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Coupled-oscillator model to analyze the interaction between a quartz resonator and trapped ions
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The novel application of a piezoelectric quartz resonator for the detection of trapped ions has enabled
the observation of the quartz-ions interaction under nonequilibrium conditions, opening new perspectives for
high-sensitive motional frequency measurements of radioactive particles. Energized quartz crystals have (long)
decay-time constants in the order of milliseconds, permitting the coherent detection of charged particles within
short time scales. In this paper we develop a detailed model governing the interaction between trapped 40Ca+

ions and a quartz resonator connected to a low-noise amplifier. We apply this model to experimental data
and extract the ions’ reduced-cyclotron frequency in our 7-T Penning trap setup. We also obtain an upper
limit for the coupling constant g with the present quartz-amplifier-trap (QAT) configuration. The study of the
reduced-cyclotron frequency is especially important for the use of this resonator in precision Penning-trap mass
spectrometry. The improvement in sensitivity can be accomplished by increasing the quality factor of the QAT
configuration, which in turn will improve the performance of the system towards the strong-coupling regime.

DOI: 10.1103/PhysRevA.107.053116

I. INTRODUCTION

Electronic detection of trapped charged particles in Pen-
ning traps is used in a variety of experiments in fundamental
physics [1,2] as well as for applications in chemistry and
biology [3]. Most of these experiments pertain to mass spec-
trometry aiming at reaching the highest precision when only a
single ion [4] or an ion pair [5] is in the Penning trap, or when
the highest precision is not required, aiming at identifying
molecules using tens of ions or more from the same species
without frequency-selective amplification. The increase in
sensitivity to reach single-ion detection relies mainly on the
use of high-Q resonators, which until very recently were made
mostly of superconducting solenoids [6,7]. Recent develop-
ments in Penning trap experiments have demonstrated that
quartz crystals can serve as resonators, covering, depending
on the cut along the crystallographic axis of the crystal,
different frequency regimes, from MHz (AT cut) [8] to a
few hundred kHz (SL cut) [9]. The latter work includes the
first proof of a cyclotron-frequency ratio measurement of two
ion species. Quartz resonators benefit from a relatively long
decay-time constant of a few milliseconds when the quartz
is energized by a resonant radio-frequency (rf) field. This
has resulted in the observation of the coherent interaction
between the resonator and trapped ions under nonequilibrium
conditions, without the need for long observation times. This
has been presented in a recent work [10] opening prospects for
nondestructive detection of exotic nuclei at existing facilities
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[11,12] or facilities under construction [13]. Two models were
introduced in Ref. [10], one based on the ions’ equivalent
circuit [14], which is the one applied in precision Penning-trap
mass spectrometry [15], and the other based on the coupling
between the quartz and ions considering each system as a
harmonic oscillator. In this paper we have fully developed
the coupled-oscillators model using the experimental data
presented in Ref. [10]. An analysis procedure has been estab-
lished, which allows us to extract precise motional frequency
values from the quartz-ion interaction at different times after
the ions and the crystal have been energized. Important pa-
rameters for the applicability of the system are the coupling
constant and the ions’ reduced-cyclotron frequency. A high
precision in the determination of the latter might allow using
this system for Penning-trap mass spectrometry on a single
ion, a field exploited so far with stable ions, in the domain
of superconducting-solenoid based detection setups [1,2,4].
This approach calls for single-ion sensitivity. Due to the range
of frequencies available, another application in the field of
Penning-trap mass spectrometry will be the coupling of ions
in physically separated traps [16]. This will allow using flu-
orescence photons from a laser-cooled 40Ca+ (sensor) ion
to weigh heavy nuclei [17], extending what has been done
for the cooling of protons via a cloud of laser-cooled 9Be+

ions when connecting the two traps to an LC circuit [18].
Such coupling, and the unique feature of operation under
nonequilibrium, might extend the use of quartz crystals and
the model presented here beyond mass spectrometry with fur-
ther exploitation of the hybrid system quartz ion for quantum
applications [19].
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II. PENNING TRAP AND INDUCED IMAGE CURRENT

In a Penning trap an ion with mass mion and charge qion is
confined by the superposition of an electrostatic quadrupole
field with a strong homogeneous magnetic field [20]. The
latter defines the revolution-symmetry axis ( �B = B �ez) of the
device made in the simplest configuration by a ring electrode
and two endcaps. The configuration of the electrodes is such
that the electrostatic potential inside the trap volume, when a
voltage U0 is applied between the ring and endcap electrodes,
is given by

V (x, y, z) = U0

4d2
(−x2 − y2 + 2z2), (1)

where d = 1
2

√
2z2

0 + d2
0 and z0 and d0 are the distances from

the trap center to the endcap and ring electrode, respectively.
The ion motion due to the Lorentz force acting on it can be
depicted as the superposition of three eigenmotions, one in
the axial direction with a characteristic frequency

ωz =
√

qionU0

miond2
, (2)

and two in the radial plane with characteristic frequencies

ω± = 1
2

(
ωc ±

√
ω2

c − 2ω2
z

)
(3)

where

ωc = qionB

mion
(4)

is the cyclotron frequency of the ion. The subscripts + and
− in Eq. (3) represent the modified-cyclotron and magnetron
motion, respectively. The quantum Hamiltonian is presented
in Appendix A.

