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A B S T R A C T   

Each year, disasters (natural or man-made) cause a lot of damage and take many people’s lives. In this situation, 
many volunteers come to help. While the proper management of volunteers is very effective in controlling the 
crisis, the lack of proper management of volunteers can create another crisis. Therefore, we introduce a model to 
deal with the volunteer assignment problem by considering two qualitative objective functions: The first one is 
minimizing the mean importance of Emergency Department (ED) centers’ unmet needs by volunteers, and the 
second one is minimizing the mean degree of unsatisfied preferences of selected volunteers. To evaluate the 
introduced qualitative indexes, two Fuzzy Inference Systems (FISs) are used to encapsulate decision makers’ 
knowledge as well as the human reasoning process. FISs are embedded in two evolutionary algorithms for solving 
the proposed model: Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Non-Dominated Ranked Ge
netic Algorithm (NRGA). Also, 30 small-size problems, as well as 30 large-size problems, are randomly generated 
and solved by both metaheuristic algorithms. Using the obtained data, the performance of NSGA-II and NRGA is 
measured and compared based on four criteria: CPU Time, Number of Non-dominated Solutions (NNS), Mean 
Ideal Distance (MID), and Spacing Metric (SM). Statistical tests show that both algorithms have the same per
formance in small-size problems. However, in large-size problems, NSGA-II is faster, and NRGA produces more 
optimal solutions. The proposed model is flexible enough to adapt to different scenarios just by updating lin
guistic rules in FISs. Also, since employed algorithms produce a set of optimal solutions, decision-makers can 
easily choose the most appropriate solution among the Pareto front based on the circumstances.   

1. Introduction 

Unfortunately, disasters (natural or man-made) are an inevitable 
part of our life on planet Earth. Just in 2020, 389 disasters are recorded 
worldwide. About 98.4 million people were affected, and 15,080 lost 
their life. Additionally, a minimum of US$ 171.3 billion of economic loss 
has been imposed (CRED & UNDRR, 2020). 

According to Altay and Green (2006), we can break out the field of 
Disaster Operations Management (DOM) into 4 phases: Mitigation, 
Preparedness, Response, and Recovery. Immediately after a disaster 
occurs, the response stage, the most urgent phase in the humanitarian 
operation, starts. During this stage, which could last for a significant 
amount of time depending on the scope of the disaster, the primary 
concern is saving the lives of those who have been affected (Aranda, 

Fernandez, & Stantchev, 2019). At this stage, various individuals and 
organizations voluntarily come to help the affected people. 

In this investigation, our focus is on spontaneous individuals. We use 
the spontaneous volunteer definition by the U.S. Federal Emergency 
Management Agency (FEMA): “Unaffiliated volunteers, also known as 
spontaneous volunteers, are individuals who offer help or self-deploy to 
assist in emergencies without fully coordinating their activities. They 
are considered ’unaffiliated’ in that they are not part of a disaster relief 
organization” (FEMA, 2013). For example, over two million people 
(nearly 10% of the population) volunteered to help after the 1985 
Mexico City earthquake (Fernandez, Barbera, & van Dorp, 2006). Also, 
Red Cross processed about 15,000 volunteers just in two and one-half 
weeks after the September 11 terrorist attack in 2001 (Lowe & Fother
gill, 2003). 
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Spontaneous volunteers are essential for effective relief efforts, 
providing emergency management infrastructure capacity (Lodree & 
Davis, 2016), freeing responders to focus on their specialized duties 
(Wachtendorf & Kendra, 2001), and providing a variety of skills quickly 
and efficiently (Paret, Mayorga, & Lodree, 2020). 

On the other hand, Unorganized volunteers can reduce the effec
tiveness of response activities (Wachtendorf & Kendra, 2001), and 
divert responders from their primary duties (Fernandez et al., 2006); 
Besides, there may be concerns to guarantee their health and safety in 
unpredictable and uncertain situations (Barsky, Trainor, Torres, & 
Aguirre, 2007). As stated, “It is a paradox — people’s willingness to 
volunteer versus the system’s capacity to use them effectively” (Points of 
Light Foundation, 2002). 

So, while spontaneous volunteers are potentially a valuable resource 
in the DOM context, unorganized volunteers will lead to a significant 
obstacle to emergency operations (Paret et al., 2020). Even volunteer 
convergence is referred to as “the disaster within the disaster” in the 
literature (Points of Light Foundation, 2002). This highlights the 
importance of an efficient and effective volunteer management system 
(Fernandez et al., 2006). 

Rather than maximizing revenues in classical workforce planning, 
the objective function of volunteer management in DOM is saving lives. 
This field is highly blended with uncertainty. Regarding other attributes 
indicated in Table 1, it can be stated that volunteer management in 
humanitarian context differs from classical workforce planning by na
ture. Therefore, volunteer management in DOM requires applying 
different decision-making models. 

Humanitarian organizations rapidly assemble a workforce capable of 
meeting the immediate needs of a community in the aftermath of a 
disaster. However, these requirements shift over time, as do the volun
teer pool (and their skill sets). As a result, it may be necessary to quickly 
update volunteer assignments (Lassiter, Khademi, & Taaffe, 2015). In 
addition, the current assignment of duties has a direct relationship with 
the level of future commitment of volunteers. 

Therefore, on the one hand, humanitarian organizations must 
manage volunteers effectively so that they become a renewable 
resource. On the other hand, in order to maximize the effectiveness of 
their efforts, these organizations must keep shortages to a minimum. 
Such Decision-making situations in DOM (unlike classical workforce 
planning) are characterized by large quantities of ambiguous informa
tion and are typically too complicated to be represented by precise 
quantitative data (Falasca & Zobel, 2012). 

Therefore, in this context, we need decision-making models that can 

adapt to constantly changing conditions of DOM away from mathe
matical complexities. However, this field has not received adequate 
attention. 

This investigation focuses on assigning volunteers to tasks effectively 
and efficiently. It provides a proper solution for volunteer convergence 
(Skar, Sydnes, & Sydnes, 2016), increases volunteer retention, and un
doubtedly is one of the critical aspects of volunteer management (Las
siter et al., 2015) which is, in its turn, a key driver for successful disaster 
operations. 

