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a b s t r a c t 

The purpose of this review is to provide an update on the changes at the cellular and tissue level oc- 

curring during orthodontic force application. For the understanding of this process, knowledge of the 

mechanobiology of the periodontal ligament and the alveolar bone are essential. The periodontal liga- 

ment and alveolar bone make up a functional unit that undergoes robust changes during orthodontic 

tooth movement. Complex molecular signaling is responsible for converting mechanical stresses into bio- 

chemical events with a net result of bone apposition and/or bone resorption. Despite an improved un- 

derstanding of mechanical and biochemical signaling mechanisms, it is largely unknown how mechanical 

stresses regulate the differentiation of stem/progenitor cells into osteoblast and osteoclast lineages. To 

advance orthodontics, it is crucial to gain a better understanding of osteoblast differentiation from mes- 

enchymal stem/progenitor cells and osteoclastogenesis from the hematopoietic/monocyte lineage. 

© 2023 The Authors. Published by Elsevier Inc. on behalf of World Federation of Orthodontists. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Orthodontic tooth movement (OTM) occurs when an external

force is applied to a tooth. The direct effect of such a force is a,

sometimes minute, deformation or strain in the tooth and its sur-

rounding tissues, the periodontal ligament (PDL), and the alveolar

bone. Cells within these tissues detect the strain and respond to

the deformation of the extracellular matrix (ECM) or to their own

deformation by the synthesis and secretion of various mediators,

such as cytokines and growth factors. Ultimately, this leads to bone

resorption at the front side of the moving tooth and to bone depo-

sition at the back, as well as to remodeling of the PDL. 

The purpose of the present overview is to provide information

on the changes at the cellular and tissue level occurring during or-

thodontic force application. For the understanding of this process,

knowledge of the mechanobiology of the PDL and the alveolar bone
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are essential. This review provides an update on the mechanical

and biological processes and their interactions, aiming at a better

understanding of the underlying mechanisms of OTM. 

To describe the consecutive processes that occur during OTM,

we take a more or less chronological approach to describe the ef-

fects of force application on the different components of the PDL

and the alveolar bone. Important structures and phenomena in-

volved in OTM are schematically visualized in Fig. 1 A and B. 

2. Matrix strain 

The initial effect of the application of an external force to a

tooth is its displacement within its socket, causing deformation or

strain of the PDL. At the back side of the moving tooth, a ten-

sional force on the PDL fibers leads to an increase in the PDL vol-

ume, and thus a positive strain ( Fig. 1 A), and stretching of the PDL

fibers, while compression at the front side results in a decrease in

the volume, relaxation of the PDL fibers, and thus a negative strain

( Fig. 1 B). The amount of strain at both sides of the tooth depends

on the applied force and the material properties of the PDL. 

Numerous studies have been performed on the PDL material

properties, and there is growing evidence for a nonlinear and time-

dependent relationship between force and displacement, indicat-

ing that the PDL is viscoelastic. This data have been used in finite

element models in an attempt to calculate the strain distribution
of World Federation of Orthodontists. This is an open access article under the CC 
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Fig. 1. Schematic representation of the most important structures and phenomena involved in orthodontic tooth movement. The tooth is moving to the right. (A) Back side 

of the tooth; (B) front side of the tooth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

within the PDL under specific loading conditions [1–3] , and the

most recent studies indicate that the PDL can be described as a

biphasic poroviscoelastic material [4–6] . 

The porosity of the PDL allows for the redistribution of the free

fluid phase within the periodontal space, resulting within a few

seconds in uniform pressure throughout the PDL [ 3 , 7 ]. In the sub-

sequent period of about 5 hours, a more gradual creep displace-

ment is seen because of the viscoelastic stretching of the PDL fibers

at the back side and relaxation at the front side [ 3 , 7 , 8 ]. 

Furthermore, minor fluid flow occurs out of the bone canaliculi

at the tension sides, whereas fluid influx occurs at the compres-

sion side into the bone canaliculi, resulting in fluid shear stress

within the canaliculi and the lacunar fluid surrounding the osteo-

cytes [9] . This indicates that the biphasic poroviscoelastic material

formulation can account for the microscopic, as well as the time-

dependent, large deformation behavior of the PDL and the alveolar

bone [ 5 , 10 ]. 

3. Strain and blood flow 

Strain in the periodontal ECM also leads to a change in the

blood flow. In the clinical situation, it is almost impossible to avoid

blood vessel occlusion completely, and consequently, in almost all

cases, an anoxic situation and local necrosis, known as hyaliniza-

tion, will occur [11] . This leads to a period of arrest of OTM that

lasts until the hyalinized tissue is completely removed [12] . Al-

though hyalinization is considered to be an undesirable side effect

of OTM, little attention has been paid to the phenomenon itself

and its possible relationship with stress/strain levels in the PDL and

alveolar bone [13] . 