The reduced-cyclotron frequency can be measured if an
electrode is used as pick-up current detector, since this current
is modulated by the ion motion. Our experiments are focused
on the detection of ω+, and thus the radial motion in the x − y
plane has to be considered. In a first-order approximation of
the radial motion, the charge induced on the detection segment
(DS in Fig. 1) by a trapped ion only depends on x (following
the nomenclature in Fig. 1) as

Qion(x, y) ≈ Qion(x, 0) ≈ −qionα

2

(
1 + x

d0

)
, (5)

where α is a geometrical factor that accounts for the deviation
of the geometry of the trap electrodes from the ideal case of
two parallel plates, and d0 is depicted in Fig. 1. The induced
image current is given by

Iion(px, py) ≈ Iion(px, 0) ≈ − qionα

2d0mion
px. (6)

III. THE QUARTZ-ION COUPLED-OSCILLATOR MODEL

The full system is depicted in Fig. 2 and the associated
Hamiltonian comprises the following contributions:

Htotal = Hion + Hq + Hint + Hrf (7)

x
d0

y

quartz

DS

FIG. 1. Transverse cut of a ring electrode in a Penning trap
with cylindrical symmetry. The electrode is divided in four seg-
ments. The ions’ trajectory in the radial plane, considering only
modified-cyclotron motion for illustration purposes, is depicted by
the blue-solid line. The light and dark-gray solid circles represent the
trapped ions when they are far or close, respectively, to the detection
segment (DS) where the current they induce is picked up. DS is
connected to the quartz resonator followed by an amplifier [8].

where Hq denotes the dynamics of the quartz crystal, Hion

denotes that of the trapped ions, Hint denotes the interaction
between the quartz and the ions, and Hrf denotes the interac-
tion of each one with an external rf driving field. All these
terms will be described in the following, giving them as a
function of the creation and annihilation operators a† and a,
for the ions, and b† and b for the quartz.

The Hamiltonian describing the ion motion in a Penning
trap is presented in Appendix A1. Since only the modified-
cyclotron motion is in resonance with the quartz, one can
write

Hion ≈ h̄ω+
(
a†

+a+ + 1
2

) ≡ h̄ωion
(
a†a + 1

2

)
(8)

and 〈a〉 ≡ |〈a〉|eiθa .
The Hamiltonian describing the quartz is given by

Hq =
(

k

Cq

)2
(

mq

2
Î2 + mqω

2
q

2
Q̂2

)
= h̄ωq

(
b†b + 1

2

)
, (9)

FIG. 2. Schematic view of the quartz-ion coupled-oscillators
model. The external (rf) voltage is applied to the electrode on the
left.
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with

b = k

Cq

√
mqωq

2h̄

[
Q̂ + i

ωq
Î

]
(10)

and 〈b〉 ≡ |〈b〉|eiθb its expected value. The operators Q̂ and
Î related to charge and current, respectively, are defined in
Appendix A2. We model the crystal as a cylindrical shape of
length l and consider the vibration to be in the axial direction.
k is a proportionality constant which relates the expansion of
the piezoelectric crystal �l with the applied voltage V , Cq

is the capacitance of the quartz resonator (Q/V ), and mq the
mass of the quartz’s oscillation mode with eigenfrequency ωq.

Following Appendix A3, and considering that the mag-
netron motion is not in resonance, the Hamiltonian describing
the quartz-ion interaction can be written as

Hint =
(

k

Cq

)2
(

−ξNionqionαmq

2d0mion
Î p̂x − ξNionqionαmqω

2
q

2d0
Q̂x̂

)
≈ h̄ga†b + h̄g∗b†a,

(11)

where Nion is the number of trapped ions and g/2π represents
the coupling constant in Hz. Taking into account that ω− 	
ω+ and ωq ≈ ω+, the coupling constant can be written as

g = i
k

Cq

ξqionα(ωq + 2ω−)

4d0

√
Nionmqωq

mion(ω+ − ω−)

≈ i
k

Cq

ξqionαωion

4d0

√
Nionmq

mion
. (12)

The Hamiltonian describing the interaction between the
ions and quartz crystal with an external rf field reads

Hrf = Fion√
2

cos (ωrft + φion)(a + a†)

+ Fq√
2

cos(ωrft + φq)(b + b†), (13)

where ωrf is the frequency of the field, Fion and Fq are the
amplitudes of the forces exerted on the ions and on the quartz,
respectively, and φion and φq are their phases.

Working in the Heisenberg picture, the operators a and
b oscillate with frequencies e−iωiont and e−iωqt , respectively.
Using the rotating wave approximation we find that

Fion√
2

cos (ωrft + φion)(a + a†) ∼ +Fion√
2

(ei(ωrft+φion)a + H.c.),

(14)

and

Htotal = h̄ω̃iona†a + h̄ω̃qb†b + h̄ga†b + h̄g∗b†a

+ h̄ fion(eiφiona + H.c) + h̄ fq(eiφqb + H.c.) (15)

where ω̃ion = ωion − ωrf and ω̃q = ωq − ωrf, and the effective
forces fion = h̄√

2
Fion and fq = h̄√

2
Fq.

The fundamental model that governs the evolution of the
hybrid quartz-ion system is a master equation of two coupled

oscillators under finite-temperature baths,

i
d

dt
ρ = − i

h̄
[Htotal, ρ] + L(ρ) = Ltot(ρ, t ), (16)

which includes the coherent interaction [Eq. (7)] and a heating
term:

L(ρ) = γqnq

(
b†ρb − 1

2
bb†ρ − 1

2
ρbb†

)
+ γq(nq + 1)

(
bρb† − 1

2
b†bρ − 1

2
ρb†b

)
+ γionnion

(
a†ρa − 1

2
aa†ρ − 1

2
ρaa†

)
+ γion(nion + 1)

(
aρa† − 1

2
a†aρ − 1

2
ρa†a

)
, (17)

where

nq = 1

eh̄ωq/kBTq − 1
≈ kBTq

h̄ωq
(18)

is the phonon number in the thermal bath of the quartz and
γq is a dissipative constant to account for the interaction
with this environment. γq is related to the quality factor Q
of the resonator by γq = ωq/Q. Likewise, nion is the number
of phonons in the thermal bath of the ions, and γion is the
dissipative constant of the ion cloud due to phenomena not
described by Htotal, e.g., internal degrees of freedom in the
cloud, interaction with different electrodes, or collisions with
residual-gas atoms or molecules.

