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Objectives: The objective of this study is the exploration of Artificial Intelligence
and Natural Language Processing techniques to support the automatic
assignment of the four Response Evaluation Criteria in Solid Tumors (RECIST)
scales based on radiology reports. We also aim at evaluating how languages and
institutional specificities of Swiss teaching hospitals are likely to affect the quality
of the classification in French and German languages.
Methods: In our approach, 7 machine learning methods were evaluated to
establish a strong baseline. Then, robust models were built, fine-tuned
according to the language (French and German), and compared with the expert
annotation.
Results: The best strategies yield average F1-scores of 90% and 86% respectively
for the 2-classes (Progressive/Non-progressive) and the 4-classes (Progressive
Disease, Stable Disease, Partial Response, Complete Response) RECIST
classification tasks.
Conclusions: These results are competitive with the manual labeling as measured
by Matthew’s correlation coefficient and Cohen’s Kappa (79% and 76%). On this
basis, we confirm the capacity of specific models to generalize on new unseen
data and we assess the impact of using Pre-trained Language Models (PLMs) on
the accuracy of the classifiers.
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1. Introduction

Personalized Oncology aims at providing treatments precisely adapted to the tumor and

the genetic characteristics of the patient. To improve clinical care in this area, the five Swiss

Universities hospitals decided to join forces within the Swiss Personalized Oncology (SPO)

program of the Swiss Personalized Health Network (SPHN) in order to share data and

develop new decision-support instruments. As part of this, we report on our efforts to
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automatically extract Response Evaluation Criteria in Solid Tumors

(RECIST) categories out of radiology reports using machine

learning based approaches.

The version 1.1 of RECIST allows the expert to classify a tumor

response using four distinct categories (1, 2), namely Complete

Response (CR), Partial Response (PR), Stable Disease (SD), and

Progressive Disease (PD). Unlike clinical trials where the

treatment response is a primary measurement, real world

radiology reports are weakly formatted interpretations of an

imaging study based on the observation of the radiologist

(e.g. see Hersh et al. (3) for a collection of radiology reports).

Mostly written in a narrative style, this document may be split

into multiple sections (e.g., “clinical information”, “conclusion”,

etc.), and will be used by the physician to monitor the evolution

of a tumor on treatment. In addition to the free-text section, an

assessment relying on RECIST criteria can occasionally be

embedded into the radiology report, but this is never a routine

practice.

This lack of standardization involves a considerable time

investment for the oncologists to retrieve information and limits

the interoperability of data across different health centers. Thus,

Natural Language Processing (NLP) approaches can opportunely

be used to support both clinicians and researchers by analyzing

and extracting knowledge from free texts. Well described in the

literature (4–6), using machine learning (ML) methods to

perform NLP tasks has already proved effective and is likely to

supply reliable results in oncology-related tasks (7–9) such as the

automatic classification of clinical narratives or the extraction of

cancer treatment response. In this article, we are reporting on

the assessment of effective strategies to automatically associate a

RECIST label on existing radiological reports and to tailor them

to the actual difference between Swiss hospitals (multiple

languages, writing styles, etc.).
TABLE 1 Distribution of RECIST annotations on each institutional dataset.
Over the 585 annotations, “Dissociated response” is assigned to 59
documents, and “Low confidence” is assigned to 65 documents.

RECIST CHUV HUG Insel USB USZ Total
Complete response 12 22 7 29 21 91

Partial response 30 21 42 13 25 131

Stable disease 20 36 30 15 30 131

Progressive disease 56 40 41 31 44 212

Unknown 2 3 0 15 0 20

Total 120 122 120 103 120 585
2. Methods

2.1. Data selection

In each of the five Swiss teaching hospitals, an initial dataset

was built with 120 radiological reports manually selected. These

reports are based on three specific imaging techniques

(Computed Tomography (CT), Magnetic Resonance Imaging

(MRI) and Positron Emission Tomography (PET)) and focus

uniformly on six disease types (breast cancer, glioblastoma, lung

cancer, melanoma, prostate cancer, and gastrointestinal cancer).