The rest of this paper is organized as follows: In section 2, the 
literature on volunteer assignment and optimization algorithms is 
reviewed. Section 3 presents a model formulation for volunteer assign
ment. Section 4 deals with introducing concepts used in the work such as 
Fuzzy Inference Systems (FISs) as well as employed evolutionary algo
rithms. Performance analysis of evolutionary algorithms is conducted in 
section 5. Finally, concluding remarks and suggestions for future 
research are discussed in section 6. 

2. Literature review 

In DOM literature, there are three main areas of focus: Facility 
location, Network design and relief distribution, and Mass evacuation 
(Habib et al., 2016). Volunteer management is another important field 
of research in the DOM context that has received little attention. 
Volunteer management includes all volunteer processes such as 
recruitment, training, scheduling, supervision, and evaluation (Paret 
et al., 2020). 

Since in the current study we address the problem of spontaneous 
volunteer assignment in the response phase of a disaster, we review the 
literature from two aspects: workforce scheduling vs. spontaneous 
volunteer assignment and optimization algorithms: 

2.1. Workforce scheduling vs. spontaneous volunteer assignment 

Traditional workforce scheduling has received extensive attention in 
the literature. It is applied to a wide range of subjects: Çakırgil, Yücel, 
and Kuyzu (2020) proposed a model to form teams in the electricity 
sector and assign them some tasks based on their skills. Li, Zhang, Jia, Li, 
and Zhu (2019) dealt with the problem of assigning restoration tasks to 
teams of technicians when a vital infrastructure is disrupted. Shi and 
Landa-Silva (2017) and Ang, Lam, Pasupathy, and Ong (2018) addressed 
the nurse scheduling problem. Baysan, Durmusoglu, and Cinar (2017) 
proposed a methodology to assign team-based labors to new product 
projects. Chen et al. (2016) established a model to assign multi-skilled 
workforces to services requested by customers in different locations. 

However, the literature on the assignment of spontaneous volunteers 
in humanitarian context is very limited (Einolf, 2018; Lodree & Davis, 
2016; Paret et al., 2020; Skar et al., 2016). First attempts to volunteer 
management date back to 1975, when Fritz and Mathewson (1957) 
studied volunteer convergence as well as the movement of reliefs to the 
affected areas. Most recently, in a radioactively contaminated area, 
Janiak and Kovalyov (2006) developed a scheduling problem in which a 
single worker should execute tasks. We just found five investigations in 
the literature that specifically addressed volunteer assignment in the 
DOM context: Falasca, Zobel, and Gary (2009) introduced a multi- 
criteria optimization model to assign volunteers to tasks in a humani
tarian context based on two objective functions: minimizing total 
shortage costs and maximizing individual preferences. To meet the 
second objective function, they tried to minimize the number of unde
sired assignments that volunteers do not prefer, regarding task or time 
block of assignment. Also, to solve the introduced bi-criteria problem, 
they applied the efficient frontier method to have a set of optimal so
lutions. Test results showed the model’s reliability. Later in 2012, they 
addressed the same problem with a fuzzy approach (Falasca & Zobel, 
2012). By utilizing fuzzy membership functions, they incorporated the 
decision makers’ expertise into the model. It can represent their 

Table 1 
Differences between characteristics of Classical Manpower Planning and 
Volunteer Management in DOM.  

Attribute Classical 
Manpower 
Planning 

Volunteer 
Management in 
DOM 

Researcher(s) 

Objective 
Function 

Maximizing 
revenues 

Saving lives (Falasca, Mauro, 
Christopher W. Zobel, 
and Gary M. Fetter., 
2009) 

Labor Pool Size Considered to 
be sufficient 

Uncertain (Falasca, Mauro, 
Christopher W. Zobel, 
and Gary M. Fetter., 
2009) (Mayorga et al., 
2017) 

Availability Not an issue Uncertain (Mayorga et al., 2017) 
Commitment Not an issue Uncertain (Mayorga et al., 2017) 
Skill Level to 

Fulfill the 
Tasks 

Meets the 
required level 

Uncertain (Falasca, Mauro, 
Christopher W. Zobel, 
and Gary M. Fetter., 
2009) 

Task Labor 
Shortages 

Not an issue Should be 
considered and 
balanced 

(Sampson, 2006)  
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preferences toward each objective function. However, this will lead to 
obtain just a single solution. Lassiter et al. (2015) developed an opti
mization framework in the aftermath of a humanitarian disaster to 
assign volunteers to tasks regarding two objective functions: minimizing 
the unmet demand as well as maximizing the preference of volunteers. 
To consider volunteers’ preference, they introduced a constraint into the 
model that specifies the minimum percent of volunteers matched to 
their task-skill. Mayorga, Lodree, and Wolczynski (2017) developed a 
multi-server queueing system to assign tasks to volunteers with sto
chastic server arrival abandonment in a disaster’s recovery phase (e.g., 
debris cleaning). The only objective function of their model is to maxi
mize the benefit obtained from completing work units. Paret et al. 
(2020) applied a multi-server queueing model by employing Markov 
Decision Process (MDP) for assigning volunteers to tasks in a post- 
disaster setting and compared the optimal policy to some heuristic 
ones. This study expanded the work of Mayorga et al. (2017) by allowing 
for stochastic demand, but still used one objective function of maxi
mizing benefits. 

Studies that have been done in the past have some shortcomings. In 
order to maximize the effectiveness of the system, Mayorga et al.; Paret 
et al. (2017; 2020) tried to assign volunteers to tasks based on just one 
objective function: maximizing the gained benefit. However, prefer
ences of volunteers are ignored in their model, which can reduce the 
future commitment of volunteers. In the study of Falasca and Zobel 
(2012), Falasca et al. (2009), their model incorporates both minimizing 
total shortage costs and maximizing individual preferences. However, 
considering individual preferences, they attempted to minimize the 
number of undesirable assignments for volunteers. Just regarding the 
number of undesired assignments is not an appropriate index, because 
each of them has a different level of importance and should not be 
considered the same. Also, their model does not optimize both objective 
functions simultaneously. It focuses first on minimizing shortage costs to 
obtain maximum coverage, and then on minimizing the number of un
desirable assignments. Finally, in the efficient frontier method, the de
cision makers’ preferences regarding the relative significance of each 
objective are only considered post hoc when they trade objective values 
along the efficient frontier. In the study of Falasca and Zobel (2012), 
fuzzy membership functions are employed to take the preferences of 
decision makers into account. However, their model can be improved by 
employing fuzzy inference systems to focus on objective functions. Also, 
Lassiter et al. (2015) rather than optimizing the objective function of 
volunteer preferences, considered it as a constraint which should be 
above a determined threshold. 

