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Abstract: Optimizing nutritional intake and timing helps athletes to improve performance and
long-term health. Different training phases can require varying nutritional needs. In this study, we
conducted a descriptive assessment of dietary intake, energy availability (EA), and blood biochemical
parameters in elite wheelchair athletes during distinct training phases. Data analyzed in this study
were collected as part of a randomized controlled crossover trial exploring the feasibility of probiotics
and prebiotic supplementation. Data were obtained from consecutive three-day diaries and blood
samples, both collected at four different time points across four consecutive months. We included
14 athletes (mean (standard deviation) age 34 (9) years, eight females, and six males) active in different
wheelchair sports. The mean daily nutritional intake (g/kg body mass) for females and males was
2.7 (0.9) and 4.0 (0.7) for carbohydrates, 1.1 (0.3) and 1.5 (0.3) for protein, and 0.8 (0.3) and 1.4 (0.2)
for fat. EA did not change across the four time points in either female (p = 0.30) or male (p = 0.05)
athletes. The mean EA was lower in female athletes compared to male athletes (p = 0.03). Low EA
(≤30 kcal/ kg fat-free mass/day) was observed in female (58 (29) % of days) and male (34 (23) % of
days) athletes. Iron deficiency with anemia was observed in two female athletes. Mean vitamin D
levels were insufficient (<75 nmol/L). Macronutrient intake, EA, and blood biochemical parameters
were suboptimal in this cohort of elite wheelchair athletes, especially in female athletes.

Keywords: paraplegic; tetraplegic; nutrition; Paralympic; season; spinal cord injury; macronutrient;
micronutrient

1. Introduction

To maintain a long-term and successful career, elite athletes try to prevent health prob-
lems and maximize training adaptations. This includes not only managing training volume
and intensity, along with recovery, but also tailoring nutrition to individual needs [1].
Nutritional intake depends on factors such as training content, intensity, duration, and
overall load, as well as individual goals such as optimizing body composition for peak per-
formance in a major competition. An important indicator of the balance between training
and nutrition is energy availability (EA). EA refers to the energy that remains to support
optimal health and body function after subtracting exercise energy expenditure (EEE) from
energy intake (EI) [2]. An EA of 30 kcal/kg fat-free mass (FFM)/day or less is defined as
low energy availability (LEA) in able-bodied athletes [3]. Prolonged LEA can impair train-
ing, recovery, and performance and may result in health issues such as low bone mineral
density, micronutrient deficiencies, and menstrual and hormonal dysfunction [1,3–5].

While research on EA in able-bodied athletes is emerging, studies in wheelchair athletes
are scarce [6–9]. Depending on the impairment, wheelchair athletes may exhibit differences
in musculoskeletal and gastrointestinal function, as well as body composition, compared to
able-bodied athletes [10–14]. These differences may also affect resting energy expenditure
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(REE), EEE, and ultimately EA. Lower REE (up to 27% less) and EEE (up to 75% less) have been
observed in individuals with spinal cord injuries (SCI) compared to able-bodied individuals,
although most of these findings are from studies in non-athletic populations and show
conflicting results for REE [7,10,13,15]. The extent of these differences depends on the lesion
level and completeness of the SCI. Due to these differences, guidelines regarding EI, intake
timing, and thresholds for LEA originally designed for able-bodied athletes may not be
directly applicable to wheelchair athletes [7,10,13,14,16]. Particularly for athletes with SCIs,
protein and carbohydrate requirements may vary depending on their lesion characteristics and
comorbidities [17,18]. Nevertheless, dietary guidelines for wheelchair athletes are generally
based on recommendations for able-bodied athletes [7,11,12,17,18]. LEA has been associated
with impaired iron metabolism, including iron deficiency [19]. Assessing micronutrient
levels and immune status, in addition to EA, provides a better understanding of an athlete’s
overall health. Furthermore, correction of ferritin and vitamin D deficiencies may improve
athletic performance [1,19–23].

Although cut-off values for LEA in wheelchair athletes have yet to be established,
it appears to be prevalent in this population [8,9]. Studies assessing EA at different time
points are lacking. Training volume and intensity, as well as body composition goals, may
change during different training phases [24]. Therefore, EA may also vary. This makes
the assessment of EA across different training phases of the athletic season particularly
relevant. Our study aimed to assess dietary intake, EA, and blood biochemical parameters
at four consecutive time points during the pre-competition and competition phases in elite
wheelchair athletes participating in a pilot feasibility study.

