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Abstract

NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex

development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.

Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a

susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high

in the general population, and the functional testing of the p.Gly146Ala variant revealed

inconclusive results, the disease-causing effect of this variant has been questioned. How-

ever, a role as a disease modifier is still possible given that oligogenic inheritance has been

described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation

sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to

search for other DSD-causing variants and clarify the function of this variant for the pheno-

type of the carriers. Panel and whole-exome sequencing was performed, and data were

analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes.
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The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous

genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identi-

fied either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially dele-

terious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7).

Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor

at least one other deleterious gene variant which can explain the DSD phenotype. This find-

ing confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogene-

sis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/

SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their

DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic

diagnosis.

Introduction

Typical sex development depends on a tightly controlled network of genes and pathways [1–

3]. Any perturbation in this very complex biological event, which involves genetic and hor-

monal processes, may result in atypical sex development and leads to a broad range of differ-

ences of sex development (DSD) in humans, also known as variations of sex characteristics

(VSC) [4]. The NR5A1 gene, which encodes the steroidogenic factor 1 (SF-1), regulates mul-

tiple genes implicated in adrenal development, gonadal determination and differentiation,

steroidogenesis, and reproduction [5]. Since the identification of the first NR5A1/SF-1 varia-

tion in a 46,XY patient with primary adrenal failure and complete gonadal dysgenesis [6],

the gonadal and reproductive phenotype associated with NR5A1/SF-1 variants has broad-

ened including 46,XY and 46,XX cases with sex reversal to minor anomalies such as hypo-

spadias or even healthy carriers, whereas adrenal failure has only been found in very rare

cases [7,8].

Currently, 291 different NR5A1/SF-1 variants are reported in the Human Gene Mutation

Database (HGMD, October 2022). Variants include missense/nonsense, indels, small inser-

tions/deletions, complete gene deletions or splice-site variants that are scattered throughout

the whole gene without obvious hot spots. According to ACMG (American College of Medical

Genetics and Genomics) classification [9], described variants may qualify as (likely) patho-

genic or (likely) benign, and several are variants of unknown significance (VUS).

The nonsynonymous NR5A1/SF-1 c.437G>C/p.Gly146Ala (rs1110061) variant has been

first described in a group of Japanese patients presenting with a series of adrenal diseases such

as Cushing’s syndrome or non-functioning adrenocortical adenoma [10]. In this context,

WuQiang et al. reported that the p.Gly146Ala variant slightly impairs the transactivation abil-

ity of adrenal and ovary specific gene promoters but does not affect cofactor interaction and

cellular localization [10]. Later, it has been proposed to act as a susceptibility factor for cryptor-

chidism [11], isolated micropenis [12,13], spermatogenic failure [14,15], primary ovarian

insufficiency (POI) [16] and type 2 diabetes [17]. The p.Gly146Ala variant is common among

individuals with a 46,XY DSD with a prevalence varying between 6.8 and 31% [18,19]. How-

ever, the minor allele frequency (MAF) (C allele) is also high in the overall control population

(23.5%, gnomAD v3.1.2). Specifically, its MAF is increased approximately by 1.3-3-fold in the

East Asian and the African control populations, whereas it is only present in 1% of the Euro-

pean control population (gnomAD v3.1.2). Moreover, in vitro studies of transcriptional activ-

ity of the NR5A1/SF-1 p.Gly146Ala variant on several target promoters in various cell models
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found unaltered wild-type functionality [18,20]. In fact, some patients who carry severe, patho-

genic NR5A1/SF-1 variants in compound heterozygous state with the p.Gly146Ala variant, do

not phenotypically differ from individuals carrying the severe variant only [8,19–25]. The DSD

causing effect of the NR5A1/SF-1 p.Gly146Ala variant is therefore in doubt. However, given

that oligogenic inheritance has been suggested for explaining the broad phenotype observed in

individuals and families with NR5A1/SF-1 gene variants [26–32], the p.Gly146Ala variant

might play a role as co-regulator or disease modifier of sexual development.

The aim of this study was therefore, to elucidate the role of the NR5A1/SF-1 p.Gly146Ala

variant on sexual development. We studied 13 DSD patients carrying this variant by next gen-

eration sequencing (NGS). Specifically, we searched for other DSD-causing variants and their

pathogenicity in order to assess the effect of the NR5A1/SF-1 p.Gly146Ala variant on the phe-

notype of its carriers.

Patients and methods

Patients and ethical approval

We recruited 13 pediatric DSD individuals carrying the NR5A1/SF-1 p.Gly146Ala variant

from a larger cohort of 124 DSD patients (98 patients with a 46,XY karyotype, 24 with 46,XX,

and 2 patients with a 45X/46,XY karyotype) collected at the Biocruces Bizkaia Health Research

Institute (Barakaldo, Spain). Clinical data were provided by the caring clinicians (Table 1 and

S2 Table). The study was approved by the ethics committee for clinical research of Euskadi

(CEIC-E), Spain. Written informed consent was provided by the parents of the studied

children.