More detailed information on the inclusion/exclusion criteria are

specified in the SPO guidelines for treatment response extraction

(see Supplementary Materials “Treatment Response Guidelines”).

Two language-oriented corpora were then produced. The

corpus “GERMAN” gathers the documents written in German

and originating from the University Hospital Basel (USB), the

University Hospital Bern (Insel) and the University Hospital

Zurich (USZ); and the corpus “FRENCH” gathers the documents

written in French and originating from the Geneva University

Hospitals (HUG) and the Lausanne University Hospital (CHUV).
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Before any manual or automatic processing, the datasets were

de-identified based on the HIPAA Privacy Rule (10). For the

experiments, we focused on the conclusion sections from these

reports (with 34 and 56 words on average, respectively for the

French and German documents). With respect to the guidelines

mentioned above, experts from the hospitals have manually

classified all the documents in order to generate training and

testing data for the subsequent evaluations. To that extent, we

gathered at least two manual labels on each conclusion and

estimated an Inter-Annotator Agreement (IAA) (see

Supplementary Materials “Inter-annotator agreement

evaluation”). This agreement allowed us to discard the

documents with a high level of ambiguity to streamline the first

stage of experiments (11).
2.2. Manual classification

Each data provider organized a group of annotators (up to 3

experts) who manually annotated the radiology reports by

following strict guidelines. A classification was performed

specifically on the conclusion section of each report in

anticipation of the machine learning experiments. Based on the

RECIST 1.1 standard, five classes were extracted: (1) complete

response (CR), (2) partial response (PR), (3) stable disease (SD),

(4) progression (PD), and (5) unknown for the reports where the

author does not state any conclusion.

An additional classification subcategory called “Dissociated

response” = [yes/no, default is no] was assigned in order to

consider the reporting of lesions responding differently to the

treatment within the same report conclusion. Moreover, an

attribute labeled “Low confidence” = [yes/no, default is no] was

added for cases where the report’s author speculates about the

response. The purpose of these two annotations is to select a

subset of documents for which the conclusions are more

homogenous (no mixed response, non low confidence).

In a later phase, the differences between the experts’

annotations were solved with the aim of creating a gold standard

corpus for each language and at each institution. Thus, the

documents with no consensus were discarded from the corpora,

while balancing the HUG dataset led to a set of 122 reports.

THE final FRENCH and GERMAN corpora respectively contain

242 and 343 documents. Training and test sets for the automatic

classification experiments are built based on these gold standard

corpora (see Table 1 for the distribution of the labels).
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In addition to this, one of the HUG annotators has delivered an

additional judgment on the complete FRENCH corpus. This

additional annotation phase aims at strengthening the IAA in

order to prepare a batch of experiments comparing the behavior

of different ML-based approaches in handling data from another

institution.
2.3. Automatic classification

ML refers to a domain in Artificial Intelligence (AI) that aims at

developing algorithms able to learn from training data and make

decisions based on statistical probabilities (also called

“predictions”). As opposed to rule-based programming, ML is able

to improve by increasing and diversifying training data and these

approaches have already shown good results in many scientific

fields, including medicine (7–9, 12–15). Yet, there are limitations to

such approaches, which must be emphasized: wrong predictions

can occur because of insufficient, imbalanced, or unknown data.

For each of these limitations, AI researchers have developed

recovery strategies and thus radiology reports may represent a fairly

good resource for automation such as the evaluation of the tumor

response to a specific therapy, which would make possible the

medical encoding of RECIST categories at scale.

Among the different forms of ML, we explored the opportunity

to build supervised models (i.e.,models trained on labeled data that

can be used to predict unobserved labels for new data). As

mentioned above, the set of documents classified by the human

experts will serve as ground truth for the learning phase.

Thereby, the system processed the data and inferred rules that

map specific textual elements related to the different RECIST

classes, whether for a binary classification (progressive/non-

progressive) or a multiclass classification (CR, PR, SD or PD).
2.4. Machine learning pipeline

Our ML-based pipeline includes five steps:

• Preprocessing

Preprocessing is an important step in ML that turns text data into a

suitable format, which allows prediction and reproducibility (16).