2. Materials and Methods
2.1. Setting and Study Population

Data analyzed in this study were collected between March and October 2021 as part
of a pilot study for which the protocol, participant flowchart, and feasibility results have
been published elsewhere [25,26]. This pilot study aimed to assess the feasibility of a
randomized controlled crossover trial investigating the effects of probiotic and prebiotic
supplementation on the health of elite Swiss wheelchair athletes. Athletes received either
daily probiotic or prebiotic supplementation for four weeks, followed by a four-week
washout period, and another four weeks of daily supplementation with the other sup-
plement. Written informed consent was obtained from all participants. The study was
conducted in accordance with the Declaration of Helsinki, approved by the Swiss Ethics
Committee for Northwest/Central Switzerland (EKNZ, project ID: 2020-02337) and reg-
istered at ClinicalTrials.gov (NCT04659408). As part of the standard support for elite
wheelchair athletes in our department, all athletes have received recommendations from
a qualified nutritionist at least once a year. This included advice on how to optimize
nutritional intake around training and competition.

2.2. Data Collection

Prior to the first time point, a full-body dual-energy X-ray absorptiometry (DXA) was
performed using a Lunar iDXA scanner (GE Healthcare Lunar, Madison, WI, USA) to
assess body composition. Baseline characteristics including height, type of sport, and—if
applicable—lesion characteristics were collected at the first time point. Further measure-
ments took place at each of the four time points; T0 = baseline, T1 = 4 weeks, T2 = 8 weeks,
and T3 = 12 weeks. Athletes were instructed to record their weighed food intake and pho-
tograph their meals for three consecutive days prior to each of the time points. Similarly,
exercise information was recorded for three consecutive days prior to each time point on
a paper form or in an online training diary program. Details on time, duration, type of
sport, and intensity were documented. Training intensity was rated using one out of four
intensities according to Hottenrott [27]: recovery, basic endurance, moderate endurance,
or submaximal to maximal work (interval training). All dietary and training diaries were
reviewed by qualified study personnel at each time point, and entries were discussed
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and corrected with the athlete as needed. As the measurement time points took place at
different days of the week, dairies included entries from weekdays and weekends, as well
as training days and non-training days. At each time point, body mass (BM) was assessed
by measuring the athlete separately from their wheelchair. A fasting blood sample was
obtained from the antecubital vein at each time point. The following parameters were
measured: hemoglobin (photometric method, XN-1000, Sysmex, Switzerland), ferritin
(latex particle-enhanced turbidimetric immunoassay (LETIA), Cobas 6000 c501, Roche,
Switzerland), c-reactive protein (CRP, latex particle-enhanced turbidimetric immunoassay
(LETIA), Cobas 6000 c501, Roche, Switzerland), and vitamin D (25(OH)D, electrochemilu-
minescence immunoassay (ECLIA), Cobas 6000 e601, Roche, Switzerland). At each time
point, the frequency of 36 GI symptoms during the previous two weeks was measured
on a four-point Likert scale (ranging from 0 = “all the time” to 4 = “never”) using the
Gastrointestinal Quality of Life Index (GIQLI) questionnaire [28].

2.3. Data Preparation

EEE was calculated based on the energy expenditure recommendations of Conger
and Basset [29]. Nutrient analysis software (PRODI 6.11, Nutri-Science GmbH, Stuttgart,
Germany) was used to calculate EI and macronutrient intakes. Relative nutritional intakes
(g/kg BM) were calculated for carbohydrates, protein, and fat. Compliance with dietary
recommendations was assessed for the intake of carbohydrates (3–12 g/kg BM), protein
(>1.2 g/kg BM), and fat (20–35% of total intake) [1,17]. The timing of carbohydrate intake
in the last 1–4 h before exercise (1–4 g/kg BM) and protein intake within one hour after
exercise (20–30 g) was analyzed. EA was calculated as EI (kcal/day) minus EEE (kcal/day)
relative to the FFM [30]. EA was categorized as “LEA” (≤30 kcal/kg FFM/day) [3]. EEE,
EI, and EA were calculated over the three consecutive days at each time point as well as
over the entire study. Anemia was defined as a hemoglobin level <120 g/dL (females)
or <140 g/dL (males) [21]. Iron deficiency was defined as a ferritin level <30 µg/L [21].
Vitamin D levels below 75 nmol/L were defined as insufficient [31].