2.2. Optimization algorithms 

In optimization problems, exact algorithms are widely applied in the 
literature. Such algorithms can find optimum solutions. However, in 
dealing with large-scale data, either they cannot find the solution or a lot 

of space and time is required to do the calculations (Boonmee, Arimura, 
& Asada, 2017). Dijkstra algorithm and Dynamic programming method 
are categorized among exact algorithms. 

Another category of algorithms is known as metaheuristics. While 
these algorithms cannot guarantee to find the optimal solution, they are 
able to find a feasible solution rapidly (Ropke, 2005). Some well-known 
metaheuristic algorithms are Genetic Algorithm (GA), Tabu Search (TS), 
Imperialist Competitive Algorithm (ICA), and Ant Colony Optimization 
(ACO). In optimization problems literature, both deterministic and 
metaheuristic approaches are applied by researchers. 

In the DOM context, to the best of our knowledge, no research has 
applied metaheuristic algorithms in the volunteer assignment literature. 
However, in traditional workforce scheduling, metaheuristics are vastly 
used for workforce scheduling: Pereira et al. (2020) addressed the 
problem of assigning teams of varying skills to services involving 
dependent tasks requested by customers. Results show that the ACO 
metaheuristic algorithm performs better than the Mixed Integer Pro
gramming model. Algethami, Martínez-Gavara, and Landa-Silva (2019) 
applied a GA with a novel crossover operator to assign personnel to visits 
in different geographical sites. In sub-assembly lines of a car manufac
turer, Yurtkuran, Yagmahan, and Emel (2018) addressed a workforce 
scheduling problem considering two objectives: minimizing the work
force as well as unbalanced workloads. In this way, they used an Arti
ficial Bee Colony (ABC) algorithm to solve the model. To tackle the 
problem of staff scheduling in a glass manufacturing unit by considering 
the satisfaction of employees as well as workload balance, Rocha, Oli
veira, and Carravilla (2014) proposed a new constructive heuristic. They 
assigned working shifts and days off to employees’ teams in two ways: 
using a constructive heuristic and mixed integer programming. For a 
large number of teams, the heuristic performance was desirable, while 
mixed integer programming failed to find any solutions. 

As is indicated, efficient and effective spontaneous volunteer 
assignment is one of the most critical humanitarian logistic challenges in 
the post-disaster phase of humanitarian operations. It involves large- 
scale data and is tied up with uncertainty in evaluating and assigning 
volunteers to tasks. However, it has not received adequate attention in 
the literature. Also, metaheuristic algorithms are not used in this 
context. 

To deal with the gap in the literature, and capture the uncertainty 
mixed with the mentioned problem in a more realistic way, we are going 
to develop a multi-criteria optimization model to assign spontaneous 
volunteers to tasks in the humanitarian context. Our contribution to the 
literature is threefold:  

1. Instead of considering classic indexes, we introduce two qualitative 
indexes: the importance of unmet needs by volunteers and the degree 
of unsatisfied preferences of volunteers. These qualitative indexes 
are more realistic and can better represent the complexity of the 
volunteer assignment in DOM context. 

Fig. 1. Established ED services in the affected area.  
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2. To evaluate qualitative indexes efficiently, we employ two FISs to 
capsulate the knowledge of experts and simulate the process of 
human reasoning;  

3. We implement two evolutionary algorithms to solve the model: Non- 
dominated Sorting Genetic Algorithm II (NSGA-II) and Non- 
dominated Ranked Genetic Algorithm (NRGA). In this way, both 
objective functions are optimized simultaneously. To the best of our 
knowledge, it is the first time in the literature that FISs are embedded 
in evolutionary algorithms to solve the volunteer assignment 
problem. 

This model will be consistent with the constantly changing envi
ronment just by making changes in linguistic rules away from mathe
matical complexities. 

3. Model formulation for volunteer assignment 

3.1. Problem definition 

After a disaster onset, many people have been seriously injured. 
However, infrastructures such as hospitals may also be severely 
damaged and unable to provide services to the affected people. In order 
to deliver superior medical treatment and monitor patients more effec
tively remotely, innovative healthcare services are currently being 
developed (Opazo Basaez et al., n.d). In the disaster context, even such 
services might be collapsed and unavailable. In this situation, the rapid 
establishment of an Emergency Department (ED) service plays a vital 
role in saving human lives. Considering defined criteria, some volun
teers registered in reception centers are selected and assigned to EDs. A 
schematic diagram of established ED services is depicted in Fig. 1. 

At this stage, in an emotional environment blended with uncertainty 
in Emergency Rooms (ER), we face lots of patients waiting to receive 
immediate medical services. Two expertise are vital in this step:  

1. Triage Nurse: A registered nurse in the emergency room who is the 
first person that assesses the patients and determines whether a pa
tient needs immediate medical attention;  

2. Primary ER nurse: the second person who visits the patients. Such 
nurses do more in detail assessments of patients and begin the proper 
treatment. 

Triage nurses and primary ER nurses have a significant role in 
establishing an effective and efficient emergency department service. 
Therefore, in this investigation, we are going to select among volunteers 
registered in the reception center for two types of vacancies: triage nurse 
and primary ER nurse, under some assumptions:  

1. There is a single reception center where volunteers are registered;  
2. The location of the reception center, as well as EDs, is known. 

Also, the distance from the reception center to each ED is known;  
3. Each ED has several vacancies, all categorized in just two types: 

triage nurse and primary ER nurse;  
4. The number of volunteers is more than the number of vacancies;  
5. All the vacancies of all the EDs should be filled with volunteers;  
6. Each vacancy should be filled with just one volunteer;  
7. If a volunteer is selected, he/she will be assigned to just one 

vacancy;  
8. The emergency level of each ED is determined by experts on the 

[0 100] interval;  
9. The number of patients in each ED is known;  

10. Triage ability and nursing ability of each volunteer are known 
and measured on a scale of 0 to 100;  

11. The workload of all the vacancies in the EDs is known and 
determined by experts on the [0 100] interval;  

12. Each volunteer has stated the importance of difficult situations 
for him/her on a scale of 0 to 100. 

Suppose we have two EDs with the same number of covered patients 
with a vacancy for the triage nurse. This is not necessarily an optimum 
decision if we assign two triage nurses with the same ability level to the 
mentioned vacancies. The reason is that other influential factors, such as 
the emergency level of EDs, also matter. A vacancy in an ED with a 
higher level of emergency should be filled with a more skillful volunteer 
compared to another vacancy with the same number of covered patients 
but a lower level of emergency. Therefore, in this investigation, we are 
going to introduce the importance of unmet needs by volunteers, which 
is a more realistic index than the unmet needs by volunteers index. We 
calculate the introduced index based on three indexes by establishing 
FISs and encapsulating the knowledge of experts: the number of covered 
patients in ED, the emergency level of the ED, and the level of triage 
ability (or nursing ability) of the volunteer who is assigned to the 
vacancy. 

