimulating hormone subunit B), regu-
lating FSH (follicle-stimulating hormone) concentrations, has been associated with risk of
endometriosis and several other gynaecological traits and diseases [55]. ARL14EP is located
on the same chromosomal locus as FSHB. ARL14EP is expressed in many tissue types, with
relatively high levels in the ovary, testis and uterus, and plays a role in controlling the export
of major histocompatibility class II molecules along the actin cytoskeleton [56,57]. FSHB is
only expressed in the pituitary gland and is the beta subunit for FSH, a gonadotropin with
key regulatory roles in reproductive function [58].

Endometriosis risk alleles in the chr1 region have been associated with increased
expression of CDC42 [59], and active TSSs in ESCs were also located in the CDC42 en-
dometriosis risk locus. CDC42 is a member of the Rho family of small GTPases and is
thought to regulate a variety of cellular processes, including cell cycle progression, cell po-
larity, cytoskeletal reorganization and transcription [60]. GnRH-activated CDC42 regulates
FSH and LH in response to pulsatile GnRH [61], there is also evidence that CDC42 regulates
ovarian reserve, follicle activation and granulosa cell function [62], suggesting that altered
CDC42 regulation may be implicated in fertility issues associated with endometriosis.

This study has a number of strengths, the most notable being the generation of
the first CAGE dataset generated from ESC, providing cell-type specific data on gene
regulatory mechanisms. The ability to compare this dataset with other OMIC datasets
generated from the same samples (ATAC-seq, RNA-seq, genotypes) and other publicly
available datasets (e.g., FANTOM5) provides additional evidence for the validation of gene
regulatory mechanisms and facilitates the identification of 244 TSSs that are not observed
in the FANTOM5 datasets. These TSSs may be specific to endometrial stromal cells and has
led to the identification of some active TSSs with distinct transcriptional regulation patterns
linked to endometriosis status. Differential regulation of these genes was not previously
detected in bulk endometrial tissue. Further studies of differential regulation of IGFBP5,
CALD1 and OXTR in specific endometrial cell types with disease status will be required to
validate the reported results. The power of this dataset is, however, limited by the small
sample size and limited sequencing depth. Individual results have not been validated
and will need confirmation from alternative methods such as RT-PCR, Western blotting or
immunohistochemistry.

Characterising active TSSs in endometrial stromal cells revealed differences in tran-
scriptional regulation associated with endometriosis that have not been observed in bulk
endometrial tissue. This study highlights the importance of mapping cell-type-specific tran-
scriptional events that may contribute to disease processes and provides a unique resource
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to investigate transcriptional regulation in a cell type important in many reproductive traits
and conditions.
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45. Vouk, K.; Šmuc, T.; Guggenberger, C.; Ribič-Pucelj, M.; Šinkovec, J.; Husen, B.; Thole, H.; Houba, P.; Thaete, C.; Adamski, J.; et al.
Novel estrogen-related genes and potential biomarkers of ovarian endometriosis identified by differential expression analysis.
J. Steroid Biochem. Mol. Biol. 2011, 125, 231–242. [CrossRef]

46. Mettler, L.; Salmassi, A.; Schollmeyer, T.; Schmutzler, A.G.; Püngel, F.; Jonat, W. Comparison of c-DNA microarray analysis
of gene expression between eutopic endometrium and ectopic endometrium (endometriosis). J. Assist. Reprod. Genet. 2007,
24, 249–258. [CrossRef] [PubMed]

47. Shojo, H.; Kaneko, Y. Characterization and Expression of Oxytocin and the Oxytocin Receptor. Mol. Genet. Metab. 2000,
71, 552–558. [CrossRef]

48. Mechsner, S.; Bartley, J.; Loddenkemper, C.; Salomon, D.S.; Starzinski-Powitz, A.; Ebert, A.D. Oxytocin receptor expression
in smooth muscle cells of peritoneal endometriotic lesions and ovarian endometriotic cysts. Fertil. Steril. 2005, 83 (Suppl. 4),
1220–1231. [CrossRef] [PubMed]