Macrophages are responsible for the resorption of the hyalin-

ized tissue, but the mechanisms involved in the removal of necrotic

cells have remained relatively unexplored in the past. However, re-

cently, new in vitro and in vivo models have been developed that

have identified different classes of “find-me” and “eat-me” signals
Please cite this article as: J.C. Maltha and A.M. Kuijpers-Jagtman, Mech
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presented by necrotic cells and their receptors on macrophages

that regulate the phagocytosis of necrotic debris [14] . It is sug-

gested that tooth movement only starts once this process is com-

pleted at the compression side [11] . 

4. Strain in periodontal fibroblasts 

The binding of periodontal fibroblasts to the ECM matrix

through focal adhesion complexes (FACs) triggers strain in these

cells. FACs comprise specific transmembrane proteins, the so-called

integrins, which are bound extracellularly through arginylglycylas-

partic acid-peptide sequences to matrix components, such as col-

lagen, fibronectin, and vitronectin, and intracellularly to cytoplas-

mic focal adhesion proteins, including vinculin, paxillin, and talin.

The FACs transmit mechanical stimuli from the ECM through the

cytoskeleton to the nucleus by a process called mechanotransduc-

tion. In the nucleus, transcription factors activate gene expression

[15] . 

Within a few hours after force application, periodontal fibrob-

lasts are the first cells to respond to mechanical strain in the

ECM and they show activation of various intracellular signaling

pathways, such as the mitogen-activated protein kinases (MAPKs),

the Rho-signaling pathways, and the c-fos pathways [16–21] . The

MAPK pathway activation lasts for about 2 weeks, and subse-

quent gene expression is involved in the onset of bone remodel-

ing, inflammation, ECM reorganization, and angiogenesis in the PDL

[ 21 , 22 ]. 

Activated fibroblasts are stimulated to secrete plasminogen acti-

vator and its inhibitor, as well as matrix metalloproteases (MMPs)

and the tissue inhibitor of MMP (TIMP), depending on the me-

chanical conditions (positive or negative strain). These factors act

in concert to regulate the ECM remodeling and show localized ex-

pression patterns, suggesting careful coordination of turnover. Fur-

thermore, the activated fibroblasts synthetize cytokines, such as

prostaglandin E2 (PGE2) and interleukins (IL-1b, IL-6, IL-10), the
anobiology of orthodontic tooth movement: An update, Journal of 
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growth factors transforming growth factor β (TGF- β), and tumor

necrosis factor α (TNF- α), as well as nitric oxide (NO), all of which

are involved in inflammatory processes [ 10 , 16 , 19 , 23–25 ]. 

5. Strain in neural tissues and blood vessels 

Mechanical forces change vascularity and blood flow, as well as

the neural components of the PDL. The nerve endings within the

PDL contain mechanoreceptors and nociceptors. When orthodonti-

cally induced strain in the ECM distorts these nerve endings, they

release vasoactive neuropeptides, such as calcitonin gene-related

peptide (CGRP) and substance P, which then interact with vascu-

lar endothelial cells [26] . The reduction in oxygen tension results

in the expression of hypoxia-inducible factor-1, a transcription fac-

tor that activates vascular endothelial growth factor and receptor

activator of nuclear factor κB (RANKL), as well as prostaglandins

and cytokines, e.g., IL-1b, IL-6, and IL-17, and TNF- α in PDL fibrob-

lasts and in the osteoblasts at the front side of the moving tooth

[ 10 , 27 , 28 ]). The expression of these factors leads to vasodilation, in-

creased permeability, and subsequent plasma leakage [29–31] . Ac-

tivated endothelial cells recruit circulating leukocytes, monocytes,

and macrophages, indicating the onset of acute inflammation in the

PDL [ 15 , 32 , 33 ]. 

At the back side of the moving tooth, under positive strain, the

periodontal nerve fibers react by increasing the expression of CGRP,

which acts as a vasodilator and stimulates plasma extravasation

and leukocyte migration [34] . Moreover, CGRP has a stimulatory ef-

fect on osteoblast activity, and it inhibits osteoclast activity [35] 

6. Strain and Osteoblasts 

6.1. Negative strain 

At the front side of the moving tooth, there is a negative strain

present in both the PDL and the bone canaliculi ( Fig. 1 B). This has

a fourfold effect. 