Nine 46,XY DSD and four 46,XX DSD patients carrying the p.Gly146Ala variant in the

NR5A1/SF-1 gene were analyzed using whole exome sequencing (WES) or a targeted gene

panel comprised of 48 genes associated with sex determination, sex differentiation and hypo-

gonadism (S1 Table).

Genetic analysis

Genomic DNA from patients was extracted from peripheral blood leukocytes using the Mag-

Purix 12S system (Zinexts Life Science Corp.). DNA purity and concentration were deter-

mined using a Qubit 2.0 fluorometer (Thermo Fisher Scientific). Blood or DNA of family

members of any index cases was not available for testing.

Initial characterization for theNR5A1/SF-1 p.Gly146Ala variant was done by a DSD specific

panel. Additional NGS was performed by WES (Fig 1A). For WES, libraries were prepared

using the Illumina DNA/RNA Prep Tagmentation PCR reagents (Illumina) and Illumina

Exome Panel (CEX) according to the manufacturer’s instructions. The resulting libraries were

subjected to paired-end sequencing on a NovaSeq 6000 System (Illumina). Raw data were then

converted to FastQ files for computational analysis, which included read alignment to the

human genome reference sequence (GRCh38), duplicate marking, base quality score recalibra-

tion, indel realignment, and variant calling with an in-house bioinformatics pipeline using

BWA-MEM [34] and GATK [35] software. Variants were annotated with ANNOVAR [36]

and filtration process of the exonic variants was performed using R software (R 4.2.0). Variant

filtration was performed following specific steps as given in Fig 1B.

These steps included the filtration of WES data by a DSD- and NR5A1-related gene list.

These disease-tailored lists were updated from previously reported work (DSD-gene list,

N = 584; NR5A1-related gene list, N = 628) [26] (Fig 1B, step a). Then, we kept the resulting

variants with all type of predicted consequences (e.g. nonsynonymous, frameshift deletion,

stop/gain), but synonymous, and with a number of reads above or equal to 20 (Fig 1B steps b
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and c) [37]. Next, we filtered to include variants with a MAF�0.01 according to gnomAD

(v3.1.2) and depending on the origin and karyotype of the patient (Fig 1B, step d). In step e, we

confirmed the correct annotation, location of variants and zygosity by checking their align-

ment data in IGV (Integrative Genomics Viewer). Finally, we predicted the possible effect of

Table 1. Phenotype of the DSD patients harboring the NR5A1/SF-1 p.Gly146Ala variant. Further details including biochemical data are given in S2 Table.

Patient/

Origina
Karyotype/Sex

assignmentb
Zygosityc Age at

diagnosis

External

genital

phenotyped

Internal phenotype Gonadal/reproductive

function

Other organ

anomalies

11 46,XY/M Het 1y Mild Laparoscopy: absence of female organs

and gonadal tissue. Histology:

undifferentiated tissue.

1y, abnormal (no T

response to hCG)

No

22 46,XX/M Het 6y Opposite sex US: no Müllerian ducts. Histology:

infantile ovary with follicular cysts,

fallopian tube, atrophic uterus,

mesonefric remnant.

hCG test with

hyperandrogenic reaction

for typical male

No

32 46,XY/M Het 9y Severe US: inguinal testes (right 0.5cc; left 0.6cc). 9y, normal hCG test No

42 46,XX/M Hom 6y Opposite sex Laparoscopy: bilateral gonads in inguinal

canal and iliac area, atrophic uterus. No

Müllerian ducts. Histology: bilateral

ovotestes.

hCG test with

hyperandrogenic reaction

for typical male

No

52 46,XX/M Hom 3y Opposite sex US: inguinal bilateral gonads (1ml), no

Müllerian ducts. Histology: ovarian tissue

(left), testicular and ovarian tissue (right).

hCG test with

hyperandrogenic reaction

for typical male

No

62 46,XY/M Het 2y Mild MRI: absence of uterus and ovaries. 2y, normal baseline and

hCG test

Anal agenesis, iron

deficiency

72 46,XY/M Hom 6y Severe US: scrotal right testis (15x9mm),

inguinal left testis (13x6mm).

6y, normal baseline and

hCG test

No

82 46,XY/F Het 7y Opposite sex US: vaginal opening, no uterus. Histology

of the gonads: testicular tissue at age 7

and 24.

35y, abnormal (high

gonadotropins and low T)

No

92 46,XX/M Hom 3y Opposite sex US: prepubertal uterus. Histology:

ovarian tissue (left), testicular and ovarian

tissue (right).

Prepubertal No

101 46,XY/M Het 11mo Mild US: normal size intrascrotal testes. 14y, normal (normal T

and gonadotropins)

No

113 46,XY/M Het At birth Severe ND ND Left renal agenesis,

lipomeningocele

121 46,XY/F Het 15y Opposite sex Infantile uterus and ovaries by

ultrasound.