2.4. Data Analyses

Mean and standard deviation (SD) were calculated for all parameters. Shapiro–Wilk
tests and Mauchly’s Tests of Sphericity were run to test for the violation of assumptions of
normality and sphericity (p > 0.05). Assumptions were violated for BM and carbohydrate
intake in both sexes, and for EEE in females. Accordingly, differences between sexes, lesion
levels, and sports were assessed using t-tests or Wilcoxon–Mann–Whitney tests. Differences
in parameters across time points were assessed with one-way repeated measures ANOVA,
one-way repeated measures ANOVA with Greenhouse–Geisser correction, or Friedman’s
tests. Correlations were assessed by Pearson’s correlation. A p-value below 0.05 (two-tailed)
was considered statistically significant. Analyses were performed using Stata (StataCorp.
2017, Stata Statistical Software: Release 16.1. StataCorp LLC: College Station, TX, USA).

3. Results
3.1. Athlete Characteristics

Fourteen athletes (mean (SD) age 34 (9) years) participated in this study (Table 1) and
there were no dropouts. Most athletes were female (n = 8) and had a traumatic SCI (n = 6).
BM was stable at all four time points for both female and male athletes (p ≥ 0.51). No
athlete was on a weight loss diet and only one athlete was on a vegetarian diet. GIQLI
scores throughout the study indicated a low frequency of GI complaints [26]. All athletes
competed at an international level and eight participated in the Paralympics. Athletes
participated in a variety of sports, with the majority participating in outdoor sports (n = 11)
and handcycling (n = 4). As most athletes competed in summer sports, the study took place
during the pre-competition and competition seasons for most of the athletes. Additional
athlete characteristics have been published previously [26].
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Table 1. Athlete characteristics.

Overall Females (n = 8) Males (n = 6)

Age (years) 34 (9) 32 (11) 36 (8)
Height (cm) 165 (13) 159 (14) 172 (7)
Body mass (kg) 58 (10) 59 (12) 58 (7)
BMI (kg/m2) 22 (4) 23 (5) 20 (2)
Fat mass (kg) 18 (8) 22 (8) 13 (4)
FFM (kg) 40 (8) 36 (5) 46 (7)
Diagnosis (n(%))

Traumatic SCI 6 (43) 2 (25) 4 (67)
Meningomyelocele 5 (36) 3 (38) 2 (33)
Multiple sclerosis 2 (14) 2 (25) 0 (0)
Arthrogryposis 1 (7) 1 (13) 0 (0)

Time since injury (years) 19 (4) 18 (6) 20 (4)
NLI (n(%))

Tetraplegia 4 (36) 2 (40) 2 (33)
Paraplegia 7 (64) 3 (60) 4 (67)

AIS (n(%))
A 5 (56) 2 (50) 3 (60)
B–C 3 (33) 1 (25) 2 (40)
D 1 (11) 1 (25) 0

Mean training duration
(hours/week) 14 (5) 14 (5) 14 (6)

AIS = American spinal injury association impairment scale, BMI = body mass index, FFM = fat-free mass,
NLI = neurological level of injury, and SCI = spinal cord injury. Data are reported as mean (standard deviations)
unless indicated otherwise.

3.2. Energy Expenditure and Intake

EEE and EI were similar across the four time points, and also within both sexes
(p ≥ 0.10). Relative carbohydrate intake was similar across time points in male athletes,
with values decreasing from time point T0 (4.5 (0.9) g/kg BM) to T2 (3.5 (0.5) g/kg BM)
and increasing again at the last time point (4.1 (08) g/kg BM, p = 0.05, Figure 1A). Across
the four time points, relative carbohydrate intake did not differ in female athletes (p = 0.75).
Relative protein intake was similar across the time points, and also within both sexes
(p ≥ 0.42, Figure 1B). The relative fat intake was similar across time points in both male
and female athletes (p ≥ 0.19, Figure 1C).

When the three-day diaries from all time points were combined, the mean EEE was
344 (139) kcal/day. Mean EI was 1674 (481) kcal/day (Table 2). The overall relative
percentage fat intake was 18 (28)% in females and 21 (2)% in males (Figure 1D). When
comparing athletes with tetraplegia and paraplegia, mean EEE, EI, and macronutrient
intakes by BM were similar (p ≥ 0.17).