The same is true for volunteers’ preferences objective. We introduce 
a qualitative index to deal with the volunteers’ preferences: the degree 
of unsatisfied preferences of volunteers index. It will be measured by 
implementing a FIS considering the distance from the reception center to 
the ED, the workload of the ED, and the importance of difficult situations 
for the volunteer. 

For the problem of selecting volunteers and assigning them to the 
vacancies in the EDs, we introduce a two-phase model: 

Table 2 
Notations and variables.  

Notation (or 
Variable) 

Description 

C0 Reception Center 
C Set of n ED Centers C = {1, 2,⋯, n}
i Index to refer Centers i ∈ C 
si Number of vacancies in the center i that should be filled by 

volunteers 
k Index to refer vacancies in centers 
V Set of m volunteers V = {1, 2,⋯,m}

j Index to refer volunteers j ∈ V 
rk A binary value, rik = 1 indicates that vacancy k in the center i is 

a triage vacancy; otherwise, rik = 0 
uik A binary value, uik = 1 indicates that vacancy k in the center i is 

a nursing vacancy; otherwise, uik = 0 
qjik A binary value, qjik = 1 indicates that volunteer j is assigned to 

vacancy k in center i, otherwise qjik = 0 
Ei Emergency level of center Ci, Ei ∈ [0 100] 
Pi The number of patients in Center Ci 

Nj Nursing ability of Volunteer j, 
j ∈ V, Nj ∈ [0 100] 

Tj Triage ability of Volunteer j, 
j ∈ V, Tj ∈ [0 100] 

x′ ji Importance of unmet triage needs by volunteer j in center Ci, 
x′ ji ∈ [0 100] 

x′ ′ ji Importance of primary ER nurse unmet needs by volunteer j in 
center Ci, 
x′ ′ ji ∈ [0 100] 

xik Importance of unmet needs by volunteers for vacancy k in 
center Ci, 
xik ∈ [0 100] 

Z1 Mean importance of unmet needs by volunteers for all 
vacancies in all centers 

Di Distance between C0, Ci (distance from the Reception Center to 
Ci) 

Wik The workload at vacancy k in center i, 
Wik ∈ [0 100] 

Fj The importance of difficult situations for volunteer j, 
Fj ∈ [0 100] 

y′
jik Degree of unsatisfied preferences of volunteer j at vacancy k in 

center i, 
y′

jik ∈ [0 100] 
yj Degree of unsatisfied preferences of volunteer j at the position 

he/she is assigned to 
yj ∈ [0 100] 

Z2 Mean degree of unsatisfied preferences of all selected 
volunteers  
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1. Considering the objective functions, three FISs are developed to 
measure the importance of unmet needs by volunteers (including 
two FISs for triage nurses as well as primary ER nurses) and the 
degree of unsatisfied preferences of volunteers; 

2. By establishing two metaheuristic algorithms, we select among vol
unteers and assign them to the vacancies. The objectives are: mini
mizing the importance of unmet needs by volunteers and minimizing 
the degree of unsatisfied preferences of volunteers. 

3.2. Variables and notations 

Variables and notations employed in the proposed model are given in 
Table 2. 

3.3. Objective functions 

In this investigation, we introduce two objective functions: 

3.3.1. The importance of unmet needs by volunteers 
Considering the vacancy we address in centers, the importance of 

unmet needs means the importance of unmet triage needs or the 
importance of unmet nurse needs. This index is evaluated based on the 
number of covered patients in the center, the emergency level of the 
center, and the level of triage ability (or nursing ability) of the volunteer 
assigned to the vacancy. 

However, it is a kind of qualitative reasoning blended with uncer
tainty. Therefore, in order to capture this ambiguity and uncertainty, we 
employ two FISs to evaluate the importance of unmet triage needs and 
the importance of unmet nurse needs by encapsulating experts’ quali
tative knowledge and reasoning: 

fis1 :
(
Pi,Ei,Tj

)
→x′

ji (1)  

fis2 :
(
Pi,Ei,Nj

)
→x′′ ji (2)  

xik =
∑m

j=1

[
rik × qjik × x′

ji + uik × qjik × x′′ ji
]
∀i, k (3)  

Z1 =

∑n
i=1

∑si
k=1xik

∑n
i=1si

(4) 

Eqs. (1) and (2) show that the importance of unmet triage needs and 
the importance of unmet nurse needs are evaluated by fis1 and fis2, 
respectively. The importance of the unmet needs of each vacancy is 

calculated in Eq. (3). Finally, Eq. (4) evaluates the mean importance of 
unmet needs for all the vacancies. 

3.3.2. The degree of unsatisfied preferences of volunteers 
Also, we consider the unsatisfied preferences of volunteers as our 

second objective function. This index is evaluated based on the distance 
from the center to ED, the workload in ED, and the importance of 
difficult situations for the volunteer. A FIS is used to appraise the degree 
of unsatisfied preferences of volunteers. The employed equations are as 
follows: 

fis3
(
Di,Wik,Fj

)
→y′

jik (5)  

yj =
∑n

i=1

∑si

k=1
qjik × y′

jik∀j (6)  

Z2 =

∑m
j=1yj

∑n
i=1si

(7) 

Eq. (5) indicates that fis3 assesses the unsatisfied preferences of 
volunteers. Also, in Eq. (6), the volunteer’s degree of unsatisfied pref
erences regarding the vacancy he/she is assigned to is evaluated. Eq. (7) 
calculates the mean degree of unsatisfied preferences for all selected 
volunteers. 