ND Abdominal obesity

131 46,XY/M Het 7d Severe US: normal uterus, absence of gonads. Abnormal (high

gonadotropins and

normal T)

No

d, days; F, female; hCG, human chorionic gonadotropin; M, male; mo, months; MRI, magnetic resonance imaging; ND, not determined; T, testosterone; US, ultrasound;

y, years.
aOrigin of the patients:
1Spanish;
2African;
3Asian.
bNone of the patients was sex re-assigned.
cZygosity of the NR5A1/SF-1 p.Gly146Ala variant identified by targeted gene panel.
dSeverity of the DSD was based on karyotype and the clinical assessment of the external genitalia at birth or before genital surgery, and grouped in four categories: 1)

typical for karyotypic sex, 2) mild DSD (isolated abnormal meatal opening, cryptorchidism or micropenis) 3) severe DSD (external genital features different from the

typical external genitalia like XY karyotype with perineal meatal opening, micropenis and labioscrotal gonads), and 4) opposite sex (complete sex reversed external

genitalia in relation to karyotype) [33].

https://doi.org/10.1371/journal.pone.0287515.t001
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Fig 1. Algorithm of genetic workup. A. Mode of genetic analysis, e.g. panel and whole exome sequencing (WES). Two patients were identified

with pathogenic variants in LHCGR and AR by panel analysis and were not further analyzed by whole-exome sequencing (WES). B. Filtering

algorithm of genetic data. Steps used for variant filtering after WES of eleven DSD patients harboring the NR5A1/SF-1 p.Gly146Ala variant are

depicted (letters a to f). Final candidates and their possible impact are listed and characterized in Table 2 and S3 Table.

https://doi.org/10.1371/journal.pone.0287515.g001
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the identified variant (see below) (Fig 1B, step f). Variants were confirmed by visual examina-

tion using the IGV (Integrative Genomics Viewer) browser [38,39].

For the targeted DSD-gene panel analysis, preparation of the libraries and sequencing have

been described elsewhere [27]. For variant filtration after panel analysis, same steps b to f were

followed (Fig 1B).

In silico analyses and variant classification

We predicted the possible effect of identified nonsynonymous genetic variants on the structure

and function of the protein using Polyphen-2, (Polymorphism Phenotyping v2), Panther (Pro-

tein ANalysis THrough Evolutionary Relationships), SNPs and GO, CADD (Combined Anno-

tation Dependent Depletion) and the calibrated scores given by VarSome [40] for Revel (Rare

Exome Variant Ensemble Learner), SIFT (Scale-invariant feature transform), Provean (Protein

Variation Effect Analyzer), Mutation taster and M-CAP (Mendelian Clinically Applicable

Pathogenicity) (see S3 Table). Variants were classified for pathogenicity according to the stan-

dards and guidelines of the ACMG [9] using VarSome. We considered variants as candidates

when classified as pathogenic, likely pathogenic or as VUS by the ACMG criteria or when clas-

sified as pathogenic or VUS by at least 7 out of 9 prediction programs. Previously reported

clinical associations were searched in ClinVar and HGMD databases. In addition, the litera-

ture (e.g. PubMed) was searched for evidence of relationship with DSD, sex development and

the specific clinical phenotype of each study subject. We explored the possible disease-causing

variants’ combinations using ORVAL (Oligogenic Resource for Variant AnaLysis) [41].

Results and discussion

In a random cohort of 124 subjects with a DSD, we identified the NR5A1/SF-1 p.Gly146Ala

variant in 13 individuals (10.5%). The prevalence in 46,XY DSD subjects was 9.2% (9/98), and

was in line with previously reported prevalence in this population [18,19]. Prevalence was

higher in 46,XX DSD (4/24, 16.7%). Of the 13 studied subjects, four were homozygous and

nine heterozygous for the NR5A1/SF-1 p.Gly146Ala variant. The phenotype of the individuals

ranged from typical for karyotype to mild and severe atypical in 46,XY as well as opposite sex

in both 46,XY and 46,XX (Fig 2). Patients were of African (7/13), Spanish (4/13) and Asian (2/

13) origin. A summary of the clinical and biochemical characteristics of the patients is given in

Table 1 and S2 Table. An overview of the identified genes of our study subjects that likely play

a role for the DSD phenotype in a concerted way is given in Fig 3. In this Fig 3 the identified

variants are shown within the network of established genes of sex determination and

differentiation.

NGS performed in DSD individuals harboring the p.Gly146Ala variant in NR5A1/SF-1

revealed several deleterious/candidate variants that potentially explain the phenotype of the

patients. Overall, we identified either a known pathogenic DSD variant or one to four poten-

tially deleterious/candidate variants in 9 out of the 13 DSD individuals analyzed. A detailed

summary of identified variants in other DSD-related genes is shown in Table 2 (further details

in S3 and S4 Tables).