We opted a Scikit-learn (17) pre-built vectorizer using the Term

Frequency—Inverse Document Frequency (TF-IDF) model

approach (18). We also used a preprocessing function that covers

the punctuation removal, the text normalization, and the

tokenization. Due to language specificities, the diacritics were

kept, and we used a French and a German dictionary to remove

stopwords beforehand. Since some operations from ML

algorithms involve randomization, we finally fixed the seed value

to control the process and to be able to repeat it.

• Tokenization

We investigated different text splitting approaches to determine

whether the ML models perform better on unigrams or on

n-grams (19). To find the best thresholds, we experimented linearly
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different ranges per dataset based on words or character tokenizers.

Such processing may have a significant impact on ML tasks,

especially with free-text data where the context is crucial to

understand the meaning of the sentence (e.g. with the negation in

the phrases “pas d’adénopathie abdomino-pelvienne” (no

abdomino-pelvic adenopathy), or with estimations “majoration en

taille” (size augmentation) vs. “diminution en taille” (size decrease)).

• Cross-validation

To limit bias regarding the training/testing data sampling, we

adopted the leave-one-out (LOO) cross-validation method

(20, 21). Each item (a conclusion report) is used once as a test

set (singleton) while the remaining documents form the training

set. LOO may result in estimators with high variance in the case

of high heterogeneity between samples. However, such a risk is

limited by the nature of the processed documents compared to

the generalization error (i.e., a measure of how accurately an

algorithm is able to predict outcome values for previously unseen

data) often overestimated by 10-fold cross-validation.

• Classification strategies

We implemented seven approaches using the python package

Scikit-learn: Linear Support Vector Machine (LinearSVM), Linear

Stochastic Gradient Descent (LinearSGD), Gradient Boosting

(GB), Logistic Regression (LR), Naive Bayes, Decision Tree and

Random Forests.

• Hyperparameters-tuning

We focused on the optimization of the classification models via

their hyperparameters tuning (22). Hyperparameters are specific

settings used to control the learning process (e.g. learning rate in

an SVM, number of branches in a decision tree, etc.) and thus

have a direct impact on the performances of the models. As

there is no way to determine in advance the best tuning of

hyperparameters, this optimization must be set for any new

predictive modeling task. Various strategies can be employed to

find the right tuple of hyperparameters that yields an optimal

learning. Regarding our experiments, we decided to perform an

exhaustive search through a set of possible values. For each

algorithm, we provided a rather large range of values for each

hyperparameter, and a grid-search function automatically tested

all the possible combinations to return the best solution.
2.5. Experimental designs

Our experiments were carried out on three fronts. First,

designated as INSTITUTIONAL, our first batch of experiments

compares seven classification strategies that already achieved

state-of-the-art results on biomedical text-mining tasks. With the

aim of providing each institution with an all-in-one annotation

tool optimized for its own radiology reports, we evaluate the

ML-based pipeline separately on the two datasets from the

FRENCH corpus. On a first run, we tested the different models

using their default parameters and with no tokenization of the

text to create a baseline. Then, each model was optimized on

successive runs following the pipeline described above.
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Second, we conducted an experiment labeled

INTEROPERABILITY wherein we assessed the performances of

the two models trained on the INSTITUTIONAL task using a

different dataset from the FRENCH corpus. The model trained

on HUG dataset was tested on CHUV dataset, and vice versa. In

other words, we examined to what extent the optimized models

perform on new unseen data (i.e., on external validation (23)).

The goal of this batch of experiments was also to evaluate to

what extent the data interoperability between different Swiss

health centers can be considered.

Third, designated as LANGUAGE, we compared both

FRENCH and GERMAN corpora to explore inter-language

variations. With the aim of highlighting the peculiarities of Swiss

languages, this last set of experiments was designed to showcase

the issues that can be encountered when working with non-

standardized textual data. Within the experimental framework,

the models were individually trained and tested on each

language, and the hyperparameters tailored to the particular

linguistic context.
2.6. Evaluation metrics

To empirically select the best models, we compared their

performances on basic settings according to standard ML

metrics: accuracy and micro F1-score (24, 25). Accuracy is the

ratio of the number of good predictions over the total number of

predictions. Even if it is not the case on our datasets, this metric

is not always appropriate to assess highly unbalanced classes

distribution, therefore we also calculate the F1-score. F1

represents the harmonic mean between the precision and the

recall (sensitivity) of the system.