IV. EXPERIMENTAL SIGNAL COMPUTATION

The master equation (16) is linear. We can therefore write
formally its solution for an initial condition ρ(t0) as a positive
map ρ(t ) = ε[ρ(t0), t, t0] with some expression ε[·] to be
determined. In absence of the external driving field, with a
time-independent Lindblad operator Ltot, the positive map is
independent of the initial condition and only depends on the
time interval that we investigate:

ρ(t ) = etLtotρ(0) = εt [ρ(t0)]. (19)

The system evolves following Eq. (16) for a certain time;
then the voltage on the quartz oscillator, Vi(t ), is measured
for sequential times t . This list of voltage traces is Fourier
transformed for every measurement iteration i:

Ṽi(ω; t0, t1) = 1√
t1 − t0

∫ t1

t0

e−iωtVi(t )dt . (20)

The analyzed experimental signal, the power spectral density
(PSD), is approximated by the average of these quantities,
over a number of measurements N , as

S(ω; t0, t1, N ) := 1

N

N∑
i=1

|Ṽi(ω; t0, t1)|2. (21)
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This can be related to any quantum observable in the com-
bined quartz-ion system. From the original time traces

S(ω; t0, t1, N ) =
∫ t1

t0

∫ t1

t0

dτ1dτ2eiω(τ1−τ2 )
N∑

i=1

Vi(τ1)Vi(τ2)

td N
,

(22)
where td = t1 − t0 is the duration of the integrated signal. In
the limit of a large number of measurements N → ∞, this
estimator approximates the PSD evaluated over the initial
quantum state:

S(ω; t0, t1) := 1

td

∫ t1

t0

∫ t1

t0

dτ1dτ2eiω(τ1−τ2 ) 〈V̂ (τ2)V̂ (τ1)〉 . (23)

In the limit of infinite time td and stationary systems, this
quantity approaches the usual definition of power spectral
density [21]:

lim
td →∞ S(ω; t0, t1) :=

∫ ∞

−∞
e−iωτ 〈V̂ (τ )V̂ (0)〉 . (24)

In order to match the experiments and the theory, one needs
to compute two-time correlators 〈V̂ (t1)V̂ (t2)〉 for the quartz-
ion system. This will be approached in a slightly more general
way, and the correlators 〈An(t )Am(t ′)〉 will be computed for a
collection of Fock operators that form a suitable basis for all
the observables of interest:

A =

⎛⎜⎜⎝
a
b
a†

b†

⎞⎟⎟⎠. (25)

Using these operators, one can reconstruct the observables of
interest:

V̂ = V0
1√
2

(b + b†) ≡ vT · A. (26)

In these canonical coordinates, we recover the PSD

S(ω; t0, t1) = Re
∑
m,n

vmvnSmn(ω), (27)

from a slightly more general PSD matrix:

Smn(ω; t0, t1) :=
∫ t1

t0

∫ t1

t0

dτ1dτ2
eiω(τ1−τ2 )

td
〈Am(τ2)An(τ1)〉 .

(28)
Our approach to compute the PSD involves three steps.

The first step is to recover the A operators while the ion
and the quartz are driven. This allows us to obtain the initial
conditions for the spectroscopy experiment, right at the time
t = 0 where the driving field is switched off. The second step
is to solve the correlators during the spectroscopy phase, so
that we can gather the statistics of the voltage traces from t0
up to t1 = t0 + td . The third step is to Fourier transform the
resulting correlators to recover Eq. (23).

Power spectral density computation

As shown in Appendix B the PSD can be written as the
sum of two terms, a thermal noise plus the coherent signal

that results from the damped oscillations in both the quartz
resonator and the ions [Eq. (B19)]. One can also add a fre-
quency independent term arising from the electronic noise of
the circuit, so that the total power can be written as the sum of
three terms:

S(ω) = Scoh(ω) + Sth(ω) + Snoise. (29)

The coherent part of the PSD may be derived from the dynam-
ics of the first-order moments:

Scoh(ω; t0, t1)mn = Ãm(ω; t0, t1)Ãn(−ω; t0, t1), (30)

where

Ãm(ω; t0, t1) = 1√
td

∫ t1

t0

e−iωt 〈Am(t )〉 dt (31)

is the Fourier transform of the first-order moments. Given
the exact dynamics for the first-order moments (B11), these
integrals can be computed (see Appendix B4), obtaining

Ã = (−iω − M)−1[e−iωtd 〈A(t1)〉 − 〈A(t0)〉]. (32)

The voltage PSD is the sum of four terms in the Smn matrix:

Scoh(ω; t0, t0 + td )

= V 2
0

2td
[Ã2(ω) + Ã4(ω)][Ã2(−ω) + Ã4(−ω)]. (33)

This can be simplified, due to the organization of the Ã vector,
Ã4(ω) = Ã2(−ω)∗. In addition, for ω > 0, only the lower-
right sector of the inverse of (−iω − M) [Eq. (B26)] survives,
hence Ã4(−ω) = Ã2(ω)∗ � 0 whenever ω > 0. Thus

Scoh(ω; t0, t0 + td ) = V 2
0

2td
|Ã4(ω)|2, (34)

where

Ã4(ω) = −F (ω)∗ig

{
[e−iωtd 〈a†(t1)〉 − 〈a†(t0)〉]

+
[

i(ω − ωion) + γion

2

]
[e−iωtd 〈b†(t1)〉 − 〈b†(t0)〉]

}
,

(35)

with the envelope

F (ω)∗ = 1[
i(ω − ωion) + γion

2

][
i(ω − ωq) + γq

2

] + |g|2 . (36)

The thermal component of the PSD can be written as the
real part of a single matrix integral (see Appendix B5):

Sth(ω) = 2Re
∑
mn

vmvnS+
mn(ω), with (37)

S+
mn(ω) = 1

td

∑
r

∫ t1

t0

dt
∫ td −t

0
dτe−iωτUmr (τ ) 〈ArAn〉th . (38)
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Since the expectation value inside the integral is constant, one
only needs to compute the matrix:

Q(ω) = 1

td

∫ td

0
dt

∫ td −t

0
dτe(−iω−M)τ

= 1

td
(−iω − M)−2(e(−iω−M)td − 1)

+ (−iω − M)−1 1

td
× td

� (−iω − M)−1 as td → +∞. (39)