In two patients we detected variants in known DSD-causing genes with our targeted gene

panel, e.g. LHCGR and AR. In 11 patients WES was performed and variants were filtered by

candidate gene lists (Fig 1). Overall, the NGS analysis identified 63 variants categorized as

(likely) pathogenic or VUS in 57 different genes, however further review of evidence of corre-

lation with DSD, sex development and phenotype of each patient with literature reduced this

number to 19 potentially deleterious/candidate variants in 17 genes in nine subjects. In eight

46,XY DSD individuals 1–4 variants were found in a total of 15 genes, while one 46,XX DSD
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person revealed two variants in two different genes (Table 2). All variants, identified either by

gene panel or WES, but one (e.g. LHCGR), were detected in heterozygosis or hemizygosis.

Details of the rejected variants are given in S4 Table.

In patient 1 two frameshift deletions in genes FGFR3 (c.1633_1634del; p.Cys545Hisfs*17)

and INSR (c.660_661del; p.Pro220Hisfs*4) and a stop-gain variant in ADAMTS16
(c.1822_1823del; p.His608*) were found and predicted to be likely pathogenic by the ACMG

criteria. FGFR3 is essential for testicular development in humans [44], while INSR and

ADAMTS16 are needed in murine genitourinary development and testicular differentiation,

respectively [45,46]. Variants in ADAMTS16 have also been reported in heterozygosis in two

46,XY females with complete gonadal dysgenesis and a 46,XY DSD patient with ambiguous

genitalia [47]. Testing for a digenic combination network with ORVAL showed no variant

interaction between ADAMTS16 and FGFR3.

We detected four heterozygous missense variants in four genes in patient 3. These were

GLI2 (c.3528G>T; p.Gln1176His), CDH7 (c.1623C>A; p.His541Gln), MYO7A (c.2882G>A;

p.Gly961Asp) and VDR (c.176C>T; p.Thr59Ile). The variant in GLI2 (c.3528G>T; p.

Gln1176His) was rated as pathogenic by most of the in silico prediction tools and variants in

additional genes were rated as VUS when analyzing according to pathogenicity guidelines.

Variants in GLI2 have been described in syndromic DSD patients together with short stature,

primary hypogonadism, heart and craniofacial anomalies and 46,XY gonadal dysgenesis [48],

as well as in 46,XY non-syndromic DSD manifesting with female external genitalia or with

ambiguous genitalia [26,49,50]. Variants in CHD7 have been previously associated with a

broad range of 46,XY DSD phenotypes, including males with hypospadias or micropenis and

individuals with female external genitalia [30,51].MYO7A is overexpressed in male supporting

Fig 2. External genital phenotype of the 13 DSD patients harboring the NR5A1/SF-1 p.Gly146Ala variant shown with respect to their karyotype.

https://doi.org/10.1371/journal.pone.0287515.g002
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cells during gonadal development [52] and has been shown to be a SRY and SOX9 target gene

[53], but, in DSD individuals it has been identified only in combination with MAMLD1
[50,54]. Finally, VDR plays a dominant role in male fertility as Vdr-/- mice show abnormal

gonads in both sexes and variable reproductive phenotypes such as reduced sperm count [55].

In humans, two polymorphisms in VDR were associated with female idiopathic infertility only

[56]. Fertility of patient 3 has not been assessed yet, and we cannot exclude a role of the VDR
variant in his DSD phenotype. Network analysis by ORVAL predicts a pathogenic gene net-

work between CHD7, MYO7A and GLI2 (S1 Fig).

A heterozygous missense c.182C>A; p.Pro61Gln variant in Neuropilin 1 (NRP1) gene was

found in patient 6. NRP1 interacts with Sema3A which is essential for the development of the

GnRH neuron system [57]. Loss of Sema3a (Semaphorin 3A) signaling in mice results in

reduced gonadal size and recapitulates the features of Kallmann syndrome [57]. In humans,

variants in NRP1 have been identified in a 46,XY DSD subject with female external genitalia

Fig 3. Genetic variants identified in 13 DSD patients harboring the NR5A1/SF-1 p.Gly146Ala variant illustrated with respect to the known pathways

of male and female sex determination and differentiation. The scheme shows an overview of involved genes and their currently assumed relationship to

sexual development. Genes with variants identified by whole exome sequencing in the patients have specific colors. In dark blue: Candidate genes in patient

1; in brown: Candidate genes in patient 3; in green: Candidate genes in patient 6; in yellow: Candidate genes in patient 8; in red: Candidate genes in patient

9; in pink: Candidate genes in patient 10; in light blue: Candidate genes in patient 11; in purple: Candidate genes in patient 12; in orange: Candidate genes in

patient 13; in dark grey: Known genes involved in sexual development. Interrogation mark (?): Function/timing/location is not clear; arrows: Activation;

inhibitors: Inhibition; lines: Interaction/partnership; dashed lines/arrows: Hormone production.

https://doi.org/10.1371/journal.pone.0287515.g003
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Table 2. Additional gene variants identified in the DSD patients harboring the NR5A1/SF-1 p.Gly146Ala variant.