3.4. The model settings 

This model aims to minimize two objective functions: the mean 
importance of unmet needs by volunteers and the mean degree of un
satisfied preferences of selected volunteers. Regarding the defined 
objective functions, the model is formulated as follows: 

MinZ1 =

∑n
i=1

∑si
k=1xik

∑n
i=1si

(8)  

MinZ2 =

∑m
j=1yj

∑n
i=1si

(9) 

Subject to: 

rik + uik = 1∀i ∈ C, ∀k ≤ si (10)  

∑n

i=1
si < m (11) 

Fig. 2. Structure of proposed FISs for evaluating the importance of unmet needs in ED.  
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∑m

j=1
qjik = 1∀i ∈ C, ∀k ≤ si (12)  

∑n

i=1

∑si

k=1
qjik ≤ 1,∀j ∈ V (13)  

∑n

i=1
si =

∑n

i=1

∑si

k=1

∑m

j=1
qjik (14)  

si > 0,m > 0, ∀i ∈ C (15) 

Objective functions are formulated in Eqs. (8) and (9): minimizing 
the mean importance of unmet needs by volunteers and minimizing the 
mean degree of unsatisfied preferences of selected volunteers, respec
tively. Constraint (10) indicates that all the vacancies in each ED are 
triage nurse positions or primary ER nurse positions. Constraint (11) 
specifies that the number of vacancies is less than the number of vol
unteers. Constraint (12) guarantees that just one volunteer is selected for 
each vacancy. Constraint (13) indicates that if a volunteer is selected, 
he/she will be assigned to just one vacancy. Constraint (14) states that 
all the vacancies will be filled with volunteers, and constraint (15) limits 
the value of parameters to positive values. 

4. Algorithm design 

In this section, we overview the FISs used in this study as well as two 
evolutionary algorithms to solve the model: NSGA-II and NRGA. 

4.1. The structure of used FISs 

The structure of employed FISs to evaluate the importance of unmet 
needs in EDs and the degree of unsatisfied preferences of selected vol
unteers are depicted in Figs. 2 and 3, respectively. 

Introduced FISs in this investigation are of Mamdani type (Mamdani 
& Assilian, 1975). Input and output variables in such types of FISs are 
linguistic variables to capture the inherent uncertainty and ambiguity of 
the problem (Zimmermann, 2011). The values of linguistic variables are 
linguistic terms such as “Very High”, “Medium”, “Low”, etc. Used input 
and output linguistic variables are given in Table 3. Fuzzy numbers and 
membership functions represent linguistic variables. We employed 
triangular and trapezoidal fuzzy numbers (Tables 4 and 5). 

As depicted in Figs. 2 and 3, Knowledge base consists of two parts: a 
database containing membership functions and a rule base enclosing 
fuzzy if-then rules. In fact, rules are formed based on the experts’ 

Fig. 3. Structure of proposed FIS for evaluating the degree of unsatisfied preferences of the volunteer.  

Table 3 
Inputs and outputs linguistic variables.  

Fuzzy Inference 
System 

Variable 
Type 

Variable Name Notation 

FIS1 input Number of patients in ED P   
Emergency level of ED E   
Volunteer’s triage ability T  

output Importance of ED triage unmet 
needs by volunteer 

x′

FIS2 input Number of patients in ED P   
Emergency level of ED E   
Volunteer’s nursing ability N  

output Importance of ED primary ER nurse 
unmet needs by volunteer 

x′ ′

FIS3 input Distance from ED to the reception 
center 

D   

The workload of ED W   
Importance of difficult situations for 
volunteer 

F  

output Degree of satisfied preferences of 
volunteer 

y′

Table 4 
Linguistic values and fuzzy numbers for unmet needs FISs (FIS1, FIS2).  

Linguistic variable Linguistic 
value 

Fuzzy number 

Number of patients in ED Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 

100]  

Emergency level of ED Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 

100]  

Volunteer’s triage ability Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 

100]  

Volunteer’s nursing ability Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 

100]  

Importance of ED triage unmet needs by 
volunteer 

Very low [0 0 10 30] 
Low [10 30 50] 
Medium [30 50 70] 
High [50 70 90] 
Very high [70 90 100 

100]  

Importance of ED primary ER nurse unmet needs 
by volunteer 

Very low [0 0 10 30] 
Low [10 30 50] 
Medium [30 50 70] 
High [50 70 90] 
Very high [70 90 100 

100]  
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knowledge and can be modified easily to be consistent with different 
situations. As it is apparent in Table 3, for each FIS, three input variables 
are defined. Each of them also has three membership functions. So, we 
will have 3×3×3 = 27 rules. Defined rule bases of FIStrg, FISnrs, and 
FISprf are available in appendices I to III, respectively. 

The process performed in a FIS is as follows: 

1. Fuzzifying: translating the crisp values of input variables to mem
bership degrees of associated linguistic values;  

2. Inferencing: Producing fuzzy result, regarding the knowledge base 
and the output of the Fuzzifier unit;  

3. Defuzzifying: transforming the obtained fuzzy result to a crisp 
output value. 

Feature of employed FISs is available in Table 6. 

4.2. Evolutionary algorithms: NSGA-II and NRGA 

In a multi-objective optimization context, the goal is to optimize two 
or more objective functions. However, it is impossible to optimize all the 
objective functions simultaneously. Instead, a tradeoff among goals is 
achievable. In this study, we employ two efficient and well-known 
Multi-Objective Evolutionary Algorithms (MOEAs) to solve the 

volunteer selection problem:  

1. Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 
2002) produces a set of non-dominated solutions known as the 
Pareto front. None of the solutions is superior to the other ones. In 
fact, solutions represent the tradeoff among objective functions;  

2. (Jadaan & Lakishmi Rajamani, 2008) also produces Pareto front. The 
structure of NRGA is similar to NSGA-II except in the parent selection 
strategy. 

Each solution indicates which volunteers have been selected and in 
which vacancies in EDs are going to work. 

The process of NSGA-II and NRGA is briefly described as follows:  
NSGA-II and NRGA Pseudo code – adapted from Omar Al Jadaan, Lakishmi Rajamani, 
C. R. Rao (2008) 

1: Generate initial population (P0) randomly – Size N 
2: Sort the population based on non-dominated sorting and crowding distance 
3: For t = 0 to break-condition do 
4: Select parents from population Pt{NSGA-II selection technique: Binary 

tournament selectionNRGA selection technique: Ranked-based roulette wheel 
selection} 

5: Generate child population (Qt) using crossover operators 
6: Generate child population (Rt) using mutation operators 
7: Merge all populations to form a new population (Pnew = Pt ∪ Qt ∪ Rt) 
8: Sort the new population (Pnew) based on non-dominated sorting and crowding 

distance 
9: (Elitist) select the best individuals (size N) from Pnew to form the population of 

the new generation (Pt+1) 
10: Sort Pt+1 based on non-dominated sorting and crowding distance 
11: End for 
12: Return the first Pareto front (F1) of the population (Pt) as the set of optimum 

non-nominated solutions.  