Relative carbohydrate intake did not correlate with EEE (p = 0.13, Figure 2A). On
rest days, carbohydrate was higher than on days with higher EEE in some athletes. Daily
carbohydrate intake recommendations were met more often by male than female athletes
(p = 0.02, Table 2). Daily protein intake recommendations were met more often by male
compared to female athletes (p = 0.01). Daily fat recommendations were not met in both
female and male athletes equally (p = 0.67), with most athletes having intakes below
recommendations. A carbohydrate intake of 1–4 g/kg BM within 1–4 h before endurance
training was achieved in 53 (32)% of training sessions, with similar numbers in female and
male athletes (54 (29) vs. 51 (36)%, p = 0.86). Protein intake of 20–30 g within 1 h after
intensive or strength training was achieved in 34 (29)% of sessions, with lower numbers in
female compared to male athletes (14 (20) vs. 58 (17)%, p = 0.004).
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Figure 2. Exercise energy expenditure (EEE) by (A) carbohydrate intake by body mass (BM) and
(B) energy availability. Data from each of the three days for each of the four time points are shown.
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Table 2. Mean nutritional intake across all four time points.

All
(n = 14)

Females
(n = 8)

Males
(n = 6)

Daily energy intake
Total energy intake (kcal) 1674 (481) 1343 (257) 2116 (315)
Daily Carbohydrate Intake
Total intake (g) 190 (56) 156 (41) 235 (38)
Relative intake (g/kg BM) 3.3 (1.0) 2.7 (0.9) 4.0 (0.7)
Recommended intake

3–12 g/kg BM (% of days) 57 (36) 39 (34) 80 (22)

Daily Protein Intake
Total intake (g) 73 (19) 62 (13) 87 (17)
Relative intake (g/kg BM) 1.3 (0.3) 1.1 (0.3) 1.5 (0.3)
Recommended intake >1.2

g/kg BM (% of days) 52 (30) 36 (24) 74 (24)

Daily Fat Intake
Total intake (g) 63 (23) 47 (14) 83 (15)
Relative intake (g/kg BM) 1.1 (0.4) 0.8 (0.3) 1.4 (0.2)
Recommended intake

20–35% of total energy (% of
days)

42 (23) 40 (28) 45 (15)

BM = body mass. Data are reported as mean (standard deviations).

3.3. Energy Availability

Although not significant (p = 0.05), EA fluctuated across time points in male athletes,
with values decreasing from time point T0 (44 (10) kcal/kg FFM/day) to T2 (34 (9) kcal/kg
FFM/day) and increasing again at the last time point (41 (10) kcal/kg FFM/day, Figure 3,
Table 3). EA across time points was similar in female athletes (p = 0.30).
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The mean EA across all time points was 32.1 (10.2) kcal/ kg FFM/day with lower
values in female compared to male athletes (p = 0.03, Table 3). Mean EA was similar in
athletes with tetraplegia and those with paraplegia (p = 0.40). LEA was prevalent for at least
one day in every athlete. The percentage of LEA days was similar between female and male
athletes (p = 0.12). Athletes with tetraplegia had a similar percentage of LEA days compared
to athletes with paraplegia (46 (22)% vs. 36 (28)% of days, p = 0.54). Handcycling athletes
had a similar percentage of LEA days compared to athletes in other sport disciplines
(25 (6)% vs. 56 (29)% of days, p = 0.06).
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Table 3. Energy availability.

Sport
Mean (SD) EA over Three Days Mean (SD) EA All

Time Points
Number of
Days LEAT0 T1 T2 T3

F01 Cycling 29.6 (11.8) 26.8 (7.7) 50.2 (7.6) 43.3 (7.0) 37.5 (11.1) 3/12
F02 Tennis 24.7 (2.1) 30.1 (9.7) 38.1 (5.5) 30.8 (12.6) 30.9 (5.5) 6/12
F03 Badminton 15.5 (5.7) . 9.4 (4.4) 10.2 (10.7) 11.7 (3.3) 9/9
F04 Athletics 17.7 (4.7) 18.3 (9.4) . 24.9 (18.7) 20.3 (4.0) 8/9
F05 Shooting 17.2 (6.8) 41.2 (15.2) 25.6 (5.7) 42.0 (17.6) 31.5 (12.2) 7/12
F06 Tennis 38.8 (4.2) 33.4 (13.7) 35.3 (6.7) 42.4 (11.5) 37.5 (4.0) 3/12
F07 Tennis 25.8 (10.7) 14.3 (22.2) 4.3 (5.8) 52.6 (9.5) 24.3 (20.8) 6/12
F08 Basketball 39.9 (44.3) 21.2 (25.0) 13.4 (21.4) 22.2 (32.1) 24.2 (11.2) 9/12