Patient Chromosome

position

Gene (Name) Variant Type dbSNP Zygosity Previously

reporteda
Inheritance

patternb

1 4:1807384 FGFR3 (Fibroblast

Growth Factor Receptor

3)

c.1633_1634del; p.Cys545Hisfs*17 frameshift

deletion

ND het AD/AR

5:5232601 ADAMTS16 (ADAM

Metallopeptidase with

Thrombospondin Type 1

Motif 16)

c.1822_1823del; p.His608* stopgain ND het ND

19:7184641 INSR (Insulin Receptor) c.660_661del; p.Pro220Hisfs*4 frameshift

deletion

ND het AD/AR

3 2:120989442 GLI2 (GLI Family Zinc

Finger 2)

c.3528G>T; p.Gln1176His nonsynonymous

SNV

rs139686081 het AD

8:60743055 CHD7 (Chromodomain

Helicase DNA Binding

Protein 7)

c.1623C>A; p.His541Gln nonsynonymous

SNV

ND het AD

11:77181567 MYO7A (Myosin VIIA) c.2882G>A; p.Gly961Asp nonsynonymous

SNV

rs199575418 het AD/AR

12:47865148 VDR (Vitamin D

Receptor)

c.176C>T; p.Thr59Ile nonsynonymous

SNV

rs145002466 het AR

6 10:33330774 NRP1 (Neuropilin 1) c.182C>A; p.Pro61Gln nonsynonymous

SNV

ND het ND

8 2:48698724 LHCGR (Luteinizing

Hormone/

Choriogonadotropin

Receptor)

c.757T>C; p.Ser253Pro nonsynonymous

SNV

ND hom AD/AR

9 9:114275766 COL27A1 (Collagen Type

XXVII Alpha 1 Chain)

c.3715C>T; p.Arg1239Trp nonsynonymous

SNV

rs143724625 het AR

15:41564270 TYRO3 (TYRO3 Protein

Tyrosine Kinase)

c.666_667insCACTGCCTGCAGCCC
CCTTCAACATCACC; p.

Ala223Hisfs*21

frameshift

insertion

ND het ND

10 16:984721 SOX8

(SRY-Box Transcription

Factor 8)

c.676A>C; p.Thr226Pro nonsynonymous

SNV

ND het ND

11 7:75985941 POR (Cytochrome P450

Oxidoreductase)

c.1679C>T; p.Thr560Met nonsynonymous

SNV

rs574694698 het AR

16:2114399 PKD1 (Polycystin 1,

Transient Receptor

Potential Channel

Interacting)

c.2624C>T; p.Pro875Leu nonsynonymous

SNV

ND het AD

16:30737182 SRCAP (Snf2 Related

CREBBP Activator

Protein)

c.7142G>A; p.Arg2381His nonsynonymous

SNV

rs765139685 het AD

17:72123563 SOX9
(SRY-Box Transcription

Factor 9)

c.710dup; p.Pro238Thrfs*14 frameshift

insertion

ND het Campomelic

dysplasia

[42]

AD

12 X:67721837 AR (Androgen Receptor) c.2323C>T; p.Arg775Cys nonsynonymous

SNV

rs137852562 hemi AIS [43] XLR

(Continued)
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[51] and a 46,XY male presenting with penoscrotal hypospadias, in whom other genetic vari-

ants were identified, among them a variant inMAMLD1, a known DSD-related gene [54].

In 46,XY patient 8 with a phenotype of opposite sex a homozygous, inactivating variant in

LHCGR (c.757T>C; p.Ser253Pro) was found. This variant has been previously reported to

severely reduce the signal transduction activity of the LH receptor and therefore leads to the

complete form of Leydig cell hypoplasia (LCH) as suspected in patient 8 [58].

A missense variant in COL27A1 (c.3715C>T; p.Arg1239Trp) and a frameshift insertion in

TYRO3 (c.666_667insCACTGCCTGCAGCCCCCTTCAACATCACC; p.Ala223HisfsTer21) were

found in patient 9. Both variants were categorized as VUS and were detected in heterozygosis.

In mice, Col27a1 is highly expressed in XY somatic supporter cells compared to XX during the

earliest stages of gonad development [59]. Col27a1 has been identified as a SRY target gene in

the embryonic mouse gonads at E11.5 by ChIP-Chip experiments [53]. Similarly, Tyro3 is

overexpressed in male somatic cells [60], and is regulated by SOX9 [53]. Protein truncating

variants of TYRO3 were found in individuals with idiopathic hypogonadotropic hypogonad-

ism establishing a role of this gene in reproductive development [61]. Taken together, the data

suggest that both COL27A1 and TYRO3 genes might be part of the genetic network underlying

the early stages of mammalian fetal gonadal development. However, additional studies are

needed to verify that these genetic variants are causing the ovotesticular DSD phenotype in

patient 10. Moreover, a gene interaction between COL27A1 and TYRO3 was not predicted by

ORVAL.