Given this simplification in the limit of long integration
times, the thermal PSD is

S+
mn(ω) = 2[(−iω − M)−1T]mn (40)

with the matrix of static correlations from Eq. (B36). Since T
is only nonzero in two sectors, and since we know the explicit
expressions for the inverse of M, one can write

S+(ω) �
(

0 F (−ω)G(−ω)t−†

F (ω)∗G(ω)∗t−† 0

)
. (41)

As before, F (−ω) � 0 for positive values of ω. Out of
this mostly zero matrix, only one element contributes to the
autocorrelation of the potential and the thermal PSD is

Sth(ω) = V 2
0

2
× 2Re[S+

b†b(ω)]. (42)

Introducing the explicit formula for G(ω), one obtains

S+
bb† (ω) = F (ω)∗

{
ig 〈a†b〉th +

[
γion

2
+ i(ω − ωion)

]
〈b†b〉th

}
,

(43)

where 〈a†b〉th and 〈b†b〉th are given in Appendix B6.

V. RESULTS AND DISCUSSION

The fit to the experimental data is done with S(ω)
[Eq. (29)]. Zero padding has been applied to our experimental
data, i.e., a list of equidistant zeros has been added after time t1
until reaching 20 s to improve the resolution of the frequency
spectrum [9]. The terms accounting for the coherent and ther-
mal interaction, named as Scoh(ω) and Sth(ω), respectively,
are shown in Eqs. (34) and (42). Many parameters have to
be considered: Snoise, γion, γq, νion, νq, |g|, nion, nq, |〈a〉|, |〈b〉|,
θa, θb, fion, fq, φion, and φq. We consider θb = 0 because it
can be factored out as a global phase and neglected due to
the absolute value in Scoh(ω). Under this assumption, only the
relative phase δ ∼ θa is relevant for the fit. To simplify the
analysis, we only consider t0 � 0, to neglect the rf field related
terms fion, fq, φion, and φq. A full fitting procedure consists of
three steps described in the following.

(1) Fit of the background signal Sth(ω) + Snoise (without
ions) using Eq. (42) with |g| = 0. This will yield the param-
eters nq, γq, and Snoise. It will also yield νq although this will
be considered as free parameter later. The left panel of Fig. 3
shows the evolution of nqV 2

0 and Snoise for times t0 in which
the quartz is completely thermalized. The right panel shows
the results for γq.

FIG. 3. Left panel: nqV 2
0 (top) and Snoise (bottom) as a function

of the time t0. Right panel: FWHM ≡ γq/2π as a function of the
time t0.

(2) Fit of the full signal S(ω, t0) (with ions) for a fixed
frequency value ω1 = 2πν1, as a function of t0, thus mov-
ing the integration window and taking γion = 0, to obtain
|g| ≈ 2π × 1.45 Hz. t0 = 0 is the time when the rf driving
field is stopped. We consider nion = nq since in equilibrium
the resonator is at room temperature and its interaction with
the ions is done through the detection electrode also at room
temperature. Further details are given in Appendix C.

(3) Fit of the full signal S(ω) (with ions) considering as
fixed parameters γq, γion, nq = nion, and |g|. Five parameters
are obtained from the fit: δ, νion, νq, |〈a(t0)〉|, and |〈b(t0)〉|.

The data points for about Nion = 6000 [10] and the
fits for t0 = 0 are shown in Fig. 4. Results considering
other values of t0 are presented in Fig. 5. The data ac-
quisition window td considered for the fits is always 1 s,
which is a reasonable compromise between a high frequency

FIG. 4. PSD signal as a function of the frequency for t0 = 0 ms.
A zoomed plot is shown in the right panel. The red-solid line in
both panels (fit 1) is the S(ω) fit. The blue-dashed-dotted line (fit
2) is the Sth(ω) + Snoise fit. χ 2

ν = 1.18. The data points and standard
deviations (1 σ ) are the results from N = 20 measurements.
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FIG. 5. Evolution of the PSD signal and fitting function for dif-
ferent times t0. The data points and standard deviations are the results
from N = 20 measurements.

resolution and short acquisition times. For td � 2 s the fit
function S(ω) does not converge since νion is not stable
after some hundreds of milliseconds (see below). The ef-
fective relative phase (ERP) between quartz and trapped
ions, which is defined as ERP ≡ π/2 − arg{g} − δ(t0),
because of the ig∗〈a†(t0)〉 = ei(π/2−arg{g}−δ(t0 ))|g||〈a†(t0)〉| ≡
ei·ERP|g||〈a†(t0)〉| factor in Eq. (35), is ≈150o for t0 varying
from 0 to 25 ms. For t0 > 25 ms, the ERP decreases gradually
down to 0o at t0 ≈ 50 ms. The different phase implies the
subtraction or sum of the Lorentzian functions quantified in
Eq. (35). This gives rise to a dip or a peak signal. The dip

FIG. 6. Evolution of νion obtained from the fit using Eq. (29) as
a function of t0. The vertical line covers 50 mHz.

is only visible while the crystal is still energized after the
driving.

The use of quartz crystals for high-precision Penning-trap
mass spectrometry relies on how accurately motional frequen-
cies can be determined. A final statement on the accuracy can
be made if single-ion sensitivity is reached. The discussion
here is limited to the improvement in precision observed by
applying this model. Figure 6 shows the evolution of νion ≡ ν+
as a function of t0. The analysis procedure developed in this
paper results in a precise value when t0 is varied from 0 to
600 ms, improving the results based on Gaussian fits pre-
sented in Ref. [10]. Using the coupled-oscillators model, the
standard deviation in the range t0 = 0–15 ms is reduced by a
factor of 6 compared to the result obtained from the Gaussian
fits in the previous work. Furthermore, the standard deviation
considering the time range from 0 to 600 ms is only 10 mHz.
The trend in the frequency towards lower values observed in
Fig. 6 might be assigned to the different motional amplitude
of the ions due to the interaction with the energized or room-
temperature quartz. This temperature difference can be only
accounted for if the coefficients to quantify the anharmonici-
ties due to electric-field imperfections are known, and one can
take as reference the value of ν+ from a measurement on a
single ion with the lowest motional amplitudes.