Two additional metrics, namely the Matthews correlation

coefficient (MCC) and the Cohen’s Kappa, were computed to

confirm the reliability of the systems depending on the type

of classification. The Matthews correlation coefficient

(MCC) is a complementary metric used in ML to measure
TABLE 2 Comparison of the ML performances on binary classification of the

Model Linear SVM Linear SGD Gradient
Boosting

F1-score Non-
progressive

0.88 0.87 0.90

F1-score Progressive 0.85 0.84 0.89

Accuracy 0.87 0.86 0.90

MCC 0.74 0.74 0.79

TABLE 3 Comparison of the ML performances on RECIST classification of th

Model Linear SVM Linear SGD Gradient Boosting Logi
F1-score CR 0.67 0.73 0.75

F1-score PR 0.80 0.82 0.88

F1-score SD 0.62 0.65 0.86

F1-score PD 0.82 0.84 0.89

Accuracy 0.77 0.79 0.87

Cohen’s Kappa 0.64 0.67 0.80
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the quality of a binary classification (26, 27). This coefficient

is set on a range from −1 to +1 and performs even if the two

classes are unbalanced: +1 represents a perfect prediction, 0

an average random prediction, and −1 indicates a total

disagreement between predictions and observations. Besides,

the Cohen’s Kappa score is similar to IAA (f-score) since it

also measures a level of agreement between different raters.

However, the Cohen’s Kappa is a statistical coefficient that

integrates the probability of assigning the same labels by

chance (28). It can be generally applied to ML classification

tasks (using the true values and the predicted ones) to show

to what extent a model is more successful than the random

assignment of labels.
3. Results

The results in this section are presented in three parts, related

to the experimental designs presented in the methodology

(INSTITUTIONAL, INTEROPERABILITY, and LANGUAGE).

The comprehensive results are reported in Supplementary

Material “Comparison of the models”.
3.1. Institutional

On the FRENCH corpus, most classifiers tend to obtain very

similar results on the classification of radiological documents.

The Tables 2–5 display the results of the optimized ML-based

algorithms on both CHUV and HUG datasets.

The award for the highest scores on both tasks in the CHUV

dataset goes to the Gradient Boost model. In terms of binary

classification, the system achieves an accuracy of 90% and F1-

scores of 90% and 89% respectively for Progressive and Non-

progressive. This represents an improvement of about 3%

compared to the baseline and the MCC score of 79% indicates a

high-quality classification performance.
CHUV radiology reports.

Logistic
Regression

Naive Bayes Decision Tree Random Forest

0.88 0.86 0.87 0.89

0.85 0.83 0.85 0.74

0.87 0.85 0.86 0.77

0.74 0.70 0.72 0.75

e CHUV radiology reports.

stic Regression Naive Bayes Decision Tree Random Forest
0.73 0.75 0.42 0.47

0.81 0.80 0.64 0.70

0.71 0.61 0.80 0.72

0.86 0.83 0.72 0.82

0.81 0.78 0.67 0.75

0.71 0.66 0.53 0.60
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TABLE 5 Comparison of the ML performances on RECIST classification of the HUG radiology reports.

Model Linear SVM Linear SGD Gradient Boosting Logistic Regression Naive Bayes Decision Tree Random Forest
F1-score CR 0.75 0.79 0.82 0.73 0.76 0.90 0.85

F1-score PR 0.65 0.65 0.84 0.57 0.49 0.83 0.67

F1-score SD 0.66 0.83 0.81 0.67 0.60 0.81 0.77

F1-score PD 0.81 0.70 0.74 0.83 0.77 0.80 0.86

Accuracy 0.74 0.76 0.79 0.73 0.69 0.83 0.80

Cohen’s Kappa 0.63 0.67 0.72 0.62 0.57 0.76 0.73

TABLE 4 Comparison of the ML performances on binary classification of the HUG radiology reports.