Total female
athletes 26.2 (9.5) 26.5 (9.3) 25.2 (16.9) 33.6 (14.0) 27.2 (8.9) 58 (29)%

M01 Cycling 48.1 (10.7) 45.1 (12.1) 25.8 (5.0) 30.8 (5.2) 37.5 (10.8) 4/12
M02 Athletics 37.3 (14.7) 30.3 (24.9) 30.2 (15.2) 40.5 (12.8) 34.6 (5.2) 5/12
M03 Athletics 36.0 (16.6) 19.1 (10.0) 25.8 (2.9) 28.4 (6.4) 27.3 (7.0) 9/12
M04 Cycling 59.1 (15.1) 50.1 (10.2) 48.4 (17.6) 42.8 (19.3) 50.1 (6.7) 2/11
M05 Cycling 50.2 (15.5) 38.3 (7.2) 42.6 (13.0) 54.5 (2.2) 46.4 (7.3) 1/12
M06 Cycling 35.8 (4.6) 30.9 (14.9) 30.6 (6.2) 47.7 (16.5) 36.3 (8.0) 3/12

Total male
athletes 44.4 (9.6) 35.6 (11.2) 33.9 (9.4) 40.8 (10.0) 38.7 (8.3) 34 (23)%

All athletes 34.0 (13.1) 30.7 (10.9) 29.2 (14.2) 36.7 (12.5) 32.1 (10.2) 48 (28)%

SD = standard deviation, EA = Energy Availability (kcal/kg fat-free mass/day), and LEA = low energy availability
(≤30 kcal/kg fat-free mass/day). T0 = baseline, T1 = 4 weeks, T2 = 8 weeks, and T3 = 12 weeks. “.” = values were
missing for F03 at T1 and F04 at T2.

Large variations in daily EA were found in most athletes, especially in female athletes
(Table 3). The largest range was found in athlete F08, whose EA ranged from −11 to
90 kcal/kg FFM/day. A moderate negative correlation was found between daily EA and
EEE (r = −0.53, n = 159, p < 0.001, Figure 2B). This correlation was moderate in female
(r = −0.63, n = 88, p < 0.001) and small in male (r = −0.42, n = 69, p < 0.001) athletes.

3.4. Blood Biochemical Parameters

CRP levels exceeded 5 mg/l in five athletes in three time points, with a maximum
value of 12 mg/L. Mean ferritin levels were 56 (43) µg/L in female and 145 (90) µg/L in
male athletes (Figure 4A). Insufficient ferritin levels were observed in three female athletes
but none of the male athletes (Table 4). Two female athletes had an iron deficiency with
anemia, with one of them demonstrating this at all time points. Mean vitamin D levels
were insufficient (72 (17) nmol/L). Only one athlete maintained sufficient vitamin D levels
at all time points. Vitamin D levels increased slightly during the summer months (generally
T2 and T3) in male athletes but less in female athletes (Table 4, Figure 4B).
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Table 4. Blood biochemical parameters.

T0 T1 T2 T3

Hemoglobin (g/L) 138 (11) 135 (14) 137 (12) 138 (15)
Anemia (n (%))
Females (hemoglobin < 120 g/dL) 1 (13) 1 (13) 2 (25) 1 (13)
Males (hemoglobin < 140 g/dL) 2 (33) 3 (50) 2 (33) 1 (17)

Iron deficiency (<30 µg/L) (n (%))
Females 3 (38) 2 (25) 3 (38) 2 (25)
Males 0 0 0 0

Iron deficiency with anemia (n (%))
Females 1 (13) 1 (13) 2 (25) 1 (13)
Males 0 0 0 0

Insufficient vitamin D (<75 nmol/L)
(n (%))

Females 6 (75) 6 (75) 5 (63) 4 (50)
Males 5 (83) 3 (50) 1 (17) 3 (50)

Data are reported as mean (standard deviations).