Finally, the case where νion is shifted from νq is outlined.
Figure 7 shows the PSD signal as a function of the frequency
for two different values of t0. For these data, the amplitude
of the rf field was a factor of 16 larger, compared to the
data shown in Figs. 4 and 5. This is because here the ions
were previously laser cooled. A total of 750 ions were trapped
[10]. For the presentation of these data, the analysis procedure
has been shortened, considering the γq variable and using |g|
(scaled with the number of ions) obtained from the first set of
data. Thus, the second step, which is presented in Appendix C,
has been omitted.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have demonstrated that the hybrid system
quartz-trapped ions behaves as a coupled-oscillators system.
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FIG. 7. PSD signals as a function of the frequency for t0 = 5 ms
(top) and t0 = 14 ms (bottom). The red-solid line (fit 1) is the S(ω)
fit. The Sth(ω) fit is not shown since it is not visible in this scale.
Note that the PSD is two orders of magnitude larger compared to
Fig. 4 because the rf field amplitude applied here is 16 times larger.
The data points and standard deviations are the results from three
measurements.

The fitting function to analyze the experimental PSD obtained
for the charge induced by an ion cloud on trap electrodes
has been fully developed. The evolution of the ions’ signal
from a dip to a peak structure is explained due to a change in
the relative phase between the two oscillators and the change
in amplitude of the Lorentzian function used to describe the
response of the quartz crystal. From the analysis procedure,
we obtain the modified-cyclotron frequency, and the first mo-
tivation for our research, i.e., mass spectrometry, has been
discussed. Here, an increase in sensitivity is mandatory, and
can be achieved by increasing the quality factor of the system
and reducing its temperature of operation. In the experiments
reported here, the quality factor Q of the quartz crystal varied
from 66 800 to 60 700 depending on the energy stored in the
crystal. Very recently, we have improved the quality factor of
the QAT system by a factor of ≈2. Further improvements are
anticipated since the measured quality factor of the bare QA
system is a factor of ≈500 larger.

Another important parameter has been obtained, namely,
the ions-quartz coupling constant. This has been determined
following the procedure described in Appendix C, to be as
large as |g| ≈ 2π × 1.45 Hz from our data with the present
configuration. From Eq. (12), it is possible to increase g by
reducing the distance between electrodes, by modifying the
trap geometry quantified by α, by increasing Nion or ω+, or by
increasing ξ . Note that the latter includes the parameters such
as parasitic capacitances, or electronic noise, that diminish
the sensitivity. Increasing ξ will allow increasing Q and the

sensitivity using the same Penning trap and 40Ca+. An in-
crease of α requires a different trap geometry. Larger values
of ω+ are possible using highly charged ions. An increase
of g and Q, and the operation of the system at very low
temperature, might be first used to accelerate the interaction
of ions stored in different traps following the original pro-
posal by Heinzen and Wineland [16]. Applications beyond
mass spectrometry or sympathetic cooling, i.e., applications
in the strong-coupling regime, will require 40Ca+, a coupling
constant of a few kHz, and a Q value in the order of 108.
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APPENDIX A: QUANTUM DESCRIPTION OF THE
DIFFERENT SUBSYSTEMS

The quantum Hamiltonians presented in Sec. III are de-
duced from considerations given in this Appendix.

1. Quantum description of the ion motion in a Penning trap

The quantum Hamiltonian of an ion in a Penning trap is
given by [22]

Hion = 1

2mion

(
p̂2

x + p̂2
y + p̂2

z

) + ωc

2
(x̂ p̂y − ŷ p̂x )

+ 1

2
mion

ω2
c − 2ω2

z

4
(x̂2 + ŷ2) + 1

2
mionω

2
z ẑ2 (A1)

that can be rewritten in the form

Hion = Hz + H+ + H− = h̄ωz

(
a†

z az + 1

2

)
+ h̄ω+

(
a†

+a+ + 1

2

)
− h̄ω−

(
a†

−a− + 1

2

)
, (A2)

after defining the Fock creation and annihilation operators a†

and a, respectively, for each of the eigenmotions of the ion
in the trap: modified cyclotron (+), magnetron (−), and axial

053116-7



E. ALTOZANO et al. PHYSICAL REVIEW A 107, 053116 (2023)

(z). These operators read

az =
√

Nionmionωz

2h̄

[
ẑ + i

mionωz
p̂z

]
, a± =

√
Nionmion

2h̄(ω+ − ω−)

[(
p̂x

mion
− ω±ŷ

)
± i

(
p̂y

mion
+ ω±x̂

)]
,

a†
z =

√
Nionmionωz

2h̄

[
ẑ − i

mionωz
p̂z

]
, a†

± =
√

Nionmion

2h̄(ω+ − ω−)

[(
p̂x

mion
− ω±ŷ

)
∓ i

(
p̂y

mion
+ ω±x̂

)]
,

(A3)

where we have replaced the single ion with mass mion, charge
qion, and momentum ( p̂x, p̂y, p̂z ) by an ion cloud with Nion,
considering them as a single ion with mass Nionmion, charge
Nionqion, and momentum Nion( p̂x, p̂y, p̂z ).

2. Quantum description of a quartz crystal

In a similar way as it has been done for a single ion, the
operators to describe the characteristic voltage and intensity
in the crystal can be written as

V̂ ≡ Q̂

Cq
= 1

k

√
h̄

2mqωq
(b† + b) = V0√

2
(b† + b) (A4)

and

Î = i
Cq

k

√
h̄ωq

2mq
(b† − b). (A5)

The expected values can be expressed as

〈V̂ 〉 = 1

k

√
2h̄

mqωq
Re{〈b〉}, 〈Î〉 = Cq

k

√
2h̄ωq

mq
Im{〈b〉}.