Model Linear SVM Linear SGD Gradient
Boosting

Logistic
Regression

Naive Bayes Decision Tree Random Forest

F1-score Non-
progressive

0.90 0.90 0.91 0.91 0.88 0.89 0.82

F1-score Progressive 0.80 0.80 0.85 0.86 0.76 0.82 0.52

Accuracy 0.87 0.87 0.88 0.89 0.84 0.86 0.74

MCC 0.71 0.71 0.76 0.77 0.65 0.71 0.42

Mottin et al. 10.3389/fdgth.2023.1195017
Regarding the RECIST classification, the Gradient Boost shows

an accuracy of 87% and F1-scores ranging from 75% (CR) to 89%

(PD), steering an improvement of about 16% compared to the

baseline. These F1-scores are relatively close to the IAA of 89%.

Furthermore, the Cohen’s Kappa value of 80% highlights the

reliability of the model in this task.

On the HUG dataset, two different approaches stand out for

each task. For binary classification (2-classes), the Logistic

Regression method demonstrates strong performance, yielding an

accuracy of 89%. The F1-scores for Progressive and Non-

progressive predictions are 86% and 91% respectively. The

optimized model shows an improvement of nearly 4% compared

to the baseline, making it competitive with the inter-annotator

agreement of 90%. The MCC score is 77%, further suggesting a

robust classification quality.

Turning to the RECIST classification task, the Decision tree

model yields good results. It achieves an accuracy of 83%,

showcasing an improvement of about 16% when compared to the

baseline. The F1-scores range from 80% (PD) to 90% (CR), which

is close to the IAA of 94%. Additionally, the reported Cohen’s

Kappa coefficient is 76%, indicating the reliability of this model.
3.2. Interoperability

The goal of the second batch of experiment was to test the

performance of the optimized models described above when

working on new data. The Figures 1 and 2 present the results of

this external validation.

On the binary classification task, the model trained on the CHUV

(a Gradient Boost) data yields an accuracy of 80%, with F1-scores of

75% (Progressive) and 84% (Non-progressive), and a MCC of 59%.

In comparison, the model suited to the 4-classes classification (also

a Gradient Boost) gets an accuracy of 69%, with F1-scores ranging

from 48% (CR) to 80% (SD) and a Cohen’s Kappa of 56%.

The models trained on the HUG data reach slightly higher

scores. On the binary classification, the model (a Logistic
Frontiers in Digital Health 05
Regression) achieves an accuracy of 85%, with F1-scores of 83%

(Progressive) and 86% (Non-progressive), and a MCC of 70%.

On the 4-classes classification task, the Decision Tree model

obtains an accuracy of 78%, with F1-scores from 65% (CR) to

84% (PD) and a Cohen’s Kappa of 69%.
3.3. Language

In this section, we present the results of ML-based experiments

conducted on the FRENCH and GERMAN corpora to examine

inter-language differences. The cross-validation approach exploits

the complete corpora, including the institutional datasets.

Figure 3 illustrates the performance of the best models trained

specifically on French or German conclusions.

On the German documents, the Logistic Regression model

demonstrates good results for both tasks. On the binary

classification task, the model achieves an accuracy of 84%, F1-

scores of 78% (Progressive) and 88% (Non-progressive), and a

MCC of 70%. On the 4-classes classification task, the accuracy

drops to 73%, while the F1-scores range from 63% (SD) to 79%

(PD). The Cohen’s Kappa is reported as 69%.

On the French documents, the LinearSGD achieves scores

comparable to the INSTITUTIONAL batch of experiments for

the binary classification. It reaches an accuracy of 89%, F1-scores

of 89% (Progressive) and 90% (Non-progressive), and a MCC of

76%. Looking at the RECIST classification, two models (Gradient

Boost and Logistic Regression) prove to be suitable for the task

with equal accuracies of 81% and Cohen’s Kappa of 73%.

However, the Gradient Boost shows slightly better performance

with narrower F1-scores ranging from 78% (SD) to 87% (PR).
4. Discussion

The findings of this study indicate that automating the

labeling of radiological reports to infer progression of cancers
frontiersin.org
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FIGURE 1

External validation of both CHUV and HUG optimizedmodels (respectively GB and LR) regarding the 2-classes (progressive/Non-progressive) classification.