First, the force application temporarily stimulates osteoblast

apoptosis through the activity of apoptosis mediators, such as

caspase-3, BCL-2-associated X protein, and B-cell lymphoma 2

[ 24 , 36 , 37 ]. After the first 3 days of force application, the synthe-

sis of apoptosis mediators decreases again [38] . Second, the ex-

pression of vascular endothelial growth factor and RANKL in PDL

fibroblasts and osteoblasts is upregulated because of the hypoxic

situation and the subsequent stabilization of hypoxia-inducible

factor-1 [ 10 , 27 , 28 ]. Third, the hypoxic situation leads to the acti-

vation of the P38 MAPK pathway, resulting in an elevated level of

cycloxygenase-2 that co-catalyzes the synthesis of prostaglandins,

including PGE2, from arachidonic acid [ 25 , 28 ]. PGE2, in turn, stim-

ulates osteoblast differentiation and the expression of macrophage

colony-stimulating factor (M-CSF) and RANKL and inhibits the ex-

pression of osteoprotegerin (OPG) [ 28 , 29 , 39 ]. OPG acts as a decoy

receptor for RANKL and subsequently inhibits osteoclast differenti-

ation and thus bone resorption. Finally, PDL cells at the front side

express increased amounts of TNF -α, which stimulates the produc-

tion of MMPs and elevates the levels of RANKL, to be directly in-

volved in bone resorption [40] . 

6.2. Positive strain 

At the back side of the moving tooth, there is a positive strain

present in the PDL, as well as in the bone canaliculi ( Fig. 1 A).

This strain causes a fluid flow from the bone into the PDL, which

activates the osteocytes. These cells, in turn, stimulate PDL stem

cells to express the extracellular signal-regulated kinase 1/2-Runx2
Please cite this article as: J.C. Maltha and A.M. Kuijpers-Jagtman, Mech
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pathway, which is an early and essential pathway for the synthe-

sis of Runx2. Runx2 stimulates the synthesis of a variety of struc-

tural bone proteins, such as collagen type 1, bone sialoprotein,

osteocalcin, and osteopontin [41–43] . In addition, the canonical

Wnt-signaling pathway is activated and this is important for bone

formation because osterix and osteocalcin are downstream targets

that are expressed during the first week of OTM [ 44 , 45 ]. 

Furthermore, bone deposition is stimulated under positive strain

through the increased action of IL-10 that stimulates OPG synthesis

and inhibits the synthesis of RANKL, thus preventing the differenti-

ation of osteoclasts in that area [46] . Activated osteocytes stimulate

the differentiation of precursors into osteoblasts through different

cytokines, growth factors, and NO [ 12 , 28 , 47–49 ]. 

Also, TGF- β synthesis is upregulated under positive strain. It in-

duces proliferation and chemotaxis of PDL cells and upregulates

the collagen gene-1, leading to collagen type 1 production. Further-

more, TGF- β recruits osteoblast precursors and induces their differ-

entiation into osteoblasts, and it down-regulates MMPs and upreg-

ulates TIMPs, thus avoiding ECM breakdown [ 32 , 50 ]. Their localized

expression patterns suggest a careful coordination [ 30 , 50 ]. Overall,

the upregulation of TGF- β under positive strain results in increased

osteoblast and reduced osteoclast activity, leading to production of

bone and remodeling of PDL fibers. 

7. Biomechanical effects on Osteocytes 

7.1. Negative strain 

In response to negative strain at the front side, not only are

osteoblasts in the PDL activated, but osteocytes within the alve-

olar bone are also activated ( Fig. 1 B). Osteocytes are important

mechanosensors and transducers that are very sensitive to modu-

lation of the fluid flow and the subsequent fluid shear stress within

the canaliculi. In vitro studies in the 1990s have already suggested

that fluid shear stress of very low magnitude is more effective in

inducing biochemical reactions in osteocytes than hydrostatic com-

pression [ 51 , 52 ]. 

The canalicular fluid flow hypothesis states that when bone

is loaded, interstitial fluid is squeezed through the thin layer of

nonmineralized matrix surrounding cell bodies and cell processes,

thereby producing fluid shear stress at the osteocyte cell mem-

brane [51] . Under negative strain, the fluid flow is from the PDL

into the canaliculi [51] . The effect of shear stress in the osteo-

cyte/canalicular system is comparable with the effects of negative

strain on osteoblasts, namely, the differentiation of osteoclasts and

the resorption of the alveolar bone [ 12 , 53 ]. 

The specific pathways for these processes are different for the

front area of the moving tooth with negative strain and fluid flow

into the bone and the back area with positive strain and a fluid

flow from the canaliculi into the PDL [ 29 , 53 , 54 ]. 

7.2. Positive strain 

At the back side of the moving tooth, a positive strain is present

in both the PDL and the bone canaliculi, ultimately leading to bone

deposition in that area ( Fig. 1 A). The osteocytes are activated by

the fluid flow from the bone into the PDL and undergo more or

less similar phenomena that occur in the osteoblasts. Also, in the

osteocytes, IL-10 stimulates the synthesis of OPG and the reduction

of RANKL synthesis, thus inhibiting osteoclast differentiation and

favoring bone deposition [ 28 , 53 ]. 