Step 1: Algorithms start by generating a set of initial solutions 
randomly. Solutions are also known as chromosomes or individuals. In 
this investigation, we define a one-dimensional structure for our chro
mosome (Fig. 4). 

Each gene corresponds to a vacancy in an ED. Also, the value of a 
gene (allele) is an integer number indicating the volunteer ID of whom is 
assigned to the corresponding vacancy. So, each chromosome is a per
mutation of the volunteers’ ID. This method of encoding solutions in a 
chromosome guarantees the feasibility of generated solutions. 

Each solution is evaluated based on two objective functions: the 
importance of unmet needs by volunteers and the degree of unsatisfied 
preferences of volunteers. The evaluation is carried out by applying 
defined FISs. 

Step 2: By applying non-dominated sorting, solutions will be divided 
into non-dominated fronts. Also, another measure known as crowding 
distance sorts the solutions in each front. 

Step 3: Generate offsprings using crossover and mutation operators 
and evaluate their fitness. While the crossover operator guarantees ge
netic inheritance, mutation preserves genetic diversity. 

The difference between NSGA-II and NRGA is in their parent selec
tion process:  

• NSGA-II uses binary tournament selection technique: for selecting 
each parent, two random solutions are picked up. The individual 
with a lower front rank will be chosen. In the case that both solutions 

Table 5 
Linguistic values and fuzzy numbers for unsatisfied preferences FIS (FIS3).  

Linguistic variable Linguistic 
value 

Fuzzy number 

Distance from ED to the reception center Low [0 0 40 70] 
Medium [40 70 100] 
High [70 100 150 

150]  

The workload of ED Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 100]  

Importance of difficult situations for 
volunteer 

Low [0 0 25 50] 
Medium [25 50 75] 
High [50 75 100 100]  

Degree of unsatisfied preferences of 
volunteer 

Very low [0 0 10 30] 
Low [10 30 50] 
Medium [30 50 70] 
High [50 70 90] 
Very high [70 90 100 100]  

Table 6 
Feature of FISs.  

FIS type mamdani 

And method Min 
Or method MAX 
Implication method Min 
Aggregation method MAX 
Defuzzification Centroid  

Fig. 4. Structure of the Chromosome.  
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come from the same front, the one with a higher crowding distance is 
the winner;  

• NRGA employs ranked-based roulette wheel selection strategy: first, 
a front is selected randomly. Fronts with better ranks have a higher 
probability of being selected. Afterward, an individual will be 
selected from the chosen front. In the same way, solutions with 
higher crowding distances have more chances to be selected. 

In this study, we have used permutation crossover as well as three 
mutation operators: swap, insertion, and reversion. 

Step 4: The current population and the generated offsprings together 
form the new population. Again, this new population will be sorted 
using non-dominated sorting and crowding distance. 

Step 5: To build the next generation population, we select the best 
individuals from the new population (elitism strategy) with the size of 
the original population and sort them using non-dominated sorting and 
crowding distance. 

Step 6: If the break condition (reaching a specified number of iter
ations in the algorithm) is not met, go to step 3; otherwise, break the 
loop. 

Step 7: Return the first Pareto front of the population (Pareto- 
optimal) as the algorithm’s output. All the returned solutions are 
optimal and represent the tradeoff between objective functions. 

Fig. 5. NSGA-II Pareto front of solving the first large-size problem.  

Fig. 6. NRGA Pareto front of solving the first large-size problem.  
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5. Performance analysis of evolutionary algorithms 

In order to assess the performance of NSGA-II and NRGA in solving 
volunteer selection problem, we define two problem sizes:  

• Small size problem: 5 EDs, each ED has 5 vacancies, 75 volunteers 
are registered for vacancies.  

• Large size problem: 10 EDs, each ED has 5 vacancies, 150 volunteers 
are registered for vacancies. 

Regarding each problem size, 30 problems are generated randomly 
and solved by proposed evolutionary algorithms. Pareto front of the first 
large-size problem solved by NSGA-II and NRGA are depicted in Figs. 5 
and 6, respectively. 

To compare the performance of algorithms, five criteria are consid
ered based on works by Zitzler, Deb, and Thiele (2000), Zitzler and 
Thiele (1998), and Schott (1995): 

CPU time: A critical performance measure of algorithms, especially 
in solving large problems, is the algorithm’s execution time. This mea
sure is calculated in seconds, and the lower CPU time means better al
gorithm performance; 

1. Number of Non-dominated Solutions (NNS): The number of so
lutions in the optimal Pareto front. The higher number of non- 
dominated solutions corresponds to more diversity and better 
exploration;  

2. Mean Ideal Distance (MID): The mean distance of optimal Pareto 
front solutions from the ideal solution (16): 

MID =
∑n

i=1

Ci

n
(16)  

Ci is the distance from solution i to the ideal point (0, 0), and n is the 
number of solutions in the optimal Pareto front. Lower MID values 
indicate better solutions.  

3. Spacing Metric (SM): The distribution of solutions in the optimal 
Pareto front (17): 

SM =

∑n− 1
i=1 |d − di|

(n − 1)d
(17) 

Where di is the distance between two sequential solutions in the 
optimal Pareto front, d is the mean of di values, and n is the number of 
solutions.  

4. Hypervolume (HV): the volume (or area) covered by the discovered 
optimal solutions relative to a given reference point (18): 

HV = volume
(
⋃n

i=1
vi

)

(18) 

Where vi is the volume (or area) derived from the i answer and the 
determined reference point in the objective space. 

In this study, the reference point is formed based on the biggest value 
of mean importance of unmet needs by volunteers and mean degree of 
unsatisfied preferences of all selected volunteers generated in Pareto 
fronts of solved problems in the current study by both NSGA-II and 
NRGA. 

Hypervolume indicates both the diversity and convergence criteria. 
The greater the value of Hypervolume, the greater the algorithm’s 
efficacy. 