4. Discussion

We evaluated EI and EA at four distinct time points during the athletic season in
wheelchair athletes. Most athletes competed in summer sports. As data collection took
place from spring until fall, this represents pre-competition and competition seasons for
most of the athletes. Neither EA nor EI displayed significant differences across the various
time points. Interestingly, all of the athletes experienced LEA for at least one day, indicating
how tough fueling is for elite athletes. Furthermore, daily macronutrient intake and timing
were frequently suboptimal, with athletes not adjusting EI to accommodate higher training
loads. The results are somewhat surprising considering that these are all professional
athletes receiving professional support, and it therefore might be assumed that they have
the nutritional knowledge and support to tailor their nutrition to their needs. However, our
findings align with the reality of professional sport and demonstrate significant potential
for improvement in sports nutrition support and implementation.

4.1. Energy Availability and Intake across Athletic Seasons

Optimizing body composition should ideally be achieved before the start of the
competitive season [1]. In the case of a planned BM loss, this allows fat mass to be lost over
a longer period with minimal energy deficit or impact on performance, while avoiding a
yo-yo effect or weight regain. In our study, none of the athletes were on a specific weight
loss diet and BM remained stable at all time points. Unfortunately, body composition
was only assessed once at the beginning of the study. It is possible that body composition
changed during the study to achieve peak performance during the season, without a
change in BM. In a nine-year case study of a female middle-distance runner, an optimized
periodization approach for body composition and EA correlated with long-term health and
steady performance improvement [32].

The EI we observed, even the notably low values in some of our female athletes, is
consistent with findings from previous studies in wheelchair and Paralympic athletes [8,9,33–35].
This consistency reinforces our hypothesis that the low EI may be a contributing factor to the
observed high prevalence of LEA in our athletic cohort. Nevertheless, energy requirements
vary between days and across phases of the athletic season, with higher dietary intakes
required during periods of high training loads [1,30,36]. Especially during the competition
phase, EA should be optimized to maintain health and performance while reducing the
risk of injury. Consistent with previous studies in wheelchair athletes [8,9], we found large
day-to-day fluctuations in EA. However, EEE was similar across time points. Furthermore,
EA remained similar across all four time points in the male athletes. In female athletes, EA
was low throughout the study and indicative of LEA at three time points (Table 3). The
main reason for the LEA was an overall low EI (1343 ± 257 kcal/d) in these athletes. In
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contrast, a study of 88 (24 female) elite able-bodied athletes competing in different sports
found higher EA during the competition phase than in the pre-competition phase [37]. In
these athletes, LEA was found in 13% (2/88 females) of the athletes in the pre-competition
phase but in none during the competitive phase. Especially during a competitive phase,
an optimal EA is crucial to perform and recover well. In our study, athletes did not adjust
carbohydrate intake to training load, leading to an even lower EA with higher training
volume or intensity. In some athletes, carbohydrate intake was indeed higher on rest days
than on training days. This shows, again, how much potential these athletes have regarding
optimal health, performance, and recovery. In comparison, professional able-bodied male
cyclists seem to adjust their EI much better to EEE [38]. However, the increased EI was still
insufficient to meet the higher energy demands, resulting in suboptimal EA. Again, this
highlights how difficult fueling can be for professional athletes and how well-planned and
structured nutrition must be [4]. A review of able-bodied endurance athletes indicated that
female athletes are even worse at adapting EI to EEE, especially during the competitive
phase [24]. This puts female athletes at particularly high risk for LEA. Even a few days
of LEA can affect performance, while prolonged LEA can pose serious health risks [1,4].
Female athletes with SCI are no exception to this and may be at an even higher risk for
LEA [6].

4.2. Macronutrient Intake across Athletic Seasons

Adequate daily protein intake (>1.2 g/kg BM) is essential for athletes to induce training
adaptations and facilitate recovery during all training phases, especially to compensate for
the high muscle protein turnover rate [1,36]. Our results showed that male athletes were
aware of this, as protein intake was adequate (1.5 (0.3) g/kg BM) at all four time points.
In female athletes, however, protein intake was at the lower end of the recommendations
(1.1 (0.3) g/kg BM). Another study in elite athletes with SCI (19/39 females) found a similar
protein intake during the pre-competition (1.2 g/kg BM) and the post-competition phase
(1.4 g/kg BM) [34].