(A6)

3. Quantum description of the interaction quartz ions

In order to model the interaction between the ions and the
quartz we assume for the latter a charge Q̂′ = Q̂ + ξ Q̂ion and
a current Î ′ = Î + ξ Îion, where Q̂ion and Îion have been defined
in Eqs. (5) and (6), respectively, and ξ is a positive number
smaller than 1 to account for the effective ions’ charge and
current. Q̂ and Î are the charge and current associated to the
quartz resonator, i.e., when there are no ions in the trap (or if
they are not in resonance with the crystal). The Hamiltonian
can be given as

Hq + Hint =
(

k

Cq

)2
[

mq(Î + ξ Îion)2

2
+ mqω

2
q(Q̂ + ξ Q̂ion)2

2

]

=
(

k

Cq

)2
{

mq

2

[
Î2 +

(
ξNionqionα

2d0mion

)2

p̂2
x +

(
−ξNionqionα

d0mion

)
Î p̂x

]
+ mqω

2
q

2

[
Q̂2 +

(
ξNionqionα

2d0

)2

x̂2

+
(

−ξNionqionα

d0

)
Q̂x̂ + (−ξNionqionα)Q̂ +

(
ξ 2N2

ionq2
ionα

2

2d0

)
x̂ +

(
ξNionqionα

2

)2]}
. (A7)

The term containing x̂2 will add a negligible amount �ωion

to the observed ions’ frequency; the term containing p̂x
2 will

increase the weight of p̂x
2 in the Hamiltonian by a small

amount ε; whereas the ones with x̂ and Q̂ will insignificantly
shift the minimum of the potential well by x̂0 and Q̂0, respec-
tively. Adding these terms to the Hamiltonians of ions in one
direction and quartz [Eqs. (8) and (9)] and rearranging terms
we obtain

Hq + Hion,x ∼
(

k

Cq

)2 mq

2

[
Î2 + ω2

q(Q̂ − Q̂0)2]
+ Nion

2
mion(ωion + �ωion)2(x̂ − x̂0)2 (A8)

+ Nion

2mion
(1 + ε) p̂x

2,

where

�ωion =
√

ω2
ion + h̄Nionωq

mion

(
ξqionα

2CqV0d0

)2

− ωion, (A9)

ε = h̄Nion

mionωq

(
ξqionα

2CqV0d0

)2

, (A10)

x̂0 = − h̄Nionωq

4d0mionω
2
ion

(
ξqionα

CqV0

)2

, (A11)

and

Q̂0 = 1
2ξNionqionα. (A12)

In our experiment �ωion � 2π × 10−5 Hz, ε � 4 × 10−12,
|x̂0| � 4 × 10−14 m, and Q̂0 � 1.1 × 10−16 C.

APPENDIX B: PROOFS FOR THE COMPUTATION
OF THE PSD

1. Driven quartz-ion dynamics

The basis of operators A almost satisfies the conditions
for the quantum regression theorem [23]. First of all, their
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expectation values evolve according to

d

dt
〈A(t )〉 = tr

{
A(t )

d

dt
ρ

}
= tr{A(t )Ltot(ρ)}. (B1)

Using the explicit form of the Lindblad terms and the
commutation relations between bosonic operators (e.g., Ap-
pendix B3), one may find a linear relation

tr{AmLtot(O)} = −
∑

n

Mmntr(AnO) + Fm, (B2)

valid for any operator O, in particular the density matrix (B1),
where

Mmn =
(

m 0
0 m∗

)
mn

, with m =
(

γion

2 + iω̃ion ig∗

ig γq

2 + iω̃q

)
(B3)

is a block-diagonal matrix that represents the nondriven dy-
namics of the system and

Fm =

⎛⎜⎜⎜⎝
fione−iφion

fqe−iφq

fioneiφion

fqeiφq

⎞⎟⎟⎟⎠
m

(B4)

is the force term, which is constant because of the rotating
frame. This equation allows us to write dynamical equa-
tions for the first-order moments:

d

dt
〈A(t )〉 = −M 〈A(t )〉 + F, (B5)

which for a(t ) and b(t ) can be written as

d

dt
〈a(t )〉 = −

(γion

2
+ iω̃ion

)
〈a〉 − ig∗〈b〉 − i fione−iφion ,

d

dt
〈b(t )〉 = −ig〈a〉 −

(γq

2
+ iω̃q

)
〈b〉 − i fqe−iφq .

(B6)

If one defines the displaced operators

A0 := A − AF, with AF := M−1F, (B7)

they do satisfy a linear differential equation without source
term, which is the requirement for the quantum regression
theorem:

d

dt
〈A0(t )〉 = −M 〈A0(t )〉 . (B8)

The dynamics of the quartz-ion system can be solved by
assuming that the force is switched on at time ts and the

driving continues until time t :

〈A0(t )〉 = U(t − ts) 〈A0(ts)〉 ,
(B9)

〈A(t )〉 = e−M(t−ts ) 〈A(ts)〉 + (1 − e−M(t−ts ) )AF,

using the 4 × 4 contractive matrix U(t ) = exp(−Mt ). In the
limit t → +∞ this dynamics brings the ion and quartz to a
unique stationary solution:

lim
t→+∞ 〈A(t )〉 = M−1F = AF. (B10)

The asymptotic state of the driving AF depends on the
inverse of the matrix M = M(ωrf ), which itself depends on
the detunings between the drive and the ions and quartz fre-
quencies ωion − ωrf and ωq − ωrf. This produces the usual
Lorentzian profile of AF as a function of ω.