NSGA-II and NRGA are implemented using MATLAB R2021b on a 
computer with Intel(R) Core ™ i5-3230 M CPU @ 2.60 GHz and 6 GB 
DDR3 Memory. Also, statistical tests are performed in IBM SPSS Statis
tics 26. 

5.1. Performance analysis of algorithms in small-size problems 

To examine if measurement metrics are normally distributed, we 
conduct the Shapiro-Wilk test on obtained data from solving small-size 
problems by NSGA-II and NRGA. Results show that while NNS, SM, 
and HV are distributed normally, CPU Time and MID distribution are not 
normal. 

To compare the performance of heuristic algorithms, we employ 
Independent-samples T-Test on variables with normal distribution: NNS, 
SM, and HV. The results are available in Table 7. Regarding the output of 
Independent-Samples T-Test, we can conclude that:  

1. There is no significant difference between the mean of NNS metric 
obtained from NSGA-II and NRGA (P-value = 0.281);  

2. There is no significant difference between the mean of SM metric 
obtained from NSGA-II and NRGA (P-value = 0. 382); 

Table 7 
NSGA-II and NRGA performance comparison for small-size problems (NNS, SM, and HV).  

Independent Samples Test  

Levene’s Test for 
Equality of Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-tailed) Mean Difference Std. Error Difference 95% Confidence Interval of 
the Difference 

Lower Upper 

NNS Equal variances assumed  0.165  0.686  − 1.088 58  0.281  − 1.833  1.685  − 5.207  1.540 
Equal variances not assumed    − 1.088 57.991  0.281  − 1.833  1.685  − 5.207  1.540  

SM Equal variances assumed 
Equal variances not assumed  

0.951  0.334  0.882 58  0.382  0.04088  0.04637  -0.05193  0.13369    
0.882 57.306  0.382  0.04088  0.04637  -0.05195  0.13372  

HV Equal variances assumed 
Equal variances not assumed  

0.002  0.963  -0.102 58  0.919  -0.00213  0.02094  -0.04404  0.03978    
-0.102 57.973  0.919  -0.00213  0.02094  -0.04404  0.03978  

Table 8 
NSGA-II and NRGA performance comparison for small-size problems (CPU Time 
and MID).  

Test Statisticsa  

CPU Time MID 

Mann-Whitney U  374.000  436.000 
Wilcoxon W  839.000  901.000 
Z  − 1.124  -0.207 
Asymp. Sig. (2-tailed)  0.261  0.836 

a. Grouping Variable: Algorithm (NSGA-II and NRGA). 
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3. There is no significant difference between the mean of HV metric 
obtained from NSGA-II and NRGA (P-value = 0. 919). 

Also, Mann-Whitney U test is used to compare the mean of variables 
that are not distributed normally: CPU Time and MID. The results are 
given in Table 8. It can be concluded that:  

1. There is no significant difference between the mean of CPU Time 
metric obtained from NSGA-II and NRGA (P-value = 0.261);  

2. There is no significant difference between the mean of MID metric 
obtained from NSGA-II and NRGA (P-value = 0.836). 

Regarding the results, there is no statistically significant difference 
between NSGA-II and NRGA performance in all five performance met
rics in small-size problems: CPU Time, NNS, MID, SM, and HV. 

5.2. Performance analysis of algorithms in large-size problems 

Similarly, we conducted Shapiro-Wilk test on NSGA-II and NRGA 
measurement metrics obtained from solving large-size problems. Based 
on results, CPU Time, NNS, and HV are distributed normally. However, 
the distribution of MID and SM is not normal. 

We use Independent-samples T-Test on variables with normal dis
tribution: CPU Time, NNS, and HV. The results are shown in Tables 9 
and 10. Considering the output of Independent-Samples T-Test, it can be 
concluded that:  

1. There is a significant difference between the mean of CPU Time 
metric obtained from NSGA-II and NRGA (P-value = 0.000). The 
mean CPU Time in NSGA-II is lower than in NRGA;  

2. There is a significant difference between the mean of NNS metric 
obtained from NSGA-II and NRGA (P-value = 0.032). The mean of 
NNS in NRGA is higher than NSGA-II;  

3. There is no significant difference between the mean of HV metric 
obtained from NSGA-II and NRGA (P-value = 0. 989). 

Also, Mann-Whitney U test is used to compare the mean of MID and 
SM, which are not distributed normally. Based on the results in Table 11, 
we can conclude that:  

1. There is no significant difference between the mean of MID metric 
obtained from NSGA-II and NRGA (P-value = 1.000);  

2. There is no significant difference between the mean of SM metric 
obtained from NSGA-II and NRGA (P-value = 0.209); 

Comparisons of algorithms in all five metrics are also depicted in 
Figs. 7-11. 

Therefore, NSGA-II performs better than NRGA in terms of CPU 
Time. However, NRGA outperforms NSGA-II in NNS. Also, there is no 
statistically significant difference between NSGA-II and NRGA perfor
mance in MID, SM, and HV metrics. 

To sum up, regarding the statistical tests, we can conclude that the 
performance of NSGA-II and NRGA in small-size problems is the same in 
all five metrics. Regarding large-size problems, NSGA-II performs better 
in the CPU Time metric. However, NRGA produces more NNS in its 
Pareto front. There is no significant difference between employed al
gorithms in the remaining three metrics (MID, SM, and HV). 

6. Results and discussion 

In the current study, we introduced a multi-objective model to deal 
with the problem of volunteer assignment in a disaster occurrence. In 
this context, meeting the immediate needs of the EDs is as important as 
meeting the volunteers’ preferences. That is because retaining volun
teers has a critical effect on providing continuous high-quality medical 
services for affected people when needs as well as volunteer base change 
rapidly. Therefore, we considered two objective functions: The first is to 
minimize the mean importance of unmet needs by volunteers, and the 
second is to minimize the mean degree of unsatisfied preferences of 
selected volunteers. It should be noted that introduced objective 

Table 9 
NSGA-II and NRGA group statistics for large-size problems (CPU Time and NNS).  

Group Statistics  

Algorithm N Mean Std. Deviation Std. Error Mean 

CPU Time NSGA-II 30  474.8405  2.11858  0.38680 
NRGA 30  476.9825  1.78698  0.32626  

NNS NSGA-II 30  19.33  4.589  0.838 
NRGA 30  22.97  7.726  1.411  

Table 10 
NSGA-II and NRGA performance comparison for large-size problems (CPU Time, NNS, and HV).  