In 46,XY patient 10 with a distal hypospadias, one missense variant in the SOX8
(c.676A>C; p.Thr226Pro) gene was detected. It was identified in heterozygosis and was classi-

fied as VUS. SOX8 is involved in early testis determination [62]. SOX8 gene variants are associ-

ated with a range of phenotypes including 46,XY DSD and human reproductive anomalies in

males and females [63]. Single-nucleotide variants (SNV) associated with 46,XY gonadal dys-

genesis are mostly located in the HMG-box of SOX8 [49], while those reported in infertile

patients flank the HMG-box or localize to one of the transactivation domains (TA) [64]. How-

ever, more recently, a missense variant in the TA2 region of SOX8 was identified in a 46,XY

patient with gonadal dysgenesis [49]. The novel c.676A>C; p.Thr226Pro variant is located in

the first TA of the protein. In vitro studies have shown impaired cellular localization in some

mutant proteins located in this functional domain of SOX8. Therefore, this missense variant

likely explains the genital phenotype observed in patient 10. At age 14 years, biochemical

assessment of the HPG axis was normal and pubertal development was ongoing (Tanner 3–4).

Table 2. (Continued)

Patient Chromosome

position

Gene (Name) Variant Type dbSNP Zygosity Previously

reporteda
Inheritance

patternb

13 11:77194460 MYO7A (Myosin VIIA) c.4259G>A; p.Arg1420His nonsynonymous

SNV

rs568337942 het AD/AR

16:984739 SOX8
(SRY-Box Transcription

Factor 8)

c.694A>C; p.Lys232Gln nonsynonymous

SNV

rs1596200787 het ND

AD, autosomal dominant; AIS, androgen insensitivity syndrome; AR, autosomal recessive; Hemi, hemizygous; Het, heterozygous; Hom, homozygous; ND, not

determined; POI, primary ovarian insufficiency; XLR, X-linked recessive.

Variants classified as pathogenic, likely pathogenic or as of unknown significance according to the ACMG (American College of Medical Genetics) are highlighted in

bold.
aPreviously associated disease to the specific variant identified in this work.
bInheritance pattern of each gene according to OMIM (Online Mendelian Inheritance in Man).

https://doi.org/10.1371/journal.pone.0287515.t002
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Four heterozygous VUS or likely pathogenic variants were identified in patient 11 with a

severe 46,XY DSD phenotype. These were POR (c.1679C>T; p.Thr560Met), PKD1
(c.2624C>T; p.Pro875Leu), SRCAP (c.7142G>A; p.Arg2381His) and SOX9 (c.710dup; p.

Pro238Thrfs*14). The involvement of POR and SOX9 in sexual development is well known

and several sequence variants have been described in 46,XY DSD patients [30,53,65]. The

patient showed the missense POR p.Thr560Met variant in compound heterozygosity with the

p.Ala500Val (c.1499C>T) polymorphism. A previous report suggested that the combination

of a pathogenic POR variant and a polymorphism may cause CAH [66] However, to confirm a

disease-causing effect of the POR variants for the DSD phenotype in our patient, functional

studies including the specific variants would be needed. Pkd1 is critical for epididymal epithe-

lium development and for maintaining mice male reproductive tract [67]. PKD1 variants have

not been related to DSD yet, but they cause autosomal dominant polycystic kidney disease

(ADPKD), which involves reproductive tract abnormalities and infertility in males [63].

Therefore, a role of PKD1 variants in DSD seems possible. Likewise, the role of SRCAP in sex

differentiation and development is unknown. However, this is the second 46,XY DSD patient

in whom a gene variant is identified [48]. According to ORVAL analysis, oligogenic pathoge-

nicity is predicted by combination of variants in a gene network including POR, PKD1 and

SRCAP (S1 Fig).

In patient 12, we identified an AR variant (c.2323C>T; p.Arg775Cys) previously reported

in a patient with Complete Androgen Insensitivity Syndrome (CAIS) [43]. Because the patient

presented with a typical CAIS phenotype, it seems plausible that this hemizygous AR variant is

fully responsible for the DSD.

Patient 13, with a severe 46,XY phenotype, harbored two heterozygous missense variants in

MYO7A and SOX8 genes. Both were categorized as VUS by the ACMG. As in patient 10, the

SOX8 variant (c.694A>C; p.Lys232Gln) was also located in the TA1 domain of the protein.

However, the phenotype of patient 13 was more severe, either caused by the SOX8 variant alone

or due to the digenic effect together withMYO7A. Importantly, the combination of variants in

SOX8 andMYO7A is predicted as disease-causing by ORVAL (S1 Fig). The combination of var-

iants inMYO7A and SOX8 in DSD was reported previously [50,54], and suggests that the broad

phenotype observed in DSD individuals might be explained by oligogenic origin [2].