In the experiment, the driving is stopped at a time t = 0.
The dynamics of the ion and the quartz naturally revert to
the dissipation-induced friction, and the displacements of the
Fock operators (and the average values of voltage and inten-
sity) naturally revert back to zero:

〈A(t )〉 = U(t )AF → 0, as t → ∞. (B11)

The study of two-time correlators requires higher-order
moments of the quartz-ion system. With similar effort, a
linear differential equation for the same-time correlators
〈Am(t )An(t )〉 can be computed:

d

dt
〈AnAm〉 = −

∑
r

Mmr 〈ArAn〉 + Fm 〈An〉
(B12)

−
∑

r

Mns 〈AmAs〉 + 〈Am〉 Fn + Cmn,

with a real matrix Cnm (see Appendix B3). This equation has
a unique stationary state satisfying∑

r

Mmr
〈
A0

r A0
n

〉 +
∑

s

Mns
〈
A0

mA0
s

〉 + Cmn = 0. (B13)

The solution to Eq. (B13) is the correlation matrix of a
thermal state, dictated by the nion and nq occupations that
define Cmn. This means that the stationary solution during the
driving can be written as two contributions: a thermal state
and a displacement induced by the driving:

〈AnAm〉 = 〈AnAm〉th + 〈AF 〉m 〈AF 〉n . (B14)

After stopping the driving at t = 0, the dynamics of the
same-time correlator follows a similar route as the first-order
moment, with a constant term, given by the thermal fluctua-
tions, and a product of two displacements:

〈An(t )Am(t )〉 = 〈AnAm〉th + 〈Am(t )〉 〈An(t )〉 , (B15)

which attenuate as described above in Eq. (B11).

2. Free dynamics of two-time correlators

Once the driving stops, the A operators satisfy a differential
equation without source term that can be solved linearly:

〈A(t )〉 = U(t − t0) 〈A(t0)〉 ; t, t0 > 0. (B16)

This allows using the quantum regression theorem to derive
two-time correlators at all possible orderings of time t, τ > 0
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after switching off the driving:

〈Am(t + τ )An(t )〉 =
∑

r

Umr (τ ) 〈Ar (t )An(t )〉 (B17)

and

〈Am(t )An(t + τ )〉 =
∑

r

Unr (τ ) 〈Am(t )Ar (t )〉 . (B18)

Given the simple structure of the same-time correlator
(B15), we can derive an explicit formula for the two-time
correlator we use in the PSD. This formula has a simple
contribution given by the global displacement, and a slightly
more complex one given by the thermal fluctuations:

〈Am(t2)An(t1)〉 = 〈Am(t2)〉 〈An(t1)〉

+
∑

r

{
Umr (t2 − t1) 〈ArAn〉th if t2 > t1,
Unr (t1 − t2) 〈AmAr〉th else.

(B19)

3. Same-time correlator equations

The dynamics of the correlator matrix 〈Am(t )An(t )〉 does
not follow exactly the quantum regression theorem [23]. The
equation

tr{AmAnLtot(O)}

= − i

h̄
tr{[AmAn, H], O}

+ γq

2
nqtr{b[AmAn, b†]O + [b, AmAn]b†O}

+ γq

2
(nq + 1)tr{b†[AmAn, b]O + [b†, AmAn]bO}

+ γion

2
niontr{a[AmAn, a†]O + [a, AmAn]a†O}

+ γion

2
(nion + 1)tr{a†[AmAn, a]O + [a†, AmAn]aO}

(B20)

transforms into

tr{AnAmLtot(O)} = −
∑

r

Mmr 〈ArAn〉 + Fm 〈An〉

−
∑

s

Mns 〈AmAs〉 + 〈Am〉 Fn

+ Cmn. (B21)

The real matrix C is defined as

Cmn = γq(nq[b, Am][An, b†] + (nq + 1)[b†, Am][An, b])

+ γion(nion[a, Am][An, a†]

+ (nion + 1)[a†, Am][An, a]), (B22)

which evaluates to

C =

⎛⎜⎜⎝
0 0 γion(nion + 1) 0
0 0 0 γq(nq + 1)

γionnion 0 0 0
0 γqnq 0 0

⎞⎟⎟⎠
=

(
0 γ (n + 1)

γ n 0

)
. (B23)

4. Fourier-space propagator

The Fourier transforms of the first-order moments Ã are
related to the initial values of the first-order moments at t0 via
a propagator

Ã(ω; t0, t1) = 1√
t1 − t0

W(−ω, t1 − t0) 〈A(t0)〉 , (B24)

where we have introduced the Green’s function

W(±ω, td ) :=
∫ td

0
e−Mτ e±iωτ dτ (B25)

= (±iω − M)−1(
e(±iω−M)td − 1

)
.

The Lorentzian prefactor to the exponential can be computed
as the inverse of two 2 × 2 matrices:

(iω − M)−1 =
(

(iω − m)−1 0
0 (iω − m∗)−1

)
, (B26)

for positive and negative values of ω. This equation can be
written in terms of the Lorentzian envelope (36) and the ma-
trix

G(ω) =
(− γq

2 + i(ω − ω̃q) ig
ig∗ − γion

2 + i(ω − ω̃ion)

)
, (B27)

resulting in

(iω − M)−1 =
(

F (ω)G(ω) 0
0 F (−ω)∗G(−ω)∗

)
. (B28)

Note that F (ω) � 0 whenever ω < 0, so that certain parts
of the inverse (±iω + M)−1 can be neglected depending on
whether we choose the positive or negative sign accompany-
ing ω.

5. PSD simplifications

It is convenient to separate the PSD integral into two com-
ponents, taking into account the ordering of time:

Sth
mn(ω) = 1

td

∫ t1

t0

dτ1

∫ τ1

t0

dτ2eiω(τ1−τ2 ) 〈Am(τ2)An(τ1)〉

+ 1

td

∫ t1

t0

dτ1

∫ t1

τ1

dτ2eiω(τ1−τ2 ) 〈Am(τ2)An(τ1)〉 .

(B29)

The integration limits can be reordered to bring out the lowest
time

Sth
mn(ω) = 1

td

∫ t1

t0

dτ2

∫ t1

τ2

dτ1eiω(τ1−τ2 ) 〈Am(τ2)An(τ1)〉

+ 1

td

∫ t1

t0

dτ1

∫ t1

τ1

dτ2eiω(τ1−τ2 ) 〈Am(τ2)An(τ1)〉 ,

(B30)

and relabeled adequately:

Sth
mn(ω) = 1

td

∫ t1

t0

dt
∫ td −t

0
dτeiωτ 〈Am(t )An(t + s)〉

+ 1

td

∫ t1

t0

dt
∫ td −t

0
dτe−iωτ 〈Am(t + s)An(t )〉 .