Independent Samples Test  

Levene’s Test for 
Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-tailed) Mean Difference Std. Error Difference 95% Confidence Interval 
of the Difference 

Lower Upper 

CPU Time Equal variances assumed  0.394  0.533  − 4.233 58  0.000  − 2.14203  0.50602  − 3.15494  − 1.12912 
Equal variances not assumed    − 4.233 56.397  0.000  − 2.14203  0.50602  − 3.15555  − 1.12851  

NNS Equal variances assumed  6.154  0.016  − 2.215 58  0.031  − 3.633  1.641  − 6.917  -0.349 
Equal variances not assumed    − 2.215 47.197  0.032  − 3.633  1.641  − 6.933  -0.333  

HV Equal variances assumed  0.069  0.794  -0.013 58  0.989  -0.00018  0.01325  -0.02670  0.02635 
Equal variances not assumed    -0.013 57.979  0.989  -0.00018  0.01325  -0.02670  0.02635  

Table 11 
NSGA-II and NRGA performance comparison for large-size problems (MID and 
SM).  

Test Statisticsa  

MID SM 

Mann-Whitney U  450.000  365.000 
Wilcoxon W  915.000  830.000 
Z  0.000  − 1.257 
Asymp. Sig. (2-tailed)  1.000  0.209 

a. Grouping Variable: Algorithm (NSGA-II and NRGA). 
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Fig. 7. Comparison of NSGA-II and NRGA in CPU Time metric (large-size problems).  

Fig. 8. Comparison of NSGA-II and NRGA in NNS metric (large-size problems).  

Fig. 9. Comparison of NSGA-II and NRGA in MID metric (large-size problems).  
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functions are qualitative. A FIS is developed to capture the system’s 
uncertainty and ambiguity to evaluate each objective function. Also, two 
evolutionary algorithms are employed to solve the model: NSGA-II and 
NRGA. 30 small-size problems as well as 30 large-size ones are gener
ated randomly and solved. In the next step, statistical tests are conducted 
on obtained data to evaluate the performance of algorithms. Based on 
the test results, both algorithms have the same performance on small- 
size problems. However, in large-size problems, NSGA-II solves the 
problems faster. Nevertheless, NRGA produces more NNS. 

Moreover, we tried to make our model flexible enough to suit various 
situations. Introduced FISs are critical to this flexibility: In addition to 
encapsulating experts’ knowledge and the method of human reasoning 
in FISs to deal with uncertainty, decision-makers can easily change the 
model just by updating linguistic rules regarding different situations. 
Last but not least, employing evolutionary algorithms instead of a single 
solution produces a set of optimum solutions, which are a tradeoff be
tween our two objective functions. Decision-makers should choose the 
final solution among the optimum solutions. Regarding the situation, it 
is up to them to decide which objective function is more critical and to 
what extent. Obtained results show that our model is promising in 
capturing the uncertainty of volunteer selection problem in 

humanitarian and representing the tradeoff between objective func
tions. However, it should be validated in real cases. Besides, our pro
posed model is limited to two qualitative objective functions. 
Considering other objective functions, such as the importance of vol
unteers’ desire to work in specific groups, will be valuable. As a sug
gestion for future works, the following topics might be of great interest: 

1. Adapting the proposed model to meet other scenarios in humani
tarian context as well as other disaster phases.  

2. Using other evolutionary algorithms and comparing the results with 
this study. 
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Fig. 10. Comparison of NSGA-II and NRGA in SM metric (large-size problems).  

Fig. 11. Comparison of NSGA-II and NRGA in HV metric (large-size problems).  
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Appendix A. Rule base of FIS1  

Rule No. IF (Input variables) Then (Output variable) 

P E T x′

1 Low Low Low Very Low 
2 Low Low Medium High 
3 Low Low High Very High 
4 Low Medium Low Medium 
5 Low Medium Medium Medium 
6 Low Medium High High 
7 Low High Low High 
8 Low High Medium Low 
9 Low High High Medium 
10 Medium Low Low Low 
11 Medium Low Medium Medium 
12 Medium Low High High 
13 Medium Medium Low Medium 
14 Medium Medium Medium Low 
15 Medium Medium High Medium 
16 Medium High Low High 
17 Medium High Medium Very Low 
18 Medium High High Low 
19 High Low Low Medium 
20 High Low Medium Low 
21 High Low High Medium 
22 High Medium Low High 
23 High Medium Medium Very Low 
24 High Medium High Low 
25 High High Low Very High 
26 High High Medium Low 
27 High High High Very Low  

Appendix B Rule base of FIS2.  
Rule No. IF (Input variables) Then (Output variable) 

P E N X′ ′

1 Low Low Low Very Low 
2 Low Low Medium High 
3 Low Low High Very High 
4 Low Medium Low Medium 
5 Low Medium Medium Medium 
6 Low Medium High High 
7 Low High Low High 
8 Low High Medium Low 
9 Low High High Medium 
10 Medium Low Low Low 
11 Medium Low Medium Medium 
12 Medium Low High High 
13 Medium Medium Low Medium 
14 Medium Medium Medium Low 
15 Medium Medium High Medium 
16 Medium High Low High 
17 Medium High Medium Very Low 
18 Medium High High Low 
19 High Low Low Medium 
20 High Low Medium Low 
21 High Low High Medium 
22 High Medium Low High 
23 High Medium Medium Very Low 
24 High Medium High Low 
25 High High Low Very High 
26 High High Medium Low 
27 High High High Very Low  

Appendix C Rule base of FIS3. 
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Rule No. IF (Input variables) Then (Output variable) 

D W F y′

1 Low Low Low Very Low 
2 Low Low Medium Very Low 
3 Low Low High Very Low 
4 Low Medium Low Very Low 
5 Low Medium Medium Low 
6 Low Medium High Low 
7 Low High Low Low 
8 Low High Medium Medium 
9 Low High High Medium 
10 Medium Low Low Very Low 
11 Medium Low Medium Low 
12 Medium Low High Low 
13 Medium Medium Low Low 
14 Medium Medium Medium Medium 
15 Medium Medium High Medium 
16 Medium High Low Medium 
17 Medium High Medium High 
18 Medium High High High 
19 High Low Low Low 
20 High Low Medium Medium 
21 High Low High Medium 
22 High Medium Low Medium 
23 High Medium Medium High 
24 High Medium High High 
25 High High Low High 
26 High High Medium Very High 
27 High High High Very High  
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