In four patients carrying the heterozygous p.Gly146Ala NR5A1 variant, the WES and spe-

cific data analysis revealed no other candidate genes explaining their DSD phenotype. Of these

patients 2, 4 and 5 had a 46,XX karyotype and an opposite genital phenotype, and were

assigned as males at birth, whereas patient 7 presented with a severe 46,XY DSD. All of them

had no other organ anomalies. Although NGS has facilitated the identification of the underly-

ing genetic defects of DSD, about 50% of individuals with a 46,XY DSD remain without a

molecular diagnosis with currently used methods [30]. We used WES in our study, while other

genetic studies also search for variants in noncoding, regulatory or intronic regions by whole

genome sequencing (WGS). But even when using WGS, a considerable number of patients are

still reportedly unsolved [68]. Thus, other factors such as environmental factors or epigenetic

regulators have been suggested playing a role [68,69]. In addition, oligogenic or even polygenic

inheritance might be considered for explaining the broad phenotypes seen in some individuals

with a DSD [3,26–32,54,70–73]. In early days of genetic workup of DSD, patients were studied

by candidate Sanger sequencing. In 46,XY DSD subjects typical candidates were the AR,

SRD5A2 and NR5A1/SF-1; and once a genetic variant was found, additional genes were not

tested. Thus, some DSD patients that have been tested by the candidate approach may not

have a correct diagnosis and need to be retested by NGS.

Our study suffers from some limitations. The disease-causing effect of identified variants

was assessed with bioinformatics tools and the current knowledge from literature only. Ideally,
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novel genetic variants should be functionally tested for definite proof of their pathogenic effect.

But this is not an easy task when finding multiple candidates, as both cell models as well as ani-

mal models have their limitations. We and others try to overcome this obstacle in the near

future by using patient-derived fibroblasts comprising the original (complex) genetic back-

ground and reprogramming into corresponding gonadal and adrenal cell lines for mechanistic

studies [74]. Additionally, trio exome or parental sequencing would help to assess the mode of

inheritance and the clinical relevance of variants by looking at genotype-phenotype correla-

tions, but unfortunately DNA of relatives is not always available (as in our case).

In conclusion, NGS genetic analysis of DSD individuals carrying the p.Gly146Ala variant of

the NR5A1/SF-1 gene revealed variants in other genes (likely) explaining their phenotype.

These gene variants were either found in established DSD genes, were previously described or

novel, and were (likely) disease-causing either in a monogenic or in a suggested oligogenic

fashion. Although we were not able to find causal genetic variants in four out of 13 DSD indi-

viduals carrying the NR5A1/SF-1 p.Gly146Ala, our study supports the claim that this NR5A1/

SF-1 variant is a benign polymorphism that does not play a role in the pathogenesis of DSD.

Therefore, we strongly recommend reanalyzing DSD patients whose phenotype has been

thought to be explained by this variant in order to find the real underlying genetic cause.

Supporting information

S1 Fig. Potential oligogenic interaction networks of DSD- and NR5A1-related genes identi-

fied in specific DSD individuals harbouring the NR5A1/SF-1 p.Gly146Ala variant. Net-

works were identified for patients 3, 11 and 13 respectively. To search for potential oligogenic

disease networks, the Oligogenic Resource for Variant AnaLysis (ORVAL, https://orval.

ibsquare.be/) was used. Nodes represent genes and edges connect two genes only, if between

them there is at least one candidate disease-causing variant combination predicted by Var-

CoPP. The colour of the edge represents the pathogenicity score for that pair of genes. This

score is represented in a colour range from brown (higher pathogenicity score) to yellow

(lower pathogenicity score).

(DOCX)

S1 Table. Genes included in the customized DSD panel and their suggested role in DSD.

CHH, central causes of hypogonadism; G det, gonadal determination; G diff, gonadal differen-

tiation.

(DOCX)

S2 Table. Complete description of the phenotype and biochemical data of the DSD

patients harbouring the NR5A1/SF-1 p.Gly146Ala variant. ACTH, adrenocorticotropic hor-

mone; AMH, anti-Müllerian hormone; d, days; DHEA-S, dehydroepiandrosterone sulfate;

DHT, dihydrotestosterone; E2, estradiol; FSH, follicle-stimulating hormone; LH, luteinizing

hormone; mo, month; N, normal; ND, not determined; PRL, prolactin; P4, progesterone; Y,

years; Δ4-A, delta 4-androstenedione; 17OHP4, 17-hydroxy-progesterone. (*) Values after

stimulation with hCG or ACTH. Out of range values for karyotypic sex and age are given in

bold.

(DOCX)

S3 Table. Gene variant characterization: Allele frequency and disease prediction by ACMG

classification and by different in silico programs. B, benign; Dam, damaging; DC, disease

causing; Dis, disease; LB, likely benign; LP, likely pathogenic; N, neutral; ND, not determined;

P, polymorphism; Path, pathogenic; Psdam, possibly damaging; Prben, probably benign;

Prdam, probably damaging; VUS, variant of unknown significance. aSpecific allele frequency
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for the origin and karyotype of the patient. bCADD phred score >20 indicates that the variant

is predicted to be the 1% most deleterious substitution that you can do to the human genome.

For each gene, sequence information is based on: ADAMTS16 (NM_139056.4), AR
(NM_000044.3), CHD7 (NM_017780.4), COL27A1 (NM_032888.4), FGFR3 (NM_000142.5),

GLI2 (NM_001374353.1), INSR (NM_000208.4), LHCGR (NM_000233.4), MYO7A
(NM_000260.4), NRP1 (NM_003873.7), PKD1 (NM_001009944.3), POR (NM_001395413.1),

SOX8 (NM_014587.5), SOX9 (NM_000346.4), SRCAP (NM_006662.3), TYRO3
(NM_006293.4) and VDR (NM_000376.3).