(B31)
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The first integral can be manipulated, noting that

〈Am(t )An(t + s)〉 = 〈An(t + s)†Am(t )†〉∗

=
∑
u,v

Pnu 〈Au(t + s)Av (t )〉∗ Pmv, (B32)

with some permutation matrices P:

PA = A†. (B33)

By doing so, one arrives at a single computation:

S(ω) = S+(ω) + PS+(ω)†P, with

S+
mn(ω) = 1

td

∫ t1

t0

dt
∫ td −t

0
dτe−iωτ 〈Am(t + s)An(t )〉 .

In the particular case of computing the autocorrelation func-
tion of the voltage, Pv = v, we have

S(ω) = 2Re(vTS+(ω)v). (B34)

6. Thermal state

The thermal state’s correlation matrix Tnm = 〈AnAm〉th
reads

T =

⎛⎜⎜⎜⎝
〈a2〉 〈ab〉 〈aa†〉 〈ab†〉
〈ba〉 〈bb〉 〈ba†〉 〈bb†〉
〈a†a〉 〈a†b〉 〈a†a†〉 〈a†b†〉
〈b†a〉 〈b†b〉 〈b†a†〉 〈b†b†〉

⎞⎟⎟⎟⎠
th

. (B35)

It has a simple structure

T =
(

0 t−†

t†− 0

)
, with t−† = t†− + 1, (B36)

and satisfies the stationary equation

MT + TMT = C, (B37)

which gives the two equivalent conditions

mt−† + t−†m† = γ (n + 1), (B38)

m∗t†− + t†−mT = γ n. (B39)

The exact solution of these equations is given by

〈b†b〉th = nq + 4|g|2(nion − nq)γion�+
4|g|2�2+ + γionγq(�2+ + 4�2−)

, (B40)

〈a†b〉th = − 2ig(nion − nq)(�+ + 2i�+)

4|g|2�2+ + γionγq(�2+ + 4�2−)
, (B41)

〈a†a〉th = nion − 4|g|2(nion − nq)γq�+
4|g|2�2+ + γionγq(�2+ + 4�2−)

, (B42)

with the quantities �± := γion ± γq and �± := ωion ± ωq.

APPENDIX C: OTHER QUANTITIES FROM THE FIT

The omitted step of the fitting procedure described in the
main text will be presented in this section [24]. In order to
gradually reduce the number of free parameters and consider-
ing the signal with and without ions, the coupling constant |g|
has been obtained. The PSD near ν+ continuously decreases
after t0 � 50 ms as observed in Fig. 8, when the quartz crystal

FIG. 8. S(ω, t0 ) for a fixed frequency ω1.

amplitude 〈b(t0)〉 is already approximately zero (right panel of
Fig. 9). This happens because the ion cloud is losing energy
after t0 � 50 ms due to two main interactions: (1) with the
quartz—ruled by the coupling constant |g|, the quartz absorbs
energy from the cloud and dissipates it in a (relatively short)
time ≈1/γq—and (2) with the thermal bath of the ions, ruled
by the dissipative constant γion.

The parameters |g| and γion play a similar role in the
ions’ energy. It is hard to distinguish them from fits and to
get a stable parameter evolution. Therefore, γion has been
set to zero in all fits to simplify the analysis. Note that we
have also let γion be a free parameter for fits in the prelim-
inary phase of the analysis. Its value was not stable with
the evolution of t0, although it was always several orders
of magnitude lower than the bound given below [Eq. (C2)].
The other free parameters had values almost identical to the
ones presented in the main text. γion = 0 is also justified for
the very low value of γion that we can estimate from other
experiments with the same setup using ions generated out-
side the trap [25]. We also neglect, on the time scale of the
experiment, the effect of ion-ion interactions and of induced
image charges on the ions’ center-of-mass motion, following

FIG. 9. Time evolution of |〈a(t0)〉| and |〈b(t0)〉|.
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the criteria of Ref. [14]. The value of |g| has been obtained
from a fit of the time evolution of the PSD at a single fre-
quency value ν1 = νrf + 1.35 Hz (Fig. 8), which is almost at
the peak maximum for signals with large t0. The theoretical
shape of this evolution is governed by Eq. (29) but fixing
several parameters (1) obtained from the fits of the signals
without ions—Snoise = 3.101(5) × 10−18 V 2

RMS/Hz, νq(t0 =
0 ms) = νrf + 1.99(2) Hz, and γq(t0 = 0 ms)/2π = 39.81(4)
Hz—and (2) by solving Eq. (B5) analytically—〈a(t )〉, 〈a†(t )〉,
〈b(t )〉, and 〈b†(t )〉 at t = t1—from its values at t = t0. Figure 9
shows the evolution of |〈a(t0)〉| and |〈b(t0)〉| as a function
of t0.

Considering these values, Eq. (29) is now a function
of the independent variable t0 and the free-fit parame-
ters |〈a(t0 = 0)〉|, |〈b(t0 = 0)〉|, |g|, and the relative phase
δ(t0 = 0). Since γion = 0, the value |g| = 2π × 1.449(2) Hz

is an upper limit. We have computed a second-order Taylor
expansion around the time tpeak ≈ 50 ms given by

S(ω1, t0) ≈ Sth(ω1) + Snoise + V 2
0

2td

( |g|〈a†(tpeak)〉
|g|2 + γionγq/4

)2

× [1 − 2γion�t − (|g|2 − γionγq/4)�t2 +O(�t3)],

(C1)

to loosely quantify the magnitude of a γion discernible from
|g|. �t ≡ t0 − tpeak and we assume ω = ωion ≈ ωq, γq � γion,
and 〈b†(tpeak)〉 ≈ 0. In this context, we can consider γion small
if the quadratic term is not negligible, i.e.,

γion < 4
|g|2
γq

≈ 2π × 0.2 Hz. (C2)
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