49. Fuchs, A.-R.; Fuchs, F.; Soloff, M.S. Oxytocin Receptors in Nonpregnant Human Uterus. J. Clin. Endocrinol. Metab. 1985, 60, 37–41.
[CrossRef]

50. Guo, S.-W.; Mao, X.; Ma, Q.; Liu, X. Dysmenorrhea and its severity are associated with increased uterine contractility and
overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil. Steril. 2013, 99, 231–240. [CrossRef]
[PubMed]

51. Liu, C.; Li, Y.; Li, L.; Shui, S.; Yang, L.; Sui, C.; Zhang, H. Aberrant expression of oxytocin receptor in endometrium and decidua
in women who have experienced recurrent implantation failure. F&S Sci. 2020, 1, 183–187. [CrossRef]

52. Stranger, E.B.; Nica, A.C.; Forrest, M.S.; Dimas, A.; Bird, C.P.; Beazley, C.; Ingle, E.C.; Dunning, M.; Flicek, P.; Koller, D.; et al.
Population genomics of human gene expression. Nat. Genet. 2007, 39, 1217–1224. [CrossRef]

53. Guo, X.; Jing, C.; Li, L.; Zhang, L.; Shi, Y.; Wang, J.; Liu, J.; Li, C. Down-regulation of VEZT gene expression in human gastric
cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun. 2011, 404, 622–627. [CrossRef] [PubMed]

54. Holdsworth-Carson, S.J.; Fung, J.N.; Luong, H.T.; Sapkota, Y.; Bowdler, L.M.; Wallace, L.; Teh, W.T.; Powell, J.E.; Girling, J.E.;
Healey, M.; et al. Endometrial vezatin and its association with endometriosis risk. Hum. Reprod. 2016, 31, 999–1013. [CrossRef]
[PubMed]

55. McGrath, I.M.; Mortlock, S.; Montgomery, G.W. Genetic Regulation of Physiological Reproductive Lifespan and Female Fertility.
Int. J. Mol. Sci. 2021, 22, 2556. [CrossRef] [PubMed]

56. GTEx Consortium. Erratum: Genetic effects on gene expression across human tissues. Nature 2018, 553, 530. [CrossRef]
57. Paul, P.; Hoorn, T.V.D.; Jongsma, M.L.; Bakker, M.J.; Hengeveld, R.; Janssen, L.; Cresswell, P.; Egan, D.A.; van Ham, M.;

Brinke, A.T.; et al. A Genome-wide Multidimensional RNAi Screen Reveals Pathways Controlling MHC Class II Antigen
Presentation. Cell 2011, 145, 268–283. [CrossRef]

58. Trevisan, C.M.; de Oliveira, R.; Christofolini, D.M.; Barbosa, C.P.; Bianco, B. Effects of a Polymorphism in the Promoter Region of
the Follicle-Stimulating Hormone Subunit Beta (FSHB) Gene on Female Reproductive Outcomes. Genet. Test. Mol. Biomarkers
2018, 23, 39–44. [CrossRef]

59. Powell, J.E.; Fung, J.N.; Shakhbazov, K.; Sapkota, Y.; Cloonan, N.; Hemani, G.; Hillman, K.M.; Kaufmann, S.; Luong, H.T.;
Bowdler, L.; et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum. Mol.
Genet. 2016, 25, 5046–5058.