TGF- β is also highly expressed under tension. It induces pro-

liferation and chemotaxis of PDL cells, upregulates collagen gene-

1 [55] , recruits osteoblast precursors and induces their differenti-
anobiology of orthodontic tooth movement: An update, Journal of 
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ation, and down-regulates MMPs and upregulates TIMPs [ 32 , 50 ].

This suggests a careful coordination of turnover [ 30 , 50 ]. The cumu-

lative result is increased osteoblast and reduced osteoclast activity,

resulting in bone production and remodeling of PDL fibers at the

back side of a moving tooth. 

We can conclude that cell activation, differentiation, and re-

cruitment of osteoclasts are mediated by osteocytes, osteoblasts,

and PDL cells. However, osteogenic differentiation is only observed

in the osteoblast precursor cells present in the PDL. In addition, the

recently discovered ephrin/Ephs seem to play a role parallel with

the thoroughly investigated RANKL/OPG system in mediating bone

resorption during OTM [56] . It has been suggested that osteocyte

apoptosis occurs in areas of reduced canalicular fluid flow, subse-

quently attracting osteoclasts to the site [ 57 , 58 ]. This is likely the

case at the front side of the moving tooth, where bone unloading

might result in a reduction of fluid flow. Indeed, it has been shown

that unloading of the bone leads to increased osteocyte apoptosis,

followed by bone resorption [ 25 , 28 , 59 ]. In its turn, PGE2 stimulates

osteoblast differentiation and the expression of M-CSF and RANKL,

and inhibits the expression of OPG [ 28 , 29 , 39 ]. OPG acts as a decoy

receptor for RANKL and subsequently inhibits osteoclast differen-

tiation and thus bone resorption. Therefore, in compression areas,

the ratio of RANKL/OPG favors osteoclast differentiation and bone

resorption [60] . 

8. Strain and Osteoclasts 

At the front side of the moving tooth, osteocytes within the

alveolar bone are activated and stimulate the MAPK signaling path-

way and subsequent PDL cell activation. The RANKL/OPG ratio is in-

creased, allowing monocytes/macrophages to differentiate into os-

teoclast precursors. The differentiation from osteoclast precursor

to osteoclast is dependent on cytokines and growth factors, such

as M-CSF, TNF- α, the RANKL/OPG ratio, and NO [60–62] . In the

meantime, TNF- α induces apoptosis of the osteoblasts, enabling the

young osteoclasts to attach to the bare bone surface. However, the

mechanism underlying this migration is not yet clear. Probably, the

fluid shear stress from the canaliculi and/or the Ca ++ gradient at

the bone surface where the osteoid is removed through the action

of MMPs might be leading this event [63] . Once landed at the bone

surface, the osteoclasts adhere to bone surfaces by integrins and

start to form resorptive lacunae [64] . Between an osteoclast and

the alveolar bone, an isolated lacuna arises, called Howship’s la-

cuna. In this lacuna, the pH decreases by the secretion of H + ions

and proteolytic enzymes, such as cathepsins and MMPs, including

collagenases, degrade the ECM of the PDL and the organic matrix

of the alveolar bone [26] . 

In addition, another pathway that stimulates osteoclastogene-

sis under negative strain is through an increase in ephrin-A2 and

EphA2 expression. This pathway may play a role as important as

the RANKL/OPG, but further investigation is needed [65] . 

9. Conclusions 

The PDL and alveolar bone make up a functional unit that un-

dergoes robust remodeling in OTM. Complex molecular signaling

is responsible for converting mechanical stresses into biochemi-

cal events, with a net result of bone apposition and/or bone re-

sorption. Despite our improved understanding of mechanical and

biochemical signaling mechanisms, it is still largely unknown how

mechanical stresses regulate the differentiation of stem/progenitor

cells into osteoblast and osteoclast lineages. To advance orthodon-

tics, it is crucial to gain a better understanding of osteoblast differ-
Please cite this article as: J.C. Maltha and A.M. Kuijpers-Jagtman, Mech
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entiation from mesenchymal stem/progenitor cells and osteoclasto-

genesis from the hematopoietic/monocyte lineage. 

The field of orthodontics has come a long way since the Angle

era, where the design of orthodontic force systems was largely em-

pirical based. The orthodontic community now has tools for explor-

ing the cellular and molecular events involved in OTM, including

how stem cells differentiate into osteoblasts and osteoclasts. This

newfound understanding will take orthodontics to new heights, be-

yond the technological achievements of the last decades. 
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