FIGURE 2

External validation of both CHUV and HUG optimized models (respectively GB and decision tree) regarding the 4-classes RECIST classification.

FIGURE 3

Performances of the top ML-based strategies on FRENCH and GERMAN corpora, regarding the: (A) Progressive/Non-progressive classification (LR vs.
LinearSGD); (B) 4-classes RECIST classification (LR vs. GB).

Mottin et al. 10.3389/fdgth.2023.1195017
can achieve a reliable classification rate, approaching human

judgement as it is assessed with the IAA. However, the data

capture policy of every healthcare institution and the quality

of the clinical narratives may influence the quality of the

automation.
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In the subsequent sections, we have examined the primary

factors contributing to misclassifications. Yet, the strict

annotation guidelines and the document selection procedure

described in the methods have efficiently mitigated the risk of

“data shift”, “class definition” and “class imbalance”.
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BOX 1 Extract from a French note presenting a dissociated response
that results in a misclassification. Here, the ML-based algorithm
estimates a CR instead of a PD, with a confidence score of 55%.

"Réponse dissociée de la maladie avec progression du

nodule axillaire gauche et disparition des foyers hépatique et

pancréatique” (Dissociated response of the disease with

progression of the left axillary nodule and disappearance of

the hepatic and pancreatic foci)

Mottin et al. 10.3389/fdgth.2023.1195017
4.1. Institutional

On the first batch of experiments, considering the relatively

good results of the top performing models, there is little room

for improvement using traditional ML approaches. With an

MCC of 77% and 79% respectively for HUG and CHUV

systems, these scores indicate that the binary predictors were able

to correctly predict most of the positive data instances as well as

the negative data instances. On the 4-classes classification task,

the Cohen’s Kappa of 76% obtained by the HUG model indicates

a strong agreement between the inferences from the Logistic

Regression and the gold standard used for the evaluation.

Similarly, the Cohen’s Kappa of 80% on the CHUV data suggests

that this model is very reliable. Yet there are questions about

how the misclassifications occurred (see Supplementary

Materials “Confusion matrices” for a report on inaccuracies).

The presence of hapax (i.e., word or expression that occurs

only once in the whole dataset) is responsible for a significant

number of misclassifications, especially in short texts where the

inference is biased by the few features the system has already

detected in its training set. Another predominant source of
FIGURE 4

Word cloud displaying the top 50 features in French documents.
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misclassification stems from the simultaneous presence of high-

weighted features in a given document, typically observed in

cases involving dissociated responses (see example in Box 1).

Figure 4 presents the tokens of influence that can be found in

the French radiology reports.

4.2. Interoperability

On the cross-validation experiments, we observed that the

performances of all the investigated models have decreased. The
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variability among authors’ writing styles is the principal cause of

misclassification at document level. Thus, some reports extracted

from the hospitals’ databases do not seem to comply with the

institutional templates (e.g. several reports do not include a

conclusion section). In some preselected documents, we observed

that the absence of a standard way to formulate the radiological

observations entails more original features for the learning

models; especially considering the German language, which

combines concepts such as “Glioblastom-metasasen-resektions-

bereich” (area of glioblastoma metastasis resection). On top of

that, the expression of some degree of confidence (and doxa)

might also affect the learning of the classifier, for instance in

“metastasensuspekt” (suspicious for metastasis) vs. “metastasen”

(metastasis).

As it is known that ML strategies are data dependent and that

overfitting phenomena are a possible limitation, we have sought

to limit the bias in comparing the models by focusing on the

conclusion of the radiology reports. However, when performing

tuned models on documents from different institutions, the

two systems have shown a substantial fall in their scores.