Unlike protein, carbohydrate intake must be periodized according to training load
or individual goals [1]. It might be lower if an athlete is trying to lose weight. However,
during the competition phase, athletes should not reduce carbohydrate intake to prevent
underfueling. As carbohydrates are used as a primary energy source during high-intensity
work, one would not want to put their performance at risk [36]. Carbohydrate intake across
time points showed some variation in our male athletes (range 3.5 to 4.5 g/kg BM), but
less so in our female athletes (range 2.6 to 3.1 g/kg BM). Furthermore, carbohydrate intake
was relatively low, considering that 3 g/kg BM per day is considered the low end of the
recommended carbohydrate intake for athletes, for example on training days with very
low volume or intensity [1]. However, our athletes also consumed insufficient amounts of
carbohydrates on training days of moderate to high training volume or intensity. Similar
findings were reported in another study performed with athletes with SCI [34]. Here,
carbohydrate intake was reported to be similar in both the post-competition (3.5 (1.2) g/kg)
and the pre-competition (3.1 (0.8) g/kg) phases. The latter study did not assess EEE so the
carbohydrate could not be placed in a broader perspective. Nevertheless, it appears that
there is a need to optimize carbohydrate intake according to the athletes’ needs. Female
athletes especially tend to fear carbohydrate intake due to concerns about weight gain,
which puts them at an increased risk of LEA [39].

4.3. Blood Biochemical Parameters

Iron deficiency without anemia impairs oxidative capacity, leading to health and exer-
cise complications [1,19,40]. In iron deficiency with anemia, iron deficiency is accompanied
by compromised hemoglobin levels, which limits oxygen transport to the muscle and
further impairs exercise performance [19]. Iron deficiency is more prevalent in athletes
compared to non-athletes due to exercise-induced effects on iron metabolism, inadequate
iron intake, and generally low EI [19]. Long-term effects of LEA, including menstrual and
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hormonal dysfunction, may further impact iron stores [19,40]. Data on the prevalence of
iron deficiency in wheelchair athletes are scarce. A study of 13 female wheelchair basketball
players reported ferritin levels of 32 (29) µg/L [41], which is lower than the levels we found
in our female athletes (56 (43) µg/L). In our study, three female athletes but none of the
male athletes showed iron deficiency without anemia. Two other female athletes presented
with iron deficiency with anemia. One of them showed these symptoms at all four time
points but did not want to receive oral iron supplementation. Our findings may reflect
results in able-bodied athletes, as iron deficiency is also more common in females (up to
47%) compared to males (up to 17%) in this population [19,40]. Better strategies and more
education are needed to prevent athletes from developing iron deficiencies, especially those
at a higher risk.

Vitamin D plays a role in musculoskeletal and immune function. Therefore, main-
taining sufficient levels is essential for para-athletes and able-bodied athletes [42]. Due
to reduced physical activity and sun exposure, as well as physiological adaptations and
medication use, insufficient vitamin D levels are more prevalent in individuals and athletes
with SCI compared to their able-bodied counterparts [43,44]. It is therefore not surprising
that we found that all but one athlete had insufficient vitamin D levels at all time points.
This is in line with another study showing insufficient vitamin D levels in 39 athletes
with SCI in autumn and in winter months (69.6 (19.7) vs. 67.4 (25.5) nmol/L) [45]. In
20 indoor athletes with SCI, mean vitamin D levels during winter months were even lower
(44 (18) nmol/L) [46].

Several studies in athletes with SCI and other para-athletes have reported insufficient
iron and vitamin D intakes [34,35,47]. Reduced total EI, including vitamin D-rich foods
such as fish or fortified milk and iron-rich foods such as meat, may increase the risk of
low micronutrient levels. Insufficient iron or vitamin D levels should be prevented to
maintain overall health and performance [1,11,42]. Regular screening of these biochemical
parameters may help to prevent insufficiencies.

4.4. Strengths and Limitations

This is the first study evaluating EA during different training phases of wheelchair
athletes. One limitation of our study is that not all athletes competed in the same sport
type, resulting in unmatched time points in terms of the athletic season. However, this bias
was minimized as most athletes competed in summer sports. Therefore, most athletes were
in the pre-competition phase at the first two time points and in the competition phase at
the last two time points. Nutrition knowledge was not assessed in this study. It may be
that some of our athletes, such as endurance athletes, are more aware of the importance of
fueling, especially carbohydrate intake [48]. Since all of our male athletes were active in
endurance sports, this may explain some of the variation. A comparison between different
sport types, for example between athletes participating in summer and winter sports,
would be interesting for future studies.

DXA measurements have been identified as the most accurate tool to assess whole-
body fat, regional fat mass, and FFM in adults and athletes with SCI [49,50]. As we did not
find any change in BM over the four time points, it would have been interesting to see if
there were any changes in body composition during this period. Nonetheless, including
more DXA measurements was not feasible due to the increased burden and cost, including
radiation exposure.