(DOCX)

S4 Table. List of rejected variants identified in the DSD patients harbouring the NR5A1/

SF-1 p.Gly146Ala variant. Variants were discarded after filtering due to weak relation to

DSD, zygosity or absence of correspondence to the phenotype. B, benign; Het, heterozygous;

Hom, homozygous; LB, likely benign; LP, likely pathogenic; ND, not determined; P, patho-

genic; G6PDH, glucose-6-phosphate dehydrogenase; VUS, variant of unknown significance.

For each gene, sequence information is based on: ADCY7 (NM_001114.5), AMH
(NM_000479.5), ARVCF (NM_001670.3), ATM (NM_000051.4), ATR (NM_001184.4), BBS5
(NM_152384.3), CDH1 (NM_004360.5), CEBPB (NM_005194.4), COL9A3 (NM_001853.4),

DHCR24 (NM_014762.4), EXO1 (NM_130398.4), FOXO3 (NM_001455.4), G6PD
(NM_001360016.2), GEMIN4 (NM_015721.3), GHR (NM_000163.5), GPR83 (NM_016540.4),

GRIN2C (NM_000835.6), HFE (NM_000410.4), IFFO1 (NM_001193457.2), IL6ST
(NM_002184.4), INPP5F (NM_014937.4), ITIH3 (NM_002217.4), KYAT3
(NM_001008661.3), MKS1 (NM_017777.4), MTRR (NM_002454.3), NBN (NM_002485.5),

NCOA3 (NM_181659.3), NF1 (NM_001042492.3), NOBOX (NM_001080413.3), POLG
(NM_002693.3), POLM (NM_013284.4), PPIL2 (NM_014337.4), ROS1 (NM_001378902.1),

SARDH (NM_001134707.2), STAG3 (NM_001282717.2), THBD (NM_000361.3), UBR2
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in steroidogenic factor 1 (SF1, NR5A1) in 46,XY patients with severe underandrogenization but without

adrenal insufficiency. Hum Mutat. 2008 Jan; 29(1):59–64. https://doi.org/10.1002/humu.20588 PMID:

17694559

22. Hasegawa T, Fukami M, Sato N, Katsumata N, Sasaki G, Fukutani K, et al. Testicular dysgenesis with-

out adrenal insufficiency in a 46,XY patient with a heterozygous inactive mutation of steroidogenic fac-

tor-1. J Clin Endocrinol Metab. 2004 Dec; 89(12):5930–5. https://doi.org/10.1210/jc.2004-0935 PMID:

15579739

23. Bertelloni S, Dati E, Baldinotti F, Toschi B, Marrocco G, Sessa MR, et al. NR5A1 Gene Mutations: Clini-

cal, Endocrine and Genetic Features in Two Girls with 46,XY Disorder of Sex Development. Horm Res

Paediatr. 2014; 81(2):104–8. https://doi.org/10.1159/000354990 PMID: 24434652

24. Woo KH, Cheon B, Kim JH, Cho J, Kim GH, Yoo HW, et al. Novel Heterozygous Mutations of NR5A1

and Their Functional Characteristics in Patients with 46,XY Disorders of Sex Development without

Adrenal Insufficiency. Horm Res Paediatr. 2015; 84(2):116–23. https://doi.org/10.1159/000431324

PMID: 26139438

25. Adamovic T, Chen Y, Thai HTT, Zhang X, Markljung E, Zhao S, et al. The p.G146A and p.P125P poly-

morphisms in the steroidogenic factor-1 (SF-1) gene do not affect the risk for hypospadias in Cauca-

sians. Sex Dev. 2012; 6(6):292–7. https://doi.org/10.1159/000343782 PMID: 23154282

26. Camats N, Fernández-Cancio M, Audı́ L, Schaller A, Flück CE. Broad phenotypes in heterozygous

NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur J Hum Genet.

2018 Sep; 26(9):1329–1338. https://doi.org/10.1038/s41431-018-0202-7 PMID: 29891883

27. de LaPiscina IM, Mahmoud RAA, Sauter KS, Esteva I, Alonso M, Costa I, et al. Variants of STAR, AMH

and ZFPM2/FOG2 may contribute towards the broad phenotype observed in 46,XY DSD patients with

heterozygous variants of NR5A1. Int J Mol Sci. 2020 Nov 13; 21(22):8554. https://doi.org/10.3390/

ijms21228554 PMID: 33202802

28. Mazen I, Abdel-Hamid M, Mekkawy M, Bignon-Topalovic J, Boudjenah R, El Gammal M, et al. Identifi-

cation of NR5A1 mutations and possible digenic inheritance in 46,XY gonadal dysgenesis. Sex Dev.

2016; 10(3):147–51. https://doi.org/10.1159/000445983 PMID: 27169744
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