https://doi.org/10.1210/jc.2004-1594
https://www.ncbi.nlm.nih.gov/pubmed/16249290
https://doi.org/10.3389/fendo.2020.00100
https://doi.org/10.1023/a:1012480829618
https://doi.org/10.1016/j.fertnstert.2008.12.058
https://doi.org/10.1186/1471-2407-12-601
https://doi.org/10.1002/cncr.28300
https://doi.org/10.18632/oncotarget.5458
https://www.ncbi.nlm.nih.gov/pubmed/26430961
https://doi.org/10.1186/s12876-020-01288-x
https://www.ncbi.nlm.nih.gov/pubmed/32503434
https://doi.org/10.1016/j.jsbmb.2011.03.010
https://doi.org/10.1007/s10815-007-9116-y
https://www.ncbi.nlm.nih.gov/pubmed/17333364
https://doi.org/10.1006/mgme.2000.3094
https://doi.org/10.1016/j.fertnstert.2004.11.038
https://www.ncbi.nlm.nih.gov/pubmed/15831296
https://doi.org/10.1210/jcem-60-1-37
https://doi.org/10.1016/j.fertnstert.2012.08.038
https://www.ncbi.nlm.nih.gov/pubmed/22999795
https://doi.org/10.1016/j.xfss.2020.10.004
https://doi.org/10.1038/ng2142
https://doi.org/10.1016/j.bbrc.2010.12.026
https://www.ncbi.nlm.nih.gov/pubmed/21156161
https://doi.org/10.1093/humrep/dew047
https://www.ncbi.nlm.nih.gov/pubmed/27005890
https://doi.org/10.3390/ijms22052556
https://www.ncbi.nlm.nih.gov/pubmed/33806348
https://doi.org/10.1038/nature25160
https://doi.org/10.1016/j.cell.2011.03.023
https://doi.org/10.1089/gtmb.2018.0182


Cells 2023, 12, 1736 22 of 22

60. Stengel, K.; Zheng, Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell. Signal. 2011, 23, 1415–1423.
[CrossRef]

61. Stamatiades, G.A.; Kaiser, U.B. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol. Cell. Endocrinol.
2018, 463, 131–141. [CrossRef]

62. Mei, Q.; Li, H.; Liu, Y.; Wang, X.; Xiang, W. Advances in the study of CDC42 in the female reproductive system. J. Cell. Mol. Med.
2022, 26, 16–24. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cellsig.2011.04.001
https://doi.org/10.1016/j.mce.2017.10.015
https://doi.org/10.1111/jcmm.17088

	1
	Materials and Methods 
	Samples 
	CAGE Sequencing 
	Identification of CAGE-Defined Transcription Start Sites (CTSS) and Tag Clusters (TC) 
	Correlation of Tag Counts within and between Protocols 
	Merging Data from In-House and Commercial Protocols 
	Promoter Shapes 
	Enhancer Identification 
	Interaction of Transcription Start Sites and Enhancers 
	Differential Promoter and Enhancer Expression 
	RNA Extraction and Sequencing 
	Correlation of CAGE-Seq Data with RNA-Seq Data 
	ATAC-Seq Using the Omni-ATAC Protocol from Actively Growing Endometrial Stromal Cells 
	Overlap of ESC CAGE Tag Clusters with ESC ATAC-Seq Peaks 
	Overlap of ESC Consensus Clusters with FANTOM5 and ENSEMBL Databases 
	Overlap of ESC Consensus Clusters with Endometriosis GWAS Signals 
	Pathway Analysis 

	Results 
	Comparing Quality of the Commercial and In-House CAGE Sequencing Protocols 
	Genomic Distribution of CAGE-Defined Transcription Start Sites (CTSS) 
	Identification of ESC Promoter Elements 
	Concordance between Sequencing Technologies 
	Transcriptional and Regulatory Elements Are Supported by ATAC-Seq Data 
	Differential Expression of Promoters between Endometriosis Cases and Controls 
	Predicted Enhancers and Differential Expression Analysis between Endometriosis Cases and Controls 
	ESC-Specific Promoters and Enhancers 
	Comparison of ESC CAGE Data with ENSEMBL TSS Annotation 
	Evidence of Transcriptional Elements in Endometriosis Risk Regions 

	Discussion 
	References