Beyond the current lack of interoperability between data

sources, such an outcome is related to the variability in the

training data. A drop in the models’ performances on external

validation can be interpreted as overfitting (29), although

limited in our case. Instead of learning how to generalize from

features, the models are moderately memorizing non-predicting

items.
4.3. Language

On the third batch of experiments, one of the main issues

concerns the words that implied some form of negation. For

example, in French, these markers can be words from different

parts of speech: adverbs (such as “pas (de)” (not) or “jamais”

(never)), nouns (such as “absence” (absence)), adjectives (such

as “aucun” (none)) or others. Yet, in German the negative

forms appear to be particularly problematic for the

classification of reports (30). In some cases, the negation is

close to the subject and a simple n-gram tokenizer can handle

it (e.g., in “Kein Hinweis auf eine lymphogene oder hämatogene

Metastasierung.” (No hint on lymphogenic or hematogenic

spread of metastases)). Notwithstanding all this, our language

agnostic approach could potentially be affected by such

phenomena, but our observations suggest that the impact was

null or marginal on our results.

And finally, beyond linguistics, a collateral problem related to

human practices emerged from the supplied data. Indeed, by

focusing on German documents it appears that a few sentences

also integrate English and Latin words. Even if it does not block

the human understanding of the report, this may lead to the

genesis of new learning features. In addition to a few peculiarities

from Swiss German, we also observed a slightly greater number

of typographical errors in the examined German reports than in

the French ones. Depending on the typographical error, they

may impact the learning features as well as any words in another
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language. Yet, it seems that the detected typographical errors

have a marginal effect on the classification since the systems

handle most of them with a tokenizer and a simple stemming

pre-processing of the texts (we tested the generic function from

Python NLTK library). More elaborated methods to correct

spelling corruptions seemed therefore unnecessary as explored in

the literature (31).
4.4. Future direction

Despite achieving good results, ML methods have inherent

limitations in their quantitative interpretation of the information

rendering them susceptible to overfitting. The concern is

particularly pronounced when working with limited datasets. In

contrast, pre-trained language models, built upon extensive

training on large corpora, offer a more robust framework to

address overfitting. Indeed, PLMs capitalize on the ability to

extract unsupervised patterns from larger datasets, which can

subsequently be fine-tuned or customized using a smaller set of

annotated samples (29). In addition to overfitting, some

traditional machine learning approaches may struggle to

discriminate between classes when documents contain features

from multiple categories, as corroborated by our error analysis.

Pre-trained language models leverage their extensive training and

possess a deep understanding of language semantics and context,

some of them being trained specifically on data from healthcare

centers (32, 33).

To extend the scope of our study, we therefore experimented

CamemBERT, a multi-layer bidirectional Transformer designed

as a French adaptation of the ROBERTA model (34).

Pretrained on highly variable datasets, and with little effort on

optimization, the CamemBERT model immediately showed

results very similar to our optimal ML-based strategies on the

INSTITUTIONAL set of experiments (CamemBERT F1-scores

of 90% on the binary classification and ranging from 80% to

90% on the 4-classes classification). It also appears that a

combination of the two approaches could be interesting to

explore in future work.
5. Conclusion

Our study examined different traditional ML-based models

to support the classification of free-text radiological documents.

The strategy relies on expert manual annotations and on an

optimization relating to each dataset in order to infer on novel

documents. The resulting systems show performances that

approach the inter-annotator agreement (up to 91%) and are

particularly well suited to the binary classification task with top

F1-scores that reach 90% to 91% respectively for “Progressive”

and “Non-progressive” predictions. Moreover, the results

established on the 4-classes classification are also satisfying

with an average F1-score of 85% reached at best. Yet, when

evaluating the capacity of the models to generalize on new

data, the performances of both CHUV and HUG classifiers
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have respectively dropped by about 11% and 4% on the 2-classes

classification task (−20% and −9% on the 4-classes

classification).

By analyzing the misclassification instances, different issues

have emerged. Some of these issues are dataset dependent while

others typically stem from the data variability in radiology

reports. For instance, it appears that learning from negations in

documents written in German is not quite simple and, given

the limited set of training/tuning data, additional NLP

preprocessing may help. Pre-trained language models can here

provide a sound alternative to such data labeling issues. We

also highlighted some singletons that currently represent a

bottleneck to evaluate the models, as well as the “dissociated

response” cases which remain ambiguous for both the human

and the machine. However, until the variance/bias threshold is

not reached, all these classification models would certainly

benefit from larger datasets.
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