Data collection using diaries is subject to under- or over-reporting, which may have
influenced our results. The collection of physical activity data based on self-reported
training diaries may lead to over- or underestimation of EEE and thus EA [51]. As most
of the athletes are regularly supervised during training and undergo exercise testing in
our department, we know that the data collected in our study correspond to the actual
training. All diaries were reviewed by qualified study personnel and photographs were
provided together with the diary to reduce bias. Similar results regarding EI in female
wheelchair athletes were found in another study within our department [9]. These and
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our new data clearly show that female athletes are restricting carbohydrate intake and
not energy intake per se. Furthermore, despite the low EA, BM remained similar over
the course of the study. This may indicate that the EA, and therefore the EI, we found is
indeed correct and reflects a longer-term problem that already existed before the study
began [52]. For these reasons, we speculate that underreporting was not widespread among
our athletes. However, we are aware that underreporting in food diaries is a common bias
in most studies [7,53]. We posit that a three-day data collection period, including both
weekdays and weekends as well as training and non-training days, can mitigate potential
bias and provide a reliable representation for the analysis of a high-quality weighed food
record [54]. Nevertheless, we acknowledge that data collected over an entire week may be
even more comprehensive in an athletic population given the daily variation in training
regimens. Moreover, without any data on the risk of eating disorders, we cannot exclude
eating disorders as an explanation for low EI. Micronutrient intake was not assessed in
this study, preventing us from evaluating potential associations with ferritin or vitamin D
intake, and blood status or supplementation recommendations.

It remains unknown whether the cut-off values for LEA in able-bodied athletes can be
applied to wheelchair athletes [14]. This complicates the classification of EA in our athletes.
Nevertheless, comparisons between sexes or different time points were not affected by this,
as we applied the same analysis and cut-offs to all measurements.

The data analyzed in this study were collected as part of a clinical trial. The athletes
were asked not to change their diet or exercise patterns. The intervention evaluated in the
clinical trial, the intake of probiotic and prebiotic supplementation, was also not expected
to influence diet and exercise patterns. Nevertheless, participation in a clinical trial may
have affected the behavior of the athletes. We speculate that this only had a minimal impact
on the findings reported in this study.

4.5. The Future of Nutrition in Wheelchair Athletes

Dietary guidelines for able-bodied individuals may not be directly transferable to
wheelchair athletes due to differences in energy requirements, intestinal dysmotility, and
other physiological adaptations [7,10,13,14,16]. In the absence of specific guidelines for
wheelchair athletes, we compared the nutritional intake of our athletes with the guidelines
for able-bodied athletes. Nevertheless, the sports nutrition practices revealed in this study
highlight significant potential for improvement. Providing information and education
regarding sports nutritional knowledge to these athletes may be a possible solution. A
survey in an international cohort of athletes with SCI found a modest knowledge of sports
nutrition (<60% of questions answered correctly), on topics such as weight management,
timing, quality, and quantity of macronutrient intake [48]. The internet was ranked as the
primary source of information, with advice from nutritional experts ranked second. This is
yet another indication of where sports nutrition professionals need to focus their efforts in
the future.

A study involving six athletes with lower-limb disabilities reported that the athletes
did not receive regular advice from a dietitian [55]. Although nutritional knowledge was
not assessed in our study, all athletes received recommendations from a sports nutritionist
at least once a year. Nutritional guidance after the onset of SCI tends to focus on weight
management, as energy requirements are lower than before SCI onset [7]. As patients
become athletes, they need specific guidance on how to adapt and optimize their nutrition
to align with their training schedules. Athletes may still be concerned about weight gain
and may tend to restrict calories even as they increase the frequency and intensity of their
exercise. This was also observed in a survey of 260 para-athletes, where 47% considered
themselves overweight and 44% felt pressure to maintain BM [56]. Moreover, 62% of the
athletes in the latter survey study were currently trying to change their body composition or
lose weight to enhance their performance. This underscores the importance of monitoring
any intentional changes to body composition or BM by a qualified sports nutritionist [52].
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Our study highlights the need for specific nutritional guidelines tailored to wheelchair
athletes, as well as the importance of continuous education and guidance from quali-
fied sports nutritionists. Further research is necessary to develop and implement these
guidelines to support the unique needs and demands of this population.
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